WO2014115728A1 - 光透過型インプリント用モールド、大面積モールドの製造方法 - Google Patents

光透過型インプリント用モールド、大面積モールドの製造方法 Download PDF

Info

Publication number
WO2014115728A1
WO2014115728A1 PCT/JP2014/051129 JP2014051129W WO2014115728A1 WO 2014115728 A1 WO2014115728 A1 WO 2014115728A1 JP 2014051129 W JP2014051129 W JP 2014051129W WO 2014115728 A1 WO2014115728 A1 WO 2014115728A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
mold
region
resin
shielding member
Prior art date
Application number
PCT/JP2014/051129
Other languages
English (en)
French (fr)
Inventor
幸大 宮澤
Original Assignee
綜研化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 綜研化学株式会社 filed Critical 綜研化学株式会社
Priority to EP14743376.7A priority Critical patent/EP2950330B1/en
Priority to JP2014558575A priority patent/JP6173354B2/ja
Priority to US14/651,765 priority patent/US10052798B2/en
Priority to KR1020157018659A priority patent/KR20150112945A/ko
Priority to CN201480005890.3A priority patent/CN104937698B/zh
Publication of WO2014115728A1 publication Critical patent/WO2014115728A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0888Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using transparant moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0888Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using transparant moulds
    • B29C35/0894Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using transparant moulds provided with masks or diaphragms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/026Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing of layered or coated substantially flat surfaces
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • B29C2059/023Microembossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0026Transparent

Definitions

  • the present invention relates to a light transmission type imprint mold and a method for producing a large area mold.
  • the imprint technique is a fine processing technique in which a mold having a reverse pattern of a desired fine uneven pattern is pressed against a transfer material such as a liquid resin on a substrate, thereby transferring the mold pattern to the transfer material.
  • the fine concavo-convex pattern ranges from a nanoscale pattern of 10 nm to about 100 ⁇ m, and is used in various fields such as semiconductor materials, optical materials, storage media, micromachines, biotechnology, and the environment.
  • a mold having a nano-order fine concavo-convex pattern on the surface is very expensive because it takes time to form the pattern. Therefore, it is difficult to increase the size (increase in area) of a mold having a nano-order fine concavo-convex pattern on the surface.
  • Patent Document 1 imprinting using a small mold is repeated while shifting the position of the mold so that the processing areas do not overlap (step-and-repeat).
  • the present invention has been made in view of such circumstances, and a light-transmitting imprint mold capable of continuously forming a concavo-convex pattern even with low-precision alignment, and an imprint using the mold.
  • a printing method is provided.
  • a light transmissive imprint mold including a transparent base material having a pattern region in which a concavo-convex pattern is formed, and a light shielding member provided on the pattern region,
  • the light shielding member covers the concave / convex pattern continuously in both the concave and convex portions of the concave / convex pattern in a partial region of the edge of the pattern region, and the surface shape of the light shielding member has the concave / convex pattern.
  • a light transmissive imprint mold provided to reproduce.
  • a light shielding member is provided in a non-pattern part, but the present invention is different from the basic idea of the present invention in that it covers the uneven pattern of the mold and the surface shape of the light shielding member reproduces the uneven pattern. Therefore, it is necessary to provide a light shielding member.
  • the light shielding member is provided in this way, a difference in the degree of exposure of the photocurable resin can be provided between the region where the light shielding member is provided (light shielding region) and the other region (light transmitting region). Then, by adjusting the exposure amount, the liquid photo-curing resin can be semi-cured in the light shielding region to such an extent that the shape of the inverted pattern of the concavo-convex pattern is maintained for a short time.
  • the mold when the mold is placed so that the translucent area of the mold is positioned on the semi-cured photo-curing resin and the uneven pattern of the mold is pressed, it is already formed on the semi-cured photo-curing resin.
  • the existing pattern is easily deformed into an inverted pattern shape according to the uneven pattern of the newly pressed mold. Since the semi-cured photo-curing resin can be easily deformed in this way, the already formed pattern is not destroyed but deformed into a new inverted pattern.
  • the alignment of the mold may be such that the end of the translucent region after the mold is moved is positioned on the semi-cured photo-curing resin. Therefore, even if a relatively inexpensive imprint apparatus that is not so high in accuracy is used, a reversal pattern of the concave / convex pattern of the mold can be continuously formed.
  • the transparent substrate is a light transmissive resin.
  • the light shielding member is made of a metal film.
  • the light shielding member is Curing light is applied to the photocurable resin so that the amount of light irradiated to the photocurable resin in the provided light shielding region is less than the amount of light irradiated to the photocurable resin in the other light transmitting regions.
  • an imprint method comprising a repetitive step of performing the exposure step and the separation step at a position after movement.
  • the curing light is applied to the photocurable resin from both the mold side and the large area base material side.
  • the light shielding member partially transmits the curing light, and the curing light is irradiated only from the mold side.
  • (A) is sectional drawing of the mold of 1st Embodiment of this invention, (b) is the modification.
  • (A) And (b) is sectional drawing for demonstrating the exposure process and detachment
  • (A), (b) is sectional drawing for demonstrating the transfer process and repetition process of the imprint method of 1st Embodiment of this invention, respectively,
  • (c) is the 2nd exposure process and separation
  • the light-transmissive imprint mold according to the first embodiment of the present invention includes a transparent substrate 4 having a pattern region in which a concavo-convex pattern 3 is formed, as shown in FIG. ,
  • a light transmission type imprint mold 2 including a light shielding member 5 provided on the pattern region, wherein the light shielding member 5 has a concave portion 3a of the concave / convex pattern 3 in a partial region of the end of the pattern region.
  • the convex portion 3 b are provided so that the concave / convex pattern 3 is continuously covered and the surface shape of the light shielding member 5 is reproduced.
  • Such an imprint mold 2 can be formed by a known imprint technique, and in one example, has a desired fine uneven pattern 3 on a transparent substrate 4 as shown in FIG. A transparent resin layer 6 is provided.
  • the transparent substrate 4 is formed of a transparent material such as a resin substrate or a quartz substrate.
  • the resin base material is preferable for forming a flexible resin mold. Specifically, for example, from the group consisting of polyethylene terephthalate, polycarbonate, polyester, polyolefin, polyimide, polysulfone, polyethersulfone, cyclic polyolefin, and polyethylene naphthalate. It consists of one kind selected.
  • the resin forming the transparent resin layer 6 may be any of a thermoplastic resin, a thermosetting resin, or a photocurable resin. From the viewpoint of ease, a photocurable resin is preferred. Specific examples include acrylic resins, styrene resins, olefin resins, polycarbonate resins, polyester resins, epoxy resins, and silicone resins. Further, the resin may contain a peeling component such as a fluorine compound, a long-chain alkyl compound, and a wax.
  • the thickness of the transparent resin layer 6 is usually 50 nm to 1 mm, preferably 500 nm to 500 ⁇ m. With such a thickness, imprinting is easy to perform.
  • the mold for forming the concavo-convex pattern is 0.5 to 50 MPa while the transparent resin layer 6 is heated to a temperature equal to or higher than the glass transition temperature (Tg). After holding the pressed thickness for 10 to 600 seconds and pressing, the transparent resin layer 6 is cooled to a temperature of Tg or less, and the mold is pulled away from the transparent resin layer 6 to form the uneven pattern 3 on the transparent resin layer 6. be able to.
  • Tg glass transition temperature
  • curing light UV light
  • the transparent resin layer 6 is cured by irradiating a resin such as visible light and an electron beam that can cure the resin, and then the mold is separated to form the concavo-convex pattern 3 on the transparent resin layer 6. be able to.
  • the light may be irradiated from the transparent substrate 4 side, and may be irradiated from the mold side when the mold is transparent to the light.
  • the resin forming the transparent resin layer 6 is a thermosetting resin
  • the transparent resin layer 6 is heated to the curing temperature in a state in which a mold for forming an uneven pattern is pressed against the liquid transparent resin layer 6.
  • the concavo-convex pattern 3 can be formed on the transparent resin layer 6 by curing the transparent resin layer 6 and then separating the mold.
  • the light may be irradiated from the transparent substrate 4 side, and may be irradiated from the mold side when the mold is transparent to light.
  • the uneven pattern 3 of the transparent resin layer 6 is not particularly limited, but preferably has a period of 10 nm to 2 mm, a depth of 10 nm to 500 ⁇ m, and a transfer surface of 1.0 to 1.0 ⁇ 10 6 mm 2 , and a period of 20 nm to 20 ⁇ m. More preferably, the depth is 50 nm to 1 ⁇ m and the transfer surface is 1.0 to 0.25 ⁇ 10 6 mm 2 . With this setting, it is possible to transfer a sufficient uneven pattern 3 to the transfer body. Examples of the surface shape include moth-eye, line, cylinder, monolith, cone, polygonal pyramid, and microlens.
  • the pattern area in which the uneven pattern 3 is formed may be provided over the entire surface of the transparent base material 4 as shown in FIG. 1A, and as shown in FIG. You may provide only in part.
  • the surface of the transparent resin layer 6 may be subjected to a peeling treatment for preventing adhesion with the transfer material, and the peeling treatment may form a peeling layer (not shown).
  • the release agent for forming the release layer (not shown) is preferably a group consisting of a fluorine-based silane coupling agent, a perfluoro compound having an amino group or a carboxyl group, and a perfluoroether compound having an amino group or a carboxyl group. More preferably selected from the group consisting of a fluorine-based silane coupling agent, a single-terminal aminated perfluoro (perfluoroether) compound and a single-terminal carboxylated perfluoro (perfluoroether) compound.
  • the thickness of the release layer (not shown) is preferably in the range of 0.5 to 20 nm, more preferably 0.5 to 10 nm, and most preferably 0.5 to 5 nm.
  • an additive having a group capable of binding to a release agent as disclosed in WO2012 / 018045 is added to the transparent resin layer 6. May be.
  • the light shielding member 5 is formed in a partial region at the end of the pattern region where the uneven pattern 3 is formed.
  • the formation method and material of the light shielding member 5 are not particularly limited as long as the object of shielding the curing light is achieved.
  • the light shielding member 5 can be formed by depositing a metal material such as Cr on the concavo-convex pattern 3 by sputtering.
  • the light shielding member 5 may be formed of an organic material such as acrylic, urethane, or polycarbonate, or an inorganic material such as carbon. These materials may contain other materials such as pigments.
  • the light shielding member may be provided on a straight line along one side of the pattern region, may be provided in the L circumstance along two sides, may be provided along a larger number of sides, It may be provided along the entire circumference.
  • the width for providing the light shielding member 5 is not particularly limited, but the light shielding member 5 is preferably provided in an area of 2 to 20% of the width of the pattern area, for example. This is because if the width of the light shielding member 5 is too narrow, the advantage of providing the light shielding member 5 cannot be obtained, and if the width of the light shielding member 5 is too wide, the imprinting efficiency decreases.
  • the light shielding member 5 is not formed only on the concave portion 3a or only the convex portion 3b, but is formed so that both the concave portion 3a and the convex portion 3b of the concave-convex pattern 3 are continuous. Further, the light shielding member 5 is formed so that the surface reproduces the uneven pattern 3. In this case, it is possible to transfer the uneven pattern 3 to the transfer material by pressing the light shielding member 5 against the transfer material.
  • the thickness of the light shielding member 5 is not particularly limited. However, if the thickness is too thin, the light shielding property is not exhibited. If the thickness is too thick, the uneven pattern 3 is not properly reproduced. A thickness that is appropriately reproduced on the member 5 is appropriately selected.
  • the thickness of the light shielding member 5 is, for example, 0.01 to 0.99 times the height of the uneven pattern, preferably 0.01 to 0.5 times, or 1 to 100 nm.
  • the thickness of the light shielding member 5 is, for example, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, which is the height of the concavo-convex pattern. 0.7, 0.8, 0.9, 0.95, 0.99 times, or 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 nm, where It may be within a range between any two of the numerical values exemplified in.
  • the light shielding member 5 may be one that completely shields the curing light (light shielding degree 100%), or may be partial light shielding (for example, light shielding degree 50%). That is, in this specification, “light shielding” is a term including both complete light shielding and partial light shielding. In the former case, in the imprint method to be described later, since the photocurable resin in the region where the light shielding member 5 is located (the light shielding region) is not exposed at all from the mold side, the photocurable resin in this region is semi-cured. In order to achieve this, exposure from the large-area substrate side on which the transfer material is applied is necessary.
  • the imprint method of the present invention can be carried out without exposure from the large area substrate side.
  • the degree of partial light shielding is appropriately changed depending on the physical properties of the photo-curable resin, but is, for example, 10, 20, 30, 40, 50, 60, 70, 80, 90%, and any of the numerical values exemplified here. Or within a range between the two.
  • the above-described peeling treatment for the transparent resin layer 6 may be performed on the light shielding member 5. This prevents the transfer material from adhering to the light shielding member 5.
  • the imprint method according to the first embodiment of the present invention applies the above-described light transmissive imprint mold to the photocurable resin 9 applied on the large-area substrate 7.
  • the amount of light applied to the photocurable resin 9 in the light shielding region provided with the light shielding member 5 is less than the amount of light applied to the photocurable resin in the other light transmitting region.
  • the photocurable resin 9 is irradiated with curing light so that the photocurable resin 9 in the light shielding region is semi-cured, and the mold 2 is removed from the photocurable resin 9 after the exposure step.
  • a separating step for separating a moving step for moving the mold 2 so that the end of the light-transmitting region of the mold 2 is positioned on the semi-cured photocurable resin 9b, and the exposing step at the moved position And a repetition process for performing the above-mentioned separation process Obtain.
  • the light shielding member 5 blocks the curing light, and the photocurable resin 9 is not irradiated with the curing light. Since the photocurable resin 9 in the light shielding region remains in a liquid state as it is, the curing light is also irradiated from the large area substrate 7 in order to semi-cure the photocurable resin 9 in the light shielding region.
  • the degree of curing of the light curable resin 9 in the light shielding region can be adjusted by changing the irradiation amount of the curing light from the large area base material 7 as well.
  • the material of the large area substrate 7 is not particularly limited, but is preferably a resin substrate. This is because by using the resin base material, a resin mold having a desired size (also capable of a large area) can be obtained by the imprinting method of the present invention.
  • the resin constituting the resin base material include one selected from the group consisting of polyethylene terephthalate, polycarbonate, polyester, polyolefin, polyimide, polysulfone, polyethersulfone, cyclic polyolefin, and polyethylene naphthalate.
  • the large-area substrate 7 preferably has an appropriate flexibility. When a resin substrate is used, the thickness of the resin substrate is preferably in the range of 25 to 500 ⁇ m.
  • the photocurable resin 9 examples include acrylic resin, styrene resin, olefin resin, polycarbonate resin, polyester resin, epoxy resin, and silicone resin. Further, the resin may contain a peeling component such as a fluorine compound, a long-chain alkyl compound, and a wax.
  • the curing light is also applied to the semi-cured photocurable resin 9b formed in the immediately preceding step, and the semi-cured photocurable resin 9b is completely cured with the photocurable resin 9a. Become. Also in this step, a semi-cured photocurable resin 9b is newly formed in the light shielding region.
  • a large-area mold having a desired size can be formed by repeating the separation process, the movement process, and the exposure process as many times as necessary.
  • FIG. 4 shows a light transmission type imprint mold 2 according to a second embodiment of the present invention.
  • the configuration of the mold 2 is similar to that of the first embodiment, but the light shielding member 5 partially shields the curing light.
  • the curing light can be irradiated only from the mold 2 side.
  • the curing light passes through the mold 2 as it is and is irradiated onto the photocurable resin 9b.
  • the photocurable resin 9b can be semi-cured by appropriately adjusting the intensity of the curing light and the transmittance of the light shielding member 5. Subsequent steps can be performed in the same manner as in the first embodiment.

Abstract

大面積基材上に塗布された光硬化性樹脂に対して光透過型インプリント用モールドを押し当てた状態で、透明基材の凹凸パターンを再現するように設けられている遮光部材(5)によって硬化される遮光領域の光硬化性樹脂に照射される光量が、それ以外の透光領域にある光硬化性樹脂に照射される光量よりも少なくなるように光硬化性樹脂に対して硬化光を照射し、遮光領域にある光硬化性樹脂を半硬化(9b)させる露光工程と、露光工程の後にモールドを光硬化性樹脂から離脱させる離脱工程と、次に、モールドの透光領域の端が半硬化された光硬化性樹脂(9b)上に位置するようにモールドを移動させる移動工程と、移動後の位置で露光工程と離脱工程を行う繰り返し工程とを備える、インプリント方法。

Description

光透過型インプリント用モールド、大面積モールドの製造方法
 本発明は、光透過型インプリント用モールド、及び大面積モールドの製造方法に関する。
 インプリント技術とは、所望とする微細な凹凸パターンの反転パターンを有するモールドを、基板上の液状樹脂等の転写材料へ押し付け、これによりモールドのパターンを転写材料に転写する微細加工技術である。微細な凹凸パターンとしては、10nmレベルのナノスケールのものから、100μm程度のものまで存在し、半導体材料、光学材料、記憶メディア、マイクロマシン、バイオ、環境等、様々な分野で用いられている。
 ところで、ナノオーダーの微細な凹凸パターンを表面に有するモールドは、パターンの形成に時間がかかるため非常に高価である。そのため、ナノオーダーの微細な凹凸パターンを表面に有するモールドの大型化(大面積化)は困難である。
 そこで、特許文献1では、小さいモールドを用いたインプリントを、加工領域が重ならないようにモールドの位置をずらしながら繰り返す行うことによって大面積のインプリントを可能にしている(ステップアンドリピート)。
特許第4262271号
 しかしながら、特許文献1の方法では、凹凸パターンを連続的に形成するには、モールドのアライメントを極めて高精度で行う必要があり、そのような高精度のインプリント装置は極めて高価であるという問題がある。また、アライメントの精度が低い場合には、すでに形成した凹凸パターン上にモールドを押し付けて凹凸パターンを破壊してしまったり、すでに形成した凹凸パターンと次にモールドを押し付ける位置の間にスペースができてしまって凹凸パターンが連続的にならなかったりするという問題がある。
 本発明は、このような実情に鑑みてなされたものであり、低精度なアライメントであっても凹凸パターンを連続的に形成することができる光透過型インプリント用モールド及びこのモールドを用いたインプリント方法を提供するものである。
 本発明によれば、凹凸パターンが形成されたパターン領域を有する透明基材と、前記パターン領域上に設けられた遮光部材とを含む光透過型インプリント用モールドであって、
前記遮光部材は、前記パターン領域の端の一部の領域において、前記凹凸パターンの凹部と凸部との双方を連続して前記凹凸パターンを被覆し且つ前記遮光部材の表面形状が前記凹凸パターンを再現するように、設けられている、光透過型インプリント用モールドが提供される。
 特許文献1では非パターン部に遮光部材が設けられているが、本発明はこの発明とは基本的な発想が異なり、モールドの凹凸パターンを被覆し且つ遮光部材の表面形状が前記凹凸パターンを再現するように遮光部材を設ける必要がある。このように遮光部材を設けると、遮光部材が設けられている領域(遮光領域)とそれ以外の領域(透光領域)とで光硬化性樹脂の露光の程度に差を設けることができる。そして、露光量を調節することによって、遮光領域において、液状の光硬化性樹脂を、凹凸パターンの反転パターンの形状が短時間保持される程度に半硬化させることができる。
 次に、モールドの透光領域が半硬化された光硬化性樹脂上に位置するようにモールドを配置して、モールドの凹凸パターンを押し付けると、半硬化された光硬化性樹脂にすでに形成されているパターンは容易に変形して、新たに押し付けられたモールドの凹凸パターンに従った反転パターン形状になる。このように半硬化された光硬化性樹脂は容易に変形可能であるので、すでに形成したパターンが破壊されるのではなく、新たな反転パターンへと変形することとなる。
 本発明のモールドを用いれば、モールドのアライメントは、モールドを移動させた後の透光領域の端が半硬化された光硬化性樹脂上に位置する程度でよいので、特許文献1のように厳密なアライメントを行う必要がなく、従って、精度がそれほど高くない比較的安価なインプリント装置を用いても、モールドの凹凸パターンの反転パターンを連続的に形成することができる。
 以下、本発明の種々の実施形態を例示する。以下に示す実施形態は、互いに組み合わせ可能である。
 好ましくは、前記透明基材は、光透過性樹脂である。
 好ましくは、前記遮光部材は、金属膜からなる。
 また、本発明は、別の観点によれば、大面積基材上に塗布された光硬化性樹脂に対して上記記載の光透過型インプリント用モールドを押し当てた状態で、前記遮光部材が設けられた遮光領域にある光硬化性樹脂に照射される光量がそれ以外の透光領域にある光硬化性樹脂に照射される光量よりも少なくなるように光硬化性樹脂に対して硬化光を照射することによって、前記遮光領域にある光硬化性樹脂を半硬化させる露光工程と、
露光工程の後に前記モールドを前記光硬化性樹脂から離脱させる離脱工程と、
次に、前記モールドの透光領域の端が前記半硬化された光硬化性樹脂上に位置するように前記モールドを移動させる移動工程と、
移動後の位置で前記露光工程と前記離脱工程を行う繰り返し工程とを備える、インプリント方法を提供する。
 好ましくは、前記露光工程において、前記硬化光は、前記モールド側と前記大面積基材側の両方から前記光硬化性樹脂に対して照射される。
 好ましくは、前記遮光部材は、前記硬化光を部分的に透過させ、前記硬化光は、モールド側のみから照射される。
(a)は、本発明の第1実施形態のモールドの断面図であり、(b)は、その変形例である。 (a)及び(b)は、それぞれ、本発明の第1実施形態のインプリント方法の露光工程及び離脱工程を説明するための断面図である。 (a)、(b)は、それぞれ、本発明の第1実施形態のインプリント方法の移動工程及び繰り返し工程を説明するための断面図であり、(c)は、2回目の露光工程及び離脱工程の後に得られる構造を示す断面図である。 本発明の第2実施形態のモールドの断面図である。 本発明の第2実施形態のインプリント方法を説明するための断面図である。
 以下、図面を参照しながら本発明の好ましい実施の形態について具体的に説明する。
1.第1実施形態
1-1.光透過型インプリント用モールド
 本発明の第1実施形態の光透過型インプリント用モールドは、図1(a)に示すように、凹凸パターン3が形成されたパターン領域を有する透明基材4と、前記パターン領域上に設けられた遮光部材5とを含む光透過型インプリント用モールド2であって、遮光部材5は、前記パターン領域の端の一部の領域において、凹凸パターン3の凹部3aと凸部3bとの双方を連続して凹凸パターン3を被覆し且つ遮光部材5の表面形状が凹凸パターン3を再現するように、設けられている。
 このようなインプリント用モールド2は、公知のインプリント技術により形成可能であり、一例では、図1(a)に示すように透明基材4上に、所望とする微細な凹凸パターン3を有する透明樹脂層6を備える。
(1)透明基材4
 透明基材4は、樹脂基材、石英基材などの透明材料で形成される。樹脂基材は、柔軟性を有する樹脂モールドの形成に好ましく、具体的には例えば、ポリエチレンテレフタレート、ポリカーボネート、ポリエステル、ポリオレフィン、ポリイミド、ポリサルフォン、ポリエーテルサルフォン、環状ポリオレフィンおよびポリエチレンナフタレートからなる群から選ばれる1種からなるものである。
(2)透明樹脂層6、凹凸パターン3、パターン領域
 透明樹脂層6を形成する樹脂としては、熱可塑性樹脂、熱硬化性樹脂または光硬化性樹脂の何れでもよいが生産性およびモールドとしての使いやすさの観点から光硬化性樹脂が好ましい。具体的には、アクリル樹脂、スチレン樹脂、オレフィン樹脂、ポリカーボネート樹脂、ポリエステル樹脂、エポキシ樹脂、シリコーン樹脂等が挙げられる。また、樹脂は、フッ素化合物、長鎖アルキル化合物、およびワックスなどの剥離成分を含有してもよい。
 上記した透明樹脂層6の厚さは、通常50nm~1mm、好ましくは、500nm~500μmである。このような厚さとすれば、インプリント加工が行い易い。
 透明樹脂層6を形成する樹脂が熱可塑性樹脂である場合は、透明樹脂層6をガラス転移温度(Tg)以上の温度に加熱した状態で、凹凸パターン形成用のモールドを0.5~50MPaのプレス厚で10~600秒間保持してプレスした後、透明樹脂層6をTg以下の温度にまで冷却し、モールドを透明樹脂層6から引き離すことによって、透明樹脂層6に凹凸パターン3を形成することができる。一方、透明樹脂層6を形成する樹脂が光硬化性樹脂である場合は、液状の透明樹脂層6に凹凸パターン形成用のモールドを押し付けた状態で透明樹脂層6に対して硬化光(UV光、可視光、電子線などの樹脂を硬化可能なエネルギー線の総称)を照射することによって透明樹脂層6を硬化し、その後、モールドを引き離すことによって、透明樹脂層6に凹凸パターン3を形成することができる。光は、透明基材4側から照射してもよく、モールドが光に対して透明である場合には、モールド側から照射してもよい。また、透明樹脂層6を形成する樹脂が熱硬化性樹脂である場合は、液状の透明樹脂層6に凹凸パターン形成用のモールドを押し付けた状態で透明樹脂層6を硬化温度にまで加熱することによって透明樹脂層6を硬化し、その後、モールドを引き離すことによって、透明樹脂層6に凹凸パターン3を形成することができる。光は、透明基材4側から照射してもよく、モールドが光に対して透過性を有する場合には、モールド側から照射してもよい。
 透明樹脂層6の凹凸パターン3に特に制限はないが、周期10nm~2mm、深さ10nm~500μm、転写面1.0~1.0×10mmのものが好ましく、周期20nm~20μm、深さ50nm~1μm、転写面1.0~0.25×10mmのものがより好ましい。このように設定すれば、転写体に充分な凹凸パターン3を転写することができる。表面形状としては、モスアイ、線、円柱、モノリス、円錐、多角錐、マイクロレンズが挙げられる。
 凹凸パターン3が形成されるパターン領域は、図1(a)に示すように、透明基材4の全面に渡って設けてもよく、図1(b)に示すように、透明基材4の一部にのみ設けてもよい。
 透明樹脂層6の表面は、転写材料との付着を防止するための剥離処理がされていてもよく、剥離処理は剥離層(図示せず)を形成するものであってもよい。剥離層(図示せず)を形成する離型剤としては、好ましくはフッ素系シランカップリング剤、アミノ基又はカルボキシル基を有するパーフルオロ化合物およびアミノ基又はカルボキシル基を有するパーフルオロエーテル化合物からなる群から選ばれる少なくとも1種からなり、より好ましくは、フッ素系シランカップリング剤、片末端アミン化パーフルオロ(パーフルオロエーテル)化合物ならびに片末端カルボキシル化パーフルオロ(パーフルオロエーテル)化合物の単体または単体および複合体の混合物からなる群から選ばれる少なくとも1種からなる。離型剤として上記のものを用いると、透明樹脂層6への密着が良好であるとともに、インプリントを行う樹脂との剥離性が良好である。剥離層(図示せず)の厚さは、好ましくは0.5~20nm、より好ましくは0.5~10nm、最も好ましくは0.5~5nmの範囲内である。なお、剥離層と透明樹脂層6の密着性を向上すべく、透明樹脂層6には、WO2012/018045に開示されているような、離型剤と結合可能な基を有する添加剤を添加してもよい。
(3)遮光部材5
 遮光部材5は、図1(a)に示すように、凹凸パターン3が形成されたパターン領域の端の一部の領域に形成する。遮光部材5の形成方法や材料は、硬化光を遮光するという目的を達成するものであれば特に限定されない。遮光部材5は、一例では、Crなどの金属材料をスパッタリングで凹凸パターン3上に付着させることによって形成することができる。遮光部材5は、アクリル系、ウレタン系、ポリカーボネート系などの有機材料や、カーボン系などの無機材料で形成してもよい。これらの材料には、色素など他の材料を含有させてもよい。遮光部材は、パターン領域の一辺に沿ってに直線上に設けてもよく、二辺に沿ってL事情に設けてもよく、それ以上の数の辺に沿って設けてもよく、パターン領域の全周に沿って設けてもよい。
 遮光部材5を設ける幅は特に限定されないが、遮光部材5は、例えば、パターン領域の幅の2~20%の領域に設けることが好ましい。遮光部材5の幅が狭すぎると、遮光部材5を設けたことによる利点が得られなくなり、遮光部材5の幅が広すぎると、インプリントの効率が低下するからである。
 遮光部材5は、凹部3aのみや凸部3bのみに形成するのではなく、凹凸パターン3の凹部3aと凸部3bとの双方を連続するように形成する。また、遮光部材5は、その表面が凹凸パターン3を再現するよう形成する。この場合、遮光部材5を転写材料に押し付けて、転写材料に凹凸パターン3を転写することができるからである。
 遮光部材5の厚さは特に限定されないが、あまりに薄すぎると遮光性が発揮されず、あまりに厚すぎると凹凸パターン3が適切に再現されないので、必要な遮光性を確保しつつ凹凸パターン3が遮光部材5に適切に再現されるような厚さを適宜選択する。遮光部材5の厚さは、例えば、凹凸パターンの高さの0.01~0.99倍であり、好ましくは0.01~0.5倍、または1~100nmの範囲である。遮光部材5の厚さは、具体的には例えば凹凸パターンの高さの0.01、0.05、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、0.95、0.99倍、又は1、5、10、20、30、40、50、60、70、80、90、100nmであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 遮光部材5は、硬化光を完全に遮光するもの(遮光度100%)であってもよく、部分遮光(例えば遮光度50%)であってもよい。つまり、本明細書において、「遮光」とは、完全遮光と部分遮光の両方を含む用語である。前者の場合は、後述するインプリント方法において、モールド側からの露光では、遮光部材5がある領域(遮光領域)の光硬化性樹脂が全く露光されないので、この領域の光硬化性樹脂を半硬化させるためには転写材料を塗布する大面積基材側からの露光が必要である。一方、後者の場合、遮光領域の光硬化性樹脂もある程度露光されるので、大面積基材側からの露光がなくても本発明のインプリント方法を実施することが可能になる。部分遮光の程度は、光硬化性樹脂の物性等によって適宜変更されるが、例えば、10、20、30、40、50、60、70、80、90%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 また、遮光部材5に対して、透明樹脂層6について上述した剥離処理を施してもよい。これによって、遮光部材5に転写材料が付着することが防ぐことができる。
1-2.インプリント方法
 次に、上記モールドを用いたインプリント方法の一例について説明する。ここで示すインプリント方法は、例示であって、上記モールドは別のインプリント方法にも利用可能である。
 本発明の第1実施形態のインプリント方法は、図2~図3に示すように、大面積基材7上に塗布された光硬化性樹脂9に対して上記の光透過型インプリント用モールド2を押し当てた状態で、遮光部材5が設けられた遮光領域にある光硬化性樹脂9に照射される光量がそれ以外の透光領域にある光硬化性樹脂に照射される光量よりも少なくなるように光硬化性樹脂9に対して硬化光を照射することによって、前記遮光領域にある光硬化性樹脂9を半硬化させる露光工程と、露光工程の後にモールド2を光硬化性樹脂9から離脱させる離脱工程と、次に、モールド2の透光領域の端が半硬化された光硬化性樹脂9b上に位置するようにモールド2を移動させる移動工程と、移動後の位置で前記露光工程と前記離脱工程を行う繰り返し工程とを備える。
(1)露光工程
 この露光工程では、図2(a)に示すように、大面積基材7上に液状の光硬化性樹脂9を塗布し、塗布した光硬化性樹脂9にモールド2の凹凸パターン3を押し付けた状態で、光硬化性樹脂9に硬化光を照射する。本実施形態では、モールド2側からも、大面積基材7からも照射している。モールド2側からの硬化光は、透光領域ではそのままモールド2を通過して光硬化性樹脂9に照射されて、光硬化性樹脂9を完全に硬化させる。一方、遮光領域では、遮光部材5が硬化光を遮って、光硬化性樹脂9には硬化光が照射されない。このままでは遮光領域の光硬化性樹脂9は液状のままになるので、遮光領域の光硬化性樹脂9を半硬化させるために大面積基材7からも硬化光を照射する。遮光領域の光硬化性樹脂9の硬化の程度は、大面積基材7からも硬化光の照射量を変化させることによって調節可能である。
 大面積基材7の材質は、特に限定されないが、樹脂基材であることが好ましい。樹脂基材を用いることによって、本発明のインプリント方法によって所望するサイズの(大面積も可能な)樹脂モールドが得られるからである。樹脂基材を構成する樹脂としては、例えば、ポリエチレンテレフタレート、ポリカーボネート、ポリエステル、ポリオレフィン、ポリイミド、ポリサルフォン、ポリエーテルサルフォン、環状ポリオレフィンおよびポリエチレンナフタレートからなる群から選ばれる1種からなるものである。また、大面積基材7は適度な柔軟性を有することが好ましく、樹脂基材を用いる場合には、樹脂基材の厚さは25~500μmの範囲であることが好ましい。
 光硬化性樹脂9としては、アクリル樹脂、スチレン樹脂、オレフィン樹脂、ポリカーボネート樹脂、ポリエステル樹脂、エポキシ樹脂、シリコーン樹脂等が挙げられる。また、樹脂は、フッ素化合物、長鎖アルキル化合物、およびワックスなどの剥離成分を含有してもよい。
(2)離脱工程
 次に、硬化光の照射後にモールド2を外す。これによって、図2(b)に示すように、完全硬化された光硬化性樹脂9aと、半硬化された光硬化性樹脂9bに凹凸パターン3の反転パターンが形成された構造が得られる。半硬化された光硬化性樹脂9bは、短時間であれば凹凸パターン3の反転パターンを保持できる程度に硬化されているので、モールド2を外した後も反転パターンの形状が維持される。但し、完全には硬化されていないので、ある程度の力を加えると容易に変形する。
(3)移動工程
 次に、図3(a)に示すように、モールド2を次の加工領域に移動させる。この際、モールド2の厳密なアライメントは必要ではなく、モールドの透光領域の端が半硬化された光硬化性樹脂9b上に位置するように配置すればよい。従って、モールド2の遮光領域の幅が広いほど必要なアライメントの精度が低くなる。
(4)繰り返し工程
 次に、図3(b)に示すように、大面積基材7の光硬化性樹脂9に対してモールド2を押し付けて光硬化性樹脂9に対して硬化光を照射する。この際、半硬化された光硬化性樹脂にすでに形成されている凹凸パターン3の反転パターンは容易に変形して、新たに押し付けられたモールドの凹凸パターン3に従った形状になる。このように半硬化された光硬化性樹脂9bは容易に変形可能であるので、すでに形成したパターンが破壊されるのではなく、新たな反転パターンへと変形することとなる。
 この工程において、硬化光は、直前のステップで形成された半硬化された光硬化性樹脂9bにも照射され、この半硬化された光硬化性樹脂9bが完全硬化された光硬化性樹脂9aとなる。また、このステップにおいても、遮光領域に、半硬化された光硬化性樹脂9bが新たに形成される。
 以後、離脱工程、移動工程、露光工程を必要な回数だけ繰り返すことによって、所望のサイズの大面積モールドを形成することができる。
2.第2実施形態
 図4は、本発明の第2実施形態の光透過型インプリント用モールド2を示す。このモールド2の構成は、第1実施形態と類似しているが、遮光部材5は、硬化光を部分遮光する。
 このようなモールドを用いた場合、図5に示すように、硬化光は、モールド2側からのみ照射することができる。透光領域では硬化光はそのままモールド2を通過して光硬化性樹脂9bに照射される。遮光領域では、硬化光は、遮光部材5によって減衰されるもののその一部は光硬化性樹脂9bに照射される。従って、硬化光の強度と遮光部材5の透過度を適宜調節することによって、光硬化性樹脂9bを半硬化させることができる。以後の工程は、第1実施形態と同様に行うことができる。
2:光透過型インプリント用モールド、3:凹凸パターン、4:透明基材、6:透明樹脂層、7:大面積基材、9:光硬化性樹脂

Claims (6)

  1. 凹凸パターンが形成されたパターン領域を有する透明基材と、前記パターン領域上に設けられた遮光部材とを含む光透過型インプリント用モールドであって、
    前記遮光部材は、前記パターン領域の端の一部の領域において、前記凹凸パターンの凹部と凸部との双方を連続して前記凹凸パターンを被覆し且つ前記遮光部材の表面形状が前記凹凸パターンを再現するように、設けられている、光透過型インプリント用モールド。
  2. 前記透明基材は、光透過性樹脂である、請求項1に記載の光透過型インプリント用モールド。
  3. 前記遮光部材は、金属膜からなる、請求項1又は2に記載の光透過型インプリント用モールド。
  4. 大面積基材上に塗布された光硬化性樹脂に対して請求項1又は2に記載の光透過型インプリント用モールドを押し当てた状態で、前記遮光部材が設けられた遮光領域にある光硬化性樹脂に照射される光量がそれ以外の透光領域にある光硬化性樹脂に照射される光量よりも少なくなるように光硬化性樹脂に対して硬化光を照射することによって、前記遮光領域にある光硬化性樹脂を半硬化させる露光工程と、
    露光工程の後に前記モールドを前記光硬化性樹脂から離脱させる離脱工程と、
    次に、前記モールドの透光領域の端が前記半硬化された光硬化性樹脂上に位置するように前記モールドを移動させる移動工程と、
    移動後の位置で前記露光工程と前記離脱工程を行う繰り返し工程とを備える、インプリント方法。
  5. 前記露光工程において、前記硬化光は、前記モールド側と前記大面積基材側の両方から前記光硬化性樹脂に対して照射される、請求項4に記載の方法。
  6. 前記遮光部材は、前記硬化光を部分的に透過させ、前記硬化光は、モールド側のみから照射される、請求項4に記載の方法。
PCT/JP2014/051129 2013-01-24 2014-01-21 光透過型インプリント用モールド、大面積モールドの製造方法 WO2014115728A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14743376.7A EP2950330B1 (en) 2013-01-24 2014-01-21 Light-transmitting imprinting mold and method for manufacturing large-area mold
JP2014558575A JP6173354B2 (ja) 2013-01-24 2014-01-21 光透過型インプリント用モールド、大面積モールドの製造方法
US14/651,765 US10052798B2 (en) 2013-01-24 2014-01-21 Light-transmitting imprinting mold and method for manufacturing large-area mold
KR1020157018659A KR20150112945A (ko) 2013-01-24 2014-01-21 광투과형 임프린트용 몰드, 대면적 몰드의 제조방법
CN201480005890.3A CN104937698B (zh) 2013-01-24 2014-01-21 透光型压印用模具、大面积模具的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-011254 2013-01-24
JP2013011254 2013-01-24

Publications (1)

Publication Number Publication Date
WO2014115728A1 true WO2014115728A1 (ja) 2014-07-31

Family

ID=51227519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051129 WO2014115728A1 (ja) 2013-01-24 2014-01-21 光透過型インプリント用モールド、大面積モールドの製造方法

Country Status (7)

Country Link
US (1) US10052798B2 (ja)
EP (1) EP2950330B1 (ja)
JP (1) JP6173354B2 (ja)
KR (1) KR20150112945A (ja)
CN (1) CN104937698B (ja)
TW (1) TWI615258B (ja)
WO (1) WO2014115728A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014223761A (ja) * 2013-05-17 2014-12-04 パナソニック株式会社 光学部材の製造方法
JP2019201194A (ja) * 2018-05-15 2019-11-21 凸版印刷株式会社 パターン形成体の製造方法及びパターン形成体
JP2019206180A (ja) * 2018-05-28 2019-12-05 大日本印刷株式会社 樹脂製モールド、レプリカモールドの製造方法、及び光学素子の製造方法
JP2020032578A (ja) * 2018-08-28 2020-03-05 大日本印刷株式会社 樹脂製モールドの製造方法、凹凸パターンの形成方法、中間版モールドの製造方法、中間版モールド及び光学素子の製造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108583018B (zh) * 2013-10-28 2019-11-15 惠普发展公司有限责任合伙企业 以低轮廓封装体封装键合线的方法
MY182253A (en) * 2014-07-20 2021-01-18 X Celeprint Ltd Apparatus and methods for micro-transfer-printing
DE102015121858A1 (de) * 2015-12-15 2017-06-22 Heraeus Kulzer Gmbh Verfahren zur Herstellung grosser polymerisierter dentaler Materialblöcke
JP6748496B2 (ja) * 2016-06-30 2020-09-02 キヤノン株式会社 モールド、インプリント方法、インプリント装置および物品製造方法
KR102648921B1 (ko) 2016-08-09 2024-03-19 삼성디스플레이 주식회사 임프린트 마스터 템플릿 및 이의 제조 방법
KR102288981B1 (ko) 2017-04-17 2021-08-13 에스케이하이닉스 주식회사 임프린트 템플레이트 및 임프린트 패턴 형성 방법
CN107357133B (zh) * 2017-09-15 2020-11-10 京东方科技集团股份有限公司 光刻胶图案形成方法及压印模具
US10935883B2 (en) * 2017-09-29 2021-03-02 Canon Kabushiki Kaisha Nanoimprint template with light blocking material and method of fabrication
PL234153B1 (pl) * 2018-02-26 2020-01-31 Chuptys Janusz Contissi Drukarka do druku przestrzennego
CN109407464A (zh) * 2018-11-23 2019-03-01 京东方科技集团股份有限公司 一种纳米压印模板及其制作方法和紫外纳米压印方法
CN109739067A (zh) * 2019-03-25 2019-05-10 京东方科技集团股份有限公司 一种纳米压印模具及其制作方法和纳米压印方法
CN110223992B (zh) * 2019-06-27 2021-09-03 武汉华星光电半导体显示技术有限公司 显示面板、显示面板的成型模具及显示面板的制备方法
US11429022B2 (en) * 2019-10-23 2022-08-30 Canon Kabushiki Kaisha Systems and methods for curing a shaped film
CN111530516B (zh) * 2020-05-12 2022-03-18 深圳市光韵达增材制造研究院 一种基于3d打印技术的生物微流控芯片快速成型方法
US20230356438A1 (en) * 2022-05-05 2023-11-09 Viavi Solutions Inc Soft mold tool including a photomask

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4262271B2 (ja) 2005-09-06 2009-05-13 キヤノン株式会社 インプリント方法、インプリント装置および構造体の製造方法
JP2010258326A (ja) * 2009-04-28 2010-11-11 Dainippon Printing Co Ltd ナノインプリント用モールドおよびその製造方法
WO2012018045A1 (ja) 2010-08-06 2012-02-09 綜研化学株式会社 樹脂製モールド、その製造方法およびその使用方法
WO2012164824A1 (ja) * 2011-06-03 2012-12-06 パナソニック株式会社 微細構造体の製造方法および微細構造金型
JP2013000944A (ja) * 2011-06-15 2013-01-07 Panasonic Corp 光学シート及びその製造方法
JP2013038117A (ja) * 2011-08-04 2013-02-21 Jx Nippon Oil & Energy Corp 微細パターンを転写するための転写ヘッド及びそれを用いた微細パターンの形成方法
JP2013161997A (ja) * 2012-02-07 2013-08-19 Panasonic Corp 微細構造パターン集合体の製造方法およびその製造装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101031528B1 (ko) * 2000-10-12 2011-04-27 더 보드 오브 리전츠 오브 더 유니버시티 오브 텍사스 시스템 실온 저압 마이크로- 및 나노- 임프린트 리소그래피용템플릿
JP4290177B2 (ja) * 2005-06-08 2009-07-01 キヤノン株式会社 モールド、アライメント方法、パターン形成装置、パターン転写装置、及びチップの製造方法
JP5492369B2 (ja) * 2006-08-21 2014-05-14 東芝機械株式会社 転写用の型および転写方法
KR20080088238A (ko) * 2007-03-29 2008-10-02 삼성전자주식회사 패턴 형성용 몰드, 패턴 형성 장치 및 패턴 형성 방법
KR20080105524A (ko) * 2007-05-31 2008-12-04 삼성전자주식회사 마스크 몰드 및 그 제작방법과 제작된 마스크 몰드를이용한 대면적 미세패턴 성형방법
KR100843552B1 (ko) * 2007-07-19 2008-07-04 한국전자통신연구원 나노 임프린트 공정을 이용한 나노 전극선 제조 방법
JP5274128B2 (ja) * 2007-08-03 2013-08-28 キヤノン株式会社 インプリント方法および基板の加工方法
JP4799575B2 (ja) 2008-03-06 2011-10-26 株式会社東芝 インプリント方法
GB0809062D0 (en) 2008-05-19 2008-06-25 Zbd Displays Ltd Method for patterning a surface using selective adhesion

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4262271B2 (ja) 2005-09-06 2009-05-13 キヤノン株式会社 インプリント方法、インプリント装置および構造体の製造方法
JP2010258326A (ja) * 2009-04-28 2010-11-11 Dainippon Printing Co Ltd ナノインプリント用モールドおよびその製造方法
WO2012018045A1 (ja) 2010-08-06 2012-02-09 綜研化学株式会社 樹脂製モールド、その製造方法およびその使用方法
WO2012164824A1 (ja) * 2011-06-03 2012-12-06 パナソニック株式会社 微細構造体の製造方法および微細構造金型
JP2013000944A (ja) * 2011-06-15 2013-01-07 Panasonic Corp 光学シート及びその製造方法
JP2013038117A (ja) * 2011-08-04 2013-02-21 Jx Nippon Oil & Energy Corp 微細パターンを転写するための転写ヘッド及びそれを用いた微細パターンの形成方法
JP2013161997A (ja) * 2012-02-07 2013-08-19 Panasonic Corp 微細構造パターン集合体の製造方法およびその製造装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2950330A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014223761A (ja) * 2013-05-17 2014-12-04 パナソニック株式会社 光学部材の製造方法
JP2019201194A (ja) * 2018-05-15 2019-11-21 凸版印刷株式会社 パターン形成体の製造方法及びパターン形成体
JP7270350B2 (ja) 2018-05-15 2023-05-10 凸版印刷株式会社 パターン形成体の製造方法
JP2019206180A (ja) * 2018-05-28 2019-12-05 大日本印刷株式会社 樹脂製モールド、レプリカモールドの製造方法、及び光学素子の製造方法
JP7326876B2 (ja) 2018-05-28 2023-08-16 大日本印刷株式会社 樹脂製モールド、レプリカモールドの製造方法、及び光学素子の製造方法
JP2020032578A (ja) * 2018-08-28 2020-03-05 大日本印刷株式会社 樹脂製モールドの製造方法、凹凸パターンの形成方法、中間版モールドの製造方法、中間版モールド及び光学素子の製造方法
JP7119775B2 (ja) 2018-08-28 2022-08-17 大日本印刷株式会社 樹脂製モールドの製造方法、凹凸パターンの形成方法、中間版モールドの製造方法、中間版モールド及び光学素子の製造方法

Also Published As

Publication number Publication date
JPWO2014115728A1 (ja) 2017-01-26
JP6173354B2 (ja) 2017-08-02
CN104937698B (zh) 2017-04-19
US10052798B2 (en) 2018-08-21
EP2950330B1 (en) 2019-03-20
KR20150112945A (ko) 2015-10-07
EP2950330A1 (en) 2015-12-02
TWI615258B (zh) 2018-02-21
TW201436976A (zh) 2014-10-01
US20150306792A1 (en) 2015-10-29
CN104937698A (zh) 2015-09-23
EP2950330A4 (en) 2016-09-28

Similar Documents

Publication Publication Date Title
JP6173354B2 (ja) 光透過型インプリント用モールド、大面積モールドの製造方法
TWI662591B (zh) 使用分步重複用壓印用模具的分步重複壓印方法、及分步重複用壓印用模具之製造方法
KR100831046B1 (ko) 나노 임프린트용 몰드 및 그 제조 방법
JP5868393B2 (ja) ナノインプリント用モールドおよび曲面体の製造方法
US20110318501A1 (en) Template forming method
WO2016051928A1 (ja) インプリント用テンプレート及びその製造方法
JP6603218B2 (ja) 微細構造体の製造方法
KR101468960B1 (ko) 리소그래피 마스크 제조방법 및 이를 이용한 미세패턴형성방법
JP2013214627A (ja) ナノインプリント用マスターテンプレート及びレプリカテンプレートの製造方法
JP5559574B2 (ja) 転写方法
JP5343682B2 (ja) インプリント用モールドおよびその製造方法
JP2013000961A (ja) ロール金型の製造方法と光学フィルムの製造方法、並びに、ロール金型と光学フィルム
KR101751683B1 (ko) 고분자 나노 구조체의 제조 방법
WO2016195064A1 (ja) 構造体及びその製造方法
JP4569185B2 (ja) フィルム構造体の形成方法及びフィルム構造体
JP2009066827A (ja) 光学素子の成形方法
JP5298175B2 (ja) インプリント用スタンパおよびインプリント方法
JP7147447B2 (ja) 樹脂製モールド、及び光学素子の製造方法
JP2020032578A (ja) 樹脂製モールドの製造方法、凹凸パターンの形成方法、中間版モールドの製造方法、中間版モールド及び光学素子の製造方法
Noma et al. Fabrication of Second Generation Replica Mold by Hybrid Polymer Material OrmostampTM
JP2019015826A (ja) モスアイパターン付き物品の製造方法、モスアイパターン付き反転型、型セット、及びモスアイパターン付き反転型の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743376

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014558575

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14651765

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157018659

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014743376

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE