WO2014115651A1 - アルミニウム合金クラッド材および該クラッド材を成形したチューブを組み付けた熱交換器 - Google Patents
アルミニウム合金クラッド材および該クラッド材を成形したチューブを組み付けた熱交換器 Download PDFInfo
- Publication number
- WO2014115651A1 WO2014115651A1 PCT/JP2014/050791 JP2014050791W WO2014115651A1 WO 2014115651 A1 WO2014115651 A1 WO 2014115651A1 JP 2014050791 W JP2014050791 W JP 2014050791W WO 2014115651 A1 WO2014115651 A1 WO 2014115651A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sacrificial anode
- aluminum alloy
- less
- core material
- content
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/10—Alloys based on aluminium with zinc as the next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/02—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
- B23K35/0222—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
- B23K35/0233—Sheets, foils
- B23K35/0238—Sheets, foils layered
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/28—Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/28—Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
- B23K35/286—Al as the principal constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/016—Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of aluminium or aluminium alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/14—Alloys based on aluminium with copper as the next major constituent with silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F13/00—Inhibiting corrosion of metals by anodic or cathodic protection
- C23F13/02—Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
- C23F13/06—Constructional parts, or assemblies of cathodic-protection apparatus
- C23F13/08—Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
- C23F13/12—Electrodes characterised by the material
- C23F13/14—Material for sacrificial anodes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F13/00—Inhibiting corrosion of metals by anodic or cathodic protection
- C23F13/02—Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
- C23F13/06—Constructional parts, or assemblies of cathodic-protection apparatus
- C23F13/08—Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
- C23F13/18—Means for supporting electrodes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/02—Tubular elements of cross-section which is non-circular
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F19/00—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
- F28F19/02—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
- F28F19/06—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/08—Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
- F28F21/081—Heat exchange elements made from metals or metal alloys
- F28F21/084—Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/08—Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
- F28F21/089—Coatings, claddings or bonding layers made from metals or metal alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/04—Tubular or hollow articles
- B23K2101/14—Heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2275/00—Fastening; Joining
- F28F2275/04—Fastening; Joining by brazing
Definitions
- the present invention relates to an aluminum alloy clad material, more specifically, an aluminum alloy clad material capable of obtaining a heat exchanger tube having excellent outer surface corrosion resistance when molded into a tube, and a heat assembled with the tube formed from the clad material. Regarding the exchanger.
- refrigerant passage tube of an aluminum heat exchanger joined and integrated by brazing an aluminum alloy extruded tube or a tube formed by bending an aluminum alloy plate material is applied.
- these refrigerant passage tubes are subjected to Zn spraying on the extrusion tube on the outer surface side of the refrigerant passage tube, and Al—
- the Zn-based alloy is clad, and the design is aimed at the sacrificial anode effect by the Zn diffusion layer.
- a brazing sheet designed to be noble has been proposed, the potential layer formed by Cu diffused from the brazing material is thin, and the potential difference between the noble layer and the core material is small, so that the core material is corroded by corrosion. In the state immediately before the through hole is generated, the effect of suppressing the generation of the through hole is not sufficient.
- the inventors have tested a tube formed by bending an aluminum alloy plate material, the structure of the aluminum alloy clad material constituting the tube, and the relationship between the alloy composition of each layer of the clad material and the corrosion resistance.
- the structure of the aluminum alloy clad material constituting the tube is a two-layer structure of the core material and the sacrificial anode material, or the sacrificial anode material is clad on one surface of the core material, and the other surface is more than the core material.
- the corrosion rate of the sacrificial anode material is suppressed, and the sacrificial anode material remains for a long time. It has been found that the generation of holes can be suppressed, and the corrosion resistance of the outer surface (atmosphere side) is improved.
- the core material exerts a sacrificial anode effect on the endothelial material, so that the sacrificial anode material and the core material become the sacrificial anode layer with respect to the endothelium material, resulting in an increase in the thickness of the sacrificial anode layer.
- the core material exerts a sacrificial anode effect on the endothelial material, so that the sacrificial anode material and the core material become the sacrificial anode layer with respect to the endothelium material, resulting in an increase in the thickness of the sacrificial anode layer.
- the present invention was made as a result of further testing and examination based on the above knowledge, and its purpose is to obtain a heat exchanger tube having excellent corrosion resistance on the outer surface when formed into a tube.
- an aluminum alloy clad material according to claim 1 is an aluminum alloy clad material in which a sacrificial anode material is clad on one surface of a core material, and the core material has Mn: 0.6 to 2.0.
- the aluminum alloy clad material according to claim 2 is characterized in that, in claim 1, the core material further contains one or two of Si: 1.5% or less and Fe: 0.7% or less.
- the aluminum alloy cladding material according to claim 3 is characterized in that, in claim 1 or 2, the core material further contains Ti: 0.01 to 0.3%.
- the aluminum alloy clad material according to claim 4 is an aluminum alloy clad material obtained by clad an endothelial material on one surface of a core material and clad a sacrificial anode material on the other surface, and the core material has an Mn of 0.6 to 2 0.0%, Cu: 0.03 to 1.0%, an Al—Mn—Cu alloy consisting of the balance aluminum and inevitable impurities, and the endothelial material is Mn: 0.6 to 2.0%, It is an Al—Mn—Cu alloy containing Cu: 0.2 to 1.5%, the balance being aluminum and inevitable impurities, and the sacrificial anode material is Zn: 0.5 to 6.0%, Cu: 0 Al-Zn-Cu alloy containing 0.03 to 0.3% and consisting of the balance aluminum and inevitable impurities, the Cu content of the core material, the endothelial material and the sacrificial anode material (Cu content% of the sacrificial anode material) ) ⁇ (Cu content of core
- the aluminum alloy clad material according to claim 5 is characterized in that, in claim 4, the core material further contains one or two of Si: 1.5% or less and Fe: 0.7% or less.
- the aluminum alloy clad material according to claim 6 is characterized in that, in claim 4 or 5, the core material further contains Ti: 0.01 to 0.3%.
- the aluminum alloy clad material according to claim 7 is the aluminum alloy clad material according to any one of claims 4 to 6, wherein the endothelial material further contains one or two of Si: 1.5% or less and Fe: 0.7% or less. It is characterized by that.
- the aluminum alloy clad material according to claim 8 is characterized in that in any one of claims 4 to 7, the endothelial material further contains Ti: 0.01 to 0.3%.
- the aluminum alloy clad material according to claim 9 is the aluminum alloy clad material according to any one of claims 1 to 8, wherein the sacrificial anode material is further Si: 1.5% or less, Fe: 0.7% or less, and Mn: 1.5% or less. 1 type or 2 types or more are contained.
- a heat exchanger according to claim 10 is formed by forming the aluminum alloy clad material according to any one of claims 1 to 9 into a tube so that the endothelial material is on the refrigerant passage side and the sacrificial anode material is on the atmosphere side. It is characterized by being assembled by brazing aluminum fins.
- the aluminum alloy clad material which is excellent in corrosion resistance of the outer surface and can be suitably used as a material of a heat exchanger, in particular, a heat exchanger tube for automobiles, and the aluminum alloy clad
- a heat exchanger is provided that incorporates a tube formed from a material.
- the aluminum alloy clad material of the present invention has a two-layer structure composed of a core material and a sacrificial anode material, or a sacrificial anode material disposed on one surface of the core material, and a potential higher than that of the core material on the other surface.
- the rate of corrosion of the sacrificial anode material is suppressed, and the sacrificial anode effect of the sacrificial anode material lasts for a long period of time. Improved corrosion resistance is achieved.
- the sacrificial anode material and the core material serve as a sacrificial anode layer with respect to the endothelium material because the core material serves as the endothelium material, resulting in an increase in the thickness of the sacrificial anode layer.
- the core material contains Al: Mn—Cu containing Mn: 0.6 to 2.0%, Cu: 0.03 to 1.0%, and the balance aluminum and inevitable impurities.
- the alloy and sacrificial anode material an Al—Zn—Cu alloy containing Zn: 0.5 to 6.0%, Cu: 0.03 to 0.3% and the balance aluminum and inevitable impurities is applied.
- the Cu content of the core material and the sacrificial anode material is set such that (Cu content% of the sacrificial anode material) ⁇ (Cu content% of the core material).
- the core material can contain one or two of Si: 1.5% or less and Fe: 0.7% or less, and Ti: 0.01 to 0.3%.
- the sacrificial anode material may contain one or more of Si: 1.5% or less, Fe: 0.7% or less, and Mn: 1.5% or less.
- the Cu content of the core material, the endothelial material, and the sacrificial anode material is such that (Cu content% of the sacrificial anode material) ⁇ (Cu content% of the core material) ⁇ (Cu content% of the endothelium material). To do.
- the core material can contain one or two of Si: 1.5% or less and Fe: 0.7% or less, and Ti: 0.01 to 0.3%.
- the endothelium material can contain one or two of Si: 1.5% or less and Fe: 0.7% or less, and Ti: 0.01 to 0.3%.
- the sacrificial anode material may contain one or more of Si: 1.5% or less, Fe: 0.7% or less, and Mn: 1.5% or less.
- (Sacrificial anode material) Zn Zn in the sacrificial anode material functions to make the potential noble, and is contained for adjusting the potential balance with the core material and the endothelial material.
- the preferable content of Zn is in the range of 0.5 to 6.0%, and if it is less than 0.5%, the effect is not sufficient, and if it exceeds 6.0%, the self-corrosion rate increases and the corrosion resistance life is shortened. descend.
- a more preferable content range of Zn is 1.0 to 5.0%.
- Cu functions to suppress the corrosion rate of the sacrificial anode material.
- the preferable content of Cu is in the range of 0.03 to 0.3%. If the content is less than 0.03%, a sufficient corrosion rate suppressing effect cannot be obtained. If the content exceeds 0.3%, the potential becomes noble. It becomes difficult to obtain the sacrificial anode effect.
- a more preferable content range of Cu is 0.03 to 0.2%.
- Si functions to improve strength.
- the preferable content of Si is in the range of 1.5% or less, and when it exceeds 1.5%, the self-corrosion rate increases.
- the more preferable range of Si is 0. 5% or less.
- Fe functions to improve strength.
- the preferable content of Fe is in the range of 0.7% or less, and when it exceeds 0.7%, the self-corrosion rate increases.
- Mn functions to improve strength.
- the preferable content of Mn is in the range of 1.5% or less, and when it exceeds 1.5%, the self-corrosion rate increases.
- a more preferable content range of Mn is 0.5% or less. Even if the sacrificial anode material contains 0.3% or less of In, Sn, Ti, V, Cr, Zr and B, the effects of the present invention are not impaired.
- Mn functions to improve strength.
- the preferable content of Mn is in the range of 0.6 to 2.0%. If it is less than 0.6%, the effect is not sufficient, and if it exceeds 2.0%, rolling becomes difficult.
- a more preferable content range of Mn is 1.0 to 2.0%.
- Cu functions to make the potential of the core material noble, and is contained for adjusting the balance of the potential with the sacrificial anode material and the endothelial material. If the Cu content in the core material is less than the Cu content in the sacrificial anode material, a potential difference from the sacrificial anode material cannot be ensured, so the Cu content in the core material is preferably equal to or greater than the Cu content in the sacrificial anode material. . Further, since Cu in the core material diffuses into the sacrificial anode material during brazing heating and reduces the potential difference from the sacrificial anode material, the Cu content of the core material is preferably 1.5% or less.
- the Cu content in the core material is equal to or higher than the Cu content in the endothelium material, a potential difference from the endothelium material cannot be secured, so the Cu content in the core material in the clad material with the three-layer structure
- the amount is preferably less than the Cu content in the endothelial material.
- a more preferable content range of Cu is 0.6% or less.
- Si functions to improve strength.
- the preferable content of Si is in the range of 1.5% or less, and if it exceeds 1.5%, the melting point is lowered and it becomes easy to melt during brazing.
- a more preferable content range of Si is 0.8% or less.
- Fe functions to improve strength.
- the preferable content of Fe is in the range of 0.7% or less, and when it exceeds 0.7%, the self-corrosion rate increases.
- Ti is divided into a high-concentration region and a low region in the thickness direction of the core material, and the layers are alternately distributed.
- the low-concentration region corrodes preferentially compared to the high region, resulting in a layered corrosion form. This prevents the progress of corrosion in the thickness direction, thereby improving the corrosion resistance.
- the preferable content of Ti is in the range of 0.01 to 0.3%. If the content is less than 0.01%, the effect is not sufficient. Sex is harmed. In addition, even if the core material contains 0.3% or less of V, Cr, Zr and B, the effect of the present invention is not impaired.
- Mn functions to improve strength.
- the preferable content of Mn is in the range of 0.6 to 2.0%. If it is less than 0.6%, the effect is not sufficient, and if it exceeds 2.0%, rolling becomes difficult.
- a more preferable content range of Mn is 1.0 to 2.0%.
- Si functions to improve strength.
- the preferable content of Si is in the range of 1.5% or less, and if it exceeds 1.5%, the melting point is lowered and it becomes easy to melt during brazing.
- Fe functions to improve strength.
- the preferable content of Fe is in the range of 0.7% or less, and when it exceeds 0.7%, the self-corrosion rate increases.
- Cu functions to make the potential of the endothelial material noble and is contained for adjusting the balance of the potential with the core material.
- the preferable content of Cu is in the range of 0.2 to 1.5%, and in the range of (Cu content% of the core material) ⁇ (Cu content% of the endothelial material), if the content exceeds 1.5%, the melting point Decreases and becomes easier to melt during brazing.
- the core material does not act as a sacrificial anode material for the endothelial material, and therefore the corrosion resistance life is reduced.
- the more preferable content range of Cu in the endothelial material is 0.8% or less.
- Ti is divided into a high-concentration region and a low region in the plate thickness direction of the endothelium material, and they are layered alternately.
- the low-Ti concentration region corrodes preferentially compared to the high region, resulting in a corrosive form. It has the effect of layering, thereby preventing the progress of corrosion in the thickness direction and improving the corrosion resistance.
- the preferable content of Ti is in the range of 0.01 to 0.3%. If the content is less than 0.01%, the effect is not sufficient. Sex is harmed. In addition, even if 0.3% or less of V, Cr, Zr and B are contained in the endothelial material, the effect of the present invention is not impaired.
- both the Si and Fe contents are less than 0.03%. Is not preferable.
- the clad rate of the sacrificial anode material is preferably 5 to 30%, and in the case of a three-layer structure, the clad rate of the endothelial material is preferably 5 to 30%. If the clad rate of the sacrificial anode material is less than 5%, the amount of Zn in the sacrificial anode material decreases due to diffusion during brazing, making it difficult to obtain a sufficient sacrificial anode effect. If the clad rate of the sacrificial anode material exceeds 30%, clad rolling becomes difficult. A more preferable sacrificial anode material has a cladding ratio of 10 to 30%.
- the clad rate of the endothelial material is less than 5%, the Cu concentration in the endothelial material decreases due to diffusion during brazing, the potential difference from the core material becomes small, and the sacrificial anode effect of the core material becomes difficult to obtain. If the clad rate of the endothelial material exceeds 30%, clad rolling becomes difficult. A more preferable cladding ratio of the endothelial material is 10 to 30%.
- the aluminum alloy clad material of the present invention is formed into a tube so that the endothelial material is on the refrigerant passage side and the sacrificial anode material is on the atmosphere side (outside surface side), and on the outside surface side (atmosphere side) of this tube or on the outside surface side.
- Aluminum fins are assembled on the inner surface side (refrigerant flow path side) and brazed to form a heat exchanger.
- the tube material 1 is produced by forming an aluminum alloy clad material 2 into a tube, and then inserting inner fins 3 made of a brazing sheet with brazing material disposed on both sides, and connecting the tube joint 4
- a paste brazing 5 is applied to the sacrificial anode material side of the aluminum alloy clad material 2 in advance to form a tube, or as shown in FIG. After molding, a paste brazing 5 is applied, and the joint 4 is brazed and joined by the paste brazing 5.
- the aluminum alloy clad material of the present invention is molded into a tube so that the core material in the case of the two-layer structure is the refrigerant passage side and the sacrificial anode material is on the atmosphere side (outer surface side) in the three-layer structure.
- the core material in the case of the two-layer structure is the refrigerant passage side and the sacrificial anode material is on the atmosphere side (outer surface side) in the three-layer structure.
- the potential of the sacrificial anode material, core material and endothelial material in the assembled tube is , (Potential of sacrificial anode material) ⁇ (potential of core material) ⁇ (potential of endothelium material having a three-layer structure), and the sacrificial anode material exerts a sacrificial anode effect on the core material.
- the sacrificial anode material of the Al—Zn—Cu based alloy according to the present invention has a slower corrosion rate than the sacrificial anode material of a general Al—Zn based alloy, and the period during which the sacrificial anode effect acts increases, thereby improving the corrosion resistance. Can be achieved.
- the core material exerts a sacrificial anode effect on the endothelium material.
- the thickness of the sacrificial anode layer is increased, and both the sacrificial anode material and the core material are affected by corrosion. Even when most of the material is consumed, the presence of a noble endothelial material can suppress the generation of through-holes, thereby further improving the corrosion resistance of the outer surface (atmosphere side).
- Example 1 The alloys for sacrificial anode materials (S1 to S11) having the composition shown in Table 1 by semi-continuous casting, the alloys for core material and the alloys for endothelial material (C1 to C20) having the compositions shown in Table 2 were obtained and obtained.
- the alloy ingot for sacrificial anode material was homogenized at 500 ° C. for 8 hours, and then hot-rolled at a starting temperature of 500 ° C. to a predetermined thickness, and the alloy ingot for core material and endothelial material After performing a homogenization treatment at 500 ° C. for 8 hours, the core alloy ingot was chamfered, and the endothelium alloy ingot was hot-rolled at a starting temperature of 500 ° C. to a predetermined thickness.
- each aluminum alloy was superposed in the combination shown in Table 3, and hot rolled to a thickness of 3 mm at a starting temperature of 500 ° C.
- intermediate annealing was performed at a temperature of 400 ° C., and then cold rolling was performed to obtain 0.2 mm thick aluminum alloy clad plate materials (test materials 1 to 31).
- Comparative Example 1 An alloy for sacrificial anode materials (S12 to S18) having the composition shown in Table 1 by semi-continuous casting, an alloy for core material and an alloy for endothelial material (C21 to C26) having the composition shown in Table 2 were further ingoted.
- the alloy for sacrificial anode material (S1), the alloy for core material and the alloy for endothelium material (C1, C11) ingoted in Example 1 are used, and among these ingots, the alloy ingot for sacrificial anode material is 500 ° C. After performing a homogenization treatment for 8 hours at a starting temperature of 500 ° C.
- the core material and the alloy ingot for endothelial material were subjected to a homogenization treatment at 500 ° C. for 8 hours, The core material alloy ingot was chamfered, and the endothelial material alloy ingot was hot-rolled at a starting temperature of 500 ° C. to a predetermined thickness.
- Tables 1 and 2 those outside the conditions of the present invention are underlined.
- each aluminum alloy was superposed in the combination shown in Table 4 and hot rolled to a thickness of 3 mm at a starting temperature of 500 ° C.
- intermediate annealing was performed at a temperature of 400 ° C.
- cold rolling was performed to obtain aluminum alloy clad plate materials (test materials 101 to 114) having a thickness of 0.2 mm.
- the potential of the test material was measured at room temperature in a 5% NaCl aqueous solution adjusted to pH 3 with acetic acid.
- the potential of the sacrificial anode material was measured by masking other than the sacrificial anode material side surface, and the potential of the endothelial material was measured by masking the surface other than the endothelial material side surface.
- the potential of the core material was measured by grinding the test material from the sacrificial anode material surface side to the center of the core material thickness and masking other than the ground surface.
- Test material was molded into a JIS-5 test piece, and a tensile test was performed in accordance with JIS Z2241, and a 3003 alloy having a tensile strength equal to or higher than the O material equivalent strength (95 MPa) was regarded as acceptable.
- test materials 1 to 31 according to the present invention produced through holes in the SWAAT test.
- the test materials 14 to 31 with the endothelial material formed no through-holes for a longer time.
- these aluminum alloy clad materials are formed into a tube so that the endothelial material is on the refrigerant passage side and the sacrificial anode material is on the atmosphere side (outer surface side), and an aluminum fin is assembled to the tube at a temperature of 600 ° C.
- a heat exchanger was manufactured by brazing and heating for 3 minutes and joining both, it was confirmed that improved corrosion resistance of the outer surface (atmosphere side) was obtained.
- the test materials 101 and 109 have a large amount of Si in the sacrificial anode material
- the test material 102 has a large amount of Fe in the sacrificial anode material
- the test material 105 has a sacrificial anode material. Because of the large amount of Mn, the amount of self-corrosion of the sacrificial anode material increased, and through holes were generated in the SWAAT test. Since the test material 103 had a small amount of Cu in the sacrificial anode material, the amount of self-corrosion of the sacrificial anode material increased, and a through hole was generated in the SWAAT test.
- the test material 104 has a large amount of Cu in the sacrificial anode material
- the test material 106 has a small amount of Zn in the sacrificial anode material, so that the sacrificial anode effect is not sufficient, and a through hole was generated in the SWAAT test.
- the test material 107 had a large amount of Zn in the sacrificial anode material, the amount of self-corrosion of the sacrificial anode material increased, and a through hole was generated in the SWAAT test.
- the test material 108 had a small amount of Cu in the core material, the sacrificial anode effect was not sufficient, and a through hole was generated in the SWAAT test.
- test material 110 Since the test material 110 has a large amount of Si in the core material, the core material melted during brazing heating. Since the test material 111 had a large amount of Fe in the core material, the self-corrosion amount of the core material increased, and a through hole was generated in the SWAAT test. Since the test material 112 had a small amount of Mn in the core material, the tensile strength was low.
- test material 113 Since the test material 113 has a large amount of Cu in the endothelial material, the endothelial material melted during brazing heating. Since the test material 114 had a large amount of Mn in the endothelial material, cracking occurred during cold rolling, and a sound clad material could not be obtained.
- Tube material 2 Aluminum alloy clad material 3
- Inner fin 4 Seam 5 Paste brazing
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Prevention Of Electric Corrosion (AREA)
- Laminated Bodies (AREA)
Abstract
Description
(犠牲陽極材)
Zn:
犠牲陽極材中のZnは電位を貴にするよう機能し、心材、内皮材との電位のバランス調整のために含有させる。Znの好ましい含有量は0.5~6.0%の範囲であり、0.5%未満ではその効果が十分でなく、6.0%を超えると、自己腐食速度が増大して耐食寿命が低下する。Znのさらに好ましい含有量範囲は1.0~5.0%である。
Cuは犠牲陽極材の腐食速度を抑制するよう機能する。Cuの好ましい含有量は0.03~0.3%の範囲であり、0.03%未満では十分な腐食速度抑制効果が得られず、0.3%を超えると、電位が貴になるため犠牲陽極効果が得難くなる。Cuのさらに好ましい含有範囲は0.03~0.2%である。
Siは強度を向上させるよう機能する。Siの好ましい含有量は1.5%以下の範囲であり、1.5%を超えると自己腐食速度が増大する。Siのさらに好ましい含有範囲は0.
5%以下である。
Feは強度を向上させるよう機能する。Feの好ましい含有量は0.7%以下の範囲であり、0.7%を超えると自己腐食速度が増大する。
Mnは強度を向上させるよう機能する。Mnの好ましい含有量は1.5%以下の範囲であり、1.5%を超えると自己腐食速度が増大する。Mnのさらに好ましい含有範囲は0.5%以下である。なお、犠牲陽極材には、それぞれ0.3%以下のIn、Sn、Ti、V、Cr、ZrおよびBが含有されていても本発明の効果が損なわれることはない。
Mn:
Mnは強度を向上させるよう機能する。Mnの好ましい含有量は0.6~2.0%の範囲であり、0.6%未満ではその効果が十分でなく、2.0%を超えると圧延が困難となる。Mnのさらに好ましい含有範囲は1.0~2.0%である。
Cuは心材の電位を貴にするよう機能し、犠牲陽極材、内皮材との電位のバランス調整のために含有させる。心材中のCu含有量が犠牲陽極材のCu含有量未満になると、犠牲陽極材との電位差が確保できなくなるため、心材中のCu含有量は犠牲陽極材のCu含有量以上とするのが好ましい。また、心材中のCuはろう付け加熱時に犠牲陽極材中に拡散し、犠牲陽極材との電位差を小さくするので、心材のCu含有量は1.5%以下とするのが好ましい。3層構造のクラッド材においては、心材中のCu含有量が内皮材中のCu含有量以上となると、内皮材との電位差が確保できなくなるため、3層構造のクラッド材における心材中のCu含有量は内皮材中のCu含有量未満とするのが好ましい。Cuのさらに好ましい含有範囲は0.6%以下である。
Siは強度を向上させるよう機能する。Siの好ましい含有量は1.5%以下の範囲であり、1.5%を超えると融点が低下して、ろう付け時に溶融し易くなる。Siのさらに好ましい含有範囲は0.8%以下である。
Feは強度を向上させるよう機能する。Feの好ましい含有量は0.7%以下の範囲であり、0.7%を超えると自己腐食速度が増大する。
Tiは、心材の板厚方向に濃度の高い領域と低い領域とに分かれ、それらが交互に分布する層状となり、Ti濃度の低い領域が高い領域に比べ優先的に腐食する結果、腐食形態を層状にする効果を有し、それにより板厚方向への腐食の進行を妨げて耐食性を向上させる。Tiの好ましい含有量は0.01~0.3%の範囲であり、0.01%未満ではその効果が十分でなく、0.3%を超えると、巨大な晶出物が生成して成形性が害される。なお、心材には、それぞれ0.3%以下のV、Cr、ZrおよびBが含有されていても本発明の効果が損なわれることはない。
Mn:
Mnは強度を向上させるよう機能する。Mnの好ましい含有量は0.6~2.0%の範囲であり、0.6%未満ではその効果が十分でなく、2.0%を超えると圧延が困難となる。Mnのさらに好ましい含有範囲は1.0~2.0%である。
Siは強度を向上させるよう機能する。Siの好ましい含有量は1.5%以下の範囲であり、1.5%を超えると融点が低下して、ろう付け時に溶融し易くなる。
Feは強度を向上させるよう機能する。Feの好ましい含有量は0.7%以下の範囲であり、0.7%を超えると自己腐食速度が増大する。
Cuは内皮材の電位を貴にするよう機能し、心材との電位のバランス調整のために含有させる。Cuの好ましい含有量は0.2~1.5%の範囲であり、(心材のCu含有量%)≦(内皮材のCu含有量%)となる範囲で、1.5%を超えると融点が低下して、ろう付け時に溶融し易くなる。内皮材のCu含有量が心材のCu含有量より少ない場合は、心材が内皮材に対して犠牲陽極材として作用しなくなるため、耐食寿命が低下する。内皮材のCuのさらに好ましい含有範囲は0.8%以下である。
Tiは、内皮材の板厚方向に濃度の高い領域と低い領域とに分かれ、それらが交互に分布する層状となり、Ti濃度の低い領域が高い領域に比べ優先的に腐食する結果、腐食形態を層状にする効果を有し、それにより板厚方向への腐食の進行を妨げて耐食性を向上させる。Tiの好ましい含有量は0.01~0.3%の範囲であり、0.01%未満ではその効果が十分でなく、0.3%を超えると、巨大な晶出物が生成して成形性が害される。なお、内皮材には、それぞれ0.3%以下のV、Cr、ZrおよびBが含有されていても本発明の効果が損なわれることはない。
半連続鋳造により表1に示す組成を有する犠牲陽極材用合金(S1~S11)、表2に示す組成を有する心材用合金および内皮材用合金(C1~C20)を造塊し、得られた鋳塊のうち、犠牲陽極材用合金鋳塊については500℃で8時間の均質化処理を行った後、開始温度500℃で熱間圧延して所定厚さとし、心材および内皮材用合金鋳塊については500℃で8時間の均質化処理を行った後、心材用合金鋳塊は面削し、内皮材用合金鋳塊は開始温度500℃で熱間圧延して所定厚さとした。
半連続鋳造により表1に示す組成を有する犠牲陽極材用合金(S12~S18)、表2に示す組成を有する心材用合金および内皮材用合金(C21~C26)を造塊し、さらに、実施例1で造塊された犠牲陽極材用合金(S1)、心材用合金および内皮材用合金(C1、C11)を用い、これらの鋳塊のうち、犠牲陽極材用合金鋳塊については500℃で8時間の均質化処理を行った後、開始温度500℃で熱間圧延して所定厚さとし、心材および内皮材用合金鋳塊については500℃で8時間の均質化処理を行った後、心材用合金鋳塊は面削し、内皮材用合金鋳塊は開始温度500℃で熱間圧延して所定厚さとした。なお、表1~2において、本発明の条件を外れたものには下線を付した。
(電位測定)
試験材の電位は、酢酸を用いてpH3に調整した5%NaCl水溶液中で室温にて測定した。犠牲陽極材の電位は、犠牲陽極材側表面以外をマスキングして測定し、内皮材の電位は内皮材側表面以外をマスキングして測定した。また、心材の電位は、犠牲陽極材面側より心材厚さ中央まで試験材を研削し、研削面以外をマスキングして測定した。
試験材をJIS-5号試験片に成形し、JIS Z2241に準拠して引張試験を行い、3003合金のO材相当強度(95MPa)以上の引張強さを有するものを合格とした。
マスキングにより犠牲陽極材面を露出させた試験片について、SWAAT試験(ASTM
G85)を行って耐食性を評価し、1000時間経過時点で貫通孔が生じなかったものを合格(○)とし、とくに1500時間経過時点でも貫通孔が生じなかったものを優良(◎)と評価し、1000時間未満で貫通孔を生じたものを不合格(×)と評価した。
2 アルミニウム合金クラッド材
3 インナーフィン
4 継ぎ目
5 ペーストろう
Claims (10)
- 心材の一方の面に犠牲陽極材をクラッドしたアルミニウム合金クラッド材であって、心材が、Mn:0.6~2.0%(質量%、以下同じ)、Cu:0.03~1.0%を含有し、残部アルミニウムおよび不可避的不純物からなるAl-Mn-Cu合金であり、犠牲陽極材が、Zn:0.5~6.0%、Cu:0.03~0.3%を含有し、残部アルミニウムおよび不可避的不純物からなるAl-Zn-Cu合金であり、心材および犠牲陽極材のCu含有量が(犠牲陽極材のCu含有量%)≦(心材のCu含有量%)の関係にあることを特徴とするアルミニウム合金クラッド材。
- 前記心材が、さらにSi:1.5%以下、Fe:0.7%以下の1種または2種を含有することを特徴とする請求項1記載のアルミニウム合金クラッド材。
- 前記心材が、さらにTi:0.01~0.3%を含有することを特徴とする請求項1または2記載のアルミニウム合金クラッド材。
- 心材の一方の面に内皮材をクラッドし、他方の面に犠牲陽極材をクラッドしたアルミニウム合金クラッド材であって、心材が、Mn:0.6~2.0%、Cu:0.03~1.0%を含有し、残部アルミニウムおよび不可避的不純物からなるAl-Mn-Cu合金であり、内皮材が、Mn:0.6~2.0%、Cu:0.2~1.5%を含有し、残部アルミニウムおよび不可避的不純物からなるAl-Mn-Cu合金であり、犠牲陽極材が、Zn:0.5~6.0%、Cu:0.03~0.3%を含有し、残部アルミニウムおよび不可避的不純物からなるAl-Zn-Cu合金であり、心材、内皮材および犠牲陽極材のCu含有量が(犠牲陽極材のCu含有量%)≦(心材のCu含有量%)≦(内皮材のCu含有量%)の関係にあることを特徴とするアルミニウム合金クラッド材。
- 前記心材が、さらにSi:1.5%以下、Fe:0.7%以下の1種または2種を含有することを特徴とする請求項4記載のアルミニウム合金クラッド材。
- 前記心材が、さらにTi:0.01~0.3%を含有することを特徴とする請求項4または5記載のアルミニウム合金クラッド材。
- 前記内皮材が、さらにSi:1.5%以下、Fe:0.7%以下の1種または2種を含有することを特徴とする請求項4~6のいずれかに記載のアルミニウム合金クラッド材。
- 前記内皮材が、さらにTi:0.01~0.3%を含有することを特徴とする請求項4~7のいずれかに記載のアルミニウム合金クラッド材。
- 前記犠牲陽極材が、さらにSi:1.5%以下、Fe:0.7%以下、Mn:1.5%以下の1種または2種以上を含有することを特徴とする請求項1~8のいずれかに記載のアルミニウム合金クラッド材。
- 請求項1~9のいずれかに記載のアルミニウム合金クラッド材を、内皮材が冷媒通路側、犠牲陽極材が大気側になるようにチューブに成形し、該チューブにアルミニウムフィンを組み付け、ろう付けしてなることを特徴とする熱交換器。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/762,684 US20150361529A1 (en) | 2013-01-23 | 2014-01-17 | Aluminum alloy clad material and heat exchanger that includes tube obtained by forming the clad material |
EP14743357.7A EP2949770B1 (en) | 2013-01-23 | 2014-01-17 | Aluminum alloy cladding material and heat exchanger incorporating tube obtained by molding said cladding material |
BR112015017506A BR112015017506A2 (pt) | 2013-01-23 | 2014-01-17 | material de revestimento de liga de alumínio, e, trocador de calor |
CN201480005812.3A CN104955971B (zh) | 2013-01-23 | 2014-01-17 | 铝合金包覆材以及安装有该包覆材成型而得的管的热交换器 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-010116 | 2013-01-23 | ||
JP2013010116A JP6132330B2 (ja) | 2013-01-23 | 2013-01-23 | アルミニウム合金クラッド材および該クラッド材を成形したチューブを組み付けた熱交換器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014115651A1 true WO2014115651A1 (ja) | 2014-07-31 |
Family
ID=51227443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/050791 WO2014115651A1 (ja) | 2013-01-23 | 2014-01-17 | アルミニウム合金クラッド材および該クラッド材を成形したチューブを組み付けた熱交換器 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20150361529A1 (ja) |
EP (2) | EP2949770B1 (ja) |
JP (1) | JP6132330B2 (ja) |
CN (1) | CN104955971B (ja) |
BR (1) | BR112015017506A2 (ja) |
WO (1) | WO2014115651A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017163905A1 (ja) * | 2016-03-24 | 2017-09-28 | 株式会社神戸製鋼所 | アルミニウム合金ブレージングシート |
JP2018040513A (ja) * | 2016-09-06 | 2018-03-15 | 株式会社デンソー | 熱交換器用チューブ及び熱交換器 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6483412B2 (ja) * | 2014-11-21 | 2019-03-13 | 株式会社デンソー | 熱交換器用アルミニウム合金クラッド材 |
JP6743846B2 (ja) * | 2017-06-09 | 2020-08-19 | 株式会社デンソー | 積層型熱交換器、および、その積層型熱交換器の製造方法 |
JP7058176B2 (ja) * | 2018-05-21 | 2022-04-21 | 株式会社Uacj | アルミニウム合金製熱交換器 |
JP7058175B2 (ja) * | 2018-05-21 | 2022-04-21 | 株式会社Uacj | アルミニウム合金製熱交換器 |
CN110257671B (zh) * | 2019-07-03 | 2021-05-28 | 张家港市宏基精密铝材科技有限公司 | 一种铝合金、铝扁管和铝扁管生产工艺 |
FR3122437A1 (fr) * | 2021-05-03 | 2022-11-04 | Constellium Neuf-Brisach | Bande ou tôle en alliage d’aluminium pour la fabrication d’échangeurs de chaleur brasés |
JP7275336B1 (ja) | 2022-02-09 | 2023-05-17 | 株式会社Uacj | アルミニウム合金材の製造方法及びアルミニウム合金材 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04232222A (ja) * | 1990-12-28 | 1992-08-20 | Honda Motor Co Ltd | 耐食性に優れたアルミニウム合金クラッド材 |
JPH04232224A (ja) * | 1990-12-28 | 1992-08-20 | Honda Motor Co Ltd | 耐食性に優れたアルミニウム合金クラッド材 |
JP2000087171A (ja) * | 1998-09-14 | 2000-03-28 | Furukawa Electric Co Ltd:The | 曲げ疲労特性および耐食性に優れるアルミニウム合金複合材 |
JP2005314774A (ja) * | 2004-04-30 | 2005-11-10 | Sumitomo Light Metal Ind Ltd | 自動車熱交換器用アルミニウム合金クラッド材 |
JP2007247021A (ja) | 2006-03-17 | 2007-09-27 | Shinko Alcoa Yuso Kizai Kk | 熱交換器用アルミニウム合金製ブレージングシート |
JP2008138278A (ja) * | 2006-12-05 | 2008-06-19 | Furukawa Sky Kk | 熱交換器用アルミニウム合金クラッド材 |
JP2008240084A (ja) * | 2007-03-28 | 2008-10-09 | Kobe Steel Ltd | 熱交換器用アルミニウム合金クラッド材およびブレージングシート |
JP2009127121A (ja) | 2007-11-28 | 2009-06-11 | Kobe Steel Ltd | 熱交換器用アルミニウム合金ブレージングシート |
JP2011224656A (ja) | 2010-03-31 | 2011-11-10 | Kobe Steel Ltd | アルミニウム合金ブレージングシートおよび熱交換器 |
JP2012087342A (ja) * | 2010-10-18 | 2012-05-10 | Showa Denko Kk | 熱交換器用アルミニウムクラッド材 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3274085A (en) * | 1963-04-25 | 1966-09-20 | Aluminum Co Of America | Galvanic anode |
US4571368A (en) * | 1983-01-17 | 1986-02-18 | Atlantic Richfield Company | Aluminum and zinc sacrificial alloy |
US5260142A (en) * | 1990-12-28 | 1993-11-09 | Honda Giken Kogyo Kabushiki Kaisha | Corrosion-resistant clad material made of aluminum alloys |
US5512149A (en) * | 1994-09-01 | 1996-04-30 | Mackenna Iv; Gilbert J. | Sacrificial anode device with optimized anode/cathode interface surface contact area |
US5906689A (en) * | 1996-06-06 | 1999-05-25 | Reynolds Metals Company | Corrosion resistant aluminum alloy |
US6316126B1 (en) * | 1999-02-23 | 2001-11-13 | Denso Corporation | Aluminum alloy clad material for heat exchangers exhibiting excellent erosion-corrosion resistance |
US6458224B1 (en) * | 1999-12-23 | 2002-10-01 | Reynolds Metals Company | Aluminum alloys with optimum combinations of formability, corrosion resistance, and hot workability, and methods of use |
JP4166613B2 (ja) * | 2002-06-24 | 2008-10-15 | 株式会社デンソー | 熱交換器用アルミニウム合金フィン材および該フィン材を組付けてなる熱交換器 |
AU2003274761A1 (en) * | 2002-10-30 | 2004-05-25 | Showa Denko K.K. | Heat exchanger, heat exchanger tube member, heat exchanger fin member and process for fabricating the heat exchanger |
US20060072302A1 (en) * | 2004-10-01 | 2006-04-06 | Chien Tseng L | Electro-luminescent (EL) illuminated wall plate device with push-tighten frame means |
EP1666190A4 (en) * | 2003-09-18 | 2007-02-21 | Kobe Alcoa Transp Products Ltd | ALUMINUM ALLOY COMPOSITE FOR SOLDERING AND HEAT EXCHANGER THEREWITH |
CA2593276C (en) * | 2004-10-19 | 2014-01-21 | Aleris Aluminum Koblenz Gmbh | Method of producing an aluminium alloy brazing sheet and light brazed heat exchanger assemblies |
JP4825507B2 (ja) * | 2005-12-08 | 2011-11-30 | 古河スカイ株式会社 | アルミニウム合金ブレージングシート |
JP5049488B2 (ja) * | 2005-12-08 | 2012-10-17 | 古河スカイ株式会社 | アルミニウム合金ブレージングシートの製造方法 |
US7749613B2 (en) * | 2006-04-21 | 2010-07-06 | Alcoa Inc. | Multilayer braze-able sheet |
PL2090425T3 (pl) * | 2008-01-18 | 2014-03-31 | Hydro Aluminium Rolled Prod | Tworzywo kompozytowe z warstwą antykorozyjną i sposób jego wytwarzania |
CN102884393B (zh) * | 2010-03-02 | 2015-04-15 | 三菱铝株式会社 | 铝合金制热交换器 |
JP6236290B2 (ja) * | 2012-11-13 | 2017-11-22 | 株式会社デンソー | アルミニウム合金クラッド材および該クラッド材を成形したチューブを組み付けた熱交換器 |
JP6557476B2 (ja) * | 2015-02-10 | 2019-08-07 | 三菱アルミニウム株式会社 | アルミニウム合金フィン材 |
AU2017269097B2 (en) * | 2016-05-27 | 2019-06-13 | Novelis Inc. | High strength and corrosion resistant alloy for use in HVAC&R systems |
-
2013
- 2013-01-23 JP JP2013010116A patent/JP6132330B2/ja not_active Expired - Fee Related
-
2014
- 2014-01-17 CN CN201480005812.3A patent/CN104955971B/zh not_active Expired - Fee Related
- 2014-01-17 BR BR112015017506A patent/BR112015017506A2/pt not_active Application Discontinuation
- 2014-01-17 EP EP14743357.7A patent/EP2949770B1/en not_active Not-in-force
- 2014-01-17 EP EP18000025.9A patent/EP3330392A1/en not_active Withdrawn
- 2014-01-17 US US14/762,684 patent/US20150361529A1/en not_active Abandoned
- 2014-01-17 WO PCT/JP2014/050791 patent/WO2014115651A1/ja active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04232222A (ja) * | 1990-12-28 | 1992-08-20 | Honda Motor Co Ltd | 耐食性に優れたアルミニウム合金クラッド材 |
JPH04232224A (ja) * | 1990-12-28 | 1992-08-20 | Honda Motor Co Ltd | 耐食性に優れたアルミニウム合金クラッド材 |
JP2000087171A (ja) * | 1998-09-14 | 2000-03-28 | Furukawa Electric Co Ltd:The | 曲げ疲労特性および耐食性に優れるアルミニウム合金複合材 |
JP2005314774A (ja) * | 2004-04-30 | 2005-11-10 | Sumitomo Light Metal Ind Ltd | 自動車熱交換器用アルミニウム合金クラッド材 |
JP2007247021A (ja) | 2006-03-17 | 2007-09-27 | Shinko Alcoa Yuso Kizai Kk | 熱交換器用アルミニウム合金製ブレージングシート |
JP2008138278A (ja) * | 2006-12-05 | 2008-06-19 | Furukawa Sky Kk | 熱交換器用アルミニウム合金クラッド材 |
JP2008240084A (ja) * | 2007-03-28 | 2008-10-09 | Kobe Steel Ltd | 熱交換器用アルミニウム合金クラッド材およびブレージングシート |
JP2009127121A (ja) | 2007-11-28 | 2009-06-11 | Kobe Steel Ltd | 熱交換器用アルミニウム合金ブレージングシート |
JP2011224656A (ja) | 2010-03-31 | 2011-11-10 | Kobe Steel Ltd | アルミニウム合金ブレージングシートおよび熱交換器 |
JP2012087342A (ja) * | 2010-10-18 | 2012-05-10 | Showa Denko Kk | 熱交換器用アルミニウムクラッド材 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017163905A1 (ja) * | 2016-03-24 | 2017-09-28 | 株式会社神戸製鋼所 | アルミニウム合金ブレージングシート |
JP2017179582A (ja) * | 2016-03-24 | 2017-10-05 | 株式会社神戸製鋼所 | アルミニウム合金ブレージングシート |
JP2018040513A (ja) * | 2016-09-06 | 2018-03-15 | 株式会社デンソー | 熱交換器用チューブ及び熱交換器 |
Also Published As
Publication number | Publication date |
---|---|
BR112015017506A2 (pt) | 2017-07-11 |
EP3330392A1 (en) | 2018-06-06 |
EP2949770A1 (en) | 2015-12-02 |
US20150361529A1 (en) | 2015-12-17 |
CN104955971A (zh) | 2015-09-30 |
JP6132330B2 (ja) | 2017-05-24 |
CN104955971B (zh) | 2018-10-02 |
EP2949770A4 (en) | 2017-01-18 |
EP2949770B1 (en) | 2018-02-21 |
JP2014141702A (ja) | 2014-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6132330B2 (ja) | アルミニウム合金クラッド材および該クラッド材を成形したチューブを組み付けた熱交換器 | |
JP6236290B2 (ja) | アルミニウム合金クラッド材および該クラッド材を成形したチューブを組み付けた熱交換器 | |
JP6452626B2 (ja) | アルミニウム合金クラッド材及びその製造方法、ならびに、当該アルミニウム合金クラッド材を用いた熱交換器及びその製造方法 | |
JP6186239B2 (ja) | アルミニウム合金製熱交換器 | |
JP6418714B2 (ja) | アルミニウム合金クラッド材及びその製造方法、ならびに、当該アルミニウム合金クラッド材を用いた熱交換器及びその製造方法 | |
JP5054404B2 (ja) | 熱交換器用アルミニウム合金クラッド材およびブレージングシート | |
WO2017141921A1 (ja) | アルミニウム合金ブレージングシート及びその製造方法、ならびに、当該ブレージングシートを用いた自動車用熱交換器の製造方法 | |
JP2014114475A (ja) | アルミニウム合金ブレージングシート及びその製造方法、ならびに、当該アルミニウム合金ブレージングシートを用いた熱交換器 | |
JP5180565B2 (ja) | 熱交換器用アルミニウム合金ブレージングシート | |
JP2016069696A (ja) | アルミニウム合金製ブレージングシート | |
JP5629113B2 (ja) | ろう付け性及び耐食性に優れたアルミニウム合金ブレージングシート、及びそれを用いた熱交換器 | |
JP2011068933A (ja) | 熱交換器用アルミニウム合金クラッド材 | |
JP2017066494A (ja) | 熱交換器用アルミニウム合金材及びその製造方法 | |
JP2012057183A (ja) | アルミニウム合金製クラッド材およびそれを用いた熱交換器 | |
JP5498213B2 (ja) | ろう付け性に優れた高強度熱交換器用アルミニウム合金クラッド材 | |
JP6399438B2 (ja) | 熱交換器 | |
JP2014189814A (ja) | 高耐食性アルミニウム合金ブレージングシート及び自動車用熱交換器の流路形成部品 | |
JP6351205B2 (ja) | 高耐食性アルミニウム合金ブレージングシート | |
CN112041472B (zh) | 铝合金制换热器 | |
JP6624417B2 (ja) | ろう付け後の耐食性に優れるブレージングシート | |
JP2014062296A (ja) | 耐食性に優れたアルミニウム合金ブレージングシート | |
JP6446015B2 (ja) | アルミニウム合金クラッド材および該クラッド材を成形したチューブを組み付けた熱交換器 | |
JP4263160B2 (ja) | アルミニウム合金クラッド材並びにそれを用いた熱交換器用チューブ及び熱交換器 | |
JP2011000610A (ja) | 熱交換器用チューブ向けアルミニウム合金クラッド材およびそれを用いた熱交換器コア | |
JP6159841B1 (ja) | アルミニウム合金製ブレージングシート |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14743357 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014743357 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14762684 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112015017506 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112015017506 Country of ref document: BR Kind code of ref document: A2 Effective date: 20150722 |