WO2021219064A1 - 一种改性β沸石、催化裂化催化剂及其制备方法和应用 - Google Patents

一种改性β沸石、催化裂化催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2021219064A1
WO2021219064A1 PCT/CN2021/090881 CN2021090881W WO2021219064A1 WO 2021219064 A1 WO2021219064 A1 WO 2021219064A1 CN 2021090881 W CN2021090881 W CN 2021090881W WO 2021219064 A1 WO2021219064 A1 WO 2021219064A1
Authority
WO
WIPO (PCT)
Prior art keywords
zeolite
modified
weight
catalytic cracking
acid
Prior art date
Application number
PCT/CN2021/090881
Other languages
English (en)
French (fr)
Inventor
于善青
严加松
张杰潇
唐立文
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司石油化工科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司石油化工科学研究院 filed Critical 中国石油化工股份有限公司
Priority to JP2022566138A priority Critical patent/JP2023523468A/ja
Priority to AU2021265998A priority patent/AU2021265998A1/en
Priority to EP21797171.2A priority patent/EP4144692A1/en
Priority to US17/997,632 priority patent/US20230166245A1/en
Publication of WO2021219064A1 publication Critical patent/WO2021219064A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/026After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/7057Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/06Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis
    • C01B39/065Galloaluminosilicates; Group IVB- metalloaluminosilicates; Ferroaluminosilicates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J2029/062Mixtures of different aluminosilicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/183After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1055Diesel having a boiling range of about 230 - 330 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1059Gasoil having a boiling range of about 330 - 427 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • C10G2300/206Asphaltenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/308Gravity, density, e.g. API
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to a modified beta zeolite, a catalytic cracking catalyst, and a preparation method and application thereof.
  • the main raw materials of the alkylation unit are isobutane and carbon four olefins.
  • US3758403 discloses a catalyst with ZSM-5 and large pore zeolite (mainly Y-type zeolite) as the active component, which increases the yield of C3 and C4 olefins while increasing the octane number of gasoline. It is cracked to produce gasoline and diesel, which are further cracked into low-carbon olefins by ZSM-5 shape-selective molecular sieve.
  • ZSM-5 and large pore zeolite mainly Y-type zeolite
  • Beta zeolite was first synthesized in 1967 by Wadlinger of Mobil Company. Higgins et al. revealed its unique three-dimensional structure in 1988. It is the only high silica zeolite with a cross-twelve-membered ring channel system, parallel to (001 The pore size of the 12-membered ring of the one-dimensional channel of the crystal plane is 0.75-0.57nm, and the pore size of the 12-membered ring of the other two-dimensional channel parallel to the (100) crystal plane is 0.65-0.56nm. Due to its structural particularity, both acid catalytic properties and structural selectivity, it has rapidly developed into a new type of catalytic material in recent years.
  • ⁇ zeolite in use is: on the one hand, it is easy to damage its structure in the process of removing the template agent, on the other hand, it is easy to dealumination during the reaction process, which makes the activity stability worse. Therefore, there are many research reports on the modification of ⁇ zeolite.
  • CN103771437A discloses a phosphorus-containing modified ⁇ molecular sieve.
  • the phosphorus content is 3-10% by weight based on P 2 O 5.
  • the chemical shift is 40 ⁇ 3 ppm resonance signal peak area and chemical shift
  • the ratio of 54ppm ⁇ 3ppm resonance signal peak area is greater than or equal to 1.
  • the phosphorus in the molecular sieve is fully coordinated with the framework aluminum, the framework aluminum is fully protected, and has excellent hydrothermal stability and better product selectivity.
  • CN1179994A discloses a modification method of ⁇ zeolite, the Na ⁇ zeolite is exchanged with ammonium ion to the Na 2 O content of the zeolite to be less than 0.1% by weight;
  • the silicon-to-aluminum ratio is greater than 50;
  • the beta zeolite after dealumination and phosphoric acid or phosphate are uniformly mixed and dried, so that the amount of P 2 O 5 on the zeolite obtained is 2 to 5% by weight; It is hydrothermally calcined at 450-650°C for 0.5-4 hours in an atmosphere.
  • the beta zeolite modified by the method can obtain higher yields of olefins, especially isoolefins, and lower coke yields when used in the cracking reaction of hydrocarbons.
  • CN105621432A discloses a modified ⁇ molecular sieve and a preparation method thereof.
  • the ⁇ molecular sieve after ammonium exchange is pretreated, dried, coke-deposited, roasted at high temperature, and then dealuminated, dried, and charred to obtain the modified ⁇ molecular sieve;
  • modified ⁇ molecular sieve has a bulk silicon-aluminum ratio of 30-80, in which the surface layer silicon-aluminum ratio is 50-130, and the surface layer silicon-aluminum ratio is higher than the bulk silicon-aluminum ratio by 30-70; the specific surface area is 400-800m 2 /g, pore volume 0.2 ⁇ 0.60ml/g; infrared acid content 0.1 ⁇ 0.6mmol/g; relative crystallinity 100% ⁇ 150%.
  • the silicon-to-aluminum ratio of the surface layer of the molecular sieve of the invention is higher than the bulk silicon-to-aluminum ratio, and has broad application prospects in the hydroc
  • CN107899607A provides a modified ⁇ molecular sieve and its preparation method and application.
  • the catalyst is a method comprising using ⁇ molecular sieve as matrix, metal element as modifier, using metal element soluble salt solution, and ion exchange method to prepare modified ⁇ molecular sieve; metal elements are selected from Cu, Al, Zn, Fe Mixing with one or more of Sn; the mass content of metal elements in the prepared modified ⁇ molecular sieve is 0.5-4%.
  • US Patent No. 4,837,396 discloses a catalyst containing ⁇ zeolite and Y zeolite, and metal ion-type compounds are used as stabilizers to improve the hydrothermal stability and mechanical strength of the catalyst.
  • the stabilizer can directly interact with ⁇ zeolite, or it can be introduced during the preparation process.
  • CN1055105C discloses a cracking catalyst that produces more isobutene and isoamylene, containing phosphorus and rare earth five-membered ring high silica zeolite 6-30 wt%, USY zeolite 5-20 wt%, beta zeolite 1-5 wt%, clay 30-60% by weight and 15-30% by weight of inorganic oxides, the catalyst has the characteristics of producing more isobutylene and isoamylene under the process conditions of catalytic cracking, and can simultaneously produce high-octane gasoline.
  • CN107971003A discloses a catalytic cracking aid containing phosphorus and metal-loaded Beta molecular sieve and a preparation method thereof.
  • the application of this additive in catalytic cracking can increase the yield of isobutene and propylene
  • CN104998681A discloses a catalytic cracking auxiliary agent for increasing the concentration of low-carbon olefins and a preparation method thereof.
  • the auxiliary agent includes a boron-modified phosphorus and metal-containing beta molecular sieve, an inorganic oxide binder, a group VIII metal additive, and a phosphorus additive And optional clay.
  • the catalytic cracking aid is applied to the catalytic cracking of petroleum hydrocarbons, which can increase the concentration of isobutylene in the catalytically cracked liquefied petroleum gas and reduce the output of coke.
  • CN107971000A discloses a catalytic cracking auxiliary agent containing phosphorus-containing Beta molecular sieve and a preparation method thereof.
  • the auxiliary agent contains phosphorus-containing Beta molecular sieve 10-75% by weight on a dry basis, and 0-60% by weight on a dry basis Clay, 15-60% by weight of inorganic oxide binder on a dry basis, 0-25% by weight of phosphorus additive on a P 2 O 5 basis, and 0-15% by weight of Group VIII on an oxide basis Metal additives.
  • the additive used in catalytic cracking can increase the yield of isobutylene and propylene, and increase the octane number of gasoline.
  • the formation of carbon four olefins in the catalytic cracking process mainly comes from two aspects.
  • One is the active intermediate generated by the hydrocarbon macromolecules in the feedstock through the single-molecule cracking reaction or the bimolecular cracking reaction.
  • the second is the product of the secondary reaction of the low-carbon number olefins formed in the cracking reaction.
  • the carbon four olefins produced in the catalytic cracking process can further undergo cracking reactions, isomerization reactions, dimerization reactions and hydrogen transfer reactions.
  • the purpose of the present invention is to provide a modified beta zeolite, a catalytic cracking catalyst, and a preparation method and application thereof.
  • the catalytic cracking catalyst of the present invention has good C4 olefin selectivity and yield.
  • the first aspect of the present invention provides a modified ⁇ zeolite, based on the dry basis weight of the modified ⁇ zeolite, the modified ⁇ zeolite contains 0.5-15% by weight based on oxides.
  • IVB group metal elements, the number of medium-strength acid centers of the modified ⁇ zeolite accounts for 30-60% of the total acid content, the number of strong acid centers accounts for 5-25% of the total acid content, and the ratio of B acid to L acid is above 0.8
  • the ratio of the weight content of the IVB group metal element in the modified ⁇ zeolite bulk phase to the weight content of the IVB group metal element on the surface is 0.1-0.8.
  • the ratio of the B acid to the L acid is 1.0-1.5.
  • the number of medium-strength acid centers accounts for 35-55% of the total acid content.
  • the number of strong acid centers accounts for 5-20% of the total acid amount.
  • the modified ⁇ zeolite contains 1-12% by weight of the group IVB metal element calculated as oxide.
  • the IVB group metal element is Zr and/or Ti, preferably Zr, wherein the weight of the Zr element is calculated as ZrO 2 and the weight of the Ti element is calculated as TiO 2.
  • the ratio of the weight content of the IVB group metal element in the modified ⁇ zeolite bulk phase to the weight content of the IVB group metal element on the surface is 0.1-0.6.
  • the second aspect of the present invention provides a catalytic cracking catalyst, based on the dry basis weight of the catalytic cracking catalyst, the catalytic cracking catalyst contains 10-50% by weight, preferably 20-50% by weight of Y-type zeolite, 2- 40% by weight of modified ⁇ zeolite, 10-70% by weight of clay, and 5-60% by weight of heat-resistant inorganic oxide, wherein the modified ⁇ zeolite is the modified ⁇ zeolite provided in the first aspect of the present invention.
  • the Y-type zeolite is selected from one or more of Y-type zeolite containing phosphorus and/or rare earth, ultra-stable Y zeolite, and ultra-stable Y zeolite containing phosphorus and/or rare earth;
  • the clay is selected from one or more of kaolin, rectorite, diatomaceous earth, montmorillonite, bentonite and sepiolite;
  • the heat-resistant inorganic oxide is selected from one or more of aluminum oxide, silicon oxide, and amorphous silicon aluminum.
  • the catalytic cracking catalyst contains 15-45% by weight, preferably 30-45% by weight of the Y-type zeolite, 5-30% by weight of the modified ⁇ zeolite, and 10-50% by weight of the Clay and 5-40% by weight of the heat-resistant inorganic oxide.
  • the third aspect of the present invention provides a method for preparing the modified ⁇ zeolite provided by the first aspect of the present invention, the method comprising:
  • step (2) the pH of the first slurry is adjusted to 5-8.
  • the weight ratio of the amount of the IVB metal-containing compound to the ⁇ zeolite is (0.005-0.15):1, and the weight ratio of the ⁇ zeolite to the carbon source is 1:(0.001-0.15) ), wherein the compound containing the group IVB metal is calculated as the oxide of the group IVB metal, and the beta zeolite is calculated as the dry basis weight.
  • the beta zeolite is selected from one or more of hydrogen type beta zeolite, sodium type beta zeolite, phosphorus-containing beta zeolite, rare earth metal-containing beta zeolite, and phosphorus and rare earth metal-containing beta zeolite;
  • the carbon source is selected from one or more of starch, lignin, viscose fiber, methyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl cellulose and carboxymethyl cellulose ;
  • the compound containing group IVB metal is selected from zirconium tetrachloride, zirconium acetate, zirconium isopropoxide, titanium tetrachloride, titanyl sulfate, ammonium fluorotitanate, zirconium sulfate, zirconium nitrate, and oxychlorination
  • zirconium, titanium sulfate, tetrabutyl titanate, titanium trichloride and titanium sulfite is selected from zirconium tetrachloride, zirconium acetate, zirconium isopropoxide, titanium tetrachloride, titanyl sulfate, ammonium fluorotitanate, zirconium sulfate, zirconium nitrate, and oxychlorination
  • the first solvent is selected from one or more of deionized water, ethanol, acetone and n-hexane.
  • the fourth aspect of the present invention provides a method for preparing the catalytic cracking catalyst provided by the second aspect of the present invention, the method comprising: combining the Y-type zeolite, the modified ⁇ zeolite provided in the first aspect of the present invention, the clay, and the The heat-resistant inorganic oxide and the second solvent are mixed to obtain a second slurry, and the obtained second slurry is granulated, dried and/or second calcined.
  • the drying temperature is 80-200°C and the time is 0.5-24 hours; the second baking temperature is 350-700°C and the time is 0.5-5 hours.
  • the fifth aspect of the present invention provides an application of the modified beta zeolite provided in the first aspect of the present invention or the catalytic cracking catalyst provided in the second aspect of the present invention in the catalytic cracking of heavy oil.
  • the modified ⁇ zeolite of the present invention has excellent acid distribution and IVB group metal distribution, and the catalytic cracking catalyst containing the modified ⁇ zeolite has good catalytic performance.
  • the heavy oil has excellent cracking performance, which can increase the concentration of carbon four olefins in the liquefied gas and increase the yield and selectivity of carbon four olefins without reducing the yield of gasoline and liquefied gas.
  • the method of the present invention is simple, can improve the distribution state and distribution amount of IVB group metal oxides on ⁇ zeolite, adjust the channel distribution of ⁇ zeolite, and can prepare modified ⁇ zeolite with good physical and chemical properties.
  • the first aspect of the present invention provides a modified ⁇ zeolite, based on the dry basis weight of the modified ⁇ zeolite, the modified ⁇ zeolite contains 0.5-15% by weight based on the oxide, for example, 2-13.5% by weight of IVB group Metal element, the number of medium-strength acid centers of modified ⁇ zeolite accounts for 30-60% of the total acid content, such as 30-50%, and the number of strong acid centers accounts for 5-25% of the total acid content, such as 10-25%, B acid
  • the ratio to L acid is 0.8 or more, such as 0.9-1.5, and the ratio of the weight content of the IVB group metal element in the modified ⁇ zeolite bulk phase to the weight content of the IVB group metal element on the surface is 0.1-0.8, for example, 0.15-0.45 .
  • the modified ⁇ zeolite of the present invention has excellent acid distribution and the ratio of B acid to L acid, and the number of medium-strength acid centers is increased, which optimizes the isomerization of carbocations in the catalytic cracking reaction process.
  • the ratio of reaction to cracking reaction is conducive to the isomerization reaction of C6 ⁇ C10 olefins produced in the catalytic cracking process and then the ⁇ -site cleavage reaction, which improves the selectivity of C4 olefins; at the same time, the modified ⁇ zeolite has excellent heavy oil cracking. ability.
  • the group IVB metal element may be Zr and/or Ti, preferably Zr, wherein the weight of the Zr element is calculated as ZrO 2 and the weight of the Ti element is calculated as TiO 2.
  • the IVB group metal elements on the surface of ⁇ zeolite may exist in the form of IVB group metal oxides.
  • the group IVB metal oxide is ZrO 2 and/or TiO 2 , more preferably ZrO 2 .
  • the modified ⁇ zeolite contains 1-12% by weight, for example 2-12% by weight, of group IVB metal elements based on oxides, medium
  • the number of strong acid centers occupies 35-55% of the total acid content, such as 35-50% or 35-45%, and the number of strong acid centers occupies 5-20% of the total acid content, such as 10-20%.
  • the difference between B acid and L acid The ratio is 0.8 or more, such as 1.0-1.5 or 1.1-1.5, and the ratio of the weight content of the IVB metal elements in the modified ⁇ zeolite bulk phase to the weight content of the IVB metal elements on the surface is 0.1-0.6, for example, 0.15-0.45 .
  • the second aspect of the present invention provides a catalytic cracking catalyst, based on the dry weight of the catalytic cracking catalyst, the catalytic cracking catalyst contains 20-50% by weight of Y-type zeolite, 2-40% by weight of modified ⁇ zeolite, 10- 70% by weight of clay and 5-60% by weight of heat-resistant inorganic oxide, wherein the modified ⁇ zeolite is the modified ⁇ zeolite provided in the first aspect of the present invention.
  • the inventors of the present invention found that the combination of Y zeolite and modified ⁇ zeolite can promote the cracking process of heavy oil macromolecules, reduce the yield of oil slurry and diesel, increase the yield of gasoline, and provide more potential for producing more carbon four olefins. Components to further increase the selectivity of carbon four olefins.
  • the catalytic cracking catalyst of the present invention When used in the catalytic cracking process of heavy oil, it can increase the concentration of carbon four olefins in the liquefied gas and increase the yield of carbon four olefins without reducing the yield of gasoline and liquefied gas. Selective.
  • the catalytic cracking catalyst contains 30-45% by weight of the Y-type zeolite, 5-30% by weight of the modified ⁇ zeolite, 10-50% by weight of the clay, and 5 -40% by weight of the heat-resistant inorganic oxide.
  • the heat-resistant inorganic oxide can be selected from one or more of the heat-resistant inorganic oxides used as a catalytic cracking catalyst matrix and/or binder component, such as alumina, silica, and amorphous silicon aluminum.
  • alumina alumina
  • silica alumina
  • amorphous silicon aluminum alumina
  • these heat-resistant inorganic oxides themselves and their preparation methods are well known to those in the art.
  • Y-type zeolite and clay are well known to those skilled in the art.
  • Y-type zeolite can be selected from Y-type zeolite containing phosphorus and/or rare earth, ultra-stable Y zeolite, and ultra-stable Y zeolite containing phosphorus and/or rare earth.
  • stable Y zeolite; clay can be selected from one or more of kaolin, rectorite, diatomite, montmorillonite, bentonite and sepiolite.
  • the third aspect of the present invention provides a method for preparing the modified ⁇ zeolite provided by the first aspect of the present invention, the method comprising:
  • the atmosphere of the first firing may be an air atmosphere and/or an inert atmosphere, where the inert gas in the inert atmosphere is selected from one or more of nitrogen, helium, and argon.
  • the temperature and time for mixing in step (1) are also not specifically limited. For example, mixing can be performed at 40-90° C. for 30-120 minutes.
  • filtration or drying may be used, preferably filtration.
  • the weight ratio of the compound containing group IVB metal and the amount of zeolite ⁇ can be (0.005-0.15):1, and the weight ratio of the amount of zeolite ⁇ and the carbon source can be 1:(0.001-0.15), which contains group IVB
  • the metal compound is calculated as the oxide of the group IVB metal, and the beta zeolite is calculated by weight on a dry basis; preferably, the weight ratio of the compound containing the group IVB metal and the amount of the beta zeolite is (0.01-0.12):1, the beta zeolite and carbon
  • the weight ratio of the source amount is 1: (0.005-0.10); more preferably, the compound containing group IVB metal is a compound containing Zr and/or a compound containing Ti.
  • the carbon source may be an organic polymer compound, such as a natural polymer compound and/or a semi-synthetic polymer compound; in a specific embodiment, the carbon source may be selected from starch, lignin, viscose fiber, One or more of methyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl cellulose and carboxymethyl cellulose.
  • the weight content of the IVB group metal elements on the surface of the modified beta zeolite prepared with the above polymer organic compounds and/or semi-synthetic polymer organic compounds is higher than the weight content of the IVB group metal elements in the bulk phase, and the modified beta zeolite has a higher weight content.
  • Excellent catalytic performance when it is used in the catalytic cracking process of heavy oil, it can increase the concentration of carbon four olefins in the liquefied gas and increase the yield and selection of carbon four olefins without reducing the yield of gasoline and liquefied gas. sex.
  • the IVB group metal in the IVB group metal-containing compound may be titanium and/or zirconium.
  • the IVB group metal-containing compound may be selected from zirconium tetrachloride, zirconium sulfate, and zirconium nitrate. , Zirconium oxychloride, zirconium acetate, zirconium isopropoxide, titanium tetrachloride, titanyl sulfate, ammonium fluorotitanate, titanium sulfate, tetrabutyl titanate, titanium trichloride and titanous sulfate or Several kinds.
  • the type of the first solvent is not specifically limited, as long as it can dissolve the IVB metal-containing compound and disperse ⁇ zeolite.
  • it can be selected from one of deionized water, ethanol, acetone, and n-hexane. Several kinds.
  • beta zeolite is well-known to those skilled in the art, for example, it can be selected from hydrogen type beta zeolite, sodium type beta zeolite, phosphorus-containing beta zeolite, rare earth metal-containing beta zeolite, and phosphorus and rare earth metal-containing beta zeolite One or more of them are preferably hydrogen beta zeolite and phosphorus-containing beta zeolite.
  • the pH of the first slurry can be adjusted to 5-8, preferably, the pH of the first slurry is adjusted to 6-8.
  • the pH value of the first slurry can be adjusted by adding an alkaline solution.
  • the alkaline solution can be ammonia, water glass aqueous solution, sodium metaaluminate aqueous solution and sodium hydroxide aqueous solution.
  • the concentration of the alkaline solution can be varied within a relatively large range. In a specific embodiment, the concentration of the alkaline solution in terms of OH ⁇ can be 2-20% by weight, preferably 3-15% by weight.
  • the alkaline solution is dilute ammonia, and the concentration of the dilute ammonia based on NH 3 is 2-20% by weight, preferably 3-15% by weight.
  • the IVB metal ions can form hydroxide precipitates, which is beneficial to the uniform dispersion of the IVB metal-containing precipitates on the surface of the ⁇ zeolite.
  • the third aspect of the present invention provides a method for preparing the catalytic cracking catalyst provided by the second aspect of the present invention, the method comprising: combining the Y-type zeolite, the modified ⁇ zeolite provided by the first aspect of the present invention, the clay, and the The heat-resistant inorganic oxide and the second solvent are mixed to obtain a second slurry, and the obtained second slurry is granulated, dried and/or second calcined.
  • the heat-resistant inorganic oxide includes the heat-resistant inorganic oxide itself and/or the heat-resistant inorganic oxide precursor.
  • the heat-resistant inorganic oxide itself can be selected from one or more of the heat-resistant inorganic oxides used as a cracking catalyst matrix and/or binder component, such as one of aluminum oxide, silicon oxide, and amorphous silicon aluminum.
  • the heat-resistant inorganic oxide precursor refers to a material that can form heat-resistant inorganic oxide during the preparation process of the catalyst of the present invention.
  • the precursor of alumina can be selected from aluminum sol, pseudo-boehmite, and thin One or more of diaspore, alumina trihydrate and amorphous aluminum hydroxide; for example, the precursor of silica can be selected from one or more of silica sol, silica gel and water glass.
  • heat-resistant inorganic oxides themselves or/and heat-resistant inorganic oxide precursors and preparation methods thereof are well known to those in the art.
  • the clay, heat-resistant inorganic oxide and the first solvent are beaten, the resulting slurry is mixed with modified ⁇ zeolite and Y-type zeolite, after spraying granulation, roasting, and optionally washing And drying to obtain the catalytic cracking catalyst of the present invention.
  • acid is added during beating, or acid is added after beating, the pH of the slurry is adjusted to 1-5, preferably 2-4, and the slurry is aged at 30-90°C for 0.5-5 hours.
  • the acid may be an inorganic acid or an organic acid soluble in water, preferably one or more of hydrochloric acid, nitric acid and phosphoric acid. Among them, the method and conditions of spray drying are well known to those skilled in the art, and will not be repeated here.
  • the solid content of the second slurry can be varied within a relatively large range, for example, the solid content of the second slurry is 15-50% by weight, preferably 20-45% by weight.
  • the drying temperature may be 80-200°C, and the time may be 0.5-24 hours, preferably, the temperature may be 80-120°C, and the time may be 0.5-12 hours; the second baking temperature may be 350-700°C
  • the time can be 0.5-5 hours, preferably, the temperature is 400-650°C, and the time is 1-4 hours, and the firing can be carried out in any atmosphere, such as an air atmosphere.
  • the fourth aspect of the present invention provides the application of the modified beta zeolite provided in the first aspect of the present invention or the catalytic cracking catalyst provided in the second aspect of the present invention in the catalytic cracking of heavy oil.
  • Kaolin is produced by Suzhou Kaolin Company, with a solid content of 76% by weight;
  • the alumina content in the aluminum sol is 21.5% by weight
  • the pseudo-boehmite is produced by Shandong Aluminum Factory with a solid content of 62.0% by weight;
  • the solid content of acidified pseudo-boehmite is 12.0% by weight, and the molar ratio of acid (HCl) to alumina is 0.15 during acidification with hydrochloric acid;
  • the solid content of the ultra stable Y zeolite USY used is 94.7%, and the unit cell constant is In terms of weight percentage, the content of Na 2 O is 1.3%, and the content of RE 2 O 3 is 2.5%;
  • the solid content of rare earth ultra stable Y zeolite REUSY is 84.8%, and the unit cell constant is In terms of weight percentage, the content of Na 2 O is 1.6%, and the content of RE 2 O 3 is 12.0%;
  • the solid content of phosphorus-containing Y zeolite PREHY is 92.4%, and the unit cell constant is In terms of weight percentage, the content of Na 2 O is 1.5%, the content of P 2 O 5 is 7.5%, and the content of RE 2 O 3 is 8.5%;
  • Y-type zeolite and ⁇ -zeolite are all produced by Sinopec Catalyst Co., Ltd., and the remaining reagents are produced by Sinopharm Chemical Reagent Co., Ltd., and the specifications are all analytical pure.
  • the stated content, unless otherwise specified, is the percentage by weight.
  • the concentration of dilute ammonia in terms of NH 3 is 12% by weight.
  • the temperature zone of the weak acid center, medium strength acid center and strong acid center of zeolite is 120- At 270°C, 270-390°C and 390-560°C, the molar amount of NH3 desorbed in the corresponding temperature range corresponds to the acid amount of the zeolite.
  • B acid and L acid Nicolet 560 infrared spectrometer was used to characterize the acidity of the catalyst surface with a wave number of 1400-1700 cm -1 .
  • the B acid in the catalyst is characterized by a characteristic peak at 1540 cm -1
  • the L acid in the catalyst is characterized by a characteristic peak at 1450 cm -1 , calculated from the corresponding peak area integration.
  • the ratio of B acid to L acid refers to The ratio of the peak area of the characteristic peak of B acid to the peak area of the characteristic peak of L acid.
  • the weight content of the IVB metal elements on the surface of the modified ⁇ zeolite and the weight content of the IVB metal elements in the bulk phase refers to the use of X-ray photoelectron spectroscopy (XPS) Analyze and measure the weight content of IVB metal elements in the range of 2-5nm on the zeolite surface.
  • XPS X-ray photoelectron spectroscopy
  • the weight content of the IVB group metal elements in the modified ⁇ zeolite bulk phase is the weight content of the IVB group metal elements in the zeolite measured by chemical analysis (measured by ICP (Jarrell-Ash, ICAP 9000) element analysis method).
  • the IVB group metal element contained in the modified ⁇ zeolite refers to the IVB group metal element contained in the modified ⁇ zeolite bulk phase.
  • the measured weight content of the IVB group metal elements in the modified ⁇ zeolite bulk phase can be converted to obtain the weight content of the IVB group metal elements as oxides contained in the modified ⁇ zeolite.
  • the conversion method is a technology in the art Those familiar to the staff will not be repeated here.
  • the properties of modified ⁇ zeolite prepared in the examples and comparative examples are shown in Table 1.
  • X-ray fluorescence spectroscopy (XRF) method was used.
  • Examples 1-8 are examples for preparing modified ⁇ zeolite, and comparative examples 1-4 are comparative examples for preparing modified ⁇ zeolite:
  • the weight ratio of zirconium oxychloride, beta zeolite and hydroxypropyl methylcellulose is 0.1:1:0.05
  • zirconium oxychloride is calculated as zirconia
  • beta zeolite is calculated by weight on a dry basis.
  • the weight ratio of zirconium isopropoxide, ⁇ zeolite and methyl cellulose is 0.06:1:0.02
  • zirconium isopropoxide is based on zirconia
  • ⁇ zeolite is based on dry basis.
  • the weight ratio of zirconium nitrate, beta zeolite and lignin is 0.02:1:0.005
  • zirconium nitrate is calculated as zirconia
  • beta zeolite is calculated by weight on a dry basis.
  • the weight ratio of zirconium oxychloride, beta zeolite and viscose fiber is 0.12:1:0.1
  • zirconium oxychloride is calculated as zirconia
  • beta zeolite is calculated by weight on a dry basis.
  • Beta zeolite denoted as B5.
  • the weight ratio of zirconium isopropoxide, ⁇ zeolite and hydroxyethyl cellulose is 0.04:1:0.04, zirconium isopropoxide is based on zirconia, and ⁇ zeolite is based on dry basis.
  • the modified ⁇ zeolite B6 was prepared by the same method as in Example 1, except that in step (1), 2250 g of deionized water, 39.23 zirconium oxychloride (ZrOCl 2 ⁇ 8H 2 O) and 0.12 g of hydroxypropyl methylcellulose was mixed, the pH of the mixture was adjusted to 7.0 with dilute ammonia, and the mixture was stirred for 40 minutes to obtain the first slurry.
  • step (1) 2250 g of deionized water, 39.23 zirconium oxychloride (ZrOCl 2 ⁇ 8H 2 O) and 0.12 g of hydroxypropyl methylcellulose was mixed, the pH of the mixture was adjusted to 7.0 with dilute ammonia, and the mixture was stirred for 40 minutes to obtain the first slurry.
  • the weight ratio of zirconium oxychloride, ⁇ zeolite and hydroxypropyl methylcellulose is 0.10:1:0.0008, zirconium oxychloride is based on zirconium oxide, and ⁇ zeolite is based on dry basis.
  • the modified ⁇ zeolite B7 was prepared by the same method as in Example 1, except that in step (1), (1) 2250g of deionized water, 62.78g of zirconium oxychloride (ZrOCl 2 ⁇ 8H 2 O) Mix with 7.5 g of hydroxypropyl methylcellulose, adjust the pH of the mixture to 7.0 with dilute ammonia, and stir for 40 minutes to obtain the first slurry.
  • step (1) 2250g of deionized water, 62.78g of zirconium oxychloride (ZrOCl 2 ⁇ 8H 2 O) Mix with 7.5 g of hydroxypropyl methylcellulose, adjust the pH of the mixture to 7.0 with dilute ammonia, and stir for 40 minutes to obtain the first slurry.
  • the weight ratio of zirconium oxychloride, beta zeolite and hydroxypropyl methylcellulose is 0.16:1:0.05, and zirconium oxychloride is calculated as zirconium oxide.
  • the modified ⁇ zeolite B8 was prepared by the same method as in Example 1, except that in step (1), 2250 g of deionized water, 35.61 g of titanium tetrachloride and 7.5 g of hydroxypropyl methyl The cellulose is mixed, the pH of the mixture is adjusted to 7.0 with dilute ammonia, and the mixture is stirred for 40 minutes to obtain the first slurry.
  • the weight ratio of titanium tetrachloride, beta zeolite and hydroxypropyl methylcellulose is 0.1:1:0.05, titanium tetrachloride is calculated as titanium oxide, and beta zeolite is calculated by weight on a dry basis.
  • the modified ⁇ zeolite was prepared by the same method as in Example 1, except that the pH value of the first slurry was not adjusted.
  • the modified ⁇ zeolite was prepared by the same method as in Example 1, except that the pH value of the first slurry was not adjusted.
  • the modified ⁇ zeolite was prepared by the same method as in Example 2, except that no carbon source was added.
  • the modified ⁇ zeolite was prepared by the same method as in Example 2, except that no carbon source was added.
  • the modified ⁇ zeolite was prepared by the conventional aqueous solution impregnation method.
  • H ⁇ zeolite At room temperature, take 200g of H ⁇ zeolite, beat with 1500g of deionized water, add 45g of (NH 4 ) 2 SO 4 , mix well, then heat up to 90°C for 1 hour, filter and wash with deionized water. The cake was calcined at 600°C for 2 hours to obtain hydrogen type ⁇ zeolite.
  • the modified ⁇ zeolite was prepared by the organic solvent solution impregnation method, and it was recorded as DB4.
  • H ⁇ zeolite At room temperature, take 200g of H ⁇ zeolite, beat with 1500g of deionized water, add 45g of (NH 4 ) 2 SO 4 , mix well, then heat up to 90°C for 1 hour, filter and wash with deionized water. The cake was calcined at 600°C for 2 hours to obtain hydrogen type ⁇ zeolite.
  • Examples 9-22 are examples of catalytic cracking catalysts containing modified ⁇ zeolite of the present invention, and Comparative Examples 5-8 and 9-10 are comparative examples of catalytic cracking catalysts containing modified ⁇ zeolite for comparison:
  • the catalytic cracking catalyst C2-C8 was prepared by the same method as in Example 9, except that the modified beta zeolite for preparing the catalytic cracking catalyst was the modified beta zeolite B2-B8 prepared in Examples 2-8, respectively.
  • the catalytic cracking catalysts DC1, DC1-1, DC2, DC2-1, DC3 and DC4 were prepared by the same method as in Example 9. The only difference was that the modified ⁇ zeolite for the catalytic cracking catalyst was prepared in Comparative Example 1, respectively.
  • the modified beta zeolite DB1, DB1-1, DB2, DB2-1, DB3 and DB4 prepared in Example 1', Comparative Example 2, Comparative Example 2', Comparative Examples 3 and 4.
  • the catalyst was prepared according to the method of Example 17. 421g of kaolin, 372g of aluminum sol and 487g of decationized water were added to the beating tank to be beaten, and then 1666g of acidified pseudo-boehmite was added. After stirring for 60 minutes, 211g was added. The slurry formed by beating the USY zeolite, 236 g of REUSY and 841 g of deionized water was homogeneously dispersed (stirred) for 30 minutes, and then the obtained slurry was spray-dried to shape, and calcined at 500° C. for 2 hours to obtain a comparative catalytic cracking catalyst DC5.
  • the catalyst was prepared according to the method of Example 21. 421g of kaolin, 372g of aluminum sol and 487g of decationized water were added to the beating tank to make a slurry, and then 1666g of acidified pseudo-boehmite was added. After stirring for 60 minutes, 105g of USY zeolite was added.
  • the catalytic cracking catalysts C1-C8 and DC1-DC4 were pre-aged on a fixed bed aging device at 800°C and 100% steam for 12 hours, and then evaluated on a small fixed fluidized bed device.
  • the properties of the reaction feed oil are shown in Table 8.
  • the reaction temperature is 500°C, and the weight ratio of agent to oil is 5.92.
  • the catalytic cracking catalysts C9-C14 and DC5-DC6 were pre-aged on a fixed bed aging device at 800°C and 100% steam for 8 hours, and then evaluated on a small fixed fluidized bed device.
  • the properties of the reaction feed oil are shown in Table 8.
  • the reaction temperature is 500°C, and the weight ratio of solvent to oil is 4.0.
  • conversion rate gasoline yield + liquefied gas yield + dry gas yield + coke yield
  • C4 olefin concentration C4 olefin yield/liquefied gas yield
  • C4 olefin selectivity C4 olefin yield/C4 fraction yield.
  • the amount of strong acid/total acid refers to the value of the number of strong acid centers in the total acid amount
  • the amount of medium strong acid/total acid refers to the value of the number of medium-strength acid centers in the total acid amount.
  • Example 1 the ratio of the weight content of the IVB metal element in the bulk phase of the zeolite to the weight content of the IVB metal element on the surface of the zeolite is relatively low, the ratio of B acid/L acid is relatively high, and the number of medium-strength acid centers is relatively large.
  • the modified ⁇ zeolite prepared by the present invention has a higher number of B acid/L acid and medium strength acid centers.
  • the total yield of gasoline and liquefied gas for the catalyst C1 prepared in Example 9 of the present invention was significantly increased by 1.27%, the yield of heavy oil was decreased by 0.14%, and the yield of diesel was decreased. 1.14 percentage points, the yield of C4 olefins increased by 0.67 percentage points, the concentration of C4 olefins in the liquefied gas increased by 2.95 percentage points, the selectivity of C4 olefins increased by 5.17 percentage points, and the concentration of propylene in the liquefied gas did not change much.
  • the present invention uses dilute ammonia to adjust the pH value of the slurry to deposit zirconium-containing compounds on the surface of ⁇ zeolite, and the prepared modified ⁇ zeolite has higher activity and heavy oil cracking ability, and has excellent carbon four olefin yield and selection sex.
  • the total yield of gasoline and liquefied gas of the catalyst C2 prepared in Example 10 of the present invention was significantly increased by 1.41%, the yield of heavy oil was decreased by 0.59%, and the yield of diesel was decreased by 1.31%.
  • the total yield of gasoline and liquefied gas of the catalyst C2 prepared in Example 10 of the present invention was significantly increased by 1.44%, and the yield of heavy oil decreased by 0.64%, and the yield of diesel Reduced by 1.34 percentage points, the yield of C4 olefins increased by 0.86 percentage points, the concentration of C4 olefins in the liquefied gas increased by 4.58 percentage points, the selectivity of C4 olefins increased by 7.1 percentage points, and the propylene concentration in the liquefied gas did not change much. It shows that the modified beta zeolite prepared by using a carbon source in the present invention has higher activity and heavy oil cracking ability, and has excellent C4 olefin yield and selectivity.
  • the total yield of gasoline and liquefied gas of the catalyst C5 prepared in Example 13 of the present invention was significantly increased by 2.13%, the yield of heavy oil was decreased by 0.10%, and the yield of diesel was decreased by 2.58%.
  • the catalytic cracking catalysts C1-C9 prepared in Examples 9-16 of the present invention have higher heavy oil cracking capacity and lower diesel oil. Yield, higher C4 olefin yield, under the condition that the yield of liquefied gas basically does not change much, the concentration of C4 olefin in the liquefied gas increases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

提供一种改性β沸石、催化裂化催化剂及其制备方法和应用。以该沸石的干基重量为基准,该沸石含有以氧化物计的0.5-15重量%的IVB族金属元素,该沸石的中等强度酸中心数量占总酸量的30-60%,强酸中心数量占总酸量的5-25%,B酸与L酸的比值为0.8以上,IVB族金属元素的重量含量与表面的IVB族金属元素的重量含量的比值为0.1-0.8。含该沸石的催化裂化催化剂具有良好的碳四烯烃的选择性和产率。

Description

一种改性β沸石、催化裂化催化剂及其制备方法和应用 技术领域
本发明涉及一种改性β沸石、催化裂化催化剂及其制备方法和应用。
背景技术
随着环保意识的增强,车用汽油质量标准不断升级换代。车用汽油新标准暨GB17930-2016明确规定从2019年起将在全国范围分阶段实施国VI标准汽油,与国V标准相比,国VI标准下汽油的苯、芳烃、烯烃含量都将降低,目前我国汽油调和组分方案已难以满足要求。由于烷基化汽油辛烷值高,烯烃、芳烃、苯含量为零,在国VI标准下,相对传统的催化汽油和重整汽油,是很好的汽油调和组分,在汽油调和组分中的比例将会大幅提高。烷基化装置的主要原料是异丁烷和碳四烯烃。全球近70%的碳四烯烃来自催化裂化装置,并且由催化裂化装置生产碳四烯烃馏分技术具有投资少、成本低的优势,不少公司试图从催化裂化过程获取更大量的碳四烯烃产率。
为了增产低碳烯烃,通常在催化剂中加入择形分子筛。美国Engelhard公司于1993年首次在美国专利USP5243121中公开了增产异丁烯和异戊烯的裂化催化剂,通过水热处理来降低裂化催化剂中Y沸石的晶胞尺寸,可以提高催化剂在烃裂化时对产品中烯烃的选择性,催化剂中还可以加入相当量的ZSM-5沸石作为助剂,不但可以降低生焦量,而且可以提高活性。US3758403公开了以ZSM-5和大孔沸石(主要是Y型沸石)为活性组元的催化剂,在提高汽油辛烷值的同时也增加了C3、C4烯烃的产率,其中大孔沸石对原料进行裂化生成汽油、柴油,ZSM-5择形分子筛进一步将其裂化成低碳烯烃。
β沸石由Mobil公司的Wadlinger等于1967年首次合成,到1988年Higgins等揭示了其特有的三维结构特征,它是唯一一种具有交叉十二元环通道体系的高硅沸石,平行于(001)晶面的一维孔道的12元环孔径为0.75~0.57nm,另一个与(100)晶面平行的二维孔道的12元环孔径为0.65~0.56nm。由于其结构的特殊性,兼具酸催化特性和结构选择性,近年来已迅速发展为一种新型的催化材料。β沸石在使用中的 主要问题是:一方面在脱除模板剂的过程中容易使其结构受到损害,另一方面是在反应过程中容易脱铝使活性稳定性变差。因此,关于β沸石的改性有许多研究报道。
CN103771437A公开了一种含磷的改性β分子筛,以P 2O 5计磷含量占3-10重%,该分子筛的 27Al MAS NMR中,化学位移为40±3ppm共振信号峰面积与化学位移为54ppm±3ppm共振信号峰面积之比大于等于1。该分子筛中磷与骨架铝配位充分,骨架铝得到充分保护,具有优异的水热稳定性和更好的产品选择性。
CN1179994A公开了一种β沸石的改性方法,将Naβ沸石用铵离子交换至沸石上的Na 2O含量小于0.1重%;然后将上述铵交换的β沸石用酸处理抽去部分骨架铝,使其硅铝比大于50;将上述脱铝后的β沸石与磷酸或磷酸盐混合均匀后烘干,使所得沸石上P 2O 5的量为2~5重%;最后将所得产物在水蒸汽气氛下于450~650℃水热焙烧0.5~4小时。通过该方法改性后的β沸石在用于烃类的裂化反应时可以得到较高的烯烃,尤其是异构烯烃的产率以及较低的焦炭产率。
CN105621432A公开了一种改性β分子筛及其制备方法,对铵交换后的β分子筛进行预处理、干燥,进行积炭反应,高温焙烧处理,然后经脱铝处理、干燥、烧炭处理,得到改性β分子筛;改性β分子筛体相硅铝比为30~80,其中表面层硅铝比50~130,表面层硅铝比高于体相硅铝比30~70;比表面积400~800m 2/g,孔容0.2~0.60ml/g;红外酸含量0.1~0.6mmol/g;相对结晶度100%~150%。本发明分子筛表面层的硅铝比要高于体相硅铝比,加氢裂化反应过程中有广阔的应用前景。
CN107899607A提供了一种改性β分子筛及其制备方法和应用。该催化剂是方法包括以β分子筛为基体,以金属元素为改性剂,利用金属元素可溶盐的溶液,采用离子交换法制备得到改性β分子筛;金属元素选自Cu、Al、Zn、Fe和Sn中的一种或多种的混合;金属元素在制得的改性β分子筛中的质量含量为0.5-4%。
将β沸石应用于催化裂化催化剂生产低碳烯烃的报道也很多。美国专利US4837396公开了一种含有β沸石和Y沸石的催化剂,将含有金属离子型化合物作为稳定剂提高催化剂的水热稳定和机械强度。该稳定剂可以直接与β沸石作用,也可以在制备过程中引入。
CN1055105C公开了一种多产异丁烯和异戊烯的裂化催化剂,含有磷和稀土的五元环高硅沸石6~30重%,USY沸石5~20重%,β沸石1~5重%,粘土30~60重%和无机氧化物15~30重%,该催化剂在催化裂化的工艺条件下具有多产异丁烯和异戊烯的特点,同时可联产高辛烷值汽油。
CN107971003A公开了一种含有磷和负载金属的Beta分子筛的催化裂化助剂及其制备方法,助剂含有以干基计的10-75重量%的含有含磷和负载金属的Beta分子筛、以干基计的0-60重量%的粘土、以干基计的15-60重量%的无机氧化物粘结剂、以P 2O 5计的0-25重量%的磷添加剂和以氧化物计的0-15重量%的VIII族金属添加剂,其中,分子筛的Al分布参数D满足:0.4≤D≤0.8;分子筛的微孔比表面积为420-520m 2/g,分子筛的介孔体积占总孔体积的比例为30-70%;分子筛的强酸酸量占总酸量的比例为65-80%,B酸酸量与L酸酸量之比为25-90。将该助剂应用于催化裂化能够提高异丁烯和丙烯的产率,提高汽油辛烷值,但是液化气中总丁烯浓度提高不显著。
CN104998681A公开了一种提高低碳烯烃浓度的催化裂化助剂及其制备方法,该助剂包括硼改性的含磷和金属的β分子筛、无机氧化物粘结剂、VIII族金属添加剂、磷添加剂以及任选的粘土。该催化裂化助剂应用于石油烃的催化裂化,能增加催化裂化液化气中异丁烯的浓度,减少焦炭的产量。
CN107971000A公开了一种含有含磷Beta分子筛的催化裂化助剂及其制备方法,该助剂含有以干基计的10-75重量%的含磷Beta分子筛,以干基计的0-60重量%的粘土、以干基计的15-60重量%的无机氧化物粘结剂、以P 2O 5计的0-25重量%的磷添加剂和以氧化物计的0-15重量%的VIII族金属添加剂。该助剂应用于催化裂化能够提高异丁烯和丙烯的产率,提高汽油辛烷值。
将上述技术制备的各种催化剂/助剂用于催化裂化过程中,可以在一定程度上实现增产低碳烯烃的目的,但还存在以下问题:一是在增加丙烯和丁烯的同时,液化气产率也增加,导致液化气中丙烯或者丁烯的浓度变化不大;另一方面,在增加丁烯的同时,丙烯产率也增加,导致丁烯的选择性变差。
从催化裂化过程碳四烯烃的生成和转化机理分析,催化裂化过程 碳四烯烃的生成主要来自两个方面,一是原料中烃类大分子经单分子裂化反应或双分子裂化反应生成的活性中间体进行裂化的产物,二是裂化反应中形成的低碳数烯烃进行二次反应的产物。催化裂化过程中生成的碳四烯烃可进一步发生裂化反应、异构反应、二聚反应和氢转移反应。
发明内容
本发明的目的是提供一种改性β沸石、催化裂化催化剂及其制备方法和应用,本发明的催化裂化催化剂具有良好的碳四烯烃选择性和产率。
为了实现上述目的,本发明第一方面提供一种改性β沸石,以所述改性β沸石的干基重量为基准,所述改性β沸石含有以氧化物计的0.5-15重量%的IVB族金属元素,所述改性β沸石的中等强度酸中心数量占总酸量的30-60%,强酸中心数量占总酸量的5-25%,B酸与L酸的比值为0.8以上,所述改性β沸石体相的IVB族金属元素的重量含量与表面的IVB族金属元素的重量含量的比值为0.1-0.8。
可选地,所述B酸与所述L酸的比值为1.0-1.5。
可选地,所述中等强度酸中心数量占所述总酸量的35-55%。
可选地,所述强酸中心数量占所述总酸量的5-20%。
可选地,以所述改性β沸石的干基重量为基准,所述改性β沸石含有以氧化物计的1-12重量%的IVB族金属元素。
可选地,所述IVB族金属元素为Zr和/或Ti,优选为Zr,其中所述Zr元素的重量以ZrO 2计,以及所述Ti元素的重量以TiO 2计。
可选地,所述改性β沸石体相的IVB族金属元素的重量含量与表面的IVB族金属元素的重量含量的比值为0.1-0.6。
本发明第二方面提供一种催化裂化催化剂,以所述催化裂化催化剂的干基重量为基准,所述催化裂化催化剂含有10-50重量%,优选20-50重量%的Y型沸石、2-40重量%的改性β沸石、10-70重量%的粘土和5-60重量%的耐热无机氧化物,其中所述改性β沸石为本发明第一方面提供的改性β沸石。
可选地,所述Y型沸石选自含磷和/或稀土的Y型沸石、超稳Y沸石以及含磷和/或稀土的超稳Y沸石中的一种或几种;
可选地,所述粘土选自高岭土、累托土、硅藻土、蒙脱土、膨润土和海泡石中的一种或者几种;
可选地,所述耐热无机氧化物选自氧化铝、氧化硅和无定型硅铝中的一种或几种。
可选地,所述催化裂化催化剂含有15-45重量%,优选30-45重量%的所述Y型沸石、5-30重量%的所述改性β沸石、10-50重量%的所述粘土和5-40重量%的所述耐热无机氧化物。
本发明第三方面提供一种制备本发明第一方面提供的改性β沸石的方法,该方法包括:
(1)将含IVB族金属的化合物、碳源和第一溶剂混合,调节混合物pH值为4-9,得到第一浆料,其中所述碳源包括天然高分子有机化合物和/或半合成高分子有机化合物;
(2)将所述第一浆料和β沸石在20-100℃下搅拌混合10-180min,取出固体在350-650℃下进行第一焙烧0.5-5小时。
可选地,在步骤(2)中,调节所述第一浆料的pH值为5-8。
可选地,所述含IVB族金属的化合物和所述β沸石用量的重量比为(0.005-0.15)∶1,所述β沸石和所述碳源用量的重量比为1∶(0.001-0.15),其中所述含IVB族金属的化合物以IVB族金属的氧化物计,以及所述β沸石以干基重量计。
可选地,所述β沸石选自氢型β沸石、钠型β沸石、含磷的β沸石、含稀土金属的β沸石以及含有磷和稀土金属的β沸石中的一种或几种;
可选地,所述碳源选自淀粉、木质素、粘胶纤维、甲基纤维素、羟丙基甲基纤维素、羟乙基纤维素和羧甲基纤维素中的一种或几种;
可选地,所述含IVB族金属的化合物选自四氯化锆、醋酸锆、异丙醇锆、四氯化钛、硫酸氧钛、氟钛酸铵、硫酸锆、硝酸锆、氧氯化锆、硫酸钛、钛酸四丁酯、三氯化钛和硫酸亚钛中的一种或几种;
可选地,所述第一溶剂选自去离子水、乙醇、丙酮和正己烷中的一种或几种。
本发明第四方面提供一种制备本发明第二方面提供的催化裂化催化剂的方法,该方法包括:将所述Y型沸石、本发明第一方面提供的改性β沸石、所述粘土、所述耐热无机氧化物和第二溶剂混合得到第 二浆料,将得到的第二浆料进行造粒,并进行干燥和/或第二焙烧。
可选地,所述干燥的温度为80-200℃,时间为0.5-24小时;所述第二焙烧的温度为350-700℃,时间为0.5-5小时。
本发明第五方面提供一种本发明第一方面提供的所述改性β沸石或本发明第二方面提供的催化裂化催化剂在重质油催化裂化中的应用。
通过上述技术方案,本发明的改性β沸石具有优异的酸分布和IVB族金属分布,含有该改性β沸石的催化裂化催化剂具有良好催化性能,将其用于重质油的催化裂化过程时,重油的裂化性能优异,可以在汽油和液化气产率不减少的情况下,提高液化气中碳四烯烃的浓度,增加碳四烯烃的产率和选择性。
本发明的方法简单,可以改善IVB族金属氧化物在β沸石上的分布状态和分布量,调整β沸石的孔道分布,能够制备得到具有良好物化性质的改性β沸石。
本发明的其他特征和优点将在随后的具体实施方式部分予以详细说明。
具体实施方式
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
本发明第一方面提供一种改性β沸石,以改性β沸石的干基重量为基准,改性β沸石含有以氧化物计的0.5-15重量%,例如2-13.5重量%的IVB族金属元素,改性β沸石的中等强度酸中心数量占总酸量的30-60%,例如30-50%,强酸中心数量占总酸量的5-25%,例如10-25%,B酸与L酸的比值为0.8以上,例如0.9-1.5,改性β沸石体相的IVB族金属元素的重量含量与表面的IVB族金属元素的重量含量的比值为0.1-0.8,例如为0.15-0.45。
与传统β沸石相比,本发明的改性β沸石具有优异的酸性分布和B酸与L酸比值,并且中等强度酸中心的数量增多,优化了催化裂化反应过程中碳正离子的异构化反应与裂化反应的比值,有利于催化裂化过程生成的C6~C10烯烃先进行异构化反应再进行β位断裂反应,提高 了碳四烯烃的选择性;同时改性β沸石具有优异的重油裂化能力。
根据本发明,IVB族金属元素可以为Zr和/或Ti,优选为Zr,其中Zr元素的重量以ZrO 2计,以及Ti元素的重量以TiO 2计。根据本发明,β沸石表面的IVB族金属元素可以以IVB族金属氧化物的形式存在。在一种优选的具体实施方式中,IVB族金属氧化物为ZrO 2和/或TiO 2,更优选为ZrO 2
在一种优选的具体实施方式中,以改性β沸石的干基重量为基准,改性β沸石含有以氧化物计1-12重量%,例如2-12重量%的IVB族金属元素,中等强度酸中心数量占总酸量的35-55%,例如35-50%或35-45%,强酸中心数量占总酸量的5-20%,例如10-20%,B酸与L酸的比值为0.8以上,例如1.0-1.5或1.1-1.5,改性β沸石体相的IVB族金属元素的重量含量与表面的IVB族金属元素的重量含量的比值为0.1-0.6,例如为0.15-0.45。
本发明第二方面提供一种催化裂化催化剂,以催化裂化催化剂的干基重量为基准,催化裂化催化剂含有20-50重量%的Y型沸石、2-40重量%的改性β沸石、10-70重量%的粘土和5-60重量%的耐热无机氧化物,其中改性β沸石为本发明第一方面提供的改性β沸石。
本发明的发明人发现,将Y沸石和改性β沸石相配合可以促进重油大分子的裂化过程,降低油浆和柴油产率、提高汽油产率,为多产碳四烯烃提供更多的潜在组分,进一步增加碳四烯烃的选择性。将本发明的催化裂化催化剂用于重质油的催化裂化过程时,可以在汽油和液化气产率不减少的情况下,提高液化气中碳四烯烃的浓度,增加碳四烯烃的产率和选择性。
在一种优选的具体实施方式中,催化裂化催化剂含有30-45重量%的所述Y型沸石、5-30重量%的所述改性β沸石、10-50重量%的所述粘土和5-40重量%的所述耐热无机氧化物。
根据本发明,耐热无机氧化物可以选自用作催化裂化催化剂基质和/或粘结剂组分的耐热无机氧化物,如氧化铝、氧化硅和无定型硅铝中的一种或几种,这些耐热无机氧化物本身及其制备方法为本领域人员所公知。
根据本发明,Y型沸石和粘土为本领的技术人员所熟知的,例如,Y型沸石可以选自含磷和/或稀土的Y型沸石、超稳Y沸石以及含磷和 /或稀土的超稳Y沸石中的一种或几种;粘土可以选自高岭土、累托土、硅藻土、蒙脱土、膨润土和海泡石中的一种或者几种。
本发明第三方面提供一种制备本发明第一方面提供的改性β沸石的方法,该方法包括:
(1)将含IVB族金属的化合物、碳源和第一溶剂混合,调节混合物pH值为4-9,得到第一浆料,其中碳源包括天然高分子有机化合物和/或半合成高分子有机化合物;
(2)将第一浆料和β沸石在20-100℃下搅拌混合10-180min,取出固体在350-650℃下进行第一焙烧0.5-5小时。
其中,对第一焙烧的氛围不做具体限制,例如可以为空气气氛和/或惰性气氛,其中惰性气氛中的惰性气体选自氮气、氦气和氩气中的一种或几种。对步骤(1)中进行混合的温度和时间也不做具体限制,例如可以在40-90℃下混合30-120分钟。对取出固体的方式也不做具体限制,例如可以采用过滤或者烘干的方法,优选采用过滤的方法。
根据本发明,含IVB族金属的化合物和β沸石用量的重量比可以为(0.005-0.15)∶1,β沸石和碳源用量的重量比可以为1∶(0.001-0.15),其中含IVB族金属的化合物以IVB族金属的氧化物计,以及β沸石以干基重量计;优选地,含IVB族金属的化合物和β沸石用量的重量比为(0.01-0.12)∶1,β沸石和碳源用量的重量比为1∶(0.005-0.10);更优选地,含IVB族金属的化合物为含Zr的化合物和/或含Ti的化合物。
根据本发明,碳源可以为有机高分子化合物,例如为天然高分子化合物和/或半合成高分子化合物;在一种具体实施方式中,碳源可以选自淀粉、木质素、粘胶纤维、甲基纤维素、羟丙基甲基纤维素、羟乙基纤维素和羧甲基纤维素中的一种或几种。以上述高分子有机化合物和/或半合成高分子有机化合物制备得到的改性β沸石表面的IVB族金属元素的重量含量高于体相的IVB族金属元素的重量含量,改性β沸石具有较优的催化性能,将其用重质油的催化裂化过程时,可以在汽油和液化气产率不减少的情况下,提高液化气中碳四烯烃的浓度,增加碳四烯烃的产率和选择性。
根据本发明,含IVB族金属的化合物中的IVB族金属可以为钛和/或锆,在一种具体实施方式中,含IVB族金属的化合物可以选自四氯化锆、硫酸锆、硝酸锆、氧氯化锆、醋酸锆、异丙醇锆、四氯化钛、 硫酸氧钛、氟钛酸铵、硫酸钛、钛酸四丁酯、三氯化钛和硫酸亚钛中的一种或几种。对第一溶剂的种类不做具体限制,只要是能够将含IVB族金属的化合物溶解,并使β沸石分散即可,例如可以选自去离子水、乙醇、丙酮和正己烷中的一种或几种。
根据本发明,β沸石为本领域的技术人员所熟知,例如可以选自氢型β沸石、钠型β沸石、含磷的β沸石、含稀土金属的β沸石以及含磷和稀土金属的β沸石中的一种或几种,优选为氢型β沸石和含磷的β沸石。
根据本发明,步骤(1)中,可以调节所述第一浆料的pH值为5-8,优选地,调节第一浆料的pH值为6-8。对调节pH值的方式不做具体限制,例如可以通过加入碱性溶液来调节第一浆料的pH值,碱性溶液可以为氨水、水玻璃水溶液、偏铝酸钠水溶液和氢氧化钠水溶液中的一种或几种,优选为氨水。碱性溶液的浓度可以在较大的范围内变化,在一种具体实施方式中,碱性溶液以OH -计的浓度可以为2-20重量%,优选为3-15重量%。在另一种具体实施方式中,碱性溶液为稀氨水,稀氨水以NH 3计的浓度为2-20重量%,优选为3-15重量%。通过调节混合物的pH值,可以使得IVB族金属离子形成氢氧化物沉淀,有利于含IVB族金属的沉淀物在β沸石表面的均匀分散。
本发明第三方面提供一种制备本发明第二方面提供的催化裂化催化剂的方法,该方法包括:将所述Y型沸石、本发明第一方面提供的改性β沸石、所述粘土、所述耐热无机氧化物和第二溶剂混合得到第二浆料,将得到的第二浆料进行造粒,并进行干燥和/或第二焙烧。
根据本发明,耐热无机氧化物包括耐热无机氧化物本身和/或耐热无机氧化物前身物。耐热无机氧化物本身可以选自用作裂化催化剂基质和/或粘结剂组分的耐热无机氧化物中的一种或几种,如氧化铝、氧化硅和无定型硅铝中的一种或几种;耐热无机氧化物前身物是指在本发明催化剂制备过程中能形成耐热无机氧化物的物质,如氧化铝的前身物可选自铝溶胶、拟薄水铝石、薄水铝石、三水合氧化铝和无定形氢氧化铝中的一种或几种;如氧化硅的前身物可选自硅溶胶、硅凝胶和水玻璃中的一种或几种。这些耐热无机氧化物本身或/和耐热无机氧化物前身物及其制备方法为本领域人员所公知。
一种优选的具体实施方式,将粘土、耐热无机氧化物与第一溶剂 打浆,将得到的浆料与改性β沸石和Y型沸石混合搅拌,经过喷雾造粒、焙烧,任选地洗涤和干燥,得到本发明的催化裂化催化剂。优选地,在打浆时加入酸,或者,在打浆后加入酸,调节浆料的pH值为1-5,优选为2-4,并于30-90℃老化0.5-5小时。酸可以为溶于水的无机酸或者有机酸,优选为盐酸、硝酸和磷酸中的一种或几种。其中,喷雾干燥的方法和条件为本领域的技术人员所熟知的,在此不再赘述。
根据本发明,第二浆料的固含量可以在较大的范围内变化,例如第二浆料的固含量为15-50重量%,优选为20-45重量%。
根据本发明,干燥的温度可以为80-200℃,时间可以为0.5-24小时,优选地,温度为80-120℃,时间为0.5-12小时;第二焙烧的温度可以为350-700℃,时间可以为0.5-5小时,优选地,温度为400-650℃,时间为1-4小时,可以在任意气氛中进行焙烧,例如空气气氛。
本发明第四方面提供本发明第一方面提供的改性β沸石或本发明第二方面提供的催化裂化催化剂在重质油催化裂化中的应用。
下面通过实施例来进一步说明本发明,但是本发明并不因此而受到任何限制。
高岭土由苏州高岭土公司生产,固含量为76重量%;
铝溶胶中的氧化铝含量为21.5重量%;
拟薄水铝石由山东铝厂生产,固含量为62.0重量%;
酸化拟薄水铝石固含量为12.0重量%,盐酸酸化,酸化时酸(HCl)与氧化铝的摩尔比为0.15;
所用的超稳Y沸石USY的固含量94.7%,晶胞常数为
Figure PCTCN2021090881-appb-000001
以重量百分比含量计,Na 2O含量为1.3%,RE 2O 3含量为2.5%;
稀土超稳Y沸石REUSY的固含量84.8%,晶胞常数为
Figure PCTCN2021090881-appb-000002
以重量百分比含量计,Na 2O含量为1.6%,RE 2O 3含量为12.0%;
含磷Y沸石PREHY的固含量92.4%,晶胞常数为
Figure PCTCN2021090881-appb-000003
以重量百分比含量计,Na 2O含量为1.5%,P 2O 5含量为7.5%,RE 2O 3含量为8.5%;
氢型β沸石的固含量75%,SiO 2/Al 2O 3(摩尔比)=25,Na 2O含量为0.15%;
磷改性β沸石的固含量82.5%,SiO 2/Al 2O 3(摩尔比)=25,Na 2O含量为0.15%,P 2O 5含量为7.0%。
上述Y型沸石和β沸石均由中国石化催化剂有限公司生产,其余试剂由国药集团化学试剂有限公司生产,规格均为分析纯。所述含量中,未特别注明的,为重量百分含量。
稀氨水以NH 3计的浓度为12重量%。
改性β沸石性质的测试方法:
(1)酸量和酸强度的测定:采用热重-程序升温脱附(TG-TPD)技术,以NH3作为碱性吸附气体,将沸石样品在室温下吸附饱和,然后由热重-差热天平(PCT-2型)检测程序升温解吸过程中NH 3的失重量,以NH 3的解吸量作为样品的酸量,沸石的弱酸中心、中等强度酸中心和强酸中心的温区分别为120-270℃、270-390℃及390-560℃,对应的温度范围内脱附的NH3摩尔量对应为沸石的酸量。
(2)B酸与L酸:采用美国尼高力公司Nicolet 560型红外光谱仪表征催化剂表面酸性,波数为1400-1700cm -1。催化剂中的B酸是以在1540cm -1的特征峰进行表征,催化剂中的L酸是以1450cm -1的特征峰进行表征,由相应的峰面积积分计算,B酸与L酸的比值是指B酸的特征峰的峰面积与L酸的特征峰的峰面积的比值。
(3)改性β沸石表面的IVB族金属元素的重量含量和体相的IVB族金属元素的重量含量:沸石表面的IVB族金属元素的重量含量是指使用X射线光电子能谱法(XPS)在沸石表面2-5nm范围内分析测得的IVB族金属元素的重量含量。
改性β沸石体相的IVB族金属元素的重量含量是通过化学法分析(ICP(Jarrell-Ash,ICAP 9000)元素分析方法进行测定)测得的沸石中IVB族金属元素的重量含量。
在本申请中,改性β沸石含有的IVB族金属元素即指改性β沸石体相含有的IVB族金属元素。将所测得的改性β沸石体相的IVB族金属元素的重量含量进行换算即可得到改性β沸石含有的以氧化物计的IVB族金属元素的重量含量,换算方法为本领域的技术人员所熟知的,在此不再赘述。实施例和对比例制备的改性β沸石性质见表1。
催化剂组成分析:采用X射线荧光光谱(XRF)法。
催化剂组成分析结果见表2-4。
实施例1-8为制备改性β沸石的实施例,对比例1-4为制备改性β 沸石的对比例:
实施例1
(1)将2250g的去离子水、39.23g的氧氯化锆(ZrOCl 2·8H 2O)和7.5g的羟丙基甲基纤维素混合,用稀氨水调节混合物的pH值为7.0,搅拌40分钟,得到第一浆料;
(2)将第一浆料和150g的氢型β沸石混合,在40℃下搅拌90分钟;过滤,将所得滤饼在空气气氛中于550℃下焙烧2小时,得到本发明的改性β沸石,记为B1。
其中,氧氯化锆、β沸石和羟丙基甲基纤维素用量的重量比为0.1∶1∶0.05,氧氯化锆以氧化锆计,β沸石以干基重量计。
实施例2
(1)将1500g的去离子水、28.34g的异丙醇锆和3g的甲基纤维素混合,用稀氨水调节混合物的pH值为5.0,搅拌60分钟,得到第一浆料;
(2)将第一浆料和150g氢型β沸石混合,在60℃搅拌120分钟,过滤,将所得滤饼在空气气氛中于500℃下焙烧3小时,得到本发明的改性β沸石,记为B2。
其中,异丙醇锆、β沸石和甲基纤维素用量的重量比为0.06∶1∶0.02,异丙醇锆以氧化锆计,β沸石以干基重量计。
实施例3
(1)将750g的去离子水、10.45g的硝酸锆(Zr(NO 3) 4·5H 2O)和0.8g的木质素混合,用稀氨水调节混合物的pH值为5,搅拌30分钟,得到第一浆料;
(2)将第一浆料和150g的氢型β沸石混合,在80℃搅拌180分钟,过滤,将所得的滤饼在空气气氛中于550℃下焙烧1小时,得到本发明的改性β沸石,记为B3。
其中,硝酸锆、β沸石和木质素用量的重量比为0.02∶1∶0.005,硝酸锆以氧化锆计,β沸石以干基重量计。
实施例4
(1)将3000g的去离子水、47.08g的氧氯化锆(ZrOCl 2·8H 2O)和15g的粘胶纤维混合,用稀氨水调节混合物的pH值为7.5,搅拌60分钟,得到第一浆料;
(2)将第一浆料和150g的氢型β沸石混合,85℃搅拌45分钟,过滤,将所得滤饼在空气气氛中于450℃下焙烧3小时,得到本发明的改性β沸石,记为B4。
其中,氧氯化锆、β沸石和粘胶纤维用量的重量比为0.12∶1∶0.1,氧氯化锆以氧化锆计,β沸石以干基重量计。
实施例5
(1)将1500g的去离子水、18.9g的异丙醇锆和6g的羟乙基纤维素混合,用稀氨水调节混合物的pH值为5.5,搅拌30分钟,得到第一浆料;
(2)将第一浆料和150g的磷改性β沸石混合,在80℃搅拌60分钟,过滤,将所得滤饼在空气气氛中于550℃下焙烧2小时,得到本发明提供的改性β沸石,记为B5。
其中,异丙醇锆、β沸石和羟乙基纤维素用量的重量比为0.04∶1∶0.04,异丙醇锆以氧化锆计,β沸石以干基重量计。
实施例6
采用与实施例1相同的方法制备改性β沸石B6,不同之处仅在于,步骤(1)中,将2250g的去离子水、39.23的氧氯化锆(ZrOCl 2·8H 2O)和0.12g的羟丙基甲基纤维素混合,用稀氨水调节混合物的pH值为7.0,搅拌40分钟,得到第一浆料。
其中,氧氯化锆、β沸石和羟丙基甲基纤维素用量的重量比为0.10∶1∶0.0008,氧氯化锆以氧化锆计,β沸石以干基重量计。
实施例7
采用与实施例1相同的方法制备改性β沸石B7,不同之处仅在于,步骤(1)中,(1)将2250g的去离子水、62.78g的氧氯化锆(ZrOCl 2·8H 2O)和7.5g的羟丙基甲基纤维素混合,用稀氨水调节混合物的pH值为7.0,搅拌40分钟,得到第一浆料。
其中,氧氯化锆、β沸石和羟丙基甲基纤维素用量的重量比为0.16∶1∶0.05,氧氯化锆以氧化锆计。
实施例8
采用与实施例1相同的方法制备改性β沸石B8,不同之处仅在于,步骤(1)中,将2250g的去离子水、35.61g的四氯化钛和7.5g的羟丙基甲基纤维素混合,用稀氨水调节混合物的pH值为7.0,搅拌40分钟,得到第一浆料。
其中,四氯化钛、β沸石和羟丙基甲基纤维素用量的重量比为0.1∶1∶0.05,四氯化钛以氧化钛计,β沸石以干基重量计。
对比例1
采用与实施例1相同的方法制备改性β沸石,不同之处仅在于,不调节第一浆料的pH值。
(1)将取2250g去离子水、39.2g氧氯化锆ZrOCl 2·8H 2O和7.5g羟丙基甲基纤维素混合,搅拌40分钟,得到第一浆料,所得浆液pH值为1.4;
(2)将第一浆料和200g氢型β沸石混合,在40℃搅拌90分钟;过滤,将所得滤饼在空气气氛中于550℃下焙烧2小时,得得到对比的β沸石,记DB1。
对比例1′
采用与实施例1相同的方法制备改性β沸石,不同之处仅在于,不调节第一浆料的pH值。
(1)将取2250g去离子水、39.23g氧氯化锆ZrOCl 2·8H 2O和7.5g羟丙基甲基纤维素混合,搅拌40分钟,得到第一浆料,所得浆液pH值为1.4;
(2)将第一浆料和150g氢型β沸石混合,在40℃搅拌90分钟;过滤,将所得滤饼在空气气氛中于550℃下焙烧2小时,得得到对比的β沸石,记DB1-1。
对比例2
采用与实施例2相同的方法制备改性β沸石,不同之处仅在于,不加入碳源。
(1)将1500g去离子水和28.3g异丙醇锆混合均匀,用稀氨水调节混合物的pH值为5.0,搅拌60分钟,得到第一浆料;
(2)将第一浆料和200g氢型β沸石混合,升温至60℃搅拌120分钟;过滤,将所得滤饼在空气气氛中于500℃下焙烧3小时,得到对比的β沸石,记DB2。
对比例2′
采用与实施例2相同的方法制备改性β沸石,不同之处仅在于,不加入碳源。
(1)将1500g去离子水和28.34g异丙醇锆混合均匀,用稀氨水调节混合物的pH值为5.0,搅拌60分钟,得到第一浆料;
(2)将第一浆料和150g氢型β沸石混合,升温至60℃搅拌120分钟;过滤,将所得滤饼在空气气氛中于500℃下焙烧3小时,得到对比的β沸石,记DB2-1。
对比例3
采用常规水溶液浸渍法制备改性β沸石。
室温下,取200g的Hβ沸石,用1500g的去离子水打浆后,加入45g的(NH 4) 2SO 4,混合均匀,然后升温到90℃交换1小时,过滤并用去离子水洗涤,将滤饼在600℃焙烧2小时,得到氢型β沸石。
将47.1g氧氯化锆(ZrOCl 2·8H 2O)溶于200g去离子水中制成浸渍液,所得浸渍液与处理后的Hβ沸石混合均匀,室温下静置1h,然后在500℃下焙烧4小时,得到改性β沸石,记为DB3。
对比例4
采用有机溶剂溶液浸渍法制备改性的β沸石,记为DB4。
室温下,取200g的Hβ沸石,用1500g的去离子水打浆后,加入45g的(NH 4) 2SO 4,混合均匀,然后升温到90℃交换1小时,过滤并用去离子水洗涤,将滤饼在600℃焙烧2小时,得到氢型β沸石。
将47.1g氧氯化锆(ZrOCl 2·8H 2O)溶于200g乙醇中制成浸渍液, 所得浸渍液与处理后的β沸石混合均匀,室温下静置1h,然后在500℃下焙烧4小时,得到改性β沸石,记为DB4。
实施例9-22为含有的本发明的改性β沸石的催化裂化催化剂的实施例,对比例5-8和对比例9-10为含有对比的改性β沸石的催化裂化催化剂的对比例:
实施例9
将447g高岭土、372g铝溶胶与513g脱阳离子水加入到打浆罐中打浆,然后加入1666g酸化拟薄水铝石,搅拌60分钟后,再加入271g的REUSY沸石和150g(干基)改性β沸石B1与578g去离子水打浆形成的浆液,均质分散(搅拌)30分钟,然后将得到的浆液喷雾干燥成型,于500℃焙烧2小时,得到本发明提供的催化裂化催化剂C1。
实施例10-16
采用与实施例9相同的方法制备催化裂化催化剂C2-C8,不同之处仅在于,制备催化裂化催化剂的改性β沸石分别为实施例2-8制备的改性β沸石B2-B8。
对比例5,5′,6,6′,7和8
采用与实施例9相同的方法制备催化裂化催化剂DC1,DC1-1,DC2,DC2-1,DC3和DC4,不同之处仅在于,制备催化裂化催化剂的改性β沸石分别为对比例1,对比例1′,对比例2,对比例2′,对比例3和4制备的改性β沸石DB1,DB1-1,DB2,DB2-1,DB3和DB4。
实施例17
将421g高岭土、372g铝溶胶与487g脱阳离子水加入到打浆罐中打浆,然后加入1666g酸化拟薄水铝石,搅拌60分钟后,再加入105g的USY沸石、236g的REUSY和100g(干基)上述改性β沸石B1与847g去离子水打浆形成的浆液,均质分散(搅拌)30分钟,然后将得到的浆液喷雾干燥成型,于500℃焙烧2小时,得到本发明提供的催化裂化催化剂C9。
实施例18
将421g高岭土、372g铝溶胶与537g脱阳离子水加入到打浆罐中打浆,然后加入1666g酸化拟薄水铝石,搅拌60分钟后,再加入294g的REUSY沸石和150g(干基)上述改性β沸石B2与560g去离子水打浆形成的浆液,均质分散(搅拌)30分钟,然后将得到的浆液喷雾干燥成型,于500℃焙烧2小时,得到本发明提供的催化裂化催化剂C10。
实施例19
将421g高岭土、372g铝溶胶与540g脱阳离子水加入到打浆罐中打浆,然后加入1666g酸化拟薄水铝石,搅拌60分钟后,再加入105g的USY沸石、294g的REUSY沸石和50g(干基)上述改性β沸石B3与844g去离子水打浆形成的浆液,均质分散(搅拌)30分钟,然后将得到的浆液喷雾干燥成型,于500℃焙烧2小时,得到本发明提供的催化裂化催化剂C11。
实施例20
将421g高岭土、372g铝溶胶与487g脱阳离子水加入到打浆罐中打浆,然后加入1666g酸化拟薄水铝石,搅拌60分钟后,再加入162g的PREUSY沸石和250g(干基)上述改性β沸石B4与640g去离子水打浆形成的浆液,均质分散(搅拌)30分钟,然后将得到的浆液喷雾干燥成型,于500℃焙烧2小时,得到本发明提供的催化裂化催化剂C12。
实施例21
将421g高岭土、372g铝溶胶与487g脱阳离子水加入到打浆罐中打浆,然后加入1666g酸化拟薄水铝石,搅拌60分钟后,再加入105g的USY沸石、259g的REUSY沸石和80g(干基)上述改性β沸石B5与867g去离子水打浆形成的浆液,均质分散(搅拌)30分钟,然后将得到的浆液喷雾干燥成型,于500℃焙烧2小时,得到本发明提供的催化裂化催化剂C13。
实施例22
将421g高岭土、372g铝溶胶与487g脱阳离子水加入到打浆罐中打浆,然后加入1666g酸化拟薄水铝石,搅拌60分钟后,再加入190g的USY沸石、235g的REUSY和20g(干基)上述改性β沸石B1与847g去离子水打浆形成的浆液,均质分散(搅拌)30分钟,然后将得到的浆液喷雾干燥成型,于500℃焙烧2小时,得到本发明提供的催化裂化催化剂C14。
对比例9
本对比例制备不含β沸石的催化裂化催化剂。
按照实施例17的方法制备催化剂,将421g的高岭土、372g的铝溶胶与487g的脱阳离子水加入到打浆罐中打浆,然后加入1666g的酸化拟薄水铝石,搅拌60分钟后,再加入211g的USY沸石、236g的REUSY与841g去离子水打浆形成的浆液,均质分散(搅拌)30分钟,然后将得到的浆液喷雾干燥成型,于500℃焙烧2小时,得到对比催化裂化催化剂DC5。
对比例10
按照CN104998681A中实施例4的方法,制备磷和铁改性β沸石DB5。
然后按照实施例21的方法制备催化剂,将421g高岭土、372g铝溶胶与487g脱阳离子水加入到打浆罐中打浆,然后加入1666g酸化拟薄水铝石,搅拌60分钟后,再加入105g的USY沸石、259g的REUSY沸石和80g(干基)上述磷和铁改性β沸石与867g去离子水打浆形成的浆液,均质分散(搅拌)30分钟,然后将得到的浆液喷雾干燥成型,于500℃焙烧2小时,得到对比催化裂化催化剂DC6。
催化裂化催化剂评价
将催化裂化催化剂C1-C8和DC1-DC4预先在固定床老化装置上进行800℃、100%水蒸汽老化12小时,然后在小型固定流化床装置上进行评价,反应原料油性质见表8,反应温度500℃,剂油重量比为5.92。
将催化裂化催化剂C9-C14和DC5-DC6预先在固定床老化装置上 进行800℃、100%水蒸汽老化8小时,然后在小型固定流化床装置上进行评价,反应原料油性质见表8,反应温度500℃,剂油重量比为4.0。
其中,转化率=汽油收率+液化气收率+干气收率+焦炭收率;
碳四烯烃收率=1-丁烯收率+2-丁烯收率+异丁烯收率;
碳四烯烃浓度=碳四烯烃收率/液化气收率;
碳四烯烃选择性=碳四烯烃收率/碳四馏分收率。
评价结果见表5-表7,表中强酸量/总酸量是指强酸中心数量占总酸量的数值,中强酸量/总酸量是指中等强度酸中心数量占总酸量的数值。
表1 改性β沸石性质
Figure PCTCN2021090881-appb-000004
由表1的结果可知,与对比例1相比,当含锆化合物加入量一样的情况下,采用实施例1制备的改性β沸石的氧化锆含量高,表明采用稀氨水调节浆液的pH更有利于含锆化合物的充分利用,有利于使含锆化合物沉淀在β沸石表面,而对比例1中含锆化合物在过滤中流失。因此实施例1中沸石体相IVB族金属元素的重量含量/沸石表面IVB族金属元素的重量含量的比值较低,B酸/L酸比值较高,中等强度酸中心数量较多。与对比例3相比,本发明制备的改性β沸石具有更高的B酸/L酸和中等强度酸中心数量。
表2 催化裂化催化剂组成
Figure PCTCN2021090881-appb-000005
表3 催化裂化催化剂组成
Figure PCTCN2021090881-appb-000006
表4 催化裂化催化剂组成
Figure PCTCN2021090881-appb-000007
表5 评价结果
Figure PCTCN2021090881-appb-000008
Figure PCTCN2021090881-appb-000009
表6 评价结果
Figure PCTCN2021090881-appb-000010
表7 评价结果
Figure PCTCN2021090881-appb-000011
表8 原料油性质
  原料油性质
密度(20℃)/(kg·cm -3) 919.3
w(残炭值)/% 2.62
w(C)/% 87.42
w(H)/% 11.5
w(S)/% 0.26
w(N)/% 0.0616
金属质量分数/(μg·g -1)  
Fe 3.2
Ni 3.8
V 3.8
四组分质量分数/%  
饱和烃 62.1
芳烃 26.6
胶质 10.7
沥青质 0.6
减压馏程/℃  
初馏点 226.7
5% 280.9
10% 317
30% 400.7
50% 454.4
70% 527
终馏点 540
蒸馏终点体积收率/% 72.6
表5和表7的结果表明,与对比例5制备的催化剂DC1相比,本发明实施例9制备的催化剂C1,其汽油和液化气总收率明显提高1.11个百分点,重油收率降低0.16个百分点,柴油收率降低0.97个百分点,碳四烯烃收率提高0.65个百分点,液化气中碳四烯烃浓度提高2.91个百分点,碳四烯烃选择性增加5.01个百分点,液化气中丙烯浓度变化不大。与对比例5′制备的催化剂DC1-1相比,本发明实施例9制备的催化剂C1,其汽油和液化气总收率明显提高1.27个百分点,重油收率降低0.14个百分点,柴油收率降低1.14个百分点,碳四烯烃收率提高0.67个百分点,液化气中碳四烯烃浓度提高2.95个百分点,碳四烯烃选择性增加5.17个百分点,液化气中丙烯浓度变化不大。表明本发明采用稀氨水调节浆料的pH值使含锆化合物沉积在β沸石的表面,所制备的改性β沸石具有更高的活性和重油裂化能力,具有优异的碳四烯烃产率和选择性。
与对比例6制备的催化剂DC2相比,以本发明实施例10制备的催化剂C2,其汽油和液化气总收率明显提高1.41个百分点,重油收率降低0.59个百分点,柴油收率降低1.31个百分点,碳四烯烃收率提高0.87 个百分点,液化气中碳四烯烃浓度提高4.61个百分点,碳四烯烃选择性增加7.15个百分点,液化气中丙烯浓度变化不大。与对比例6′制备的催化剂DC2-1相比,以本发明实施例10制备的催化剂C2,其汽油和液化气总收率明显提高1.44个百分点,重油收率降低0.64个百分点,柴油收率降低1.34个百分点,碳四烯烃收率提高0.86个百分点,液化气中碳四烯烃浓度提高4.58个百分点,碳四烯烃选择性增加7.1个百分点,液化气中丙烯浓度变化不大。表明本发明采用碳源制备的改性β沸石具有更高的活性和重油裂化能力,具有优异的碳四烯烃产率和选择性。
与对比例7制备的催化剂DC3相比,以本发明实施例13制备的催化剂C5,其汽油和液化气总收率明显提高2.13个百分点,重油收率降低0.10个百分点,柴油收率降低2.58个百分点,碳四烯烃收率提高0.76个百分点,液化气中碳四烯烃浓度提高4.8个百分点,碳四烯烃选择性增加5.81个百分点,液化气中丙烯浓度变化不大。表明本发明制备的含磷的改性β沸石具有更高的活性和重油裂化能力,具有优异的碳四烯烃产率和选择性。
与对比例5-8相比,在催化剂中改性β沸石含量相当的情况下,以本发明实施例9-16制备的催化裂化催化剂C1-C9具有较高的重油裂化能力,较低的柴油收率,较高的碳四烯烃产率,在液化气产率基本变化不大的情况下,液化气中碳四烯烃浓度增加。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (17)

  1. 一种改性β沸石,以所述改性β沸石的干基重量为基准,所述改性β沸石含有以氧化物计的0.5-15重量%的IVB族金属元素,所述改性β沸石的中等强度酸中心数量占总酸量的30-60%,强酸中心数量占总酸量的5-25%,B酸与L酸的比值为0.8以上,所述改性β沸石体相的IVB族金属元素的重量含量与表面的IVB族金属元素的重量含量的比值为0.1-0.8。
  2. 根据权利要求1所述的改性β沸石,其中,所述B酸与所述L酸的比值为1.0-1.5。
  3. 根据权利要求1所述的改性β沸石,其中,所述中等强度酸中心数量占所述总酸量的35-55%。
  4. 根据权利要求1所述的改性β沸石,其中,所述强酸中心数量占所述总酸量的5-20%。
  5. 根据权利要求1所述的改性β沸石,其中,以所述改性β沸石的干基重量为基准,所述改性β沸石含有以氧化物计的1-12重量%的IVB族金属元素。
  6. 根据权利要求1所述的改性β沸石,其中,所述IVB族金属元素为Zr和/或Ti,优选为Zr,其中所述Zr元素的重量以ZrO 2计,以及所述Ti元素的重量以TiO 2计。
  7. 根据权利要求1所述的改性β沸石,其中,所述改性β沸石体相的IVB族金属元素的重量含量与表面的IVB族金属元素的重量含量的比值为0.1-0.6。
  8. 一种催化裂化催化剂,以所述催化裂化催化剂的干基重量为基准,所述催化裂化催化剂含有10-50重量%,优选20-50重量%的Y型沸石、2-40重量%的改性β沸石、10-70重量%的粘土和5-60重量%的耐热无机氧化物,所述改性β沸石为权利要求1-7中任意一项所述的改性β沸石。
  9. 根据权利要求8所述的催化裂化催化剂,其中,所述Y型沸石选自含磷和/或稀土的Y型沸石、超稳Y沸石以及含磷和/或稀土的超稳Y沸石中的一种或几种;
    所述粘土选自高岭土、累托土、硅藻土、蒙脱土、膨润土和海泡 石中的一种或者几种;和/或
    所述耐热无机氧化物选自氧化铝、氧化硅和无定型硅铝中的一种或几种。
  10. 根据权利要求8所述的催化裂化催化剂,其中,所述催化裂化催化剂含有15-45重量%,优选30-45重量%的所述Y型沸石、5-30重量%的所述改性β沸石、10-50重量%的所述粘土和5-40重量%的所述耐热无机氧化物。
  11. 一种制备权利要求1-7中任意一项所述的改性β沸石的方法,该方法包括:
    (1)将含IVB族金属的化合物、碳源和第一溶剂混合,调节混合物pH值为4-9,得到第一浆料,其中所述碳源包括天然高分子有机化合物和/或半合成高分子有机化合物;
    (2)将所述第一浆料和β沸石在20-100℃下搅拌混合10-180min,取出固体在350-650℃下进行第一焙烧0.5-5小时。
  12. 根据权利要求11所述的方法,其中,在步骤(2)中,调节所述第一浆料的pH值为5-8。
  13. 根据权利要求11所述的方法,其中,所述含IVB族金属的化合物和所述β沸石用量的重量比为(0.005-0.15)∶1,所述β沸石和所述碳源用量的重量比为1∶(0.001-0.15),其中所述含IVB族金属的化合物以IVB族金属的氧化物计,以及所述β沸石以干基重量计。
  14. 根据权利要求11所述的方法,其中,所述β沸石选自氢型β沸石、钠型β沸石、含磷的β沸石、含稀土金属的β沸石以及含有磷和稀土金属的β沸石中的一种或几种;
    所述碳源选自淀粉、木质素、粘胶纤维、甲基纤维素、羟丙基甲基纤维素、羟乙基纤维素和羧甲基纤维素中的一种或几种;
    所述含IVB族金属的化合物选自四氯化锆、醋酸锆、异丙醇锆、四氯化钛、硫酸氧钛、氟钛酸铵、硫酸锆、硝酸锆、氧氯化锆、硫酸钛、钛酸四丁酯、三氯化钛和硫酸亚钛中的一种或几种;和/或
    所述第一溶剂选自去离子水、乙醇、丙酮和正己烷中的一种或几种。
  15. 一种制备权利要求8-10中任意一项所述的催化裂化催化剂的方法,该方法包括:将所述Y型沸石、所述改性β沸石、所述粘土、 所述耐热无机氧化物和第二溶剂混合得到第二浆料,将得到的第二浆料进行造粒,并进行干燥和/或第二焙烧,所述改性β沸石为权利要求1-7中任意一项所述的改性β沸石。
  16. 根据权利要求15所述的方法,其中,所述干燥的温度为80-200℃,时间为0.5-24小时;所述第二焙烧的温度为350-700℃,时间为0.5-5小时。
  17. 权利要求1-7中任意一项所述的改性β沸石或权利要求8-10中任意一项所述的催化裂化催化剂在重质油催化裂化中的应用。
PCT/CN2021/090881 2020-04-30 2021-04-29 一种改性β沸石、催化裂化催化剂及其制备方法和应用 WO2021219064A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022566138A JP2023523468A (ja) 2020-04-30 2021-04-29 改質βゼオライト、接触分解触媒ならびにそれらの製造方法および使用
AU2021265998A AU2021265998A1 (en) 2020-04-30 2021-04-29 Modified beta zeolite, catalytic cracking catalyst as well as preparation method therefor and application thereof
EP21797171.2A EP4144692A1 (en) 2020-04-30 2021-04-29 Modified beta zeolite, catalytic cracking catalyst as well as preparation method therefor and application thereof
US17/997,632 US20230166245A1 (en) 2020-04-30 2021-04-29 Modified Beta Zeolite, Catalytic Cracking Catalyst and Their Preparation Method and Application

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010367845.X 2020-04-30
CN202010367845.XA CN113582193B (zh) 2020-04-30 2020-04-30 一种改性β沸石、催化裂化催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2021219064A1 true WO2021219064A1 (zh) 2021-11-04

Family

ID=78237027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090881 WO2021219064A1 (zh) 2020-04-30 2021-04-29 一种改性β沸石、催化裂化催化剂及其制备方法和应用

Country Status (7)

Country Link
US (1) US20230166245A1 (zh)
EP (1) EP4144692A1 (zh)
JP (1) JP2023523468A (zh)
CN (1) CN113582193B (zh)
AU (1) AU2021265998A1 (zh)
TW (1) TW202142488A (zh)
WO (1) WO2021219064A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202408936A (zh) * 2022-08-26 2024-03-01 大陸商中國石油化工科技開發有限公司 金屬修飾分子篩、及其製備和用途

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3758403A (en) 1970-10-06 1973-09-11 Mobil Oil Olites catalytic cracking of hydrocarbons with mixture of zsm-5 and other ze
US4837396A (en) 1987-12-11 1989-06-06 Mobil Oil Corporation Zeolite beta containing hydrocarbon conversion catalyst of stability
US5243121A (en) 1992-03-19 1993-09-07 Engelhard Corporation Fluid catalytic cracking process for increased formation of isobutylene and isoamylenes
CN1179994A (zh) 1996-10-11 1998-04-29 中国石油化工总公司 一种β沸石的改性方法
CN1055105C (zh) 1995-08-28 2000-08-02 中国石油化工总公司 一种多产异丁烯和异戊烯的裂化催化剂
US20050153829A1 (en) * 2003-12-15 2005-07-14 Nemeth Laszlo T. Catalysts for C8 alkylaromatic isomerization process
CN1768942A (zh) * 2004-10-29 2006-05-10 中国石油化工股份有限公司 一种含复合沸石的氧化铝载体及其制备方法
CN103771437A (zh) 2012-10-26 2014-05-07 中国石油化工股份有限公司 一种含磷的改性β分子筛
CN104549453A (zh) * 2013-10-22 2015-04-29 中国石油化工股份有限公司 一种含锆的β沸石及其制备方法
CN104998681A (zh) 2014-04-24 2015-10-28 中国石油化工股份有限公司 一种提高低碳烯烃浓度的催化裂化助剂及其制备方法
CN105621432A (zh) 2014-11-03 2016-06-01 中国石油化工股份有限公司 一种改性β分子筛及其制备方法
CN106145154A (zh) * 2015-03-31 2016-11-23 中国石油化工股份有限公司 一种改性y沸石及其制备方法
CN106140290A (zh) * 2015-04-16 2016-11-23 中国石油化工股份有限公司 一种含改性β沸石的裂化催化剂
CN106140256A (zh) * 2015-03-31 2016-11-23 中国石油化工股份有限公司 一种改性y沸石及其制备方法
CN106140289A (zh) * 2015-04-16 2016-11-23 中国石油化工股份有限公司 一种含改性β沸石的裂化催化剂
CN106140277A (zh) * 2015-04-16 2016-11-23 中国石油化工股份有限公司 一种改性β沸石及其制备方法
CN107899607A (zh) 2017-11-17 2018-04-13 中国石油大学(北京) 一种改性β分子筛及其制备方法和应用
CN107971003A (zh) 2016-10-21 2018-05-01 中国石油化工股份有限公司 一种含有含磷和负载金属的Beta分子筛的催化裂化助剂及其制备方法
CN107971000A (zh) 2016-10-21 2018-05-01 中国石油化工股份有限公司 一种含有含磷Beta分子筛的催化裂化助剂及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2661621B1 (fr) * 1990-05-07 1992-07-10 Inst Francais Du Petrole Catalyseur de craquage de charges hydrocarbonees comprenant une zeolithe beta, une zeolithe y et une matrice.
CN101773845B (zh) * 2009-01-08 2012-08-01 中国石油化工股份有限公司 一种重油裂化催化剂及其制备和应用方法
EP2531279B1 (en) * 2010-02-01 2015-10-07 Johnson Matthey PLC Extruded scr filter
CN103447063B (zh) * 2012-06-01 2016-02-10 中国石油天然气股份有限公司 重油高效转化催化裂化催化剂及其制备方法
CN104549463B (zh) * 2013-10-22 2017-01-25 中国石油化工股份有限公司 一种含金属氧化物改性β沸石的裂化催化剂
CN107973307B (zh) * 2016-10-21 2019-11-15 中国石油化工股份有限公司 一种含磷和含负载金属的Beta分子筛及其制备方法

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3758403A (en) 1970-10-06 1973-09-11 Mobil Oil Olites catalytic cracking of hydrocarbons with mixture of zsm-5 and other ze
US4837396A (en) 1987-12-11 1989-06-06 Mobil Oil Corporation Zeolite beta containing hydrocarbon conversion catalyst of stability
US5243121A (en) 1992-03-19 1993-09-07 Engelhard Corporation Fluid catalytic cracking process for increased formation of isobutylene and isoamylenes
CN1055105C (zh) 1995-08-28 2000-08-02 中国石油化工总公司 一种多产异丁烯和异戊烯的裂化催化剂
CN1179994A (zh) 1996-10-11 1998-04-29 中国石油化工总公司 一种β沸石的改性方法
US20050153829A1 (en) * 2003-12-15 2005-07-14 Nemeth Laszlo T. Catalysts for C8 alkylaromatic isomerization process
CN1768942A (zh) * 2004-10-29 2006-05-10 中国石油化工股份有限公司 一种含复合沸石的氧化铝载体及其制备方法
CN103771437A (zh) 2012-10-26 2014-05-07 中国石油化工股份有限公司 一种含磷的改性β分子筛
CN104549453A (zh) * 2013-10-22 2015-04-29 中国石油化工股份有限公司 一种含锆的β沸石及其制备方法
CN104998681A (zh) 2014-04-24 2015-10-28 中国石油化工股份有限公司 一种提高低碳烯烃浓度的催化裂化助剂及其制备方法
CN105621432A (zh) 2014-11-03 2016-06-01 中国石油化工股份有限公司 一种改性β分子筛及其制备方法
CN106145154A (zh) * 2015-03-31 2016-11-23 中国石油化工股份有限公司 一种改性y沸石及其制备方法
CN106140256A (zh) * 2015-03-31 2016-11-23 中国石油化工股份有限公司 一种改性y沸石及其制备方法
CN106140290A (zh) * 2015-04-16 2016-11-23 中国石油化工股份有限公司 一种含改性β沸石的裂化催化剂
CN106140289A (zh) * 2015-04-16 2016-11-23 中国石油化工股份有限公司 一种含改性β沸石的裂化催化剂
CN106140277A (zh) * 2015-04-16 2016-11-23 中国石油化工股份有限公司 一种改性β沸石及其制备方法
CN107971003A (zh) 2016-10-21 2018-05-01 中国石油化工股份有限公司 一种含有含磷和负载金属的Beta分子筛的催化裂化助剂及其制备方法
CN107971000A (zh) 2016-10-21 2018-05-01 中国石油化工股份有限公司 一种含有含磷Beta分子筛的催化裂化助剂及其制备方法
CN107899607A (zh) 2017-11-17 2018-04-13 中国石油大学(北京) 一种改性β分子筛及其制备方法和应用

Also Published As

Publication number Publication date
EP4144692A1 (en) 2023-03-08
CN113582193B (zh) 2022-10-21
CN113582193A (zh) 2021-11-02
TW202142488A (zh) 2021-11-16
US20230166245A1 (en) 2023-06-01
JP2023523468A (ja) 2023-06-05
AU2021265998A1 (en) 2022-11-24

Similar Documents

Publication Publication Date Title
US9855552B2 (en) Metal modified y zeolite, its preparation and use
US9943836B2 (en) Metal modified Y zeolite, its preparation and use
RU2427424C2 (ru) Композиция катализа, предназначенная для переработки тяжелого исходного сырья
JP5941994B2 (ja) 重質油接触分解触媒およびその製造方法
US9889439B2 (en) High light received heavy oil catalytic cracking catalyst and preparation method therefor
TWI554604B (zh) Catalytic cracking catalyst comprising modified Y zeolite and preparation method thereof
US6677263B2 (en) Catalytic promoters for the catalytic cracking of hydrocarbons and the preparation thereof
CN106268919B (zh) 一种含稀土和磷的改性y型分子筛催化剂
JPH0214102B2 (zh)
JPH11253808A (ja) 重油接触熱分解プロセスのためのピラー状クレー触媒およびその調製方法
WO2020078437A1 (zh) 富含介孔的含磷和稀土的mfi结构分子筛、制备方法和含该分子筛的催化剂及其应用
WO2021259347A1 (zh) ZSM-5/β核壳型分子筛及其合成和应用
WO2020078434A1 (zh) 一种富含介孔的mfi结构分子筛、制备方法和含该分子筛的催化剂及其应用
US6605207B2 (en) Bayerite alumina clad zeolite and cracking catalysts containing same
WO2021043017A1 (zh) 一种降油浆和多产低碳烯烃的助剂及其制备方法与应用
WO2021219064A1 (zh) 一种改性β沸石、催化裂化催化剂及其制备方法和应用
CN113578375B (zh) 一种改性zsm-5沸石、催化裂化催化剂及其制备方法和应用
US4624936A (en) Method for preparing hydrocarbon catalytic cracking catalyst compositions
KR102151830B1 (ko) 마그네슘 안정화된 초저소다 분해 촉매
WO2021254410A1 (zh) 一种催化裂化助剂及其制备方法和应用
WO2022040303A1 (en) Fluid catalytic cracking catalyst composition for enhanced butylenes yields with metal passivation functionality
CN113578299B (zh) 一种硅铝锆复合氧化物、催化裂化催化剂及其制备方法和应用
CN115532305B (zh) 一种重油催化裂化生产汽油和低碳烯烃的催化剂及其制备方法与应用
CN114425431B (zh) 一种含磷改性mfi结构分子筛的催化裂解催化剂
WO2022148475A1 (zh) 一种催化裂化催化剂、其制备方法和制备系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21797171

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022566138

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021265998

Country of ref document: AU

Date of ref document: 20210429

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021797171

Country of ref document: EP

Effective date: 20221130