WO2014109021A1 - 繊維強化複合材料、その製造方法、それを用いたエレベータ用構成部材及びエレベータかご - Google Patents

繊維強化複合材料、その製造方法、それを用いたエレベータ用構成部材及びエレベータかご Download PDF

Info

Publication number
WO2014109021A1
WO2014109021A1 PCT/JP2013/050232 JP2013050232W WO2014109021A1 WO 2014109021 A1 WO2014109021 A1 WO 2014109021A1 JP 2013050232 W JP2013050232 W JP 2013050232W WO 2014109021 A1 WO2014109021 A1 WO 2014109021A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
resin
reinforced composite
composite material
flame retardant
Prior art date
Application number
PCT/JP2013/050232
Other languages
English (en)
French (fr)
Inventor
達也 大川
久保 一樹
悠平 粟野
馬渕 貴裕
壮平 鮫島
迪斉 松本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2013/050232 priority Critical patent/WO2014109021A1/ja
Priority to JP2014556256A priority patent/JPWO2014109021A1/ja
Priority to CN201380069549.XA priority patent/CN104903067A/zh
Priority to US14/654,922 priority patent/US20150336335A1/en
Publication of WO2014109021A1 publication Critical patent/WO2014109021A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/10Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies
    • B29C43/12Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies using bags surrounding the moulding material or using membranes contacting the moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/20Making multilayered or multicoloured articles
    • B29C43/203Making multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/02Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising combinations of reinforcements, e.g. non-specified reinforcements, fibrous reinforcing inserts and fillers, e.g. particulate fillers, incorporated in matrix material, forming one or more layers and with or without non-reinforced or non-filled layers
    • B29C70/021Combinations of fibrous reinforcement and non-fibrous material
    • B29C70/025Combinations of fibrous reinforcement and non-fibrous material with particular filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/02Cages, i.e. cars
    • B66B11/0226Constructional features, e.g. walls assembly, decorative panels, comfort equipment, thermal or sound insulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K3/2279Oxides; Hydroxides of metals of antimony
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0026Flame proofing or flame retarding agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0809Fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/10Trains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/02Cages, i.e. cars
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • C08J2333/16Homopolymers or copolymers of esters containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2363/10Epoxy resins modified by unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/06Unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2631Coating or impregnation provides heat or fire protection
    • Y10T442/2713Halogen containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3472Woven fabric including an additional woven fabric layer
    • Y10T442/3528Three or more fabric layers
    • Y10T442/3569Woven fabric layers impregnated with a thermosetting resin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3472Woven fabric including an additional woven fabric layer
    • Y10T442/3528Three or more fabric layers
    • Y10T442/3569Woven fabric layers impregnated with a thermosetting resin
    • Y10T442/3585Epoxy resin

Definitions

  • the present invention relates to a fiber-reinforced composite material, a manufacturing method thereof, an elevator component using the same, and an elevator car.
  • Fiber reinforced composite materials are characterized by light weight and high strength.
  • fiber reinforced composite materials in which glass fibers and resins are combined are used in many industrial fields such as helmets, skis, rackets, bathtubs, building materials, industrial electronic equipment materials, small ships, and automobiles.
  • the fiber reinforced composite material using carbon fiber has higher strength and is expected to be used as an alternative material for weight reduction of metals such as iron and aluminum.
  • Flame retardance is required when expanding the field of application of fiber reinforced composite materials and using them as consumer electronics, railway vehicle components or building materials.
  • As flame retardant standards the United States UL (Underwriters Laboratories) “UL94 standard” for electrical products in general, “The flammability standard for railway vehicle materials”, also called the Japanese Ministry of Transportation combustion test method for railway vehicles, and building materials
  • UL94 standard for electrical products in general
  • UL94 standard for electrical products in general
  • the flammability standard for railway vehicle materials also called the Japanese Ministry of Transportation combustion test method for railway vehicles, and building materials
  • flame retardant standards stipulated in the Japanese Building Standards Act.
  • the flame retardant standard set forth in the Japanese Building Standards Law is a highly flame retardant standard even in the world.
  • the elevator car components are required to use flame retardant materials specified in the Japanese Building Standards Law.
  • the car room and car frame are made of steel or aluminum alloy.
  • such cars are heavy and require a large driving force. Cost. Therefore, lightweight elevator cars have been proposed that employ a sandwich panel structure with a fiber reinforced composite material as a skin material and a foam as a core material, or a hollow cross-section panel structure with a fiber reinforced composite material as a skin material and stringers. (For example, refer to Patent Document 1).
  • Fiber reinforced composite materials used for consumer-related electrical products, railway vehicles, aircraft, building-related products including elevator cars, and the like are required to have high flame resistance in addition to being lightweight and high in strength.
  • a fiber-reinforced composite material having high flame retardancy has not been obtained.
  • a fiber reinforced composite material that meets the flame retardant standards as stipulated in the Japanese Building Standards Law has not been obtained.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a fiber-reinforced composite material having high flame retardancy, light weight and high strength, and a method for producing the same. .
  • the present invention is a method for producing a fiber-reinforced composite material comprising impregnating a fiber structure with resin using a differential pressure between vacuum pressure and atmospheric pressure, and then curing the resin, comprising aluminum hydroxide and water
  • a mixture of a powdered flame retardant containing at least one selected from magnesium oxide and having an average particle size in the range of 0.1 to 20 ⁇ m and a bromine-containing resin is used to form individual openings surrounded by fibers.
  • the surface of the fiber structure is powdered It is a manufacturing method of the fiber reinforced composite material characterized by unevenly distributing a flame retardant.
  • a fiber-reinforced composite material having high flame retardancy, light weight and high strength can be easily produced.
  • Embodiment 1 FIG.
  • a manufacturing apparatus for manufacturing a fiber reinforced composite material in which a powdered flame retardant is unevenly distributed on the surface of a fiber structure and a fiber reinforced composite material in which a powdered flame retardant is unevenly distributed on the surface of the fiber structure A method will be described.
  • FIG. 1 is a cross-sectional view of a manufacturing apparatus for manufacturing the fiber-reinforced composite material according to the first embodiment.
  • a manufacturing apparatus for manufacturing a fiber reinforced composite material includes a molding die 11 in which a fiber structure 10 such as a woven fabric, a nonwoven fabric, and a non-woven fabric molding is disposed, and a first resin diffusion sheet 12a.
  • a sealing material 15 that shuts off the space from the outside, a vacuum pump 16 that evacuates the sealing film 14, and a resin tank 17 that supplies bromine-containing resin into the sealing film 14.
  • the manufacturing apparatus is provided with a resin inlet 18 for injecting a bromine-containing resin supplied from the resin tank 17 into the sealing film 14. Further, the manufacturing apparatus is provided with an exhaust port 19 for exhausting the air in the sealing film 14. The exhaust port 19 also serves as an exhaust port for discharging excess bromine-containing resin in the sealing film 14. Note that the first resin diffusion sheet 12a and the first release sheet 13a installed on the mold 11 can be omitted. At this time, in order to prevent fixation of the bromine-containing resin, it is preferable to perform a mold release treatment on the mold 11.
  • a fiber base material is prepared (step S1). Subsequently, the fiber base material is cut into a predetermined shape (step S2). Next, the first resin diffusion sheet 12a and the first release sheet 13a are sequentially stacked on the mold 11 (step S3). This step can be omitted. Subsequently, the cut fiber substrate is placed on the first mold release sheet 13a (the mold 11 that has been mold-released when the first resin diffusion sheet 12a and the first mold release sheet 13a are omitted). To form a fiber structure 10 (step S4). Next, the sealing material 15 is arrange
  • step S6 the resin injection port 18 and the exhaust port 19 are installed (step S6).
  • step S7 the surface of the fiber structure 10 is covered with the second release sheet 13b (step S7).
  • step S8 the surface of the second release sheet 13b is covered with the second resin diffusion sheet 12b (step S8).
  • the sealing film 14 is covered so as to cover the fiber structure 10, and the space in the sealing film 14 is blocked from the outside by the sealing material 15 (step S9).
  • preparation for molding is completed (step S10).
  • the vacuum pump 16 is driven to exhaust the air in the sealing film 14 (step S11).
  • step S12 the bromine-containing resin and the powdered flame retardant are mixed, and the powdered flame retardant is dispersed in the bromine-containing resin.
  • step S13 a mixture of the powdered flame retardant filled with the resin tank 17 and the bromine-containing resin is injected into the space in the sealing film 14 from the resin injection port 18 and impregnated into the fiber structure 10 (step S13).
  • step S13 the mixture of the powdered flame retardant and the bromine-containing resin is filtered at the opening of the fiber base material, and the powdered flame retardant is unevenly distributed on the surface layer of the fiber structure 10.
  • step S14 the bromine-containing resin injected into the sealing film 14 is cured
  • a curing method room temperature curing or heat curing can be performed by selecting a type of bromine-containing resin and a catalyst.
  • the bromine-containing resin is cured to such an extent that the mold 11 can be removed
  • the second release sheet 13b is peeled off together with the second resin diffusion sheet 12b, and the fiber structure 10 is impregnated with the bromine-containing resin.
  • the fiber reinforced composite material is removed from the mold 11 as a molded body (step S15).
  • the removed molded body is subjected to a post-curing process using a drying furnace (step S16).
  • a molded body made of the fiber reinforced composite material is completed (step S17).
  • a fiber-reinforced composite material in which the powdered flame retardant 21 is unevenly distributed on the surface layer of the fiber structure 10 can be obtained as shown in FIG.
  • step S13 the mixture of the powdered flame retardant 21 and the bromine-containing resin 22 injected from the resin tank spreads in the surface direction of the fiber structure 10 by the resin diffusion sheet as shown in FIG.
  • the powdered flame retardant 21 is filtered through the opening of the fiber base material, so that it is difficult to impregnate the fiber structure 10 and is unevenly distributed on the surface layer of the fiber structure 10. To do.
  • the position which shifted the opening part which exists in each layer (fiber base material) of the fiber structure 10 shifts
  • the number of openings that penetrate the front and back is reduced.
  • a part of the mixture of the powdered flame retardant 21 and the bromine-containing resin 22 passes through the openings of the fiber base and the layers of the fiber structure 10 during impregnation, and impregnates the entire fiber structure 10.
  • the powdered flame retardant 21 exists only in the surface layer, the powdered flame retardant 21 exists only in the vicinity of the surface layer and in the opening in the vicinity of the surface layer.
  • the concentration of the powdered flame retardant 21 in the vicinity of the surface layer and the opening in the vicinity of the surface layer is particularly high and the concentration of the powdered flame retardant 21 in the fiber structure 10 is low, the surface of the fiber structure 10 is directed from the surface to the inside.
  • the case where the powdered flame retardant 21 is distributed in a gradient is included.
  • the fiber reinforced composite material thus obtained shows extremely high flame retardancy because the powdered flame retardant 21 is densely present on the surface layer and the powdered flame retardant 21 also exhibits an effect of shielding heat.
  • the state of uneven distribution of the powdered flame retardant 21 can be confirmed by microscopic observation of a cross section of the fiber reinforced composite material.
  • Each layer (fiber substrate) of the fiber structure 10 has a mode of the size of individual openings surrounded by fibers in the range of 0.03 to 3 mm 2 and an opening ratio per 10 cm 2 area of 0. Must be in the range of 1-10%. If the mode value of the size of the opening is less than 0.03 mm 2 , the bromine-containing resin 22 is not sufficiently impregnated into the fiber structure 10. On the other hand, when the mode value of the size of the opening exceeds 3 mm 2 , the powdered flame retardant 21 cannot be unevenly distributed on the surface layer of the fiber structure 10. Further, when the opening ratio is less than 0.1%, the bromine-containing resin 22 is not sufficiently impregnated into the fiber structure 10.
  • the fiber base material preferably has a mode of opening size in a range of 0.2 to 0.6 mm 2 and an opening ratio per 10 cm 2 area of 0.8 to 6.3%. is there.
  • an opening part refers to the clearance gap part of the mesh
  • the aperture ratio is a numerical value representing the ratio of the area occupied by the opening to the total area of one layer (one sheet) of the fiber base material.
  • the gap between the warp yarns and weft yarns (glass fibers, etc.) knitted in the direction orthogonal to the fiber direction used to fix the fibers is opened.
  • the measurement of the area of the opening and the calculation of the opening ratio are preferably carried out by measuring the area of the opening in the fiber substrate having a total area of 100 cm 2 per sheet.
  • the mode value is a value that appears most frequently in the data group or probability distribution.
  • organic fiber such as inorganic fibers, such as a carbon fiber, glass fiber, an alumina fiber, or an aramid fiber
  • carbon fiber is preferable from the viewpoint of obtaining a lightweight and high-strength fiber-reinforced composite material.
  • the fiber base material it is possible to use various crosses such as plain weave, twill weave, satin weave, or a unidirectional cross in which fibers arranged in one direction are bundled with other fibers into a sheet shape.
  • the fiber volume content (Vf) indicating the ratio of the volume occupied by the fiber structure 10 in the total volume of the fiber-reinforced composite material is 25 to 85% by volume from the viewpoint of strength and flame retardancy. It is preferably 40 to 75% by volume.
  • the proportion of the volume occupied by the fiber structure 10 is less than 25% by volume, the reinforcing effect by the fibers may not be sufficient, and the flame retardancy may not be sufficient.
  • the volume ratio occupied by the fiber structure 10 exceeds 85% by volume, the effect of the bromine-containing resin 22 binding the fibers decreases, resulting in a decrease in strength and difficulty in molding.
  • the powdery flame retardant 21 contains at least one selected from aluminum hydroxide and magnesium hydroxide and has an average particle size in the range of 0.1 to 20 ⁇ m.
  • the average particle size of the powdered flame retardant 21 is less than 0.1 ⁇ m, the powdered flame retardant 21 cannot be unevenly distributed on the surface layer of the fiber structure 10 and sufficient flame retardancy cannot be obtained.
  • the average particle diameter of the powdered flame retardant 21 exceeds 20 ⁇ m, the powdered flame retardant 21 causes clogging in the first release sheet 13a and the second release sheet 13b, which makes it difficult to mold.
  • the average particle size of the powdered flame retardant 21 is preferably 0.5 to 10 ⁇ m.
  • At least one selected from aluminum hydroxide and magnesium hydroxide as the powder flame retardant 21 is preferably added in an amount of 5 to 200 parts by weight with respect to 100 parts by weight of the bromine-containing resin 22. It is more preferable to add part.
  • the powdery flame retardant 21 may further include at least one selected from antimony trioxide and zinc borate in addition to aluminum hydroxide and magnesium hydroxide. Further, at least one selected from antimony trioxide and zinc borate can be added in the range of 0 to 20 parts by weight with respect to 100 parts by weight of the bromine-containing resin 22.
  • an additive type or reactive type flame retardant such as a phosphate ester type flame retardant or a phosphorus-nitrogen compound type may be used in combination.
  • an average particle diameter represents the value of a particle diameter when the sum total of the volume ratio below a certain particle diameter will be 50% with respect to the total value of the volume ratio of the particle
  • the bromine-containing resin 22 may be a thermosetting resin containing bromine.
  • the brominated unsaturated polyester resin one obtained by introducing bromine in the production stage or one obtained by mixing brominated monomers can be used.
  • the following four methods can be used as a method for introducing bromine in the production stage.
  • the first method uses dibromoneopentyl glycol as the polyhydric alcohol component.
  • the second method is a method using tetrabromophthalic acid and its anhydride as a saturated dibasic acid or its anhydride.
  • an unsaturated polyester is produced using tetrahydrophthalic acid and its anhydride, endmethylenetetrahydrophthalic acid and its anhydride, etc. as a saturated dibasic acid or its anhydride, and then this saturated dibasic acid or its anhydride.
  • bromine is added to the double bond of the basic acid component.
  • the fourth method uses an unsaturated polyester using a dicyclopentadiene-maleic acid adduct having both the function of a saturated dibasic acid component and the function of an ⁇ , ⁇ -unsaturated dibasic acid component as a part of the raw material. Is then added to the residual double bond of dicyclopentadiene.
  • the brominated epoxy acrylate resin can also be obtained by introducing bromine in the production stage or by mixing brominated monomers.
  • Examples of the method of introducing bromine in the production stage include a method of using a bromine-containing epoxy type epoxy resin as the epoxy compound.
  • Brominated epoxy acrylate resins include tetrabromobisphenol A-type epoxy (meth) acrylate, tetrabromobisphenol F-type epoxy (meth) acrylate, tetrabromobisphenol S-type epoxy (meth) acrylate, etc. from the viewpoint of excellent flexibility. preferable.
  • the bromine content in the brominated unsaturated polyester resin or brominated epoxy acrylate resin is preferably 5 to 60% by weight, and more preferably 10 to 40% by weight. If the bromine content is less than 5% by weight, sufficient flame retardancy may not be obtained. On the other hand, if the bromine content exceeds 60% by weight, the toxicity during combustion may increase, and those having a bromine content exceeding 60% by weight are difficult to obtain.
  • the thickness of the fiber reinforced composite material is selected based on strength design and economical reasons, but a thickness of about 100 ⁇ m to 3 cm is preferable, and a thickness of 0.5 mm to 1 cm is more preferable.
  • a thickness of the fiber reinforced composite material is less than 100 ⁇ m, it may be difficult to obtain sufficient strength.
  • the thickness of the fiber reinforced composite material exceeds 3 cm, the weight increases and the lightness required for the fiber reinforced composite material is impaired.
  • the fiber which comprises the fiber structure 10 is carbon fiber, since carbon fiber is expensive, the fiber reinforced composite material which has thickness exceeding 3 cm is not preferable economically.
  • a fiber-reinforced composite material having high flame retardancy can be manufactured by a simple process using an atmospheric pressure vacuum injection method using a relatively inexpensive material. Further, by simplifying the manufacturing equipment and the manufacturing process, the production cost can be reduced, the production time can be shortened, and the fiber-reinforced composite material can be mass-produced.
  • Embodiment 2 instead of laminating the fiber base material cut into a predetermined shape in the first embodiment to form the fiber structure 10, the fiber structure 10 is prepared by winding continuous fibers around a mold. By impregnating a mixture of the powdered flame retardant 21 and the bromine-containing resin 22 from the surface direction of the fiber structure 10, a fiber-reinforced composite material in which the powdered flame retardant 21 is unevenly distributed on the surface layer of the fiber structure is manufactured.
  • continuous fibers examples include inorganic fibers such as carbon fibers, glass fibers, and alumina fibers, or organic fibers such as aramid fibers. Among these, carbon fiber is preferable from the viewpoint of obtaining a lightweight and high-strength fiber-reinforced composite material.
  • the fiber diameter of the continuous fiber is not particularly limited, but is preferably 1 ⁇ m to 20 ⁇ m.
  • the same materials as those in the first embodiment can be used.
  • the fiber volume content and thickness of the fiber reinforced composite material are the same as those in the first embodiment.
  • Embodiment 3 a fiber-reinforced composite material panel (hereinafter referred to as a sandwich panel) in which a powdered flame retardant 21 is unevenly distributed on the surface of a structure formed by sandwiching both side surfaces of a core material made of foam with a fiber structure 10.
  • a sandwich panel in which a powdered flame retardant 21 is unevenly distributed on the surface of a structure formed by sandwiching both side surfaces of a core material made of foam with a fiber structure 10.
  • FIG. 5 is a sectional view of a manufacturing apparatus for manufacturing the sandwich panel according to the third embodiment.
  • a manufacturing apparatus for manufacturing a sandwich panel has a mold 11 in which a fiber structure 10 and a foam 31 are sequentially laminated, a first resin diffusion sheet 12a, and resin permeability.
  • the first release sheet 13a, the second release sheet 13b having resin permeability, the second resin diffusion sheet 12b, the sealing film 14, and the space in the sealing film 14 are blocked from the outside.
  • a sealing material 15, a vacuum pump 16 that evacuates the inside of the sealing film 14, and a resin tank 17 that supplies a bromine-containing resin into the sealing film 14 are provided.
  • the manufacturing apparatus is provided with a resin inlet 18 for introducing bromine-containing resin supplied from the resin tank 17 into the sealing film 14. Further, the manufacturing apparatus is provided with an exhaust port 19 for exhausting the inside of the sealing film 14. The exhaust port 19 also serves as an exhaust port for discharging excess bromine-containing resin in the sealing film 14. Note that the first resin diffusion sheet 12a and the first release sheet 13a installed on the mold 11 can be omitted. At this time, in order to prevent the bromine-containing resin from sticking, it is preferable to perform a mold release treatment on the mold 11.
  • the fiber base material and the foam 31 are prepared (step S21). Subsequently, the fiber base material and the foam 31 are cut into a predetermined shape (step S22). Next, the first resin diffusion sheet 12a and the first release sheet 13a are sequentially laminated on the mold 11 (step S23). This step can be omitted. Subsequently, the cut fiber substrate is placed on the first mold release sheet 13a (the mold 11 that has been mold-released when the first resin diffusion sheet 12a and the first mold release sheet 13a are omitted).
  • the fiber structure 10 is laminated to form a fiber structure 10, the foam 31 cut on the fiber structure 10 is disposed, and the fiber base material cut on the foam 31 is further laminated to form the fiber structure. 10 and the both surfaces of the foam 31 are sandwiched between the fiber structures 10 (step S24).
  • the fiber structure 10 may be laminated only on one side of the foam 31.
  • the sealing material 15 is arrange
  • the resin injection port 18 and the exhaust port 19 are installed (step S26).
  • the surface of the structure formed by sandwiching both surfaces of the foam 31 with the fiber structure 10 is covered with the second release sheet 13b (step S27).
  • step S28 the surface of the second release sheet 13b is covered with the second resin diffusion sheet 12b (step S28).
  • the sealing film 14 is covered so as to cover the structure formed by sandwiching the both surfaces of the foam 31 with the fiber structure 10, and the space in the sealing film 14 is shut off from the outside by the sealing material 15 (step). S29).
  • the preparation for molding is completed (step S30).
  • the vacuum pump 16 is driven to exhaust the air in the sealing film 14 (step S31).
  • step S31 the powdered flame retardant 21 and the bromine-containing resin 22 are mixed, and the powdered flame retardant 21 is dispersed in the bromine-containing resin 22 (step S32).
  • a mixture of the powdered flame retardant 21 and the bromine-containing resin 22 filled in the resin tank 17 is injected into the space in the sealing film 14 from the resin injection port 18 and impregnated in the fiber structure 10 (step S33). ).
  • the mixture of the powdered flame retardant 21 and the bromine-containing resin 22 is filtered at the opening of the fiber base material, and the powdered flame retardant 21 is unevenly distributed on the surface layer of the fiber structure 10.
  • the bromine-containing resin 22 injected into the sealing film 14 is cured (step S34).
  • a curing method room temperature curing or heat curing is possible by selecting the type of bromine-containing resin 22 and a catalyst.
  • step S35 the removed molded body is subjected to a post-curing process using a drying furnace. In this way, a molded body made of a sandwich panel is completed (step S37).
  • the same structure as in the first and second embodiments can be used.
  • the powder-form flame retardant 21 and the bromine containing resin 22 the thing similar to Embodiment 1 can be used.
  • the foam 31 examples include rigid foams (foam materials) such as polyvinyl chloride resin, polyurethane resin, polystyrene resin, polyethylene resin, polypropylene resin, acrylic resin, phenol resin, polymethacrylimide resin, epoxy resin, and ethylene propylene rubber. Formed from.
  • foam materials such as polyvinyl chloride resin, polyurethane resin, polystyrene resin, polyethylene resin, polypropylene resin, acrylic resin, phenol resin, polymethacrylimide resin, epoxy resin, and ethylene propylene rubber. Formed from.
  • foam 31 an inorganic foam such as an aluminum foam or a syntactic foam can be used.
  • the flame retardant foam obtained by mixing the above-described resin material with a flame retardant and foamed, and the phenol resin foam are preferable as the foam 31 because of excellent flame retardancy. Since the flame retardance is further improved by using a flame retardant foam as the foam 31, the obtained sandwich panel is suitable as a component for an elevator
  • a foam 31 having a density in the range of 0.01 to 0.2 g / cm 3 it is preferable to use a foam 31 having a density in the range of 0.01 to 0.2 g / cm 3 .
  • the density of the foam 31 is smaller than 0.01 g / cm 3 , the sandwich panel is likely to buckle.
  • the density of the foam 31 is greater than 0.2 g / cm 3 , weight reduction of the sandwich panel may be hindered.
  • the fiber volume content and thickness of the fiber reinforced composite material are the same as those in the first embodiment.
  • a sandwich panel having high flame retardancy suitable for an elevator component is manufactured by a simple process using an atmospheric pressure vacuum injection method using a relatively inexpensive material. be able to.
  • by simplifying the manufacturing equipment and the manufacturing process it is possible to reduce the production cost, shorten the production time, and mass-produce sandwich panels.
  • Embodiment 4 FIG.
  • carbon fiber is used as the fiber in Embodiment 1 or 2, and carbon fiber is impregnated from the surface direction of the carbon fiber structure by impregnating a mixture of powdered flame retardant 21 and bromine-containing resin 21.
  • a carbon fiber reinforced composite material CFRP: Carbon Fiber Reinforced Plastics
  • CFRP Carbon Fiber Reinforced Plastics
  • the carbon fiber base material it is possible to use various carbon fiber cloths such as plain weave, twill weave, and satin weave, and unidirectional cloth in which carbon fibers arranged in one direction are bundled with other fibers to form a sheet.
  • the fiber diameter of the continuous carbon fiber is not particularly limited, but is preferably 1 ⁇ m to 20 ⁇ m.
  • the same materials as those in the first embodiment can be used.
  • FIG. 7 shows an example of the result of the exothermic test for the carbon fiber reinforced composite material according to the fourth embodiment.
  • FIG. 7A shows the heat generation rate
  • FIG. 7B shows the total heat generation amount.
  • 7 (a) and 7 (b) shows the result of the carbon fiber reinforced composite material obtained by impregnating a carbon fiber structure with a bromine-free resin
  • (b) shows bromine.
  • the result of the carbon fiber reinforced composite material obtained by impregnating the carbon-containing structure with the containing resin is shown.
  • the result of the carbon fiber reinforced composite material (Embodiment 4) obtained by impregnating the carbon fiber structure with the resin mixture added with antimony trioxide was shown.
  • the carbon fiber reinforced composite material according to Embodiment 4 can improve the flame retardancy as compared with the conventional material, and reaches the flame retardant material standard defined in the Japanese Building Standard Law. That is, in the carbon fiber reinforced composite material according to Embodiment 4, the carbon fiber that is a highly flame-retardant fiber becomes a heat-resistant heat blocking layer, the combustion of the resin is suppressed, and the flame-retardant effect is exhibited.
  • the presence of at least one selected from aluminum hydroxide and magnesium hydroxide reduces the amount of resin and suppresses the amount of combustion, and also due to the endothermic action during thermal decomposition. An increase in temperature is also suppressed, and a fire extinguishing action by generated steam can be obtained.
  • the endothermic action during pyrolysis of at least one selected from aluminum hydroxide and magnesium hydroxide can provide a synergistic effect that maintains the flame retardant effect of bromine for a long time. it can.
  • at least one kind of inorganic substance selected from aluminum hydroxide and magnesium hydroxide remains in the gaps between the carbon fibers, so that the heat shielding effect can be further enhanced and high flame retardancy can be obtained. it can.
  • continuous carbon fiber is used, the shape is maintained after combustion, and high strength can be achieved by fiber reinforcement.
  • the fiber volume content and thickness of the carbon fiber reinforced composite material are the same as those in the first embodiment.
  • the fourth embodiment it is possible to obtain a carbon fiber reinforced composite material having high flame retardancy and light weight and high strength at a low cost by a simple process.
  • the carbon fiber reinforced composite material according to Embodiment 4 can be suitably used for a component for an elevator because it reaches the flame retardant material standard defined in the Japanese Building Standard Law.
  • Embodiment 5 a carbon fiber reinforced composite material panel (hereinafter referred to as a sandwich panel) in which a powdered flame retardant is unevenly distributed on the surface of a structure formed by sandwiching both surfaces of a core material made of a foam between carbon fiber structures. Manufacturing.
  • a sandwich panel can be manufactured by the method of sticking the carbon fiber reinforced composite material produced in the fourth embodiment to the core material with an adhesive, or by the integral molding of the third embodiment.
  • FIG. 8 is a sectional view showing a sandwich panel according to the fifth embodiment.
  • both side surfaces of the core material made of the foam 31 are joined to the carbon fiber reinforced composite material 52 by an adhesive 51.
  • an adhesive 51 an epoxy adhesive, an acrylic adhesive, a silicone adhesive, a flame retardant adhesive, or the like can be used.
  • the adhesive layer can be integrated with the carbon fiber reinforced composite material 52.
  • the carbon fiber reinforced composite material 52 may be bonded only to one side of the foam 31.
  • the same materials as those in the first embodiment can be used.
  • the same one as in the third embodiment can be used.
  • a carbon fiber base material and continuous carbon fiber the thing similar to Embodiment 4 can be used.
  • the fiber volume content and thickness of the fiber reinforced composite material are the same as those in the first embodiment.
  • the flame retardancy of the carbon fiber reinforced composite material of the fourth embodiment is improved in flame retardancy compared to the conventional material by the synergistic effect of the constituent materials. This is equivalent to the flame retardant material standards stipulated in the Japanese Building Standards Law.
  • a sandwich panel having high flame retardancy and light weight and high rigidity and strength comparable to metal can be obtained at a low cost by a simple process.
  • the sandwich panel according to the fifth embodiment has high rigidity and strength comparable to metal and meets the flame retardant material standards stipulated in the Japanese Building Standard Law, it is an elevator component, particularly an elevator car. Can be suitably used.
  • Embodiment 6 an elevator car (a car room and a car frame) to which the carbon fiber reinforced composite material produced in the fourth embodiment is applied will be described.
  • an elevator car in which the above-described carbon fiber reinforced composite material is applied to an elevator car room or a car frame structural member (a car structural member) will be described.
  • the elevator car includes a car room 61 that accommodates people and things, a car door 62 and a car frame 63 for people to enter and exit.
  • the car frame 63 is provided to reinforce the car room 61 as shown in FIG.
  • the carbon fiber reinforced composite material can be used for the entire car frame 63 or a part of the diagonal storage 63a (support portion).
  • the carbon fiber reinforced composite material can also be used for an elevator panel 61a applied as a floor plate, a ceiling plate, a side plate and a back plate of the cab 61.
  • a carbon fiber reinforced composite material can also be used as a part of the constituent material of the panel for elevators.
  • a carbon fiber reinforced composite material can be used as the reinforcing member 65 fixed to the back surface of the metal front plate 64.
  • the specific strength expressed by strength per weight is about 5 for carbon fiber reinforced composite material, about 0.5 for iron and about 0.8 for aluminum.
  • the weight can be reduced to, for example, 1/6 to 1/10 of the weight of a conventional elevator panel.
  • Embodiment 7 An elevator car in which the sandwich panel produced in the third and fifth embodiments is applied to an elevator car room or a car frame component (a car member) will be described.
  • the sandwich panel can be used for an elevator panel 61 a applied as a floor plate, a ceiling plate, a side plate, and a back plate of the cab 61.
  • a sandwich panel may be applied to at least one of the floor panel, ceiling panel, side panel, and back panel.
  • the elevator panel to which the above-mentioned sandwich panel is applied can reliably maintain sufficient strength and small flexibility comparable to conventional elevator panels made of metal plates against impact force.
  • the weight can be reduced to, for example, 1/3 to 1/5 (about 7 kg for a CFRP sandwich panel) of the weight of a conventional elevator panel (about 36 kg for iron and about 20 kg for aluminum mixing). .
  • the case where the sandwich panel is applied to an elevator car member has been described as an example.
  • the use of the sandwich panel according to the third and fifth embodiments is limited to this. is not.
  • elevator car members are illustrated as application examples.
  • the fiber-reinforced composite material and the sandwich panel according to the present invention may be used in any field such as electrical products, building products, and mechanical products. It can also be applied to.
  • the sandwich panel applied to the elevator panel is described as an example of the sandwich panel.
  • the sandwich panel is not limited to an elevator panel, and can be applied to, for example, a satellite structure.
  • the fiber reinforced composite material and the sandwich panel according to the present invention target the highest level of flame retardancy with respect to the flame retardance standard, but flame retardancy defined in UL94 applied to general electric products.
  • flame retardancy defined in UL94 applied to general electric products.
  • the standard V0 since it has high flame retardance that can easily clear the V0 level, it is extremely useful for applications that require high flame retardancy.
  • the fiber-reinforced composite material of the present invention will be specifically described with reference to examples.
  • the present invention is not limited to these examples.
  • the fiber reinforced composite materials of Examples 1 to 5 and Comparative Examples 1 to 6 were prepared using the following materials and the manufacturing apparatus shown in FIG.
  • the average particle diameter of each powdery flame retardant is a manufacturer catalog value.
  • Resin 1 Brominated epoxy acrylate resin (Neopol (registered trademark) 8197 manufactured by Nippon Iupika Co., Ltd., bromine content: 25 to 27% by weight)
  • Resin 2 Brominated unsaturated polyester resin (Nippon Iupika Co., Ltd.
  • Resin 3 Epoxy acrylate resin (Lipoxy (registered trademark) R806 manufactured by Showa Denko KK)
  • Powdered flame retardant 1 Aluminum hydroxide (HP-360 manufactured by Showa Denko KK, average particle size 2.7 ⁇ m)
  • Powdered flame retardant 2 antimony trioxide (Daiichi Kogyo Seiyaku Co., Ltd.
  • Powdered flame retardant 3 Aluminum hydroxide (HP-360 (pulverized product) manufactured by Showa Denko KK, average particle size 0.05 ⁇ m) Powdered flame retardant 4: Aluminum hydroxide (B52 manufactured by Nippon Light Metal Co., Ltd., average particle size 55 ⁇ m)
  • Curing agent 1 Organic peroxide (328E manufactured by Kayaku Akzo Corporation)
  • Curing agent 2 Methyl ethyl ketone peroxide / dimethyl phthalate solution (Permec (registered trademark) N, NOF Corporation, concentration 55% by weight)
  • Curing accelerator Cobalt octenoate solution (Cobalt O, Showa Denko Co., Ltd., 8% by weight of metal)
  • Fiber base material 1 Carbon fiber plain woven cloth (Toray Industries, Inc.
  • Fiber base material 2 Carbon fiber plain weave cloth (Toray Industries, Inc. (trademark) cloth T300-3000, mode value 0.2 to 0.25 mm 2 , aperture ratio 6.2%)
  • Fiber base material 3 Carbon fiber plain weave cloth (woven with Toray Co., Ltd.
  • Fiber base material 4 Carbon fiber plain weave cloth (woven with Toray Industries, Inc., Torayca (registered trademark) T700S, mode value 0.03 to 0.05 mm 2 , aperture ratio 6.5%)
  • Fiber base material 5 Carbon fiber plain weave cloth (obtained plain using TORAYCA (registered trademark) T700S manufactured by Toray Industries Inc., mode 0.10 to 0.15 mm 2 , opening ratio 9.5%)
  • Fiber base material 6 Carbon fiber plain weave cloth (obtained plain using TORAYCA (registered trademark) T700S manufactured by Toray Industries, Inc., mode value 0.01 to 0.03 mm 2 , opening ratio 0.05%)
  • Fiber base material 7 Carbon fiber plain weave cloth (obtained plain using TORAYCA (registered trademark) T700S manufactured by Toray Industries, Inc., mode 3.1 to 3.5 mm 2 , opening ratio 13%)
  • Example 1 A fiber structure in which eight fiber substrates 1 (ply) were laminated was placed on a mold, and a release sheet and a resin diffusion sheet were sequentially placed thereon. These were covered with a sealing film, and the gap between the sealing film and the mold was closed with a sealing material to completely seal it, and the sealed space was decompressed with a vacuum pump. Thereafter, 25 parts by weight of the powdered flame retardant 1, 6 parts by weight of the powdered flame retardant 2, 1 part by weight of the curing agent 1 and a curing accelerator with respect to 100 parts by weight of the resin 1 in the decompressed sealed space. was added from the resin injection port to impregnate the fiber structure.
  • the sealing film was removed, and the fiber-reinforced composite material was taken out.
  • the fiber-reinforced composite material of Example 1 was obtained by standing at 80 ° C. for 2 hours, at 100 ° C. for 2 hours, and at 120 ° C. for 2 hours.
  • Example 2 A fiber structure in which twelve (ply) fiber substrates 1 were laminated was placed on a mold, and a release sheet and a resin diffusion sheet were sequentially placed thereon. These were covered with a sealing film, and the gap between the sealing film and the mold was closed with a sealing material to completely seal it, and the sealed space was decompressed with a vacuum pump. Thereafter, 25 parts by weight of the powdered flame retardant 1, 6 parts by weight of the powdered flame retardant 2, 1 part by weight of the curing agent 1 and a curing accelerator with respect to 100 parts by weight of the resin 1 in the decompressed sealed space. was added from the resin injection port to impregnate the fiber structure.
  • the sealing film was removed, and the fiber-reinforced composite material was taken out.
  • the fiber-reinforced composite material of Example 2 was obtained by standing at 80 ° C. for 2 hours, at 100 ° C. for 2 hours, and at 120 ° C. for 2 hours.
  • Example 3 A fiber-reinforced composite material of Example 3 was obtained in the same manner as in Example 1 except that the fiber substrate 3 was used instead of the fiber substrate 1.
  • Example 4 A fiber-reinforced composite material of Example 4 was obtained in the same manner as in Example 1 except that the fiber substrate 4 was used instead of the fiber substrate 1.
  • Example 5 A fiber-reinforced composite material of Example 5 was obtained in the same manner as in Example 1 except that the fiber base material 5 was used instead of the fiber base material 1.
  • Example 2 except that the fiber base material 2 was used instead of the fiber base material 1, the resin 3 was used instead of the resin 1, and the powdered flame retardant 1 and the powdered flame retardant 2 were not added. A fiber-reinforced composite material of Comparative Example 1 was obtained.
  • Comparative Example 2 The fiber-reinforced composite material of Comparative Example 2 was obtained in the same manner as in Example 2 except that the fiber base material 2 was used instead of the fiber base material 1 and the powdered flame retardant 1 and the powdered flame retardant 2 were not added. Obtained.
  • Comparative Example 3 A fiber-reinforced composite material of Comparative Example 3 was obtained in the same manner as in Example 1 except that the fiber substrate 6 was used instead of the fiber substrate 1.
  • Comparative Example 4 A fiber-reinforced composite material of Comparative Example 4 was obtained in the same manner as in Example 1 except that the fiber substrate 7 was used instead of the fiber substrate 1.
  • Comparative Example 5 A fiber-reinforced composite material of Comparative Example 5 was obtained in the same manner as in Example 1 except that powdered flame retardant 3 was used instead of powdered flame retardant 1.
  • the fiber reinforced composite materials of Examples 1 to 5 are remarkably superior in flame retardancy as compared with Comparative Examples 1 and 2 in which no powdered flame retardant was added. It can also be seen that the fiber-reinforced composite materials of Examples 1 to 5 reach the flame retardant material standards stipulated in the Japanese Building Standard Law. On the other hand, the fiber reinforced composite materials of Comparative Examples 3 and 4 using fibers whose opening size mode or opening ratio is outside the range of the present invention, and powder whose average particle size is outside the range of the present invention It can be seen that the fiber reinforced composite material of Comparative Example 5 using a flame retardant has insufficient flame retardancy.
  • the sandwich panels of Examples 6 to 9 and Comparative Examples 7 to 10 were made of the above-mentioned materials, phenol resin foam as core material 1 (Neoma (registered trademark) foam manufactured by Asahi Kasei, thickness 25 mm, density 0.040 g / cm 3 ). It was produced using a phenol resin foam (Neoma (registered trademark) foam manufactured by Asahi Kasei, density 0.027 g / cm 3 ) as the core material 2 and the production apparatus shown in FIG.
  • phenol resin foam as core material 1
  • phenol resin foam Neoma (registered trademark) foam manufactured by Asahi Kasei, density 0.027 g / cm 3
  • Example 6 Prepare two fiber structures (thickness 0.8 to 1 mm) in which four fiber base materials 1 (ply) are laminated, and sandwich the both sides of the core material 1 with these fiber structures on the mold.
  • the release sheet and the resin diffusion sheet were sequentially arranged thereon. These were covered with a sealing film, and the gap between the sealing film and the mold was closed with a sealing material to completely seal it, and the sealed space was decompressed with a vacuum pump. Thereafter, 25 parts by weight of the powdered flame retardant 1, 6 parts by weight of the powdered flame retardant 2, 1 part by weight of the curing agent 1 and a curing accelerator with respect to 100 parts by weight of the resin 1 in the decompressed sealed space.
  • Example 7 Example 6 except that a resin composition obtained by adding 80 parts by weight of powdered flame retardant 1, 6 parts by weight of powdered flame retardant 2 and 1 part by weight of curing agent 2 to 100 parts by weight of resin 2 was used. In the same manner, the sandwich panel was taken out. In order to fully cure, it was left to stand at 40 ° C. for 16 hours to obtain a sandwich panel of Example 7.
  • Example 8 Resin composition in which 6 parts by weight of powdered flame retardant 1, 2 parts by weight of powdered flame retardant 2, 1 part by weight of curing agent 1 and 0.2 part by weight of curing accelerator are added to 100 parts by weight of resin 1
  • a sandwich panel of Example 8 was obtained in the same manner as Example 6 except that the product was used.
  • Example 9 A sandwich panel of Example 9 was obtained in the same manner as in Example 6 except that the fiber base material 2 was used instead of the fiber base material 1 and the core material 2 was used instead of the core material 1.
  • Comparative Example 7 A sandwich panel of Comparative Example 7 was obtained in the same manner as in Example 6 except that the fiber base material 2 was used instead of the fiber base material 1 and the powdered flame retardant 1 and the powdered flame retardant 2 were not added. .
  • Comparative Example 8 A sandwich is obtained in the same manner as in Example 6 except that a fiber base material 2 is used instead of the fiber base material 1 and a resin composition in which 1 part by weight of the curing agent 2 is added to 100 parts by weight of the resin 2 is used. The panel was taken out. In order to cure completely, it was allowed to stand at 40 ° C. for 16 hours to obtain a sandwich panel of Comparative Example 8.
  • Example 9 Example 6 except that a resin composition in which 35 parts by weight of powdered flame retardant 1, 1 part by weight of curing agent 1 and 0.2 part by weight of a curing accelerator was added to 100 parts by weight of resin 3 was used. In the same manner, a sandwich panel of Comparative Example 9 was obtained.
  • the sandwich panels of Examples 6 to 9 are remarkably superior in flame retardancy when compared with Comparative Examples 7 and 8 in which no powdered flame retardant was added. It can also be seen that the sandwich panels of Examples 6 to 9 reach the flame retardant material standards stipulated in the Japanese Building Standard Law. As can be seen from the comparison between Example 6 and Example 8, even in Example 8 where the amount of powdered flame retardant added is small, the total calorific value and the maximum heat generation rate are kept low, which is due to the uneven distribution of the powdered flame retardant. The effect was remarkable. On the other hand, it can be seen that the flame retardant properties of the sandwich panel of Comparative Example 9 in which no bromine-containing resin was used and the sandwich panel of Comparative Example 10 in which aluminum hydroxide was not used were insufficient.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Laminated Bodies (AREA)
  • Cage And Drive Apparatuses For Elevators (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

 真空圧と大気圧との差圧を利用して繊維構造体に樹脂を含浸した後、樹脂を硬化させることを含む繊維強化複合材料の製造方法であって、水酸化アルミニウム及び水酸化マグネシウムから選択される少なくとも1種を含み且つ平均粒径が0.1~20μmの範囲にある粉末状難燃剤21と、臭素含有樹脂22との混合物を、繊維に囲まれた個々の開口部の大きさの最頻値が0.03~3mm2の範囲にあり且つ開口率が0.1~10%の範囲にある繊維構造体10の面方向から含浸することにより、繊維構造体10の表面に粉末状難燃剤21を偏在させることを特徴とする繊維強化複合材料の製造方法である。本発明は、高い難燃性を有し、軽量で且つ高強度な繊維強化複合材料を簡便に製造することができる。

Description

繊維強化複合材料、その製造方法、それを用いたエレベータ用構成部材及びエレベータかご
 本発明は、繊維強化複合材料、その製造方法、それを用いたエレベータ用構成部材及びエレベータかごに関する。
 繊維強化複合材料(FRP:Fiber Reinforced Plastics)は、軽量及び高強度という特徴を有する。特に、ガラス繊維と樹脂とを組み合わせた繊維強化複合材料は、ヘルメット、スキー、ラケット、浴槽、建材、産業用電子機器材料、小型船舶、自動車などの多くの産業分野で利用されている。また、炭素繊維を利用した繊維強化複合材料は、より高強度であり、鉄やアルミニウムといった金属の軽量化代替材料としての利用が期待される。
 繊維強化複合材料の適用分野を広げ、民生の電化製品、鉄道車両の構成材料又は建築材料として使用する場合には難燃性が求められる。難燃性の基準として、電気製品一般に関する米国UL(Underwriters Laboratories)の「UL94規格」、鉄道車両に関する日本国運輸省式燃焼試験方法とも呼ばれる「鉄道車両用材料の燃焼性規格」、建築用材料に関する日本の建築基準法に定められる難燃規格がある。日本の建築基準法に定められる難燃規格は、世界的に見ても特に難燃性の高い規格である。
 電気製品のうち、エレベータかごの構成材料は日本の建築基準法に定められた難燃材料を使用することが求められている。従来のエレベータかごは、かご室及びかご枠がスチール又はアルミニウム合金で作られているが、そのようなかごは重く、大きな駆動力を必要とするばかりか、慣性が大きいので運転に際して高度な制御を要する。そのため、繊維強化複合材料をスキン材とし、発泡体をコア材としたサンドイッチパネル構造、又は繊維強化複合材料をスキン材及びストリンガとした中空断面パネル構造を採用した軽量なエレベータかごが提案されている(例えば、特許文献1参照)。
特開平8-73157号公報
 民生の電気製品、鉄道車両、航空機、エレベータかごを含む建築関係製品等に用いられる繊維強化複合材料には、軽量及び高強度であることに加えて、高い難燃性が求められる。しかし、これまでは、高度な難燃性を兼ね備えた繊維強化複合材料が得られていなかった。特に、日本の建築基準法に定められるような難燃基準に達する繊維強化複合材料は得られていなかった。
 本発明は、上記のような課題を解決するためになされたものであり、高い難燃性を有し、軽量で且つ高強度な繊維強化複合材料及びその製造方法を提供することを目的とする。
 本発明は、真空圧と大気圧との差圧を利用して繊維構造体に樹脂を含浸した後、樹脂を硬化させることを含む繊維強化複合材料の製造方法であって、水酸化アルミニウム及び水酸化マグネシウムから選択される少なくとも1種を含み且つ平均粒径が0.1~20μmの範囲にある粉末状難燃剤と、臭素含有樹脂との混合物を、繊維に囲まれた個々の開口部の大きさの最頻値が0.03~3mm2の範囲にあり且つ開口率が0.1~10%の範囲にある繊維構造体の面方向から含浸することにより、繊維構造体の表面に粉末状難燃剤を偏在させることを特徴とする繊維強化複合材料の製造方法である。
 本発明によれば、高い難燃性を有し、軽量で且つ高強度な繊維強化複合材料を簡便に製造することができる。
本発明の実施の形態1に係る繊維強化複合材料を製造するための製造装置の断面図である。 本発明の実施の形態1に係る繊維強化複合材料の製造方法のフロー図である。 本発明の実施の形態1の製造方法で製造した繊維強化複合材料の断面図である。 本発明の実施の形態1の製造方法における臭素含有樹脂の含浸の様子を表した図である。 本発明の実施の形態3に係るサンドイッチパネルを製造するための製造装置の断面図である。 本発明の実施の形態3に係るサンドイッチパネルの製造方法のフロー図である。 本発明の実施の形態4に係る炭素繊維強化複合材料についての発熱性試験の結果の一例を示す説明図である。 本発明の実施の形態5に係るサンドイッチパネルを示す断面図である。 本発明の実施の形態6に係る炭素繊維強化複合材料が適用されたエレベータのかごの構造を示す斜視図である。 本発明の実施の形態6に係る炭素繊維強化複合材料が適用されたエレベータのかご枠の構造を示す斜視図である。 本発明の実施の形態6に係る炭素繊維強化複合材料及び本発明の実施の形態7に係るサンドイッチパネルが適用されたエレベータ用かご室の構造を示す斜視図である。 従来のエレベータパネルを示す斜視図である。
 以下、本発明に係る繊維強化複合材料、その製造方法及びエレベータ用構成部材の好適な実施の形態について、図面を用いて説明する。各図において同一部分又は相当する部分については、同一符号を付して説明する。
 実施の形態1.
 この実施の形態では、繊維構造体の表面に粉末状難燃剤が偏在した繊維強化複合材料を製造するための製造装置及び繊維構造体の表面に粉末状難燃剤が偏在した繊維強化複合材料の製造方法について説明する。
 図1は、実施の形態1に係る繊維強化複合材料を製造するための製造装置の断面図である。図1に示すように、繊維強化複合材料を製造するための製造装置は、織物、不織布、不織布状成型物等の繊維構造体10が配置される成形型11と、第1樹脂拡散用シート12aと、樹脂透過性を有する第1離型用シート13aと、樹脂透過性を有する第2離型用シート13bと、第2樹脂拡散用シート12bと、密閉用フィルム14と、密閉用フィルム14内の空間を外部と遮断するシール材15と、密閉用フィルム14内を真空引きする真空ポンプ16と、密閉用フィルム14内に臭素含有樹脂を供給する樹脂タンク17とを備えている。
 また、製造装置には、樹脂タンク17から供給される臭素含有樹脂を密閉用フィルム14内に注入する樹脂注入口18が設けられている。更に、製造装置には、密閉用フィルム14内の空気を排気する排気口19が設けられている。この排気口19は、密閉用フィルム14内の余剰の臭素含有樹脂を排出する排出口も兼ねている。なお、成形型11上に設置する第1樹脂拡散用シート12a及び第1離型用シート13aは、省略することが可能である。このとき、臭素含有樹脂の固着を防ぐために、成形型11上には離型処理を施すことが好ましい。
 次に、図2を参照しながら、上記製造装置による繊維強化複合材料の製造方法の一例について説明する。
 まず、繊維基材を用意する(ステップS1)。
 続いて、その繊維基材を所定の形状に裁断する(ステップS2)。
 次に、成形型11の上に、第1樹脂拡散用シート12a及び第1離型用シート13aを順次積層する(ステップS3)。なお、この工程は省略することもできる。
 続いて、裁断された繊維基材を、第1離型用シート13a(第1樹脂拡散用シート12a及び第1離型用シート13aを省略した場合、離型処理された成形型11)の上に積層して繊維構造体10とする(ステップS4)。
 次に、繊維構造体10の周囲にシール材15を配置する(ステップS5)。
 続いて、樹脂注入口18及び排気口19を設置する(ステップS6)。
 次に、繊維構造体10の表面を第2離型用シート13bで覆う(ステップS7)。
 続いて、第2離型用シート13bの表面を第2樹脂拡散用シート12bで覆う(ステップS8)。
 次に、繊維構造体10を覆うように密閉用フィルム14を被せ、シール材15にて密閉用フィルム14内の空間を外部と遮断する(ステップS9)。この段階で、図1に示すように、成型準備が完了する(ステップS10)。
 続いて、真空ポンプ16を駆動させて、密閉用フィルム14内の空気を排気する(ステップS11)。
 次に、臭素含有樹脂及び粉末状難燃剤を混合し、臭素含有樹脂中に粉末状難燃剤を分散させる(ステップS12)。
 次に、樹脂タンク17に充填された粉末状難燃剤及び臭素含有樹脂の混合物を、樹脂注入口18から密閉用フィルム14内の空間に注入し、繊維構造体10に含浸させる(ステップS13)。このとき、粉末状難燃剤及び臭素含有樹脂の混合物が繊維基材の開口部でろ過され、粉末状難燃剤は繊維構造体10の表層に偏在するようになる。
 続いて、密閉用フィルム14内に注入された臭素含有樹脂を硬化させる(ステップS14)。ここで、硬化の方法としては、臭素含有樹脂の種類及び触媒を選択することによって、室温硬化又は加熱硬化が可能である。
 次に、成形型11を取り外すことができる程度に臭素含有樹脂が硬化したら、第2樹脂拡散用シート12bとともに第2離型用シート13bを剥がし、繊維構造体10に臭素含有樹脂を含浸させた繊維強化複合材料を成形体として成形型11から取り外す(ステップS15)。
 続いて、必要に応じて、取り外された成形体に、乾燥炉による後硬化処理を実施する(ステップS16)。
 こうして、繊維強化複合材料からなる成形体が完成する(ステップS17)。
 このように、上述した繊維強化複合材料の製造方法では、図3に示すように、粉末状難燃剤21が繊維構造体10の表層に偏在した繊維強化複合材料を得ることができる。ステップS13において、樹脂タンクから注入された粉末状難燃剤21及び臭素含有樹脂22の混合物は、図4に示すように、樹脂拡散用シートによって繊維構造体10の面方向に広がる。その混合物が繊維構造体10に含浸する際、粉末状難燃剤21は繊維基材の開口部によってろ過されるため、繊維構造体10の内部には含浸しにくく、繊維構造体10の表層に偏在する。
 なお、成形型11上に配置された繊維構造体10では、繊維構造体10の各層(繊維基材)に存在する開口部は積み重ねることによって位置がずれて、繊維基材を積み重ねる程、目視で表裏を貫通する開口部の数は減少する。粉末状難燃剤21及び臭素含有樹脂22の混合物の一部は含浸時に繊維基材の開口部及び繊維構造体10の層間を通り、繊維構造体10全体を含浸する。
 粉末状難燃剤21の偏在の状態としては、表層にのみ粉末状難燃剤21が存在する場合、表層近傍及び表層近傍の開口部内にのみ粉末状難燃剤21が存在する場合、図4に示すような表層近傍と表層近傍の開口部における粉末状難燃剤21の濃度が特に高く且つ繊維構造体10の内部における粉末状難燃剤21の濃度が低い場合、繊維構造体10の表層から内部へ向けて粉末状難燃剤21が傾斜分布する場合などが含まれる。こうして得られた繊維強化複合材料は、粉末状難燃剤21が表層に密に存在し、更に、粉末状難燃剤21が熱を遮蔽する効果も発揮するため、極めて高い難燃性を示す。なお、粉末状難燃剤21の偏在の状態は、繊維強化複合材料の断面の顕微鏡観察により確認することができる。
 繊維構造体10の各層(繊維基材)は、繊維に囲まれた個々の開口部の大きさの最頻値が0.03~3mm2の範囲にあり且つ10cm2面積あたりの開口率が0.1~10%の範囲にある必要がある。開口部の大きさの最頻値が0.03mm2未満であると、臭素含有樹脂22が繊維構造体10の内部まで十分に含浸しない。一方、開口部の大きさの最頻値が3mm2を超えると、粉末状難燃剤21を繊維構造体10の表層に偏在させることができない。また、開口率が0.1%未満であると、臭素含有樹脂22が繊維構造体10の内部まで十分に含浸しない。一方、開口率が10%を超えると、粉末状難燃剤21を繊維構造体10の表層に偏在させることができない。繊維基材は、好ましくは、開口部の大きさの最頻値が0.2~0.6mm2の範囲にあり且つ10cm2面積あたりの開口率が0.8~6.3%の範囲にある。
 なお、本発明において、開口部とは、繊維のたて糸とよこ糸とを直交させることによって生じる網目の隙間部分のことを指す。開口率とは、1層(1枚)の繊維基材の総面積に対し、開口部が占める面積の割合を表す数値である。繊維を一方向にのみ配向させた一方向クロスについては、繊維のたて糸と、それを固定するために用いられる繊維方向と直交方向に編まれたよこ糸(ガラス繊維など)とによって生じる隙間を開口部とする。
 開口部の面積の測定及び開口率の算出は、1枚あたり100cm2の総面積を有する繊維基材における開口部の面積を計測することにより実施することが好ましい。ここで、最頻値とは、データ群又は確率分布で最も頻繁に出現する値である。
 また、繊維基材を構成する繊維の種類としては、炭素繊維、ガラス繊維、アルミナ繊維等の無機繊維、又はアラミド繊維等の有機繊維が挙げられる。これらの中でも、軽量で且つ高強度の繊維強化複合材料を得る観点から、炭素繊維が好ましい。
 繊維基材としては、平織り、綾織り、朱子織り等の各種クロス、又は一方向に並べた繊維を別の繊維で束ねてシート状にした一方向クロスを用いることができる。
 また、繊維強化複合材料の全体積のうち、繊維構造体10が占める体積の比率を示す繊維体積含有率(Vf)は、強度及び難燃性の観点から、25~85体積%であることが好ましく、40~75体積%であることがより好ましい。繊維構造体10が占める体積の比率が25体積%未満であると、繊維による補強効果が十分でなく、また難燃性も十分でない場合がある。一方、繊維構造体10が占める体積の比率が85体積%を超えると、臭素含有樹脂22が繊維を結びつける効果が小さくなり、結果的に強度が低下するとともに、成型が困難になる場合がある。
 粉末状難燃剤21としては、水酸化アルミニウム及び水酸化マグネシウムから選択される少なくとも1種を含み且つ平均粒径が0.1~20μmの範囲にあるものである。粉末状難燃剤21の平均粒径が0.1μm未満であると、粉末状難燃剤21を繊維構造体10の表層に偏在させることができず、十分な難燃性が得られない。また、粉末状難燃剤21の平均粒径が20μmを超えると、粉末状難燃剤21が第1離型用シート13a及び第2離型用シート13bに目詰まりを起こして成形が難しくなる。粉末状難燃剤21の平均粒径は、好ましくは0.5~10μmである。粉末状難燃剤21としての水酸化アルミニウム及び水酸化マグネシウムから選択される少なくとも1種は、100重量部の臭素含有樹脂22に対して、5~200重量部添加することが好ましく、10~50重量部添加することがより好ましい。
 また、粉末状難燃剤21は、水酸化アルミニウム及び水酸化マグネシウムの他に、三酸化アンチモン及びホウ酸亜鉛から選択される少なくとも1種を更に含んでもよい。また、三酸化アンチモン及びホウ酸亜鉛から選択される少なくとも1種は、100重量部の臭素含有樹脂22に対して、0~20重量部の範囲で添加することができる。
 また、難燃性をより向上させるため、りん酸エステル系難燃剤、りん-窒素化合物系等の添加型又は反応型難燃剤を併用してもよい。
 なお、本発明において、平均粒径とは、測定される粒子の体積割合の合計値に対して、ある粒子径以下の体積割合の合計が50%となるときの粒子径の値を表す。
 臭素含有樹脂22としては、臭素を含有する熱硬化性樹脂であればよい。中でも、臭素化不飽和ポリエステル及び臭素化エポキシアクリレート樹脂を用いることにより、室温での硬化が可能となるので、製造プロセスの簡易化を達成することができる。
 臭素化不飽和ポリエステル樹脂は、製造段階において臭素を導入したもの、又は臭素化したモノマーを混合したものを用いることができる。なお、製造段階において臭素を導入する方法として、例えば以下に挙げる4つの方法を用いることができる。
 まず、第1の方法は、多価アルコール成分として、ジブロモネオペンチルグリコールを用いる方法である。
 また、第2の方法は、飽和二塩基酸又はその無水物としてテトラブロムフタル酸及びその無水物を用いる方法である。
 また、第3の方法は、飽和二塩基酸又はその無水物として、テトラヒドロフタル酸及びその無水物、エンドメチレンテトラヒドロフタル酸及びその無水物等を用いて不飽和ポリエステルを製造した後、この飽和二塩基酸成分の二重結合に臭素を付加する方法である。
 更に、第4の方法は、飽和二塩基酸成分の機能とα,β-不飽和二塩基酸成分の機能とを併せ持つジシクロペンタジエン-マレイン酸付加物を原料の一部として用いて不飽和ポリエステルを製造した後、ジシクロペンタジエンの残存二重結合に臭素を付加する方法である。
 また、臭素化エポキシアクリレート樹脂も、製造段階において臭素を導入したもの、又は臭素化したモノマーを混合したものを用いることができる。なお、製造段階において臭素を導入する方法は、例えば、エポキシ化合物として臭素含有エポキシ型エポキシ樹脂を使用する方法が挙げられる。
 臭素化エポキシアクリレート樹脂としては、可撓性に優れる観点から、テトラブロムビスフェノールA型エポキシ(メタ)アクリレート、テトラブロムビスフェノールF型エポキシ(メタ)アクリレート、テトラブロムビスフェノールS型エポキシ(メタ)アクリレート等が好ましい。
 また、臭素化不飽和ポリエステル樹脂又は臭素化エポキシアクリレート樹脂中の臭素含有量は、5~60重量%であることが好ましく、10~40重量%であることがより好ましい。臭素含有量が5重量%未満であると、十分な難燃性を得ることができない場合がある。一方、臭素含有量が60重量%を超えると、燃焼時の毒性が高くなる場合がある上に、臭素含有量が60重量%を超えるものは入手が困難である。
 繊維強化複合材料の厚さは、強度設計と経済的な理由とから選択されるが、約100μm~3cmの厚さが好ましく、0.5mm~1cmの厚さがより好ましい。繊維強化複合材料の厚さが100μm未満であると、十分な強度を得ることが難しくなる場合がある。一方、繊維強化複合材料の厚さが3cmを超えると、重量が増加し、繊維強化複合材料に求められる軽量性が損なわれる。また、繊維構造体10を構成する繊維が炭素繊維である場合、炭素繊維が高価であるため、3cmを超える厚さを有する繊維強化複合材料は経済的にも好ましくない。
 以上のように、実施の形態1によれば、比較的安価な資材を用い、大気圧真空注入法による簡便なプロセスによって、高い難燃性を有する繊維強化複合材料を製造することができる。また、製造設備及び製造プロセスの簡略化によって、生産コストを低減し、生産時間を短縮して、繊維強化複合材料を量産することができる。
 実施の形態2.
 この実施の形態では、実施の形態1において、所定の形状に裁断した繊維基材を積層して繊維構造体10とする代わりに、連続繊維を型に巻き付けて繊維構造体10を準備し、この繊維構造体10の面方向から、粉末状難燃剤21及び臭素含有樹脂22の混合物を含浸することによって、繊維構造体の表層に粉末状難燃剤21を偏在させた繊維強化複合材料を製造する。
 連続繊維の種類としては、炭素繊維、ガラス繊維、アルミナ繊維等の無機繊維、又はアラミド繊維等の有機繊維が挙げられる。これらの中でも、軽量で且つ高強度の繊維強化複合材料を得る観点から、炭素繊維が好ましい。連続繊維の繊維径は、特に限定されるものではないが、1μm~20μmが好ましい。
 粉末状難燃剤21及び臭素含有樹脂22については、実施の形態1と同様のものを用いることができる。
 繊維強化複合材料の繊維体積含有率及び厚さについては、上述した実施の形態1と同様である。
 実施の形態3.
 この実施の形態では、発泡体からなるコア材の両側表面を繊維構造体10で挟み込んでなる構造体の表面に粉末状難燃剤21が偏在した繊維強化複合材料パネル(以下、サンドイッチパネルと呼ぶ)を製造するための製造装置及びサンドイッチパネルの製造方法について説明する。
 図5は、実施の形態3に係るサンドイッチパネルを製造するための製造装置の断面図である。図5に示すように、サンドイッチパネルを製造するための製造装置は、繊維構造体10及び発泡体31が順次積層される成形型11と、第1樹脂拡散用シート12aと、樹脂透過性を有する第1離型用シート13aと、樹脂透過性を有する第2離型用シート13bと、第2樹脂拡散用シート12bと、密閉用フィルム14と、密閉用フィルム14内の空間を外部と遮断するシール材15と、密閉用フィルム14内を真空引きする真空ポンプ16と、密閉用フィルム14内に臭素含有樹脂を供給する樹脂タンク17とを備えている。
 また、製造装置には、樹脂タンク17から供給される臭素含有樹脂を密閉用フィルム14内に導入する樹脂注入口18が設けられている。更に、製造装置には、密閉用フィルム14内を排気する排気口19が設けられている。この排気口19は、密閉用フィルム14内の余剰の臭素含有樹脂を排出する排出口も兼ねている。なお、成形型11上に設置する第1樹脂拡散用シート12a及び第1離型用シート13aは、省略することが可能である。このとき、臭素含有樹脂の固着を防ぐために、成形型11上には離型処理を施すことが好ましい。
 次に、図6を参照しながら、上記製造装置によるサンドイッチパネルの製造方法の一例について説明する。
 まず、繊維基材及び発泡体31を用意する(ステップS21)。
 続いて、繊維基材及び発泡体31を所定の形状に裁断する(ステップS22)。
 次に、成形型11の上に、第1樹脂拡散用シート12a及び第1離型用シート13aを順次積層する(ステップS23)。なお、この工程は省略することもできる。
 続いて、裁断された繊維基材を、第1離型用シート13a(第1樹脂拡散用シート12a及び第1離型用シート13aを省略した場合、離型処理された成形型11)の上に積層して繊維構造体10とし、その繊維構造体10の上に裁断された発泡体31を配置し、更に、その発泡体31の上に裁断された繊維基材を積層して繊維構造体10とし、発泡体31の両側表面を繊維構造体10で挟み込んだ状態にする(ステップS24)。なお、繊維構造体10は発泡体31の片面のみに積層されてもよい。
 次に、発泡体31の両側表面を繊維構造体10で挟み込んでなる構造体の周囲にシール材15を配置する(ステップS25)。
 続いて、樹脂注入口18及び排気口19を設置する(ステップS26)。
 次に、発泡体31の両側表面を繊維構造体10で挟み込んでなる構造体の表面を第2離型用シート13bで覆う(ステップS27)。
 続いて、第2離型用シート13bの表面を第2樹脂拡散用シート12bで覆う(ステップS28)。
 次に、発泡体31の両側表面を繊維構造体10で挟み込んでなる構造体を覆うように密閉用フィルム14を被せ、シール材15にて密閉用フィルム14内の空間を外部と遮断する(ステップS29)。この段階で、図5に示すように、成型準備が完了する(ステップS30)。
 続いて、真空ポンプ16を駆動させて、密閉用フィルム14内の空気を排気する(ステップS31)。
 次に、粉末状難燃剤21及び臭素含有樹脂22を混合し、臭素含有樹脂22中に粉末状難燃剤21を分散させる(ステップS32)。
 次に、樹脂タンク17に充填された粉末状難燃剤21及び臭素含有樹脂22の混合物を、樹脂注入口18から密閉用フィルム14内の空間に注入し、繊維構造体10に含浸させる(ステップS33)。このとき、粉末状難燃剤21及び臭素含有樹脂22の混合物が繊維基材の開口部でろ過され、粉末状難燃剤21は繊維構造体10の表層に偏在するようになる。
 続いて、密閉用フィルム14内に注入された臭素含有樹脂22を硬化させる(ステップS34)。ここで、硬化の方法としては、臭素含有樹脂22の種類及び触媒を選択することによって、室温硬化又は加熱硬化が可能である。
 次に、成形型11を取り外すことができる程度に臭素含有樹脂22が硬化したら、第2樹脂拡散用シート12bとともに第2離型用シート13bを剥がし、臭素含有樹脂22が含浸され且つ表層に粉末状難燃剤21が偏在する繊維構造体10で発泡体31の両側表面を挟み込んでなるサンドイッチパネルを成形体として成形型11から取り外す(ステップS35)。
 続いて、必要に応じて、取り外された成形体に、乾燥炉による後硬化処理を実施する(ステップS36)。
 こうして、サンドイッチパネルからなる成形体が完成する(ステップS37)。
 このように、上述したサンドイッチパネルの製造方法では、実施の形態1と同様に粉末状難燃剤21が繊維構造体10の表層に偏在した難燃性の高いサンドイッチパネルを得ることができる。
 繊維構造体10については、実施の形態1及び2と同様のものを用いることができる。粉末状難燃剤21及び臭素含有樹脂22については、実施の形態1と同様のものを用いることができる。
 発泡体31としては、例えば、ポリ塩化ビニル樹脂、ポリウレタン樹脂、ポリスチレン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、アクリル樹脂、フェノール樹脂、ポリメタクリルイミド樹脂、エポキシ樹脂、エチレンプロピレンゴム等の硬質フォーム(発泡材料)から形成されている。なお、発泡体31が一体成形に用いられる場合、発泡部分が連続していない、独立気泡を有する発泡体を使用することが好ましい。また、発泡体31として、アルミフォーム等の無機質フォーム、又はシンタクチックフォームを用いることもできる。特に、上述した樹脂材料に難燃剤を混合して発泡させた難燃性フォーム、及びフェノール樹脂フォームが難燃性に優れるので発泡体31として好ましい。発泡体31として難燃性フォームを用いることで難燃性が更に向上するので、得られるサンドイッチパネルは、高い信頼性が求められるエレベータ用構成部材として好適である。発泡体31の代わりに、ハニカム体をコア材として用いてもよい。
 サンドイッチパネルの更なる軽量化を図るために、発泡体31として、密度が0.01~0.2g/cm3の範囲にあるものを用いることが好ましい。発泡体31の密度が0.01g/cm3よりも小さくなると、サンドイッチパネルが座屈を起こしやすくなる。一方、発泡体31の密度が0.2g/cm3よりも大きくなると、サンドイッチパネルの軽量化が阻害される場合がある。
 繊維強化複合材料の繊維体積含有率及び厚さについては、上述した実施の形態1と同様である。
 以上のように、実施の形態3によれば、比較的安価な資材を用い、大気圧真空注入法による簡便なプロセスによって、エレベータ用構成部材に好適な高い難燃性を有するサンドイッチパネルを製造することができる。また、製造設備及び製造プロセスの簡略化によって、生産コストを低減し、生産時間を短縮して、サンドイッチパネルを量産することができる。
 実施の形態4.
 この実施の形態では、実施の形態1又は2において、繊維として炭素繊維を用い、炭素繊維構造体の面方向から、粉末状難燃剤21及び臭素含有樹脂21の混合物を含浸することによって、炭素繊維構造体の表層に粉末状難燃剤21を偏在させた炭素繊維強化複合材料(CFRP:Carbon Fiber Reinforced Plastics)を製造する。
 炭素繊維基材としては、平織り、綾織り、朱子織り等の各種炭素繊維クロス、一方向に並べた炭素繊維を別の繊維で束ねてシート状にした一方向クロスを用いることができる。また、連続炭素繊維の繊維径は、特に限定されるものではないが、1μm~20μmが好ましい。
 粉末状難燃剤21及び臭素含有樹脂22については、実施の形態1と同様のものを用いることができる。
 日本の建築基準法の難燃材料について、日本の建築基準法施行令第108条の2には、「(1)燃焼しないものであること。(2)防火上有害な変形、溶融、き裂その他の損傷を生じないものであること。(3)避難上有害な煙又はガスを発生しないものであること。」と規定されている。ここで、国土交通大臣の認定を受け、難燃材料と認められるためには、国土交通大臣が指定した性能評価機関による難燃性能試験に規定された発熱性試験また模型箱試験の何れかに合格し、且つガス有毒性試験に合格することが必要となる。
 実施の形態4に係る炭素繊維強化複合材料についての発熱性試験の結果の一例を図7に示す。図7(a)は発熱速度を示し、図7(b)は総発熱量を示している。また、図7(a)及び(b)において、(イ)は、臭素不含樹脂を炭素繊維構造体に含浸させて得られた炭素繊維強化複合材料の結果を示し、(ロ)は、臭素含有樹脂を炭素繊維構造体に含浸させて得られた炭素繊維強化複合材料の結果を示し、(ハ)は、臭素含有樹脂100重量部に対して、120重量部の水酸化アルミニウム及び6重量部の三酸化アンチモンを添加した樹脂混合物を炭素繊維構造体に含浸させて得られた炭素繊維強化複合材料(実施の形態4)の結果を示している。
 図7(a)及び(b)における(イ)と(ロ)との比較から、臭素含有樹脂の使用により発熱速度が抑えられ、総発熱量が低減しているものの、樹脂分が完全に燃焼したことが分かる。
 これに対して、(ハ)では、発熱速度が上昇開始する時間、つまり着火時間が抑えられており、上記「(1)加熱開始後5分間の総発熱量が、8MJ/m2以下であること。(2)加熱開始後5分間、最高発熱速度が、10秒以上継続して200kW/m2を超えないこと。」が達成されている。
 この着火時間の遅れと発熱速度の抑制とが、粉末状難燃剤と臭素含有樹脂との相乗効果である。このように、実施の形態4に係る炭素繊維強化複合材料は、従来の材料よりも難燃性の向上させることができ、日本の建築基準法に定める難燃材料基準相当に達するものである。即ち、実施の形態4に係る炭素繊維強化複合材料では、高難燃性繊維である炭素繊維が、耐熱性のある熱遮断層となり、樹脂の燃焼持続が抑制され、難燃効果が発揮され、更に、臭素含有樹脂の難燃効果に加え、水酸化アルミニウム及び水酸化マグネシウムから選択される少なくとも1種の存在により、樹脂量が低減されて燃焼量が抑制されるとともに熱分解時の吸熱作用による温度上昇も抑制され、発生水蒸気による消火作用を得ることができる。
 更に、図7で説明したように、水酸化アルミニウム及び水酸化マグネシウムから選択される少なくとも1種の熱分解時の吸熱作用が、臭素による難燃効果を長時間にわたり持続させる相乗効果を得ることができる。また、水酸化アルミニウム及び水酸化マグネシウムから選択される少なくとも1種の熱分解後に残る無機物が炭素繊維の隙間に留まることにより、さらに熱遮蔽効果を高めることができ、高い難燃性を得ることができる。
 また、連続炭素繊維を用いた場合、燃焼後に形状が保持されるとともに、繊維強化により高強度を達成することができる。
 炭素繊維強化複合材料の繊維体積含有率及び厚さについては、上述した実施の形態1と同様である。
 以上のように、実施の形態4によれば、高い難燃性を有するとともに、軽量で且つ高強度な炭素繊維強化複合材料を簡便なプロセスで低コストに得ることができる。実施の形態4に係る炭素繊維強化複合材料は、日本の建築基準法に定める難燃材料基準相当に達するものであるので、エレベータ用構成部材に好適に用いることができる。
 実施の形態5.
 この実施の形態では、発泡体からなるコア材の両側表面を炭素繊維構造体で挟み込んでなる構造体の表面に粉末状難燃剤が偏在した炭素繊維強化複合材料パネル(以下、サンドイッチパネルと呼ぶ)を製造する。このようなサンドイッチパネルは、実施の形態4で作製した炭素繊維強化複合材料を接着剤でコア材に貼り付ける方法、又は実施の形態3の一体成形によって製造することができる。
 図8は、実施の形態5に係るサンドイッチパネルを示す断面図である。図8において、サンドイッチパネルは、発泡体31からなるコア材の両側表面は、接着剤51によって、炭素繊維強化複合材料52と接合されている。接着剤51は、エポキシ系接着剤、アクリル系接着剤、シリコーン系接着剤、難燃性接着剤等を使用することができる。また、接着剤51として、炭素繊維強化複合材料52に使用した臭素含有樹脂22を使用することにより、接着剤層を炭素繊維強化複合材料52と一体化することができる。なお、炭素繊維強化複合材料52は、発泡体31の片面のみに接合されてもよい。
 粉末状難燃剤21及び臭素含有樹脂22については、実施の形態1と同様のものを用いることができる。
 発泡体31については、実施の形態3と同様のものを用いることができる。炭素繊維基材及び連続炭素繊維については、実施の形態4と同様のものを用いることができる。
 繊維強化複合材料の繊維体積含有率及び厚さについては、上述した実施の形態1と同様である。
 実施の形態5に係るサンドイッチパネルは、実施の形態4の炭素繊維強化複合材料の難燃性向上のメカニズムと同様に、構成材料の相乗効果により、従来の材料よりも難燃性の向上させることができ、日本の建築基準法に定める難燃材料基準相当に達するものである。
 以上のように、実施の形態5によれば、高い難燃性を有するとともに、軽量でありながら、金属に匹敵する高い剛性及び強度を有するサンドイッチパネルを簡便なプロセスで低コストに得ることができる。実施の形態5に係るサンドイッチパネルは、金属に匹敵する高い剛性及び強度を有する上に、日本の建築基準法に定める難燃材料基準相当に達するものであるので、エレベータ用構成部材、特にエレベータかごに好適に用いることができる。
 実施の形態6.
 この実施の形態では、実施の形態4で作製した炭素繊維強化複合材料を適用したエレベータのかご(かご室及びかご枠)について説明する。
 図9~12を参照しながら、上述した炭素繊維強化複合材料を、エレベータのかご室又はかご枠の構成部材(かご用構成部材)に適用したエレベータのかごについて説明する。
 図9に示すように、エレベータのかごは、人や物等を収容するかご室61、人等が出入りするためのかごドア62及びかご枠63を備えている。かご枠63は、図10に示すように、かご室61を補強するために設けられている。炭素繊維強化複合材料は、特に、かご枠63の全体、又は斜め控え63a(支え部)等の一部に使用することができる。
 また、炭素繊維強化複合材料は、図11に示すように、かご室61の床板、天井板、側板及び背板として適用されるエレベータ用パネル61aに使用することもできる。また、炭素繊維強化複合材料を、エレベータ用パネルの構成材料の一部として用いることもできる。例えば、図12に示す従来のエレベータパネルにおいて、金属製の表板64の裏面に固着される補強材65として、炭素繊維強化複合材料を用いることができる。
 上述した炭素繊維強化複合材料を用いたエレベータのかご用部材では、従来の材料と遜色のない十分な強度を確実に維持することができる。具体的には、重量あたりの強度で表される比強度(相対表示)が、炭素繊維強化複合材料が約5であるのに対して、鉄が約0.5、アルミニウムが約0.8であり、同様の構造にすると、その重量を、従来のエレベータ用パネルの重量の、例えば1/6~1/10にまで軽減することができる。
 炭素繊維強化複合材料をエレベータのかご用部材として用いた場合には、慣性が小さく、運転の制御が容易なエレベータのかごを作製することができ、モータ容量の小型化等、エレベータシステム全体の小型化を達成することができる。また、日本の建築基準法施行令第108条の2に定められる上述した条件を満たすことができる。更に、エレベータかごの軽量化により、据え付け作業の省力化を達成することができる。
 なお、実施の形態6では、炭素繊維強化複合材料を、エレベータのかご用部材に適用した場合について例に挙げて説明したが、実施の形態4に係る炭素繊維強化複合材料の用途は、これに限定されるものではない。
 実施の形態7.
 実施の形態3及び5で作製したサンドイッチパネルを、エレベータのかご室又はかご枠の構成部材(かご用部材)に適用したエレベータのかごについて説明する。サンドイッチパネルは、例えば図11に示すように、かご室61の床板、天井板、側板及び背板として適用されるエレベータ用パネル61aに使用することができる。なお、床板、天井板、側板及び背板のうち、少なくとも1つにサンドイッチパネルが適用されてもよい。
 上述したサンドイッチパネルを適用したエレベータ用パネルでは、衝撃力に対して、金属板で作られた従来のエレベータ用パネルと遜色のない十分な強度と小さなたわみ性を確実に維持することができる。また、その重量を、従来のエレベータ用パネルの重量(鉄製で約36kg、アルミ混合で約20kg)の、例えば1/3~1/5(CFRPサンドイッチパネルで約7kg)にまで軽減することができる。
 また、サンドイッチパネルをエレベータのかご用部材として用いた場合には、慣性が小さく、運転の制御が容易なエレベータのかごを作製することができ、モータ容量の小型化等、エレベータシステム全体の小型化を達成することができる。また、日本の建築基準法施行令第108条の2に定められる上述した条件を満たすことができる。
 なお、実施の形態7では、サンドイッチパネルを、エレベータのかご用部材に適用した場合について例に挙げて説明したが、実施の形態3及び5に係るサンドイッチパネルの用途は、これに限定されるものではない。
 なお、実施の形態6及び7では、エレベータのかご用部材を適用例として例示しているが、本発明に係る繊維強化複合材料及びサンドイッチパネルは、電気製品、建築製品、機械製品等のどの分野にも適用することができる。
 また、実施の形態7では、サンドイッチパネルとして、エレベータ用パネルに適用されるサンドイッチパネルを例に挙げて説明した。しかしながら、サンドイッチパネルとしては、エレベータ用パネルに限られず、例えば人工衛星の構造体等としても適用することができる。
 また、本発明に係る繊維強化複合材料及びサンドイッチパネルは、難燃性の基準に関して、最もレベルの高い難燃性をターゲットとしているが、一般の電気製品に適用されているUL94に定められる難燃規格V0に関し、V0レベルを優にクリアする高い難燃性を有しているので、高度な難燃性を必要とする用途に極めて有用である。
 本発明の繊維強化複合材料について、実施例を挙げて具体的に説明する。なお、本発明は、これらの実施例に限定されるものではない。
 実施例1~5及び比較例1~6の繊維強化複合材料は、下記の材料及び図1に示した製造装置を用いて作製した。なお、各粉末状難燃剤の平均粒径はメーカーカタログ値である。
<使用材料>
 樹脂1:臭素化エポキシアクリレート樹脂(日本ユピカ株式会社製ネオポール(登録商標)8197、臭素含有量25~27重量%)
 樹脂2:臭素化不飽和ポリエステル樹脂(日本ユピカ株式会社製FLH-350R、臭素含有量11重量%)
 樹脂3:エポキシアクリレート樹脂(昭和電工株式会社製リポキシ(登録商標)R806)
 粉末状難燃剤1:水酸化アルミニウム(昭和電工株式会社製HP-360、平均粒径2.7μm)
 粉末状難燃剤2:三酸化アンチモン(第一工業製薬株式会社製AN-800(T)、平均粒径1.25μm)
 粉末状難燃剤3:水酸化アルミニウム(昭和電工株式会社製HP-360(粉砕加工品)、平均粒径0.05μm)
 粉末状難燃剤4:水酸化アルミニウム(日本軽金属株式会社製B52、平均粒径55μm)
 硬化剤1:有機過酸化物(化薬アクゾ株式会社製328E)
 硬化剤2:メチルエチルケトンパーオキサイド・フタル酸ジメチル溶液(日油株式会社製パーメック(登録商標)N、濃度55重量%)
 硬化促進剤:オクテン酸コバルト溶液(昭和電工株式会社製コバルトO、金属8重量%)
 繊維基材1:炭素繊維平織りクロス(東レ株式会社製トレカ(登録商標)クロスT700S-12000、最頻値0.5~0.6mm2、開口率1.0%)
 繊維基材2:炭素繊維平織りクロス(東レ株式会社製トレカ(登録商標)クロスT300-3000、最頻値0.2~0.25mm2、開口率6.2%)
 繊維基材3:炭素繊維平織りクロス(東レ株式会社製トレカ(登録商標)T700Sを使用して平織りしたもの、最頻値2.5~3.0mm2、開口率0.1%)
 繊維基材4:炭素繊維平織りクロス(東レ株式会社製トレカ(登録商標)T700Sを使用して平織りしたもの、最頻値0.03~0.05mm2、開口率6.5%)
 繊維基材5:炭素繊維平織りクロス(東レ株式会社製トレカ(登録商標)T700Sを使用して平織りしたもの、最頻値0.10~0.15mm2、開口率9.5%)
 繊維基材6:炭素繊維平織りクロス(東レ株式会社製トレカ(登録商標)T700Sを使用して平織りしたもの、最頻値0.01~0.03mm2、開口率0.05%)
 繊維基材7:炭素繊維平織りクロス(東レ株式会社製トレカ(登録商標)T700Sを使用して平織りしたもの、最頻値3.1~3.5mm2、開口率13%)
[実施例1]
 繊維基材1を8枚(ply)積層した繊維構造体を成形型上に配置し、その上に離型用シート及び樹脂拡散用シートを順次に配置した。これらを密閉用フィルムで覆い、密閉用フィルムと成形型と間の隙間をシール材で塞ぎ完全に密閉し、密閉された空間内を真空ポンプで減圧した。その後、減圧された密閉空間内に、100重量部の樹脂1に対し、粉末状難燃剤1を25重量部、粉末状難燃剤2を6重量部、硬化剤1を1重量部及び硬化促進剤を0.2重量部添加した樹脂組成物を樹脂注入口から注入し、繊維構造体に含浸させた。室温で2時間経過後、樹脂が硬化していることを確認した後、密閉用フィルムを除去し、繊維強化複合材料を取り出した。完全硬化させるため、80℃で2時間、100℃で2時間及び120℃で2時間静置し、実施例1の繊維強化複合材料を得た。
[実施例2]
 繊維基材1を12枚(ply)積層した繊維構造体を成形型上に配置し、その上に離型用シート及び樹脂拡散用シートを順次に配置した。これらを密閉用フィルムで覆い、密閉用フィルムと成形型と間の隙間をシール材で塞ぎ完全に密閉し、密閉された空間内を真空ポンプで減圧した。その後、減圧された密閉空間内に、100重量部の樹脂1に対し、粉末状難燃剤1を25重量部、粉末状難燃剤2を6重量部、硬化剤1を1重量部及び硬化促進剤を0.2重量部添加した樹脂組成物を樹脂注入口から注入し、繊維構造体に含浸させた。室温で2時間経過後、樹脂が硬化していることを確認した後、密閉用フィルムを除去し、繊維強化複合材料を取り出した。完全硬化させるため、80℃で2時間、100℃で2時間及び120℃で2時間静置し、実施例2の繊維強化複合材料を得た。
[実施例3]
 繊維基材1の代わりに繊維基材3を用いたこと以外は実施例1と同様にして、実施例3の繊維強化複合材料を得た。
[実施例4]
 繊維基材1の代わりに繊維基材4を用いたこと以外は実施例1と同様にして、実施例4の繊維強化複合材料を得た。
[実施例5]
 繊維基材1の代わりに繊維基材5を用いたこと以外は実施例1と同様にして、実施例5の繊維強化複合材料を得た。
[比較例1]
 繊維基材1の代わりに繊維基材2を用い、樹脂1の代わりに樹脂3を用い且つ粉末状難燃剤1及び粉末状難燃剤2を添加しなかったこと以外は実施例2と同様にして、比較例1の繊維強化複合材料を得た。
[比較例2]
 繊維基材1の代わりに繊維基材2を用い且つ粉末状難燃剤1及び粉末状難燃剤2を添加しなかったこと以外は実施例2と同様にして、比較例2の繊維強化複合材料を得た。
[比較例3]
 繊維基材1の代わりに繊維基材6を用いたこと以外は実施例1と同様にして、比較例3の繊維強化複合材料を得た。
[比較例4]
 繊維基材1の代わりに繊維基材7を用いたこと以外は実施例1と同様にして、比較例4の繊維強化複合材料を得た。
[比較例5]
 粉末状難燃剤1の代わりに粉末状難燃剤3を用いたこと以外は実施例1と同様にして、比較例5の繊維強化複合材料を得た。
[比較例6]
 粉末状難燃剤1の代わりに粉末状難燃剤4を用いて実施例1と同様にして繊維強化複合材料を作製しようとしたところ、樹脂の含浸が不十分で成形することができなかった。
<難燃性評価>
 日本の建築基準法に準拠した難燃性試験では、コーンカロリーメータを使用した発熱性試験を実施した。発熱性試験では、日本の建築基準法施行令第108条の2に規定された発熱性試験に準拠して、試験体1片の長さが100mmの試験体を、輻射強度50kW/m2、試験時間5分間の諸条件で試験し、最大発熱速度及び総発熱量を計測した。
 発熱性試験の合否の判定基準は、以下の通りである。
 最大発熱速度:10秒以上継続して200kW/m2を超えないこと
 総発熱量:8MJ/m2以下であること
 その他:防火上有害な裏面まで貫通する亀裂及び穴がないこと
 難燃性の評価結果を表1及び2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例1~5の繊維強化複合材料は、粉末状難燃剤を添加していない比較例1及び2と比較すると、難燃性が格段に優れていることが分かる。また、実施例1~5の繊維強化複合材料は、日本の建築基準法に定める難燃材料基準相当に達することも分かる。一方、開口部の大きさの最頻値又は開口率が本発明の範囲外である繊維を用いた比較例3及び4の繊維強化複合材料、並びに平均粒径が本発明の範囲外である粉末状難燃剤を用いた比較例5の繊維強化複合材料は、難燃性が不十分であることが分かる。
 実施例6~9及び比較例7~10のサンドイッチパネルは、上記した材料、コア材1としてのフェノール樹脂フォーム(旭化成製ネオマ(登録商標)フォーム、厚さ25mm、密度0.040g/cm3)、コア材2としてのフェノール樹脂フォーム(旭化成製ネオマ(登録商標)フォーム、密度0.027g/cm3)及び図5に示した製造装置を用いて作製した。
[実施例6]
 繊維基材1を4枚(ply)積層した繊維構造体(厚さ0.8~1mm)を2個用意し、これらの繊維構造体でコア材1の両側表面を挟み込んだものを成形型上に配置し、その上に離型用シート及び樹脂拡散用シートを順次に配置した。これらを密閉用フィルムで覆い、密閉用フィルムと成形型と間の隙間をシール材で塞ぎ完全に密閉し、密閉された空間内を真空ポンプで減圧した。その後、減圧された密閉空間内に、100重量部の樹脂1に対し、粉末状難燃剤1を25重量部、粉末状難燃剤2を6重量部、硬化剤1を1重量部及び硬化促進剤を0.2重量部添加した樹脂組成物を樹脂注入口から注入し、繊維構造体に含浸させた。室温で2時間経過後、樹脂が硬化していることを確認した後、密閉用フィルムを除去し、サンドイッチパネルを取り出した。完全硬化させるため、80℃で2時間、100℃で2時間及び120℃で2時間静置し、実施例6のサンドイッチパネルを得た。
[実施例7]
 100重量部の樹脂2に対し、粉末状難燃剤1を80重量部、粉末状難燃剤2を6重量部及び硬化剤2を1重量部添加した樹脂組成物を用いたこと以外は実施例6と同様にして、サンドイッチパネルを取り出した。完全硬化させるため、40℃で16時間静置し、実施例7のサンドイッチパネルを得た。
[実施例8]
 100重量部の樹脂1に対し、粉末状難燃剤1を6重量部、粉末状難燃剤2を2重量部、硬化剤1を1重量部及び硬化促進剤を0.2重量部添加した樹脂組成物を用いたこと以外は実施例6と同様にして、実施例8のサンドイッチパネルを得た。
[実施例9]
 繊維基材1の代わりに繊維基材2を用い且つコア材1の代わりにコア材2を用いたこと以外は実施例6と同様にして、実施例9のサンドイッチパネルを得た。
[比較例7]
 繊維基材1の代わりに繊維基材2を用い且つ粉末状難燃剤1及び粉末状難燃剤2を添加しなかったこと以外は実施例6と同様にして、比較例7のサンドイッチパネルを得た。
[比較例8]
 繊維基材1の代わりに繊維基材2を用い且つ100重量部の樹脂2に対し、硬化剤2を1重量部添加した樹脂組成物を用いたこと以外は実施例6と同様にして、サンドイッチパネルを取り出した。完全硬化させるため、40℃で16時間静置し、比較例8のサンドイッチパネルを得た。
[比較例9]
 100重量部の樹脂3に対し、粉末状難燃剤1を35重量部、硬化剤1を1重量部及び硬化促進剤を0.2重量部添加した樹脂組成物を用いたこと以外は実施例6と同様にして、比較例9のサンドイッチパネルを得た。
[比較例10]
 繊維基材2を4枚(ply)積層した繊維構造体(厚さ0.8~1mm)を2個用意し、これらの繊維構造体でコア材1の両側表面を挟み込んだものに、100重量部の樹脂1に対し、粉末状難燃剤2を6重量部、硬化剤1を1重量部及び硬化促進剤を0.2重量部添加した樹脂組成物をハンドレイアップ法で含浸させた。樹脂を完全硬化させるため、80℃で2時間、100℃で2時間及び120℃で2時間静置し、比較例10のサンドイッチパネルを得た。
 難燃性の評価結果を表3及び4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例6~9のサンドイッチパネルは、粉末状難燃剤を添加していない比較例7及び8と比較すると、難燃性が格段に優れていることが分かる。また、実施例6~9のサンドイッチパネルは、日本の建築基準法に定める難燃材料基準相当に達することも分かる。実施例6と実施例8との比較から分かるように、粉末状難燃剤の添加量の少ない実施例8でも、総発熱量及び最大発熱速度は低く抑えられており、粉末状難燃剤の偏在による効果が顕著に現れた。一方、臭素含有樹脂を用いなかった比較例9のサンドイッチパネル、並びに水酸化アルミニウムを用いなかった比較例10のサンドイッチパネルは、難燃性が不十分であることが分かる。
 10 繊維構造体、11 成形型、12a 第1樹脂拡散用シート、12b 第2樹脂拡散用シート、13a 第1離型用シート、13b 第2離型用シート、14 密閉用フィルム、15 シール材、16 真空ポンプ、17 樹脂タンク、18 樹脂注入口、19 排気口、21 粉末状難燃剤、22 臭素含有樹脂、31 発泡体、51 接着剤、52 炭素繊維強化複合材料、61 かご室、61a エレベータ用パネル、62 かごドア、63 かご枠、63a 斜め控え、64 表板、65 補強材。

Claims (9)

  1.  真空圧と大気圧との差圧を利用して繊維構造体に樹脂を含浸した後、樹脂を硬化させることを含む繊維強化複合材料の製造方法であって、
     水酸化アルミニウム及び水酸化マグネシウムから選択される少なくとも1種を含み且つ平均粒径が0.1~20μmの範囲にある粉末状難燃剤と、臭素含有樹脂との混合物を、繊維に囲まれた個々の開口部の大きさの最頻値が0.03~3mm2の範囲にあり且つ開口率が0.1~10%の範囲にある繊維構造体の面方向から含浸することにより、繊維構造体の表層に粉末状難燃剤を偏在させることを特徴とする繊維強化複合材料の製造方法。
  2.  真空圧と大気圧との差圧を利用して繊維構造体に樹脂を含浸した後、樹脂を硬化させることを含む繊維強化複合材料の製造方法であって、
     水酸化アルミニウム及び水酸化マグネシウムから選択される少なくとも1種を含み且つ平均粒径が0.1~20μmの範囲にある粉末状難燃剤と、臭素含有樹脂との混合物を、連続繊維を成形型に巻き付けて得られる繊維構造体の面方向から含浸することにより、繊維構造体の表層に粉末状難燃剤を偏在させることを特徴とする繊維強化複合材料の製造方法。
  3.  離型処理された成形型上に繊維構造体を積層するステップと、積層された繊維構造体上に離型用シート及び樹脂拡散用シートを順次積層するステップと、繊維構造体、樹脂拡散用シート及び離型用シートからなる積層体を密閉用フィルムで覆って外気と遮断するステップと、密閉用フィルム内の空気を真空吸引するステップと、粉末状難燃剤と臭素含有樹脂との混合物を、離型用シート及び樹脂拡散用シートを通じて密閉用フィルム内に注入し、繊維構造体に含浸させるステップと、臭素含有樹脂を硬化させるステップと、樹脂拡散用シートとともに、離型用シートを剥離するステップとを含むことを特徴とする請求項1に記載の繊維強化複合材料の製造方法。
  4.  離型処理された成形型上に発泡体からなるコア材の両側表面を繊維構造体で挟み込んでなる構造体を設置するステップと、設置された構造体上に離型用シート及び樹脂拡散用シートを順次積層するステップと、構造体、樹脂拡散用シート及び離型用シートからなる積層体を密閉用フィルムで覆って外気と遮断するステップと、密閉用フィルム内の空気を真空吸引するステップと、粉末状難燃剤と臭素含有樹脂との混合物を、離型用シート及び樹脂拡散用シートを通じて密閉用フィルム内に注入し、繊維構造体に含浸させるステップと、臭素含有樹脂を硬化させるステップと、樹脂拡散用シートとともに、離型用シートを剥離するステップとを含むことを特徴とする請求項1に記載の繊維強化複合材料の製造方法。
  5.  請求項1~4の何れか一項に記載の方法により製造した繊維強化複合材料であって、前記繊維構造体が、炭素繊維を含むことを特徴とする繊維強化複合材料。
  6.  前記臭素含有樹脂が、臭素化不飽和ポリエステル樹脂及び臭素化エポキシアクリレート樹脂から選択される少なくとも1種を含むことを特徴とする請求項5に記載の繊維強化複合材料。
  7.  前記粉末状難燃剤が、三酸化アンチモン及びホウ酸亜鉛から選択される少なくとも1種を更に含むことを特徴とする請求項5に記載の繊維強化複合材料。
  8.  請求項5に記載の繊維強化複合材料を用いたことを特徴とするエレベータ用構成部材。
  9.  請求項5に記載の繊維強化複合材料を用いたことを特徴とするエレベータかご。
PCT/JP2013/050232 2013-01-09 2013-01-09 繊維強化複合材料、その製造方法、それを用いたエレベータ用構成部材及びエレベータかご WO2014109021A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2013/050232 WO2014109021A1 (ja) 2013-01-09 2013-01-09 繊維強化複合材料、その製造方法、それを用いたエレベータ用構成部材及びエレベータかご
JP2014556256A JPWO2014109021A1 (ja) 2013-01-09 2013-01-09 繊維強化複合材料、その製造方法、それを用いたエレベータ用構成部材及びエレベータかご
CN201380069549.XA CN104903067A (zh) 2013-01-09 2013-01-09 纤维增强复合材料、其制造方法、使用了该纤维增强复合材料的电梯用构成部件和电梯轿厢
US14/654,922 US20150336335A1 (en) 2013-01-09 2013-01-09 Fiber-reinforced composite material, method of producing same, and elevator component member and elevator car that use same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/050232 WO2014109021A1 (ja) 2013-01-09 2013-01-09 繊維強化複合材料、その製造方法、それを用いたエレベータ用構成部材及びエレベータかご

Publications (1)

Publication Number Publication Date
WO2014109021A1 true WO2014109021A1 (ja) 2014-07-17

Family

ID=51166691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050232 WO2014109021A1 (ja) 2013-01-09 2013-01-09 繊維強化複合材料、その製造方法、それを用いたエレベータ用構成部材及びエレベータかご

Country Status (4)

Country Link
US (1) US20150336335A1 (ja)
JP (1) JPWO2014109021A1 (ja)
CN (1) CN104903067A (ja)
WO (1) WO2014109021A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016221734A (ja) * 2015-05-28 2016-12-28 三菱航空機株式会社 VaRTM工法におけるシール構造
WO2017050578A1 (de) * 2015-09-24 2017-03-30 Thyssenkrupp Elevator Ag Flächiges fahrkorbelement für eine aufzugsanlage
KR20180035320A (ko) * 2016-09-29 2018-04-06 (주)엘지하우시스 열가소성 복합재, 열가소성 복합재의 제조방법 및 패널
JP2018134863A (ja) * 2017-01-30 2018-08-30 ゼネラル・エレクトリック・カンパニイ 複合構造体を注入するためのシステム、方法、および装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2536255B (en) * 2015-03-10 2017-11-01 Gurit (Uk) Ltd Moulding material for composite panels
US10029887B2 (en) * 2016-03-29 2018-07-24 Otis Elevator Company Electroless metal coating of load bearing member for elevator system
DE102016106402A1 (de) 2016-04-07 2017-10-12 Saertex Multicom Gmbh Verfahren zum Verstärken von Bauteilen mit Verstärkungsfasern
CN107364035A (zh) * 2016-05-12 2017-11-21 三菱电机株式会社 层间增强纤维预成型体及制造方法、电梯用结构部件及制造方法、纤维增强塑料及制造方法
US11274017B2 (en) * 2017-08-25 2022-03-15 Otis Elevator Company Belt with self-extinguishing layer and method of making
CN110386535A (zh) * 2018-04-12 2019-10-29 三菱电机株式会社 难燃性结构部件和使用了该难燃性结构部件的电梯轿厢
BE1028055B1 (nl) * 2020-02-13 2021-09-13 Basaltex Nv Werkwijze voor het produceren van een brand- en warmtewerend voorgeïmpregneerd vezelmateriaal

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5995113A (ja) * 1982-11-22 1984-06-01 Mitsubishi Electric Corp 繊維強化プラスチツクパイプ成形方法
JPS61275347A (ja) * 1984-12-21 1986-12-05 Kanegafuchi Chem Ind Co Ltd 電気用積層板用不飽和ポリエステル樹脂組成物
JPS63122507A (ja) * 1986-11-13 1988-05-26 Matsushita Electric Works Ltd 積層板の連続製造法
JPH11107107A (ja) * 1997-08-04 1999-04-20 Toray Ind Inc 炭素繊維織物と繊維強化プラスチックおよび繊維強化プラスチックの成形方法
JP2000238140A (ja) * 1999-02-17 2000-09-05 Toray Ind Inc Frp筒状体およびその製造方法
JP2001062932A (ja) * 1999-08-25 2001-03-13 Toray Ind Inc 繊維強化樹脂構造体およびその製造方法
JP2011116504A (ja) * 2009-12-03 2011-06-16 Mitsubishi Electric Corp エレベータ用かご及びその製造方法
JP2011230408A (ja) * 2010-04-28 2011-11-17 Mitsubishi Electric Corp 炭素繊維強化複合材料、その製造方法及びそれを用いたエレベータかご
JP2012051130A (ja) * 2010-08-31 2012-03-15 Mitsubishi Electric Corp 繊維強化複合材料の製造方法及びエレベータかごの製造方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU66454A1 (ja) * 1972-11-10 1974-06-05
US3891605A (en) * 1974-04-04 1975-06-24 Dow Chemical Co Brominated pentaerythritolic polyesters and process therefor
GB1572940A (en) * 1977-07-09 1980-08-06 Freeman Chemical Corp Unsaturated polyester resin
JPS6449638A (en) * 1987-08-20 1989-02-27 Hitachi Chemical Co Ltd Fire retardant electrical laminated-sheet
US4902215A (en) * 1988-06-08 1990-02-20 Seemann Iii William H Plastic transfer molding techniques for the production of fiber reinforced plastic structures
JP2993791B2 (ja) * 1991-12-09 1999-12-27 三菱電機株式会社 低熱膨張複合材料およびその製造方法
IE921328A1 (en) * 1992-04-23 1993-11-03 Defped Ltd Particulate magnesium hydroxide
US5665301A (en) * 1995-07-11 1997-09-09 Arctek Inc. Apparatus and method for forming fiber reinforced composite articles
EP0754728A1 (de) * 1995-07-14 1997-01-22 Hoechst Aktiengesellschaft Flammwidrige Epoxidharz-Formmassen
JP2856317B2 (ja) * 1996-03-04 1999-02-10 東レ株式会社 エレベータ用かご
US5760161A (en) * 1997-02-10 1998-06-02 Albemarle Corporation Process for making unsaturated, thermosetting, brominated phthalic anhydride/polyol polyester resins
ATE283163T1 (de) * 1997-05-15 2004-12-15 Toray Industries Gewebe-prepreg und nassverfahren zur herstellung desselben
JP3356010B2 (ja) * 1997-07-28 2002-12-09 松下電工株式会社 金属箔張り積層板の製造方法
US6495621B1 (en) * 1997-11-12 2002-12-17 Mitsubishi Engineering-Plastics Corporation Molding material for OA machine parts with improved vibration damping properties
DE60217405T2 (de) * 2001-06-28 2007-11-29 Toray Industries, Inc. Epoxidharzzusammensetzung mit hervorragender witterungsbeständigkeit und faserverstärkte verbundwerkstoffe
US6858314B2 (en) * 2002-10-22 2005-02-22 Ashland, Inc. Brominated polyester resins, resin compositions containing brominated polyester resins, and laminate compositions
US7591973B2 (en) * 2002-11-28 2009-09-22 Mitsubishi Rayon Co., Ltd. Method for producing a fiber-reinforced composite material plate
DE102004018336A1 (de) * 2004-04-15 2005-11-10 Albemarle Corporation Flammhemmender Füllstoff für Kunststoffe
DE102004039664B4 (de) * 2004-08-16 2007-08-02 Albemarle Corp. Flammschutzzusammensetzung mit monomodaler Korngrößenverteilung auf Basis von Metallhydroxid und Ton, deren Herstellungsverfahren und Verwendung sowie flammgeschütztes Polymer
DE102005016195A1 (de) * 2005-04-08 2006-10-12 Clariant Produkte (Deutschland) Gmbh Stabilisiertes Flammschutzmittel
GB2449146B (en) * 2008-01-22 2009-04-22 Gurit Fibre-reinforced composite material and manufacture thereof
JP4775520B2 (ja) * 2009-08-17 2011-09-21 Dic株式会社 繊維強化複合材料用樹脂組成物、その硬化物、繊維強化複合材料、繊維強化樹脂成形品、及びその製造方法
CN102574986B (zh) * 2009-09-18 2014-02-26 Dic株式会社 纤维增强复合材料用树脂组合物、其固化物、纤维增强复合材料、纤维增强树脂成形品、及其制造方法
JP5574949B2 (ja) * 2010-12-27 2014-08-20 三菱電機株式会社 エレベータかご用パネルおよびそれを用いたエレベータかご
JP2012214651A (ja) * 2011-04-01 2012-11-08 Mitsubishi Electric Corp 難燃性繊維強化複合材料、サンドイッチパネル、それらの製造方法及びエレベータかご
JP2012214287A (ja) * 2011-04-01 2012-11-08 Mitsubishi Electric Corp 繊維強化複合材料成形体およびその製造方法ならびにそれを用いたエレベータかご
CN102558852A (zh) * 2011-12-16 2012-07-11 深圳市富恒塑胶新材料有限公司 一种低成本阻燃玻纤增强pa6工程塑料及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5995113A (ja) * 1982-11-22 1984-06-01 Mitsubishi Electric Corp 繊維強化プラスチツクパイプ成形方法
JPS61275347A (ja) * 1984-12-21 1986-12-05 Kanegafuchi Chem Ind Co Ltd 電気用積層板用不飽和ポリエステル樹脂組成物
JPS63122507A (ja) * 1986-11-13 1988-05-26 Matsushita Electric Works Ltd 積層板の連続製造法
JPH11107107A (ja) * 1997-08-04 1999-04-20 Toray Ind Inc 炭素繊維織物と繊維強化プラスチックおよび繊維強化プラスチックの成形方法
JP2000238140A (ja) * 1999-02-17 2000-09-05 Toray Ind Inc Frp筒状体およびその製造方法
JP2001062932A (ja) * 1999-08-25 2001-03-13 Toray Ind Inc 繊維強化樹脂構造体およびその製造方法
JP2011116504A (ja) * 2009-12-03 2011-06-16 Mitsubishi Electric Corp エレベータ用かご及びその製造方法
JP2011230408A (ja) * 2010-04-28 2011-11-17 Mitsubishi Electric Corp 炭素繊維強化複合材料、その製造方法及びそれを用いたエレベータかご
JP2012051130A (ja) * 2010-08-31 2012-03-15 Mitsubishi Electric Corp 繊維強化複合材料の製造方法及びエレベータかごの製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016221734A (ja) * 2015-05-28 2016-12-28 三菱航空機株式会社 VaRTM工法におけるシール構造
WO2017050578A1 (de) * 2015-09-24 2017-03-30 Thyssenkrupp Elevator Ag Flächiges fahrkorbelement für eine aufzugsanlage
CN108137287A (zh) * 2015-09-24 2018-06-08 蒂森克虏伯电梯股份公司 用于电梯设备的平面轿厢部件
KR20180035320A (ko) * 2016-09-29 2018-04-06 (주)엘지하우시스 열가소성 복합재, 열가소성 복합재의 제조방법 및 패널
KR101942258B1 (ko) * 2016-09-29 2019-01-25 (주)엘지하우시스 열가소성 복합재, 열가소성 복합재의 제조방법 및 패널
US10808088B2 (en) 2016-09-29 2020-10-20 Lg Hausys, Ltd. Thermoplastic composite, method for preparing thermoplastic composite, and panel
JP2018134863A (ja) * 2017-01-30 2018-08-30 ゼネラル・エレクトリック・カンパニイ 複合構造体を注入するためのシステム、方法、および装置

Also Published As

Publication number Publication date
JPWO2014109021A1 (ja) 2017-01-19
CN104903067A (zh) 2015-09-09
US20150336335A1 (en) 2015-11-26

Similar Documents

Publication Publication Date Title
WO2014109021A1 (ja) 繊維強化複合材料、その製造方法、それを用いたエレベータ用構成部材及びエレベータかご
JP5836730B2 (ja) 難燃性複合材料およびエレベータのかご用部材
JP6009157B2 (ja) 改善されたグリーンな航空機内部パネル
KR20200033781A (ko) 전기자동차용 배터리 케이스
US20210323651A1 (en) Sandwich-Composite Component for Aircraft Interiors
US20220119608A1 (en) Fire-Retardant Composite Materials
EP3688075B1 (en) Fire-retardant composite materials
JP5574949B2 (ja) エレベータかご用パネルおよびそれを用いたエレベータかご
US20150190973A1 (en) Method of making fire resistant sustainable aircraft interior panels
GB2571786A (en) Manufacture of fire-retardant sandwich panels
US20220231361A1 (en) Lightweight and high-impact-resistant electric vehicle battery enclosure with fiber metal laminate composites
JP2011116504A (ja) エレベータ用かご及びその製造方法
EP1464483B1 (en) A pigmented panel assembly
JP2012214651A (ja) 難燃性繊維強化複合材料、サンドイッチパネル、それらの製造方法及びエレベータかご
WO2022202167A1 (ja) ケース構造体、およびバッテリーケース
JP2006002869A (ja) サンドイッチパネル
JP2008265160A (ja) Frp成形品
JP2006289646A (ja) ハニカムコンポジット及びその成形方法
JP2013146988A (ja) 繊維強化複合材料成形体、及び、その製造方法、並びに、それを用いたエレベータかご
KR100647008B1 (ko) 하이브리드 직물 및 그를 적용하여 내화염특성이 강화된복합재료
JP4723270B2 (ja) 難燃性ハイブリッド複合材料を用いた容器の成形方法
JP2019181925A (ja) 難燃性構造部材およびそれを用いたエレベータかご
JP2006076366A (ja) 車両用複合パネル
JPH0467943A (ja) 断熱性複合パネル
JP2000168882A (ja) 樹脂製フレーム及び該フレームを備えた冷凍コンテナ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871131

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014556256

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14654922

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13871131

Country of ref document: EP

Kind code of ref document: A1