WO2021259347A1 - ZSM-5/β核壳型分子筛及其合成和应用 - Google Patents

ZSM-5/β核壳型分子筛及其合成和应用 Download PDF

Info

Publication number
WO2021259347A1
WO2021259347A1 PCT/CN2021/101993 CN2021101993W WO2021259347A1 WO 2021259347 A1 WO2021259347 A1 WO 2021259347A1 CN 2021101993 W CN2021101993 W CN 2021101993W WO 2021259347 A1 WO2021259347 A1 WO 2021259347A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
zsm
core
weight
shell
Prior art date
Application number
PCT/CN2021/101993
Other languages
English (en)
French (fr)
Inventor
韩蕾
林伟
王鹏
宋海涛
王丽霞
周翔
赵留周
郑学国
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司石油化工科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010590434.7A external-priority patent/CN113830778B/zh
Priority claimed from CN202010985188.5A external-priority patent/CN114425420B/zh
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司石油化工科学研究院 filed Critical 中国石油化工股份有限公司
Priority to US18/002,322 priority Critical patent/US20230347330A1/en
Priority to EP21829647.3A priority patent/EP4173704A1/en
Priority to JP2022580129A priority patent/JP2023531260A/ja
Publication of WO2021259347A1 publication Critical patent/WO2021259347A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/023Preparation of physical mixtures or intergrowth products of zeolites chosen from group C01B39/04 or two or more of groups C01B39/14 - C01B39/48
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/026After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/36Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C01B39/38Type ZSM-5
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/60Synthesis on support
    • B01J2229/62Synthesis on support in or on other molecular sieves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • This application relates to the technical field of catalytic materials, in particular to a ZSM-5/ ⁇ core-shell molecular sieve and its synthesis and application.
  • Zeolite molecular sieve is a kind of microporous crystalline material with a framework structure. It has a pore structure of specific size and shape, a larger specific surface area and strong adjustable acid properties. It is widely used in the process of petroleum refining and processing. Such as catalytic cracking, alkane isomerization, catalytic reforming and toluene disproportionation and other catalytic reactions.
  • ZSM-5 molecular sieve with MFI topology and ⁇ molecular sieve with BEA topology are two types of molecular sieves that are widely used in industry.
  • ZSM-5 molecular sieve is a mesoporous molecular sieve (USP3702886) with a high silicon three-dimensional straight channel developed by the American Mobil Petroleum Company. It has a unique pore structure and belongs to the orthorhombic crystal system.
  • the unit cell parameters are The number of Al atoms in the unit cell can vary from 0 to 27, and the silicon-to-aluminum ratio can be changed within a relatively large range; the ZSM-5 framework contains two intersecting 10-membered ring channel systems, one of which is curved in an S shape.
  • the aperture is A kind of pore is linear, the aperture is ZSM-5 has good shape-selective catalysis and isomerization performance, high thermal and hydrothermal stability, high specific surface area, wide range of silicon-to-aluminum ratio, unique surface acidity and low carbon formation characteristics, and is widely used
  • Catalysts and catalyst carriers have been successfully used in the production processes of alkylation, isomerization, disproportionation, catalytic cracking, methanol-to-gasoline, and methanol-to-olefins.
  • ⁇ molecular sieve is a high-silica zeolite with a large pore three-dimensional structure with a cross-twelve-membered ring channel system.
  • the pore size of its twelve-membered ring three-dimensional cross-pore system is and Due to the particularity of its structure, it has both acid catalytic properties and structural selectivity. It has good thermal and hydrothermal stability, moderate acidity and acid stability and hydrophobicity. It is used in transalkylation reactions and lightening reactions of heavy aromatics. It exhibits excellent catalytic performance, and its catalytic application shows the characteristics of difficult coking in hydrocarbon reactions and long service life.
  • ZSM-5 molecular sieve has a shape-selective function, its pore size is small, which is not conducive to the diffusion and adsorption of macromolecular reactants, especially cyclic hydrocarbons.
  • ⁇ molecular sieve has a larger pore size, larger molecular reactants can Enter to increase the accessibility of the active center, but it has no shape-selective function for small molecular weight olefins such as ethylene and propylene.
  • ZSM-5 molecular sieve and ⁇ molecular sieve are also used at the same time for hydrocarbon oil conversion.
  • the common method is to use a mechanical mixture of the two molecular sieves. In this case, the distance between ZSM-5 molecular sieve particles and ⁇ molecular sieve particles is relatively short. long.
  • the purpose of this application is to provide a novel ZSM-5/ ⁇ core-shell molecular sieve and its synthesis and application.
  • the core-shell molecular sieve has the core phase of the ZSM-5 molecular sieve and the shell layer of the ⁇ molecular sieve. It has better conversion effect when used in the catalytic conversion of hydrocarbon oil.
  • this application provides a ZSM-5/ ⁇ core-shell molecular sieve, which includes a core phase composed of at least two ZSM-5 molecular sieve crystal grains and a shell composed of a plurality of ⁇ molecular sieve crystal grains.
  • the average crystal grain size of the ZSM-5 molecular sieve crystal grains is 0.05-15 ⁇ m, the shell coverage of the core-shell molecular sieve is 50-100%, the shell thickness is 10-2000 nm, and the ⁇ molecular sieve in the shell
  • the peak height ratio is 0.1-10:1.
  • this application provides a method for synthesizing ZSM-5/ ⁇ core-shell molecular sieve, which includes the following steps:
  • the particles of the ZSM-5 molecular sieve used in step 1) are composed of at least 2 ZSM-5 molecular sieve crystal particles.
  • the present application provides a catalyst, on a dry basis weight and based on the weight of the catalyst, the catalyst comprises 30-90 wt% of the carrier, 2-50 wt% of the ZSM-5 according to the present application / ⁇ core-shell molecular sieve, and 0-50wt% additional molecular sieve.
  • the sodium content as Na 2 O in the ZSM-5/ ⁇ core-shell molecular sieve does not exceed 0.15% by weight.
  • the present application provides a method for catalytic conversion of hydrocarbon oil, which includes the step of contacting a hydrocarbon oil feedstock with the catalyst according to the present application.
  • the core-shell molecular sieve of the present application can be used in hydrocarbon conversion reactions, such as catalytic cracking reactions, alkylation reactions and isomerization reactions.
  • hydrocarbon conversion reactions such as catalytic cracking reactions, alkylation reactions and isomerization reactions.
  • the core-shell molecular sieve of the present application is used for hydrocarbon oil cracking or cracking, and has a better conversion effect. It is used for the cracking of naphthenic ring-containing hydrocarbon oil, such as hydrogenation LCO cracking conversion, and the propylene yield is higher and/ Or the ethylene yield is higher, and the heavy oil conversion rate is higher.
  • the ZSM-5/ ⁇ core-shell molecular sieve synthesis method provided in this application can have one or more of the following beneficial effects:
  • the synthesized molecular sieve has a relatively high ratio of mesopore surface area
  • the synthesized molecular sieve has many 2-50nm pores, and its pore diameter distribution has pore diameter distribution peaks at pore diameters of 2-4nm and 20-80nm, and has abundant mesopores and macropore pore volumes.
  • Figure 1 shows the SEM image of the ZSM-5/ ⁇ core-shell molecular sieve prepared in Example I-1 of the present application
  • Figure 2A shows the XRD diffraction pattern of the molecular sieve, where 1 is the XRD diffraction pattern of the ZSM-5 molecular sieve, 2 is the XRD diffraction pattern of the ⁇ molecular sieve, and 3 is the ZSM-5/ ⁇ obtained in Example I-1 of the present application XRD diffraction pattern of the core-shell molecular sieve;
  • Figure 3 shows the XRD diffraction spectrum of the pre-crystallized synthetic solution III obtained in Example I-1 of the present application;
  • Figure 4 shows the TEM image of the ZSM-5/ ⁇ core-shell molecular sieve prepared in Example I-1 of the present application.
  • Figure 5 shows the pore size distribution diagram of the ZSM-5/ ⁇ core-shell molecular sieve prepared in Example I-1 of the present application.
  • any specific numerical value (including the end point of the numerical range) disclosed in this article is not limited to the precise value of the numerical value, but should be understood to also cover values close to the precise value, for example, within the range of ⁇ 5% of the precise value All possible values.
  • between the endpoints of the range, between the endpoints and the specific point values in the range, and between the specific point values can be combined arbitrarily to obtain one or more new Numerical ranges, these new numerical ranges should also be regarded as specifically disclosed herein.
  • the grain size refers to the size of the widest part of the crystal grain, which can be obtained by measuring the size of the widest part of the projected surface of the crystal grain in the SEM or TEM image of the sample.
  • the average crystal grain size of the multiple crystal grains is the average crystal grain size of the sample.
  • the particle size refers to the size of the widest part of the particle, which can be measured by measuring the size of the widest part of the particle projection surface in the SEM or TEM image of the sample, and the average particle size of multiple particles is the average particle size of the sample. It can also be measured by a laser particle size analyzer.
  • One grain may include one or more crystal grains.
  • the dry basis weight refers to the weight of the solid product obtained after the substance is calcined in air at 850°C for 1 hour.
  • the catalyst-to-oil ratio refers to the weight ratio of the catalyst to the feedstock oil.
  • sodium core-shell molecular sieve refers to the ZSM-5/ ⁇ core-shell molecular sieve obtained after the crystallization step without the treatment of reducing Na 2 O content (such as ammonium exchange);
  • “Hydrogen core-shell molecular sieve” or “modified core-shell molecular sieve” means that the “sodium core-shell molecular sieve” is processed (such as ammonium exchange) to reduce the Na 2 O content (for example, the Na 2 O content is reduced to less than 0.15% by weight) ZSM-5/ ⁇ core-shell molecular sieve obtained afterwards.
  • the term "heavy oil” has a well-known meaning in the art, for example, it can be, for example, atmospheric residue, atmospheric gas oil, vacuum residue, vacuum gas oil, coker wax oil, light and heavy deasphalted oil. One or more.
  • intermediate base crude oil refers to a type of crude oil whose properties are between paraffin base crude oil and naphthenic crude oil, its characteristic factor is 11.5-12.1, and its alkane and naphthenic content are basically similar.
  • any matters or matters not mentioned are directly applicable to those known in the art without any changes.
  • any embodiment described herein can be freely combined with one or more other embodiments described herein, and the technical solutions or technical ideas formed thereby shall be regarded as part of the original disclosure or original record of the present invention, and shall not be It is regarded as new content that has not been disclosed or anticipated in this article, unless those skilled in the art think that the combination is obviously unreasonable.
  • the present application provides a ZSM-5/ ⁇ core-shell molecular sieve, which includes a core phase composed of at least two ZSM-5 molecular sieve crystal particles and a plurality of ⁇ molecular sieve crystal particles.
  • the ratio of) is 0.1-10:1.
  • the mass ratio of the core phase to the shell layer of the core-shell molecular sieve is 0.2-20:1, for example, 1-15:1, wherein the core phase
  • the mass ratio to the shell layer can be calculated using the peak area of the X-ray diffraction spectrum.
  • the total specific surface area of the ZSM-5/ ⁇ core-shell molecular sieve (also called the specific surface area of the ZSM-5/ ⁇ core-shell molecular sieve) is greater than 420m 2 /g, for example, 420-650m 2 /g. Further preferably, the total specific surface area of the ZSM-5/ ⁇ core-shell molecular sieve is greater than 450m 2 /g, for example, 450-620m 2 /g, 480-600m 2 /g, 490-580m 2 /g or 500- 560m 2 /g.
  • the ratio of the mesopore surface area to the total surface area (or the mesopore specific surface area to the total specific surface area) of the ZSM-5/ ⁇ core-shell molecular sieve It is 10-40%, for example 12-35%.
  • mesopores refer to pores with a diameter of 2-50 nm.
  • the ZSM-5/ ⁇ core-shell molecular sieve based on the total pore volume of the ZSM-5/ ⁇ core-shell molecular sieve, in the ZSM-5/ ⁇ core-shell molecular sieve, the pore volume of pores with a pore diameter of 0.3-0.6 nm accounts for 40-90%, for example, 40-88%, 50-85%, 60-85% or 70-82%.
  • the ZSM-5/ ⁇ core-shell molecular sieve based on the total pore volume of the ZSM-5/ ⁇ core-shell molecular sieve, in the ZSM-5/ ⁇ core-shell molecular sieve, the pore volume of pores with a pore diameter of 0.7-1.5 nm accounts for 3-20%, for example, 3-15% or 3-9%.
  • the ZSM-5/ ⁇ core-shell molecular sieve based on the total pore volume of the ZSM-5/ ⁇ core-shell molecular sieve, in the ZSM-5/ ⁇ core-shell molecular sieve, the pore volume of pores with a pore diameter of 2-4 nm accounts for 4-50%, for example, 4-40% or 4-20% or 4-10%.
  • the ZSM-5/ ⁇ core-shell molecular sieve based on the total pore volume of the ZSM-5/ ⁇ core-shell molecular sieve, in the ZSM-5/ ⁇ core-shell molecular sieve, the pore volume of pores with a pore diameter of 20-80 nm accounts for 5-40%, for example, 5-30% or 6-20% or 7-18% or 8-16%.
  • the pore volume of the core-shell molecular sieve with a pore diameter of 2-80 nm accounts for 10-30% of the total pore volume, for example, 11-25% .
  • the pore volume of the core-shell molecular sieve with a pore diameter of 20-80 nm accounts for 50-70% of the pore volume of a pore with a pore diameter of 2-80 nm. , Such as 55-65% or 58-64%.
  • the total pore volume of the ZSM-5/ ⁇ core-shell molecular sieve is 0.28-0.42 mL/g, for example, 0.3-0.4 mL/g or 0.32-0.38mL/g.
  • the ZSM-5/ ⁇ core-shell molecular sieve of the present application has an obvious micropore-mesopore-macropore stepped pore distribution, and has a pore diameter in the range of 2-4nm and 20-80nm.
  • the abundant mesoporous and macroporous pore volume is conducive to the hierarchical cracking of naphthenic heavy oil macromolecules.
  • the total pore volume and pore size distribution can be measured by the low-temperature nitrogen adsorption capacity method, and the BJH calculation method is used to calculate the pore size distribution.
  • the average crystal grain size of the ⁇ molecular sieve crystal grains in the shell layer of the ZSM-5/ ⁇ core-shell molecular sieve is 10-500 nm, for example, 50-500 nm. 500nm.
  • the thickness of the shell layer of the ZSM-5/ ⁇ core-shell molecular sieve is 10-2000 nm, for example, 50-2000 nm.
  • the silicon to aluminum ratio of the shell molecular sieve (that is, the ⁇ molecular sieve in the shell) (that is, the silicon to aluminum molar ratio in terms of SiO 2 /Al 2 O 3) ) Is 10-500, preferably 10-300, for example 30-200 or 25-200.
  • the core-phase molecular sieve (that is, the ZSM-5 molecular sieve in the core phase) of the ZSM-5/ ⁇ core-shell molecular sieve has a silicon-to-aluminum ratio of 10 - ⁇ , for example, 20- ⁇ , 50- ⁇ , 30-300, 30-200, 20-80, 25-70, or 30-60.
  • the core-phase molecular sieve particles of the ZSM-5/ ⁇ core-shell molecular sieve are agglomerates of a plurality of ZSM-5 molecular sieve crystal particles, and among the single particles of the core-phase molecular sieve, the number of ZSM-5 molecular sieve crystal particles The number is not less than 2.
  • the average crystal grain size of the ZSM-5 molecular sieve crystal grains in the core phase of the ZSM-5/ ⁇ core-shell molecular sieve is 0.05-15 ⁇ m, preferably It is 0.1-10 ⁇ m, for example, 0.1-5 ⁇ m or 0.1-1.2 ⁇ m.
  • the average particle size of the ZSM-5 molecular sieve particles in the core phase of the ZSM-5/ ⁇ core-shell molecular sieve is 0.1-30 ⁇ m, for example 0.2- 25 ⁇ m, 0.5-10 ⁇ m, 1-5 ⁇ m or 2-4 ⁇ m.
  • the shell coverage of the core-shell molecular sieve is 50-100%, such as 80-100%.
  • this application provides a method for synthesizing ZSM-5/ ⁇ core-shell molecular sieve, which includes the following steps:
  • step 1) the treatment of step 1) is carried out as follows: ZSM-5 molecular sieve (raw material) in the form of particles is added to a weight percent concentration of 0.05 -50%, preferably 0.1-30%, for example, 0.1-5% surfactant solution; preferably contacting under stirring, followed by filtration and drying to obtain the ZSM-5 molecular sieve material I.
  • the drying in step 1) has no special requirements, for example, drying, flash drying, and airflow drying can be used.
  • the drying temperature is 50-150°C, and the drying time is not limited, as long as the sample is dried, for example, it can be 0.5-4h.
  • the treatment in step 1) is performed at 20-70°C for more than 0.5 hours, such as 0.5-48 hours or 1-36 hours.
  • the weight ratio of the surfactant solution to the ZSM-5 molecular sieve on a dry basis in step 1) is 10-200:1.
  • the surfactant solution may also contain a salt, and the salt can separate or disperse the surfactant and has an electrolyte.
  • Nature salt for example, soluble in one or more of alkali metal salt and ammonium salt in water, preferably alkali metal chloride salt, alkali metal nitrate, ammonium chloride salt, ammonium nitrate
  • the salt may be selected from sodium chloride, potassium chloride, ammonium chloride, ammonium nitrate or a combination thereof; the concentration of the salt in the surfactant solution is preferably 0.05-10.0 by weight %, for example 0.2-2% by weight.
  • the addition of the salt is beneficial to the adsorption of the surfactant.
  • the surfactant can be selected from polymethylmethacrylate, polydiallyldimethylammonium chloride, dipyridine Carboxylic acid, ammonia, ethylamine, n-butylamine, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetraethylammonium bromide, tetrapropylammonium bromide, tetrabutylammonium hydroxide, or a combination thereof.
  • the silicon-to-aluminum ratio of the particle form of the ZSM-5 molecular sieve in step 1) is 10- ⁇ ; for example, as described in step 1)
  • the silicon-to-aluminum ratio of the ZSM-5 molecular sieve in the form of particles may be 20- ⁇ , 50- ⁇ , 30-300, 30-200, 40-70, 20-80, 25-70, or 30-60.
  • the particles of the ZSM-5 molecular sieve in the particle form described in step 1) are composed of at least 2 ZSM-5 molecular sieve crystal particles.
  • the average crystal grain size of the ZSM-5 molecular sieve crystal grains is 0.05-20 ⁇ m, for example, 0.1-10 ⁇ m.
  • the average particle size of the ZSM-5 molecular sieve in the form of particles is 0.1-30 ⁇ m, for example, 0.5-25 ⁇ m, 1-25 ⁇ m, 1 -20 ⁇ m, 1-5 ⁇ m or 2-4 ⁇ m.
  • the ZSM-5 molecular sieve used in step 1) is a sodium-type, hydrogen-type or ion-exchanged ZSM-5 molecular sieve.
  • the ion-exchanged ZSM-5 molecular sieve refers to ZSM-5 molecular sieve (such as sodium ZSM-5 molecular sieve) and ions other than alkali metals, such as transition metal ions, ammonium ions, alkaline earth metal ions, IIIA group metal ions, IVA group
  • the exchanged ZSM-5 molecular sieve obtained after the exchange of metal ions and VA metal ions.
  • step 2) the treatment of step 2) is carried out as follows: ZSM-5 molecular sieve material I is added to the ⁇ molecular sieve containing particles ( ⁇ molecular sieve is also The contact is carried out in the slurry (called ⁇ zeolite); preferably, the contact is carried out under stirring, followed by filtration and drying to obtain the ZSM-5 molecular sieve material II.
  • the treatment of step 2) is performed at 20-60°C for more than 0.5 hours, for example, 1-24 hours.
  • the concentration of the ⁇ molecular sieve in the slurry containing the particle form of the ⁇ molecular sieve in step 2) is 0.1-10% by weight, for example, 0.3- 8% by weight or 0.2-1% by weight.
  • the weight ratio of the slurry containing the ⁇ molecular sieve to the ZSM-5 molecular sieve material I on a dry basis is 10- 50:1, preferably, the weight ratio of ⁇ molecular sieve on a dry basis to ZSM-5 molecular sieve material I on a dry basis is 0.01-1:1, for example, 0.02-0.35:1.
  • the particles of the ⁇ molecular sieve in the particle form in step 2) are composed of at least one ⁇ molecular sieve crystal particle.
  • the average crystal grain size of the ⁇ molecular sieve crystal grains is 10-500 nm, for example, 50-400 nm, 100-300 nm, 10-300 nm or 200-500 nm.
  • the average crystal grain size of the ⁇ molecular sieve crystal grains is smaller than the average crystal grain size of the ZSM-5 molecular sieve crystal grains.
  • the average crystal grain size of the ⁇ molecular sieve crystal grains is 10-500 nm smaller than that of the ZSM-5 molecular sieve crystal grains, or the average crystal grain size of the ZSM-5 molecular sieve crystal grains is that of the ⁇ molecular sieve crystals
  • the average crystal grain size is more than 1.5 times, for example, 2-50 or 5-20 times.
  • the average particle size of the ⁇ molecular sieve in the particle form in step 2) is 0.01-0.5 ⁇ m, for example, 0.05-0.5 ⁇ m.
  • the particles of the ⁇ molecular sieve are single crystal particles.
  • the silicon to aluminum ratio of the ⁇ molecular sieve used in step 2) is 10-500, for example, 30-200 or 25-200.
  • the silicon source can be selected from ethyl orthosilicate, water glass, coarse-pored silica gel, silica sol, white silica Carbon black, activated clay, or a combination thereof;
  • the aluminum source may be selected from aluminum sulfate, aluminum isopropoxide, aluminum nitrate, aluminum sol, sodium metaaluminate, ⁇ -alumina, or a combination thereof;
  • the alkali source may Selected from sodium hydroxide, potassium hydroxide or a combination thereof;
  • the template (R) is, for example, tetraethylammonium fluoride, tetraethylammonium hydroxide, tetraethylammonium chloride, tetraethyl bromide
  • the template includes tetraethylammonium fluoride, tetraethylammonium hydroxide, tetraethylammonium chloride, tetraethyl bromid
  • step 3 the silicon source, aluminum source, optional alkali source, template R and deionized water are mixed A synthetic solution is formed, and then crystallization is performed at 75-250°C for 10-80 hours to obtain a pre-crystallization synthetic solution III; preferably, the crystallization temperature of the crystallization (ie, the first crystallization) in step 3) is 80-180 °C, the crystallization time is 18 hours-50 hours.
  • the crystallization temperature of the crystallization ie, the first crystallization
  • the crystallization time is 18 hours-50 hours.
  • the crystallization in step 3 makes the crystallization state of the obtained pre-crystallization synthesis solution III such that the crystal grains will not appear yet.
  • the emerging state is approaching the end of the crystallization induction period and is about to enter the rapid growth phase of crystal nuclei.
  • the XRD analysis method of the pre-crystallized synthetic solution III can be carried out as follows: the pre-crystallized synthetic solution III is filtered, washed, dried, and calcined at 550°C for 4 hours, and then subjected to XRD analysis, wherein the washing can be used to remove Ionized water washing.
  • the ZSM-5 molecular sieve material II is mixed with the pre-crystallization synthesis liquid III, for example, the ZSM-5 molecular sieve
  • the material II is added to the pre-crystallized synthesis solution III, wherein the weight ratio of the pre-crystallized synthesis solution III to the ZSM-5 molecular sieve material II on a dry basis is 2-10:1, for example, 4-10:1.
  • the weight ratio of the ZSM-5 molecular sieve on a dry basis to the pre-crystallization synthesis liquid III on a dry basis is greater than 0.2:1, for example, 0.3-20:1, 1-15:1, 0.5- 10:1, 0.5-5:1, 0.8-2:1 or 0.9-1.7:1, wherein the dry basis weight of the pre-crystallized synthetic liquid III refers to the pre-crystallized synthetic liquid III after filtering, drying, and The weight of the solid product obtained after calcination in air at 850°C for 1 hour.
  • the crystallization temperature of the crystallization (that is, the second crystallization) in step 4) is 50-300°C, and the crystallization time is 10-400h.
  • the ZSM-5 molecular sieve material II is mixed with the pre-crystallization synthesis solution III and then crystallized at 100-250°C 30-350h.
  • the crystallization temperature of the crystallization is, for example, 100-200°C, and the crystallization time is, for example, 50-120h.
  • the process of recovering the core-shell molecular sieve may also be included, and the recovery usually includes: filtering, washing One or more steps of drying and roasting, such as filtering the crystallized product, then washing and drying, and optionally roasting.
  • the drying is a conventional technique, such as air drying, drying, airflow drying, and flash drying.
  • the drying conditions may be a temperature of 50-150°C and a time of 0.5-4h.
  • the washing is a conventional technique.
  • water washing can be used.
  • the water can be one or more of deionized water, distilled water, and decationized water.
  • the weight ratio of core-shell molecular sieve to water can be, for example, 1: 5-20, you can wash one or more times, until the pH of the washed water is 8-9.
  • the firing conditions can be, for example, a firing temperature of 400-600°C and a firing time of 2-10h.
  • the core phase of the obtained ZSM-5/ ⁇ core-shell molecular sieve is ZSM-5 molecular sieve
  • the shell layer is ⁇ molecular sieve
  • the shell layer is ⁇ molecular sieve
  • the silicon to aluminum ratio of the molecular sieve is 10-500, such as 25-200, in terms of SiO 2 /Al 2 O 3.
  • the method for synthesizing the ZSM-5/ ⁇ core-shell molecular sieve of the present application includes the following steps:
  • the silicon-to-aluminum molar ratio SiO 2 /Al 2 O 3 of the ZSM-5 molecular sieve is preferably 20- ⁇ , such as 50- ⁇ ;
  • the method for synthesizing the ZSM-5/ ⁇ core-shell molecular sieve of the present application may further include: 5) performing ammonium exchange on the core-shell molecular sieve (ie, sodium core-shell molecular sieve) obtained in step 4) to make The Na 2 O content in the core-shell molecular sieve is less than 0.15% by weight; and
  • step 6) Dry the core-shell molecular sieve obtained in step 5) and calcinate at 400-600° C. for 2-10 hours to remove the template agent to obtain a hydrogen core-shell molecular sieve.
  • Exchange, followed by filtration, this process can be carried out one or more times; the ammonium salt is selected from a mixture of one or more of ammonium chloride, ammonium sulfate, and ammonium nitrate.
  • This application also provides a ZSM-5/ ⁇ core-shell molecular sieve material obtained by the ZSM-5/ ⁇ core-shell molecular sieve synthesis method.
  • the application also provides the application of the ZSM-5/ ⁇ core-shell molecular sieve according to the application or the ZSM-5/ ⁇ core-shell molecular sieve synthesized by the method of the application in the catalytic cracking or catalytic cracking of hydrocarbon oil.
  • the ZSM-5/ ⁇ core-shell molecular sieve is used as a part or all of the active components to prepare a catalytic cracking catalyst, and then used in the catalytic cracking or catalytic cracking reaction of hydrocarbon oil, which can increase the propylene yield of the reaction product and/ Or ethylene yield.
  • the present application provides a catalyst, on a dry basis weight and based on the weight of the catalyst, the catalyst contains 30-90wt% of the carrier, 2-50wt% of the Applied ZSM-5/ ⁇ core-shell molecular sieve, and 0-50wt% additional molecular sieve,
  • the carrier may include one or more of clay, alumina carrier, silica carrier, silica alumina carrier, phosphoalumina gel, and zirconium sol.
  • the clay may be natural clays such as kaolin, montmorillonite, diatomaceous earth, halloysite, pseudo halloysite, saponite, rectorite, sepiolite, attapulgite, hydrotalcite, and bentonite.
  • clays such as kaolin, montmorillonite, diatomaceous earth, halloysite, pseudo halloysite, saponite, rectorite, sepiolite, attapulgite, hydrotalcite, and bentonite.
  • clays such as kaolin, montmorillonite, diatomaceous earth, halloysite, pseudo halloysite, saponite, rectorite, sepiolite, attapulgite, hydrotalcite, and bentonite.
  • the alumina carrier may be, for example, one or more of acidified pseudo-boehmite, alumina sol, hydrated alumina, and activated alumina.
  • the hydrated alumina can be, for example, one or more of pseudo-boehmite (without acidification), boehmite, gibbsite, Bayerite, nordiazite, and amorphous aluminum hydroxide. kind.
  • the activated alumina may be, for example, one or more of ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, and ⁇ -alumina.
  • the acidified pseudo-boehmite can be obtained by acidification of pseudo-boehmite, where the acidification is well known to those skilled in the art.
  • the pseudo-boehmite can be beaten with water to form a slurry, Then acid is added and stirred at 50-85°C for 0.2-1.5 hours, wherein the molar ratio of acid to pseudo-boehmite based on alumina is, for example, 0.10-0.25.
  • the silica carrier may be, for example, one or more of silica sol, silica gel, and solid silica gel.
  • the silica sol may be, for example, one or more of neutral silica sol, acidic silica sol or alkaline silica sol.
  • the silicon aluminum oxide carrier may be, for example, one or more of silicon aluminum material, silicon aluminum sol, and silicon aluminum gel.
  • the phosphoaluminum gel may be, for example, phosphoaluminum sol or phosphoaluminum gel.
  • the zirconium sol may be, for example, zirconium sol or zirconium gel.
  • the sodium content as Na 2 O in the ZSM-5/ ⁇ core-shell molecular sieve does not exceed 0.15% by weight.
  • a core-shell molecular sieve with reduced sodium oxide content can be obtained by means of ammonium exchange.
  • the additional molecular sieve may be various molecular sieves conventionally used in the preparation of catalytic cracking catalysts.
  • the additional molecular sieve can be selected from Y-type molecular sieve and molecular sieve with pore opening diameter of 0.65-0.70 nanometers, or a combination thereof.
  • the Y-type molecular sieve is a Y-type molecular sieve containing no rare earth or a Y-type molecular sieve with a low rare earth content, and the content of rare earth in the Y-type molecular sieve with a low rare earth content is less than RE 2 O 3 5 wt%, the silicon-to-aluminum ratio (SiO 2 /Al 2 O 3 molar ratio) of the Y-type molecular sieve is, for example, 4-18 or 4.5-15.
  • the Y-type molecular sieve for example, one or more of DASY molecular sieve, DASY molecular sieve containing rare earth, HRY molecular sieve, HRY molecular sieve containing rare earth, DOSY molecular sieve, USY molecular sieve, USY molecular sieve containing rare earth, HY molecular sieve, REHY molecular sieve , Preferably one or more of HY molecular sieve, DASY molecular sieve and USY molecular sieve.
  • the molecular sieve with an opening diameter of 0.65-0.70 nanometers has AET, AFR, AFS, AFI, BEA, BOG, CFI, CON, GME, IFR, ISV, LTL, MEI, MOR, One or more of molecular sieves of OFF and SAO structure; preferably Beta, SAPO-5, SAPO-40, SSZ-13, CIT-1, ITQ-7, ZSM-18, mordenite and sodium chabazite or these
  • the combination of is more preferably ⁇ molecular sieve, for example, it may be hydrogen type ⁇ molecular sieve.
  • the first embodiment of the catalyst of the present application is a hydrogenation VGO catalytic cracking catalyst, which contains a carrier including silica sol and modifying elements, and a core-shell molecular sieve according to the present application, wherein the catalyst is on a dry basis.
  • the content of the carrier by weight is 50-90% by weight, preferably 55-75% by weight or 60-85% by weight, and the content of the core-shell molecular sieve on a dry basis is 10-50% by weight, preferably 20-45% by weight or 15-40% by weight, and the content of silica sol on a dry basis is 1-15% by weight, such as 5-15% by weight, and the content of the modifying element compound is 0.1-12% by weight, such as 0.5-10% by weight.
  • the modifying elements are in the silica sol, more preferably, all the modifying elements are in the silica sol,
  • the modifying element is a rare earth element.
  • the rare earth element-containing silica sol is called modified silica sol in this application.
  • the weight ratio of the rare earth as RE 2 O 3 to the silica sol as SiO 2 is 0.2-18 :100 preferably 1-18:100.
  • the carrier further includes one or more of pseudo-boehmite, alumina sol and clay.
  • the content of silica sol in the catalyst is 1-15% by weight
  • the content of pseudo-boehmite is 5-25% by weight
  • the content of aluminum sol is 3-20% by weight
  • the content of clay is 25-50% by weight.
  • the content of the rare earth oxide in the carrier is greater than 0-15 wt%, for example, 0.1-15 wt%, 1-15 wt%, 0.5-5 wt%, calculated as RE 2 O 3 % Or 0.2-10% by weight.
  • the hydrogenated VGO catalytic cracking catalyst according to the first embodiment of the catalyst of the present application When used for the catalytic conversion of hydrogenated VGO, it has a higher yield of heavy oil and a higher yield of ethylene and propylene.
  • the catalyst of the first type of embodiment of the present application can be prepared by a method including the following steps: forming a first slurry including silica sol, a modified element compound, a core-shell molecular sieve according to the present application, and spray drying, wherein the modification The sex element is a rare earth element.
  • the preparation method of the catalyst of the first embodiment includes the following steps:
  • step ii) Perform ammonium exchange on the sodium core-shell molecular sieve obtained in step i) so that the Na 2 O content in the core-shell molecular sieve is less than 0.15% by weight;
  • step iii) Dry the core-shell molecular sieve obtained in step ii) and calcinate at 400-600°C for 2-10 hours to obtain a hydrogen core-shell molecular sieve;
  • step iv) forming a first slurry comprising the rare earth salt, silica sol and the hydrogen core-shell molecular sieve obtained in step iii), and spray drying to obtain the catalyst.
  • the process can be carried out one or more times; the ammonium salt is selected from a mixture of one or more of ammonium chloride, ammonium sulfate, and ammonium nitrate.
  • step iii) the core-shell molecular sieve obtained in step ii) is dried and then calcined to remove the template agent, to obtain a core-shell molecular sieve with a reduced Na content (ie, a hydrogen core-shell molecular sieve).
  • a core-shell molecular sieve with a reduced Na content ie, a hydrogen core-shell molecular sieve.
  • Type molecular sieve
  • the carrier may contain various carriers conventionally used in catalytic cracking catalysts in addition to silica sol and modifying elements, and the present application does not specifically limit it.
  • the carrier may also include a natural clay/alumina carrier, a natural clay/alumina/silica carrier (a silica carrier other than the silica sol), and the alumina carrier may be, for example, alumina sol and/ Or pseudo-boehmite.
  • the amount of silica sol added is such that the content of silica sol in the obtained catalyst is 1-15% by weight on a dry basis.
  • the first slurry described in step iv) includes silica sol, modified element compound, and optionally one or more of clay, aluminum sol, and pseudo-boehmite.
  • the pseudo-boehmite is acidified with an acid, and then mixed with silica sol, aluminum sol, modified element compound, and clay to obtain the first slurry.
  • the modified element compound is first mixed with the silica sol to form a modified silica sol, and then introduced into the first slurry.
  • the modifying element compound is, for example, a rare earth salt.
  • the rare earth salt is first added to the silica sol to obtain the rare earth modified silica sol, and then mixed with other materials, such as core-shell molecular sieves, other carriers, and water for beating.
  • the core-shell molecular sieve is mixed with the modified silica sol to form a second slurry, and then the second slurry is mixed with other carriers, such as acidified pseudo-boehmite, alumina sol, clay, and optionally water A first slurry is formed.
  • the rare earth element includes lanthanum and/or cerium, wherein the amount of lanthanum and/or cerium is more than 50% by weight of the total amount of rare earths.
  • the rare earth salt may be rare earth chloride and/or rare earth nitrate.
  • the silica sol may be one or more of neutral silica sol, acid silica sol or alkaline silica sol.
  • the amount of rare earth salt is such that the content of rare earth oxide in the carrier is 1-15% by weight based on RE 2 O 3.
  • the solid content of the first slurry obtained in step iv) is generally 10-50% by weight, preferably 15-30% by weight.
  • the spray drying conditions in step iv) may be the conditions commonly used in the preparation process of the catalytic cracking catalyst.
  • the spray drying temperature is 100-350°C, preferably 200-300°C.
  • the catalyst obtained by spray drying can also be exchanged and washed, and can be exchanged and washed with an ammonium salt solution.
  • the exchange washing makes the Na 2 O content in the obtained catalyst less than 0.15% by weight.
  • the catalyst after exchange and washing can be dried.
  • the preparation method of the catalyst may further include a roasting step after step iv), and the roasting may be carried out before the exchange washing and/or after the exchange washing.
  • the calcination can use a conventional calcination method, for example, the calcination temperature is 400-650°C, and the calcination time is 2-10 hours. In one embodiment, the calcination is performed at 450-580°C for 2-6 hours.
  • the step iv) further includes: A) preparing a rare earth modified carrier; the rare earth may be in all the carriers or part of the carrier, for example, in silicon In one or more of sol, clay, pseudo-boehmite, or aluminum sol; for example, rare earth can be introduced to modify part of the carrier, such as clay, by an equal volume impregnation method.
  • rare earth salt to silica sol, aluminum sol or pseudo-boehmite slurry to obtain modified silica sol, modified aluminum sol or modified pseudo-boehmite, and then Is added to the first slurry; preferably, the rare earth salt is added to the silica sol; and B) the rare earth modified carrier, optionally the carrier not modified by the modifying element, and the core-shell molecular sieve, Water mixing, beating, spray drying.
  • step iv) further includes:
  • the preparation method of the catalyst further includes: v) calcining the catalyst obtained in step iv) at 450-580°C for 2-6 hours; and vi) performing ammonium exchange washing on the calcined catalyst to make the catalyst
  • the Na 2 O content is less than 0.15% by weight.
  • this application also provides a catalyst prepared according to the catalyst preparation method.
  • the catalyst of the first type of embodiment of the present application when used in the hydrogenation of VGO catalytic cracking, compared with the existing catalyst, it can produce more heavy oil, and has a higher ethylene yield and propylene yield.
  • C3 /C3 0 >8.
  • the second embodiment of the catalyst of the present application is a catalytic cracking catalyst for hydrogenating LCO to produce low-carbon olefins.
  • the catalyst contains 50-85% by weight of the carrier, 10-35% by weight, preferably 10-25% by weight on a dry basis.
  • Weight% of the core-shell molecular sieve according to the present application 5-15% by weight, preferably 8-12% by weight, of the molecular sieve with a pore opening diameter of 0.65-0.70 nanometers (also referred to as the second molecular sieve).
  • the carrier in the catalyst may be a carrier conventionally used in catalytic cracking catalysts.
  • the carrier may include clay, alumina carrier, silica carrier, and silica- One or more of alumina carrier and phosphor-aluminum glue; optionally, the carrier may include additives such as phosphorous oxides and alkaline earth metal oxides.
  • the carrier is clay and alumina carrier, or clay, alumina carrier and silica carrier.
  • the carrier includes a silica carrier.
  • the silica carrier is, for example, a solid silica gel carrier and/or a silica sol carrier, more preferably a silica sol carrier.
  • the content of the silica support in the catalyst is 0-15% by weight based on SiO 2 , for example, 1-15% by weight or 10-15% by weight or 5-15% by weight.
  • the catalyst includes 15-40% by weight of core-shell molecular sieve, 35-50% by weight of clay, and 10-30% by weight of acidified pseudo-thin Diaspore (pseudo-boehmite for short), 5-15% by weight alumina sol and 0-15% by weight, for example 5-15% by weight silica sol.
  • the catalyst of the second type of embodiment of the present application can be prepared by a method including the following steps: forming a first slurry including the core-shell molecular sieve according to the present application, a second molecular sieve, a carrier, and water, and spray drying, wherein the first slurry
  • the second molecular sieve is a molecular sieve with a pore opening diameter of 0.65-0.70 nanometers.
  • the core-shell molecular sieve when the core-shell molecular sieve is a sodium core-shell molecular sieve, the core-shell molecular sieve may be subjected to ammonium exchange first, and then be beaten with the second molecular sieve, the carrier and water.
  • the preparation method of the catalyst of the second embodiment includes the following steps:
  • step iii) Dry the core-shell molecular sieve obtained in step ii) and calcinate at 400-600°C for 2-10 hours to obtain a hydrogen core-shell molecular sieve;
  • step iv) The hydrogen core-shell molecular sieve obtained in step iii), the molecular sieve with a pore opening diameter of 0.65-0.70 nanometers, the carrier and water are beaten to obtain the first slurry, which is spray-dried and optionally calcined to obtain the catalyst.
  • the molecular sieve is contacted with the ammonium salt solution for exchange at 50-100°C, and then filtered.
  • the ammonium exchange process is performed once or more than twice; the ammonium salt is selected from one or more of ammonium chloride, ammonium sulfate, and ammonium nitrate.
  • the ammonium salt is selected from one or more of ammonium chloride, ammonium sulfate, and ammonium nitrate.
  • kind of mixture is possible.
  • the carrier may be a carrier commonly used in catalytic cracking catalysts.
  • the carrier includes one or more of clay, alumina carrier, silica carrier, phosphoalumina, and silica alumina carrier.
  • the weight ratio of the core-shell molecular sieve to the carrier is 15-50:50-85, for example, 25-45:55-75 on a dry basis.
  • the solid content of the slurry containing the core-shell molecular sieve and the carrier is generally 10-50% by weight, preferably 15-30% by weight.
  • the carrier includes clay and a carrier with a binding function.
  • the carrier with a binding function may be, for example, one or more of silica carrier, alumina carrier, and phosphor-alumina gel.
  • the silica carrier is, for example, silica sol
  • the alumina carrier is, for example, aluminum.
  • Sol and/or acidified pseudo-boehmite Further preferably, the carrier with binding function includes one or more of acidified pseudo-boehmite, alumina sol and silica sol.
  • the carrier with bonding function may include aluminum sol and/or acidified pseudo-boehmite; or the carrier with bonding function may include silica sol, and optionally aluminum sol and/or acidified pseudo-boehmite.
  • Bauxite the amount of silica sol added is such that the silica sol-derived silica content ( calculated as SiO 2 ) in the resulting catalyst is 1-15% by weight.
  • the core-shell molecular sieve the second molecular sieve: the clay:
  • the weight ratio of alumina sol: acidified pseudo-boehmite: silica sol is (15-40): (5-15): (35-50): (5-15): (10-30): (0-15) .
  • the second molecular sieve that is, the molecular sieve with a channel opening diameter of 0.65-0.70 nanometers, is selected from the group consisting of AET, AFR, AFS, AFI, BEA, BOG, CFI, Molecular sieves of CON, GME, IFR, ISV, LTL, MEI, MOR, OFF and SAO structures or their combination. It is preferably Beta, SAPO-5, SAPO-40, SSZ-13, CIT-1, ITQ-7, ZSM-18, mordenite and chabazite or a combination thereof.
  • the second molecular sieve is a ⁇ molecular sieve
  • the ⁇ molecular sieve is preferably an H ⁇ molecular sieve
  • its silicon-to-aluminum ratio SiO 2 /Al 2 O 3 molar ratio
  • the slurry including the core-shell molecular sieve, the second molecular sieve, the carrier, and water may further contain additives.
  • the additives can be added to part of the carrier, or added to the entire carrier, and can also be added to the first slurry formed by the core-shell molecular sieve, the second molecular sieve, and the slurry of the carrier and water.
  • the additives such as phosphorus oxide additives and metal oxide additives; the metal oxide additives, such as alkaline earth metal oxides or one or more of their precursors.
  • step iv) includes: oxidizing the core-shell molecular sieve, the second molecular sieve, clay, silica binder and/or alumina binder, and optionally inorganic oxidation
  • the substrate and water are mixed and slurried to form a slurry, and the solid content of the slurry formed by beating is generally 10-50% by weight, preferably 15-30% by weight; then spray drying, optionally roasting, to obtain the catalyst.
  • the spray drying conditions may be spray drying conditions commonly used in the preparation process of the catalytic cracking catalyst. Generally, the spray drying temperature can be 100-350°C, preferably 150-300°C, for example 200-300°C. When the carrier contains additives, the additives can be added to the slurry before drying, or introduced after drying, for example, by dipping.
  • the firing conditions firing temperature, for example, 550°C, firing time, for example, 6h.
  • an ion exchange step may also be included.
  • the exchange is such that the sodium oxide content in the obtained catalytic cracking catalyst does not exceed 0.15% by weight.
  • An ammonium salt solution can be used for the exchange.
  • it also includes a washing step to wash away the sodium ions exchanged from the catalyst, which can be washed with water, for example, with deionized water, distilled water or deionized water.
  • a roasting step may be further included, and the roasting may be performed before or after the ion exchange described above.
  • the roasting method can adopt the prior art roasting method, preferably, the roasting temperature is 400-600°C, and the roasting time is 2-6 hours.
  • this application also provides a catalyst prepared according to the catalyst preparation method.
  • the catalyst according to the second type of embodiment of the present application has excellent hydrogenation LCO cracking ability and higher yield of low-carbon olefins, and is used for the conversion of hydrogenated LCO, and can have a higher conversion rate and a higher yield of low-carbon olefins .
  • the third embodiment of the catalyst of the present application is a catalytic cracking catalyst, which contains 30-83% by weight, preferably 55-75% by weight of the carrier, on a dry basis weight basis and based on the weight of the composition. 2-20% by weight, preferably 8-15% by weight of the ZSM-5/ ⁇ core-shell molecular sieve according to the present application and 15-50% by weight, preferably 25-35% by weight of the Y-type molecular sieve.
  • the support may be one or more of clay, silica support and alumina support.
  • the carrier includes one or more of alumina sol, pseudo-boehmite, silica sol and clay.
  • the catalyst contains a silica sol carrier and other carriers, and the silica sol carrier content based on SiO 2 is 1-15% by weight, for example, 5-15% by weight.
  • the other carrier includes one or more of aluminum sol, pseudo-boehmite and clay.
  • the Y-type molecular sieve may contain or contain rare earths, and contain or contain phosphorus.
  • the rare earth content in the Y-type molecular sieve is 0-25% by weight based on RE 2 O 3
  • the phosphorus content can be 0-10% by weight based on P 2 O 5.
  • the Y-type molecular sieve for example, can be HY molecular sieve, REY molecular sieve, REHY molecular sieve, DASY molecular sieve, DASY molecular sieve containing rare earth, USY molecular sieve, USY molecular sieve containing rare earth, DASY molecular sieve containing phosphorus and rare earth, phosphorus and rare earth containing One or more of USY molecular sieve, PSRY molecular sieve, PSRY molecular sieve containing rare earth, HRY molecular sieve containing rare earth, and HRY molecular sieve.
  • the catalyst according to the third embodiment of the present application can be used for the conversion of heavy oil to produce low-carbon olefins, and can achieve higher conversion rate of heavy oil, higher yields of ethylene, propylene and butene, and higher liquefied gas Yield.
  • the catalyst of the third type of embodiment of the present application can be prepared by a method including the steps of forming a first slurry including the core-shell molecular sieve according to the present application, a Y-type molecular sieve, a carrier, and water, and spray drying.
  • the preparation method of the catalyst of the third type of embodiment includes the following steps:
  • step ii) Perform ammonium exchange on the sodium core-shell molecular sieve obtained in step i) so that the Na 2 O content in the core-shell molecular sieve is less than 0.15% by weight;
  • step iii) Dry the core-shell molecular sieve obtained in step ii) and calcinate at 400-600°C for 2-10 hours to obtain a hydrogen core-shell molecular sieve;
  • step iv) forming a first slurry comprising the hydrogen core-shell molecular sieve, Y molecular sieve, carrier and water obtained in step iii), and spray drying to obtain the catalyst.
  • the solid content of the first slurry formed in step iv) is generally 10-50% by weight, preferably 15-30% by weight.
  • the spray drying described in step iv) can adopt a conventional spray drying method, and the spray drying conditions are the drying conditions commonly used in the preparation process of the catalytic cracking catalyst.
  • the spray drying temperature is 100-350°C, preferably 200-300°C.
  • the spray drying in step iv) obtains microsphere particles, which can be used directly as a catalytic cracking catalyst, or can be further subjected to exchange washing and drying.
  • an ammonium salt solution can be used for exchange washing.
  • the exchange washing is such that the Na 2 O content in the obtained catalytic cracking catalyst is less than 0.15% by weight.
  • the catalyst after exchange and washing can be dried.
  • step iv) may further include a roasting step after spray drying, and the roasting may be performed before the exchange washing and/or after the exchange washing.
  • the calcination can adopt a conventional calcination method, for example, the calcination temperature is 400-600°C, the calcination time is 2-10 hours, such as 2-4 hours, preferably, the calcination is at 450-580°C for 2-6 hours.
  • the present application also provides a catalyst prepared according to the catalyst preparation method.
  • the fourth embodiment of the catalyst of the present application is an intermediate base crude oil catalytic cracking catalyst. On a dry basis, it contains 50-79 wt% of the carrier and 15-35 wt% of the ZSM-5/ ⁇ according to the present application.
  • Core-shell molecular sieve 5-10% by weight of Y-type molecular sieve, 1-5% by weight of molecular sieve with pore opening diameter of 0.65-0.70 nanometers.
  • the Y-type molecular sieve is a Y-type molecular sieve that does not contain rare earths or a Y-type molecular sieve with a low rare-earth content.
  • the content is less than 5% by weight based on RE 2 O 3
  • the silicon-to-aluminum ratio (SiO 2 /Al 2 O 3 molar ratio) of the Y-type molecular sieve is, for example, 4-18 or 4.5-15.
  • the Y-type molecular sieve for example, one or more of DASY molecular sieve, DASY molecular sieve containing rare earth, HRY molecular sieve, HRY molecular sieve containing rare earth, DOSY molecular sieve, USY molecular sieve, USY molecular sieve containing rare earth, HY molecular sieve, REHY molecular sieve , Preferably one or more of HY molecular sieve, DASY molecular sieve and USY molecular sieve.
  • the molecular sieve with a pore opening diameter of 0.65-0.70 nanometers can be, for example, AET, AFR, AFS, AFI, BEA, BOG, CFI, CON, GME, IFR, ISV, One or more of molecular sieves with LTL, MEI, MOR, OFF and SAO structures; preferably Beta, SAPO-5, SAPO-40, SSZ-13, CIT-1, ITQ-7, ZSM-18, mordenite And chabazite or a combination thereof, more preferably ⁇ molecular sieve, for example, it may be hydrogen type ⁇ molecular sieve.
  • the carrier may be a carrier conventionally used in catalytic cracking catalysts, for example, an alumina sol carrier, a zirconium sol carrier, a pseudo-boehmite carrier, a silica sol, and a clay carrier.
  • a carrier conventionally used in catalytic cracking catalysts for example, an alumina sol carrier, a zirconium sol carrier, a pseudo-boehmite carrier, a silica sol, and a clay carrier.
  • a carrier conventionally used in catalytic cracking catalysts for example, an alumina sol carrier, a zirconium sol carrier, a pseudo-boehmite carrier, a silica sol, and a clay carrier.
  • the catalyst preferably, on a dry basis weight and based on the weight of the catalyst, contains 50-79% by weight, preferably 55-75% by weight of the carrier; 15 -35% by weight, preferably 20-30% by weight of core-shell molecular sieve; 5-10% by weight of Y-type molecular sieve and 1-5% by weight of molecular sieve with pore opening diameter of 0.65-0.70 nanometers.
  • the catalyst according to the fourth type of embodiment of the present application has a richer pore structure, a more excellent intermediate base crude oil cracking ability and a higher yield of low-carbon olefins.
  • the catalyst of the fourth type of embodiment of the present application can be prepared by a method including the following steps: forming a core-shell molecular sieve according to the present application, a Y-type molecular sieve, a molecular sieve with a pore opening diameter of 0.65-0.70 nanometers, a carrier, and water. A slurry, and spray drying.
  • the preparation method of the catalyst of the fourth embodiment includes the following steps:
  • step ii) Perform ammonium exchange on the sodium core-shell molecular sieve obtained in step i) so that the Na 2 O content in the core-shell molecular sieve is less than 0.15% by weight;
  • step iii) Dry the core-shell molecular sieve obtained in step ii) and calcinate at 350-600°C for 2-6 hours to obtain a hydrogen core-shell molecular sieve;
  • step iv) forming a first slurry comprising the hydrogen core-shell molecular sieve obtained in step iii), a Y molecular sieve, a molecular sieve with a pore opening diameter of 0.65-0.70 nanometers, a carrier, and water, and spray drying to obtain the catalyst.
  • the carrier mentioned in step iv) may be one or more of clay, alumina carrier, and silica carrier.
  • the alumina carrier is, for example, one or more of pseudo-boehmite and aluminum sol, wherein the pseudo-boehmite is preferably acidified and then mixed with other components.
  • the silica carrier is one or more of neutral silica sol, acid silica sol or alkaline silica sol; preferably, the silica sol content in the catalyst is 1-15 weight based on SiO 2 %.
  • the solid content of the first slurry formed in step iv) is generally 10-50% by weight, preferably 15-30% by weight.
  • the spray drying conditions in step iv) may be drying conditions commonly used in the preparation process of the catalytic cracking catalyst.
  • the spray drying temperature is 100-350°C, preferably 200-300°C.
  • the catalyst obtained by spray drying in step iv) may also be exchange-washed, for example, it may be exchange-washed with an ammonium salt solution.
  • the exchange washing makes the Na 2 O content in the obtained catalytic cracking catalyst less than 0.15% by weight. The catalyst after exchange and washing can be dried.
  • the preparation method of the catalyst may further include a calcination step after step iv), and the calcination may be performed before the above-mentioned exchange washing and/or after the exchange washing.
  • the calcination can adopt a conventional calcination method, for example, the calcination temperature is 350-650°C, the calcination time is 1-4 hours, preferably, the calcination is at 400-600°C for 2-6 hours.
  • the spray drying in step iv) obtains catalyst microspheres; the catalyst microspheres can be directly used as a catalytic cracking catalyst.
  • the preparation method of the catalyst may further include:
  • step iv) calcining the catalyst microspheres obtained in step iv) at 400-600°C for 2-6 hours;
  • step v) The catalyst calcined in step v) is subjected to ammonium exchange washing, so that the Na 2 O content in the catalyst is less than 0.15% by weight.
  • this application also provides a catalyst prepared according to the catalyst preparation method.
  • the heavy oil cracking ability is stronger, the yield of low-carbon olefins is higher, and the yield of liquefied gas is higher.
  • the present application provides a method for catalytic conversion of hydrocarbon oil, including the step of contacting and reacting a hydrocarbon oil feedstock with the catalyst according to the present application.
  • the method is used for the catalytic cracking of hydrogenated VGO, and includes the step of contacting and reacting the hydrogenated VGO with the catalyst according to the first embodiment of the present application.
  • reaction conditions of the method for hydrogenating VGO catalytic cracking include: a reaction temperature of 500-550°C, preferably 510-540°C, a weight hourly space velocity of 5-30 hours -1 , preferably 8-20 Hour -1 , the ratio of agent to oil is 1-15, preferably 2-12.
  • the method for hydrogenated VGO catalytic cracking can have a higher fuel oil yield than the existing hydrogenated VGO conversion method, and at the same time can produce more low-carbon olefins, with higher ethylene and Propylene yield.
  • the performance of the obtained heavy oil can meet the requirements of low-sulfur marine fuel standards, and the obtained heavy oil can be used as low-sulfur heavy marine fuel or a blending component of marine fuel.
  • C3 (propylene)/C3 0 (propane)>8.
  • the method is used for the catalytic cracking of hydrogenated LCO, including the step of contacting and reacting the hydrogenated LCO with the catalyst according to the second embodiment of the present application.
  • the hydrogenation method used for the catalytic cracking LCO comprising: a reaction temperature of 550-620 deg.] C, preferably 560-600 deg.] C; weight hourly space velocity 5-30h -1, preferably 8-20h - 1 ;
  • the ratio of agent to oil is 1-15, preferably 2-12.
  • the method is used for the catalytic cracking of heavy oil, including the step of contacting the heavy oil feedstock with the catalyst according to the third embodiment of the present application under catalytic cracking conditions.
  • the catalytic cracking conditions include: a reaction temperature of 450-600°C, preferably 500-550°C; a weight hourly space velocity of 5-30 hours-1, preferably 8-20 hours-1; a catalyst-oil ratio of 1 15, preferably 2-12.
  • the method is used for the catalytic cracking of intermediate base crude oil to produce low-carbon olefins, including the step of contacting and reacting the intermediate base crude oil with the catalyst according to the fourth embodiment of the present application.
  • the reaction conditions of the method for producing low-carbon olefins by catalytic cracking of intermediate base crude oil may be conventional reaction conditions of heavy oil catalytic cracking.
  • the reaction conditions include: a reaction temperature of 550-620°C, for example, 560-600°C,
  • the weight hourly space velocity is 0.5-30 h -1 , preferably 1-20, and the agent-to-oil ratio is 1-15, preferably 2-12.
  • this application provides the following technical solutions:
  • a ZSM-5/ ⁇ core-shell molecular sieve characterized in that:
  • the ZSM-5/ ⁇ core-shell molecular sieve according to item A1 wherein the total specific surface area of the ZSM-5/ ⁇ core-shell molecular sieve is greater than 420 m 2 /g, such as 450-620 or 490-580 m 2 /g, the ratio of the mesopore surface area to the total surface area is preferably 10-40%, for example 12-35%.
  • the ZSM-5/ ⁇ core-shell molecular sieve according to item A1, wherein the average crystal grain size of the shell molecular sieve of the ZSM-5/ ⁇ core-shell molecular sieve is 10-500 nm, for example, 50-500 nm.
  • the ZSM-5/ ⁇ core-shell molecular sieve according to item A1, wherein the average crystal grain size of the core-phase molecular sieve of the ZSM-5/ ⁇ core-shell molecular sieve is 0.05-15 ⁇ m, preferably 0.1-10 ⁇ m .
  • the pore volume of pores with a diameter of 20-80 nm accounts for 5-40% of the total pore volume.
  • a method for synthesizing ZSM-5/ ⁇ core-shell molecular sieve including the following steps:
  • step 1) The method according to item A15, wherein the contact in step 1) is carried out by adding ZSM-5 molecular sieve to a surfactant solution with a concentration of 0.05-50% by weight and contacting for at least 0.5h , Filtered and dried to obtain ZSM-5 molecular sieve material I.
  • A17 The method according to item A15 or A16, wherein, in the contact in step 1), the contact time is 1-36 h, and the contact temperature is 20-70°C.
  • the surfactant solution further contains a salt, and the concentration of the salt in the surfactant solution is 0.05-10.0% by weight; the salt is, for example, selected from Sodium chloride, potassium chloride, ammonium chloride, ammonium nitrate, or a combination thereof.
  • A20 The method according to item A15, wherein the surfactant is selected from polymethylmethacrylate, polydiallyldimethylammonium chloride, dipicolinic acid, ammonia, ethylamine, n-butyl Amine, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetraethylammonium bromide, tetrapropylammonium bromide, tetrabutylammonium hydroxide, or a combination thereof.
  • the surfactant is selected from polymethylmethacrylate, polydiallyldimethylammonium chloride, dipicolinic acid, ammonia, ethylamine, n-butyl Amine, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetraethylammonium bromide, tetrapropylammonium bromid
  • step 1 The method according to item A15, wherein the ZSM-5 molecular sieve in step 1) is a sodium-type, hydrogen-type or ion-exchanged ZSM-5 molecular sieve.
  • step 1 The method according to item A15 or A16, wherein the molar ratio of silicon to aluminum of the ZSM-5 molecular sieve in step 1) is 10- ⁇ in terms of SiO 2 /Al 2 O 3 ; for example, in step 1) the ZSM- 5 The molar ratio of silicon to aluminum of the molecular sieve is 30-200 in terms of SiO 2 /Al 2 O 3.
  • step 1) the average crystal grain size of the ZSM-5 molecular sieve is 0.05-20 ⁇ m; for example, in step 1) the average crystal grain size of the ZSM-5 molecular sieve is 0.1-10 ⁇ m;
  • the average particle size of the ZSM-5 molecular sieve is preferably 0.1-30 ⁇ m.
  • the method according to item A15, wherein the contacting in step 2) comprises: adding ZSM-5 molecular sieve material I to the slurry containing ⁇ molecular sieve, stirring at 20-60°C for at least 0.5 hours, and then filtering , Dry to obtain ZSM-5 molecular sieve material II.
  • step 2 The method according to item A15 or A25, wherein in step 2), the weight ratio of the ⁇ molecular sieve-containing slurry to the ZSM-5 molecular sieve material I on a dry basis is 10-50:1.
  • step 2 the average crystal grain size of the ⁇ molecular sieve is 0.01-0.5 ⁇ m, for example, 0.05-0.5 ⁇ m; the average of the ⁇ molecular sieve
  • the particle size is preferably 0.01-0.5 ⁇ m.
  • the silicon source is selected from the group consisting of ethyl orthosilicate, water glass, coarse-pored silica gel, silica sol, white carbon black, activated clay, or their Combination
  • the aluminum source is selected from aluminum sulfate, aluminum isopropoxide, aluminum nitrate, aluminum sol, sodium metaaluminate, ⁇ -alumina, or combinations thereof
  • the template is selected from tetraethylammonium fluoride, four Ethylammonium hydroxide, tetraethylammonium bromide, tetraethylammonium chloride, polyvinyl alcohol, triethanolamine, or sodium carboxymethylcellulose, or a combination thereof.
  • step 3 The method according to item A15, wherein in step 3), the silicon source, aluminum source, template agent, and deionized water are mixed to form a synthetic solution, which is then crystallized at 75-250°C for 10-80h , To obtain the pre-crystallized synthetic solution III.
  • A32 The method according to item A31, wherein the crystallization in step 3): the crystallization temperature is 80-180°C, and the crystallization time is 18 hours-50 hours.
  • step 4 the ZSM-5 molecular sieve material II is mixed with the pre-crystallized synthetic solution III, and the pre-crystallized synthetic solution III is mixed with ZSM-5 on a dry basis.
  • the weight ratio of the molecular sieve material II is 2-10:1, for example 4-10:1.
  • A36 The method according to item A15, wherein the crystallization in step 4): the crystallization temperature is 100-250°C, and the crystallization time is 30-350h, for example, the crystallization in step 4): crystallization The temperature is 100-200°C, and the crystallization time is 50-120h.
  • the ZSM-5/ ⁇ core-shell molecular sieve obtained by the method for synthesizing the ZSM-5/ ⁇ core-shell molecular sieve according to any one of items A12-A36.
  • the catalyst according to item B1 wherein the content of the carrier on a dry basis in the catalyst is 50-90% by weight, for example 60-85% by weight, and the content of the core-shell molecular sieve on a dry basis is 10-50% by weight, for example 15-40% by weight, and the silica sol content on a dry basis is 1-15% by weight, for example 5-15% by weight.
  • the catalyst according to item B3 wherein, on a dry basis, the content of silica sol in the catalyst is 1-15% by weight, the content of pseudo-boehmite is 5-25% by weight, and the content of aluminum sol is The content is 3-20% by weight, and the clay content is 25-50% by weight; preferably, based on the dry basis weight of the carrier, the content of rare earth oxides in the carrier is 0.1-15 weight based on RE 2 O 3 %.
  • the catalyst according to item B1 wherein the total specific surface area of the core-shell molecular sieve is greater than 420 m 2 /g, for example, 4490-580 m 2 /g, and the mesopore surface area of the core-shell molecular sieve accounts for the total surface area
  • the ratio is preferably 10-40%.
  • a method for preparing a catalytic cracking catalyst comprising: forming a first slurry comprising silica sol, a compound of modified elements, and a core-shell molecular sieve, and spray drying; wherein the modified element is a rare earth element.
  • Sodium core-shell molecular sieve ammonium exchange makes the content of Na 2 O in the core-shell molecular sieve less than 0.15% by weight;
  • step 1) is carried out by adding ZSM-5 molecular sieve to a surfactant solution with a concentration of 0.05-50% by weight and contacting for at least 0.5h , Filter and dry to obtain ZSM-5 molecular sieve material I, the contact time is 1-36h, and the contact temperature is 20-70°C.
  • the surfactant is selected from polymethylmethacrylate, polydiallyldimethylammonium chloride, dipicolinic acid, ammonia, ethylamine, n-butyl Amine, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetraethylammonium bromide, tetrapropylammonium bromide, tetrabutylammonium hydroxide, or a combination thereof.
  • step 1) the molar ratio of silicon to aluminum of the ZSM-5 molecular sieve is 10- ⁇ in terms of SiO 2 /Al 2 O 3 , and the average crystal grain size of the ZSM-5 molecular sieve is 0.05 -20 ⁇ m.
  • the method according to item B16, wherein the contact in step 2) comprises: adding ZSM-5 molecular sieve material I to the slurry containing ⁇ molecular sieve, stirring at 20-60°C for at least 0.5 hours, and then filtering , Dry to obtain ZSM-5 molecular sieve material II, the concentration of ⁇ molecular sieve in the ⁇ molecular sieve-containing slurry is 0.1-10% by weight, for example, 0.3-8% by weight, the slurry containing ⁇ molecular sieve and ZSM- 5
  • the weight ratio of molecular sieve material I is 10-50:1.
  • the silicon source is selected from the group consisting of tetraethyl orthosilicate, water glass, white carbon black, coarse-pored silica gel, silica sol, activated clay, or a combination thereof;
  • the aluminum source is selected from aluminum sulfate, aluminum isopropoxide, sodium metaaluminate, aluminum nitrate, aluminum sol, or ⁇ -alumina or a combination thereof;
  • the template is tetraethylammonium fluoride, tetraethyl chloride One or more of ammonium chloride, tetraethylammonium bromide, polyvinyl alcohol, tetraethylammonium hydroxide, triethanolamine, or sodium carboxymethyl cellulose.
  • step 3 The method according to item B16, wherein in step 3), the silicon source, aluminum source, template agent, and deionized water are mixed to form a synthetic solution, which is then crystallized at 75-250°C for 10-80h , To obtain the pre-crystallized synthetic solution III.
  • ammonium salt is selected from a mixture of one or more of ammonium chloride, ammonium sulfate, and ammonium nitrate.
  • the first slurry includes silica sol, modified element compound and core-shell molecular sieve, and optionally includes one of clay, aluminum sol, and pseudo-boehmite One or more; preferably, the pseudo-boehmite is added after acidification with acid.
  • the modified element compound is a rare earth salt
  • the rare earth salt is chlorine Rare earth or rare earth nitrate; preferably, the rare earth salt is first added to the silica sol to obtain the rare earth modified silica sol.
  • the rare earth elements include lanthanum and/or cerium, wherein the amount of lanthanum and/or cerium is more than 50% by weight of the total amount of rare earths.
  • a hydrogenated VGO catalytic cracking method comprising the step of contacting and reacting the hydrogenated VGO with any one of items B1-B14 or the catalytic cracking catalyst described in item B33.
  • the core-shell type molecular sieve core phase is ZSM-5 molecular sieve, the shell layer is ⁇ molecular sieve;
  • the second molecular sieve is a molecular sieve with a pore opening diameter of 0.65-0.70 nanometers.
  • the catalytic cracking catalyst according to item C1 wherein the total specific surface area of the core-shell molecular sieve is greater than 420 m 2 /g, such as 450-620 or 490-580 m 2 /g, and the mesopore surface area accounts for the proportion of the total surface area.
  • the ratio is preferably 10-40%, for example 12-35%.
  • the catalytic cracking catalyst according to item C1 wherein the molar ratio of silicon to aluminum of the shell molecular sieve of the shell-core-shell molecular sieve is 10-500, such as 25-200, in terms of SiO 2 /Al 2 O 3.
  • the catalytic cracking catalyst according to item C1 wherein the thickness of the shell layer of the core-shell molecular sieve is 10-2000 nm, for example, 50-2000 nm.
  • the catalytic cracking catalyst according to item C1 wherein the support includes one or more of clay, silica support, alumina support, and phosphoalumina gel, and the support optionally contains additives. , Such as phosphorus oxides, alkaline earth metal oxides.
  • a method for preparing a catalytic cracking catalyst including the following steps:
  • a slurry comprising a core-shell molecular sieve, a second molecular sieve, a carrier, and water is formed, and spray dried; the second molecular sieve is a molecular sieve with a pore opening diameter of 0.65-0.70 nanometers.
  • step 1) is carried out by adding ZSM-5 molecular sieve to a surfactant solution with a concentration of 0.05-50% by weight to contact at least After 0.5h, filter and dry to obtain ZSM-5 molecular sieve material I, the contact time is 1-36h, and the contact temperature is 20-70°C.
  • the surfactant is selected from polymethylmethacrylate, polydiallyldimethylammonium chloride, dipicolinic acid, ammonia, ethylamine, n-butyl Amine, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetraethylammonium bromide, tetrapropylammonium bromide, tetrabutylammonium hydroxide, or a combination thereof.
  • step 1) the molar ratio of silicon to aluminum of the ZSM-5 molecular sieve is 10- ⁇ in terms of SiO 2 /Al 2 O 3 , and the average crystallinity of the ZSM-5 molecular sieve is The particle size is 0.05-20 ⁇ m.
  • step 2 comprises: adding ZSM-5 molecular sieve material I to a slurry containing ⁇ molecular sieve, and stirring at 20-60°C for at least 0.5 hours, Then it is filtered and dried to obtain ZSM-5 molecular sieve material II.
  • concentration of ⁇ molecular sieve in the ⁇ molecular sieve-containing slurry is 0.1-10% by weight, for example, 0.3-8% by weight.
  • the weight ratio of ZSM-5 molecular sieve material I is 10-50:1.
  • the silicon source is selected from the group consisting of ethyl orthosilicate, water glass, coarse-pored silica gel, silica sol, white carbon black, activated clay or their Combination
  • the aluminum source is selected from aluminum sulfate, aluminum isopropoxide, aluminum nitrate, aluminum sol, sodium metaaluminate, ⁇ -alumina, or combinations thereof
  • the template is selected from tetraethylammonium fluoride, four Ethylammonium hydroxide, tetraethylammonium bromide, tetraethylammonium chloride, polyvinyl alcohol, triethanolamine, or sodium carboxymethylcellulose, or a combination thereof.
  • step 3 The method according to item C16, characterized in that in step 3), the silicon source, aluminum source, template agent, and deionized water are mixed to form a synthetic solution, which is then crystallized at 75-250°C. -80h to obtain the pre-crystallized synthetic solution III.
  • step 3 The method according to item C16, characterized in that the crystallization in step 3): the crystallization temperature is 80-180°C, and the crystallization time is 18 hours-50 hours.
  • the crystallization in step 4) the crystallization temperature is 100-250°C, and the crystallization time is 30-350h, for example, the crystallization in step 4): The crystallization temperature is 100-200°C, and the crystallization time is 50-120h.
  • the weight ratio of) makes the core-shell molecular sieve and the ammonium salt solution contact at 50-100°C for exchange and filtration, and the ammonium exchange process is performed once or more than twice;
  • the ammonium salt is selected from ammonium chloride, ammonium sulfate, nitric acid One or a mixture of several kinds of ammonium;
  • the roasting in step (S2) the roasting temperature is 400-600°C, and the roasting time is 2-10h.
  • the carrier is, for example, a clay and alumina carrier, or a clay, a silica carrier and an optional alumina carrier; preferably, the carrier includes an oxide carrier
  • the silicon carrier the content of the silicon oxide carrier based on SiO 2 is 1-15% by weight, and the silicon oxide carrier is one or more of neutral silica sol, acidic silica sol or alkaline silica sol.
  • a hydrogenated LCO catalytic cracking method comprising the step of contacting and reacting the hydrogenated LCO with any one of items C1-C14 or the catalytic cracking catalyst described in item C31.
  • An application method of core-shell molecular sieve including:
  • (1) Decrease the sodium oxide content of the core-shell molecular sieve, optionally calcining, to obtain a modified core-shell molecular sieve;
  • the core-shell molecular sieve has a core phase of ZSM-5 molecular sieve and a shell layer of ⁇ molecular sieve;
  • a method for preparing a catalytic cracking catalyst including:
  • step 1) is carried out by adding ZSM-5 molecular sieve to a surfactant solution with a concentration of 0.05-50% by weight and contacting for at least 0.5h , Filter and dry to obtain ZSM-5 molecular sieve material I, the contact time is 1-36h, and the contact temperature is 20-70°C.
  • step 1) the molar ratio of silicon to aluminum of the ZSM-5 molecular sieve is 10- ⁇ in terms of SiO 2 /Al 2 O 3 , and the average crystal grain size of the ZSM-5 molecular sieve is 0.05 -20 ⁇ m.
  • step 2 comprises: adding ZSM-5 molecular sieve material I to the slurry containing ⁇ molecular sieve, stirring at 20-60°C for at least 0.5 hours, and then filtering , Dry to obtain ZSM-5 molecular sieve material II, the weight ratio of the ⁇ -molecular sieve-containing slurry to the ZSM-5 molecular sieve material I on a dry basis is 10-50:1, and the ⁇ -molecular sieve-containing slurry
  • concentration of ⁇ molecular sieve is 0.1-10% by weight, for example 0.3-8% by weight.
  • step 3 the surfactant in step 1) is selected from ammonia, polymethylmethacrylate, n-butylamine, polydiallyldimethylammonium chloride, dipyridine Carboxylic acid, ethylamine, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetraethylammonium bromide, tetrapropylammonium bromide, tetrabutylammonium hydroxide or a combination thereof; in step 3), the The silicon source is selected from one or more of water glass, silica sol, coarse-pored silica gel, ethyl orthosilicate, white carbon black or activated clay; the aluminum source is selected from aluminum sulfate, aluminum nitrate, aluminum isopropoxide , Aluminum sol, sodium metaaluminate, ⁇ -alumina or a combination thereof; the template is tetraethy
  • step 3 the silicon source, aluminum source, template agent, and deionized water are mixed to form a synthetic solution, which is then crystallized at 75-250°C for 10-80h , To obtain the pre-crystallized synthetic solution III.
  • the crystallization temperature is 100-250°C, and the crystallization time is 30-350h; preferably, the crystallization in step 4): The crystallization temperature is 100-200°C, and the crystallization time is 50-120h.
  • the catalyst according to item D29 wherein the catalyst contains a silica sol carrier and other carriers, and the silica sol carrier content is 1-15% by weight, such as 5-15% by weight based on SiO 2, and the other carrier Including one or more of alumina sol, pseudo-boehmite and clay.
  • the application according to item D32 which includes contacting and reacting heavy oil with the catalytic cracking at a reaction temperature of 500-550°C; a weight hourly space velocity of 5-30 hours -1 , and a catalyst-oil ratio of 1-15.
  • the heavy oil is one or more of atmospheric residual oil, atmospheric gas oil, vacuum residual oil, vacuum gas oil, coking wax oil, and light and heavy deasphalted oil.
  • a catalytic cracking catalyst for the conversion of intermediate base crude oil which contains 50-79% by weight of carrier, 15-35% by weight of core-shell molecular sieve, and 5-10% by weight of Y molecular sieve on a dry basis.
  • the core-shell molecular sieve is ZSM-5 molecular sieve as the core phase
  • the shell layer is ⁇ molecular sieve
  • the core-shell molecular sieve is X-ray diffraction spectrum
  • a method for preparing a catalytic cracking catalyst comprising: forming a slurry of a first molecular sieve, a second molecular sieve, a third molecular sieve, and a carrier, and spray drying; wherein the first molecular sieve is a core-shell molecular sieve, and the second molecular sieve It is a molecular sieve with a pore opening diameter of 0.65-0.70 nanometers, and the third molecular sieve is a Y-type molecular sieve.
  • Sodium core-shell molecular sieve ammonium exchange makes the content of Na 2 O in the core-shell molecular sieve less than 0.15% by weight;
  • step 1) The method according to item E16, wherein the contact in step 1) is carried out by adding ZSM-5 molecular sieve to a surfactant solution with a concentration of 0.05-50% by weight and contacting for at least 0.5h , Filter and dry to obtain ZSM-5 molecular sieve material I, the contact time is 1-36h, and the contact temperature is 20-70°C.
  • the surfactant is selected from polymethylmethacrylate, polydiallyldimethylammonium chloride, dipicolinic acid, ammonia, ethylamine, n-butyl Amine, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetraethylammonium bromide, tetrapropylammonium bromide, tetrabutylammonium hydroxide, or a combination thereof.
  • step 1) the molar ratio of silicon to aluminum of the ZSM-5 molecular sieve is 10- ⁇ in terms of SiO 2 /Al 2 O 3 , and the average crystal grain size of the ZSM-5 molecular sieve is 0.05 -20 ⁇ m.
  • the method according to item E16, wherein the contacting in step 2) includes: adding ZSM-5 molecular sieve material I to the slurry containing ⁇ molecular sieve, stirring at 20-60°C for at least 0.5 hours, and then filtering , Dry to obtain ZSM-5 molecular sieve material II, the concentration of ⁇ molecular sieve in the ⁇ molecular sieve-containing slurry is 0.1-10% by weight, for example, 0.3-8% by weight, the slurry containing ⁇ molecular sieve and ZSM- 5
  • the weight ratio of molecular sieve material I is 10-50:1.
  • the silicon source is selected from the group consisting of tetraethyl orthosilicate, water glass, silica sol, coarse-pored silica gel, white carbon black, activated clay, or a combination thereof;
  • the aluminum source is selected from aluminum sulfate, aluminum nitrate, aluminum isopropoxide, aluminum sol, sodium metaaluminate, ⁇ -alumina, or a combination thereof;
  • the template is tetraethylammonium fluoride, tetraethyl bromide One or more of ammonium chloride, tetraethylammonium chloride, tetraethylammonium hydroxide, polyvinyl alcohol, triethanolamine, or sodium carboxymethyl cellulose.
  • step 3 The method according to item E16, wherein in step 3), the silicon source, aluminum source, template agent, and deionized water are mixed to form a synthetic solution, which is then crystallized at 75-250°C for 10-80h , To obtain the pre-crystallized synthetic solution III.
  • the process can be carried out one or more times; the ammonium salt is selected from one or more mixtures of ammonium chloride, ammonium sulfate, and ammonium nitrate.
  • step (6) The method according to item E16, wherein the calcination in step (6) has a calcination temperature of 350-600°C and a calcination time of 2-6 hours to remove the template agent.
  • silica carrier is one or more of neutral silica sol, acid silica sol or alkaline silica sol; preferably, the silica sol content in the catalyst It is 1-15% by weight based on SiO 2.
  • a method for catalytic cracking of heavy oil comprising the step of contacting and reacting heavy oil with any one of items E1-E14 or the catalyst described in item E32.
  • An intermediate base crude oil catalytic cracking method comprising the step of contacting and reacting the intermediate base crude oil with any one of items E1-E14 or the catalyst described in item E33, wherein the reaction temperature is 550-620°C.
  • instrument and test conditions used for XRD analysis instrument: Empyrean; test conditions: tube voltage 40kV, tube current 40mA, Cu target K ⁇ radiation, 2 ⁇ scan range 5°-35°, scan rate 2( °)/min.
  • X-ray diffraction analysis peaks to calculate the mass ratio of the core phase to the shell layer, the JADE software is used to perform the fitting calculation with the fitting function pseudo-voigt.
  • the crystal grain size is the size of the widest part of the crystal grain, which is obtained by measuring the diameter of the largest circumscribed circle of the projection of the crystal grain.
  • the particle size is the size at the widest point of the particle, which is obtained by measuring the diameter of the largest circumscribed circle of the particle's projection.
  • the thickness of the shell layer is measured by the TEM method.
  • the shell layer thickness of a core-shell molecular sieve particle is measured randomly, and 10 particles are measured, and the average value is taken.
  • the coverage of the molecular sieve was measured by the SEM method. The ratio of the outer surface area of a core-phase particle with a shell to the outer surface area of the core-phase particle was calculated. As the coverage of the particle, 10 particles were randomly measured and the average value was taken.
  • the mesopore surface area (mesopore specific surface area), specific surface area, pore volume (total pore volume) and pore size distribution were measured by the low-temperature nitrogen adsorption volumetric method, using the American Micromeritics company ASAP2420 adsorber, and the samples were vacuum desorbed at 100°C and 300°C.
  • the N2 adsorption and desorption test was carried out at 77.4K temperature for 0.5h and 6h. The adsorption and desorption capacity of the sample for nitrogen under different specific pressure conditions were tested, and the N 2 adsorption-desorption isotherm was obtained.
  • the silicon-to-aluminum ratio of the raw material ZSM-5 molecular sieve was measured by XRF fluorescence measurement, and the silicon-to-aluminum ratio of the shell molecular sieve was measured by the TEM-EDS method.
  • the XRD analysis of the pre-crystallized synthesis solution III is as follows: the pre-crystallized synthesis solution III is filtered first, and then washed with deionized water 8 times the weight of the solid, dried at 120°C for 4 hours, roasted at 550°C for 4 hours, and cooled. , Carry out XRD measurement (the instrument and analysis method used for XRD measurement are as described above).
  • the hydrogen type ZSM-5 molecular sieve will be used as the nuclear phase (the silicon-to-aluminum ratio is 30, the average grain size is 1.2 ⁇ m, the average particle size of ZSM-5 molecular sieve is 15 ⁇ m, and the crystallinity is 93.0% )
  • 5.0g was added to 50.0g methyl methacrylate and sodium chloride aqueous solution (wherein the methyl methacrylate mass percentage concentration is 0.2%, the sodium chloride mass concentration is 5.0%), stirred for 1h, filtered, and heated at 50°C Dry under air atmosphere to obtain ZSM-5 molecular sieve material I;
  • ⁇ molecular sieve suspension a suspension of hydrogen type ⁇ molecular sieve and water.
  • the weight percentage concentration of ⁇ molecular sieve in the ⁇ molecular sieve suspension is 0.3% by weight, of which ⁇ molecular sieve
  • the average grain size is 0.2 microns
  • the silicon-to-aluminum ratio is 30, the crystallinity is 89%
  • ⁇ molecular sieve particles are single crystal particles
  • the mass ratio of ZSM-5 molecular sieve material I to ⁇ molecular sieve suspension is 1:10, Stir for 1 hour at a temperature of 50°C, filter, and dry the filter cake in an air atmosphere at 90°C to obtain ZSM-5 molecular sieve material II;
  • Figure 1 shows the SEM image of the ZSM-5/ ⁇ core-shell molecular sieve prepared in Example I-1. As shown in the figure, the shell ⁇ molecular sieve of the core-shell molecular sieve has good coverage; at high magnifications (see the right half of Figure 1), the core-phase molecular sieve structure composed of polycrystalline particles can be seen.
  • FIG. 2A shows the XRD diffraction spectrum of the ZSM-5/ ⁇ core-shell molecular sieve prepared in Example I-1
  • Figure 2B shows a partial enlarged view of the XRD diffraction spectrum, where the 2 ⁇ angle is 22.4
  • the diffraction peaks at ° and 23.1 ° are the characteristic peaks of the shell and core phases, respectively.
  • Figure 4 shows the TEM image of the ZSM-5/ ⁇ core-shell molecular sieve prepared in Example I-1. Through TEM, it is observed that the shell ⁇ molecular sieve grows depending on the core phase and finally becomes the core-shell molecular sieve.
  • Figure 5 shows the pore size distribution diagram of the ZSM-5/ ⁇ core-shell molecular sieve prepared in Example I-1.
  • the pore size distribution curve shown proves that the core-shell molecular sieve is a multi-stage microporous-mesoporous-macroporous molecular sieve. ⁇ Hole structure.
  • the molecular sieve was synthesized according to the method of Example I-1. The difference is that in step (3), the crystallization temperature is 30°C, the crystallization time is 3 hours, and the sample of the crystalline product is filtered, washed, dried, and calcined.
  • Example I-1 According to the ratio of Example I-1, the ZSM-5 and ⁇ molecular sieve used in steps (1) and (2) of Example I-1 were mechanically mixed to obtain a molecular sieve mixture.
  • the molecular sieve was synthesized according to the method of Example I-1, except that step (2) was not used, and the product ZSM-5 molecular sieve material I of step (1) was directly used in step (4) instead of ZSM-5 molecular sieve material II.
  • the weight percentage concentration of the ⁇ molecular sieve in the ⁇ molecular sieve suspension is: 5.0% by weight, the average crystal grain size of the ⁇ molecular sieve is 50 nm, and the silicon-aluminum ratio is 30.0, the crystallinity is 95.0%
  • the mass ratio of ZSM-5 molecular sieve material I and ⁇ molecular sieve suspension is 1:20, stir at 50°C for 10 hours, filter, and then filter cake in 120°C air atmosphere Dry to obtain ZSM-5 molecular sieve material II;
  • the molecular sieve was synthesized according to the method of Example I-1, except that the ZSM-5 molecular sieve obtained in step (1) of Comparative Example I-1 was used as the nuclear phase molecular sieve.
  • the ZSM-5/ ⁇ core-shell molecular sieves prepared in the above Examples I-1 to I-5 and the molecular sieve samples of each comparative example were subjected to ammonium exchange, so that the sodium oxide content was less than 0.1% by weight, and a hydrogen molecular sieve was obtained.
  • the hydrogen molecular sieves obtained above were respectively aged at 800°C and 100% water vapor for 4 hours.
  • the aging samples were evaluated on the fixed bed micro-reactor ACE-MODEL FB (standard methods refer to ASTM D5154 and D7964).
  • Hydrogen-modified heavy oil see Table I-2 for composition and physical properties).
  • the evaluation conditions include: reaction temperature of 550°C, reaction pressure of 0.1Mpa, agent-to-oil ratio (weight) of 3, and oil feed time of 150 seconds. The evaluation results are listed In Table I-3.
  • the core-shell molecular sieve provided by the present application can have a higher propylene yield, and a higher ethylene yield, increased heavy oil conversion rate, and liquefied gas (C 3 -C 4 ) The yield is significantly improved.
  • the hydrogen type ZSM-5 molecular sieve will be used as the nuclear phase (the silicon-to-aluminum ratio is 30, the average grain size is 1.2 ⁇ m, the average particle size of ZSM-5 molecular sieve is 15 ⁇ m, and the crystallinity is 93.0% )
  • 500g was added to 5000g methyl methacrylate and sodium chloride aqueous solution (where the methyl methacrylate mass percentage concentration is 0.2%, and the sodium chloride mass concentration is 5.0%), stirred for 1h, filtered, and placed in an air atmosphere at 50°C. After drying, obtain ZSM-5 molecular sieve material I;
  • ⁇ molecular sieve suspension a suspension of hydrogen type ⁇ molecular sieve and water.
  • the weight percentage concentration of ⁇ molecular sieve in the ⁇ molecular sieve suspension is 0.3% by weight, of which ⁇ molecular sieve
  • the average grain size is 0.2 microns
  • the silicon-to-aluminum ratio is 30, the crystallinity is 89%
  • ⁇ molecular sieve particles are single crystal particles
  • the mass ratio of ZSM-5 molecular sieve material I to ⁇ molecular sieve suspension is 1:10, Stir for 1 hour at a temperature of 50°C, filter, and dry the filter cake in an air atmosphere at 90°C to obtain ZSM-5 molecular sieve material II;
  • the weight percentage concentration of the ⁇ molecular sieve in the ⁇ molecular sieve suspension is: 5.0% by weight, the average crystal grain size of the ⁇ molecular sieve is 50 nm, and the silicon-aluminum ratio is 30.0, the crystallinity is 95.0%
  • the mass ratio of ZSM-5 molecular sieve material I and ⁇ molecular sieve suspension is 1:20, stir at 50°C for 10 hours, filter, and then filter cake in 120°C air atmosphere Dry to obtain ZSM-5 molecular sieve material II;
  • the molecular sieve was synthesized according to the method of Example II-1. The difference is that in step (3), the crystallization temperature is 30°C, the crystallization time is 3 hours, and the sample of the crystalline product is filtered, washed, dried, and calcined.
  • the resulting molecular sieve is denoted as DZ-II-2.
  • Example II-1 According to the ratio of Example II-1, the ZSM-5 and ⁇ molecular sieve used in steps (1) and (2) of Example II-1 were mechanically mixed, and the resulting molecular sieve mixture was denoted as DZ-II-3.
  • the following examples and comparative examples are used to illustrate the preparation of the catalyst of the first type of embodiment provided in this application, wherein the kaolin used is an industrial product of China Kaolin Company, and its solid content is 75% by weight; the pseudo-boehmite (abbreviated as aluminum) Stone) is produced by Shandong Aluminum Company, and its alumina content is 65% by weight; aluminum sol is produced by Qilu Branch of Sinopec Catalyst Co., Ltd., and its alumina content is 21% by weight.
  • the kaolin used is an industrial product of China Kaolin Company, and its solid content is 75% by weight
  • the pseudo-boehmite (abbreviated as aluminum) Stone) is produced by Shandong Aluminum Company, and its alumina content is 65% by weight
  • aluminum sol is produced by Qilu Branch of Sinopec Catalyst Co., Ltd., and its alumina content is 21% by weight.
  • the core-shell molecular sieves prepared in Examples II-1 to II-3 were respectively prepared into catalysts, and the catalyst numbers were A-II-1, A-II-2, and A-II-3 in sequence.
  • Comparative Examples II-4 to II-6 illustrate the catalysts prepared by using the molecular sieves provided in Comparative Examples II-1 to II-3.
  • Example II-4 According to the catalyst preparation method of Example II-4, the molecular sieves prepared in Comparative Examples II-1 to II-3 and the aged pseudo-boehmite slurry, kaolin, water, modified silica sol and alumina sol were mixed, and spray dried Prepared into microsphere catalyst.
  • the serial numbers of the obtained catalysts are: DB-II-1, DB-II-2 and DB-II-3.
  • Table II-2 shows the types and dosages of molecular sieves used in the examples and comparative examples, the dosages of alumina sol, pseudo-boehmite, modified silica sol and kaolin on a dry basis, based on the preparation of 1Kg catalyst .
  • the rare earth content of the modified silica sol is based on the weight content of RE 2 O 3 based on silica.
  • Table II-3 shows the dry weight percentage composition of the catalysts A-II-1 to A-II-3 of each example and the catalysts DB-II-1 to DB-II-3 of the comparative examples.
  • the content of molecular sieve, bauxite, alumina sol, silica sol and kaolin in the catalyst composition is calculated according to the amount of feed used in the preparation.
  • C2 refers to ethylene
  • C3 refers to propylene
  • C3 0 refers to propane.
  • total sulfur (high seas) indicates that the total sulfur content meets the standards for use on the high seas.
  • the catalyst of the first embodiment of the present application is used for hydrogenation of VGO conversion, and has a higher yield of fuel oil, higher yields of ethylene and propylene, and a higher ratio of propylene/propane.
  • the fuel oil obtained can meet the marine fuel oil standard.
  • the hydrogen type ZSM-5 molecular sieve will be used as the nuclear phase (the silicon-to-aluminum ratio is 30, the average grain size is 1.2 ⁇ m, the average particle size of ZSM-5 molecular sieve is 15 ⁇ m, and the crystallinity is 93.0% )
  • 500g was added to 5000g methyl methacrylate and sodium chloride aqueous solution (where the methyl methacrylate mass percentage concentration is 0.2%, and the sodium chloride mass concentration is 5.0%), stirred for 1h, filtered, and placed in an air atmosphere at 50°C. After drying, obtain ZSM-5 molecular sieve material I;
  • ⁇ molecular sieve suspension a suspension of hydrogen type ⁇ molecular sieve and water.
  • the weight percentage concentration of ⁇ molecular sieve in the ⁇ molecular sieve suspension is 0.3% by weight, of which ⁇ molecular sieve
  • the average grain size is 0.2 microns
  • the silicon-to-aluminum ratio is 30, the crystallinity is 89%
  • ⁇ molecular sieve particles are single crystal particles
  • the mass ratio of ZSM-5 molecular sieve material I to ⁇ molecular sieve suspension is 1:10, Stir for 1 hour at a temperature of 50°C, filter, and dry the filter cake in an air atmosphere at 90°C to obtain ZSM-5 molecular sieve material II;
  • the weight percentage concentration of ⁇ molecular sieve in the ⁇ molecular sieve suspension is: 5.0% by weight, the average crystal grain size of the ⁇ molecular sieve is 50nm, and the silicon-aluminum ratio is 30.0, the crystallinity is 95.0%
  • the mass ratio of ZSM-5 molecular sieve material I and ⁇ molecular sieve suspension is 1:20, stir at 50°C for 10 hours, filter, and then filter cake in 120°C air atmosphere Dry to obtain ZSM-5 molecular sieve material II;
  • the molecular sieve was synthesized according to the method of Example III-1.
  • the ZSM-5 and ⁇ molecular sieve used in steps (1) and (2) of Example III-1 were mechanically mixed, and the resulting molecular sieve mixture was denoted as DZ-III-3.
  • Example III-1 to III-3 and Comparative Examples III-1 to III-2 are shown in Table III-1, and the steps of Examples III-1 to III-3 and Comparative Examples III-1 to III-2 ( 4)
  • the properties of the molecular sieve obtained are shown in Table III-1 (continued).
  • the properties of the mixed molecular sieve of Comparative Example III-3 are shown in Table III-1 (continued).
  • the following examples illustrate the preparation of the catalyst of the second embodiment of the present application.
  • the kaolin used in the examples is an industrial product of China Kaolin Company, and its solid content is 75% by weight; the pseudo-boehmite used is produced by Shandong Aluminum Company.
  • the alumina content is 65% by weight; the alumina sol is produced by Sinopec Catalyst Qilu Branch, and its alumina content is 21% by weight.
  • the silica sol is produced by Beijing Chemical Plant, and its silica content is 25% by weight and the pH value is 3.0.
  • the second molecular sieve is ⁇ molecular sieve, hydrogen type, silicon-aluminum ratio of 35, sodium oxide content of 0.1% by weight, and crystallinity of 91.3%, produced by Qilu Branch of Sinopec Catalysts.
  • Examples III-4 to III-6 illustrate the preparation of the hydrogenation LCO catalytic cracking catalyst provided in this application.
  • the core-shell molecular sieves prepared in Examples III-1 to III-3 were respectively prepared into catalysts, and the catalyst numbers were A-III-1, A-III-2, and A-III-3 in sequence.
  • Pseudo-boehmite (abbreviated as bauxite) is mixed with water and stirred evenly. Under stirring, 36% by weight concentrated hydrochloric acid (chemically pure, produced by Beijing Chemical Plant) is added, and the acid-to-aluminum ratio is 0.2 (36 weight) % Concentrated hydrochloric acid and the mass ratio of pseudo-boehmite calculated as Al 2 O 3 ), the resulting mixture is heated to 70° C. and aged for 1.5 hours to obtain an aged pseudo-boehmite slurry. The alumina content in the aged pseudo-boehmite slurry is 12% by weight;
  • the catalyst was prepared according to the method of Example III-4, except that the silica sol was not used, and the same amount of aluminum sol was used instead to obtain the catalyst A-III-4.
  • Table III-2 shows the number and amount of the first molecular sieve used in Examples III-4 to III-7, the type and amount of the second molecular sieve, the amount of aluminum sol, silica sol and kaolin used in the preparation of 1Kg catalytic cracking catalyst as The basis is based on the weight on a dry basis.
  • Table III-3 shows the dry weight percentage composition of the catalysts A-III-1 to A-III-4 of Examples III-4 to III-7.
  • the content of the first molecular sieve, the second molecular sieve, the binder, and the kaolin in the catalyst composition is calculated according to the feed amount used in the preparation.
  • Comparative Examples III-4 to III-6 illustrate the catalysts prepared by using the molecular sieves provided in Comparative Examples III-1 to III-3.
  • the first molecular sieve (respectively the molecular sieves DZ-III-1, DZ-III-2 and DZ-III-3 prepared in Comparative Examples III-1 to III-3) and the first molecular sieve Dimolecular sieve, pseudo-boehmite, kaolin, silica sol, aluminum sol and water are mixed to make a slurry, and spray-dried to prepare a microsphere catalyst.
  • the serial numbers of the obtained catalysts are: DB-III-1, DB-III-2 and DB-III-3.
  • Table III-2 shows the type and amount of the first molecular sieve used in the catalysts of each comparative example, the amount of the second molecular sieve, aluminum sol, silica sol and kaolin, based on the preparation of 1Kg catalyst, based on the dry basis weight.
  • Table III-3 shows the dry weight percent composition of the catalysts of each comparative example.
  • the catalytic cracking catalysts A-III-1 to A-III-4 prepared in Examples III-4 to III-7 and the catalysts DB-III-1 to DB-III-3 prepared in Comparative Examples III-4 to III-6 After aging at 800°C and 100% water vapor for 4 hours, the catalytic cracking reaction performance was evaluated on a small fixed fluidized bed reactor. The evaluation conditions were reaction temperature of 580°C, weight space velocity of 4.0 hours -1 , and oil The ratio is 12 weight ratio. The properties of hydrogenated LCO are shown in Table III-4, and the reaction results are shown in Table III-5.
  • the yields of low-carbon olefins described in Table III-5 are calculated based on the feed amount of raw materials, and low-carbon olefins refer to C2-C4 olefins.
  • the catalyst of the second embodiment of the present application used for hydrogenation LCO conversion can have higher cracking capacity and low-carbon olefin yield, and can have higher liquefied gas yield. .
  • the hydrogen type ZSM-5 molecular sieve will be used as the nuclear phase (the silicon-to-aluminum ratio is 30, the average grain size is 1.2 ⁇ m, the average particle size of ZSM-5 molecular sieve is 15 ⁇ m, and the crystallinity is 93.0% )
  • 500g was added to 5000g methyl methacrylate and sodium chloride aqueous solution (where the methyl methacrylate mass percentage concentration is 0.2%, and the sodium chloride mass concentration is 5.0%), stirred for 1h, filtered, and placed in an air atmosphere at 50°C. After drying, obtain ZSM-5 molecular sieve material I;
  • ⁇ molecular sieve suspension a suspension of hydrogen type ⁇ molecular sieve and water.
  • the weight percentage concentration of ⁇ molecular sieve in the ⁇ molecular sieve suspension is 0.3% by weight, of which ⁇ molecular sieve
  • the average grain size is 0.2 microns
  • the silicon-to-aluminum ratio is 30, the crystallinity is 89%
  • ⁇ molecular sieve particles are single crystal particles
  • the mass ratio of ZSM-5 molecular sieve material I and ⁇ molecular sieve suspension is 1:10, Stir for 1 hour at a temperature of 50°C, filter, and dry the filter cake in an air atmosphere at 90°C to obtain ZSM-5 molecular sieve material II;
  • the weight percentage concentration of the ⁇ molecular sieve in the ⁇ molecular sieve suspension is: 5.0% by weight, the average crystal grain size of the ⁇ molecular sieve is 50 nm, and the silicon-aluminum ratio is 30.0, the crystallinity is 95.0%
  • the mass ratio of ZSM-5 molecular sieve material I and ⁇ molecular sieve suspension is 1:20, stir at 50°C for 10 hours, filter, and then filter cake in 120°C air atmosphere Dry to obtain ZSM-5 molecular sieve material II;
  • the molecular sieve was synthesized according to the method of Example IV-1. The difference is that in step (3), the crystallization temperature is 30°C, the crystallization time is 3 hours, and the sample of the crystalline product is filtered, washed, dried, and calcined.
  • the resulting molecular sieve is denoted as DZ-IV-2.
  • Example IV-1 According to the ratio of Example IV-1, the ZSM-5 and ⁇ molecular sieve used in steps (1) and (2) of Example IV-1 were mechanically mixed, and the resulting molecular sieve mixture was denoted as DZ-IV-3.
  • the following examples illustrate the preparation of the catalyst of the third embodiment provided in this application.
  • the kaolin used in the examples is an industrial product of China Kaolin Company, and its solid content is 75% by weight; the pseudo-boehmite used is produced by Shandong Aluminum Company , Its alumina content is 65% by weight; alumina sol is produced by Qilu Branch of Sinopec Catalyst Co., Ltd., and its alumina content is 21% by weight; silica sol is produced by Beijing Chemical Plant, its silica content is 25% by weight, and its pH The value is 2.5.
  • Y-type molecular sieve grade HSY-12, rare earth content of 12% by weight, silicon-to-aluminum ratio of 6.0, crystallinity of 53.0%, produced by Qilu Branch of Sinopec Catalyst Co., Ltd.
  • the hydrogen core-shell molecular sieves prepared in Examples IV-1 to IV-3 were prepared into catalysts, and the catalyst numbers were A-IV-1, A-IV-2, and A-IV-3.
  • bauxite Pseudo-boehmite (abbreviated as bauxite) and water are evenly mixed, and 36% by weight concentrated hydrochloric acid (chemically pure, produced by Beijing Chemical Plant) is added under stirring, and the ratio of acid aluminum (36% by weight hydrochloric acid to The weight ratio of pseudo-boehmite based on alumina is 0.20, and the resulting mixture is heated to 70° C. and aged for 1.5 hours to obtain aged pseudo-boehmite.
  • the alumina content of the bauxite slurry is 12% by weight;
  • Table IV-2 shows the type and dosage of hydrogen core-shell molecular sieve (the first molecular sieve) used, and the dosage of Y molecular sieve, bauxite, alumina sol, silica sol and kaolin, based on the preparation of 1kg catalyst, based on dry Base meter.
  • Table IV-3 shows the composition of the catalysts A-IV-1 to A-IV-3 of each example.
  • the content of the first molecular sieve, Y-type molecular sieve, alumina sol, silica sol, bauxite, and kaolin in the catalyst composition is calculated according to the feed amount used in the preparation.
  • Comparative Examples IV-4 to IV-6 illustrate the catalysts prepared by using the molecular sieves provided in Comparative Examples IV-1 to IV-3.
  • Example IV-4 According to the catalyst preparation method of Example IV-4, the molecular sieves, Y-type molecular sieves, pseudo-boehmite, kaolin, water and aluminum sol prepared in Comparative Examples IV-1 to IV-3 were mixed, and spray-dried to prepare microsphere catalysts. .
  • the serial numbers of the obtained catalysts are: DB-IV-1, DB-IV-2 and DB-IV-3.
  • Table IV-2 shows the type and dosage of the first molecular sieve used in each comparative example, and the dosage of Y-type molecular sieve, alumina sol, bauxite, silica sol and kaolin.
  • Table IV-3 shows the catalyst composition of each comparative example.
  • the catalysts A-IV-1 to A-IV-3 and DB-IV-1 to DB-IV-3 were evaluated on a small fixed fluidized bed reactor.
  • the evaluation conditions are as follows: the reaction temperature is 520°C, the weight space velocity is 4.0h -1 , and the agent-oil ratio is 6.
  • the properties of the feed oil are shown in Table IV-4, and the evaluation results are shown in Table IV-5.
  • the catalyst of the third embodiment of the present application has higher heavy oil cracking capacity, higher yield of low-carbon olefins, significantly higher yield of propylene, and yield of carbon four olefins. Significantly higher.
  • the hydrogen type ZSM-5 molecular sieve will be used as the nuclear phase (the silicon-to-aluminum ratio is 30, the average grain size is 1.2 ⁇ m, the average particle size of the ZSM-5 molecular sieve is 15 ⁇ m, and the crystallinity is 93.0% )500g was added to 5000g methyl methacrylate and sodium chloride aqueous solution (where the methyl methacrylate mass percentage concentration is 0.2%, and the sodium chloride mass concentration is 5.0%), stirred for 1h, filtered, and placed in an air atmosphere at 50°C. Next, dry to obtain ZSM-5 molecular sieve material I;
  • ⁇ molecular sieve suspension a suspension of hydrogen type ⁇ molecular sieve and water.
  • the weight percentage concentration of ⁇ molecular sieve in the ⁇ molecular sieve suspension is 0.3% by weight, of which ⁇ molecular sieve
  • the average grain size is 0.2 microns
  • the silicon-to-aluminum ratio is 30, the crystallinity is 89%
  • ⁇ molecular sieve particles are single crystal particles
  • the mass ratio of ZSM-5 molecular sieve material I and ⁇ molecular sieve suspension is 1:10, Stir for 1 hour at a temperature of 50°C, filter, and dry the filter cake in an air atmosphere at 90°C to obtain ZSM-5 molecular sieve material II;
  • the weight percentage concentration of ⁇ molecular sieve in the ⁇ molecular sieve suspension is: 5.0% by weight, the average crystal grain size of the ⁇ molecular sieve is 50nm, and the silicon-aluminum ratio is 30.0, the crystallinity is 95.0%
  • the mass ratio of ZSM-5 molecular sieve material I and ⁇ molecular sieve suspension is 1:20, stir at 50°C for 10 hours, filter, and then filter cake in 120°C air atmosphere Dry to obtain ZSM-5 molecular sieve material II;
  • Example V-1 after mechanically mixing the ZSM-5 and ⁇ molecular sieve used in steps (1) and (2) of Example V-1, the resulting molecular sieve mixture is denoted as DZ-V-3.
  • the kaolin used is an industrial product of China Kaolin Company, and its solid content is 75% by weight;
  • the pseudo-boehmite used is Shandong Aluminum Company
  • the alumina content is 65% by weight;
  • the alumina sol is produced by Qilu Branch of Sinopec Catalysts, and its alumina content is 21% by weight;
  • the silica sol is produced by Beijing Chemical Plant, and its silica content is 25% by weight, and the pH value is Is 2.0.
  • Y-type molecular sieve grade HSY-0E, rare earth content of 2% by weight, silicon to aluminum ratio of 9.0, crystallinity of 60%, produced by Qilu Branch of Sinopec Catalyst Co., Ltd.
  • the hydrogen core-shell molecular sieves prepared in Examples V-1 to V-3 were prepared into catalysts, and the catalyst numbers were: A-V-1, A-V-2, and A-V-3.
  • Pseudo-boehmite (abbreviated as bauxite) and water are evenly mixed, and 36% by weight concentrated hydrochloric acid (chemically pure, produced by Beijing Chemical Plant) is added under stirring, and the ratio of acid aluminum (36% by weight hydrochloric acid to The weight ratio of pseudo-boehmite based on alumina is 0.2, and the resulting mixture is heated to 70° C. and aged for 1.5 hours to obtain aged pseudo-boehmite; the alumina content of the bauxite slurry is 12% by weight;
  • the catalyst was prepared according to the method of Example V-5, except that silica sol was not used, and aluminum sol of equal weight was used instead.
  • the obtained catalyst is referred to as A-V-4.
  • Comparative Examples V-4 to V-6 illustrate the catalysts prepared by using the molecular sieves provided in Comparative Examples V-1 to V-3.
  • Example V-4 According to the catalyst preparation method of Example V-4, the molecular sieves, Y-type molecular sieves, second molecular sieves, pseudo-boehmite, kaolin, silica sol, aluminum sol, and water prepared in Comparative Examples V-1 to V-3 were mixed, The microsphere catalyst was prepared by spray drying.
  • the serial numbers of the obtained catalysts are: DB-V-1, DB-V-2 and DB-V-3.
  • Table V-2 shows the type and dosage of the first molecular sieve used in each example and comparative example, the dosage of Y-type molecular sieve, second molecular sieve, aluminum sol, silica sol and kaolin, based on the preparation of 1kg catalyst, on a dry basis Weight meter.
  • Table V-3 shows the catalyst composition of each example and comparative example, on a dry basis.
  • the content of the first molecular sieve, Y-type molecular sieve, second molecular sieve, alumina sol, silica sol, bauxite, and kaolin in the catalyst composition is calculated according to the feed amount used in the preparation.
  • the catalysts prepared in Examples V-4 to V-7 and Comparative Examples V-4 to V-6 were aged at 800°C and 100% by volume of water vapor for 17 hours, and then evaluated on a small fixed fluidized bed reactor.
  • Base crude oil catalytic cracking reaction performance the evaluation conditions are that the reaction temperature is 580°C, the weight space velocity is 4.0 hours -1 , and the agent-to-oil ratio is 10 weight ratio.
  • the properties of the intermediate base crude oil used are shown in Table V-4, and the reaction results are shown in Table V-5.
  • the yields of low-carbon olefins in Table V-5 are calculated based on the raw material feed amount.
  • the catalyst of the fourth embodiment of this application has a higher intermediate base crude oil cracking capacity, the yield of diesel and heavy oil is lower, the yield of low-carbon olefins is significantly higher, and the yield of liquefied gas is obvious higher.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Nanotechnology (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

公开了一种ZSM-5/β核壳型分子筛及其合成和应用,该分子筛包括由至少2个ZSM-5分子筛晶粒构成的核相和由多个β分子筛晶粒构成的壳层,所述ZSM-5分子筛晶粒的平均晶粒尺寸为0.05-15μm,所述核壳型分子筛的壳层覆盖度为50-100%,壳层厚度为10-2000nm,壳层中β分子筛晶粒的平均晶粒尺寸为10-500nm,其中所述ZSM-5/β核壳型分子筛的X射线衍射谱图中2θ=22.4°处的衍射峰的峰高与2θ=23.1°处的衍射峰的峰高之比为0.1-10∶1。所述ZSM-5/β核壳型分子筛具有良好的催化性能。

Description

ZSM-5/β核壳型分子筛及其合成和应用
相关申请的交叉引用
本申请要求2020年6月24日递交的、发明名称为“ZSM-5/β核壳型分子筛及其合成方法和应用”的中国专利申请No.202010590434.7号,2020年8月31日递交的、发明名称为“一种加氢VGO裂化生产低碳烯烃和重油燃料的催化剂及其制备方法与应用”的中国专利申请No.202010894090.9号,2020年8月28日递交的、发明名称为“一种加氢LCO多产低碳烯烃的催化裂解催化剂及其制备方法与应用”的中国专利申请No.202010885254.1号,2020年8月31日递交的、发明名称为“一种核壳型分子筛在重油催化裂化催化剂中的应用”的中国专利申请No.202010893693.7号,以及2020年9月18日递交的、发明名称为“一种孔道结构丰富的催化裂解催化剂及其制备方法与应用”的中国专利申请No.202010985188.5号的优先权,它们的内容经此引用全文并入本文。
技术领域
本申请涉及催化材料的技术领域,具体涉及一种ZSM-5/β核壳型分子筛及其合成和应用。
背景技术
社会对高附加值石油产品的需求不断增加,促使炼油工业向深度加工方向发展,最大限度的将石油馏分转化为价值更高的产品例如低碳烯烃、BTX等。
沸石分子筛是一类具有骨架结构的微孔晶体材料,具有特定尺寸、形状的孔道结构,较大的比表面以及较强的可调的酸性质,广泛地应用于石油炼制与加工的过程,如催化裂化、烷烃异构化、催化重整以及甲苯歧化等催化反应。
具有MFI拓扑结构的ZSM-5分子筛和具有BEA拓扑结构的β分子筛是两种工业上应用广泛的分子筛。ZSM-5分子筛是由是美国Mobil石油公司开发的一种具有MFI结构的高硅三维直通道的中孔分子筛 (USP3702886),它具有独特的孔道结构,属于正交晶系,晶胞参数为
Figure PCTCN2021101993-appb-000001
晶胞中Al原子数可以从0到27变化,硅铝比可以在较大范围内改变;ZSM-5骨架中含有两种相互交叉的10元环孔道体系,其中一种孔道呈S形弯曲,孔径为
Figure PCTCN2021101993-appb-000002
一种孔道呈直线形,孔径为
Figure PCTCN2021101993-appb-000003
ZSM-5有良好的择形催化和异构化性能、高热和水热稳定性、高比表面积、宽硅铝比变化范围、独特的表面酸性和较低结碳量的特点,被广泛用作催化剂和催化剂载体,并成功用于烷基化、异构化、歧化、催化裂化、甲醇制汽油、甲醇制烯烃等生产工艺。β分子筛是具有交叉十二元环通道体系的大孔三维结构高硅沸石,其十二元环三维交叉孔道体系的孔口尺寸为
Figure PCTCN2021101993-appb-000004
Figure PCTCN2021101993-appb-000005
由于其结构的特殊性,兼具酸催化特性和结构选择性,具有良好的热和水热稳定性,适度酸性和酸稳定性及疏水性,在烷基转移反应及重芳烃轻质化反应方面表现出优异的催化性能,其催化应用表现出烃类反应不易结焦和使用寿命长的特点。
然而,ZSM-5分子筛虽然具有择形功能,但其孔径较小,不利于大分子反应物尤其是环状烃的扩散和吸附,而β分子筛虽然孔口尺寸较大,较大分子反应物可以进入,增加活性中心可接近性,但其对乙烯、丙烯等小分子低碳烯烃没有择形功能。现有技术中也将ZSM-5分子筛和β分子筛同时使用进行烃油转化,目前常用的方式是使用两种分子筛的机械混合物,该情况下ZSM-5分子筛颗粒和β分子筛的颗粒之间距离较长。
近年来有研究将两种分子筛形成核壳型分子筛,一般由两种不同晶体结构的分子筛构成,一种分子筛为核,另外一种分子筛为壳层包裹在核相的表面,以利用核、壳两种类型分子筛不同的优点,作为催化材料促进催化反应的进行。然而,现有技术对核壳型分子筛的研究处于起步阶段,研究还不充分,要得到性能良好的核壳型分子筛并不容易。现有核壳型分子筛例如ZSM-5/β核壳型分子筛在用于催化裂化反应的时候,其反应性能不佳,而现有技术也没有提供适用于烃油催化裂化或裂解反应的核壳型分子筛及其制备方法。
发明内容
本申请的目的提供一种新型的ZSM-5/β核壳型分子筛及其合成和应用,该核壳型分子筛具有ZSM-5分子筛的核相和β分子筛的壳层,该核壳型分子筛在用于烃油催化转化时具有更好的转化效果。
为了实现上述目的,一方面,本申请提供了一种ZSM-5/β核壳型分子筛,包括由至少2个ZSM-5分子筛晶粒构成的核相和由多个β分子筛晶粒构成的壳层,所述ZSM-5分子筛晶粒的平均晶粒尺寸为0.05-15μm,所述核壳型分子筛的壳层覆盖度为50-100%,壳层厚度为10-2000nm,壳层中β分子筛晶粒的平均晶粒尺寸为10-500nm,其中所述ZSM-5/β核壳型分子筛的X射线衍射谱图中2θ=22.4°处的衍射峰的峰高与2θ=23.1°处的衍射峰的峰高之比为0.1-10∶1。
另一方面,本申请提供了一种ZSM-5/β核壳型分子筛的合成方法,包括如下步骤:
1)用表面活性剂溶液对颗粒形式的ZSM-5分子筛进行处理,得到ZSM-5分子筛材料I;
2)用含颗粒形式的β分子筛的浆液对所述ZSM-5分子筛材料I进行处理,得到ZSM-5分子筛材料II,其中所述β分子筛的颗粒由至少1个β分子筛晶粒构成;
3)提供含有硅源、铝源、任选的碱源、模板剂和水的合成液,并使其在50-300℃,优选75-250℃,更优选80-180℃的温度下,晶化4-100h,优选10-80h,更优选18-50h,得到预晶化合成液III;以及
4)将所述ZSM-5分子筛材料II与所述预晶化合成液III混合并晶化,得到所述ZSM-5/β核壳型分子筛。
优选地,步骤1)中所用的ZSM-5分子筛的颗粒由至少2个ZSM-5分子筛晶粒构成。
再一方面,本申请提供了一种催化剂,以干基重量计并以所述催化剂的重量为基准,所述催化剂包含30-90wt%的载体,2-50wt%的根据本申请的ZSM-5/β核壳型分子筛,以及0-50wt%的附加分子筛。
优选地,所述ZSM-5/β核壳型分子筛中以Na 2O计的钠含量不超过0.15重量%。
又一方面,本申请提供了一种烃油催化转化方法,包括使烃油原料与根据本申请的催化剂接触的步骤。
本申请的核壳型分子筛,可以用于烃转化反应,例如催化裂解反应、烷基化反应和异构化反应等。特别地,本申请的核壳型分子筛用于烃油裂化或裂解,具有更佳的转化效果,用于含环烷环的烃油裂化,例如加氢LCO裂化转化,丙烯收率更高和/或乙烯收率更高,重油转化率更高。
本申请提供的ZSM-5/β核壳型分子筛合成方法,可以具有一个或多个以下的有益效果:
(1)能够快速合成ZSM-5/β核壳型分子筛;
(2)可以在较低模板剂用量情况下合成β分子筛;
(3)能提高壳层覆盖度;
(4)提高合成的分子筛的总比表面积;
(5)所合成的分子筛具有较高的中孔表面积比例;
(6)所合成的分子筛具有较多的2-50nm孔,其孔径分布在孔直径为2-4nm和20-80nm具有孔径分布峰,具有丰富的介孔和大孔孔容。
本申请的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本申请的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本申请,但并不构成对本申请的限制。在附图中:
图1显示了本申请实施例I-1制备的ZSM-5/β核壳型分子筛的SEM图;
图2A显示了分子筛的XRD衍射谱图,其中1是ZSM-5分子筛的XRD衍射谱图,2是β分子筛的XRD衍射谱图,3是本申请实施例I-1得到的ZSM-5/β核壳型分子筛的XRD衍射谱图;
图2B显示了本申请实施例I-1得到的ZSM-5/β核壳型分子筛的XRD衍射谱图的局部放大图;
图3显示了本申请实施例I-1得到的预晶化合成液III的XRD衍射谱图;
图4显示了本申请实施例I-1制备的ZSM-5/β核壳型分子筛的TEM 图;以及
图5显示了本申请实施例I-1制备的ZSM-5/β核壳型分子筛的孔径分布图。
具体实施方式
以下结合附图对本申请的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。
在本文中所披露的任何具体数值(包括数值范围的端点)都不限于该数值的精确值,而应当理解为还涵盖了接近该精确值的值,例如在该精确值±5%范围内的所有可能的数值。并且,对于所披露的数值范围而言,在该范围的端点值之间、端点值与范围内的具体点值之间,以及各具体点值之间可以任意组合而得到一个或多个新的数值范围,这些新的数值范围也应被视为在本文中具体公开。
除非另有说明,本文所用的术语具有与本领域技术人员通常所理解的相同的含义,如果术语在本文中有定义,且其定义与本领域的通常理解不同,则以本文的定义为准。
本申请中,晶粒尺寸是指:晶粒最宽处的尺寸,可通过测量样品的SEM或TEM图像中,晶粒投影面最宽处的尺寸获得。多个晶粒的晶粒尺寸平均值为样品的平均晶粒尺寸。
本申请中,颗粒尺寸是指:颗粒最宽处尺寸,可通过测量样品的SEM或TEM图像中,颗粒投影面最宽处的尺寸,多个颗粒的颗粒尺寸平均值为样品的平均颗粒尺寸。也可以通过激光粒度仪测量。一个颗粒中可以包括一个或多个晶粒。
本申请中,所述干基重量是指物质在850℃空气中焙烧1小时后得到的固体产物的重量。
本申请中,剂油比指催化剂与原料油的重量比。
在本申请中,术语“钠型核壳型分子筛”是指在晶化步骤后得到的、未经降低Na 2O含量的处理(如铵交换)的ZSM-5/β核壳型分子筛;术语“氢型核壳型分子筛”或“改性核壳型分子筛”是指所述“钠型核壳型分子筛”经过处理(如铵交换)降低Na 2O含量(例如Na 2O含量降至小于 0.15重%)之后得到的ZSM-5/β核壳型分子筛。
在本申请中,术语“重油”具有本领域公知的含义,例如可以为例如常压渣油、常压瓦斯油、减压渣油、减压瓦斯油、焦化蜡油、轻重脱沥青油中的一种或多种。
在本申请中,术语“中间基原油”指性质介于石蜡基原油和环烷基原油之间的一类原油,其特性因数为11.5-12.1,并且其烷烃和环烷烃含量基本相近。
本申请中,除了明确说明的内容之外,未提到的任何事宜或事项均直接适用本领域已知的那些而无需进行任何改变。而且,本文描述的任何实施方式均可以与本文描述的一种或多种其他实施方式自由结合,由此形成的技术方案或技术思想均视为本发明原始公开或原始记载的一部分,而不应被视为是本文未曾披露或预期过的新内容,除非本领域技术人员认为该结合明显不合理。
在本文中提及的所有专利和非专利文献,包括但不限于教科书和期刊文章等,均通过引用方式全文并入本文。
ZSM-5/β核壳型分子筛
如上所述,在第一方面,本申请提供了一种ZSM-5/β核壳型分子筛,包括由至少2个ZSM-5分子筛晶粒构成的核相和由多个β分子筛晶粒构成的壳层,其中所述ZSM-5/β核壳型分子筛的X射线衍射谱图中2θ=22.4°处的衍射峰的峰高(D1)与2θ=23.1°处的衍射峰的峰高(D2)的比例为0.1-10∶1。
根据本申请,所述2θ=22.4°处的衍射峰是指X射线衍射谱图中在2θ角为22.4°±0.1°范围内的衍射峰,所述2θ=23.1°处的衍射峰是指X射线衍射谱图中在2θ角为23.1°±0.1°范围内的衍射峰。
在所述ZSM-5/β核壳型分子筛的优选实施方式中,所述2θ=22.4°处的衍射峰高(D1)与2θ=23.1°处的衍射峰高(D2)的比例为0.1-8∶1,例如0.1-5∶1或0.12-4∶1或0.8-8∶1。
在所述ZSM-5/β核壳型分子筛的优选实施方式中,所述核壳型分子筛核相与壳层的质量比例为0.2-20∶1,例如为1-15∶1,其中核相与壳层的质量比例可采用X射线衍射谱峰面积计算得到。
在所述ZSM-5/β核壳型分子筛的优选实施方式中,所述ZSM-5/β核壳型分子筛的总比表面积(也称ZSM-5/β核壳型分子筛的比表面积)大于420m 2/g,例如为420-650m 2/g。进一步优选地,所述ZSM-5/β核壳型分子筛的总比表面积大于450m 2/g,例如为450-620m 2/g、480-600m 2/g、490-580m 2/g或500-560m 2/g。
在所述ZSM-5/β核壳型分子筛的优选实施方式中,所述ZSM-5/β核壳型分子筛的中孔表面积占总表面积(或称中孔比表面积占总比表面积)的比例为10-40%,例如12-35%。其中,中孔是指孔直径为2-50nm的孔。
在所述ZSM-5/β核壳型分子筛的优选实施方式中,以所述ZSM-5/β核壳型分子筛的总孔体积为基准,所述ZSM-5/β核壳型分子筛中,孔直径为0.3-0.6nm的孔的孔体积占40-90%,例如40-88%、50-85%、60-85%或70-82%。
在所述ZSM-5/β核壳型分子筛的优选实施方式中,以所述ZSM-5/β核壳型分子筛的总孔体积为基准,所述ZSM-5/β核壳型分子筛中,孔直径0.7-1.5nm的孔的孔体积占3-20%,例如3-15%或3-9%。
在所述ZSM-5/β核壳型分子筛的优选实施方式中,以所述ZSM-5/β核壳型分子筛的总孔体积为基准,所述ZSM-5/β核壳型分子筛中,孔直径2-4nm的孔的孔体积占4-50%,例如4-40%或4-20%或4-10%。
在所述ZSM-5/β核壳型分子筛的优选实施方式中,以所述ZSM-5/β核壳型分子筛的总孔体积为基准,所述ZSM-5/β核壳型分子筛中,孔直径20-80nm的孔的孔体积占5-40%,例如5-30%或6-20%或7-18%或8-16%。
在所述ZSM-5/β核壳型分子筛的优选实施方式中,所述的核壳型分子筛中孔直径2-80nm孔的孔体积占总孔体积的10-30%,例如11-25%。
在所述ZSM-5/β核壳型分子筛的优选实施方式中,所述的核壳型分子筛中孔直径20-80nm孔的孔体积占孔直径2-80nm孔的孔体积的50-70%,例如55-65%或58-64%。
在所述ZSM-5/β核壳型分子筛的优选实施方式中,所述ZSM-5/β核壳型分子筛的总孔体积为0.28-0.42mL/g,例如为0.3-0.4mL/g或 0.32-0.38mL/g。
在上述优选的实施方式中,本申请的ZSM-5/β核壳型分子筛具有明显的微孔-介孔-大孔的梯级孔分布,在孔直径2-4nm和20-80nm的范围内具有丰富的介孔和大孔孔容,有利于环烷烃重油大分子的分级裂化。
根据本申请,所述的总孔体积和孔径分布可以通过低温氮吸附容量法测定,使用BJH计算方法计算孔径分布,可参考RIPP-151-90方法(参见《石油化工分析方法》,杨翠定等编,科学出版社,1990年9月,第424-427页,ISBN:7-03-001894-X)。
在所述ZSM-5/β核壳型分子筛的优选实施方式中,所述ZSM-5/β核壳型分子筛的壳层中β分子筛晶粒的平均晶粒尺寸为10-500nm,例如50-500nm。
在所述ZSM-5/β核壳型分子筛的优选实施方式中,所述ZSM-5/β核壳型分子筛的壳层的厚度是10-2000nm,例如50-2000nm。
在所述ZSM-5/β核壳型分子筛的优选实施方式中,壳层分子筛(即壳层中的β分子筛)的硅铝比(即以SiO 2/Al 2O 3计的硅铝摩尔比)为10-500,优选为10-300,例如为30-200或25-200。
在所述ZSM-5/β核壳型分子筛的优选实施方式中,所述ZSM-5/β核壳型分子筛的核相分子筛(即核相中的ZSM-5分子筛)的硅铝比为10-∞,例如为20-∞、50-∞、30-300、30-200、20-80、25-70或30-60。
根据本申请,所述ZSM-5/β核壳型分子筛的核相分子筛颗粒是多个ZSM-5分子筛晶粒的团聚体,所述核相分子筛的单个颗粒中ZSM-5分子筛晶粒的个数不少于2个。
在所述ZSM-5/β核壳型分子筛的优选实施方式中,所述ZSM-5/β核壳型分子筛的核相中ZSM-5分子筛晶粒的平均晶粒尺寸是0.05-15μm,优选为0.1-10μm,例如0.1-5μm或0.1-1.2μm。
在所述ZSM-5/β核壳型分子筛的优选实施方式中,所述ZSM-5/β核壳型分子筛的核相中ZSM-5分子筛颗粒的平均颗粒尺寸为0.1-30μm,例如0.2-25μm、0.5-10μm、1-5μm或2-4μm。
在所述ZSM-5/β核壳型分子筛的优选实施方式中,所述核壳型分子筛的壳层覆盖度为50-100%,例如80-100%。
ZSM-5/β核壳型分子筛的合成方法
如上所述,在第二方面,本申请提供了一种ZSM-5/β核壳型分子筛的合成方法,包括如下步骤:
1)用表面活性剂溶液对颗粒形式的ZSM-5分子筛(原料)进行处理,得到ZSM-5分子筛材料I;
2)用含颗粒形式的β分子筛的浆液对所示ZSM-5分子筛材料I进行处理,得到表面附着有β分子筛的ZSM-5分子筛材料II;
3)提供含有硅源、铝源、任选的碱源、模板剂和水的合成液,并使其在50-300℃的温度下晶化4-100h(本申请中也称为第一晶化或预晶华),得到预晶化合成液III;以及
4)将所述ZSM-5分子筛材料II与所述预晶化合成液III混合并晶化(本申请中也称为第二晶化),得到所述ZSM-5/β核壳型分子筛。
在本申请的ZSM-5/β核壳型分子筛合成方法的优选实施方式中,步骤1)的处理通过如下方式进行:将颗粒形式的ZSM-5分子筛(原料)加入到重量百分浓度为0.05-50%、优选为0.1-30%,例如0.1-5%的表面活性剂溶液中进行接触;优选在搅拌下进行接触,随后过滤、干燥得到所述ZSM-5分子筛材料I。
在该优选实施方式中,步骤1)的所述干燥没有特殊要求,例如可以是烘干、闪蒸干燥、气流干燥。在进一步优选的实施方式中,干燥的温度为50-150℃,干燥时间没有限制,只要使样品得到干燥即可,例如可以是0.5-4h。
在进一步优选的实施方式中,步骤1)中的处理在20-70℃下进行0.5h小时以上,例如0.5-48h或1-36h。
在本申请的ZSM-5/β核壳型分子筛合成方法的优选实施方式中,步骤1)中表面活性剂溶液与以干基重量计的ZSM-5分子筛的重量比为10-200∶1。
在本申请的ZSM-5/β核壳型分子筛合成方法的优选实施方式中,所述表面活性剂溶液中还可以含有盐,所述的盐为对表面活性剂起分离或分散作用、具有电解质性质的盐,例如可溶解于水的碱金属盐、铵盐中的一种或多种,优选为碱金属的氯化物盐、碱金属的硝酸盐、 铵的氯化物盐、铵的硝酸盐中的一种或多种,例如所述的盐可以选自氯化钠、氯化钾、氯化铵、硝酸铵或者它们的组合;所述表面活性剂溶液中盐的浓度优选为0.05-10.0重量%,例如0.2-2重量%。添加所述盐,有利于表面活性剂的吸附。
在本申请的ZSM-5/β核壳型分子筛合成方法的优选实施方式中,所述表面活性剂可选自聚甲基丙烯酸甲酯、聚二烯丙基二甲基氯化铵、吡啶二羧酸、氨水、乙胺、正丁胺、四乙基氢氧化铵、四丙基氢氧化铵、四乙基溴化铵、四丙基溴化铵、四丁基氢氧化铵或者它们的组合。
在本申请的ZSM-5/β核壳型分子筛合成方法的优选实施方式中,步骤1)中所述颗粒形式的ZSM-5分子筛的硅铝比为10-∞;例如,步骤1)中所述颗粒形式的ZSM-5分子筛的硅铝比可以为20-∞、50-∞、30-300、30-200、40-70、20-80、25-70或30-60。
在本申请的ZSM-5/β核壳型分子筛合成方法的优选实施方式中,步骤1)中所述颗粒形式的ZSM-5分子筛的颗粒由至少2个ZSM-5分子筛晶粒构成。
在进一步优选的实施方式中,所述ZSM-5分子筛晶粒的平均晶粒尺寸为0.05-20μm,例如0.1-10μm。
在本申请的ZSM-5/β核壳型分子筛合成方法的优选实施方式中,所述颗粒形式的ZSM-5分子筛的平均颗粒尺寸为0.1-30μm,例如为0.5-25μm、1-25μm、1-20μm、1-5μm或2-4μm。
在本申请的ZSM-5/β核壳型分子筛合成方法的优选实施方式中,步骤1)中所用的ZSM-5分子筛是钠型、氢型或离子交换的ZSM-5分子筛。所述离子交换的ZSM-5分子筛是指ZSM-5分子筛(例如钠型ZSM-5分子筛)与碱金属以外的离子,例如过渡金属离子、铵离子、碱土金属离子、IIIA族金属离子、IVA族金属离子、VA族金属离子交换后得到的交换后的ZSM-5分子筛。
在本申请的ZSM-5/β核壳型分子筛合成方法的优选实施方式中,步骤2)的处理通过如下方式进行:将ZSM-5分子筛材料I加入到含颗粒形式的β分子筛(β分子筛也称β沸石)的浆液中进行接触;优选在搅拌下接触,随后过滤、干燥得到所述ZSM-5分子筛材料II。
在进一步优选的实施方式中,步骤2)的处理在20-60℃下进行0.5 小时以上,例如1-24h。
在本申请的ZSM-5/β核壳型分子筛合成方法的优选实施方式中,步骤2)中所述含颗粒形式的β分子筛的浆液中β分子筛的浓度为0.1-10重量%,例如0.3-8重量%或0.2-1重量%。
在本申请的ZSM-5/β核壳型分子筛合成方法的优选实施方式中,步骤2)中,含β分子筛的浆液与以干基重量计的ZSM-5分子筛材料I的重量比为10-50∶1,优选地,以干基重量计的β分子筛与以干基重量计的ZSM-5分子筛材料I的重量比为0.01-1∶1,例如0.02-0.35∶1。
在本申请的ZSM-5/β核壳型分子筛合成方法的优选实施方式中,步骤2)中所述颗粒形式的β分子筛的颗粒由至少1个β分子筛晶粒构成。在进一步优选的实施方式中,所述β分子筛晶粒的平均晶粒尺寸为10-500nm,例如为50-400nm、100-300nm、10-300nm或200-500nm。
在进一步优选的实施方式中,所述β分子筛晶粒的平均晶粒尺寸小于所述ZSM-5分子筛晶粒的平均晶粒尺寸。例如,所述β分子筛晶粒的平均晶粒尺寸比ZSM-5分子筛晶粒的平均晶粒尺寸小10-500nm,或者所述ZSM-5分子筛晶粒的平均晶粒尺寸是β分子筛晶粒的平均晶粒尺寸的1.5倍以上,例如为2-50或5-20倍。
在本申请的ZSM-5/β核壳型分子筛合成方法的优选实施方式中,步骤2)中所述颗粒形式的β分子筛的平均颗粒尺寸为0.01-0.5μm,例如0.05-0.5μm。优选地,所述β分子筛的颗粒是单晶粒颗粒。
在本申请的ZSM-5/β核壳型分子筛合成方法的优选实施方式中,步骤2)中所用的β分子筛的硅铝比为10-500,例如为30-200或25-200。
在本申请的ZSM-5/β核壳型分子筛合成方法的优选实施方式中,步骤3)中,所述硅源、铝源、任选的碱源、模板剂(以R表示)、水的摩尔比为:R/SiO 2=0.1-10,例如0.1-3或0.2-2.2;H 2O/SiO 2=2-150,例如10-120;SiO 2/Al 2O 3=10-800,例如20-800;Na 2O/SiO 2=0-2,例如0.01-1.7、0.05-1.3或0.1-1.1,其中R表示模板剂,SiO 2表示以SiO 2计的所述硅源,Al 2O 3表示以Al 2O 3计的所述铝源,Na 2O表示以Na 2O计的所述碱源。
在本申请的ZSM-5/β核壳型分子筛合成方法的优选实施方式中,步骤3)中,所述硅源可选自正硅酸乙酯、水玻璃、粗孔硅胶、硅溶胶、 白炭黑、活性白土或者它们的组合;所述铝源可选自硫酸铝、异丙醇铝、硝酸铝、铝溶胶、偏铝酸钠、γ-氧化铝或者它们的组合;所述碱源可选自氢氧化钠、氢氧化钾或者它们的组合;所述模板剂(R),例如为四乙基氟化铵、四乙基氢氧化铵、四乙基氯化铵、四乙基溴化铵、聚乙烯醇、三乙醇胺或羧甲基纤维素钠中的一种或多种,优选地,所述模板剂包括四乙基氢氧化铵、四乙基氯化铵、四乙基溴化铵或者它们的组合。
在本申请的ZSM-5/β核壳型分子筛合成方法的优选实施方式中,在步骤3)中,将所述硅源、铝源、任选的碱源、模板剂R和去离子水混合形成合成液,然后于75-250℃下晶化10-80h下得到预晶化合成液III;优选地,步骤3)所述晶化(即第一晶化)的晶化温度为80-180℃,晶化时间为18小时-50小时。
在本申请的ZSM-5/β核壳型分子筛合成方法的上述优选实施方式中,步骤3)的所述晶化使得到的预晶化合成液III的晶化状态是晶粒将出现还没有出现的状态,接近晶化诱导期末期,即将进入晶核快速生长阶段。优选地,所得到的预晶化合成液III进行XRD分析,在2θ=22.4°处有谱峰存在,在2θ=21.2°处没有谱峰存在,其中所述2θ=22.4°处是指在2θ=22.4°±0.1°范围内,所述2θ=21.2°处是指2θ=21.2°±0.1°范围内。例如,所述的合成液III的XRD图在2θ=22.4°处的峰与2θ=21.2°处的峰强度比值是无穷大。所述预晶化合成液III进行XRD分析方法可按照如下方法进行:将预晶化合成液III经过过滤、洗涤、干燥、550℃焙烧4h后,再进行XRD分析,其中所述洗涤可以用去离子水洗涤。
在本申请的ZSM-5/β核壳型分子筛合成方法的优选实施方式中,步骤4)中,使ZSM-5分子筛材料II与预晶化合成液III混合,例如将所述ZSM-5分子筛材料II加入到预晶化合成液III中,其中预晶化合成液III与以干基重量计的ZSM-5分子筛材料II的重量比为2-10∶1,例如4-10∶1。优选地,以干基重量计的ZSM-5分子筛与以干基重量计的预晶化合成液III的重量比大于0.2∶1,例如为0.3-20∶1、1-15∶1、0.5-10∶1、0.5-5∶1、0.8-2∶1或0.9-1.7∶1,其中所述预晶化合成液III的干基重量是指将预晶化合成液III经过滤、干燥、并在850℃空气中焙烧1小时后得到的固体产物的重量。
在本申请的ZSM-5/β核壳型分子筛合成方法的优选实施方式中,步骤4)中所述晶化(即第二晶化)的晶化温度为50-300℃,晶化时间为10-400h。
在本申请的ZSM-5/β核壳型分子筛合成方法的优选实施方式中,步骤4)中,ZSM-5分子筛材料II与预晶化合成液III混合后,在100-250℃下晶化30-350h。步骤4)所述晶化的晶化温度,例如为100-200℃,晶化时间,例如为50-120h。
在本申请的ZSM-5/β核壳型分子筛合成方法的优选实施方式中,步骤4)中,晶化结束后还可包括回收核壳型分子筛的过程,所述回收通常包括:过滤、洗涤、干燥、焙烧中的一个或多个步骤,例如对晶化产物进行过滤,然后进行洗涤和干燥,任选进行焙烧。所述干燥为常规技术,例如可以为晾干、烘干、气流干燥、闪蒸干燥。优选地,干燥的条件可以为温度为50-150℃,时间为0.5-4h。所述洗涤为常规技术,例如可以采用水洗涤,所述的水可以是去离子水、蒸馏水、脱阳离子水的一种或多种,核壳型分子筛与水的重量比值,可以为例如1∶5-20,可以洗涤一次或多次,直至洗涤后的水的pH值为8-9。所述焙烧的条件可以为例如焙烧温度为400-600℃,焙烧时间为2-10h。
在本申请的ZSM-5/β核壳型分子筛合成方法的优选实施方式中,所得到的ZSM-5/β核壳型分子筛的核相为ZSM-5分子筛,壳层为β分子筛,壳层分子筛的硅铝比以SiO 2/Al 2O 3计为10-500,例如25-200。
在特别优选的实施方式中,本申请的ZSM-5/β核壳型分子筛的合成方法包括如下步骤:
1)将ZSM-5分子筛加入到重量百分浓度为0.05-50%的表面活性剂溶液中搅拌0.5-48h进行处理,其中表面活性剂与ZSM-5分子筛的重量比优选为0.02-0.5∶1,过滤、干燥后得到ZSM-5分子筛材料I,所说的ZSM-5分子筛的硅铝摩尔比SiO 2/Al 2O 3优选为20-∞,例如为50-∞;
2)将ZSM-5分子筛材料I加入到含β分子筛的浆液中,所述含β分子筛的浆液中β分子筛的含量为0.2-8重量%,以干基重量计的β分子筛的重量与ZSM-5分子筛材料I的重量比优选为0.03-0.30∶1,搅拌至少0.5小时,例如0.5-24h,然后过滤,干燥得到ZSM-5分子筛材料 II,
3)将硅源、铝源、任选的碱源、模板剂(用R表示)、水混合形成的混合液在50-300℃搅拌4-100h,优选地,于75-250℃下搅拌10-80h,得到预晶化合成液III;其中以摩尔比计,R/SiO 2=0.1-10∶1,H 2O/SiO 2=2-150∶1,SiO 2/Al 2O 3=10-800∶1,Na 2O/SiO 2=0-2∶1;所述硅源,例如选自正硅酸乙酯、水玻璃、粗孔硅胶、硅溶胶、白炭黑、活性白土或者它们的组合;所述铝源,例如选自硫酸铝、异丙醇铝、硝酸铝、铝溶胶、偏铝酸钠、γ-氧化铝或者它们的组合,所述碱源,例如选自氢氧化钠、氢氧化钾,或者这它们的组合,所述模板剂,例如选自四乙基氟化铵、四乙基氢氧化铵、四乙基氯化铵、四乙基溴化铵、三乙醇胺或羧甲基纤维素钠中的一种或多种;以及
4)将ZSM-5分子筛材料II加入到预晶化合成液III中,在50-300℃下晶化10-400h,优选地,ZSM-5分子筛材料II加入到预晶化合成液III中后在100-250℃下晶化30-350h,晶化结束后过滤、洗涤、干燥,得到ZSM-5/β核壳型分子筛;优选地,硅源、铝源的用量使得到的壳层β分子筛的硅铝摩尔比以SiO 2/Al 2O 3计为25-200。
任选地,本申请的ZSM-5/β核壳型分子筛的合成方法可进一步包括:5)对步骤4)所得的核壳型分子筛(即,钠型核壳型分子筛)进行铵交换,使该核壳型分子筛中的Na 2O含量小于0.15重%;以及
6)将步骤5)得到的核壳型分子筛干燥,并在400-600℃下焙烧2-10h,以去除模板剂,得到氢型核壳型分子筛。
优选地,步骤5)中所述的铵交换包括按照钠型核壳型分子筛∶铵盐∶H 2O=1∶(0.1-1)∶(5-15)的重量比在50-100℃下交换,随后过滤,该过程可进行一次或多次;所述铵盐选自氯化铵、硫酸铵、硝酸铵中的一种或多种的混合物。
本申请还提供了由所述ZSM-5/β核壳型分子筛合成方法得到的ZSM-5/β核壳型分子筛材料。
本申请还提供了根据本申请的ZSM-5/β核壳型分子筛或者通过本申请的方法合成的ZSM-5/β核壳型分子筛在烃油催化裂化或催化裂解中的应用。将所述ZSM-5/β核壳分子分子筛作为活性组分的一部分或全部用于制备催化裂化催化剂,进而用于烃油的催化裂化或催化裂解 反应,可以提高反应产物的丙烯收率和/或乙烯收率。
包含ZSM-5/β核壳型分子筛的催化剂
如上所述,在第三方面,本申请提供了一种催化剂,以干基重量计并以所述催化剂的重量为基准,所述催化剂包含30-90wt%的载体,2-50wt%的根据本申请的ZSM-5/β核壳型分子筛,以及0-50wt%的附加分子筛,
在优选的实施方式中,所述载体可包括粘土、氧化铝载体、氧化硅载体、硅铝氧化物载体、磷铝胶和锆溶胶中的一种或多种。
根据本申请,所述粘土可以为例如高岭土、蒙脱土、硅藻土、埃洛石、准埃洛石、皂石、累托土、海泡石、凹凸棒石、水滑石和膨润土等天然粘土中的一种或多种。
根据本申请,所述氧化铝载体可以为例如酸化拟薄水铝石、铝溶胶、水合氧化铝、活性氧化铝中的一种或多种。所述的水合氧化铝可以为例如拟薄水铝石(未经酸化)、一水软铝石、三水铝石、拜耳石、诺水铝石、无定型氢氧化铝中的一种或多种。所述的活性氧化铝可以为例如γ-氧化铝、η-氧化铝、χ-氧化铝、δ-氧化铝、θ-氧化铝、κ-氧化铝中的一种或多种。
根据本申请,所述酸化拟薄水铝石可以由拟薄水铝石经过酸化得到,其中所述酸化为本领域技术人员所熟知,例如可以将拟薄水铝石与水打浆,形成浆液,然后加入酸,于50-85℃搅拌0.2-1.5小时,其中酸与以氧化铝计的拟薄水铝石的摩尔比,例如为0.10-0.25。
根据本申请,所述氧化硅载体可以为例如硅溶胶、硅凝胶、固体硅胶中的一种或多种。所述的硅溶胶可以为例如中性硅溶胶、酸性硅溶胶或碱性硅溶胶中的一种或多种。
根据本申请,所述硅铝氧化物载体可以为例如硅铝材料、硅铝溶胶、硅铝凝胶中的一种或多种。
根据本申请,所述磷铝胶可以为例如磷铝溶胶、磷铝凝胶。
根据本申请,所述锆溶胶可以为例如锆溶胶、锆凝胶。
在优选的实施方式中,所述ZSM-5/β核壳型分子筛中以Na 2O计的钠含量不超过0.15重量%。
根据该实施方式中,可以通过铵交换的方式来得到氧化钠含量降低的核壳型分子筛。所述铵交换的方法可以采用已知的方法,例如所述铵交换可以按照钠型核壳型分子筛∶铵盐∶H 2O=1∶(0.1-1)∶(5-15)的重量比在50-100℃下交换,随后过滤,该过程可进行一次或多次;所述铵盐选自氯化铵、硫酸铵、硝酸铵中的一种或多种的混合物。
根据本申请,所述附加分子筛可以是各种常规用于催化裂化催化剂制备的分子筛。在优选的实施方式中,所述附加分子筛可以选自Y型分子筛和孔道开口直径为0.65-0.70纳米的分子筛,或者它们的组合。
在进一步优选的实施方式中,所述Y型分子筛为不含稀土的Y型分子筛或低稀土含量的Y型分子筛,所述低稀土含量的Y型分子筛中稀土的含量以RE 2O 3计小于5重量%,所述Y型分子筛的硅铝比(SiO 2/Al 2O 3摩尔比),例如为4-18或4.5-15。所述的Y型分子筛,例如DASY分子筛、含稀土的DASY分子筛、HRY分子筛、含稀土的HRY分子筛、DOSY分子筛、USY分子筛、含稀土的USY分子筛、HY分子筛、REHY分子筛中的一种或多种,优选为HY分子筛、DASY分子筛和USY分子筛中的一种或多种。
在进一步优选的实施方式中,所述孔道开口直径为0.65-0.70纳米的分子筛为具有AET、AFR、AFS、AFI、BEA、BOG、CFI、CON、GME、IFR、ISV、LTL、MEI、MOR、OFF和SAO结构的分子筛中的一种或多种;优选为Beta、SAPO-5、SAPO-40、SSZ-13、CIT-1、ITQ-7、ZSM-18、丝光沸石和钠菱沸石或者它们的组合,更优选为β分子筛,例如可以是氢型β分子筛。
第一类实施方式
本申请催化剂的第一类实施方式为一种加氢VGO催化裂化催化剂,其含有包括硅溶胶和改性元素的载体,以及根据本申请的核壳型分子筛,其中,所述催化剂中按干基重量计载体的含量为50-90重量%,优选为55-75重量%或60-85重量%,按干基重量计核壳型分子筛含量为10-50重量%,优选20-45重量%或15-40重量%,且以干基重量计的硅溶胶含量为1-15重量%,例如5-15重量%,改性元素化合物的含量为0.1-12重量%,例如0.5-10重量%。
在本申请催化剂的第一类实施方式中,优选地,至少部分所述的改性元素处于所述的硅溶胶中,更优选地,所述的改性元素全部处于所述的硅溶胶中,所述改性元素为稀土元素。含稀土元素的硅溶胶,本申请称为改性硅溶胶,优选地,所述改性硅溶胶中,以RE 2O 3计的稀土与以SiO 2计的硅溶胶的重量比为0.2-18∶100优选1-18∶100。
在本申请催化剂的第一类实施方式中,优选地,所述载体还包括拟薄水铝石、铝溶胶和粘土中的一种或多种。进一步优选地,按干基重量计,所述催化剂中硅溶胶的含量为1-15重量%,拟薄水铝石的含量为5-25重量%,铝溶胶的含量为3-20重量%,粘土的含量为25-50重量%。以载体的干基重量为基准,所述载体中稀土氧化物的含量以RE 2O 3计为大于0-15重量%,例如为0.1-15重量%、1-15重量%、0.5-5重量%或0.2-10重量%。
根据本申请催化剂的第一类实施方式的加氢VGO催化裂化催化剂用于加氢VGO的催化转化时,具有较高的重油收率和较高的乙烯、丙烯收率。
本申请的第一类实施方式的催化剂可通过包括如下步骤的方法制备:形成包括硅溶胶、改性元素化合物、根据本申请的核壳型分子筛的第一浆液,以及喷雾干燥,其中所述改性元素为稀土元素。
优选地,第一类实施方式的催化剂的制备方法包括如下步骤:
i)按照本申请的ZSM-5/β核壳型分子筛合成方法制备得到钠型核壳型分子筛;
ii)对步骤i)所得的钠型核壳型分子筛进行铵交换,使该核壳型分子筛中的Na 2O含量小于0.15重%;
iii)将步骤ii)得到的核壳型分子筛干燥,并在400-600℃下焙烧2-10h,得到氢型核壳型分子筛;以及
iv)形成包括稀土盐、硅溶胶与步骤iii)得到的氢型核壳型分子筛的第一浆液,并喷雾干燥,得到所述催化剂。
进一步优选地,步骤ii)中所述的铵交换包括按照钠型核壳型分子筛∶铵盐∶H 2O=1∶(0.1-1)∶(5-15)的重量比在50-100℃下交换,随后过滤,该过程可进行一次或多次;所述铵盐选自氯化铵、硫酸铵、硝酸铵中的一种或多种的混合物。
在本申请的第一类实施方式中,步骤iii)中将步骤ii)得到的核壳型分子筛干燥后焙烧以脱除模板剂,得到Na含量降低的核壳型分子筛(即,氢型核壳型分子筛)。
在本申请的第一类实施方式中,优选地,所述载体除了含有硅溶胶和改性元素外,还可以含有催化裂化催化剂中常规使用的各种载体,本申请对其没有特别的限制。例如,所述载体还可以包括天然粘土/氧化铝载体、天然粘土/氧化铝/氧化硅载体(除了所述硅溶胶以外的氧化硅载体),所述的氧化铝载体可以是例如铝溶胶和/或拟薄水铝石。优选地,硅溶胶的加入量使所得催化剂中,以干基重量计硅溶胶的含量为1-15重量%。
进一步优选地,步骤iv)中所述的第一浆液中包括硅溶胶、改性元素化合物,任选地还包括粘土、铝溶胶、拟薄水铝石中的一种或多种。特别优选地,所述的拟薄水铝石用酸酸化后,然后与硅溶胶、铝溶胶、改性元素化合物、粘土混合打浆,得到第一浆液。
进一步优选地,在步骤iv)中先将改性元素化合物与硅溶胶混合,形成改性硅溶胶,再引入到所述的第一浆液中。所述改性元素化合物,例如稀土盐。优选地,稀土盐先加入到硅溶胶中,得到稀土改性硅溶胶,然后再与其它物料,例如核壳型分子筛、其它载体、水混合打浆。更优选地,先将核壳型分子筛与改性硅溶胶混合形成第二浆液,然后将所述第二浆液与其它载体,例如酸化拟薄水铝石、铝溶胶、粘土和任选的水混合形成第一浆液。
在本申请的第一类实施方式中,优选地,所述稀土元素包括镧和/或铈,其中镧和/或铈的量为稀土总量的50重量%以上。稀土盐可以是氯化稀土和/或硝酸稀土。
在本申请的第一类实施方式中,优选地,所说的硅溶胶可以为中性硅溶胶、酸性硅溶胶或碱性硅溶胶中的一种或多种。
在本申请的第一类实施方式中,优选地,稀土盐的用量使所述载体中氧化稀土的含量以RE 2O 3计为1-15重量%。
在本申请的第一类实施方式中,优选地,步骤iv)中所得第一浆液的固含量一般为10-50重量%,优选为15-30重量%。
在本申请的第一类实施方式中,步骤iv)中喷雾干燥的条件可以 为催化裂化催化剂制备过程中常用的条件。一般来说,喷雾干燥温度为100-350℃,优选为200-300℃。
在本申请的第一类实施方式中,优选地,喷雾干燥得到的催化剂还可以进行交换洗涤,可以用铵盐溶液进行交换洗涤。例如,所述的交换洗涤可以按照催化剂∶铵盐∶H 2O=1∶(0.01-1)∶(5-15)的重量比在50-100℃下交换,随后过滤,该过程可进行一次或多次;所述铵盐可选自氯化铵、硫酸铵、硝酸铵中的一种或多种的混合物。优选地,所述交换洗涤使得到的催化剂中Na 2O含量小于0.15重量%。交换洗涤后的催化剂可以进行干燥。
在本申请的第一类实施方式中,优选地,所述催化剂的制备方法在步骤iv)之后还可以包括焙烧步骤,所述焙烧可以在交换洗涤以前进行和/或在交换洗涤以后进行。所述焙烧可以采用常规的焙烧方法,例如焙烧温度为400-650℃,焙烧时间为2-10小时,一种实施方式,在450-580℃焙烧2-6h。
在本申请的第一类实施方式中,优选地,所述步骤iv)进一步包括:A)制备稀土改性载体;所述稀土可以处于所有的载体中,也可以处于部分载体中,例如处于硅溶胶中、粘土中、拟薄水铝石中或铝溶胶中的一种或多种中;例如可以等体积浸渍法引入稀土对部分载体,例如粘土进行改性,烘干后,在350-600℃下焙烧0.5-5h,也可以在硅溶胶、铝溶胶或拟薄水铝石浆液中加入稀土盐得到改性的硅溶胶、改性的铝溶胶或改性的拟薄水铝石,然后再加入到第一浆液中;优选地,所述的稀土盐加入到硅溶胶中;以及B)使稀土改性载体、任选的未经所述改性元素改性的载体与核壳型分子筛、水混合,打浆,喷雾干燥。
在本申请的第一类实施方式中,特别优选地,所述步骤iv)进一步包括:
a)将拟薄水铝石与水打浆,形成浆液,加入酸所述酸,例如盐酸或硝酸,老化;
b)将硅溶胶与稀土盐混合,得到改性硅溶胶;
c)将改性硅溶胶、核壳型分子筛、老化拟薄水铝石、铝溶胶、粘土、水混合,打浆得到第一浆液;优选地,先将核壳型分子筛与改性 硅溶胶混合,然后将所得混合物与老化拟薄水铝石、铝溶胶、粘土、任选的水混合;以及
d)将第一浆液喷雾干燥,得到催化剂微球。
进一步优选地,所述催化剂的制备方法进一包括:v)将步骤iv)得到的催化剂在450-580℃焙烧2-6h;以及vi)对焙烧后的催化剂进行铵交换洗涤,使催化剂中的Na 2O含量小于0.15重量%。
在第一类实施方式中,本申请还提供了根据所述催化剂制备方法制备的催化剂。
根据本申请的第一类实施方式的催化剂,用于加氢VGO催化裂化时,与现有催化剂相比,可以多产重油,并具有更高的乙烯收率和丙烯收率,优选情况下,其中的C3 /C3 0>8。
第二类实施方式
本申请催化剂的第二类实施方式为一种加氢LCO生产低碳烯烃的催化裂解催化剂,该催化剂按干基重量计含有50-85重量%的载体,10-35重量%、优选10-25重量%的根据本申请的核壳型分子筛,5-15重量%、优选8-12重量%的孔道开口直径为0.65-0.70纳米的分子筛(也称为第二分子筛)。
根据本申请催化剂的第二类实施方式,其中所述催化剂中的载体可以是催化裂解催化剂中常规使用的载体,例如,所述的载体可以包括粘土、氧化铝载体、氧化硅载体、氧化硅-氧化铝载体、磷铝胶中的一种或多种;任选的,所述载体可以包括添加剂,例如磷氧化物、碱土金属氧化物。优选地,所述载体为粘土和氧化铝载体、或为粘土、氧化铝载体和氧化硅载体。优选地,所述载体包括氧化硅载体。所述氧化硅载体例如为固体硅胶载体和/或硅溶胶载体,更优选为硅溶胶载体。进一步优选地,所述催化剂中氧化硅载体的含量以SiO 2计为0-15重量%,例如为1-15重量%或10-15重量%或5-15重量%。
本申请催化剂的第二类实施方式中,优选地,按照干基重量计,所述的催化剂包括15-40重量%核壳型分子筛、35-50重量%粘土、10-30重量%酸化拟薄水铝石(拟薄水铝石简称铝石)、5-15重量%铝溶胶和0-15重量%,例如5-15重量%硅溶胶。
本申请的第二类实施方式的催化剂可通过包括如下步骤的方法制备:形成包括根据本申请的核壳型分子筛、第二分子筛、载体与水的第一浆液,以及喷雾干燥,其中所述第二分子筛为孔道开口直径为0.65-0.70纳米的分子筛。
优选地,当所述核壳型分子筛为钠型核壳型分子筛时,可以先将所述核壳型分子筛进行铵交换,然后与第二分子筛、载体和水打浆。
优选地,第二类实施方式的催化剂的制备方法包括如下步骤:
i)按照本申请的ZSM-5/β核壳型分子筛合成方法制备得到钠型核壳型分子筛;
ii)对所得钠型核壳型分子筛进行铵交换,使该核壳型分子筛中的Na 2O含量小于0.15重%;
iii)将步骤ii)得到的核壳型分子筛干燥,并在400-600℃下焙烧2-10h,得到氢型核壳型分子筛;以及
iv)将步骤iii)所得的氢型核壳型分子筛、孔道开口直径为0.65-0.70纳米的分子筛、载体和水打浆得到所述第一浆液,并喷雾干燥,任选焙烧,得到所述催化剂。
进一步优选地,步骤ii)中所述的铵交换包括:按照钠型核壳型分子筛∶铵盐∶H 2O=1∶(0.1-1)∶(5-15)的重量比使核壳型分子筛与铵盐溶液在50-100℃下接触进行交换,随后过滤,该铵交换过程进行一次或二次以上;所述铵盐选自氯化铵、硫酸铵、硝酸铵中的一种或几种的混合物。
在本申请的第二类实施方式中,所述载体可以是催化裂解催化剂中常用的载体。优选地,所述载体包括粘土、氧化铝载体、氧化硅载体、磷铝胶、硅铝氧化物载体中的一种或多种。所述包括核壳型分子筛与载体的浆液中,以干基重量计,核壳型分子筛与载体的重量比为15-50∶50-85,例如为25-45∶55-75。所述含核壳型分子筛与载体的浆液的固含量一般为10-50重量%,优选为15-30重量%。
在本申请的第二类实施方式中,优选地,所述的载体包括粘土和具有粘结功能的载体。所述具有粘结功能的载体可以为例如氧化硅载体、氧化铝载体、磷铝胶中的一种或多种,所述氧化硅载体,例如为硅溶胶,所述氧化铝载体,例如为铝溶胶和/或酸化的拟薄水铝石。进 一步优选地,所述具有粘结功能的载体包括酸化拟薄水铝石、铝溶胶和硅溶胶中的一种或多种。例如,所述具有粘结功能的载体可以包括铝溶胶和/或酸化拟薄水铝石;或者所述具有粘结功能的载体包括硅溶胶,任选还包括铝溶胶和/或酸化拟薄水铝石;硅溶胶的加入量使得到的催化剂中源自硅溶胶的氧化硅含量(以SiO 2计)为1-15重量%。
在本申请的第二类实施方式中,优选地,以干基重量计,所述包括核壳型分子筛、第二分子筛和载体的第一浆液中,核壳型分子筛∶第二分子筛∶粘土∶铝溶胶∶酸化拟薄水铝石∶硅溶胶重量比为(15-40)∶(5-15)∶(35-50)∶(5-15)∶(10-30)∶(0-15)。
在本申请的第二类实施方式中,优选地,所述的第二分子筛,即孔道开口直径为0.65-0.70纳米的分子筛,选自具有AET、AFR、AFS、AFI、BEA、BOG、CFI、CON、GME、IFR、ISV、LTL、MEI、MOR、OFF和SAO结构的分子筛或者它们的组合。优选为Beta、SAPO-5、SAPO-40、SSZ-13、CIT-1、ITQ-7、ZSM-18、丝光沸石和钠菱沸石或者它们的组合。进一步优选地,第二分子筛为β分子筛,所述β分子筛优选为Hβ分子筛,其硅铝比(SiO 2/Al 2O 3摩尔比)优选为10-500。
在本申请的第二类实施方式中,优选地,所述包括核壳型分子筛、第二分子筛、载体与水的浆液中还可含有添加剂。所述的添加剂可以添加到部分载体中,也可以添加到全部载体中,还可以加入到核壳型分子筛、第二分子筛、载体与水的浆液形成的第一浆液中。所述的添加剂,例如磷氧化物添加剂、金属氧化物添加剂;所述金属氧化物添加剂,例如碱土金属氧化物或它们的前驱体中的一种或多种。
在本申请的第二类实施方式中,优选地,步骤iv)包括:将核壳型分子筛、第二分子筛、粘土、氧化硅粘结剂和/或氧化铝粘结剂、任选的无机氧化物基质和水混合打浆形成浆液,打浆形成的浆液的固含量一般为10-50重量%,优选为15-30重量%;然后喷雾干燥,任选焙烧,得到所述催化剂。所述喷雾干燥的条件可以为催化裂解催化剂制备过程中常用的喷雾干燥条件。一般来说,喷雾干燥温度可以为100-350℃,优选为150-300℃,例如200-300℃。当载体中含有添加剂时候,所述的添加剂可以在干燥前加入到浆液中,或者在干燥后引入,例如通过浸渍的方法引入。所述焙烧条件:焙烧温度,例如550℃,焙 烧时间,例如6h。
在本申请的第二类实施方式中,步骤iv)的喷雾干燥后,还可以包括离子交换的步骤。优选地,所述交换使得到的催化裂解催化剂中氧化钠含量不超过0.15重量%。所述交换可以采用铵盐溶液。例如,所述的铵交换可以按照催化剂∶铵盐∶H 2O=1∶(0.1-1)∶(5-15)的重量比在50-100℃下使催化剂与铵盐溶液接触、过滤,该过程可进行一次或多次,例如至少进行二次;所述铵盐可以为氯化铵、硫酸铵、硝酸铵中的一种或几种的混合物。任选的,还包括洗涤的步骤,以洗去催化剂中交换出来的钠离子,可以用水洗涤,例如可以用脱阳离子水、蒸馏水或去离子水洗涤。
在本申请的第二类实施方式中,步骤iv)的喷雾干燥后,还可以包括焙烧的步骤,所述焙烧可以在上述的离子交换以前进行也可以在该离子交换以后进行。焙烧的方法可采用现有技术焙烧方法,优选地,焙烧温度为400-600℃,焙烧时间为2-6小时。
在第二类实施方式中,本申请还提供了根据所述催化剂制备方法制备的催化剂。
根据本申请的第二类实施方式的催化剂具有优异的加氢LCO裂解能力和更高的低碳烯烃收率,用于加氢LCO转化,可以具有较高的转化率和较高低碳烯烃收率。
第三类实施方式
本申请催化剂的第三类实施方式为一种催化裂化催化剂,以干基重量计并以所述组合物的重量为基准,其含有30-83重量%、优选为55-75重量%的载体、2-20重量%、优选8-15重量%的根据本申请的ZSM-5/β核壳型分子筛和15-50重量%、优选25-35重量%的Y型分子筛。
在本申请催化剂的第三类实施方式中,优选地,所述载体可以为粘土、氧化硅载体和氧化铝载体中的一种或多种。进一步优选地,所述载体包括铝溶胶、拟薄水铝石、硅溶胶和粘土中的一种或多种。
在本申请催化剂的第三类实施方式中,优选地,所述催化剂中含有硅溶胶载体以及其它载体,以SiO 2计硅溶胶载体含量为1-15重量%, 例如5-15重量%,所述其它载体包括铝溶胶、拟薄水铝石和粘土中的一种或多种。
在本申请催化剂的第三类实施方式中,所述的Y型分子筛,可以含或不含稀土,含或不含磷。Y型分子筛中稀土含量以RE 2O 3计为0-25重量%,磷含量以P 2O 5计可以为0-10重量%。所述的Y型分子筛,例如可以为HY分子筛、REY分子筛、REHY分子筛、DASY分子筛、含稀土的DASY分子筛、USY分子筛、含稀土的USY分子筛、含磷和稀土的DASY分子筛、含磷和稀土的USY分子筛、PSRY分子筛、含稀土的PSRY分子筛、含稀土的HRY分子筛、HRY分子筛中的一种或多种。
根据本申请的第三类实施方式的催化剂可用于重油转化生产低碳烯烃,并可以实现较高的重油转化率,较高的乙烯、丙烯和丁烯收率,还可以实现较高的液化气收率。
本申请的第三类实施方式的催化剂可通过包括如下步骤的方法制备:形成包括根据本申请的核壳型分子筛、Y型分子筛、载体和水的第一浆液,以及喷雾干燥。
优选地,第三类实施方式的催化剂的制备方法包括如下步骤:
i)按照本申请的ZSM-5/β核壳型分子筛合成方法制备钠型核壳型分子筛;
ii)对步骤i)所得的钠型核壳型分子筛进行铵交换,使该核壳型分子筛中的Na 2O含量小于0.15重%;
iii)将步骤ii)得到的核壳型分子筛干燥,并在400-600℃下焙烧2-10h,得到氢型核壳型分子筛;以及
iv)形成包括步骤iii)得到的氢型核壳型分子筛、Y型分子筛、载体和水的第一浆液,并喷雾干燥,得到所述催化剂。
进一步优选地,步骤ii)中所述的铵交换包括:按照核壳型分子筛∶铵盐∶H 2O=1∶(0.1-1)∶(5-15)的重量比在50-100℃下交换,随后过滤,该过程可进行一次或多次;所述铵盐,例如为氯化铵、硫酸铵、硝酸铵中的一种或多种。
进一步优选地,步骤iv)中形成的第一浆液的固含量一般为10-50重量%,优选为15-30重量%。
在本申请的第三类实施方式中,步骤iv)中所述的喷雾干燥可以采用常规的喷雾干燥方法,喷雾干燥条件为催化裂化催化剂制备过程中常用的干燥条件。一般来说,喷雾干燥温度为100-350℃,优选为200-300℃。
在本申请的第三类实施方式中,步骤iv)的喷雾干燥得到微球颗粒,该微球颗粒可以直接作为催化裂化催化剂使用,也可以进一步进行交换洗涤和干燥。例如,可以用铵盐溶液进行交换洗涤。优选地,所述的交换洗涤按照催化剂∶铵盐∶H 2O=1∶(0.01-1)∶(5-15)的重量比在50-100℃下交换,随后过滤,该过程可进行一次或多次;所述铵盐选自氯化铵、硫酸铵、硝酸铵中的一种或多种的混合物。优选地,所述交换洗涤是使得到的催化裂化催化剂中Na 2O含量小于0.15重量%。交换洗涤后的催化剂可进行干燥。
在本申请的第三类实施方式中,任选地,步骤iv)的喷雾干燥以后还可以包括焙烧的步骤,所述焙烧可以在所述交换洗涤以前进行和/或在交换洗涤以后进行。所述焙烧可以采用常规的焙烧方法,例如焙烧温度为400-600℃,焙烧时间为2-10小时,例如2-4小时,优选地,在450-580℃焙烧2-6h。
在第三类实施方式中,本申请还提供了根据所述催化剂制备方法制备的催化剂。
第四类实施方式
本申请催化剂的第四类实施方式为一种中间基原油催化裂解催化剂,按干基重量计,其含有50-79重量%的载体,15-35重量%的根据本申请的ZSM-5/β核壳型分子筛,5-10重量%的Y型分子筛,1-5重量%的孔道开口直径为0.65-0.70纳米的分子筛。
在本申请催化剂的第四类实施方式中,优选地,所述的Y型分子筛为不含稀土的Y型分子筛或低稀土含量的Y型分子筛,所述低稀土含量的Y型分子筛中稀土的含量以RE 2O 3计小于5重量%,所述Y型分子筛的硅铝比(SiO 2/Al 2O 3摩尔比),例如为4-18或4.5-15。所述的Y型分子筛,例如DASY分子筛、含稀土的DASY分子筛、HRY分子筛、含稀土的HRY分子筛、DOSY分子筛、USY分子筛、含稀土的 USY分子筛、HY分子筛、REHY分子筛中的一种或多种,优选为HY分子筛、DASY分子筛和USY分子筛中的一种或多种。
在本申请催化剂的第四类实施方式中,所述孔道开口直径为0.65-0.70纳米的分子筛可以为例如具有AET、AFR、AFS、AFI、BEA、BOG、CFI、CON、GME、IFR、ISV、LTL、MEI、MOR、OFF和SAO结构的分子筛中的一种或多种;优选为Beta、SAPO-5、SAPO-40、SSZ-13、CIT-1、ITQ-7、ZSM-18、丝光沸石和钠菱沸石或者它们的组合,更优选为β分子筛,例如可以是氢型β分子筛。
在本申请催化剂的第四类实施方式中,所述的载体可以为催化裂化催化剂中常规使用的载体,例如可以是铝溶胶载体、锆溶胶载体、拟薄水铝石载体、硅溶胶、粘土载体中的一种或多种。
在本申请催化剂的第四类实施方式中,优选地,按干基重量计并以所述催化剂的重量为基准,所述催化剂含有50-79重量%、优选55-75重量%的载体;15-35重量%、优选20-30重量%的核壳型分子筛;5-10重量%的Y型分子筛和1-5重量%的孔道开口直径为0.65-0.70纳米的分子筛。
根据本申请的第四类实施方式的催化剂具有更丰富的孔道结构,具有更优异的中间基原油裂解能力和更高的低碳烯烃收率。
本申请的第四类实施方式的催化剂可通过包括如下步骤的方法制备:形成包含根据本申请的核壳型分子筛、Y型分子筛、孔道开口直径为0.65-0.70纳米的分子筛、载体和水的第一浆液,以及喷雾干燥。
优选地,第四类实施方式的催化剂的制备方法包括如下步骤:
i)按照本申请的ZSM-5/β核壳型分子筛合成方法制备得到钠型核壳型分子筛;
ii)对步骤i)所得的钠型核壳型分子筛进行铵交换,使该核壳型分子筛中的Na 2O含量小于0.15重%;
iii)将步骤ii)得到的核壳型分子筛干燥,并在350-600℃下焙烧2-6h,得到氢型核壳型分子筛;以及
iv)形成包含步骤iii)得到的氢型核壳型分子筛、Y型分子筛、孔道开口直径为0.65-0.70纳米的分子筛、载体和水的第一浆液,并喷雾干燥,得到所述催化剂。
在本申请的第四类实施方式中,步骤iv)中所说的载体可以为粘土、氧化铝载体、氧化硅载体中的一种或多种。所述的氧化铝载体,例如为拟薄水铝石、铝溶胶中的一种或多种,其中拟薄水铝石优选经过酸化后再与其它组分混合。优选地,所说的氧化硅载体为中性硅溶胶、酸性硅溶胶或碱性硅溶胶中的一种或多种;优选地,所述催化剂中硅溶胶含量以SiO 2计为1-15重量%。
在本申请的第四类实施方式中,优选地,步骤iv)中形成的第一浆液的固含量一般为10-50重量%,优选为15-30重量%。
在本申请的第四类实施方式中,步骤iv)中的喷雾干燥条件可以为催化裂解催化剂制备过程中常用的干燥条件。一般来说,喷雾干燥温度为100-350℃,优选为200-300℃。
在本申请的第四类实施方式中,步骤iv)的喷雾干燥得到的催化剂还可以进行交换洗涤,例如可以用铵盐溶液进行交换洗涤。优选地,所述的交换洗涤按照催化剂∶铵盐∶H 2O=1∶(0.01-1)∶(5-15)的重量比在50-100℃下交换,随后过滤,该过程可进行一次或多次;所述铵盐选自氯化铵、硫酸铵、硝酸铵中的一种或多种的混合物。优选地,所述交换洗涤使得到的催化裂解催化剂中Na 2O含量小于0.15重量%。交换洗涤后的催化剂可进行干燥。
在本申请的第四类实施方式中,所述催化剂的制备方法还可以在步骤iv)之后包括焙烧步骤,所述焙烧可以在上述的交换洗涤以前进行和/或在交换洗涤以后进行。所述焙烧可以采用常规的焙烧方法,例如焙烧温度为350-650℃,焙烧时间为1-4小时,优选地,在400-600℃焙烧2-6h。
在本申请的第四类实施方式中,优选地,步骤iv)的喷雾干燥得到催化剂微球;该催化剂微球可以直接作为催化裂化催化剂使用。
任选地,在本申请的第四类实施方式中,所述催化剂的制备方法可以进一步包括:
v)将步骤iv)得到的催化剂微球在400-600℃焙烧2-6h;以及
vi)将步骤v)焙烧后的催化剂,进行铵交换洗涤,使催化剂中的Na 2O含量小于0.15重量%。
在第四类实施方式中,本申请还提供了根据所述催化剂制备方法 制备的催化剂。
根据本申请的第四类实施方式的催化剂用于中间基原油的催化裂解时,重油裂化能力更强,低碳烯烃收率更高,液化气收率更高。
烃油催化转化方法
如上所述,在第四方面,本申请提供了一种烃油催化转化方法,包括使烃油原料与根据本申请的催化剂接触反应的步骤。
在某些优选实施方式中,所述方法用于加氢VGO的催化裂化,包括将加氢VGO与根据本申请的第一类实施方式的催化剂接触反应的步骤。
进一步优选地,所述用于加氢VGO催化裂化的方法的反应条件包括:反应温度为500-550℃,优选为510-540℃,重时空速5-30小时 -1,优选为8-20小时 -1,剂油比1-15,优选2-12。
根据本申请的优选实施方式的用于加氢VGO催化裂化的方法,可以较现有加氢VGO转化方法具有更高的燃料油收率,同时可以多产低碳烯烃,具有较高的乙烯和丙烯收率。所得重油性能可以符合低硫船用燃料标准需求,所得重油可作为低硫重质船用燃料或船用燃料调和组分。优选情况下,C3 (丙烯)/C3 0(丙烷)>8。
在另一些优选实施方式中,所述方法用于加氢LCO的催化裂解,包括将加氢LCO与根据本申请的第二类实施方式的催化剂接触反应的步骤。
进一步优选地,所述用于加氢LCO催化裂解的方法的反应条件包括:反应温度为550-620℃,优选为560-600℃;重时空速5-30h -1,优选为8-20h -1;剂油比1-15,优选2-12。
在另一些优选实施方式中,所述方法用于重油的催化裂化,包括将重油原料与根据本申请的第三类实施方式的催化剂在催化裂化条件下接触反应的步骤。
进一步优选地,所述催化裂化条件包括:反应温度为450-600℃,优选为500-550℃;重时空速5-30小时-1,优选为8-20小时-1;剂油比1-15,优选2-12。
在另一些优选实施方式中,所述方法用于中间基原油催化裂解生 产低碳烯烃,包括使中间基原油与根据本申请的第四类实施方式的催化剂接触反应的步骤。
所述用于中间基原油催化裂解生产低碳烯烃的方法的反应条件可以是重油催化裂解常规的反应条件,优选地,反应条件包括:反应温度为550-620℃,例如为560-600℃,重时空速0.5-30小时 -1,优选1-20,剂油比为1-15,优选2-12。
在某些优选实施方式中,本申请提供了如下的技术方案:
A1、一种ZSM-5/β核壳型分子筛,其特征在于,
所述ZSM-5/β核壳型分子筛X射线衍射谱图中2θ=22.4°处的衍射峰的峰高与2θ=23.1°处的衍射峰的峰高之比为0.1-10∶1。
A2、根据项目A1所述的ZSM-5/β核壳型分子筛,其中,所述2θ=22.4°处的衍射峰的峰高与2θ=23.1°处的衍射峰的峰高之比为0.1-5∶1。
A3、根据项目A1所述的ZSM-5/β核壳型分子筛,其中,所述ZSM-5/β核壳型分子筛核相与壳层的质量比例为0.2-20∶1或1-15∶1。
A4、根据项目A1所述的ZSM-5/β核壳型分子筛,其中,所述ZSM-5/β核壳型分子筛的总比表面积大于420m 2/g,例如为450-620或490-580m 2/g,中孔表面积占总表面积的比例优选为10-40%,例如12-35%。
A5、根据项目A1所述的ZSM-5/β核壳型分子筛,其中,所述ZSM-5/β核壳型分子筛的壳层分子筛的平均晶粒尺寸为10-500nm,例如50-500nm。
A6、根据项目A1所述的ZSM-5/β核壳型分子筛,其中,所述ZSM-5/β核壳型分子筛的壳层的厚度是10-2000nm,例如是50-2000nm。
A7、根据项目A1所述的ZSM-5/β核壳型分子筛,其中,所述ZSM-5/β壳层分子筛的硅铝摩尔比以SiO 2/Al 2O 3计为10-500,例如为25-200。
A8、根据项目A1所述的ZSM-5/β核壳型分子筛,其中,所述ZSM-5/β核壳型分子筛的核相分子筛的硅铝比以SiO 2/Al 2O 3计为10-∞,例如30-200。
A9、根据项目A1所述的ZSM-5/β核壳型分子筛,其中,所述ZSM-5/β核壳型分子筛的核相分子筛的平均晶粒尺寸是0.05-15μm,优选为0.1-10μm。
A10、根据项目A1或A9所述的ZSM-5/β核壳型分子筛,其中,所述核相分子筛单个颗粒中晶粒的个数不少于2个,核相分子筛的平均颗粒尺寸优选为0.1-30μm。
A11、根据项目A1所述的ZSM-5/β核壳型分子筛,其中,所述ZSM-5/β核壳型分子筛壳层覆盖度为50-100%,例如80-100%。
A12、根据项目A1所述的ZSM-5/β核壳型分子筛,其中,所述的核壳型分子筛中孔直径2-80nm孔的孔体积占总孔体积的10-30%。
A13、根据项目A1或A12所述的ZSM-5/β核壳型分子筛,其中,所述的核壳型分子筛中孔直径20-80nm孔的孔体积占2-80nm孔的孔体积的50-70%。
A14、根据项目A1-A13任一项所述的ZSM-5/β核壳型分子筛,其中,所述ZSM-5/β核壳型分子筛孔直径为0.3-0.6nm的孔的孔体积占总孔体积的40-88%,孔直径0.7-1.5nm的孔的孔体积占总孔体积的3-20%,孔直径2-4nm的孔的孔体积占总孔体积的4-50%,孔直径20-80nm的孔的孔体积占总孔体积的5-40%。
A15、一种ZSM-5/β核壳型分子筛的合成方法,包括如下步骤:
(1)使ZSM-5分子筛与表面活性剂溶液接触得到ZSM-5分子筛材料I;
(2)使ZSM-5分子筛材料I与含β分子筛的浆液接触,得到ZSM-5分子筛材料II;
(3)使含有硅源、铝源、模板剂、水的合成液在50-300℃晶化4-100h,得到预晶化合成液III;
(4)使ZSM-5分子筛材料II与预晶化合成液III混合,晶化。
A16、根据项目A15所述的方法,其中,步骤1)中所述接触通过如下方式进行:将ZSM-5分子筛加入到重量百分浓度为0.05-50%的表面活性剂溶液中接触至少0.5h,过滤,干燥,得到ZSM-5分子筛材料I。
A17、根据项目A15或A16所述的方法,其中,步骤1)中所述接 触,接触时间是1-36h,接触温度是20-70℃。
A18、根据项目A15或A16所述的方法,其中,所述表面活性剂溶液中还含有盐,所述表面活性剂溶液中盐的浓度为0.05-10.0重量%;所述的盐,例如选自氯化钠、氯化钾、氯化铵、硝酸铵或者它们的组合。
A19、根据项目A15-A18中任一项所述的方法,其中,步骤1)中表面活性剂溶液与以干基重量计的ZSM-5分子筛的重量比为10-200∶1。
A20、根据项目A15所述的方法,其中,所述表面活性剂选自聚甲基丙烯酸甲酯、聚二烯丙基二甲基氯化铵、吡啶二羧酸、氨水、乙胺、正丁胺、四乙基氢氧化铵、四丙基氢氧化铵、四乙基溴化铵、四丙基溴化铵、四丁基氢氧化铵或者它们的组合。
A21、根据项目A15所述的方法,其中,步骤1)所述ZSM-5分子筛是钠型、氢型或离子交换的ZSM-5分子筛。
A22、根据项目A15或A16所述的方法,其中,步骤1)所述ZSM-5分子筛的硅铝摩尔比以SiO 2/Al 2O 3计为10-∞;例如步骤1)所述ZSM-5分子筛的硅铝摩尔比以SiO 2/Al 2O 3计为30-200。
A23、根据项目A15所述的方法,其中,步骤1)所述ZSM-5分子筛平均晶粒尺寸为0.05-20μm;例如步骤1)所述ZSM-5分子筛平均晶粒尺寸是0.1-10μm;所述ZSM-5分子筛平均颗粒尺寸优选为0.1-30μm。
A24、根据项目A15所述的方法,其中,步骤2)中所述接触包括:将ZSM-5分子筛材料I加入到含β分子筛的浆液中,在20-60℃下搅拌至少0.5小时,然后过滤,干燥得到ZSM-5分子筛材料II。
A25、根据项目A15所述的方法,其中,步骤2)所述含β分子筛的浆液中β分子筛的浓度为0.1-10重量%,例如0.3-8重量%。
A26、根据项目A15或A25所述的方法,其中,步骤2)中,含β分子筛的浆液与以干基重量计的ZSM-5分子筛材料I的重量比为10-50∶1。
A27、根据项目A15所述的方法,其中,步骤2)所述含β分子筛的浆液中,β分子筛的平均晶粒尺寸为0.01-0.5μm,例如为0.05-0.5μm; 所述β分子筛的平均颗粒尺寸优选为0.01-0.5μm。
A28、根据项目A15所述的方法,其中,步骤2)所述所述含β分子筛的浆液中β分子筛的硅铝摩尔比以SiO 2/Al 2O 3计为10-500。
A29、根据项目A15所述的方法,其中,步骤3)中,硅源、铝源、模板剂、水的摩尔比为:R/SiO 2=0.1-10∶1,例如0.1-3∶1,H 2O/SiO 2=2-150∶1,例如10-120∶1,SiO 2/Al 2O 3=10-800∶1,Na 2O/SiO 2=0-2∶1,例如为0.01-1.7∶1,其中R表示模板剂。
A30、根据项目A15或A29所述的方法,其中,步骤3)中,所述硅源选自正硅酸乙酯、水玻璃、粗孔硅胶、硅溶胶、白炭黑、活性白土或者它们的组合;所述铝源选自硫酸铝、异丙醇铝、硝酸铝、铝溶胶、偏铝酸钠、γ-氧化铝或者它们的组合;所述模板剂选自四乙基氟化铵、四乙基氢氧化铵、四乙基溴化铵、四乙基氯化铵、聚乙烯醇、三乙醇胺或羧甲基纤维素钠、或者它们的组合。
A31、根据项目A15所述的方法,其中,步骤3)中,将所述硅源、铝源、模板剂、去离子水混合,形成合成液,然后于75-250℃下晶化10-80h,得到预晶化合成液III。
A32、根据项目A31所述的方法,其中,步骤3)中所述晶化:晶化温度为80-180℃,晶化时间为18小时-50小时。
A33、根据项目A15或A32所述的方法,其中,步骤3)所得到的预晶化合成液III进行XRD分析,在2θ=22.4°处有谱峰存在,在2θ=21.2°处没有谱峰存在。
A34、根据项目A15所述的方法,其中,步骤4)中,所述ZSM-5分子筛材料II与预晶化合成液III混合,预晶化合成液III与以干基重量计的ZSM-5分子筛材料II的重量比为2-10∶1,例如4-10∶1。
A35、根据项目A15或A31或A32所述的方法,其中,步骤4)中所述晶化:晶化温度为50-300℃,晶化时间为10-400h。
A36、根据项目A15所述的方法,其中,步骤4)中所述晶化:晶化温度为100-250℃,晶化时间为30-350h,例如步骤4)中所述晶化:晶化温度为100-200℃,晶化时间为50-120h。
A37、项目A12-A36任一项所述ZSM-5/β核壳型分子筛的合成方法得到的ZSM-5/β核壳型分子筛。
A38、项目A1-A14和A37任一项所述ZSM-5/β核壳分子分子筛的应用。
A39、项目A1-A14和A37任一项所述ZSM-5/β核壳分子分子筛在烃油催化裂化或烃油催化裂解中的应用。
B1、一种加氢VGO催化裂化催化剂,含有包括硅溶胶和改性元素的载体和核壳型分子筛;所述的核壳型分子筛核相是ZSM-5分子筛,壳层是β分子筛,其X射线衍射谱图中2θ=22.4°峰高与2θ=23.1°峰高之比为0.1-10∶1,所述改性元素为稀土元素。
B2、根据项目B1所述的催化剂,其中,所述催化剂中,按干基重量计载体的含量为50-90重量%,例如60-85重量%,按干基重量计核壳型分子筛含量为10-50重量%,例如15-40重量%,且以干基重量计的硅溶胶含量为1-15重量%,例如5-15重量%。
B3、根据项目B1或B2所述的催化剂,其中,所述载体还包括拟薄水铝石、铝溶胶和粘土中的一种或多种。
B4、根据项目B3所述的催化剂,其中,按干基重量计,所述催化剂中硅溶胶的含量为1-15重量%,拟薄水铝石的含量为5-25重量%,铝溶胶的含量为3-20重量%,粘土的含量为25-50重量%;优选地,以载体的干基重量为基准,所述载体中,以RE 2O 3计稀土氧化物含量为0.1-15重量%。
B5、根据项目B1或B2所述的催化剂,其中,所述的改性元素部分处于所述的硅溶胶中或全部处于所述硅溶胶中,以RE 2O 3计的稀土与硅溶胶中SiO 2的重量比为0.2∶100-18∶100优选1∶100-18∶100。
B6、根据项目B1所述的催化剂,其中,所述核壳型分子筛核相与壳层的质量比例为0.2-20∶1或1-15∶1。
B7、根据项目B1所述的催化剂,其中,所述核壳型分子筛的总比表面积大于420m 2/g,例如为4490-580m 2/g,所述核壳型分子筛的中孔表面积占总表面积的比例优选为10-40%。
B8、根据项目B1所述的催化剂,其中,所述核壳型分子筛的壳层分子筛的平均晶粒尺寸为10-500nm,例如50-500nm。
B9、根据项目B1所述的催化剂,其中,所述核壳型分子筛的壳层的厚度是50-2000nm。
B10、根据项目B1所述的催化剂,其中,所述核壳型分子筛壳层分子筛的硅铝摩尔比以SiO 2/Al 2O 3计为10-500,例如为25-200。
B11、根据项目B1所述的催化剂,其中,所述核壳型分子筛的核相分子筛的硅铝比以SiO 2/Al 2O 3计为10-∞,例如30-200。
B12、根据项目B1所述的催化剂,其中,所述核壳型分子筛的核相分子筛的平均晶粒尺寸是0.05-15μm。
B13、根据项目B1所述的催化剂,其中,所述所述核壳型分子筛核相分子筛单个颗粒中晶粒的个数不少于2个,所述核壳型分子筛核相分子筛的平均颗粒尺寸优选为0.1-30μm。
B14、根据项目B1-B13任一所述的催化剂,其中,所述核壳型分子筛壳层覆盖度为50-100%,所述核壳型分子筛孔直径20-80nm孔的孔体积占2-80nm孔的孔体积的50-70%。
B15、一种催化裂化催化剂的制备方法,包括:形成包括硅溶胶、改性元素化合物、核壳型分子筛的第一浆液,喷雾干燥;其中所述改性元素为稀土元素。
B16、根据项目B15所述的方法,其特征在于,所述核壳型分子筛的合成方法包括以下步骤:
(1)使ZSM-5分子筛与表面活性剂溶液接触得到ZSM-5分子筛材料I;
(2)使ZSM-5分子筛材料I与含β分子筛的浆液接触,得到ZSM-5分子筛材料II;
(3)使含有硅源、铝源、模板剂、水的合成液在50-300℃晶化4-100h,得到预晶化合成液III;
(4)使ZSM-5分子筛材料II与预晶化合成液III混合,晶化;回收得到钠型核壳型分子筛;
(5)钠型核壳型分子筛铵交换使核壳型分子筛中的Na 2O含量小于0.15重量%;
(6)将步骤(5)得到的核壳型分子筛干燥,焙烧。
B17、根据项目B16所述的方法,其中,步骤1)中所述接触通过如下方式进行:将ZSM-5分子筛加入到重量百分浓度为0.05-50%的表面活性剂溶液中接触至少0.5h,过滤,干燥,得到ZSM-5分子筛材料 I,接触时间是1-36h,接触温度是20-70℃。
B18、根据项目B16所述的方法,其中,所述表面活性剂选自聚甲基丙烯酸甲酯、聚二烯丙基二甲基氯化铵、吡啶二羧酸、氨水、乙胺、正丁胺、四乙基氢氧化铵、四丙基氢氧化铵、四乙基溴化铵、四丙基溴化铵、四丁基氢氧化铵或者它们的组合。
B19、根据项目B16所述的方法,其中,步骤1)所述ZSM-5分子筛的硅铝摩尔比以SiO 2/Al 2O 3计为10-∞,ZSM-5分子筛平均晶粒尺寸为0.05-20μm。
B20、根据项目B16所述的方法,其中,步骤2)中所述接触包括:将ZSM-5分子筛材料I加入到含β分子筛的浆液中,在20-60℃下搅拌至少0.5小时,然后过滤,干燥得到ZSM-5分子筛材料II,所述含β分子筛的浆液中β分子筛的浓度为0.1-10重量%,例如0.3-8重量%,含β分子筛的浆液与以干基重量计的ZSM-5分子筛材料I的重量比为10-50∶1。
B21、根据项目B16所述的方法,其中,步骤3)中,硅源、铝源、模板剂(以R表示)、水的摩尔比为:R/SiO 2=0.1-10∶1,例如0.1-3∶1,H 2O/SiO 2=2-150∶1,例如10-120∶1,SiO 2/Al 2O 3=10-800∶1,Na 2O/SiO 2=0-2∶1,例如为0.01-1.7∶1。
B22、根据项目B16所述的方法,其中,步骤3)中,所述硅源选自正硅酸乙酯、水玻璃、白炭黑、粗孔硅胶、硅溶胶或活性白土或者它们的组合;所述铝源选自硫酸铝、异丙醇铝、偏铝酸钠、硝酸铝、铝溶胶或γ-氧化铝或者它们的组合;所述模板剂为四乙基氟化铵、四乙基氯化铵、四乙基溴化铵、聚乙烯醇、四乙基氢氧化铵、三乙醇胺或羧甲基纤维素钠中的一种或多种。
B23、根据项目B16所述的方法,其中,步骤3)中,将所述硅源、铝源、模板剂、去离子水混合,形成合成液,然后于75-250℃下晶化10-80h,得到预晶化合成液III。
B24、根据项目B23所述的方法,其中,步骤3)中所述晶化:晶化温度为80-180℃,晶化时间为18小时-50小时。
B25、根据项目B16或B23或B24所述的方法,其中,步骤3)所得到的预晶化合成液III进行XRD分析,在2θ=22.4°处有谱峰存在, 在2θ=21.2°处没有谱峰存在。
B26、根据项目B16所述的方法,其中,步骤4)中所述晶化:晶化温度为100-250℃,晶化时间为30-350h,例如步骤4)中所述晶化:晶化温度为100-200℃,晶化时间为50-120h。
B27、根据项目B16所述的方法,其中,步骤(5)所述的铵交换使按照钠型核壳型分子筛∶铵盐∶H 2O=1∶(0.1-1)∶(5-15)的重量比在50-100℃下交换、过滤,该过程进行一次或多次;所述铵盐选自氯化铵、硫酸铵、硝酸铵中的一种或多种的混合物。
B28、根据项目B15所述的方法,其中,所说的第一浆液中包括硅溶胶、改性元素化合物和核壳型分子筛,任选地包括粘土、铝溶胶、拟薄水铝石中的一种或多种;优选地,所述的拟薄水铝石用酸酸化后加入。
B29、根据项目B15所述的方法,其中,所说的硅溶胶为中性硅溶胶、酸性硅溶胶或碱性硅溶胶。
B30、根据项目B15所述的方法,其中,所述载体中以RE 2O 3计氧化稀土的含量为1-15重量%,所述的改性元素化合物为稀土盐,所述稀土盐为氯化稀土或者硝酸稀土;优选地,稀土盐先加入到硅溶胶中,得到稀土改性硅溶胶。
B31、根据项目B15所述的方法,其中,所述稀土元素包括镧和/或铈,其中镧和/或铈的量为稀土总量的50重量%以上。
B32、根据项目B15所述的方法,其中,喷雾干燥得到的催化剂还进行交换洗涤,所述的交换洗涤按照催化剂∶铵盐∶H 2O=1∶(0.01-1)∶(5-15)的重量比在50-100℃下交换、过滤,该交换、过滤过程进行一次或多次;所述铵盐选自氯化铵、硫酸铵、硝酸铵中的一种或多种的混合物。
B33、项目B15-B32任一方法得到的催化裂化催化剂。
B34、一种加氢VGO催化裂化方法,包括将加氢VGO与项目B1-B14任一项或项目B33所述的催化裂化催化剂接触反应的步骤。
C1、一种加氢LCO生产低碳烯烃的催化裂解催化剂,按干基重量计,含有60-85重量%的载体,10-35重量%的核壳型分子筛和5-15重量%的第二分子筛;所述的核壳型分子筛核相是ZSM-5分子筛,壳层 是β分子筛;所述核壳型分子筛X射线衍射谱图中2θ=22.4°峰高与2θ=23.1°峰高之比为0.1-10∶1;所述第二分子筛为孔道开口直径为0.65-0.70纳米的分子筛。
C2、根据项目C1所述的催化裂解催化剂,其中,所述核壳型分子筛的核相与壳层的质量比例为0.2-20∶1或1-15∶1。
C3、根据项目C1所述的催化裂解催化剂,其中,所述核壳型分子筛的总比表面积大于420m 2/g,例如为450-620或490-580m 2/g,中孔表面积占总表面积的比例优选为10-40%,例如12-35%。
C4、根据项目C1所述的催化裂解催化剂,其中,所述壳核壳型分子筛的壳层分子筛的硅铝摩尔比以SiO 2/Al 2O 3计为10-500,例如25-200。
C5、根据项目C1所述的催化裂解催化剂,其中,所述核壳型分子筛的核相分子筛的硅铝比以SiO 2/Al 2O 3计为10-∞,例如30-200。
C6、根据项目C1所述的催化裂解催化剂,其中,所述核壳型分子筛的壳层分子筛的平均晶粒尺寸为10-500nm,例如50-500nm。
C7、根据项目C1所述的催化裂解催化剂,其中,所述核壳型分子筛的壳层的厚度是10-2000nm,例如是50-2000nm。
C8、根据项目C1所述的催化裂解催化剂,其中,所述核壳型分子筛的核相分子筛的平均晶粒尺寸是0.05-15μm,优选为0.1-10μm。
C9、根据项目C1或C8所述的催化裂解催化剂,其中,核相分子筛的平均颗粒尺寸优选为0.1-30μm,所述核相分子筛单个颗粒中晶粒的个数不少于2个。
C10、根据项目C1所述的催化裂解催化剂,其中,所述核壳型分子筛壳层覆盖度为50-100%。
C11、根据项目C1-10任一所述的催化裂解催化剂,其中,所述核壳型分子筛中,孔直径20-80nm孔的孔体积占2-80nm孔的孔体积的50-70%。
C12、根据项目C1所述的催化裂解催化剂,其中,所述孔道开口直径为0.65-0.70纳米的分子筛为具有AET、AFR、AFS、AFI、BEA、BOG、CFI、CON、GME、IFR、ISV、LTL、MEI、MOR、OFF和SAO结构的分子筛中的一种或多种;优选为Beta、SAPO-5、SAPO-40、 SSZ-13、CIT-1、ITQ-7、ZSM-18、丝光沸石和钠菱沸石或者它们的组合。
C13、根据项目C1所述的催化裂解催化剂,其中,所述载体包括粘土、氧化硅载体、氧化铝载体、磷铝胶中的一种或多种,所述载体任选含有添加剂,所述添加剂,例如磷氧化物、碱土金属氧化物。
C14、根据项目C1所述的催化裂解催化剂,其中,所述核壳型分子筛中氧化钠的含量不超过0.15重量%。
C15、一种催化裂化催化剂的制备方法,包括如下步骤:
形成包括核壳型分子筛、第二分子筛、载体与水的浆液,喷雾干燥;所述第二分子筛为孔道开口直径为0.65-0.70纳米的分子筛。
C16、根据项目C15所述的方法,其特征在于,所述核壳型分子筛的合成方法包括以下步骤:
(1)使ZSM-5分子筛与表面活性剂溶液接触得到ZSM-5分子筛材料I;
(2)使ZSM-5分子筛材料I与含β分子筛的浆液接触,得到ZSM-5分子筛材料II;
(3)使含有硅源、铝源、模板剂、水的合成液在50-300℃晶化4-100h,得到预晶化合成液III;
(4)使ZSM-5分子筛材料II与预晶化合成液III混合,晶化;
(5)回收核壳型分子筛。
C17、根据项目C16所述的方法,其特征在于,步骤1)中所述接触通过如下方式进行:将ZSM-5分子筛加入到重量百分浓度为0.05-50%的表面活性剂溶液中接触至少0.5h,过滤,干燥,得到ZSM-5分子筛材料I,接触时间是1-36h,接触温度是20-70℃。
C18、根据项目C16所述的方法,其中,所述表面活性剂选自聚甲基丙烯酸甲酯、聚二烯丙基二甲基氯化铵、吡啶二羧酸、氨水、乙胺、正丁胺、四乙基氢氧化铵、四丙基氢氧化铵、四乙基溴化铵、四丙基溴化铵、四丁基氢氧化铵或者它们的组合。
C19、根据项目C16所述的方法,其特征在于,步骤1)所述ZSM-5分子筛的硅铝摩尔比以SiO 2/Al 2O 3计为10-∞,所述ZSM-5分子筛平均晶粒尺寸为0.05-20μm。
C20、根据项目C16所述的方法,其特征在于,步骤2)中所述接触包括:将ZSM-5分子筛材料I加入到含β分子筛的浆液中,在20-60℃下搅拌至少0.5小时,然后过滤,干燥得到ZSM-5分子筛材料II,所述含β分子筛的浆液中β分子筛的浓度为0.1-10重量%,例如0.3-8重量%,含β分子筛的浆液与以干基重量计的ZSM-5分子筛材料I的重量比为10-50∶1。
C21、根据项目C16所述的方法,其特征在于,步骤3)中,硅源、铝源、模板剂(以R表示)、水的摩尔比为:R/SiO 2=0.1-10∶1,例如0.1-3∶1,H 2O/SiO 2=2-150∶1,例如10-120∶1,SiO 2/Al 2O 3=10-800∶1,Na 2O/SiO 2=0-2∶1,例如为0.01-1.7∶1。
C22、根据项目C16所述的方法,其特征在于,步骤3)中,所述硅源选自正硅酸乙酯、水玻璃、粗孔硅胶、硅溶胶、白炭黑、活性白土或者它们的组合;所述铝源选自硫酸铝、异丙醇铝、硝酸铝、铝溶胶、偏铝酸钠、γ-氧化铝或者它们的组合;所述模板剂选自四乙基氟化铵、四乙基氢氧化铵、四乙基溴化铵、四乙基氯化铵、聚乙烯醇、三乙醇胺或羧甲基纤维素钠、或者它们的组合。
C23、根据项目C16所述的方法,其特征在于,步骤3)中,将所述硅源、铝源、模板剂、去离子水混合,形成合成液,然后于75-250℃下晶化10-80h,得到预晶化合成液III。
C24、根据项目C16所述的方法,其特征在于,步骤3)中所述晶化:晶化温度为80-180℃,晶化时间为18小时-50小时。
C25、根据项目C16或C23或C24所述的方法,其特征在于,步骤3)所得到的预晶化合成液III进行XRD分析,在2θ=22.4°处有谱峰存在,在2θ=21.2°处没有谱峰存在。
C26、根据项目C16所述的方法,其特征在于,步骤4)中所述晶化:晶化温度为100-250℃,晶化时间为30-350h,例如步骤4)中所述晶化:晶化温度为100-200℃,晶化时间为50-120h。
C27、根据项目C16-C26任一项所述的方法,其特征在于,包括如下步骤:
(S1)回收得到的核壳型分子筛与铵盐接触进行离子交换,得到铵交换的核壳型分子筛,其中铵交换的核壳型分子筛中氧化钠含量小 于0.15重量%;
(S2)铵交换的核壳型分子筛焙烧,得到氢型核壳型分子筛;
(S3)将氢型核壳型分子筛、孔道开口直径为0.65-0.70纳米的分子筛、载体和水打浆,喷雾干燥。
C28、根据项目C27所述的方法,其特征在于,步骤(S1)所述铵交换方法包括:按照核壳型分子筛∶铵盐∶H 2O=1∶(0.1-1)∶(5-15)的重量比使核壳型分子筛与铵盐溶液在50-100℃下接触进行交换、过滤,该铵交换过程进行一次或二次以上;所述铵盐选自氯化铵、硫酸铵、硝酸铵中的一种或几种的混合物;步骤(S2)所述焙烧,焙烧温度为400-600℃,焙烧时间为2-10h。
C29、根据项目C15、C16、C27或C28所述的方法,其特征在于,喷雾干燥后,还包括铵交换和/或焙烧的步骤;所述铵交换使得到的催化裂解催化剂中氧化钠含量小于0.15重量%。
C30、根据项目C29所述的方法,其特征在于,所述的载体,例如为粘土和氧化铝载体,或者为粘土、氧化硅载体和任选的氧化铝载体;优选地,所述载体包括氧化硅载体,以SiO 2计氧化硅载体的含量为1-15重量%,所述的氧化硅载体为中性硅溶胶、酸性硅溶胶或碱性硅溶胶的一种或多种。
C31、项目C15-C30任一项所述方法得到的催化裂解催化剂。
C32、一种加氢LCO催化裂解方法,包括将加氢LCO与项目C1-C14任一项或项目C31所述的催化裂解催化剂接触反应的步骤。
D1、一种核壳型分子筛的应用方法,包括:
(1)使核壳型分子筛的氧化钠含量降低,任选焙烧,得到改性核壳型分子筛;所述核壳型分子筛核相是ZSM-5分子筛、壳层是β分子筛;所述核壳型分子筛X射线衍射谱图中2θ=22.4°峰高与2θ=23.1°峰高之比为0.1-10∶1,所述核壳型分子筛总比表面积大于420m 2/g;
(2)形成所述改性核壳型分子筛、Y型分子筛、载体和水的浆液;
(3)喷雾干燥。
D2、一种催化裂化催化剂制备方法,包括:
S1:按照包括如下步骤方法合成核壳型分子筛:
(1)使ZSM-5分子筛与表面活性剂溶液接触得到ZSM-5分子筛材料I;
(2)使ZSM-5分子筛材料I与含β分子筛的浆液接触,得到ZSM-5分子筛材料II;
(3)使含有硅源、铝源、模板剂、水的合成液在50-300℃晶化4-100h,得到预晶化合成液III;
(4)使ZSM-5分子筛材料II与预晶化合成液III混合,晶化;回收核壳型分子筛;
S2:使所述核壳型分子筛的氧化钠含量降低,焙烧,得到改性核壳型分子筛;
S3:使所述改性核壳型分子筛、Y型分子筛、载体和水形成浆液;
S4:喷雾干燥。
D3、据项目D2所述的方法,其中,步骤1)中所述接触通过如下方式进行:将ZSM-5分子筛加入到重量百分浓度为0.05-50%的表面活性剂溶液中接触至少0.5h,过滤,干燥,得到ZSM-5分子筛材料I,接触时间是1-36h,接触温度是20-70℃。
D4、根据项目D2所述的方法,其中,步骤1)所述ZSM-5分子筛的硅铝摩尔比以SiO 2/Al 2O 3计为10-∞,ZSM-5分子筛平均晶粒尺寸为0.05-20μm。
D5、根据项目D2所述的方法,其中,步骤2)中所述接触包括:将ZSM-5分子筛材料I加入到含β分子筛的浆液中,在20-60℃下搅拌至少0.5小时,然后过滤,干燥得到ZSM-5分子筛材料II,所述含β分子筛的浆液与以干基重量计的所述ZSM-5分子筛材料I的重量比为10-50∶1,所述含β分子筛的浆液中β分子筛的浓度为0.1-10重量%,例如0.3-8重量%。
D6、根据项目D2所述的方法,其中,步骤3)中,硅源、铝源、模板剂、水的摩尔比为:R/SiO 2=0.1-10∶1,H 2O/SiO 2=2-150∶1,SiO 2/Al 2O 3=10-800∶1,Na 2O/SiO 2=0-2∶1,其中R表示模板剂。
D7、根据项目D6所述的方法,其中,步骤3)中,所述R/SiO 2为0.1-3∶1,所述H 2O/SiO 2为10-120∶1;所述Na 2O/SiO 2=0.01-1.7∶1。
D8、根据项目D2所述的方法,其中,步骤1)中所述表面活性剂 选自氨水、聚甲基丙烯酸甲酯、正丁胺、聚二烯丙基二甲基氯化铵、吡啶二羧酸、乙胺、四乙基氢氧化铵、四丙基氢氧化铵、四乙基溴化铵、四丙基溴化铵、四丁基氢氧化铵或者它们的组合;步骤3)中,所述硅源选自水玻璃、硅溶胶、粗孔硅胶、正硅酸乙酯、白炭黑或活性白土中的一种或多种;所述铝源选自硫酸铝、硝酸铝、异丙醇铝、铝溶胶、偏铝酸钠、γ-氧化铝或者它们的组合;所述模板剂为四乙基氟化铵、四乙基氯化铵、四乙基氢氧化铵、聚乙烯醇、四乙基溴化铵、三乙醇胺或羧甲基纤维素钠中的一种或多种。
D9、根据项目D2所述的方法,其中,步骤3)中,将所述硅源、铝源、模板剂、去离子水混合,形成合成液,然后于75-250℃下晶化10-80h,得到预晶化合成液III。
D10、根据项目D9所述的方法,其中,步骤3)中所述晶化:晶化温度为80-180℃,晶化时间为18小时-50小时。
D11、根据项目D8或D9或D10所述的方法,其中,步骤3)得到的预晶化合成液III进行XRD分析,在2θ=22.4°处有谱峰存在,在2θ=21.2°处没有谱峰存在。
D12、根据项目D2所述的方法,其中,步骤4)中所述晶化:晶化温度为100-250℃,晶化时间为30-350h;优选地,步骤4)中所述晶化:晶化温度为100-200℃,晶化时间为50-120h。
D13、根据项目D1或D2所述的方法,其中,所述改性核壳型分子筛中的Na 2O含量小于0.15重量%。
D14、根据项目D1或D2所述的方法,其中所说的载体为粘土、氧化铝载体或者氧化硅载体中的一种或多种。
D15、根据项目D14所述的方法,其中,所说的氧化硅载体为中性硅溶胶、酸性硅溶胶或碱性硅溶胶中的一种或多种;所述的氧化铝载体为拟薄水铝石、铝溶胶中的一种或多种。
D16、根据项目D1或D2所述的方法,其中,喷雾干燥得到的催化剂还进行交换洗涤和/或焙烧,所述的交换洗涤按照催化剂∶铵盐∶H 2O=1∶(0.01-1)∶(5-15)的重量比在50-100℃下交换、过滤,该过程可进行一次或2次以上;所述铵盐可选自氯化铵、硝酸铵、硫酸铵中的一种或多种。
D17、一种重油催化裂化催化剂,以该催化剂重量为基准,按干基重量计,含有30-83重量%的载体和2-20重量%的改性核壳型分子筛,15-50重量%的Y型分子筛;其中所述改性核壳型分子筛是由核壳型分子筛改性得到;所述核壳型分子筛:核相是ZSM-5分子筛,壳层是β分子筛,X射线衍射谱图中2θ=22.4°峰高与2θ=23.1°峰高之比为0.1-10∶1,总比表面积大于420m 2/g。
D18、根据项目D17所述的催化剂,其中,所述核壳型分子筛核相与壳层的质量比例为0.2-20∶1或1-15∶1。
D19、根据项目D17所述的催化剂,其中,所述核壳型分子筛的总比表面积大于420m 2/g,例如为450-620或490-580m 2/g,中孔表面积占总表面积的比例优选为10-40%,例如12-35%。
D20、根据项目D17所述的催化剂,其中,所述核壳型分子筛的壳层分子筛的平均晶粒尺寸为10-500nm,例如50-500nm。
D21、根据项目D17所述的催化剂,其中,所述核壳型分子筛的壳层的厚度是50-2000nm或10-2000nm。
D22、根据项目D17所述的催化剂,其中,所述核壳型分子筛壳层分子筛的硅铝摩尔比以SiO 2/Al 2O 3计为10-500,例如为25-200。
D23、根据项目D17所述的催化剂,其中,所述核壳型分子筛的核相分子筛的硅铝比以SiO 2/Al 2O 3计为10-∞,例如30-200。
D24、根据项目D17所述的催化剂,其中,所述核壳型分子筛的核相分子筛的平均晶粒尺寸是0.05-15μm或0.1-10μm。
D25、根据项目D17所述的催化剂,其中,所述核相分子筛单个颗粒中晶粒的个数不少于2个,核相分子筛的平均颗粒尺寸优选为0.1-30μm。
D26、根据项目D17-D25任一所述的催化剂,其中,所述核壳型分子筛壳层覆盖度为50-100%%,例如80-100%。
D27、根据项目D17-D25任一所述的催化剂,其中,所述核壳型分子筛孔直径20-80nm孔的孔体积占2-80nm孔的孔体积的50-70%。
D28、根据项目D17的催化剂,所述载体为粘土、氧化硅载体和氧化铝载体中的一种或多种。
D29、根据项目D17所述的催化剂,其中,所述载体包括铝溶胶、 拟薄水铝石、硅溶胶和粘土中的一种或多种。
D30、根据项目D29所述的催化剂,其中,所述催化剂中含有硅溶胶载体以及其它载体,以SiO 2计硅溶胶载体含量为1-15重量%,例如5-15重量%,所述其它载体包括铝溶胶、拟薄水铝石和粘土中的一种或多种。
D31、项目D1-D16任一项所述方法制备的催化裂化催化剂。
D32、项目D17-D31任一项所述催化裂化催化剂在重油催化裂化生产低碳烯烃中的应用。
D33、根据项目D32所述的应用,其中,包括将重油与所述催化裂化接触反应,反应温度为500-550℃;重时空速5-30小时 -1,剂油比1-15,所述重油为常压渣油、常压瓦斯油、减压渣油、减压瓦斯油、焦化蜡油、轻重脱沥青油中的一种或多种。
E1、一种用于中间基原油转化的催化裂解催化剂,按干基重量计,含有50-79重量%的载体、15-35重量%的核壳型分子筛、5-10重量%的Y型分子筛、1-5重量%的孔道开口直径为0.65-0.70纳米的分子筛;所述核壳型分子筛核相是ZSM-5分子筛,壳层是β分子筛,所述核壳型分子筛X射线衍射谱图中2θ=22.4°峰高与2θ=23.1°峰高之比为0.1-10∶1,所述核壳型分子筛总比表面积大于420m 2/g。
E2、根据项目E1所述的催化剂,其中,所述核壳型分子筛核相与壳层的质量比例为0.2-20∶1或1-15∶1。
E3、根据项目E1所述的催化剂,其中,所述核壳型分子筛的总比表面积大于420m 2/g,例如为490-580m 2/g,中孔表面积占总表面积的比例优选为10-40%。
E4、根据项目E1所述的催化剂,其中,所述核壳型分子筛的壳层分子筛的平均晶粒尺寸为10-500nm,例如50-500nm。
E5、根据项目E1所述的催化剂,其中,所述核壳型分子筛的壳层的厚度是50-2000nm。
E6、根据项目E1所述的催化剂,其中,所述核壳型分子筛壳层分子筛的硅铝摩尔比以SiO 2/Al 2O 3计为10-500,例如为25-200。
E7、根据项目E1所述的催化剂,其中,所述核壳型分子筛的核相分子筛的硅铝比以SiO 2/Al 2O 3计为10-∞,例如30-200。
E8、根据项目E1所述的催化剂,其中,所述核壳型分子筛的核相分子筛的平均晶粒尺寸是0.05-15μm。
E9、根据项目E1所述的催化剂,其中,所述核相分子筛单个颗粒中晶粒的个数不少于2个,核相分子筛的平均颗粒尺寸优选为0.1-30μm。
E10、根据项目E1-E10任一所述的催化剂,其中,所述核壳型分子筛壳层覆盖度为50-100%。
E11、根据项目E1-E10任一所述的催化剂,其中,所述核壳型分子筛壳孔直径20-80nm孔的孔体积占2-80nm孔的孔体积的50-70%。
E12、根据项目E1所述的催化剂,其中,所述的Y型分子筛为不含稀土的Y型分子筛,或稀土含量小于5重量%的Y型分子筛,所述Y型分子筛中稀土的含量以RE 2O 3计为0-5重量%,所述Y型分子筛的硅铝比以SiO 2/Al 2O 3摩尔比计为4-18。
E13、根据项目E1或E12所述的催化剂,其中,所述孔道开口直径为0.65-0.70纳米的分子筛为β分子筛。
E14、根据项目E1或E12所述的催化剂,其中,所述的载体为铝溶胶、锆溶胶、拟薄水铝石、粘土中的一种或多种。
E15、一种催化裂解催化剂的制备方法,包括:使第一分子筛、第二分子筛和第三分子筛、载体形成浆液,喷雾干燥;其中所述第一分子筛为核壳型分子筛,所述第二分子筛为孔道开口直径为0.65-0.70纳米的分子筛,所述第三分子筛为Y型分子筛,。
E16、根据项目E15所述的方法,其中,所述核壳型分子筛的合成方法包括以下步骤:
(1)使ZSM-5分子筛与表面活性剂溶液接触得到ZSM-5分子筛材料I;
(2)使ZSM-5分子筛材料I与含β分子筛的浆液接触,得到ZSM-5分子筛材料II;
(3)使含有硅源、铝源、模板剂、水的合成液在50-300℃晶化4-100h,得到预晶化合成液III;
(4)使ZSM-5分子筛材料II与预晶化合成液III混合,晶化;分离得到钠型核壳型分子筛;
(5)钠型核壳型分子筛铵交换使核壳型分子筛中的Na 2O含量小于0.15重%;
(6)将步骤(5)得到的核壳型分子筛经干燥后,焙烧。
E17、根据项目E16所述的方法,其中,步骤1)中所述接触通过如下方式进行:将ZSM-5分子筛加入到重量百分浓度为0.05-50%的表面活性剂溶液中接触至少0.5h,过滤,干燥,得到ZSM-5分子筛材料I,接触时间是1-36h,接触温度是20-70℃。
E18、根据项目E16所述的方法,其中,所述表面活性剂选自聚甲基丙烯酸甲酯、聚二烯丙基二甲基氯化铵、吡啶二羧酸、氨水、乙胺、正丁胺、四乙基氢氧化铵、四丙基氢氧化铵、四乙基溴化铵、四丙基溴化铵、四丁基氢氧化铵或者它们的组合。
E19、根据项目E16所述的方法,其中,步骤1)所述ZSM-5分子筛的硅铝摩尔比以SiO 2/Al 2O 3计为10-∞,ZSM-5分子筛平均晶粒尺寸为0.05-20μm。
E20、根据项目E16所述的方法,其中,步骤2)中所述接触包括:将ZSM-5分子筛材料I加入到含β分子筛的浆液中,在20-60℃下搅拌至少0.5小时,然后过滤,干燥得到ZSM-5分子筛材料II,所述含β分子筛的浆液中β分子筛的浓度为0.1-10重量%,例如0.3-8重量%,含β分子筛的浆液与以干基重量计的ZSM-5分子筛材料I的重量比为10-50∶1。
E21、根据项目E16所述的方法,其中,步骤3)中,硅源、铝源、模板剂(以R表示)、水的摩尔比为:R/SiO 2=0.1-10∶1,例如0.1-3∶1,H 2O/SiO 2=2-150∶1,例如10-120∶1,SiO 2/Al 2O 3=10-800∶1,Na 2O/SiO 2=0-2∶1,例如为0.01-1.7∶1。
E22、根据项目E16所述的方法,其中,步骤3)中,所述硅源选自正硅酸乙酯、水玻璃、硅溶胶、粗孔硅胶、白炭黑、活性白土或者它们的组合;所述铝源选自硫酸铝、硝酸铝、异丙醇铝、铝溶胶、偏铝酸钠、γ-氧化铝或者它们的组合;所述模板剂为四乙基氟化铵、四乙基溴化铵、四乙基氯化铵、四乙基氢氧化铵、聚乙烯醇、三乙醇胺或羧甲基纤维素钠中的一种或多种。
E23、根据项目E16所述的方法,其中,步骤3)中,将所述硅源、 铝源、模板剂、去离子水混合,形成合成液,然后于75-250℃下晶化10-80h,得到预晶化合成液III。
E24、根据项目E22所述的方法,其中,步骤3)中所述晶化:晶化温度为80-180℃,晶化时间为18小时-50小时。
E25、根据项目E16或E22或E23所述的方法,其中,步骤3)所得到的预晶化合成液III进行XRD分析,在2θ=22.4°处有谱峰存在,在2θ=21.2°处没有谱峰存在。
E26、根据项目E16所述的方法,其中,步骤4)中所述晶化:晶化温度为100-250℃,晶化时间为30-350h,例如步骤4)中所述晶化:晶化温度为100-200℃,晶化时间为50-120h。
E27、根据项目E16所述的方法,其中,步骤(5)所述的铵交换使按照核壳型分子筛∶铵盐∶H 2O=1∶(0.1-1)∶(5-15)的重量比在50-100℃下交换、过滤,该过程可进行一次或多次;所述铵盐选自氯化铵、硫酸铵、硝酸铵中的一种或多种的混合物。
E28、根据项目E16所述的方法,其中,步骤(6)所述焙烧,焙烧温度为350-600℃,焙烧时间为2-6h,以脱除模板剂。
E29、根据项目E15所述的方法,其中,所说的Y型分子筛中稀土含量以RE 2O 3计为0-5重量%;所述第二分子筛为优选为β分子筛。
E30、根据项目E15所述的方法,其中,所说的载体为粘土、氧化铝载体、氧化硅载体中的一种或多种。
E31、根据项目E15所述的方法,其中,所说的氧化硅载体为中性硅溶胶、酸性硅溶胶或碱性硅溶胶中的一种或多种;优选地,所述催化剂中硅溶胶含量以SiO 2计为1-15重量%。
E32、项目E16-E31任一方法得到的裂化催化剂。
E33、一种重油催化裂化方法,包括使重油与项目E1-E14任一项或项目E32所述的催化剂接触反应的步骤。
E34、一种中间基原油催化裂化方法,包括,使中间基原油与项目E1-E14任一项或项目E33所述的催化剂接触反应的步骤,其中反应温度为550-620℃。
实施例
下面通过实施例对本申请作进一步地说明,但并不因此而限制本申请的内容。
以下实施例和对比例中,XRD分析采用的仪器和测试条件:仪器:Empyrean;测试条件:管电压40kV,管电流40mA,Cu靶Kα辐射,2θ扫描范围5°-35°,扫描速率2(°)/min。X射线衍射分析谱峰计算核相与壳层的质量比例,采用JADE软件用拟合函数pseudo-voigt进行拟合计算。
通过SEM测量分子筛的晶粒尺寸和颗粒尺寸,随机测量10个晶粒尺寸,取其平均值,得到分子筛样品的平均晶粒尺寸;随机测量10个颗粒的颗粒尺寸,取其平均值,得到分子筛样品的平均颗粒尺寸。晶粒尺寸为晶粒最宽处的尺寸,通过测量晶粒投影最大外接圆的直径尺寸获得。颗粒尺寸为颗粒最宽处的尺寸,通过测量颗粒投影最大外接圆的直径尺寸获得。
壳层的厚度采用TEM方法测量,随机测量一个核壳型分子筛颗粒某一处壳层的厚度,测量10个颗粒,取其平均值。
分子筛的覆盖度采用SEM方法测量,计算一个核相颗粒具有壳层的外表面积占核相颗粒外表面积的比例,作为该颗粒的覆盖度,随机测量10个颗粒,取其平均值。
中孔表面积(中孔比表面积)、比表面积、孔体积(总孔体积)和孔径分布采用低温氮吸附容量法测量,使用美国Micromeritics公司ASAP2420吸附仪,样品分别在100℃和300℃下真空脱气0.5h和6h,于77.4K温度下进行N2吸附脱附测试,测试样品在不同比压条件下对氮气的吸附量和脱附量,获得N 2吸附-脱附等温曲线。利用BET公式计算BET比表面积(总比表面积),t-plot计算微孔面积。
原料ZSM-5分子筛的硅铝比通过XRF荧光测测定,壳层分子筛的硅铝比采用TEM-EDS方法测量。
预晶化合成液III的XRD分析,方法如下:预晶化合成液III先过滤,然后用8倍于固体重量的去离子水洗涤,120℃烘干4小时,550℃焙烧4小时,冷却后,进行XRD测量(XRD测量采用的仪器和分析方法如前所述)。
I.分子筛的制备和评价
实施例I-1
(1)室温(25℃)下,将用作核相的氢型ZSM-5分子筛(硅铝比30,平均晶粒尺寸为1.2μm,ZSM-5分子筛平均颗粒尺寸为15μm,结晶度93.0%)5.0g加入到50.0g甲基丙烯酸甲酯和氯化钠的水溶液(其中甲基丙烯酸甲酯质量百分浓度为0.2%,氯化钠质量浓度5.0%)中搅拌1h,过滤,在50℃空气气氛下干燥,得到ZSM-5分子筛材料I;
(2)将ZSM-5分子筛材料I投入到β分子筛悬浊液(氢型β分子筛与水形成的悬浊液,β分子筛悬浊液中β分子筛重量百分浓度是0.3重量%,其中β分子筛平均晶粒尺寸为0.2微米,硅铝比是30,结晶度是89%,β分子筛颗粒为单个晶粒颗粒),ZSM-5分子筛材料I与β分子筛悬浊液的质量比是1∶10,于温度为50℃搅拌1小时,过滤,滤饼在90℃空气气氛中干燥,得到ZSM-5分子筛材料II;
(3)将1.0g异丙醇铝溶于15g去离子水中,加入0.65gNaOH颗粒,再依次加入10.0g硅溶胶(SiO 2含量25.0重量%,pH值10.0,氧化钠含量为0.10重量%)和20g四乙基氢氧化铵溶液(四乙基氢氧化铵溶液中四乙基氢氧化铵的质量分数25重量%),搅拌均匀后,移入聚四氟乙烯内衬的反应釜中晶化,在80℃下晶化48h,得到预晶化合成液III;预晶化合成液III的样品经过滤、洗涤、干燥、焙烧后,测量其XRD衍射谱图,如图3所示其XRD谱图中2θ=22.4°处有峰,2θ=21.2°处无峰,在22.4°有明显的即将出现的谱峰,代表壳层β分子筛的预晶化完成;
(4)将ZSM-5分子筛材料II加入到预晶化合成液III中(ZSM-5分子筛材料II(以干基重量计)与预晶化合成液III的重量比为1∶10),在120℃下晶化60h。晶化结束后,过滤、洗涤、干燥后,在550℃下焙烧4h即得到钠型ZSM-5/β核壳型分子筛。
图1显示了实施例I-1制备的ZSM-5/β核壳型分子筛的SEM图。如图所示,所述核壳型分子筛的壳层β分子筛覆盖度好;在高倍数下(见图1右半部分),能看到由多晶粒构成的核相分子筛结构。
图2A中的谱图3显示了实施例I-1制备的ZSM-5/β核壳型分子筛的XRD衍射谱图,图2B显示了该XRD衍射谱图的局部放大图,其中2θ角为22.4°和23.1°处的衍射峰分别是壳层和核相的特征峰。
图4显示了实施例I-1制备的ZSM-5/β核壳型分子筛的TEM图,通过TEM观察到壳层β分子筛依附着核相生长,最终成为核壳型分子筛。
图5显示了实施例I-1制备的ZSM-5/β核壳型分子筛的孔径分布图,所示的孔径分布曲线证明了该核壳型分子筛是微孔-介孔-大孔的多级孔结构。
对比例I-1
(1)以水玻璃、硫酸铝和乙胺水溶液为原料,按摩尔比SiO 2∶Al 2O 3∶C 2H 5NH 2∶H 2O=40∶1∶10∶1792成胶,在140℃下晶化3天,合成大晶粒圆柱形ZSM-5分子筛(晶粒尺寸4.0μm);
(2)上述合成的大晶粒圆柱形ZSM-5分子筛用0.5重量%甲基丙烯酸甲酯的氯化钠盐溶液(NaCl浓度5重量%)预处理30min,过滤、烘干再加入到用去离子水分散的0.5wt%的β分子筛悬浊液(纳米β分子筛,ZSM-5分子筛与β分子筛悬浊液的质量比是1∶10)中黏附30min,过滤烘干后于540℃下焙烧5h,作为核相分子筛;
(3)以白炭黑、正硅酸乙酯(TEOS)作为硅源、铝酸钠和四乙基氢氧化铵(TEAOH)为原料,按TEAOH∶SiO 2∶Al 2O 3∶H 2O=13∶30∶1∶1500投料,加入步骤2)得到的核相分子筛,然后装入四氟乙烯内衬的不锈钢釜中在140℃下晶化54h;
(4)晶化结束后,过滤、洗涤、干燥后,在550℃下焙烧4h,得到核壳型分子筛。
对比例I-2
按照实施例I-1的方法合成分子筛,不同的是,步骤(3)中晶化温度30℃,晶化时间3小时,晶化产物的样品经过滤、洗涤、干燥和焙烧后,XRD谱图中,2θ=22.4°处无峰,2θ=21.2°处无峰。
对比例I-3
按照实施例I-1的配比,将实施例I-1步骤(1)和(2)中用到的ZSM-5和β分子筛机械混合后得到分子筛混合物。
对比例I-4
按照实施例I-1的方法合成分子筛,不同之处是步骤(3)晶化温度180℃,晶化时间120小时,晶化产物的样品经过滤、洗涤、干燥和焙烧后,XRD谱图中2θ=22.4°处有峰,2θ=21.2°处有峰。
对比例I-5
按照实施例I-1的方法合成分子筛,不同的是不采用步骤(2),步骤(1)的产物ZSM-5分子筛材料I直接用于步骤(4)中代替ZSM-5分子筛材料II。
对比例I-4和对比例I-5,均未得到核壳型分子筛。
实施例I-2
(1)室温(25℃)下,将5.0g氢型ZSM-5分子筛(硅铝比60,平均晶粒尺寸为0.5μm,平均颗粒尺寸为10μm,结晶度90.0%)加入到50.0g的聚二烯丙基二甲基氯化铵和氯化钠的水溶液(该溶液中聚二烯丙基二甲基氯化铵质量百分数为0.2%,氯化钠的质量百分数为0.2%)中搅拌2h,过滤,滤饼在50℃空气气氛下干燥,得到ZSM-5分子筛材料I;
(2)将ZSM-5分子筛材料I投入到氢型β分子筛悬浊液中(β分子筛悬浊液中β分子筛重量百分浓度是2.5重量%,β分子筛的平均晶粒尺寸是0.1μm,硅铝比是30.0,结晶度是92.0%);ZSM-5分子筛材料I与β分子筛悬浊液的质量比是1∶45,50℃搅拌2小时,过滤,并在90℃空气气氛中干燥,得到ZSM-5分子筛材料II;
(3)将2.0g铝溶胶(Al 2O 3的浓度是25重量%,铝氯摩尔比1.1)溶于5.0g去离子水中,加入0.3gNaOH颗粒,再依次加入45.0mL水玻璃(SiO 2浓度251g/L,模数2.5)和16g四乙基氢氧化铵溶液(四乙基氢氧化铵溶液的质量分数25%),充分搅拌均匀后,移入聚四氟乙烯内衬的反应釜中晶化,在150℃下晶化10h,得到预晶化合成液III;预晶化合成液III的样品经过滤、洗涤、干燥、焙烧后,XRD谱图中2θ=22.4°处有峰,2θ=21.2°处无峰;
(4)将ZSM-5分子筛材料II加入到预晶化合成液III中(ZSM-5分子筛材料II以干基重量计与预晶化合成液III的重量比为1∶10),然后在130℃下晶化80h。晶化结束后,过滤、洗涤、干燥后,在550℃下焙烧4h得到钠型ZSM-5/β核壳型分子筛。
实施例I-3
(1)室温25℃下,将用作核相的氢型ZSM-5分子筛(硅铝比100,平均晶粒尺寸100nm,平均颗粒尺寸为5.0微米,结晶度91.0%,用量5.0g)加入到50.0g正丁胺和氯化钠水溶液中(正丁胺质量百分数为5.0%、氯化钠的质量分数为2%),搅拌24h,过滤,并在70℃空气气氛下干燥,得到ZSM-5分子筛材料I;
(2)将ZSM-5分子筛材料I投入到氢型β分子筛悬浊液(β分子筛悬浊液中β分子筛重量百分浓度是:5.0重量%,β分子筛平均晶粒尺寸50nm,硅铝比是30.0,结晶度是95.0%)中,ZSM-5分子筛材料I与β分子筛悬浊液的质量比是1∶20,于温度为50℃搅拌10小时,过滤,然后滤饼在120℃空气气氛中干燥,得到ZSM-5分子筛材料II;
(3)将1.0g偏铝酸钠溶于18.0g去离子水中,加入0.60gNaOH颗粒,再依次加入10.0g粗孔硅胶(SiO 2含量98.0重量%)和18g四乙基溴化铵溶液(四乙基溴化铵溶液的质量分数25%),搅拌均匀后,移入聚四氟乙烯内衬的反应釜中晶化,在130℃下晶化30h,得到预晶化合成液III;预晶化合成液III的样品经过滤、洗涤、干燥、焙烧后,XRD谱图中2θ=22.4°处有峰,2θ=21.2°处无峰;
(4)将ZSM-5分子筛材料II加入到预晶化合成液III中(ZSM-5分子筛材料II以干基重量计与预晶化合成液III的重量比为1∶4),在80℃下晶化100h。晶化结束后,过滤、洗涤、干燥后,在550℃下焙烧4h得到钠型ZSM-5/β核壳型分子筛。
实施例I-4
(1)25℃下,将用作核相的氢型ZSM-5分子筛(硅铝比200,平均晶粒尺寸是5.0μm,平均颗粒尺寸是25微米,结晶度92.0%,用量5.0g)加入到吡啶二羧酸质量百分数为1.0%的吡啶二羧酸的氯化钠盐 溶液(氯化钠浓度为1重量%)50.0g中,搅拌10h,过滤,滤饼在30℃空气气氛下干燥,得到ZSM-5分子筛材料I;
(2)将ZSM-5分子筛材料I投入到β分子筛悬浊液(β分子筛悬浊液中β分子筛重量百分浓度是4.0重量%,氢型β分子筛,平均晶粒尺寸0.5μm,硅铝比是30,结晶度是90.0%)中,ZSM-5分子筛材料I与β分子筛悬浊液的质量比是1∶15,于50℃搅拌24小时,过滤,滤饼在140℃空气气氛中干燥,得到分子筛II;
(3)将9.0g硫酸铝溶于150.0g去离子水中,加入2.4gNaOH颗粒,再依次加入30.0g白炭黑和42.0g羧甲基纤维素钠(CAS号:9004-32-4),搅拌均匀后,移入聚四氟乙烯内衬的反应釜中晶化,在150℃下晶化12h,得到预晶化合成液III;预晶化合成液III的样品经过滤、洗涤、干燥、焙烧后,XRD谱图中2θ=22.4°处有峰,2θ=21.2°处无峰;
(4)将分子筛II加入到预晶化合成液III中(,ZSM-5分子筛材料II以干基重量计与预晶化合成液III的重量比为1∶8),在150℃下晶化50h。晶化结束后,过滤、洗涤、干燥后,在550℃下焙烧4h得到钠型ZSM-5/β核壳型分子筛。
实施例I-5
按照实施例I-1的方法合成分子筛,不同的是,使用对比例I-1步骤(1)得到的ZSM-5分子筛作为核相分子筛。
Figure PCTCN2021101993-appb-000006
Figure PCTCN2021101993-appb-000007
表I-1(续)各实施例和对比例的合成条件以及所得分子筛的性质
Figure PCTCN2021101993-appb-000008
反应评价
上述实施例I-1至I-5制备的ZSM-5/β核壳型分子筛和各对比例的分子筛样品进行铵交换,使氧化钠含量低于0.1重量%,得到氢型分子筛,铵交换条件为:分子筛∶氯化铵∶H 2O=1∶0.5∶10,铵交换温度85℃,铵交换时间1h。铵交换后,过滤、洗涤、烘干后550℃焙烧2h。
上述得到的氢型分子筛分别经过800℃,100%水蒸汽老化4小时,老化后的样品在固定床微反装置ACE-MODEL FB上进行评价(标准方法参照ASTM D5154和D7964),原料油为加氢改质重油(组成和物性见表I-2),评价条件包括:反应温度为550℃,反应压力为0.1Mpa,剂油比(重量)为3,进油时间为150秒,评价结果列于表I-3中。
表I-2原料油的组成和物性
性质 加氢改质重油
密度(20℃)/(千克/米 3) 890.0
硫/(微克/克) <200
Ni+V/(微克/克) <1
氢含量/% 12.90
环烷环烃含量/% 44.67%
终馏点 630℃
表I-3评价结果
Figure PCTCN2021101993-appb-000009
由表I-3可见,与对比例的分子筛相比,本申请提供的核壳型分子筛可以具有更高的丙烯收率,以及更高的乙烯收率,重油转化率提高,且液化气(C 3-C 4)收率明显提高。
II.第一类实施方式的催化剂(加氢VGO催化裂化催化剂)的制备和评价
实施例II-1
(1)室温(25℃)下,将用作核相的氢型ZSM-5分子筛(硅铝比 30,平均晶粒尺寸为1.2μm,ZSM-5分子筛平均颗粒尺寸为15μm,结晶度93.0%)500g加入到5000g甲基丙烯酸甲酯和氯化钠的水溶液(其中甲基丙烯酸甲酯质量百分浓度为0.2%,氯化钠质量浓度5.0%)中搅拌1h,过滤,在50℃空气气氛下干燥,得到ZSM-5分子筛材料I;
(2)将ZSM-5分子筛材料I投入到β分子筛悬浊液(氢型β分子筛与水形成的悬浊液,β分子筛悬浊液中β分子筛重量百分浓度是0.3重量%,其中β分子筛平均晶粒尺寸为0.2微米,硅铝比是30,结晶度是89%,β分子筛颗粒为单个晶粒颗粒),ZSM-5分子筛材料I与β分子筛悬浊液的质量比是1∶10,于温度为50℃搅拌1小时,过滤,滤饼在90℃空气气氛中干燥,得到ZSM-5分子筛材料II;
(3)将100.0g异丙醇铝溶于1500g去离子水中,加入65gNaOH颗粒,再依次加入1000g硅溶胶(SiO 2含量25.0重量%,pH值10.0,氧化钠含量为0.10重量%)和2000g四乙基氢氧化铵溶液(四乙基氢氧化铵溶液中四乙基氢氧化铵的质量分数25重量%),搅拌均匀后,移入聚四氟乙烯内衬的反应釜中晶化,在80℃下晶化48h,得到预晶化合成液III;预晶化合成液III的样品经过滤、洗涤、干燥、焙烧后,XRD谱图中2θ=22.4°处有峰,2θ=21.2°处无峰;
(4)将ZSM-5分子筛材料II加入到预晶化合成液III中(ZSM-5分子筛材料II以干基重量计与预晶化合成液III的重量比为1∶10),在120℃下晶化60h,晶化结束后,过滤、洗涤、干燥、在550℃下焙烧4小时,得到钠型ZSM-5/β核壳型分子筛;
(5)将所得钠型ZSM-5/β核壳型分子筛用NH 4Cl溶液交换洗涤,使Na 2O含量低于0.15重量%,过滤、干燥,在550℃下焙烧4小时,得到氢型核壳型分子筛,记为SZ-II-1。
实施例II-2
(1)室温(25℃)下,将500g氢型ZSM-5分子筛(硅铝比60,平均晶粒尺寸为0.5μm,平均颗粒尺寸为10μm,结晶度90.0%)加入到5000g的聚二烯丙基二甲基氯化铵和氯化钠的水溶液(该溶液中聚二烯丙基二甲基氯化铵质量百分数为0.2%,氯化钠的质量百分数为0.2%)中搅拌2h,过滤,滤饼在50℃空气气氛下干燥,得到ZSM-5分子筛材料I;
(2)将ZSM-5分子筛材料I投入到氢型β分子筛悬浊液中(β分子筛悬浊液中β分子筛重量百分浓度是2.5重量%,β分子筛的平均晶粒尺寸是0.1μm,硅铝比是30.0,结晶度是92.0%);ZSM-5分子筛材料I与β分子筛悬浊液的质量比是1∶45,50℃搅拌2小时,过滤,并在90℃空气气氛中干燥,得到ZSM-5分子筛材料II;
(3)将200.0g铝溶胶(Al 2O 3的浓度是25重量%,铝氯摩尔比1.1;)溶于500g去离子水中,加入30gNaOH颗粒,再依次加入4500mL水玻璃(SiO 2浓度251g/L,模数2.5)和1600g四乙基氢氧化铵溶液(四乙基氢氧化铵溶液的质量分数25%),充分搅拌均匀后,移入聚四氟乙烯内衬的反应釜中晶化,在150℃下晶化10h,得到预晶化合成液III;预晶化合成液III的样品经过滤、洗涤、干燥、焙烧后,XRD谱图中2θ=22.4°处有峰,2θ=21.2°处无峰;
(4)将ZSM-5分子筛材料II加入到预晶化合成液III中(ZSM-5分子筛材料II以干基重量计与预晶化合成液III的重量比为1∶10),然后在130℃下晶化80h,过滤、洗涤、干燥、在550℃下焙烧4小时,得到钠型ZSM-5/β核壳型分子筛;
(5)将钠型ZSM-5/β核壳型分子筛用NH 4Cl溶液交换洗涤使Na 2O含量低于0.15重量%,过滤、干燥,在550℃下焙烧4小时,得到氢型核壳型分子筛,记为SZ-II-2。
实施例II-3
(1)室温25℃下,将500g用作核相的氢型ZSM-5分子筛(硅铝比100,平均晶粒尺寸100nm,平均颗粒尺寸为5.0微米,结晶度91.0%)加入到5000g正丁胺和氯化钠水溶液中(正丁胺质量百分数为5.0%、氯化钠的质量分数为2%),搅拌24h,过滤,并在70℃空气气氛下干燥,得到ZSM-5分子筛材料I;
(2)将ZSM-5分子筛材料I投入到氢型β分子筛悬浊液(β分子筛悬浊液中β分子筛重量百分浓度是:5.0重量%,β分子筛平均晶粒尺寸50nm,硅铝比是30.0,结晶度是95.0%)中,ZSM-5分子筛材料I与β分子筛悬浊液的质量比是1∶20,于温度为50℃搅拌10小时,过滤,然后滤饼在120℃空气气氛中干燥,得到ZSM-5分子筛材料II;
(3)将100g偏铝酸钠溶于1800g去离子水中,加入60gNaOH颗 粒,再依次加入1000g粗孔硅胶(SiO 2含量98.0重量%)和1800g四乙基溴化铵溶液(四乙基溴化铵溶液的质量分数25%),搅拌均匀后,移入聚四氟乙烯内衬的反应釜中晶化,在130℃下晶化30h,得到预晶化合成液III;预晶化合成液III的样品经过滤、洗涤、干燥、焙烧后,XRD谱图中2θ=22.4°处有峰,2θ=21.2°处无峰;
(4)将ZSM-5分子筛材料II加入到预晶化合成液III中(以干基重量计的ZSM-5分子筛材料II与预晶化合成液III的重量比为1∶4),在80℃下晶化100h,过滤、洗涤、干燥、在550℃下焙烧4小时,得到钠型ZSM-5/β核壳型分子筛;
(5)将所述钠型ZSM-5/β核壳型分子筛用NH 4Cl溶液交换洗涤使Na 2O含量低于0.15重量%,过滤、干燥,在550℃下焙烧4小时,得到氢型核壳型分子筛,记为SZ-II-3。
对比例II-1
(1)以水玻璃、硫酸铝和乙胺水溶液为原料,按摩尔比SiO 2∶Al 2O 3∶C 2H 5NH 2∶H 2O=40∶1∶10∶1792成胶,在140℃下晶化3天,合成大晶粒圆柱形ZSM-5分子筛(晶粒尺寸4.0μm);
(2)上述合成的大晶粒圆柱形ZSM-5分子筛用0.5重量%甲基丙烯酸甲酯的氯化钠盐溶液(NaCl浓度5重量%)预处理30min,过滤、烘干再加入到用去离子水分散的0.5wt%的β分子筛悬浊液(纳米β分子筛,ZSM-5分子筛与β分子筛悬浊液的质量比是1∶10)中黏附30min,过滤烘干后于540℃下焙烧5h,作为核相分子筛;
(3)以白炭黑、正硅酸乙酯(TEOS)作为硅源、铝酸钠和TEAOH为原料,按TEAOH∶SiO 2∶Al 2O 3∶H 2O=13∶30∶1∶1500投料,加入步骤2)得到的核相分子筛,然后装入四氟乙烯内衬的不锈钢釜中在140℃下晶化54h;
(4)晶化结束后,过滤、洗涤、干燥、在550℃下焙烧4小时,得到钠型核壳型分子筛;以及
(5)将所得钠型核壳型分子筛用NH 4Cl溶液交换洗涤使Na 2O含量低于0.15重量%,过滤、干燥,在550℃下焙烧2小时,得到氢型核壳型分子筛,记为DZ-II-1。
对比例II-2
按照实施例II-1的方法合成分子筛,不同的是,步骤(3)中晶化温度30℃,晶化时间3小时,晶化产物的样品经过滤、洗涤、干燥和焙烧后,XRD谱图中,2θ=22.4°处无峰,2θ=21.2°处无峰。所得分子筛记为DZ-II-2。
对比例II-3
按照实施例II-1的配比,将实施例II-1步骤(1)和(2)中用到的ZSM-5和β分子筛机械混合,所得分子筛混合物记为DZ-II-3。
表II-1各实施例和对比例的合成条件以及所得分子筛的性质
Figure PCTCN2021101993-appb-000010
Figure PCTCN2021101993-appb-000011
以下实施例和对比例用于说明本申请提供的第一类实施方式的催化剂的制备,其中所用高岭土为中国高岭土公司工业产品,其固含量为75重量%;所用拟薄水铝石(简称铝石)为山东铝业公司出品,其氧化铝含量为65重量%;铝溶胶为中国石化催化剂有限公司齐鲁分公司出品,其氧化铝含量为21重量%。
实施例II-4至II-6
分别将实施例II-1至II-3制备的核壳型分子筛制备成催化剂,催化剂编号依次为:A-II-1、A-II-2、A-II-3。催化剂制备方法:
(1)将拟薄水铝石和水混合均匀,在搅拌下加入浓度为36重量%的浓盐酸(化学纯,北京化工厂出品),酸铝比是0.2(36重量%盐酸与拟薄水铝石(以Al 2O 3计)的重量比)将所得混合物升温至70℃老化1.5小时,得到老化的拟薄水铝石浆液,该老化的拟薄水铝石浆液的氧化铝含量为12重量%;
(2)取硅溶胶(pH值3,SiO 2含量25%,来源:北京化工厂)加入氯化稀土(La和Ce的重量比例为2∶3,La和Ce的总含量占98 重量%),搅拌20分钟,得到改性硅溶胶;实施例II-4至II-6得到的硅溶胶中,以SiO 2重量为基准,以RE 2O 3计稀土含量分别为10重量%、15重量%、5重量%;
(3)将核壳型分子筛与上述改性硅溶胶混合,搅拌30分钟,得到浆液;
(4)将铝溶胶、步骤(3)所得的浆液、高岭土、上述老化的拟薄水铝石浆液和去离子水混合,搅拌30分钟,得到固含量25重量%的浆液,喷雾干燥,得到催化剂微球;
(5)按照催化剂微球∶铵盐∶H 2O=1∶1∶10的重量比在80℃下交换1h,过滤,上述交换、过滤过程重复一次,烘干得到目标催化剂。
对比例II-4至II-6
对比例II-4至II-6说明使用对比例II-1至II-3提供的分子筛制备得到的催化剂。
按照实施例II-4的催化剂制备方法,分别将对比例II-1至II-3制备的分子筛和老化的拟薄水铝石浆液、高岭土、水、改性硅溶胶及铝溶胶混合,喷雾干燥制备成微球催化剂。所得催化剂编号依次为:DB-II-1、DB-II-2及DB-II-3。
表II-2给出了各实施例和对比例中所用分子筛的种类、用量,铝溶胶,拟薄水铝石、改性硅溶胶和高岭土以干基重量计的用量,以制备1Kg催化剂为基准。其中改性硅溶胶的稀土含量是以二氧化硅为基准以RE 2O 3计的重量含量。
表II-3给出了各实施例催化剂A-II-1至A-II-3和对比例催化剂DB-II-1至DB-II-3的干基重量百分组成。催化剂组成中的分子筛、铝石、铝溶胶、硅溶胶和高岭土的含量根据制备时所用的投料量计算得到。
表II-2各实施例和对比例中各组分的用量
Figure PCTCN2021101993-appb-000012
表II-3各实施例和对比例的催化剂的组成
Figure PCTCN2021101993-appb-000013
*对比例3的核壳型分子筛含量实际是指分子筛混合物的含量。
反应评价
将各实施例和对比例的催化剂经800℃、100体积%水蒸气老化17 小时后,在小型固定流化床反应器上评价其对加氢VGO的催化裂化反应性能,评价条件为:反应温度520℃,重量空速为4.0h -1,剂油比为8(重量比)。所用加氢VGO的性质见表II-4,评价结果见表II-5。
表II-4加氢VGO的性质
性质 加氢VGO
20℃密度,g/cm 3 0.8974
70℃折光 1.4794
80℃粘度,mm 2/s 15.87
残炭,m% 0.3
四组分,m%  
饱和烃 78.8
芳烃 19.6
胶质 1.6
沥青质 <0.1
烃类组成,m%  
链烷烃 30.5
总环烷烃 48.3
表II-5评价结果
Figure PCTCN2021101993-appb-000014
表II-5中,C2 指乙烯,C3 指丙烯,C3 0指丙烷,表述“总硫(公海)”表明总硫含量符合公海使用标准。
表II-5中所述的产物收率以原料进料量为基准计算得到。
由表II-5可见,本申请第一类实施方式的催化剂用于加氢VGO转化,具有更高的燃料油收率、更高的乙烯、丙烯收率,且丙烯/丙烷比值更高。所得的燃料油可以符合船用燃料油标准。
III.第二类实施方式的催化剂(加氢LCO催化裂解催化剂)的制备和评价
实施例III-1
(1)室温(25℃)下,将用作核相的氢型ZSM-5分子筛(硅铝比30,平均晶粒尺寸为1.2μm,ZSM-5分子筛平均颗粒尺寸为15μm,结晶度93.0%)500g加入到5000g甲基丙烯酸甲酯和氯化钠的水溶液(其中甲基丙烯酸甲酯质量百分浓度为0.2%,氯化钠质量浓度5.0%)中搅拌1h,过滤,在50℃空气气氛下干燥,得到ZSM-5分子筛材料I;
(2)将ZSM-5分子筛材料I投入到β分子筛悬浊液(氢型β分子筛与水形成的悬浊液,β分子筛悬浊液中β分子筛重量百分浓度是0.3重量%,其中β分子筛平均晶粒尺寸为0.2微米,硅铝比是30,结晶度是89%,β分子筛颗粒为单个晶粒颗粒),ZSM-5分子筛材料I与β分子筛悬浊液的质量比是1∶10,于温度为50℃搅拌1小时,过滤,滤饼在90℃空气气氛中干燥,得到ZSM-5分子筛材料II;
(3)将100g异丙醇铝溶于1500g去离子水中,加入65gNaOH颗粒,再依次加入1000g硅溶胶(SiO 2含量25.0重量%,pH值10.0,氧化钠含量为0.10重量%)和2000g四乙基氢氧化铵溶液(四乙基氢氧化铵溶液中四乙基氢氧化铵的质量分数25重量%),搅拌均匀后,移入聚四氟乙烯内衬的反应釜中晶化,在80℃下晶化48h,得到预晶化合成液III;预晶化合成液III的样品经过滤、洗涤、干燥、焙烧后,XRD谱图中2θ=22.4°处有峰,2θ=21.2°处无峰;
(4)将ZSM-5分子筛材料II加入到预晶化合成液III中(ZSM-5分子筛材料II以干基重量计与预晶化合成液III的重量比为1∶10),在120℃下晶化60h,晶化结束后,过滤、洗涤、干燥、在550℃下焙烧4小时,得到钠型ZSM-5/β核壳型分子筛;
(5)将所得的钠型核壳型分子筛用NH 4Cl溶液交换洗涤,使核壳型分子筛中的Na 2O含量低于0.15重量%,过滤,干燥,在550℃下焙烧2小时,得到氢型ZSM-5/β核壳型分子筛,记为SZ-III-1。
实施例III-2
(1)室温(25℃)下,将500.0g氢型ZSM-5分子筛(硅铝比60,平均晶粒尺寸为0.5μm,平均颗粒尺寸为10μm,结晶度90.0%)加入到5000.0g的聚二烯丙基二甲基氯化铵和氯化钠的水溶液(该溶液中聚 二烯丙基二甲基氯化铵质量百分数为0.2%,氯化钠的质量百分数为0.2%)中搅拌2h,过滤,滤饼在50℃空气气氛下干燥,得到ZSM-5分子筛材料I;
(2)将ZSM-5分子筛材料I投入到氢型β分子筛悬浊液中(β分子筛悬浊液中β分子筛重量百分浓度是2.5重量%,β分子筛的平均晶粒尺寸是0.1μm,硅铝比是30.0,结晶度是92.0%);ZSM-5分子筛材料I与β分子筛悬浊液的质量比是1∶45,50℃搅拌2小时,过滤,并在90℃空气气氛中干燥,得到ZSM-5分子筛材料II;
(3)将200.0g铝溶胶(Al 2O 3的浓度是25重量%,铝氯摩尔比1.1;)溶于500.0g去离子水中,加入30gNaOH颗粒,再依次加入4500.0mL水玻璃(SiO 2浓度251g/L,模数2.5)和1600g四乙基氢氧化铵溶液(四乙基氢氧化铵溶液的质量分数25%),充分搅拌均匀后,移入聚四氟乙烯内衬的反应釜中晶化,在150℃下晶化10h,得到预晶化合成液III;预晶化合成液III的样品经过滤、洗涤、干燥、焙烧后,XRD谱图中2θ=22.4°处有峰,2θ=21.2°处无峰;
(4)将ZSM-5分子筛材料II加入到预晶化合成液III中(ZSM-5分子筛材料II以干基重量计与预晶化合成液III的重量比为1∶10),然后在130℃下晶化80h,过滤、洗涤、干燥、在550℃下焙烧4小时,得到钠型ZSM-5/β核壳型分子筛;
(5)将所得的钠型核壳型分子筛用NH 4Cl溶液交换洗涤使核壳型分子筛中的Na 2O含量低于0.15重量%,过滤,干燥,在550℃下焙烧2小时,得到氢型ZSM-5/β核壳型分子筛,记为SZ-III-2。
实施例III-3
(1)室温25℃下,将用作核相的氢型ZSM-5分子筛(硅铝比100,平均晶粒尺寸100nm,平均颗粒尺寸为5.0微米,结晶度91.0%,用量500g)加入到5000.0g正丁胺和氯化钠水溶液中(正丁胺质量百分数为5.0%、氯化钠的质量分数为2%),搅拌24h,过滤,并在70℃空气气氛下干燥,得到ZSM-5分子筛材料I;
(2)将ZSM-5分子筛材料I投入到氢型β分子筛悬浊液(β分子筛悬浊液中β分子筛重量百分浓度是:5.0重量%,β分子筛平均晶粒尺寸50nm,硅铝比是30.0,结晶度是95.0%)中,ZSM-5分子筛材料 I与β分子筛悬浊液的质量比是1∶20,于温度为50℃搅拌10小时,过滤,然后滤饼在120℃空气气氛中干燥,得到ZSM-5分子筛材料II;
(3)将100g偏铝酸钠溶于1800g去离子水中,加入60gNaOH颗粒,再依次加入1000g粗孔硅胶(SiO 2含量98.0重量%)和1800g四乙基溴化铵溶液(四乙基溴化铵溶液的质量分数25%),搅拌均匀后,移入聚四氟乙烯内衬的反应釜中晶化,在130℃下晶化30h,得到预晶化合成液III;预晶化合成液III的样品经过滤、洗涤、干燥、焙烧后,XRD谱图中2θ=22.4°处有峰,2θ=21.2°处无峰;
(4)将ZSM-5分子筛材料II加入到预晶化合成液III中(以干基重量计的ZSM-5分子筛材料II与预晶化合成液III的重量比为1∶4),在80℃下晶化100h,过滤、洗涤、干燥、焙烧、在550℃下焙烧4小时得到钠型ZSM-5/β核壳型分子筛;
(5)将所得钠型核壳型分子筛用NH 4Cl溶液交换,洗涤,使Na 2O含量低于0.15重量%,过滤,干燥,在550℃下焙烧2小时,得到氢型ZSM-5/β核壳型分子筛,记为SZ-III-3。
对比例III-1
(1)以水玻璃、硫酸铝和乙胺水溶液为原料,按摩尔比SiO 2∶Al 2O 3∶C 2H 5NH 2∶H 2O=40∶1∶10∶1792成胶,在140℃下晶化3天,合成大晶粒圆柱形ZSM-5分子筛(晶粒尺寸4.0μm);
(2)上述合成的大晶粒圆柱形ZSM-5分子筛用0.5重量%甲基丙烯酸甲酯的氯化钠盐溶液(NaCl浓度5重量%)预处理30min,过滤、烘干再加入到用去离子水分散的0.5wt%的β分子筛悬浊液(纳米β分子筛,ZSM-5分子筛与β分子筛悬浊液的质量比是1∶10)中黏附30min,过滤烘干后于540℃下焙烧5h,作为核相分子筛;
(3)以白炭黑、正硅酸乙酯(TEOS)作为硅源、铝酸钠和TEAOH为原料,按TEAOH∶SiO 2∶Al 2O 3∶H 2O=13∶30∶1∶1500投料,加入步骤2)得到的核相分子筛,然后装入四氟乙烯内衬的不锈钢釜中在140℃下晶化54h;
(4)晶化结束后,过滤、洗涤、干燥、在550℃下焙烧4小时,得到钠型核壳型分子筛;
(5)将所得的钠型核壳型分子筛用NH 4Cl溶液交换洗涤,使Na 2O 含量低于0.15重量%,过滤、干燥,在550℃下焙烧处理2小时,得到氢型核壳型分子筛,记为DZ-III-1。
对比例III-2
按照实施例III-1的方法合成分子筛,不同的是,步骤3中晶化温度30℃,晶化时间3小时,晶化产物的样品经过滤、洗涤、干燥和焙烧后,XRD谱图中,2θ=22.4°处无峰,2θ=21.2°处无峰。所得分子筛记为DZ-III-2。
对比例III-3
按照实施例III-1的方法合成分子筛,将实施例III-1步骤(1)和(2)中用到的ZSM-5和β分子筛机械混合,所得的分子筛混合物记为DZ-III-3。
实施例III-1至III-3和对比例III-1至III-2的制备条件见表III-1,实施例III-1至III-3和对比例III-1至III-2的步骤(4)得到的分子筛的性质见表III-1(续)。对比例III-3的混合分子筛的性质见表III-1(续)。
表III-1各实施例和对比例的合成条件
Figure PCTCN2021101993-appb-000015
表III-1(续)各实施例和对比例所得分子筛的性质
Figure PCTCN2021101993-appb-000016
以下实施例说明本申请第二类实施方式的催化剂的制备,实施例中所用高岭土为中国高岭土公司工业产品,其固含量为75重量%;所用拟薄水铝石为山东铝业公司出品,其氧化铝含量为65重量%;铝溶胶为中国石化催化剂齐鲁分公司出品,其氧化铝含量为21重量%。硅 溶胶由北京化工厂出品,其氧化硅含量为25重量%,pH值3.0。第二分子筛为β分子筛,氢型,硅铝比为35,氧化钠含量为0.1重量%,结晶度为91.3%,中国石化催化剂齐鲁分公司出品。
实施例III-4至III-6
实施例III-4至III-6说明本申请提供的加氢LCO催化裂解催化剂制备。
分别将实施例III-1至III-3制备的核壳型分子筛制备成催化剂,催化剂编号依次为:A-III-1、A-III-2、A-III-3。催化剂制备方法:
(1)拟薄水铝石(简称铝石)和水混合,搅拌均匀,在搅拌下加入浓度为36重量%的浓盐酸(化学纯,北京化工厂出品),酸铝比为0.2(36重量%的浓盐酸与以Al 2O 3计的拟薄水铝石质量比),将所得混合物升温至70℃,老化1.5小时,得到老化的拟薄水铝石浆液。该老化拟薄水铝石浆液中的氧化铝含量为12重量%;
(2)将核壳型分子筛(第一分子筛)、孔道开口直径为0.65-0.70纳米的分子筛(第二分子筛)、铝溶胶、硅溶胶、高岭土和上述老化的拟薄水铝石浆液以及去离子水混合均匀,得到固含量为28重量%的浆液,喷雾干燥;实施例4-6所用的第一分子筛分别为核壳型分子筛SZ-III-1、SZ-III-2、SZ-III-3;
(3)按照催化剂∶铵盐∶H 2O=1∶1∶10的重量比在80℃下交换1h,过滤,重复1次上述交换、过滤过程,烘干得到目标催化剂。
实施例III-7
按照实施例III-4的方法制备催化剂,不同的是不使用硅溶胶,用等量的铝溶胶代替,得到催化剂A-III-4。
表III-2给出了实施例III-4至III-7所用第一分子筛的编号和用量、第二分子筛类型和用量、铝溶胶,硅溶胶和高岭土的用量,其以制备1Kg催化裂解催化剂为基准,按照干基重量计。
表III-3给出了实施例III-4至III-7的催化剂A-III-1至A-III-4的干基重量百分组成。催化剂组成中的第一分子筛、第二分子筛、粘结剂、高岭土的含量根据制备时所用的投料量计算得到。
对比例III-4至III-6
对比例III-4至III-6说明使用对比例III-1至III-3提供的分子筛制备得到的催化剂。
按照实施例III-4的催化剂制备方法分别将第一分子筛(分别为对比例III-1至III-3制备的分子筛DZ-III-1、DZ-III-2和DZ-III-3)和第二分子筛、拟薄水铝石、高岭土、硅溶胶、铝溶胶及水混合打浆,喷雾干燥制备成微球催化剂。所得催化剂编号依次为:DB-III-1、DB-III-2及DB-III-3。
表III-2给出了各对比例的催化剂所用第一分子筛的种类、用量,第二分子筛、铝溶胶,硅溶胶和高岭土的用量,以制备1Kg催化剂为基准,按照干基重量计。表III-3给出了各对比例的催化剂的干基重量百分组成。
表III-2各实施例和对比例中各组分的用量
Figure PCTCN2021101993-appb-000017
表III-3各实施例和对比例中催化剂的组成
Figure PCTCN2021101993-appb-000018
反应评价
将实施例III-4至III-7制备的催化裂解催化剂A-III-1至A-III-4和对比例III-4至III-6制备的催化剂DB-III-1至DB-III-3分别经800℃、100体积%水蒸气老化4小时后,在小型固定流化床反应器上评价其催化裂解反应性能,评价条件为反应温度580℃,重量空速为4.0小时 -1,剂油比为12重量比。加氢LCO性质见表III-4,反应结果见表III-5。
表III-4加氢LCO的性质
性质 加氢LCO
碳含量,wt% 88.37
氢含量,wt% 11.63
20℃密度,kg/m 3 888.7
10%残炭,wt% <0.1
凝固点,℃ <-50
链烷烃,wt% 13.0
一环烷烃,wt% 7.6
二环烷烃,wt% 18.1
三环烷烃,wt% 8.7
总环烷烃,wt% 34.4
总双环芳烃,wt% 6.4
表III-5评价结果
Figure PCTCN2021101993-appb-000019
表III-5中所述的低碳烯烃收率以原料进料量为基准计算得到,低碳烯烃是指C2-C4烯烃。
由表III-5所列的结果可见,本申请第二类实施方式的催化剂用于加氢LCO转化,可以具有更高的裂解能力和低碳烯烃收率,可以具有更高的液化气收率。
IV.第三类实施方式的催化剂(重油催化裂化催化剂)的制备和评价
实施例IV-1
(1)室温(25℃)下,将用作核相的氢型ZSM-5分子筛(硅铝比30,平均晶粒尺寸为1.2μm,ZSM-5分子筛平均颗粒尺寸为15μm,结晶度93.0%)500g加入到5000g甲基丙烯酸甲酯和氯化钠的水溶液(其中甲基丙烯酸甲酯质量百分浓度为0.2%,氯化钠质量浓度5.0%)中搅拌1h,过滤,在50℃空气气氛下干燥,得到ZSM-5分子筛材料I;
(2)将ZSM-5分子筛材料I投入到β分子筛悬浊液(氢型β分子筛与水形成的悬浊液,β分子筛悬浊液中β分子筛重量百分浓度是0.3重量%,其中β分子筛平均晶粒尺寸为0.2微米,硅铝比是30,结晶度是89%,β分子筛颗粒为单个晶粒颗粒),ZSM-5分子筛材料I与β 分子筛悬浊液的质量比是1∶10,于温度为50℃搅拌1小时,过滤,滤饼在90℃空气气氛中干燥,得到ZSM-5分子筛材料II;
(3)将100.0g异丙醇铝溶于1500g去离子水中,加入65gNaOH颗粒,再依次加入1000g硅溶胶(SiO 2含量25.0重量%,pH值10.0,氧化钠含量为0.10重量%)和2000g四乙基氢氧化铵溶液(四乙基氢氧化铵溶液中四乙基氢氧化铵的质量分数25重量%),搅拌均匀后,移入聚四氟乙烯内衬的反应釜中晶化,在80℃下晶化48h,得到预晶化合成液III;预晶化合成液III的样品经过滤、洗涤、干燥、焙烧后,XRD谱图中2θ=22.4°处有峰,2θ=21.2°处无峰;
(4)将ZSM-5分子筛材料II加入到预晶化合成液III中(ZSM-5分子筛材料II以干基重量计与预晶化合成液III的重量比为1∶10),在120℃下晶化60h,晶化结束后,过滤、洗涤、干燥、在550℃下焙烧4小时,得到钠型ZSM-5/β核壳型分子筛;
(5)将所得的钠型ZSM-5/β核壳型分子筛用NH 4Cl溶液交换洗涤至Na 2O含量低于0.15重量%,过滤、干燥,在550℃下焙烧2小时,得到氢型ZSM-5/β核壳型分子筛,记为SZ-IV-1。
实施例IV-2
(1)室温(25℃)下,将500g氢型ZSM-5分子筛(硅铝比60,平均晶粒尺寸为0.5μm,平均颗粒尺寸为10μm,结晶度90.0%)加入到5000g的聚二烯丙基二甲基氯化铵和氯化钠的水溶液(该溶液中聚二烯丙基二甲基氯化铵质量百分数为0.2%,氯化钠的质量百分数为0.2%)中搅拌2h,过滤,滤饼在50℃空气气氛下干燥,得到ZSM-5分子筛材料I;
(2)将ZSM-5分子筛材料I投入到氢型β分子筛悬浊液中(β分子筛悬浊液中β分子筛重量百分浓度是2.5重量%,β分子筛的平均晶粒尺寸是0.1μm,硅铝比是30.0,结晶度是92.0%);ZSM-5分子筛材料I与β分子筛悬浊液的质量比是1∶45,50℃搅拌2小时,过滤,并在90℃空气气氛中干燥,得到ZSM-5分子筛材料II;
(3)将200.0g铝溶胶(Al 2O 3的浓度是25重量%,铝氯摩尔比1.1;)溶于500g去离子水中,加入30gNaOH颗粒,再依次加入4500mL水玻璃(SiO 2浓度251g/L,模数2.5)和1600g四乙基氢氧化铵溶液(四 乙基氢氧化铵溶液的质量分数25%),充分搅拌均匀后,移入聚四氟乙烯内衬的反应釜中晶化,在150℃下晶化10h,得到预晶化合成液III;预晶化合成液III的样品经过滤、洗涤、干燥、焙烧后,XRD谱图中2θ=22.4°处有峰,2θ=21.2°处无峰;
(4)将ZSM-5分子筛材料II加入到预晶化合成液III中(ZSM-5分子筛材料II以干基重量计与预晶化合成液III的重量比为1∶10),然后在130℃下晶化80h,过滤、洗涤、干燥、在550℃下焙烧4小时,得到钠型ZSM-5/β核壳型分子筛;
(5)将所得的钠型ZSM-5/β核壳型分子筛用NH 4Cl溶液交换洗涤至Na 2O含量低于0.15重量%,过滤、干燥,在550℃下焙烧2小时,得到氢型核壳型分子筛,记为SZ-IV-2。
实施例IV-3
(1)室温25℃下,将用作核相的氢型ZSM-5分子筛(硅铝比100,平均晶粒尺寸100nm,平均颗粒尺寸为5.0微米,结晶度91.0%,用量500g)加入到5000g正丁胺和氯化钠水溶液中(正丁胺质量百分数为5.0%、氯化钠的质量分数为2%),搅拌24h,过滤,并在70℃空气气氛下干燥,得到ZSM-5分子筛材料I;
(2)将ZSM-5分子筛材料I投入到氢型β分子筛悬浊液(β分子筛悬浊液中β分子筛重量百分浓度是:5.0重量%,β分子筛平均晶粒尺寸50nm,硅铝比是30.0,结晶度是95.0%)中,ZSM-5分子筛材料I与β分子筛悬浊液的质量比是1∶20,于温度为50℃搅拌10小时,过滤,然后滤饼在120℃空气气氛中干燥,得到ZSM-5分子筛材料II;
(3)将100g偏铝酸钠溶于1800g去离子水中,加入60gNaOH颗粒,再依次加入1000g粗孔硅胶(Si02含量98.0重量%)和1800g四乙基溴化铵溶液(四乙基溴化铵溶液的质量分数25%),搅拌均匀后,移入聚四氟乙烯内衬的反应釜中晶化,在130℃下晶化30h,得到预晶化合成液III;预晶化合成液III的样品经过滤、洗涤、干燥、焙烧后,XRD谱图中2θ=22.4°处有峰,2θ=21.2°处无峰;
(4)将ZSM-5分子筛材料II加入到预晶化合成液III中(以干基重量计的ZSM-5分子筛材料II与预晶化合成液III的重量比为1∶4),在80℃下晶化100h,过滤、洗涤、干燥、在550℃下焙烧4小时,得 到钠型ZSM-5/β核壳型分子筛;
(5)将所得的钠型ZSM-5/β核壳型分子筛用NH 4Cl溶液交换洗涤至Na 2O含量低于0.15重量%,过滤、干燥,在550℃下焙烧2小时,得到氢型核壳型分子筛,记为SZ-IV-3。
对比例IV-1
(1)以水玻璃、硫酸铝和乙胺水溶液为原料,按摩尔比SiO 2∶Al 2O 3∶C 2H 5NH 2∶H 2O=40∶1∶10∶1792成胶,在140℃下晶化3天,合成大晶粒圆柱形ZSM-5分子筛(晶粒尺寸4.0μm);
(2)上述合成的大晶粒圆柱形ZSM-5分子筛用0.5重量%甲基丙烯酸甲酯的氯化钠盐溶液(NaCl浓度5重量%)预处理30min,过滤、烘干再加入到用去离子水分散的0.5wt%的β分子筛悬浊液(纳米β分子筛,ZSM-5分子筛与β分子筛悬浊液的质量比是1∶10)中黏附30min,过滤烘干后于540℃下焙烧5h,作为核相分子筛;
(3)以白炭黑、正硅酸乙酯(TEOS)作为硅源、铝酸钠和TEAOH为原料,按TEAOH∶SiO 2∶Al 2O 3∶H 2O=13∶30∶1∶1500投料,加入步骤2)得到的核相分子筛,然后装入四氟乙烯内衬的不锈钢釜中在140℃下晶化54h;
(4)晶化结束后,过滤、洗涤、干燥、在550℃下焙烧4小时,得到钠型核壳型分子筛;
(5)将所得的钠型核壳型分子筛用NH 4Cl溶液交换洗涤至Na 2O含量低于0.15重量%,过滤、干燥,在550℃下焙烧2小时,得到氢型核壳型分子筛,记为DZ-IV-1。
对比例IV-2
按照实施例IV-1的方法合成分子筛,不同的是,步骤(3)中晶化温度30℃,晶化时间3小时,晶化产物的样品经过滤、洗涤、干燥和焙烧后,XRD谱图中,2θ=22.4°处无峰,2θ=21.2°处无峰。所得分子筛记为DZ-IV-2。
对比例IV-3
按照实施例IV-1的配比,将实施例IV-1步骤(1)和(2)中用到的 ZSM-5和β分子筛机械混合,所得的分子筛混合物记为DZ-IV-3。
实施例IV-1至IV-3和对比例IV-1至IV-2的合成条件列于表IV-1。
实施例IV-1至IV-3和对比例IV-1至IV-2得到的核壳型分子筛和对比例IV-3得到的分子筛混合物的性质列于表IV-1(续)。
表IV-1各实施例和对比例的合成条件
Figure PCTCN2021101993-appb-000020
表IV-1(续)各实施例和对比例所得的分子筛的性质
Figure PCTCN2021101993-appb-000021
*对比例IV-3得到的不是核壳型分子筛,而是分子筛混合物。
以下实施例说明本申请提供的第三类实施方式的催化剂的制备,实施例中所用高岭土为中国高岭土公司工业产品,其固含量为75重量%;所用拟薄水铝石为山东铝业公司出品,其氧化铝含量为65重量%;铝溶胶为中国石化催化剂有限公司齐鲁分公司出品,其氧化铝含量为 21重量%;硅溶胶由北京化工厂出品,其氧化硅含量为25重量%,pH值为2.5。Y型分子筛,牌号HSY-12,稀土含量为12重量%,硅铝比6.0,结晶度53.0%,中国石化催化剂有限公司齐鲁分公司出品。
实施例IV-4至IV-6
分别将实施例IV-1至IV-3制备的氢型核壳型分子筛制备成催化剂,催化剂编号依次为:A-IV-1、A-IV-2、A-IV-3。
催化剂制备方法:
(1)拟薄水铝石(简称铝石)和水混合均匀,在搅拌下加入浓度为36重量%的浓盐酸(化学纯,北京化工厂出品),酸铝比(36重量%盐酸与以氧化铝计的拟薄水铝石重量比)为0.20,将所得混合物升温至70℃老化1.5小时,得到老化的拟薄水铝石。该铝石浆液的氧化铝含量为12重量%;
(2)将氢型核壳型分子筛、Y型分子筛、铝溶胶、硅溶胶,高岭土和上述老化的拟薄水铝石加去离子水混合,得到固含量25重量%的浆液,搅拌30分钟,喷雾干燥;
(3)按照催化剂∶铵盐∶H 2O=1∶1∶10的重量比在80℃下交换1h,过滤,上述交换、过滤过程重复一次,烘干得到目标催化剂。
表IV-2给出了所用氢型核壳型分子筛(第一分子筛)的种类、用量,Y型分子筛、铝石、铝溶胶,硅溶胶和高岭土的用量,以制备1kg催化剂为基准,以干基用量计。
表IV-3给出了各实施例催化剂A-IV-1至A-IV-3的组成。催化剂组成中的第一分子筛、Y型分子筛、铝溶胶、硅溶胶、铝石、高岭土的含量根据制备时所用的投料量计算得到。
对比例IV-4至IV-6
对比例IV-4至IV-6说明使用对比例IV-1至IV-3提供的分子筛制备得到的催化剂。
按照实施例IV-4的催化剂制备方法分别将对比例IV-1至IV-3制备的分子筛、Y型分子筛、拟薄水铝石、高岭土、水及铝溶胶混合,喷雾干燥制备成微球催化剂。所得催化剂编号依次为:DB-IV-1、DB-IV-2及DB-IV-3。
表IV-2给出了各对比例所用第一分子筛的种类、用量,Y型分子筛、铝溶胶、铝石、硅溶胶和高岭土的用量。表IV-3给出了各对比例的催化剂组成。
表IV-2各实施例和对比例的组分用量
Figure PCTCN2021101993-appb-000022
表IV-3各实施例和对比例的催化剂组成
Figure PCTCN2021101993-appb-000023
反应评价
将催化剂A-IV-1至A-IV-3和DB-IV-1至DB-IV-3在800℃、100%水蒸气老化17小时后,在小型固定流化床反应器上评价其催化裂解反应性能,评价条件为反应温度520℃,重量空速为4.0h -1,剂油比为6。原料油性质见表IV-4,评价结果见表IV-5。
表IV-4原料油性质
性质 原料油
20℃密度,g/cm 3 0.9044
20℃折光 1.5217
100℃粘度,mm 2/s 9.96
凝固点,℃ 40
苯胺点,℃ 95.8
残炭值,% 3.0
馏程,℃  
初馏点 243
5% 294
10% 316
30% 395
50% 429
70% 473
90% -
表IV-5评价结果
Figure PCTCN2021101993-appb-000024
表IV-5中所述的产物收率以原料进料量为基准计算得到。
由表IV-5可见,与对比剂相比,本申请第三类实施方式的催化剂具有更高的重油裂化能力,低碳烯烃收率更高,丙烯收率明显更高,碳四烯烃收率明显更高。
V.第四类实施方式的催化剂(中间基原油催化裂解催化剂)的制备和评价
实施例V-1
(1)室温(25℃)下,将用作核相的氢型ZSM-5分子筛(硅铝比30,平均晶粒尺寸为1.2μm,ZSM-5分子筛平均颗粒尺寸为15μm,结晶度93.0%)500g加入到5000g甲基丙烯酸甲酯和氯化钠的水溶液(其中甲基丙烯酸甲酯质量百分浓度为0.2%,氯化钠质量浓度5.0%)中搅拌1h,过滤,在50℃空气气氛下干燥,得到ZSM-5分子筛材料I;
(2)将ZSM-5分子筛材料I投入到β分子筛悬浊液(氢型β分子筛与水形成的悬浊液,β分子筛悬浊液中β分子筛重量百分浓度是0.3重量%,其中β分子筛平均晶粒尺寸为0.2微米,硅铝比是30,结晶度是89%,β分子筛颗粒为单个晶粒颗粒),ZSM-5分子筛材料I与β 分子筛悬浊液的质量比是1∶10,于温度为50℃搅拌1小时,过滤,滤饼在90℃空气气氛中干燥,得到ZSM-5分子筛材料II;
(3)将100g异丙醇铝溶于1500g去离子水中,加入65gNaOH颗粒,再依次加入1000g硅溶胶(SiO 2含量25.0重量%,pH值10.0,氧化钠含量为0.10重量%)和2000g四乙基氢氧化铵溶液(四乙基氢氧化铵溶液中四乙基氢氧化铵的质量分数25重量%),搅拌均匀后,移入聚四氟乙烯内衬的反应釜中晶化,在80℃下晶化48h,得到预晶化合成液III;预晶化合成液III的样品经过滤、洗涤、干燥、焙烧后,XRD谱图中2θ=22.4°处有峰,2θ=21.2°处无峰;
(4)将ZSM-5分子筛材料II加入到预晶化合成液III中(ZSM-5分子筛材料II以干基重量计与预晶化合成液III的重量比为1∶10),在120℃下晶化60h,晶化结束后,过滤、洗涤、干燥,在550℃下焙烧4小时,得到钠型ZSM-5/β核壳型分子筛;
(5)将所得钠型ZSM-5/β核壳型分子筛用NH 4Cl溶液交换洗涤至Na 2O含量低于0.15重量%,过滤、干燥,在550℃下焙烧2小时,得到氢型ZSM-5/β核壳型分子筛,记为SZ-V-1。
实施例V-2
(1)室温(25℃)下,将500.0g氢型ZSM-5分子筛(硅铝比60,平均晶粒尺寸为0.5μm,平均颗粒尺寸为10μm,结晶度90.0%)加入到5000.0g的聚二烯丙基二甲基氯化铵和氯化钠的水溶液(该溶液中聚二烯丙基二甲基氯化铵质量百分数为0.2%,氯化钠的质量百分数为0.2%)中搅拌2h,过滤,滤饼在50℃空气气氛下干燥,得到ZSM-5分子筛材料I;
(2)将ZSM-5分子筛材料I投入到氢型β分子筛悬浊液中(β分子筛悬浊液中β分子筛重量百分浓度是2.5重量%,β分子筛的平均晶粒尺寸是0.1μm,硅铝比是30.0,结晶度是92.0%);ZSM-5分子筛材料I与β分子筛悬浊液的质量比是1∶45,50℃搅拌2小时,过滤,并在90℃空气气氛中干燥,得到ZSM-5分子筛材料II;
(3)将200.0g铝溶胶(Al 2O 3的浓度是25重量%,铝氯摩尔比1.1;)溶于500.0g去离子水中,加入30gNaOH颗粒,再依次加入4500.0mL水玻璃(SiO 2浓度251g/L,模数2.5)和1600g四乙基氢氧化铵溶液(四 乙基氢氧化铵溶液的质量分数25%),充分搅拌均匀后,移入聚四氟乙烯内衬的反应釜中晶化,在150℃下晶化10h,得到预晶化合成液III;预晶化合成液III的样品经过滤、洗涤、干燥、焙烧后,XRD谱图中2θ=22.4°处有峰,2θ=21.2°处无峰;
(4)将ZSM-5分子筛材料II加入到预晶化合成液III中(ZSM-5分子筛材料II以干基重量计与预晶化合成液III的重量比为1∶10),然后在130℃下晶化80h,过滤、洗涤、干燥、在550℃下焙烧4小时,得到钠型ZSM-5/β核壳型分子筛;
(5)将所得钠型ZSM-5/β核壳型分子筛用NH 4Cl溶液交换洗涤,至Na 2O含量低于0.15重量%,过滤、干燥,在550℃下焙烧2小时,得到氢型ZSM-5/β核壳型分子筛,记为SZ-V-2。
实施例V-3
(1)室温25℃下,将用作核相的氢型ZSM-5分子筛(硅铝比100,平均晶粒尺寸100nm,平均颗粒尺寸为5.0微米,结晶度91.0%,用量500g)加入到5000g正丁胺和氯化钠水溶液中(正丁胺质量百分数为5.0%、氯化钠的质量分数为2%),搅拌24h,过滤,并在70℃空气气氛下干燥,得到ZSM-5分子筛材料I;
(2)将ZSM-5分子筛材料I投入到氢型β分子筛悬浊液(β分子筛悬浊液中β分子筛重量百分浓度是:5.0重量%,β分子筛平均晶粒尺寸50nm,硅铝比是30.0,结晶度是95.0%)中,ZSM-5分子筛材料I与β分子筛悬浊液的质量比是1∶20,于温度为50℃搅拌10小时,过滤,然后滤饼在120℃空气气氛中干燥,得到ZSM-5分子筛材料II;
(3)将100g偏铝酸钠溶于1800.0g去离子水中,加入60gNaOH颗粒,再依次加入1000g粗孔硅胶(SiO 2含量98.0重量%)和1800g四乙基溴化铵溶液(四乙基溴化铵溶液的质量分数25%),搅拌均匀后,移入聚四氟乙烯内衬的反应釜中晶化,在130℃下晶化30h,得到预晶化合成液III;预晶化合成液III的样品经过滤、洗涤、干燥、焙烧后,XRD谱图中2θ=22.4°处有峰,2θ=21.2°处无峰;
(4)将ZSM-5分子筛材料II加入到预晶化合成液III中(以干基重量计的ZSM-5分子筛材料II与预晶化合成液III的重量比为1∶4),在80℃下晶化100h,过滤、洗涤、干燥、在550℃下焙烧4小时,得 到钠型ZSM-5/β核壳型分子筛;
(5)将所得钠型ZSM-5/β核壳型分子筛用NH 4Cl溶液交换,洗涤,至Na 2O含量低于0.15重量%,过滤、干燥,在550℃下焙烧2小时,得到氢型ZSM-5/β核壳型分子筛,记为SZ-V-3。
对比例V-1
(1)以水玻璃、硫酸铝和乙胺水溶液为原料,按摩尔比SiO 2∶Al 2O 3∶C 2H 5NH 2∶H 2O=40∶1∶10∶1792成胶,在140℃下晶化3天,合成大晶粒圆柱形ZSM-5分子筛(晶粒尺寸4.0μm);
(2)上述合成的大晶粒圆柱形ZSM-5分子筛用0.5重量%甲基丙烯酸甲酯的氯化钠盐溶液(NaCl浓度5重量%)预处理30min,过滤、烘干再加入到用去离子水分散的0.5wt%的β分子筛悬浊液(纳米β分子筛,ZSM-5分子筛与β分子筛悬浊液的质量比是1∶10)中黏附30min,过滤烘干后于540℃下焙烧5h,作为核相分子筛;
(3)以白炭黑、正硅酸乙酯(TEOS)作为硅源、铝酸钠和TEAOH为原料,按TEAOH∶SiO 2∶Al 2O 3∶H 2O=13∶30∶1∶1500投料,加入步骤2)得到的核相分子筛,然后装入四氟乙烯内衬的不锈钢釜中在140℃下晶化54h;
(4)晶化结束后,过滤、洗涤、干燥、在550℃下焙烧4小时,得到钠型核壳型分子筛;以及
(5)将所得钠型核壳型分子筛用NH 4Cl溶液交换洗涤至Na 2O含量低于0.15重量%,过滤、干燥,在550℃下焙烧2小时,得到氢型核壳型分子筛,记为DZ-V-1。
对比例V-2
按照实施例V-1的方法合成分子筛,不同的是,步骤3中晶化温度30℃,晶化时间3小时,晶化产物的样品经过滤、洗涤、干燥和焙烧后,XRD谱图中,2θ=22.4°处无峰,2θ=21.2°处无峰。所得分子筛记为DZ-V-2。
对比例V-3
按照实施例V-1的配比,将实施例V-1步骤(1)和(2)中所用的 ZSM-5和β分子筛机械混合后,所得的分子筛混合物记为DZ-V-3。
实施例V-1至V-3和对比例V-1至V-2的合成条件列于表V-1。
实施例V-1至V-3和对比例V-1至V-2得到的分子筛和对比例V-3得到的分子筛混合物的性质列于表V-1(续)。
表V-1各实施例和对比例的合成条件
Figure PCTCN2021101993-appb-000025
表V-1(续)各实施例和对比例的分子筛性质
Figure PCTCN2021101993-appb-000026
以下实施例用于说明根据根据本申请第四类实施方式的催化剂的制备,其中所用的高岭土为中国高岭土公司工业产品,其固含量为75重量%;所用拟薄水铝石为山东铝业公司出品,其氧化铝含量为65重量%;铝溶胶为中国石化催化剂齐鲁分公司出品,其氧化铝含量为21重量%;硅溶胶由北京化工厂出品,其氧化硅含量为25重量%,pH值为2.0。Y型分子筛,牌号HSY-0E,稀土含量为2重量%,硅铝比9.0, 结晶度60%,中国石化催化剂有限公司齐鲁分公司出品。β分子筛,牌号:NKF-6-25YY,硅铝比25,结晶度95%,南开大学催化剂厂出品。
实施例V-4至V-6
分别将实施例V-1至V-3制备的氢型核壳型分子筛制备成催化剂,催化剂编号依次为:A-V-1、A-V-2、A-V-3。催化剂制备方法:
(1)拟薄水铝石(简称铝石)和水混合均匀,在搅拌下加入浓度为36重量%的浓盐酸(化学纯,北京化工厂出品),酸铝比(36重量%盐酸与以氧化铝计的拟薄水铝石重量比)为0.2,将所得混合物升温至70℃老化1.5小时,得到老化的拟薄水铝石;该铝石浆液的氧化铝含量为12重量%;
(2)将核壳型分子筛(第一分子筛)、Y型分子筛、β分子筛(第二分子筛)、铝溶胶、硅溶胶,高岭土和上述老化的拟薄水铝石加去离子水混合,搅拌30分钟,喷雾干燥;
(3)按照催化剂∶铵盐∶H 2O=1∶1∶10的重量比在80℃下交换1h,过滤,上述交换、过滤过程重复一次,烘干得到目标催化剂。
实施例V-7
按照实施例V-5的方法制备催化剂,不同的是不使用硅溶胶,用等重量的铝溶胶代替。所得催化剂记为A-V-4。
对比例V-4至V-6
对比例V-4至V-6说明使用对比例V-1至V-3提供的分子筛制备得到的催化剂。
按照实施例V-4的催化剂制备方法分别将对比例V-1至V-3制备的分子筛、Y型分子筛、第二分子筛、拟薄水铝石、高岭土、硅溶胶、铝溶胶及水混合,喷雾干燥制备成微球催化剂。所得催化剂编号依次为:DB-V-1、DB-V-2及DB-V-3。
表V-2给出了各实施例和对比例所用第一分子筛的种类、用量,Y型分子筛、第二分子筛、铝溶胶,硅溶胶和高岭土的用量,以制备1kg催化剂为基准,以干基重量计。
表V-3给出了各实施例和对比例的催化剂组成,按照干基重量计。 催化剂组成中的第一分子筛、Y型分子筛、第二分子筛、铝溶胶、硅溶胶、铝石、高岭土的含量根据制备时所用的投料量计算得到。
表V-2各实施例和对比例的组分用量
Figure PCTCN2021101993-appb-000027
表3各实施例和对比例的催化剂组成
Figure PCTCN2021101993-appb-000028
反应评价
将实施例V-4至V-7和对比例V-4至V-6制备的催化剂,在800℃、100体积%水蒸气老化17小时后,在小型固定流化床反应器上评价其中间基原油催化裂解反应性能,评价条件为反应温度580℃,重量空速为4.0小时 -1,剂油比为10重量比。所用中间基原油性质见表V-4,反应结果见表V-5。
表V-4中间基原油的性质
性质 中间基原油
碳含量,wt% 86.43
氢含量,wt% 12.88
20℃密度,kg/m 3 901
残炭,wt% 4.8
凝固点,℃ 42
初馏点,℃ 278.8
终馏点,℃ 540.2
饱和烃,wt% 40
芳烃,wt% 22.6
胶质,wt% 37.3
沥青质,wt% 0.1
链烷烃,wt% 29.4
一环烷烃,wt% 8.4
二环烷烃,wt% 9.5
三环烷烃,wt% 6.7
总环烷烃,wt% 26.4
总双环芳烃,wt% 10.2
表5评价结果
Figure PCTCN2021101993-appb-000029
表V-5中低碳烯烃收率以原料进料量为基准计算得到。
由表V-5可见,本申请第四类实施方式的催化剂具有更高的中间基原油裂解能力,柴油和重油的收率较低,低碳烯烃收率明显更高,液化气的收率明显更高。
以上详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
此外,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。

Claims (18)

  1. 一种ZSM-5/β核壳型分子筛,包括由至少2个ZSM-5分子筛晶粒构成的核相和由多个β分子筛晶粒构成的壳层,所述ZSM-5分子筛晶粒的平均晶粒尺寸为0.05-15μm,优选为0.1-10μm,所述核壳型分子筛的壳层覆盖度为50-100%,优选为80-100%,壳层厚度为10-2000nm,优选为50-2000nm,壳层中β分子筛晶粒的平均晶粒尺寸为10-500nm,优选50-500nm,其中所述ZSM-5/β核壳型分子筛的X射线衍射谱图中2θ=22.4°处的衍射峰的峰高与2θ=23.1°处的衍射峰的峰高之比为0.1-10∶1,优选0.1-5∶1。
  2. 根据权利要求1所述的ZSM-5/β核壳型分子筛,其中,所述ZSM-5/β核壳型分子筛的总比表面积大于420m 2/g,优选为450-620m 2/g,孔直径为2-50nm的孔的比表面积占总比表面积的比例为10-40%,优选为12-35%。
  3. 根据权利要求1或2所述的ZSM-5/β核壳型分子筛,其中,所述ZSM-5/β核壳型分子筛的核相与壳层的质量比为0.2-20∶1,优选为1-15∶1。
  4. 根据权利要求1-3中任一项所述的ZSM-5/β核壳型分子筛,其中,所述ZSM-5/β核壳型分子筛中孔直径为2-80nm的孔的孔体积占总孔体积的10-30%;孔直径为20-80nm的孔的孔体积占直径为2-80nm的孔的孔体积的50-70%。
  5. 一种ZSM-5/β核壳型分子筛的合成方法,包括如下步骤:
    1)用表面活性剂溶液对颗粒形式的ZSM-5分子筛进行处理,得到ZSM-5分子筛材料I,其中所述ZSM-5分子筛的颗粒优选由至少2个ZSM-5分子筛晶粒构成;
    2)用含颗粒形式的β分子筛的浆液对所述ZSM-5分子筛材料I进行处理,得到ZSM-5分子筛材料II,其中所述β分子筛的颗粒由至少1个β分子筛晶粒构成;
    3)提供含有硅源、铝源、任选的碱源、模板剂和水的合成液,并使其在50-300℃,优选75-250℃,更优选80-180℃的温度下,晶化4-100h,优选10-80h,更优选18-50h,得到预晶化合成液III;以及
    4)将所述ZSM-5分子筛材料II与所述预晶化合成液III混合并晶 化,得到所述ZSM-5/β核壳型分子筛。
  6. 根据权利要求5所述的方法,其中,所述步骤1)的处理通过如下方式进行:将所述颗粒形式的ZSM-5分子筛加入到重量百分浓度为0.05-50%的表面活性剂溶液中,在20-70℃的温度下接触至少0.5h,优选1-36h;优选在搅拌条件下接触,随后过滤并干燥。
  7. 根据权利要求5或6所述的方法,具有以下特征中的一个或多个:
    所述表面活性剂溶液中还含有0.05-10.0重量%的盐,所述盐优选选自氯化钠、氯化钾、氯化铵、硝酸铵或者它们的组合;
    步骤1)中表面活性剂溶液与以干基重量计的颗粒形式的ZSM-5分子筛的重量比为10-200∶1;
    所述表面活性剂选自聚甲基丙烯酸甲酯、聚二烯丙基二甲基氯化铵、吡啶二羧酸、氨水、乙胺、正丁胺、四乙基氢氧化铵、四丙基氢氧化铵、四乙基溴化铵、四丙基溴化铵、四丁基氢氧化铵或者它们的组合;
    步骤1)中所用的ZSM-5分子筛是钠型、氢型或离子交换的ZSM-5分子筛;以及
    所述ZSM-5分子筛晶粒的平均晶粒尺寸为0.05-20μm,优选0.1-10μm;所述ZSM-5分子筛颗粒的平均颗粒尺寸优选为0.1-30μm。
  8. 根据权利要求5-7中任一项所述的方法,其中,所述步骤2)的处理通过如下方式进行:将ZSM-5分子筛材料I加入到含颗粒形式的β分子筛的浆液中,在20-60℃下接触至少0.5小时;优选在搅拌条件下接触,随后过滤并干燥。
  9. 根据权利要求5-8中任一项所述的方法,具有以下特征中的一个或多个:
    步骤2)中所用的含颗粒形式的β分子筛的浆液中β分子筛的浓度为0.1-10重量%,优选0.3-8重量%;
    步骤2)中所述含颗粒形式的β分子筛的浆液与以干基重量计的ZSM-5分子筛材料I的重量比为10-50∶1;
    步骤2)中所述含颗粒形式的β分子筛的浆液中,β分子筛晶粒的平均晶粒尺寸为0.01-0.5μm优选0.05-0.5μm;β分子筛颗粒的平均颗粒尺寸优选为0.01-0.5μm。
  10. 根据权利要求5-9中任一项所述的方法,其中,步骤3)中,所述硅源、铝源、任选的碱源、模板剂和水的摩尔比为:
    R/SiO 2=0.1-10∶1,优选0.1-3∶1,
    H 2O/SiO 2=2-150∶1,优选10-120∶1;
    SiO 2/Al 2O 3=10-800∶1;
    Na 2O/SiO 2=0-2∶1,优选0.01-1.7∶1;
    其中R表示模板剂,SiO 2表示以SiO 2计的所述硅源,Al 2O 3表示以Al 2O 3计的所述铝源,Na 2O表示以Na 2O计的所述碱源;
    优选地,
    所述硅源选自正硅酸乙酯、水玻璃、粗孔硅胶、硅溶胶、白炭黑、活性白土或者它们的组合;
    所述铝源选自硫酸铝、异丙醇铝、硝酸铝、铝溶胶、偏铝酸钠、γ-氧化铝或者它们的组合;
    所述碱源选自氢氧化钠、氢氧化钾,或者它们的组合;
    所述模板剂选自四乙基氟化铵、四乙基氢氧化铵、四乙基溴化铵、四乙基氯化铵、聚乙烯醇、三乙醇胺或羧甲基纤维素钠、或者它们的组合。
  11. 根据权利要求5-10中任一项所述的方法,其中,步骤4)的所述晶化在50-300℃,优选100-250℃,更优选100-200℃的温度下,进行10-400h,优选30-350h,更优选50-120h;
    优选地,步骤4)中,所述预晶化合成液III与以干基重量计的ZSM-5分子筛材料II的重量比为2-10∶1,优选4-10∶1。
  12. 一种催化剂,以干基重量计并以所述催化剂的重量为基准,所述催化剂包含30-90wt%的载体,2-50wt%的根据权利要求1-4中任一项所述的ZSM-5/β核壳型分子筛,以及0-50wt%的附加分子筛,
    优选地,所述ZSM-5/β核壳型分子筛中以Na 2O计的钠含量不超过0.15重量%。
  13. 根据权利要求12所述的催化剂,其适用于加氢VGO的催化裂化,其中以干基重量计并以所述催化剂的重量为基准,所述催化剂包含50-90重量%,优选60-85重量%的载体和10-50重量%,优选15-40重量%的所述ZSM-5/β核壳型分子筛,其中所述载体包含硅溶胶和改性元素,所述改性元素优选为稀土元素。
  14. 根据权利要求13所述的催化剂,其中,所述载体还包括拟薄水铝石、铝溶胶和粘土中的一种或多种,
    优选地,按干基重量计,所述催化剂中硅溶胶的含量为1-15重量%,拟薄水铝石的含量为5-25重量%,铝溶胶的含量为3-20重量%,粘土的含量为25-50重量%;以及
    以载体的干基重量为基准,所述载体中,以RE2O3计稀土氧化物含量为0.1-15重量%。
  15. 根据权利要求12所述的催化剂,其适用于由加氢LCO生产低碳烯烃的催化裂解反应,其中以干基重量计并以所述催化剂的重量为基准,所述催化剂包含50-85重量%的载体,10-35重量%的核壳型分子筛和5-15重量%的孔道开口直径为0.65-0.70纳米的分子筛,
    优选地,所述孔道开口直径为0.65-0.70纳米的分子筛为具有AET、AFR、AFS、AFI、BEA、BOG、CFI、CON、GME、IFR、ISV、LTL、MEI、MOR、OFF和SAO结构的分子筛中的一种或多种;优选为Beta、SAPO-5、SAPO-40、SSZ-13、CIT-1、ITQ-7、ZSM-18、丝光沸石、钠菱沸石或者它们的组合。
    优选地,所述载体包括粘土、氧化硅载体、氧化铝载体、磷铝胶中的一种或多种,并任选含有添加剂,所述添加剂选自磷氧化物和碱土金属氧化物。
  16. 根据权利要求12所述的催化剂,其适用于重油催化裂化,其中以干基重量计并以所述催化剂的重量为基准,所述催化剂包含30-83重量%的载体和2-20重量%的所述核壳型分子筛和15-50重量%的Y型分子筛;
    优选地,所述载体包括粘土、氧化硅载体和氧化铝载体中的一种或多种。
  17. 根据权利要求12所述的催化剂,其适用于中间基原油的催化裂解,其中以干基重量计并以所述催化剂的重量为基准,所述催化剂含有50-79重量%的载体、15-35重量%的核壳型分子筛、5-10重量%的Y型分子筛、1-5重量%的孔道开口直径为0.65-0.70纳米的分子筛;
    优选地,所述Y型分子筛为不含稀土的Y型分子筛,或稀土含量小于5重量%的Y型分子筛,所述Y型分子筛中稀土的含量以RE 2O 3计为0-5重量%,所述Y型分子筛的硅铝比以SiO 2/Al 2O 3摩尔比计为 4-18;
    所述孔道开口直径为0.65-0.70纳米的分子筛为β分子筛;或者
    所述载体包括铝溶胶、锆溶胶、拟薄水铝石、硅溶胶、粘土中的一种或多种。
  18. 一种烃油催化转化方法,包括使烃油原料与根据权利要求12-17中任一项所述的催化剂接触反应的步骤。
PCT/CN2021/101993 2020-06-24 2021-06-24 ZSM-5/β核壳型分子筛及其合成和应用 WO2021259347A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/002,322 US20230347330A1 (en) 2020-06-24 2021-06-24 ZSM-5/Beta CORE-SHELL MOLECULAR SIEVE AND SYNTHESIS AND USE THEREOF
EP21829647.3A EP4173704A1 (en) 2020-06-24 2021-06-24 ZSM-5/ß CORE-SHELL MOLECULAR SIEVE AND SYNTHESIS AND USE THEREOF
JP2022580129A JP2023531260A (ja) 2020-06-24 2021-06-24 ZSM-5/βコア-シェルモレキュラーシーブならびにその合成および使用

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN202010590434.7A CN113830778B (zh) 2020-06-24 2020-06-24 ZSM-5/β核壳型分子筛及其合成方法和应用
CN202010590434.7 2020-06-24
CN202010885254 2020-08-28
CN202010885254.1 2020-08-28
CN202010893693 2020-08-31
CN202010893693.7 2020-08-31
CN202010894090 2020-08-31
CN202010894090.9 2020-08-31
CN202010985188.5 2020-09-18
CN202010985188.5A CN114425420B (zh) 2020-09-18 2020-09-18 一种孔道结构丰富的催化裂解催化剂及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2021259347A1 true WO2021259347A1 (zh) 2021-12-30

Family

ID=79282569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101993 WO2021259347A1 (zh) 2020-06-24 2021-06-24 ZSM-5/β核壳型分子筛及其合成和应用

Country Status (5)

Country Link
US (1) US20230347330A1 (zh)
EP (1) EP4173704A1 (zh)
JP (1) JP2023531260A (zh)
TW (1) TW202200502A (zh)
WO (1) WO2021259347A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115779960A (zh) * 2022-11-15 2023-03-14 国家能源集团宁夏煤业有限责任公司 用于正构烃异构化的催化剂及其在费托蜡加氢转化过程中的应用
CN115974097A (zh) * 2023-02-17 2023-04-18 四川轻化工大学 一种分子筛及其在降低白酒中杂醛含量中的应用
CN116371458A (zh) * 2023-06-02 2023-07-04 潍坊正轩稀土催化材料有限公司 一种高沸石纳米化zsm-5微球催化剂及其制备方法
CN116891402A (zh) * 2023-09-11 2023-10-17 山东东信阻燃科技有限公司 一种甲基八溴醚的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3702886A (en) 1969-10-10 1972-11-14 Mobil Oil Corp Crystalline zeolite zsm-5 and method of preparing the same
CN101885493A (zh) * 2009-05-13 2010-11-17 中国石油化工股份有限公司 ZSM-5/β核壳型分子筛的合成方法
CN101884935A (zh) * 2009-05-13 2010-11-17 中国石油化工股份有限公司 催化剂材料及其制备方法
US20140256538A1 (en) * 2011-08-10 2014-09-11 Sogang University Research Foundation Zeolite core/silica zeolite shell composite, preparing method of the same, and catalyst including the same
CN104591217A (zh) * 2013-11-04 2015-05-06 中国石油化工股份有限公司 一种Beta和ZSM-12复合分子筛及其合成方法
CN110540869A (zh) * 2018-05-28 2019-12-06 中国石油化工股份有限公司 一种催化裂化的方法
CN110950731A (zh) * 2018-09-27 2020-04-03 中国石油化工股份有限公司 一种催化裂解的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3702886A (en) 1969-10-10 1972-11-14 Mobil Oil Corp Crystalline zeolite zsm-5 and method of preparing the same
CN101885493A (zh) * 2009-05-13 2010-11-17 中国石油化工股份有限公司 ZSM-5/β核壳型分子筛的合成方法
CN101884935A (zh) * 2009-05-13 2010-11-17 中国石油化工股份有限公司 催化剂材料及其制备方法
US20140256538A1 (en) * 2011-08-10 2014-09-11 Sogang University Research Foundation Zeolite core/silica zeolite shell composite, preparing method of the same, and catalyst including the same
CN104591217A (zh) * 2013-11-04 2015-05-06 中国石油化工股份有限公司 一种Beta和ZSM-12复合分子筛及其合成方法
CN110540869A (zh) * 2018-05-28 2019-12-06 中国石油化工股份有限公司 一种催化裂化的方法
CN110950731A (zh) * 2018-09-27 2020-04-03 中国石油化工股份有限公司 一种催化裂解的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Petrochemical Analysis Methods (RIPP Test Methods", September 1990, SCIENCE PRESS, pages: 424 - 427
PAN MENG, WANG GUANGSHUAI; ZHENG JIAJUN; BAO JIEHUA; LI BIAO; LI RUIFENG;: "Synthesis and Characterization of Y-Type Zeolite Cores and a Nano-β Zeolite Polycrystalline Shell Composites", JOURNAL OF THE CHINESE CERAMIC SOCIETY, vol. 43, no. 5, 1 May 2015 (2015-05-01), pages 685 - 691, XP055883529 *
YOUNES BOUIZI, LOIC ROULEAU, VALENTIN P. VALTCHEV: "Factors Controlling the Formation of Core-Shell Zeolite-Zeolite Composites", CHEMISTRY OF MATERIALS, vol. 18, no. 20, 1 October 2006 (2006-10-01), American Chemical Society, US, pages 4959 - 4966, XP055702346, ISSN: 0897-4756, DOI: 10.1021/cm0611744 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115779960A (zh) * 2022-11-15 2023-03-14 国家能源集团宁夏煤业有限责任公司 用于正构烃异构化的催化剂及其在费托蜡加氢转化过程中的应用
CN115779960B (zh) * 2022-11-15 2024-03-12 国家能源集团宁夏煤业有限责任公司 用于正构烃异构化的催化剂及其在费托蜡加氢转化过程中的应用
CN115974097A (zh) * 2023-02-17 2023-04-18 四川轻化工大学 一种分子筛及其在降低白酒中杂醛含量中的应用
CN115974097B (zh) * 2023-02-17 2023-12-19 四川轻化工大学 一种分子筛及其在降低白酒中杂醛含量中的应用
CN116371458A (zh) * 2023-06-02 2023-07-04 潍坊正轩稀土催化材料有限公司 一种高沸石纳米化zsm-5微球催化剂及其制备方法
CN116371458B (zh) * 2023-06-02 2023-08-11 潍坊正轩稀土催化材料有限公司 一种高沸石纳米化zsm-5微球催化剂及其制备方法
CN116891402A (zh) * 2023-09-11 2023-10-17 山东东信阻燃科技有限公司 一种甲基八溴醚的制备方法
CN116891402B (zh) * 2023-09-11 2023-12-12 山东东信阻燃科技有限公司 一种甲基八溴醚的制备方法

Also Published As

Publication number Publication date
EP4173704A1 (en) 2023-05-03
TW202200502A (zh) 2022-01-01
US20230347330A1 (en) 2023-11-02
JP2023531260A (ja) 2023-07-21

Similar Documents

Publication Publication Date Title
WO2021259347A1 (zh) ZSM-5/β核壳型分子筛及其合成和应用
WO2021259348A1 (zh) 含磷和金属的核壳型分子筛及其合成和应用
JPH0214102B2 (zh)
JP7437412B2 (ja) 接触分解触媒およびその調製方法
WO2021259317A1 (zh) 一种催化裂化催化剂及其制备方法
BR112018076203B1 (pt) Catalisador de craqueamento catalítico fluidizado de zeólita e uso de um catalisador de craqueamento catalítico fluidizado de zeólita
CN114130426B (zh) 一种加氢lco多产低碳烯烃的催化裂解催化剂及其制备方法与应用
JPH04227849A (ja) ベータゼオライト、ゼオライトyおよびマトリックスを含む、炭化水素仕込原料のクラッキング用触媒
CN114425421B (zh) 一种催化裂化催化剂及其制备方法与应用
CN115518678B (zh) 一种轻烃催化裂解催化剂及其制备方法与应用
WO2012122208A1 (en) Hydrocracking catalysts containing stabilized aggregates of small crystallites of zeolite y and associated hydrocarbon conversion processes
WO2023069656A1 (en) In-situ crystallized ultra-low zeolite content fluid catalytic cracking catalyst
JP2023523468A (ja) 改質βゼオライト、接触分解触媒ならびにそれらの製造方法および使用
CN114130425B (zh) 一种加氢vgo裂化生产低碳烯烃和重油燃料的催化剂及其制备方法与应用
CN114425420B (zh) 一种孔道结构丰富的催化裂解催化剂及其制备方法与应用
CN114425418B (zh) 一种核壳型分子筛在重油催化裂化催化剂中的应用
CN114425419B (zh) 一种加氢lco多产烯烃和芳烃的催化裂解催化剂及其制备方法与应用
RU2800708C2 (ru) Содержащее фосфор и редкоземельные элементы молекулярное сито, имеющее структуру mfi и высокое содержание мезопор, способ его получения, содержащий его катализатор и его применение
CN115532305B (zh) 一种重油催化裂化生产汽油和低碳烯烃的催化剂及其制备方法与应用
CN114425417B (zh) 一种石脑油催化裂解催化剂及其制备方法与应用
CN115591576B (zh) 一种加氢lco催化裂解催化剂及其制备方法与应用
RU2800606C2 (ru) Молекулярное сито, имеющее структуру mfi и высокое содержание мезопор, способ его получения, содержащий его катализатор и его применение
CN114433215B (zh) 一种加氢渣油催化裂解催化剂及其制备方法和应用
JP2022158149A (ja) シリカアルミナ粉末、シリカアルミナ粉末の製造方法、流動接触分解触媒およびその製造方法
CN116764670A (zh) 一种用于提高汽油收率和选择性的y型分子筛催化材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21829647

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022580129

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021829647

Country of ref document: EP

Effective date: 20230124

WWE Wipo information: entry into national phase

Ref document number: 522441816

Country of ref document: SA