WO2021043017A1 - 一种降油浆和多产低碳烯烃的助剂及其制备方法与应用 - Google Patents

一种降油浆和多产低碳烯烃的助剂及其制备方法与应用 Download PDF

Info

Publication number
WO2021043017A1
WO2021043017A1 PCT/CN2020/110822 CN2020110822W WO2021043017A1 WO 2021043017 A1 WO2021043017 A1 WO 2021043017A1 CN 2020110822 W CN2020110822 W CN 2020110822W WO 2021043017 A1 WO2021043017 A1 WO 2021043017A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
slurry
additive
oil
carbon olefins
Prior art date
Application number
PCT/CN2020/110822
Other languages
English (en)
French (fr)
Inventor
卓润生
施宗波
刘新生
胡泽松
张青
Original Assignee
四川润和催化新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川润和催化新材料股份有限公司 filed Critical 四川润和催化新材料股份有限公司
Priority to US17/056,427 priority Critical patent/US20220219151A1/en
Publication of WO2021043017A1 publication Critical patent/WO2021043017A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/085Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/088Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/085Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/28Phosphorising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions

Definitions

  • the invention relates to the field of petroleum refining, in particular to an auxiliary agent for reducing oil slurry and producing more low-carbon olefins, and a preparation method and application thereof.
  • Catalytic cracking is an important process of petroleum refining, and it is an important means for refineries to improve their economic benefits.
  • heavy oil is converted into gasoline, diesel, ethylene, propylene, butene, oil slurry, dry gas, coke and other products under the action of a catalyst.
  • gasoline, diesel, ethylene, propylene, butene and other products have higher economic value, while dry gas, oil slurry and coke have lower economic value.
  • WO97/12011 discloses an oil slurry auxiliary agent, which is mainly composed of alumina, amorphous silica-alumina and molecular sieve, and the auxiliary agent can significantly improve the cracking ability of the oil slurry.
  • CN107376986A discloses an oil slurry catalytic cracking auxiliary agent, which is composed of molecular sieve, matrix, active metal material, inactive metal material and active auxiliary agent, and the auxiliary agent through the synergistic benefit of active metal material and non-active metal material, Optimize the number of acid centers and acid strength, promote the cracking ability of oil slurry, and have excellent resistance to impurity pollution and hydrothermal stability.
  • CN101745373B discloses a catalytic cracking aid, which contains stepped pore alumina and is used in a catalytic cracking process to improve the cracking capacity of heavy oil and the yield of light oil, and the coke selectivity is good.
  • CN102974331B discloses a catalytic cracking aid, which is used to increase the cracking ability of heavy oil and the yield of light oil by adding mesoporous silica-alumina material.
  • CN104588051B discloses a catalytic cracking auxiliary agent, which uses active mesoporous materials, phosphor-aluminum auxiliary agent, etc. as raw materials, and the obtained auxiliary agent has stronger heavy oil cracking ability, higher light oil yield and better Coke selectivity.
  • US 7101473B2 discloses a highly active catalyst, which is obtained by in-situ crystallization and has a high molecular sieve content, which can effectively reduce the oil slurry yield.
  • the aforementioned slurry additives mainly increase the acidity of the matrix by increasing the content of mesopores and macropores in the additives, or increase the molecular sieve content in the additives, thereby increasing the cracking activity of the additives and reducing the yield of the slurry.
  • Low-carbon olefins mainly include ethylene, propylene and butene, which are used as organic chemical raw materials, and the world's demand for low-carbon olefins is increasing year by year.
  • the fluidized catalytic cracking process is an important way to increase the production of low-carbon olefins by adding low-carbon olefin additives to the cracking unit.
  • CN101450321 discloses a catalytic cracking auxiliary agent for increasing the production of propylene. The auxiliary agent is added with an anti-coagulation polymerization inhibitor, and a silicon binder is introduced in two steps.
  • CN103007988A discloses a cracking auxiliary agent for increasing the concentration of low-carbon olefins.
  • the auxiliary agent is a phosphor-aluminum binder, and the type-selective molecular sieve additionally contains phosphorus and one or more transition metals.
  • the additive can increase the concentration of propylene in the liquefied gas and reduce the concentration of coke and dry gas.
  • CN103785457A discloses a cracking aid for increasing the concentration of low-carbon olefins. The aid is selected from ⁇ molecular sieves containing phosphorus and transition metals.
  • the aid can increase the concentration of propylene and isobutylene in liquefied gas and increase the content of dry gas in cracked products. Ethylene concentration.
  • CN102851058 A discloses an additive for increasing the octane number of cracked gasoline.
  • the additive is ZSM-5 molecular sieve with a silicon-to-aluminum ratio of 30 to 150, and the molecular sieve is modified with metal elements.
  • CN107971000A discloses a catalytic cracking auxiliary agent of phosphorus-containing Beta molecular sieve.
  • the auxiliary agent uses phosphorus-containing Beta molecular sieve as raw material.
  • the molecular sieve has an Al distribution parameter of 0.4 to 0.8, a micropore specific surface area of 420 to 520 m2/g, and a mesopore volume accounts for The total volume is 30 ⁇ 70wt%.
  • the current low-carbon olefin additives on the market mainly convert long-chain hydrocarbons into low-carbon olefins such as propylene through selective molecular sieves.
  • the cracking activity of this kind of low-carbon olefin promoter usually decreases. When it is added to the catalytic cracking system, it will dilute the active components of the catalyst, which will result in a decrease in the overall catalyst's cracking activity and a decrease in the oil slurry yield.
  • the current slurry-reducing additives and high-yield low-carbon olefin additives have the effects of reducing the yield of slurry and the yield of more low-carbon olefins, respectively, but the slurry-reducing additives do not have the effect of producing low-carbon olefins and are more productive.
  • the low-carbon olefin additives also have no effect on reducing the yield of oil slurry. There are few reports on the catalytic cracking aids that have both more low-carbon olefin production and less oil slurry production.
  • the specific surface area of prolific olefin additives is usually less than 180 m2/g, and the specific surface area of the slurry additives is at least greater than 190 m2/g.
  • the prolific olefin additives and cracking slurry additives of the present invention have open pores, and the specific surface area is greater than 190 m2/g, which is highly productive Olefin and oil reduction slurry performance.
  • One of the objectives of the present invention is to provide an additive for reducing oil slurry and producing more low-carbon olefins.
  • the additive is used in the catalytic cracking process to increase the yield of cracked liquefied gas, increase the concentration of propylene in the liquefied gas, and increase the catalytic
  • the octane number of cracked gasoline reduces the yield of oil slurry in cracked products.
  • the technical solution provided by the present invention is: an additive for reducing oil slurry and producing more low-carbon olefins
  • the relative dry basis content of the raw material is: 40 ⁇ 55 wt% phosphorus-containing MFI molecular sieve, 0 ⁇ 10 wt% macroporous molecular sieve, 3-20 wt% inorganic binder, 8-22 wt% inorganic matrix and 15-40 wt% clay; preferably, the relative dry basis content of the raw material is: 45-50 wt% phosphorus-containing MFI molecular sieve, 0 ⁇ 5 wt% macroporous molecular sieve, 10 ⁇ 15 wt% inorganic binder: 8 ⁇ 12 wt% inorganic matrix, 20 ⁇ 30 wt% clay.
  • the specific surface area of the auxiliary agent is greater than 190 m2/g, and the content of P2O5 in the auxiliary agent is less than 2wt%.
  • the molar ratio of SiO2/Al2O3 of the phosphorus-containing MFI molecular sieve is 10-50, and the content of P2O5 in the molecular sieve is 1 to 5wt%; preferably, the molar ratio of SiO2/Al2O3 of the phosphorus-containing MFI molecular sieve is 20-40, and the molar ratio of P2O5 in the molecular sieve is 20-40.
  • the content is 2 ⁇ 4wt%.
  • the phosphorus element in the phosphorus-containing MFI molecular sieve can be introduced into the molecular sieve during the MFI synthesis process, or can be impregnated on the MFI molecular sieve through phosphoric acid or phosphate.
  • the macroporous molecular sieve is Y-type molecular sieve and/or Beta-type molecular sieve.
  • the Y-type molecular sieve is a rare-earth modified Y-type molecular sieve, a phosphorus-modified Y-type molecular sieve, a rare-earth and phosphorus-modified Y-type molecular sieve, an ultra-stable Y molecular sieve, and/or a rare-earth-modified ultra-stable Y molecular sieve.
  • the inorganic binder is alumina binder, silica binder and/or silicon-aluminum binder.
  • the inorganic matrix is calcined alumina and/or amorphous silicon aluminum, and the total specific surface area of the inorganic matrix is >200 m2/g.
  • the clay is kaolin, montmorillonite, attapulgite, diatomaceous earth and/or sepiolite.
  • the second object of the present invention is to provide a method for preparing the above-mentioned oil-reducing slurry and the auxiliary agent for producing low-carbon olefins, which includes the following steps: using phosphorus-containing MFI molecular sieve, macroporous molecular sieve, inorganic binder, inorganic matrix, and clay as raw materials Spray molding, calcining and curing at 450°C ⁇ 750°C for 0.1 ⁇ 10h, it is ready.
  • auxiliary agent of the present invention can be prepared by a general method, and the preparation method of the auxiliary agent is not particularly limited.
  • a general preparation method of additives can be used, such as: adding molecular sieve, matrix, binder, clay and other substances as main components into deionized water, beating to form a slurry with a solid content of 20-50wt%, and spray molding.
  • the calcination and solidification temperature is preferably 500 to 600°C, and the calcination time is 1 to 3 hours.
  • the spray molding step includes: mixing and beating the phosphorus-containing MFI molecular sieve, macroporous molecular sieve, inorganic binder, inorganic matrix, clay, and water in one or more steps to obtain a slurry, and then spray molding.
  • the third object of the present invention is to provide the above-mentioned oil-reducing slurry and the auxiliary agent for producing low-carbon olefins for use in atmospheric residue, vacuum residue, atmospheric wax oil, vacuum wax oil, straight-run wax oil and/or Catalytic cracking of coking wax oil.
  • the use conditions of the catalytic cracking aid in the present invention are conventional catalytic cracking reaction conditions.
  • the catalytic cracking reaction temperature is 450-650°C, and the catalyst-oil ratio is 4-15; preferably, the reaction temperature is 490-600. °C, the agent-oil ratio is 4-15.
  • the auxiliary agent accounts for 1-30 wt% of the total catalyst mass of the catalytic cracking system, preferably 5-15 wt%.
  • the auxiliary agent provided by the invention is used in the catalytic cracking process, can increase the yield of cracked liquefied gas, increase the concentration of propylene in the liquefied gas, increase the octane number of the catalytic cracked gasoline, and reduce the yield of oil slurry in the cracked product.
  • the invention also discloses the preparation method and application of the above-mentioned auxiliary agent.
  • H-ZSM-5 (molar ratio of SiO2/Al2O3 is 27) is impregnated and flash dried by ammonia dihydrogen phosphate, and then calcined at 500°C for 2 hours to obtain phosphorus-containing ZSM-5 molecular sieve.
  • the content of P2O5 in the resulting molecular sieve is 2.7 wt%.
  • the solid content of the obtained slurry is 41wt%; after the slurry is homogenized, it is spray-formed, and then calcined at 550°C for 2 hours to obtain the dual-functional additive LOBC-5 for producing low-carbon olefins and oil-reducing slurry.
  • the wear index of the additive LOBC-5 is 1.2wt%/h, the specific surface area is 213 m2/g, and the P2O5 content is 1.08wt%. After passivation treatment with metal and water vapor, 15wt% of the additive is added, and the cracking performance in the catalytic cracking process is shown in Table 3.
  • the specific surface area of the sample is measured by the BET low-temperature nitrogen adsorption method
  • the element composition of the sample is measured by an X-ray fluorescence spectrometer
  • the wear index of the sample is measured by an abrasion index analyzer.
  • the wear index of the comparative additive C-1 is 1.2 wt%/h, the specific surface area is 178 m2/g, and the P2O5 content is 0 wt%. After passivation treatment with metal and water vapor, 15wt% of the additive is added, and the cracking performance in the catalytic cracking process is shown in Table 3.
  • the wear index of the comparative additive C-2 is 6.2wt%/h, the specific surface area is 81 m2/g, and the P2O5 content is 17.11 wt%. After passivation treatment with metal and water vapor, 15wt% of the additive is added, and the cracking performance in the catalytic cracking process is shown in Table 3.
  • the wear index of the comparative additive C-3 is 1.1 wt%/h, the specific surface area is 284 m2/g, and the P2O5 content is 0 wt%. After passivation treatment with metal and water vapor, 15wt% of the additive is added, and the cracking performance in the catalytic cracking process is shown in Table 3.
  • the H-ZSM-5 molecular sieve (molar ratio of SiO2/Al2O3 is 27) is impregnated and flash dried by ammonia dihydrogen phosphate, and then calcined at 550°C for 2 hours to obtain phosphorus-containing ZSM-5 molecular sieve.
  • the content of P2O5 in the resulting molecular sieve is 3.2 wt%.
  • the solid content of the obtained slurry is 41wt%; after the slurry is homogenized, it is sprayed and formed, and then calcined at 550°C for 2 hours to obtain the dual-functional additive LOBC-1 for producing low-carbon olefins and reducing oil slurry.
  • the wear index of the additive LOBC-1 is 1.2wt%/h, the specific surface area is 196 m2/g, and the P2O5 content is 1.47 wt%. After passivation treatment with metal and water vapor, 15wt% of the additive is added, and the cracking performance in the catalytic cracking process is shown in Table 3.
  • H-ZSM-5 (molar ratio of SiO2/Al2O3 is 27) is impregnated and flash dried by ammonia dihydrogen phosphate, and then calcined at 500°C for 2 hours to obtain phosphorus-containing ZSM-5 molecular sieve.
  • the content of P2O5 in the resulting molecular sieve is 2.8 wt%.
  • the solid content of the obtained slurry is 41wt%; after the slurry is homogenized, it is spray-formed, and then calcined at 500°C for 3 hours to obtain the dual-functional additive LOBC-2 for producing low-carbon olefins and reducing oil slurry.
  • the wear index of the additive LOBC-2 is 0.5wt%/h, the specific surface area is 205m2/g, and the P2O5 content is 1.54 wt%. After passivation treatment with metal and water vapor, 15wt% of the additive is added, and the cracking performance in the catalytic cracking process is shown in Table 3.
  • H-ZSM-5 (molar ratio of SiO2/Al2O3 is 29) is impregnated and flash dried by ammonia dihydrogen phosphate, and then calcined at 500°C for 2 hours to obtain phosphorus-containing ZSM-5 molecular sieve.
  • the content of P2O5 in the resulting molecular sieve is 2wt. %.
  • the wear index of the additive LOBC-3 is 2.1 wt%/h, the specific surface area is 226 m2/g, and the P2O5 content is 0.89 wt%. After passivation treatment with metal and water vapor, 15wt% of the additive is added, and the cracking performance in the catalytic cracking process is shown in Table 3.
  • H-ZSM-5 (molar ratio of SiO2/Al2O3 is 10) is impregnated and flash dried by ammonia dihydrogen phosphate, and then calcined at 500°C for 2 hours to obtain phosphorus-containing ZSM-5 molecular sieve.
  • the content of P2O5 in the resulting molecular sieve is 5 wt%.
  • the slurry is spray-formed, and then calcined at 550°C for 2 hours to obtain the dual-functional additive LOBC-4 for producing low-carbon olefins and reducing oil slurry.
  • the wear index of the additive LOBC-4 is 0.9 wt%/h, the specific surface area is 208 m2/g, and the P2O5 content is 2 wt%. After passivation treatment with metal and water vapor, 15wt% of the additive is added, and the cracking performance in the catalytic cracking process is shown in Table 3.
  • H-ZSM-5 (molar ratio of SiO2/Al2O3 is 50) is impregnated and flash dried by ammonia dihydrogen phosphate, and then calcined at 500°C for 2 hours to obtain phosphorus-containing ZSM-5 molecular sieve.
  • the content of P2O5 in the resulting molecular sieve is 1wt. %.
  • the wear index of the additive LOBC-6 is 0.9wt%/h, the specific surface area is 221 m2/g, and the P2O5 content is 0.5 wt%. After passivation treatment with metal and water vapor, 15wt% of the additive is added, and the cracking performance in the catalytic cracking process is shown in Table 3.
  • H-ZSM-5 (molar ratio of SiO2/Al2O3 is 27) is impregnated and flash dried by ammonia dihydrogen phosphate, and then calcined at 500°C for 2 hours to obtain phosphorus-containing ZSM-5 molecular sieve.
  • the content of P2O5 in the resulting molecular sieve is 3.2 wt%.
  • the solid content of the obtained slurry is 41wt%; after the slurry is homogenized, it is sprayed and shaped, and then calcined at 550°C for 2 hours to obtain the dual-functional additive LOBC-7 for producing low-carbon olefins and reducing oil slurry.
  • the wear index of the additive LOBC-7 is 0.8 wt%/h, the specific surface area is 217 m2/g, and the P2O5 content is 1.28 wt%. After passivation treatment with metal and water vapor, 15wt% of the additive is added, and the cracking performance in the catalytic cracking process is shown in Table 3.
  • H-ZSM-5 (molar ratio of SiO2/Al2O3 is 27) is impregnated and flash dried by ammonia dihydrogen phosphate, and then calcined at 500°C for 2 hours to obtain phosphorus-containing ZSM-5 molecular sieve.
  • the content of P2O5 in the resulting molecular sieve is 3.2 wt%.
  • the slurry is spray-formed, and then calcined at 550°C for 2 hours to obtain the dual-functional additive LOBC-8 for producing low-carbon olefins and reducing oil slurry.
  • the wear index of the additive LOBC-8 is 1.3wt%/h, the specific surface area is 204 m2/g, and the P2O5 content is 1.28wt%. After passivation treatment with metal and water vapor, 15wt% of the additive is added, and the cracking performance in the catalytic cracking process is shown in Table 3.
  • H-ZSM-5 (molar ratio of SiO2/Al2O3: 27) was impregnated and flash dried with phosphoric acid, and then calcined at 500°C for 2h to obtain phosphorus-containing ZSM-5 molecular sieve.
  • the content of P2O5 in the resulting molecular sieve was 3.2 wt%.
  • the solid content of the obtained slurry was 41wt%; after the slurry was homogenized, it was spray-formed, and then calcined at 550°C for 2 hours to obtain the dual-functional additive LOBC-9 for producing low-carbon olefins and oil-reducing slurry.
  • the wear index of the additive LOBC-9 is 0.7 wt%/h, the specific surface area is 218 m2/g, and the P2O5 content is 1.28 wt%. After passivation treatment with metal and water vapor, 15wt% of the additive is added, and the cracking performance in the catalytic cracking process is shown in Table 3.
  • H-ZSM-5 (molar ratio of SiO2/Al2O3: 27) was impregnated and flash dried with phosphoric acid, and then calcined at 500°C for 2h to obtain phosphorus-containing ZSM-5 molecular sieve.
  • the content of P2O5 in the resulting molecular sieve was 5 wt%.
  • the solid content of the obtained slurry is 41wt%; after the slurry is homogenized, it is spray-formed, and then calcined at 550°C for 2 hours to obtain the dual-functional additive LOBC-10 for producing low-carbon olefins and oil-reducing slurry.
  • the wear index of the additive LOBC-10 is 0.6 wt%/h, the specific surface area is 217 m2/g, and the P2O5 content is 2 wt%. After passivation treatment with metal and water vapor, 15wt% of the additive is added, and the cracking performance in the catalytic cracking process is shown in Table 3.
  • H-ZSM-5 (the molar ratio of SiO2/Al2O3 is 27) is impregnated and flash dried by using rare earth salt and dihydrogen ammonium phosphate successively, and calcined at 500°C for 2 hours to obtain phosphorus-containing and rare-earth-containing ZSM-5 molecular sieve.
  • the content of P2O5 is 3.2 wt%, and the content of RE2O3 is 1.8 wt%.
  • the solid content of the obtained slurry is 41wt%; after the slurry is homogenized, it is spray-formed, and then calcined at 550°C for 2 hours to obtain the dual-functional additive LOBC-11 for producing low-carbon olefins and reducing oil slurry.
  • the wear index of the additive LOBC-11 is 0.6 wt%/h, the specific surface area is 212 m2/g, and the P2O5 content is 1.28 wt%. After passivation treatment with metal and water vapor, 15wt% of the additive is added, and the cracking performance in the catalytic cracking process is shown in Table 3.
  • the catalytic cracking reactions in the above examples and comparative examples were evaluated on a micro fluidized bed reactor (ACE) and supporting gas chromatography, and the research octane number (RON) was analyzed by Agilent's gas chromatograph 7980A.
  • the main catalyst industrial RFCC balance agent, the auxiliary agent in the comparative example and the example are impregnated with 4000ppm respectively After V and 2000 ppm Ni, after aging at 810°C and 100wt% steam for 10h, the catalytic cracking performance was evaluated with 15wt% auxiliary agent +85wt% RFCC balance agent.
  • ACE micro fluidized bed reactor
  • RON research octane number
  • the main properties of the RFCC balancer are shown in Table 1, and the properties of the tested feedstock oil are shown in Table 2.
  • the catalytic cracking performance of 85wt% RFCC balancer + 15wt% of the auxiliary agents of the examples and comparative examples is shown in Table 3.
  • Table 3 shows the catalytic cracking performance of the examples and comparative samples
  • the catalytic cracking performance was carried out with 15wt% adjuvant +85wt% RFCC balance agent Evaluation.
  • the catalytic cracking reaction temperature is 540°C
  • the oil feed rate is 1.2 g/min
  • the oil feed time is 1.5 min
  • the agent-to-oil ratio is 5.
  • the auxiliary agent provided by the invention is used in the catalytic cracking process, can increase the yield of cracked liquefied gas, increase the concentration of propylene in the liquefied gas, increase the octane number of the catalytic cracked gasoline, reduce the yield of oil slurry in the cracked product, and have a good industry Practicality.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

一种降油浆和多产低碳烯烃的助剂,原料的干基相对含量为:40~55wt%含磷MFI分子筛、0~10wt%大孔分子筛、3~20wt%无机粘结剂、8~22wt%无机基质和15~40wt%粘土。该助剂用于催化裂化过程中,能够提高裂化液化气产率,提高液化气中丙烯浓度,提高催化裂化汽油的辛烷值,降低裂化产物中油浆的收率。

Description

一种降油浆和多产低碳烯烃的助剂及其制备方法与应用 技术领域
本发明涉及石油炼制领域,尤其是一种降油浆和多产低碳烯烃的助剂及其制备方法与应用。
背景技术
催化裂化是石油炼制的重要过程,它是炼厂提高其经济效益的重要手段。催化裂化过程是重质油在催化剂的作用下,将转化成汽油、柴油、乙烯、丙烯、丁烯、油浆、干气、焦炭等产品。其中汽油、柴油、乙烯、丙烯、丁烯等产品的经济价值较高,而干气、油浆和焦炭的经济价值较低。
随着原油的重质化,催化裂化过程中的油浆收率逐渐增加。为了弥补传统催化裂化催化剂的不足,向催化剂中添加油浆助剂,是降低油浆,增产汽油、柴油、液化气的重要途径。WO97/12011公开了一种油浆助剂,该助剂主要由氧化铝、无定形硅铝和分子筛组成,该助剂可以明显提高油浆的裂化能力。CN107376986A公开了一种油浆催化裂化助剂,该助剂由分子筛、基质、活性金属物质、非活性金属物质以及活性助剂组成,该助剂通过活性金属物质和非活性金属物质的协同效益,优化了酸中心数量和酸强度,促进了油浆的裂化能力,并具有优异的抗杂质污染和水热稳定性。CN101745373B公开了一种催化裂化助剂,该助剂含有阶梯孔氧化铝,用于催化裂化过程中,可以提高重油的裂化能力和轻质油的收率,焦炭选择性好。CN102974331B公开了一种催化裂化助剂,该助剂通过加入介孔硅铝材料,用于提高重油的裂化能力和轻质油的产率。CN104588051B公开了一种催化裂化助剂,该助剂以活性中孔材料、磷铝助剂等为原料,所得助剂具有较强的重油裂化能力,更高的轻质油产率及更好的焦炭选择性。US 7101473B2公开了一种高活性催化剂,该催化剂通过原位晶化得到,分子筛含量高,可以有效的降低油浆收率。上述的油浆助剂主要是通过增加助剂中介孔和大孔含量,提高基质的酸性,或提高助剂中的分子筛含量,从而提高助剂的裂化活性,降低油浆收率。
低碳烯烃主要包含乙烯、丙烯和丁烯,它们作为有机化工原料,全世界对低碳烯烃的需求逐年增加。流化催化裂化过程作为低碳烯烃的重要来源,通过向裂化装置中添加低碳烯烃助剂,是增产低碳烯烃的重要途径。CN101450321公开了一种增产丙烯的催化裂化助剂,该助剂加入抗凝结阻聚剂,以及分两步引入硅粘结剂。从而使该助剂具有增产丙烯和耐磨性能好,堆密度小的特点。CN103007988A公开了一种提高低碳烯烃浓度的裂化助剂,该助剂选用磷铝粘结剂,择型分子筛中额外含有磷,以及选自一种或几种过度金属。该助剂可以提高液化气中的丙烯浓度,降低焦炭和干气浓度。CN103785457A公开了一种提高低碳烯烃浓度的裂化助剂,该助剂选用含磷和过渡金属的β分子筛,该助剂可以提高液化气中的丙烯和异丁烯浓度,并提高裂化产物干气中的乙烯浓度。CN102851058 A公开了一种提高裂化汽油辛烷值助剂,该助剂选用硅铝比30~150的ZSM-5分子筛,并用金属元素对分子筛进行改性。CN107971000A公开了一种含磷Beta分子筛的催化裂化助剂,该助剂选用含磷Beta分子筛为原料,分子筛的Al分布参数0.4~0.8,微孔比表面积420~520 m2/g,介孔体积占总体积30~70wt%。当前市场上的低碳烯烃助剂主要是通过择型分子筛将较长链的烃类转化成丙烯等低碳烯烃。但这类低碳烯烃助剂的裂化活性通常降低,当它加入到催化裂化体系中时,它会稀释催化剂的活性组分,从而导致总体催化剂的裂化活性降低,油浆收率下降。
技术问题
当前的降油浆助剂和多产低碳烯烃助剂分别具有降低油浆收率和多产低碳烯烃收率的功效,但降油浆助剂没有多产低碳烯烃的功效,多产低碳烯烃助剂也没有降低油浆收率的功效。对于同时具有多产低碳烯烃和少产油浆的催化裂化助剂还很少见诸报道。为了同时达到多产低碳烯烃和降油浆的效果,可以尝试同时添加多产低碳烯烃助剂和降低油浆助剂,但当前多产低碳烯烃助剂主要由磷铝粘结剂组成,助剂中的磷元素在反应过程中会扩散到催化剂和其它助剂中,造成催化剂的活性下降。笔者发现,当多产低碳烯烃助剂和降低油浆助剂组合使用时,产品中的油浆收率没有降低,反而提高了。与此同时,多产烯烃助剂的比表面积通常小于180 m2/g,而油浆助剂的比表面积至少大于190 m2/g,本发明的多产烯烃助剂和裂化油浆助剂孔道开放,比表面积大于190 m2/g,具有很好的多产烯烃和和降油浆性能。
技术解决方案
本发明的目的之一在于提供一种降油浆和多产低碳烯烃的助剂,该助剂用于催化裂化过程中,能够提高裂化液化气产率,提高液化气中丙烯浓度,提高催化裂化汽油的辛烷值,降低裂化产物中油浆的收率。
为实现上述目的,本发明提供的技术方案是:一种降油浆和多产低碳烯烃的助剂,所述原料的干基相对含量为:40~55 wt%含磷MFI分子筛、0~10 wt%大孔分子筛、3~20 wt%无机粘结剂、8~22 wt%无机基质和15~40 wt%粘土;优选地,所述原料的干基相对含量为:45~50 wt%含磷MFI分子筛,0~5 wt%大孔分子筛,10~15 wt%无机粘结剂:8~12 wt%无机基质,20~30 wt%粘土。
所述助剂的比表面积大于190 m2/g,所述助剂中P2O5含量小于2wt%。
所述含磷MFI分子筛的SiO2/Al2O3摩尔比为10~50,分子筛中P2O5的含量为1~5wt%;优选地,含磷MFI分子筛的SiO2/Al2O3摩尔比为20~40,分子筛中P2O5的含量为2~4wt%。
所述的含磷MFI分子筛中的磷元素可以是在MFI合成过程中将P引入分子筛中,也可以是通过磷酸或磷酸盐后浸渍在MFI分子筛上。
所述大孔分子筛为Y型分子筛和/或Beta型分子筛。
所述Y型分子筛为稀土改性的Y型分子筛、磷改性的Y型分子筛、稀土和磷改性的Y型分子筛、超稳Y分子筛和/或稀土改性的超稳Y分子筛。
所述无机粘结剂为氧化铝粘结剂、氧化硅粘结剂和/或硅铝粘结剂。
所述无机基质为经过焙烧后的氧化铝和/或无定形硅铝,无机基质的总比表面积>200m2/g。
所述粘土为高岭土、蒙拓土、凹凸棒石、硅藻土和/或海泡石。
本发明的目的之二在于提供上述降油浆和多产低碳烯烃的助剂的制备方法,包括以下步骤:以含磷MFI分子筛、大孔分子筛、无机粘结剂、无机基质、粘土为原料喷雾成型,在450℃~750℃下焙烧固化0.1~10h,即得。
需要说明的是,本发明的助剂可采用通用方法制备得到,并不特别限定该助剂的制备方法。可以采用通用的助剂的制备方法如:将作为主要成分的分子筛、基质、粘结剂、粘土等物质加入去离子水中,打浆形成固含量为20~50wt%的浆液,喷雾成型。
所述焙烧固化温度优选为500~600℃,焙烧时间为1~3h。
所述喷雾成型步骤包括:将含磷MFI分子筛、大孔分子筛、无机粘结剂、无机基质、粘土、水一步或分步混合和打浆处理得到浆液,然后再进行喷雾成型。
本发明的目的之三在于提供上述降油浆和多产低碳烯烃的助剂用于常压渣油、减压渣油、常压蜡油、减压蜡油、直馏蜡油和/或焦化蜡油的催化裂化。
本发明中催化裂化助剂的使用条件为常规的催化裂化反应条件,一般来说,所述的催化裂化反应温度450~650℃,剂油比为4~15;优选的,反应温度490~600℃,剂油比为4~15。
所述助剂占催化裂化体系总催化剂质量的1~30wt%,优选地为5~15wt%。
有益效果
本发明提供的助剂用于催化裂化过程中,能够提高裂化液化气产率,提高液化气中丙烯浓度,提高催化裂化汽油的辛烷值,降低裂化产物中油浆的收率。本发明还公开了上述助剂的制备方法和应用。
附图说明
在此处键入附图说明描述段落。
本发明的最佳实施方式
利用磷酸二氢氨对H-ZSM-5(SiO2/Al2O3摩尔比为27)进行浸渍和闪蒸干燥,再经过500℃焙烧2h,得到含磷ZSM-5分子筛,所得分子筛中P2O5的含量为2.7 wt%。
将4kg(干基)含磷ZSM-5分子筛和1kg(干基)稀土改性的超稳Y型分子筛(骨架SiO2/Al2O3摩尔比为9,RE2O3为8wt%)加入到5.5kg去离子水中,高速搅拌30min,得到含磷MFI分子筛浆液。
在搅拌条件下,将2.6kg(干基) 硅藻土加入6kg去离子水中,高速搅拌2h,待高岭土完全分散在浆液中后,再加入1kg(干基)拟薄水铝石,在通过HCl调节浆液的pH至2.5~3.5,使拟薄水铝石发生成胶反应。搅拌30min后,加入1.4kg(干基) 硅铝粘结剂(SiO2含量为30 wt%,Al2O3含量为3 wt%)。搅拌30min后,再加入上述分子筛浆液。继续打浆30min,所得浆液的固含量为41wt%;浆液经过均质后,喷雾成型,再经过550℃焙烧2h,得到多产低碳烯烃和降油浆双功能助剂LOBC-5。
助剂LOBC-5的磨损指数为1.2wt%/h,比表面积为213 m2/g,P2O5含量为1.08wt%。经过金属和水蒸气钝化处理后,添加15wt%该助剂,用于催化裂化过程中的裂化性能如表3。
本发明的实施方式
下面通过具体实施方式对本发明的权利要求做进一步的详细说明,但不构成任何限定。
在以下实施例和对比例中,样品的比表面积采用BET低温氮吸附法测定,样品的元素组成采用X射线荧光光谱仪测得,样品的磨损指数采用磨损指数分析仪测得。
对比例1:
在搅拌条件下,将3.6kg(干基)高岭土和1.4kg(干基)铝溶胶加入5kg去离子水中,高速搅拌2h,待高岭土完全分散在浆液中后,再加入1kg(干基) 拟薄水铝石(比表面积240m2/g,下同),在通过HCl调节浆液的pH至2.5~3.5,使拟薄水铝石发生成胶反应。搅拌30min后,再加入4kg(干基)H-ZSM-5分子筛(SiO2/Al2O3摩尔比为27)和4.5kg去离子水的浆液。继续打浆30min,所得浆液的固含量为40wt%;浆液经过均质后,喷雾成型,再经过550℃焙烧2h,得到对比助剂C-1。
对比助剂C-1的磨损指数为1.2 wt%/h,比表面积为178 m2/g,P2O5含量为0 wt%。经过金属和水蒸气钝化处理后,添加15wt%该助剂,用于催化裂化过程中的裂化性能如表3。
对比例2:
在搅拌条件下,将0.75kg(干基) 拟薄水铝石分散到1.2kg去离子水中,再缓慢加入4kg浓磷酸(含85wt% H3PO4),在60℃下搅拌至液体透明,制备得到磷铝粘结剂。将5.5kg(干基) 高岭土加入到20kg去离子水中,高速搅拌2h,待高岭土完全分散在浆液中后,再加入0.75kg(干基) 铝溶胶粘结剂,再加入上述磷铝粘结剂。搅拌30min后,再加入5kg(干基)H-ZSM-5分子筛(SiO2/Al2O3摩尔比为27)和6 kg去离子水的浆液。继续打浆30min,浆液经过均质后,喷雾成型,再经过550℃焙烧2h,得到对比助剂C-2。
对比助剂C-2的磨损指数为6.2wt%/h,比表面积为81 m2/g,P2O5含量为17.11 wt%。经过金属和水蒸气钝化处理后,添加15wt%该助剂,用于催化裂化过程中的裂化性能如表3。
对比例3:
在搅拌条件下,将2.5kg(干基) 拟薄水铝石和1kg(干基) REY分子筛(SiO2/Al2O3摩尔比为5,RE2O3含量为8wt%)加入到10 kg去离子水中,搅拌30min,得到分子筛和拟薄水铝石的混合浆液。
在搅拌条件下,将3.7kg(干基)高岭土加入14kg去离子水中,高速搅拌2h,待高岭土完全分散在浆液中后,再加入2kg(干基) 拟薄水铝石,在通过HCl调节浆液的pH至2.5,使拟薄水铝石发生成胶反应。搅拌30min后,再加入2kg酸性硅溶胶溶液(含40wt% SiO2)。搅拌20min后,再加入上述分子筛和拟薄水铝石的混合浆液。继续打浆30min,所得浆液的固含量为25wt%;浆液经过均质后,喷雾成型,再经过550℃焙烧2h,得到对比助剂C-3。
对比助剂C-3的磨损指数为1.1 wt%/h,比表面积为284 m2/g,P2O5含量为0 wt%。经过金属和水蒸气钝化处理后,添加15wt%该助剂,用于催化裂化过程中的裂化性能如表3。
实施例1:
利用磷酸二氢氨对H-ZSM-5分子筛(SiO2/Al2O3摩尔比为27)进行浸渍和闪蒸干燥,再经过550℃焙烧2h,得到含磷ZSM-5分子筛,所得分子筛中P2O5的含量为3.2 wt%。
将5kg(干基)含磷ZSM-5分子筛加入到5.5kg去离子水中,高速搅拌30min,得到含磷MFI分子筛浆液。
在搅拌条件下,将2.6kg(干基)高岭土和1.4kg(干基)铝溶胶加入4kg去离子水中,高速搅拌2h,待高岭土完全分散在浆液中后,再加入1kg(干基)拟薄水铝石,在通过HCl调节浆液的pH至2.5~3.5,使拟薄水铝石发生成胶反应。搅拌30min后,再加入上述分子筛浆液。继续打浆30min,所得浆液的固含量为41wt%;浆液经过均质后,喷雾成型,再经过550℃焙烧2h,得到多产低碳烯烃和降油浆双功能助剂LOBC-1。
助剂LOBC-1的磨损指数为1.2wt%/h,比表面积为196 m2/g,P2O5含量为1.47 wt%。经过金属和水蒸气钝化处理后,添加15wt%该助剂,用于催化裂化过程中的裂化性能如表3。
实施例2:
利用磷酸二氢氨对H-ZSM-5(SiO2/Al2O3摩尔比为27)进行浸渍和闪蒸干燥,再经过500℃焙烧2h,得到含磷ZSM-5分子筛,所得分子筛中P2O5的含量为2.8wt%。
将5.5kg(干基)含磷ZSM-5分子筛加入到6kg去离子水中,高速搅拌30min,得到含磷MFI分子筛浆液。
在搅拌条件下,将2.4kg(干基)高岭土和1.3kg(干基)铝溶胶加入3.5kg去离子水中,高速搅拌1h,待高岭土完全分散在浆液中后,再加入0.8kg(干基)拟薄水铝石,在通过HCl调节浆液的pH至2.5~3.5,使拟薄水铝石发生成胶反应。搅拌30min后,再加入上述分子筛浆液。继续打浆30min,所得浆液的固含量为41wt%;浆液经过均质后,喷雾成型,再经过500℃焙烧3h,得到多产低碳烯烃和降油浆双功能助剂LOBC-2。  
助剂LOBC-2的磨损指数为0.5wt%/h,比表面积为205m2/g,P2O5含量为1.54 wt%。经过金属和水蒸气钝化处理后,添加15wt%该助剂,用于催化裂化过程中的裂化性能如表3。
实施例3:
利用磷酸二氢氨对H-ZSM-5(SiO2/Al2O3摩尔比为29)进行浸渍和闪蒸干燥,再经过500℃焙烧2h,得到含磷ZSM-5分子筛,所得分子筛中P2O5的含量为2wt%。
将4kg(干基)含磷ZSM-5分子筛和0.9kg(干基) 稀土和磷改性的Y型分子筛(骨架SiO2/Al2O3摩尔比为5,RE2O3为4wt%,P2O5为1wt%)加入到5.5kg去离子水中,高速搅拌30min,得到含磷MFI分子筛浆液。
在搅拌条件下,将2.6kg(干基)蒙拓土和0.3kg(干基)铝溶胶加入4kg去离子水中,高速搅拌2h,待高岭土完全分散在浆液中后,再加入2.2kg(干基)拟薄水铝石,在通过HCl调节浆液的pH至2.5~3.5,使拟薄水铝石发生成胶反应。搅拌30min后,再0.3kg(干基)加入酸性硅溶胶(含40wt% SiO2)。搅拌30min后,再加入上述分子筛浆液。继续打浆30min,所得浆液的固含量为40wt%;浆液经过均质和磨细处理后,喷雾成型,再经过500℃焙烧2h,得到多产低碳烯烃和降油浆双功能助剂LOBC-3。
助剂LOBC-3的磨损指数为2.1 wt%/h,比表面积为226 m2/g,P2O5含量为0.89 wt%。经过金属和水蒸气钝化处理后,添加15wt%该助剂,用于催化裂化过程中的裂化性能如表3。
实施例4:
利用磷酸二氢氨对H-ZSM-5(SiO2/Al2O3摩尔比为10)进行浸渍和闪蒸干燥,再经过500℃焙烧2h,得到含磷ZSM-5分子筛,所得分子筛中P2O5的含量为5 wt%。
将4kg(干基)含磷ZSM-5分子筛和1kg(干基)超稳Y型分子筛(骨架SiO2/Al2O3摩尔比为9)加入到5.5kg去离子水中,高速搅拌30min,得到含磷MFI分子筛浆液。
在搅拌条件下,将2.6kg(干基) 凹凸棒石加入6kg去离子水中,高速搅拌2h,待高岭土完全分散在浆液中后,再加入1kg(干基)拟薄水铝石,在通过HCl调节浆液的pH至2.5~3.5,使拟薄水铝石发生成胶反应。搅拌30min后,加入1.4kg(干基)酸性硅溶胶(SiO2含量为40wt%)。搅拌30min后,再加入上述分子筛浆液。继续打浆30min,所得浆液的固含量为41wt%;浆液经过均质后,喷雾成型,再经过550℃焙烧2h,得到多产低碳烯烃和降油浆双功能助剂LOBC-4。
助剂LOBC-4的磨损指数为0.9 wt%/h,比表面积为208 m2/g,P2O5含量为2 wt%。经过金属和水蒸气钝化处理后,添加15wt%该助剂,用于催化裂化过程中的裂化性能如表3。
实施例5:
利用磷酸二氢氨对H-ZSM-5(SiO2/Al2O3摩尔比为50)进行浸渍和闪蒸干燥,再经过500℃焙烧2h,得到含磷ZSM-5分子筛,所得分子筛中P2O5的含量为1wt%。
将4kg(干基)含磷ZSM-5分子筛和1kg(干基)P改性的Y型分子筛(骨架SiO2/Al2O3摩尔比为5,P2O5为1wt%)加入到5.5kg去离子水中,高速搅拌30min,得到含磷MFI分子筛浆液。
在搅拌条件下,将2kg(干基) 海泡石和2kg(干基)铝溶胶加入4kg去离子水中,高速搅拌2h,待高岭土完全分散在浆液中后,再加入1kg(干基) 磨细无定形硅铝(比表面积289 m2/g)。搅拌30min后,再加入上述分子筛浆液。继续打浆30min,所得浆液的固含量为41wt%;浆液经过均质后,喷雾成型,再经过750℃焙烧0.1h,得到多产低碳烯烃和降油浆双功能助剂LOBC-6。
助剂LOBC-6的磨损指数为0.9wt%/h,比表面积为221 m2/g,P2O5含量为0.5 wt%。经过金属和水蒸气钝化处理后,添加15wt%该助剂,用于催化裂化过程中的裂化性能如表3。
实施例6:
利用磷酸二氢氨对H-ZSM-5(SiO2/Al2O3摩尔比为27)进行浸渍和闪蒸干燥,再经过500℃焙烧2h,得到含磷ZSM-5分子筛,所得分子筛中P2O5的含量为3.2 wt%。
将4kg(干基)含磷ZSM-5分子筛和1kg(干基)稀土Y型分子筛(骨架SiO2/Al2O3摩尔比为5,RE2O3为4wt%)加入到5.5kg去离子水中,高速搅拌30min,得到含磷MFI分子筛浆液。
在搅拌条件下,将2.6kg(干基)高岭土和1.4kg(干基)铝溶胶加入4kg去离子水中,高速搅拌2h,待高岭土完全分散在浆液中后,再加入1kg(干基)拟薄水铝石,在通过HCl调节浆液的pH至2.5~3.5,使拟薄水铝石发生成胶反应。搅拌30min后,再加入上述分子筛浆液。继续打浆30min,所得浆液的固含量为41wt%;浆液经过均质后,喷雾成型,再经过550℃焙烧2h,得到多产低碳烯烃和降油浆双功能助剂LOBC-7。
助剂LOBC-7的磨损指数为0.8 wt%/h,比表面积为217 m2/g,P2O5含量为1.28wt%。经过金属和水蒸气钝化处理后,添加15wt%该助剂,用于催化裂化过程中的裂化性能如表3。
实施例7:
利用磷酸二氢氨对H-ZSM-5(SiO2/Al2O3摩尔比为27)进行浸渍和闪蒸干燥,再经过500℃焙烧2h,得到含磷ZSM-5分子筛,所得分子筛中P2O5的含量为3.2 wt%。
将4kg(干基)含磷ZSM-5分子筛和1kg(干基)Beta型分子筛(SiO2/Al2O3摩尔比为20)加入到5.5kg去离子水中,高速搅拌30min,得到含磷MFI分子筛浆液。
在搅拌条件下,将2.6kg(干基)高岭土和1.4kg(干基)铝溶胶加入4kg去离子水中,高速搅拌2h,待高岭土完全分散在浆液中后,再加入1kg(干基)拟薄水铝石,在通过HCl调节浆液的pH至2.5~3.5,使拟薄水铝石发生成胶反应。搅拌30min后,再加入上述分子筛浆液。继续打浆30min,所得浆液的固含量为41wt%;浆液经过均质后,喷雾成型,再经过550℃焙烧2h,得到多产低碳烯烃和降油浆双功能助剂LOBC-8。
助剂LOBC-8的磨损指数为1.3wt%/h,比表面积为204 m2/g,P2O5含量为1.28wt%。经过金属和水蒸气钝化处理后,添加15wt%该助剂,用于催化裂化过程中的裂化性能如表3。
实施例8:
利用磷酸对H-ZSM-5(SiO2/Al2O3摩尔比为27)进行浸渍和闪蒸干燥,再经过500℃焙烧2h,得到含磷ZSM-5分子筛,所得分子筛中P2O5的含量为3.2 wt%。
将4kg(干基)含磷ZSM-5分子筛和1kg(干基) 稀土超稳Y型分子筛(骨架SiO2/Al2O3摩尔比为9,RE2O3为4wt%)加入到5.5kg去离子水中,高速搅拌30min,得到含磷MFI分子筛浆液。
在搅拌条件下,将2.6kg(干基)高岭土和1.4kg(干基)铝溶胶加入4kg去离子水中,高速搅拌2h,待高岭土完全分散在浆液中后,再加入1kg(干基)拟薄水铝石,在通过HCl调节浆液的pH至2.5~3.5,使拟薄水铝石发生成胶反应。搅拌30min后,再加入上述分子筛浆液。继续打浆30min,所得浆液的固含量为41wt%;浆液经过均质后,喷雾成型,再经过550℃焙烧2h,得到多产低碳烯烃和降油浆双功能助剂LOBC-9。
助剂LOBC-9的磨损指数为0.7 wt%/h,比表面积为218 m2/g,P2O5含量为1.28wt%。经过金属和水蒸气钝化处理后,添加15wt%该助剂,用于催化裂化过程中的裂化性能如表3。
实施例9:
利用磷酸对H-ZSM-5(SiO2/Al2O3摩尔比为27)进行浸渍和闪蒸干燥,再经过500℃焙烧2h,得到含磷ZSM-5分子筛,所得分子筛中P2O5的含量为5 wt%。
将4kg(干基)含磷ZSM-5分子筛和1kg(干基) 稀土超稳Y型分子筛(骨架SiO2/Al2O3摩尔比为9,RE2O3为4wt%)加入到5.5kg去离子水中,高速搅拌30min,得到含磷MFI分子筛浆液。
在搅拌条件下,将2.6kg(干基)高岭土和1.4kg(干基)铝溶胶加入4kg去离子水中,高速搅拌2h,待高岭土完全分散在浆液中后,再加入1kg(干基)拟薄水铝石,在通过HCl调节浆液的pH至2.5~3.5,使拟薄水铝石发生成胶反应。搅拌30min后,再加入上述分子筛浆液。继续打浆30min,所得浆液的固含量为41wt%;浆液经过均质后,喷雾成型,再经过550℃焙烧2h,得到多产低碳烯烃和降油浆双功能助剂LOBC-10。
助剂LOBC-10的磨损指数为0.6 wt%/h,比表面积为217 m2/g,P2O5含量为2 wt%。经过金属和水蒸气钝化处理后,添加15wt%该助剂,用于催化裂化过程中的裂化性能如表3。
实施例10:
依次利用稀土盐和磷酸二氢氨对H-ZSM-5(SiO2/Al2O3摩尔比为27)进行浸渍和闪蒸干燥,经过500℃焙烧2h,得到含磷和含稀土ZSM-5分子筛,所得分子筛中P2O5的含量为3.2 wt%,RE2O3的含量为1.8 wt%。
将4kg(干基)含磷和含稀土ZSM-5分子筛和1kg(干基) 稀土超稳Y型分子筛(骨架SiO2/Al2O3摩尔比为9,RE2O3为4wt%)加入到5.5kg去离子水中,高速搅拌30min,得到含磷MFI分子筛浆液。
在搅拌条件下,将2.5kg(干基)高岭土和1.5kg(干基)铝溶胶加入4kg去离子水中,高速搅拌2h,待高岭土完全分散在浆液中后,再加入1kg(干基)拟薄水铝石,在通过HCl调节浆液的pH至2.5~3.5,使拟薄水铝石发生成胶反应。搅拌30min后,再加入上述分子筛浆液。继续打浆30min,所得浆液的固含量为41wt%;浆液经过均质后,喷雾成型,再经过550℃焙烧2h,得到多产低碳烯烃和降油浆双功能助剂LOBC-11。
助剂LOBC-11的磨损指数为0.6 wt%/h,比表面积为212 m2/g,P2O5含量为1.28wt%。经过金属和水蒸气钝化处理后,添加15wt%该助剂,用于催化裂化过程中的裂化性能如表3。
在上述实施例和对比例中的催化裂化反应在微型流化床反应器(ACE)和配套气相色谱上评价,研究法辛烷值(RON)采用Agilent公司的气相色谱仪7980A分析。主催化剂工业RFCC平衡剂,对比例和实施例中的助剂分别浸渍4000ppm V和2000 ppm Ni之后,再经810℃、100wt%水蒸气老化10h后,用15wt%助剂+85wt%RFCC平衡剂进行催化裂化性能评价。其它检测参见(《石油和石油产品试验方法国家标准》中国标准出版社出版1989 年)。
RFCC平衡剂的主要性质如表1,测试原料油的性质如表2。85wt%RFCC平衡剂+15wt%实施例和对比例助剂的催化裂化性能如表3。
表1 RFCC平衡剂的主要性质
Figure 825572dest_path_image001
表2 原料油性质
Figure 758893dest_path_image002
表3为实施例和对比例样品的催化裂化性能
Figure 162192dest_path_image003
表3中对比例和实施例中的助剂分别浸渍4000ppm V和2000 ppm Ni之后,再经810℃、100wt%水蒸气老化10h后,用15wt%助剂+85wt%RFCC平衡剂进行催化裂化性能评价。催化裂化反应温度为540℃,进油速度为1.2 g/min,进油时间为1.5min,剂油比为5。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,在本发明的精神和原则内可以有各种更改和变化,这些等同的变型或替换等,均包含在本发明的保护范围之内。
工业实用性
本发明提供的助剂用于催化裂化过程中,能够提高裂化液化气产率,提高液化气中丙烯浓度,提高催化裂化汽油的辛烷值,降低裂化产物中油浆的收率,具备良好的工业实用性。
序列表自由内容
在此处键入序列表自由内容描述段落。

Claims (10)

  1. 一种降油浆和多产低碳烯烃的助剂,其特征在于,所述原料的干基相对含量为:40~55 wt%含磷MFI分子筛、0~10 wt%大孔分子筛、3~20 wt%无机粘结剂、8~22 wt%无机基质和15~40 wt%粘土。
  2. 根据权利要求1所述降油浆和多产低碳烯烃的助剂,其特征在于,所述含磷MFI分子筛的SiO2/Al2O3摩尔比为10~50,分子筛中P2O5的含量为1~5wt%。
  3. 根据权利要求1所述降油浆和多产低碳烯烃的助剂,其特征在于,所述大孔分子筛为Y型分子筛和/或Beta型分子筛。
  4. 根据权利要求3所述降油浆和多产低碳烯烃的助剂,其特征在于,所述Y型分子筛为稀土改性的Y型分子筛、磷改性的Y型分子筛、稀土和磷改性的Y型分子筛、超稳Y分子筛和/或稀土改性的超稳Y分子筛。
  5. 根据权利要求1所述降油浆和多产低碳烯烃的助剂,其特征在于,所述无机粘结剂为氧化铝粘结剂、氧化硅粘结剂和/或硅铝粘结剂。
  6. 根据权利要求1所述降油浆和多产低碳烯烃的助剂,其特征在于,所述无机基质为经过焙烧后的氧化铝和/或无定形硅铝,无机基质的总比表面积>200m2/g。
  7. 根据权利要求1所述降油浆和多产低碳烯烃的助剂,其特征在于,所述粘土为高岭土、蒙拓土、凹凸棒石、硅藻土和/或海泡石。
  8. 一种如权利要求1所述降油浆和多产低碳烯烃的助剂的制备方法,其特征在于,包括以下步骤:以含磷MFI分子筛、大孔分子筛、无机粘结剂、无机基质、粘土为原料喷雾成型,在450℃~750℃下焙烧固化0.1~10h,即得。
  9. 一种如权利要求1所述降油浆和多产低碳烯烃的助剂用于常压渣油、减压渣油、常压蜡油、减压蜡油、直馏蜡油和/或焦化蜡油的催化裂化中的应用。
  10. 根据权利要求9所述降油浆和多产低碳烯烃的助剂的应用,其特征在于,所述助剂占催化裂化体系总催化剂质量的1~30wt%。
PCT/CN2020/110822 2019-09-03 2020-08-24 一种降油浆和多产低碳烯烃的助剂及其制备方法与应用 WO2021043017A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/056,427 US20220219151A1 (en) 2019-09-03 2020-08-24 A bifunctional Additive for More Low-Carbon Olefins and Less Slurry and Its Preparation Method and Application Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910828114.8A CN110479361A (zh) 2019-09-03 2019-09-03 一种降油浆和多产低碳烯烃的助剂及其制备方法与应用
CN201910828114.8 2019-09-03

Publications (1)

Publication Number Publication Date
WO2021043017A1 true WO2021043017A1 (zh) 2021-03-11

Family

ID=68556244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110822 WO2021043017A1 (zh) 2019-09-03 2020-08-24 一种降油浆和多产低碳烯烃的助剂及其制备方法与应用

Country Status (3)

Country Link
US (1) US20220219151A1 (zh)
CN (1) CN110479361A (zh)
WO (1) WO2021043017A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110479361A (zh) * 2019-09-03 2019-11-22 四川润和催化新材料股份有限公司 一种降油浆和多产低碳烯烃的助剂及其制备方法与应用
CN112403509B (zh) * 2020-11-17 2021-06-22 润和催化剂股份有限公司 一种具有增产丙烯效果的脱硝助剂及其制备方法
CN113398982B (zh) * 2021-06-04 2023-01-03 青岛惠城环保科技集团股份有限公司 一种废塑料催化裂解制低碳烯烃的催化剂及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4927526A (en) * 1984-07-05 1990-05-22 Mobil Oil Corporation Octane improvement of gasoline in catalytic cracking without decreasing total liquid yield
CN1388221A (zh) * 2001-05-30 2003-01-01 中国石油化工股份有限公司 一种降低汽油烯烃含量的催化裂化助剂
CN1721506A (zh) * 2004-07-14 2006-01-18 中国石油化工股份有限公司 一种烃油转化方法
CN101147876A (zh) * 2006-09-20 2008-03-26 中国石油化工股份有限公司 一种提高液化气丙烯浓度的催化裂化助剂
CN101837301A (zh) * 2009-03-18 2010-09-22 中国石油天然气股份有限公司 一种催化裂化增产丙烯催化剂及制备方法
CN102886275A (zh) * 2011-07-18 2013-01-23 卓润生 一种原位晶化制备含双分子筛裂化催化剂的方法
CN107185586A (zh) * 2017-06-29 2017-09-22 李瑛� 多产丙烯和异戊烯的催化裂化助剂及其制备方法和应用
CN109092353A (zh) * 2018-08-31 2018-12-28 四川润和催化新材料股份有限公司 一种增产丙烯助剂及其制备方法
CN110437872A (zh) * 2019-09-03 2019-11-12 四川润和催化新材料股份有限公司 一种利用生物油催化裂化改善油品质量和提高低碳烯烃收率的方法
CN110479361A (zh) * 2019-09-03 2019-11-22 四川润和催化新材料股份有限公司 一种降油浆和多产低碳烯烃的助剂及其制备方法与应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101134172B (zh) * 2006-08-31 2010-10-27 中国石油化工股份有限公司 一种烃类转化催化剂
CN1915821A (zh) * 2006-09-06 2007-02-21 北京盛大京泰化学研究所 一种磷改性的zsm-5分子筛的制备方法
CN102031147B (zh) * 2009-09-28 2014-12-31 中国石油化工股份有限公司 多产柴油和丙烯的催化转化方法
CN102019200B (zh) * 2010-04-13 2013-01-16 卓润生 一种高活性的催化热裂解催化剂及其制备方法
CN103007988B (zh) * 2011-09-22 2014-08-20 中国石油化工股份有限公司 一种提高低碳烯烃浓度的裂化助剂

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4927526A (en) * 1984-07-05 1990-05-22 Mobil Oil Corporation Octane improvement of gasoline in catalytic cracking without decreasing total liquid yield
CN1388221A (zh) * 2001-05-30 2003-01-01 中国石油化工股份有限公司 一种降低汽油烯烃含量的催化裂化助剂
CN1721506A (zh) * 2004-07-14 2006-01-18 中国石油化工股份有限公司 一种烃油转化方法
CN101147876A (zh) * 2006-09-20 2008-03-26 中国石油化工股份有限公司 一种提高液化气丙烯浓度的催化裂化助剂
CN101837301A (zh) * 2009-03-18 2010-09-22 中国石油天然气股份有限公司 一种催化裂化增产丙烯催化剂及制备方法
CN102886275A (zh) * 2011-07-18 2013-01-23 卓润生 一种原位晶化制备含双分子筛裂化催化剂的方法
CN107185586A (zh) * 2017-06-29 2017-09-22 李瑛� 多产丙烯和异戊烯的催化裂化助剂及其制备方法和应用
CN109092353A (zh) * 2018-08-31 2018-12-28 四川润和催化新材料股份有限公司 一种增产丙烯助剂及其制备方法
CN110437872A (zh) * 2019-09-03 2019-11-12 四川润和催化新材料股份有限公司 一种利用生物油催化裂化改善油品质量和提高低碳烯烃收率的方法
CN110479361A (zh) * 2019-09-03 2019-11-22 四川润和催化新材料股份有限公司 一种降油浆和多产低碳烯烃的助剂及其制备方法与应用

Also Published As

Publication number Publication date
CN110479361A (zh) 2019-11-22
US20220219151A1 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
WO2021043017A1 (zh) 一种降油浆和多产低碳烯烃的助剂及其制备方法与应用
US11964262B2 (en) Phosphorus-containing rare-earth-containing MFI structure molecular sieve rich in mesopore, preparation method, and catalyst containing same and application thereof
JP7482120B2 (ja) メソポアを豊富に含むmfi構造分子篩とその作製方法、および、該分子篩を含む触媒とその利用
JP5662936B2 (ja) ゼオライトの複合的な系を有する添加剤及び調製方法
CN112138711B (zh) 一种催化裂解助剂及其制备方法及烃油催化裂解的方法
CN102049290B (zh) 一种重油催化裂化高辛烷值汽油助剂及其制备方法
CN112138710B (zh) 一种催化裂解催化剂及其制备方法和应用
EP3868471A1 (en) Phosphorus-containing rare-earth-containing mfi structure molecular sieve rich in mesopore, preparation method, and catalyst containing same and application thereof
CN112138712B (zh) 一种催化裂解催化剂及其制备方法及烃油催化裂解的方法
CN109675616B (zh) 一种多产丁烯的催化转化催化剂以及制备方法和多产丁烯的催化转化方法
EP4137457A1 (en) Phosphorus-modified mfi-structured molecular sieve, catalytic cracking auxiliary agent and catalytic cracking catalyst containing phosphorus-modified mfi-structured molecular sieve, and preparation method therefor
EP4275789A1 (en) Catalytic cracking agent containing phosphorus modified molecular sieve, and preparation method therefor, preparation system thereof and use thereof
TW202200266A (zh) 一種催化裂解助劑及其製備方法和應用
CN112138713B (zh) 一种催化裂解助剂及其制备方法和应用
CN111760588A (zh) 一种增产丙烯催化裂化助剂
CN110479362B (zh) 一种多产柴油和多产低碳烯烃的催化剂及其制备方法与应用
US11975980B2 (en) MFI structure molecular sieve rich in mesopore, preparation method therefor, and catalyst containing same and application thereof
CN114425431B (zh) 一种含磷改性mfi结构分子筛的催化裂解催化剂
RU2807083C1 (ru) Модифицированное фосфором молекулярное сито со структурой mfi, вспомогательное средство для каталитического крекинга и катализатор каталитического крекинга, содержащие модифицированные фосфором молекулярные сита со структурой mfi, а также процессы для их приготовления
RU2800606C2 (ru) Молекулярное сито, имеющее структуру mfi и высокое содержание мезопор, способ его получения, содержащий его катализатор и его применение
RU2800708C2 (ru) Содержащее фосфор и редкоземельные элементы молекулярное сито, имеющее структуру mfi и высокое содержание мезопор, способ его получения, содержащий его катализатор и его применение
WO2021208884A1 (zh) 含磷的/磷改性的zsm-5分子筛、含其的裂解助剂和裂解催化剂及其制备方法和应用
JP3476658B2 (ja) 炭化水素の流動接触分解触媒組成物
JP3093089B2 (ja) 高品質ガソリンおよびc3およびc4オレフィン製造用の炭化水素転化触媒
CN114505092A (zh) 一种催化裂解助剂、制备方法及烃油催化裂解的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20860931

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 522431824

Country of ref document: SA

122 Ep: pct application non-entry in european phase

Ref document number: 20860931

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 15/05/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20860931

Country of ref document: EP

Kind code of ref document: A1