WO2014106928A1 - 耐熱架橋電線 - Google Patents
耐熱架橋電線 Download PDFInfo
- Publication number
- WO2014106928A1 WO2014106928A1 PCT/JP2013/083945 JP2013083945W WO2014106928A1 WO 2014106928 A1 WO2014106928 A1 WO 2014106928A1 JP 2013083945 W JP2013083945 W JP 2013083945W WO 2014106928 A1 WO2014106928 A1 WO 2014106928A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- parts
- mass
- resin composition
- flame retardant
- heat
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/44—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
- H01B3/441—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/0066—Flame-proofing or flame-retarding additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0846—Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
- C08L23/0869—Acids or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D123/00—Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
- C09D123/02—Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
- C09D123/04—Homopolymers or copolymers of ethene
- C09D123/06—Polyethene
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/44—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/17—Protection against damage caused by external factors, e.g. sheaths or armouring
- H01B7/29—Protection against damage caused by extremes of temperature or by flame
- H01B7/295—Protection against damage caused by extremes of temperature or by flame using material resistant to flame
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2217—Oxides; Hydroxides of metals of magnesium
- C08K2003/2224—Magnesium hydroxide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/30—Sulfur-, selenium- or tellurium-containing compounds
- C08K2003/3009—Sulfides
- C08K2003/3036—Sulfides of zinc
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K3/2279—Oxides; Hydroxides of metals of antimony
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/30—Sulfur-, selenium- or tellurium-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/02—Flame or fire retardant/resistant
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
- C08L2205/035—Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L51/06—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
Definitions
- the present invention relates to a heat-resistant cross-linked electric wire, and more particularly to a heat-resistant cross-linked polyethylene electric wire used for automobiles and the like.
- a brominated flame retardant excluding polybromophenyl ether and polybromobiphenyl 100 to 70 parts of antimony trioxide with respect to 100 parts by mass of a resin component mainly composed of an ethylene copolymer.
- a flame-retardant insulated electric wire in which a resin composition containing 10 parts by mass and 10-60 parts by mass of metal hydrate is coated around a conductor and the coating resin is crosslinked see, for example, Patent Document 2).
- non-halogen type electric wires for automobiles have a problem that heat resistance decreases when they are coexisted with vinyl chloride wires.
- polyethylene, ⁇ -olefin copolymer, ethylene-vinyl ester copolymer are used.
- a metal hydrate and a zinc compound are added to a resin component comprising an ethylene- ⁇ , ⁇ -unsaturated carboxylic acid alkyl ester copolymer and a copolymer selected from ethylene-based thermoplastic elastomer;
- a non-halogen type cross-linked flame retardant resin composition in which is modified with an acid or contains a specific functional group has been proposed (for example, see Patent Document 3).
- Patent Document 2 has the following drawbacks and problems because the resin composition is simply based on an ethylene copolymer.
- Conventional electric wires are too flexible, and an electric wire having an insulator thickness of 0.5 mm or less cannot satisfy scrape wear even if flame resistance is satisfied.
- the present invention has been made in view of the above-described conventional problems.
- a heat-resistant crosslinked electric wire having a coating layer formed using a resin composition containing a brominated flame retardant and magnesium hydroxide the flame retardancy and flexibility are provided. It is an object of the present invention to provide a heat-resistant cross-linked electric wire excellent in battery liquid resistance and wear resistance while securing the above.
- a resin comprising a high density polyethylene, a low density polyethylene, an ethylene copolymer, and an ethylene copolymer modified with an unsaturated carboxylic anhydride, a brominated flame retardant, and magnesium hydroxide.
- a coating layer covering the periphery of the conductor is formed by a resin composition containing 30 to 55 parts by mass of a brominated flame retardant and magnesium hydroxide with respect to 100 parts by mass of the resin.
- a heat-resistant cross-linked electric wire formed by crosslinking The resin composition has a type D durometer hardness (HDD) according to JIS K 7215 in the range of 56 to 64, and a specific gravity of 1.14 to 1.25 by an underwater substitution method according to JIS K 7112 5 method.
- HDD type D durometer hardness
- the resin composition is modified with 45 to 75 parts by mass of high density polyethylene, 5 to 45 parts by mass of low density polyethylene, 5 to 35 parts by mass of an ethylene copolymer, and an unsaturated carboxylic acid anhydride. It contains 5 to 15 parts by weight of a brominated flame retardant and 15 to 40 parts by weight of magnesium hydroxide with respect to 100 parts by weight of a resin composed of 5 to 35 parts by weight of an ethylene copolymer.
- a heat-resistant crosslinked electric wire having a coating layer formed using a resin composition containing a brominated flame retardant and magnesium hydroxide while ensuring flame retardancy and flexibility, battery liquid resistance and resistance It is possible to provide a heat-resistant cross-linked electric wire having excellent wear characteristics.
- the heat resistant cross-linked electric wire of the present invention includes a resin comprising a high density polyethylene, a low density polyethylene, an ethylene copolymer, and an ethylene copolymer modified with an unsaturated carboxylic acid anhydride, a brominated flame retardant, Forming a coating layer covering the conductor with a resin composition containing magnesium hydroxide and containing 30 to 55 parts by mass of the total amount of brominated flame retardant and magnesium hydroxide with respect to 100 parts by mass of the resin; A heat-resistant cross-linked electric wire obtained by crosslinking the coating layer, wherein the resin composition has a type D durometer hardness (HDD) according to JIS K 7215 in the range of 56 to 64, and underwater according to JIS K 7111-25 method. It is characterized by having a specific gravity in the range of 1.14 to 1.25 by the substitution method.
- HDD type D durometer hardness
- the high-density polyethylene used in the present invention is preferably blended so as to be 45 to 75 parts by mass from the viewpoint of obtaining sufficient wear resistance and flexibility.
- the blending amount of the high density polyethylene is particularly preferably 55 to 65 parts by mass.
- the high-density polyethylene those having MFR (190 ° C., 2.16 kg) of 0.1 to 5.0 and hardness (Shore D) of 60 to 80 are desirable.
- the high density polyethylene is polyethylene having a density of 0.942 kg / m 3 or more.
- the low density polyethylene is preferably blended so as to be 5 to 45 parts by mass from the viewpoint of obtaining sufficient wear resistance and flexibility.
- the blending amount of the low density polyethylene is particularly preferably 10 to 20 parts by mass.
- Examples of the low density polyethylene include resins having an MFR (190 ° C., 2.16 kg) of 0.4 to 2.0 and a durometer hardness of 50 to 60.
- the low-density polyethylene is a polyethylene having a density of 0.910 kg / m 3 or more and less than 0.942 kg / m 3 .
- the total blending amount of the high density polyethylene and the low density polyethylene is preferably blended so as to be 60 to 90 parts by mass from the viewpoint of obtaining sufficient wear resistance and flexibility.
- the total blending amount of the high density polyethylene and the low density polyethylene is particularly preferably 70 to 75 parts by mass.
- the ethylene copolymer is preferably blended in an amount of 5 to 35 parts by mass from the viewpoint of obtaining sufficient wear resistance and flexibility. In particular, it is preferable to blend in an amount of 15 to 20 parts by mass.
- Ethylene copolymers include ethylene / vinyl acetate copolymer, ethylene / vinyl acetate / unsaturated carboxylic acid copolymer, ethylene / ethyl acrylate copolymer, ethylene / methyl methacrylate copolymer, ethylene / acrylic acid copolymer.
- Polymer ethylene / methacrylic acid copolymer, ethylene / maleic anhydride copolymer, ethylene / aminoalkyl methacrylate copolymer, ethylene / vinyl silane copolymer, ethylene / glycidyl methacrylate copolymer, ethylene / hydroxyethyl methacrylate copolymer A polymer etc. are mentioned.
- the ethylene copolymer modified with an unsaturated carboxylic acid anhydride is preferably blended in an amount of 5 to 35 parts by mass from the viewpoint of obtaining sufficient wear resistance and flexibility. In particular, the blending amount is preferably 5 to 10 parts by mass.
- the ethylene copolymer modified with an unsaturated carboxylic acid anhydride is not particularly limited as long as it is a graft modified product obtained by graft-modifying an ethylene / unsaturated ester copolymer with an unsaturated carboxylic acid anhydride. is not.
- Unsaturated esters include (meth) acrylic such as methyl acrylate, ethyl acrylate, isopropyl acrylate, nbutyl acrylate, isobutyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, and isobutyl methacrylate.
- vinyl esters such as acid esters, vinyl acetate, and vinyl propionate.
- unsaturated carboxylic acid anhydrides used for graft modification include maleic anhydride, itaconic anhydride, norbornene dicarboxylic acid anhydride, and the use of maleic anhydride is particularly preferred.
- the following brominated flame retardant and magnesium hydroxide are used with respect to 100 parts by mass of the resin composed of the above high density polyethylene resin, low density polyethylene resin, ethylene copolymer, and maleic acid-modified ethylene copolymer.
- the total amount is 30 to 55 parts by mass.
- the brominated flame retardant is preferably blended in an amount of 5 to 15 parts by mass from the viewpoint of obtaining sufficient flame retardancy and wear resistance.
- the blending amount of the brominated flame retardant is particularly preferably 5 to 9 parts by mass.
- brominated flame retardants include hexabromobenzene, ethylene bis-dibromonorbornane dicarboximide, ethylene bis-tetrabromofucurimide, tetrabromo-bisphenol S, tris (2,3-dibromopropyl-1) isocyanurate, Hexabromocyclododecane (HBCD), octabromophenyl ether, tetrabromobisphenol A (TBA) epoxy oligomer or polymer, TBA-bis (2,3-dibromopropyl ether), decabromodiphenyl oxide, polydibromophenylene oxide, bis ( Tribromophenoxy) ethane, ethylenebis-pentabromobenzene, dibromoethyl-dibromocyclohexane, dibromoneopentyl glycol, tribromophenol, tribromophene Allyl ether,
- Magnesium hydroxide is preferably blended in an amount of 15 to 40 parts by mass from the viewpoint of obtaining sufficient flame retardancy and battery fluid resistance.
- the blending amount of magnesium hydroxide is particularly preferably 20 to 40 parts by mass. Since the decomposition temperature of magnesium hydroxide is about 300 ° C., in the production of the heat-resistant crosslinked wire of the present invention, the resin composition is extruded on a conductor at a high temperature of 200 ° C. or higher, and an insulating layer is formed. It is fully possible to form.
- aluminum hydroxide is known as a metal hydroxide excellent in flame retardancy. However, when aluminum hydroxide is blended, the decomposition starts at about 180 ° C, so it is necessary to set the extrusion temperature to a low level, and the rotation speed of the extruder cannot be increased. It is difficult to improve the performance.
- the total amount of the brominated flame retardant and magnesium hydroxide is preferably 30 to 55 parts by mass, which is sufficient for flame retardancy and wear resistance, and battery fluid resistance. To get.
- the total blending amount is more preferably 30 to 55 parts by mass, and further preferably 40 to 50 parts by mass.
- Antimony trioxide In the present invention, it is preferable to further contain 1 to 5 parts by mass of antimony trioxide as a flame retardant aid for the brominated flame retardant contained in the resin composition, and more preferably 2 to 5 parts by mass. .
- the blending amount of antimony trioxide is 1 to 5 parts by mass, flame retardancy can be improved while suppressing a decrease in wear resistance.
- zinc sulfide is blended so as to be 1 to 10 parts by mass with respect to 100 parts by mass of the resin from the viewpoint of obtaining cooperation with other materials, particularly vinyl chloride resin composition. It is more preferable to add 1 to 8 parts by mass.
- the heat resistant cross-linked wire of the present invention includes antioxidants, metal deactivators, other anti-aging agents, lubricants, fillers and reinforcing materials, and UV absorbers as long as the effects of the present invention are not hindered.
- Stabilizers, plasticizers, pigments, dyes, colorants, antistatic agents, foaming agents and the like may be blended.
- the type D durometer hardness (HDD) according to JIS K 7215 of the above resin composition is in the range of 56 to 64, and the specific gravity is 1.14 to 1 by the substituting method in water according to JIS K 7112. It is in the range of 25.
- the hardness is preferably 58 to 63, and more preferably 59 to 62. Further, if the specific gravity is less than 1.14, the flame retardancy is insufficient, and if it exceeds 1.25, the wear resistance is insufficient.
- the heat-resistant crosslinked electric wire of the present invention is formed by forming a coating layer that covers the periphery of a conductor with a resin composition containing the above components, and crosslinking the coating layer. That is, first, the resin composition according to the present invention is optionally melt-mixed with various additives according to a conventional method, and the resulting composition is formed into a coating layer around a conductor using an extruder or the like according to a conventional method. .
- compoundable equipment such as an extruder, a Henschel mixer, a kneader, a shaft kneader, a Banbury mixer, and a roll mill can be used.
- the coating layer is crosslinked.
- the molecules of the linear polymer are chemically bonded to each other to form a network structure (three-dimensional structure), and the strength and heat resistance of the coating layer can be improved.
- the crosslinking method is not particularly limited.
- an electron beam crosslinking method in which an electron beam is irradiated after molding, or a so-called chemical crosslinking in which a crosslinking agent is previously blended in a resin composition and then heated and crosslinked after molding. Law.
- the electron beam irradiation dose is preferably 1 to 30 Mrad.
- a multifunctional compound such as a methacrylate compound such as trimethylolpropane triacrylate, an allyl compound such as triallyl cyanurate, a maleimide compound or a divinyl compound is added as a crosslinking aid. May be.
- an organic peroxide such as hydroperoxide, dialkyl peroxide, diacyl peroxide, peroxy ester, ketone peroxy ester, and ketone peroxide as a crosslinking agent in the resin composition.
- Examples 1 to 7, Comparative Examples 1 to 10 ⁇ Preparation of resin composition for heat resistant wires>
- a resin composition was prepared by melt-kneading using a wonder kneader with each component / blending amount (parts by mass) shown in Table 1 and Table 2.
- the component materials shown in Table 1 and Table 2 were those shown in Table 3.
- a type D durometer hardness (HDD) according to JIS K 7215 was produced by compression (pressing) a 2 mm sheet at a temperature of 175 ° C., and a test piece having a width of 60 mm ⁇ a length of 30 mm was prepared. It measured using the test piece which cut and obtained. The measurement results are shown in the item “Hardness” in Tables 1 and 2.
- the specific gravity is obtained by an underwater substitution method according to JIS K 7112 5 method, a 2 mm sheet is produced by compression (press) molding at a temperature of 175 ° C., and a test piece 60 mm wide ⁇ 30 mm long is cut and obtained. It measured using the test piece.
- the measurement results are shown in the “specific gravity” item in Tables 1 and 2.
- a covered electric wire was obtained. That is, an extrusion coating apparatus for producing electric wires is used at a temperature of 190 ° C. so that the outer diameter of the electric wire including the coating layer is 1.3 mm on a core wire (19 stranded wires) having a diameter of 0.15 mm. Extrusion was performed to obtain a covered electric wire for each of the examples and comparative examples. The obtained covered electric wire was subjected to electron beam cross-linking treatment (10 Mrad) to cross-link the coating layer.
- the battery liquid resistance was evaluated in accordance with ISO-6722 as a measure of acid resistance in an engine room required for electric wires for automobiles. After applying a small amount of the battery solution to the heat-resistant crosslinked wire obtained above, keep it in an oven at 90 ° C. for 8 hours, remove it from the oven, apply acid again, and heat it in an oven at 90 ° C. for 16 hours (total 24) and removed it from the oven (this completed one cycle). After repeating this procedure for a total of 2 cycles, it was wound around a mandrel with a diameter of 6.5 mm and passed ( ⁇ ) if it could withstand the voltage (1 kV x 1 min), and rejected (x) if it could not withstand evaluated.
- Abrasion test (load 7N) was conducted using a scrape abrasion tester. That is, a heat-resistant crosslinked electric wire having a length of about 1 m was placed on a sample holder and fixed with a clamp. Then, a flange having a piano wire with a diameter of 0.45 mm at the tip of the heat-resistant cross-linked wire is pressed against the heat-resistant cross-linked wire with a total load of 7N using a press (reciprocation distance 14 mm), and the coating layer of the heat-resistant cross-linked wire is The number of reciprocations until the piano wire of the flange was in contact with the conductor of the heat-resistant bridging electric wire was measured, and 100 times or more was regarded as acceptable (O), and less than 100 times was regarded as unacceptable (X).
- Example 8 to 11, Comparative Examples 11 to 14 ⁇ Preparation of Resin Composition for Heat-Resistant Wires-Production of Heat-Resistant Crosslinked Wires-Evaluation>
- a resin composition was prepared by melt-kneading each component / blending amount (parts by mass) shown in Tables 4 to 5 using a wonder kneader. The components shown in Tables 4 to 5 were those shown in Table 6.
- a heat-resistant cross-linked electric wire was obtained in the same manner as in Example 1.
- the obtained heat-resistant cross-linked electric wires were evaluated for battery liquid resistance, flame retardancy, abrasion test, flexibility, and coordination, and the results obtained are shown in Tables 4-6.
- the battery liquid resistance, flame retardancy, wear resistance test, and flexibility were performed in the same manner as in Example 1, and the cooperation was performed as follows.
- the heat-resistant cross-linked wiring is taken out from the mixed wire bundle, and both of them pass the one that does not cause a crack in the covering layer by self-diameter winding ( ⁇ ) And a crack in which at least one of the two cracks occurred was regarded as rejected (x).
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Insulated Conductors (AREA)
- Organic Insulating Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
また、近年ではエチレン系共重合体をベースとし、臭素系難燃剤、三酸化アンチモンおよび金属水和物を含む樹脂組成物を使用することで難燃性を向上させた電線を提供することが可能となっている。具体的には、例えば、エチレン系共重合体を主体とする樹脂成分100質量部に対し、ポリブロモフェニルエーテル及びポリブロモビフェニールを除く臭素系難燃剤15~80質量部、三酸化アンチモン10~70質量部および金属水和物10~60質量部を含む樹脂組成物が導体の周りに被覆されており、当該被覆樹脂が架橋されている難燃性絶縁電線である(例えば、特許文献2参照。)。
(1)従来の電線は柔軟すぎてしまい、絶縁体厚さ0.5mm以下の領域の電線では、難燃性を満足していても、スクレープ摩耗性を満足することは不可能である。
(2)金属水和物を多量添加することで、ISO-6722に準拠した耐バッテリー液性を満足することができない。
(1)高密度ポリエチレン、低密度ポリエチレン、エチレン系共重合体、及び不飽和カルボン酸無水物にて変性されているエチレン共重合体からなる樹脂と、臭素系難燃剤と、水酸化マグネシウムとを含み、かつ前記樹脂100質量部に対し臭素系難燃剤及び水酸化マグネシウムの配合合計量が30~55質量部である樹脂組成物により導体の周囲を被覆する被覆層を形成し、該被覆層を架橋してなる耐熱架橋電線であって、
前記樹脂組成物のJIS K 7215によるタイプDデュロメーター硬度(HDD)が56~64の範囲内にあり、かつJIS K 7112 5法による水中置換法で比重1.14~1.25の範囲内にあることを特徴とする耐熱架橋電線。
以下にまず、樹脂組成物の各成分について詳述する。
本発明で用いる高密度ポリエチレンは、十分な耐摩耗性及び柔軟性を得る観点から、45~75質量部となるように配合することが好ましい。高密度ポリエチレンの配合量は、特に、55~65質量部であることが好ましい。
高密度ポリエチレンとしては、MFR(190℃、2.16kg)が、0.1~5.0であり、硬度(ショアD)が60~80であるものが望ましい。
なお、高密度ポリエチレンは、密度が0.942kg/m3以上のポリエチレンである。
低密度ポリエチレンは、十分な耐摩耗性及び柔軟性を得る観点から、5~45質量部となるように配合することが好ましい。低密度ポリエチレンの配合量は、特に、10~20質量部であることが好ましい。
低密度ポリエチレンとしては、MFR(190℃、2.16kg)が0.4~2.0、デュロメータ硬さ50~60の樹脂が挙げられる。
なお、低密度ポリエチレンは、密度が0.910kg/m3以上0.942kg/m3未満のポリエチレンである。
エチレン系共重合体は、十分な耐摩耗性及び柔軟性を得る観点から、5~35質量部となるように配合することが好ましい。特に、15~20質量部となるように配合することか好ましい。
エチレン系共重合体としては、エチレン/酢酸ビニル共重合体、エチレン/酢酸ビニル/不飽和カルボン酸共重合体、エチレン/エチルアクリレート共重合体、エチレン/メチルメタクリレート共重合体、エチレン/アクリル酸共重合体、エチレン/メタクリル酸共重合体、エチレン/無水マレイン酸共重合体、エチレン/アミノアルキルメタクリレート共重合体、エチレン/ビニルシラン共重合体、エチレン/グリシジルメタクリレート共重合体、エチレン/ヒドロキシエチルメタクリレート共重合体等が挙げられる。
不飽和カルボン酸無水物にて変性されているエチレン共重合体は、十分な耐摩耗性及び柔軟性を得る観点から、5~35質量部となるように配合することが好ましい。特に、望ましい配合量としては5~10質量部となるように配合することが好ましい。
なお、不飽和カルボン酸無水物にて変性されるエチレン共重合体としては、エチレン・不飽和エステル共重合体を不飽和カルボン酸無水物でグラフト変性したグラフト変性物であれば特に限定されるものではない。
不飽和エステルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸nブチル、アクリル酸イソブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソブチルなどの(メタ)アクリル酸エステル、酢酸ビニル、プロピオン酸ビニルのようなビニルエステルを例示することができる。グラフト変性に用いられる不飽和カルボン酸無水物としては、無水マレイン酸、無水イタコン酸、ノルボルネンジカルボン酸無水物などを例示することができるが、特に無水マレイン酸の使用が好ましい。
臭素系難燃剤は、十分な難燃性及び耐摩耗性を得る観点から、5~15質量部となるように配合することが好ましい。臭素系難燃剤の配合量は、特に5~9質量部が好ましい。
臭素系難燃剤としては、例えばヘキサブロモペンゼン、エチレンビス-ジブロモノルボルナンジカルボキシイミド、エチレンビス-テトラブロモフクルイミド、テトラブロモ-ビスフェノールS、トリス(2,3-ジブロモプロピル-1)イソシアヌレート、ヘキサブロモシクロドデカン(HBCD)、オクタブロモフニルエーテル、テトラブロモビスフェノールA(TBA)エポキシオリゴマーもしくはポリマー、TBA-ビス(2,3-ジブロモプロピルエーテル)、デカブロモジフェニルオキシド、ポリジブロモフェニレンオキシド、ビス(トリブロモフェノキシ)エタン、エチレンビス-ペンタブロモベンゼン、ジブロモエチル-ジブロモシクロヘキサン、ジブロモネオペンチルグリコール、トリブロモフェノール、トリブロモフェノールアリルエーテル、テトラデカブロモ-ジフェノキシベンゼン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシエトキシ-3,5-ジブロモフェニル)プロパン、ペンタブロモフェノール、ペンタブロモトルエン、ペンタブロモジフェニルオキシド、ヘキサブロモジフェニルエーテル、オクタブロモジフェニルエーテル、オクタブロモジフェニルオキシド、ジブロモネオペンチルグリコールテトラカルボナート、ビス(トリブロモフェニル)フマルアミド、N-メチルヘキサブロモフェニルアミン、及びこれらの組み合わせが例示される。
水酸化マグネシウムは、十分な難燃性及び耐バッテリー液性を得る観点から、15~40質量部となるように配合することが好ましい。水酸化マグネシウムの配合量は、特に、20~40質量部であることが望ましい。
水酸化マグネシウムの分解温度は約300℃であるため、本発明の耐熱架橋電線の製造においては、前記樹脂組成物を、200℃以上の高温で押出加工して導体上に被覆し、絶縁層を形成することが十分可能である。
難燃性に優れる金属水酸化物としては他にも水酸化アルミニウムが知られている。しかし、水酸化アルミニウムを配合した場合は、その分解が約180℃から始まるために、押出加工温度を低めに設定する必要があり、押出機回転数を上げることができず、電線、ケーブルの生産性を上げることが困難である。
本発明においては、前記樹脂組成物中に含まれる臭素系難燃剤の難燃助剤としてさらに三酸化アンチモンを1~5質量部含有することが好ましく、2~5質量部含有することがより好ましい。三酸化アンチモンは配合量が1~5質量部であると、耐摩耗性の低下を抑えつつ難燃性の向上を図ることができる。
本発明においては、他材料、特に塩化ビニル系樹脂組成物との協調性協調性を得る観点から、硫化亜鉛を、上記樹脂100質量部に対して1~10質量部となるように配合することが好ましく、1~8質量部となるように配合することがより好ましい。
本発明の耐熱架橋電線には、上記必須成分の他、本発明の効果を妨げない範囲で、酸化防止剤、金属不活性剤、その他老化防止剤、滑剤、充填剤及び補強材、UV吸収剤、安定剤、可塑剤、顔料、染料、着色剤、帯電防止剤、発泡剤などが配合されていてもよい。
前記硬度が56未満であると耐摩耗性が不十分となり、64を超えると柔軟性が不十分となる。当該硬度は、58~63が好ましく、59~62がより好ましい。
また、前記比重が1.14未満であると難燃性が不十分となり、1.25を超えると摩耗性が不十分となる。
架橋の方法は、特に制限はないが、例えば、成形後に電子線を照射する電子線架橋法や、予め樹脂組成物に架橋剤を配合しておき、成形後加熱して架橋させる、いわゆる化学架橋法等が挙げられる。
電子線架橋法を採用する場合には、電子線の照射線量は、1~30Mradが好ましい。さらに効率よく架橋をおこなうために、トリメチロールプロパントリアクリレートなどのメタクリレート系化合物、トリアリルシアヌレートなどのアリル系化合物、マレイミド系化合物、ジビニル系化合物などの多官能性化合物を架橋助剤として配合してもよい。
化学架橋法を採用する場合には、樹脂組成物に、ヒドロペルオキシド、ジアルキルペルオキシド、ジアシルペルオキシド、ペルオキシエステル、ケトンペルオキシエステル、ケトンペルオキシドなどの有機過酸化物を架橋剤として用いることが好ましい。
<耐熱電線用樹脂組成物の調製>
各実施例・比較例において、表1及び表2に示す各成分・配合量(質量部)にてワンダーニーダーを用いて溶融混練して、樹脂組成物を調製した。なお、表1及び表2に示す各成分材料は表3に示すものを使用した。
また、JIS K 7112 5法による水中置換法で比重を、175℃の温度で、2mmのシートを圧縮(プレス)成形にて作製し、幅60mm×長さ30mmの試験片を切削し、得られた試験片を用いて測定した。測定結果を表1及び表2の「比重」の項目にて示す。
上記各実施例・比較例の耐熱電線用樹脂組成物を用いて、それぞれ被覆電線を得た。すなわち、直径が0.15mmの芯線(19本の撚線)に、被覆層を含めて電線の外径が1.3mmとなるように190℃の温度条件で電線製造用の押出被覆装置を用いて押出成形を行い、各実施例・比較例毎に被覆電線を得た。得られた被覆電線に電子線架橋処理(10Mrad)を行い、被覆層の架橋を行った。
得られた耐熱架橋電線について耐バッテリー液性、難燃性、摩耗性試験、及び柔軟性の評価をそれぞれ行い、得られた結果を表1及び2に示した。各評価は以下のようにして行った。
耐バッテリー液性は自動車用電線として求められるエンジンルームにおける耐酸性の目安としてISO-6722に準拠して評価を行った。
上記で得られた耐熱架橋電線に、少量のバッテリー液をかけた後、90℃のオーブンで8時間保ち、これをオーブンから取り出し酸をもう一度かけ、これを90℃のオーブンで16時間(トータルで24間)保ち、これをオーブンから取り出した(これで1サイクルが完了した)。この手順を計2サイクル繰り返した後、直径6.5mmのマンドレルに巻き付け、電圧(1kV×1min)に耐えることができた場合は合格(○)として、耐えられない場合は不合格(×)として評価した。
難燃性については、長さ600mm以上の耐熱架橋電線サンプルを用意し、傾き45度傾斜に固定して上端から500mm±5mmの部分にブンゼンバーナーにて15秒間元炎を当てた後に消炎するまでの時間が10秒未満のものを特に良好(◎)、40秒以上70秒以内のものを合格(○)、それ以上を不合格(×)として評価した。
摩耗性試験(荷重7N)については、スクレープ摩耗試験装置を用いて行った。すなわち、長さ約1mの耐熱架橋電線をサンプルホルダーに載置し、クランプで固定した。そして、耐熱架橋電線の先端に直径0.45mmのピアノ線を備えるフランジを、押圧を用いて総荷重7Nで耐熱架橋電線に押し当てて往復させ(往復距離14mm)、耐熱架橋電線の被覆層が摩耗してフランジのピアノ線が耐熱架橋電線の導体に接するまでの往復回数を測定し、100回以上のものを合格(○)とし、100回未満のものを不合格(×)とした。
柔軟性については、長さ100mmの耐熱架橋電線サンプルを用意し、フォースゲージにて 電線のたわみ荷重の測定を実施し、測定値が0.30N以内になるものを合格(○)、それ以上を不合格(×)とした。
<耐熱電線用樹脂組成物の調製~耐熱架橋電線の作製~評価>
各実施例・比較例において、表4~5に示す各成分・配合量(質量部)にてワンダーニーダーを用いて溶融混練して、樹脂組成物を調製した。なお、表4~5に示す各成分材料は表6に示すものを使用した。
次いで、得られた各実施例・比較例の樹脂組成物を用いて、実施例1と同様にして耐熱架橋電線を得た。
さらに、得られた耐熱架橋電線について耐バッテリー液性、難燃性、摩耗性試験、柔軟性、及び協調性の評価を行い、得られた結果を表4~6に示した。なお、耐バッテリー液性、難燃性、摩耗性試験、及び柔軟性については実施例1と同様にしてそれぞれ行い、協調性については、以下のようにして行った。
各実施例・比較例において、絶縁被覆材としてポリ塩化ビニル(PVC)を導体の外周に押出被覆してなるPVC電線5本と、耐熱架橋配線2本とを束ねて混在電線束とした。次いで、この混在電線束の外周に、ワイヤーハーネス保護材としてのPVCシートを被覆した後、さらにこのPVCシートの端部に、ワイヤーハーネス保護材としてのPVCテープを5回巻き付け、ワイヤーハーネスを作製した。次いで、このワイヤーハーネスを130℃×500時間の条件下で老化させた後、混在電線束中より耐熱架橋配線を取り出し、自己径巻き付けにより2本とも被覆層に亀裂が生じないものを合格(○)とし、2本のうち1本でも亀裂が生じたものを不合格(×)とした。
Claims (4)
- 高密度ポリエチレン、低密度ポリエチレン、エチレン系共重合体、及び不飽和カルボン酸無水物にて変性されているエチレン共重合体からなる樹脂と、臭素系難燃剤と、水酸化マグネシウムとを含み、かつ前記樹脂100質量部に対し臭素系難燃剤及び水酸化マグネシウムの配合合計量が30~55質量部である樹脂組成物により導体の周囲を被覆する被覆層を形成し、該被覆層を架橋してなる耐熱架橋電線であって、
前記樹脂組成物のJIS K 7215によるタイプDデュロメーター硬度(HDD)が56~64の範囲内にあり、かつJIS K 7112 5法による水中置換法で比重1.14~1.25の範囲内にあることを特徴とする耐熱架橋電線。 - 前記樹脂組成物が、高密度ポリエチレン45~75質量部、低密度ポリエチレン5~45質量部、エチレン系共重合体5~35質量部、及び不飽和カルボン酸無水物にて変性されているエチレン共重合体5~35質量部からなる樹脂100質量部に対し、臭素系難燃剤5~15質量部、及び水酸化マグネシウム15~40質量部を含み、かつ、臭素系難燃剤及び水酸化マグネシウムの配合合計量が30~55質量部であることを特徴とする請求項1に記載の耐熱架橋電線。
- 前記樹脂組成物が、さらに、前記樹脂100質量部に対し、硫化亜鉛1~10質量部を含むことを特徴とする請求項1又は2に記載の耐熱架橋電線。
- 前記樹脂組成物中に含まれる臭素系難燃剤の難燃助剤として三酸化アンチモンを1~5質量部含有することを特徴とする請求項1~3のいずれか1項に記載の耐熱架橋電線。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380069703.3A CN104903978A (zh) | 2013-01-07 | 2013-12-18 | 耐热交联电线 |
KR1020157020762A KR20150103715A (ko) | 2013-01-07 | 2013-12-18 | 내열 가교 전선 |
EP13870313.7A EP2942785A4 (en) | 2013-01-07 | 2013-12-18 | HEAT-RESISTANT NETWORKED WIRE |
US14/791,610 US20150310962A1 (en) | 2013-01-07 | 2015-07-06 | Thermally resistant crosslinked wire |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-000413 | 2013-01-07 | ||
JP2013000413A JP6121720B2 (ja) | 2013-01-07 | 2013-01-07 | 耐熱架橋電線 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/791,610 Continuation US20150310962A1 (en) | 2013-01-07 | 2015-07-06 | Thermally resistant crosslinked wire |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014106928A1 true WO2014106928A1 (ja) | 2014-07-10 |
Family
ID=51062250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/083945 WO2014106928A1 (ja) | 2013-01-07 | 2013-12-18 | 耐熱架橋電線 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20150310962A1 (ja) |
EP (1) | EP2942785A4 (ja) |
JP (1) | JP6121720B2 (ja) |
KR (1) | KR20150103715A (ja) |
CN (1) | CN104903978A (ja) |
WO (1) | WO2014106928A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016054242A1 (en) * | 2014-10-02 | 2016-04-07 | Dow Global Technologies Llc | High frequency weldable ethylene-based polymer compositions with good flame retardancy |
WO2017000121A1 (en) * | 2015-06-29 | 2017-01-05 | Dow Global Technologies Llc | Compositions and methods for making crosslinked polyolefins with peroxide initiator |
CN106795340A (zh) * | 2014-08-25 | 2017-05-31 | 株式会社藤仓 | 阻燃性树脂组合物和使用该阻燃性树脂组合物的缆线以及光纤缆线 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6344201B2 (ja) * | 2014-11-04 | 2018-06-20 | 住友電気工業株式会社 | 難燃性樹脂組成物及び難燃性絶縁電線・ケーブル |
CA2968788A1 (en) * | 2014-12-12 | 2016-06-16 | Rhodia Operations | Polyamide compositions comprising a blend of polyamide 6,6, at least one high chain-length polyamide, and al stearate |
JP2018035208A (ja) * | 2016-08-29 | 2018-03-08 | マナック株式会社 | 難燃性樹脂組成物 |
WO2019097874A1 (ja) | 2017-11-16 | 2019-05-23 | 住友電気工業株式会社 | 中空押出成形体、その架橋体、熱収縮チューブ及び多層熱収縮チューブ |
KR102515699B1 (ko) * | 2017-11-17 | 2023-03-30 | 스미토모 덴키 고교 가부시키가이샤 | 수지 성형체 및 탭 리드 |
JP7069976B2 (ja) * | 2018-03-30 | 2022-05-18 | 東ソー株式会社 | 樹脂組成物およびその樹脂組成物を用いた積層体 |
JP7252171B2 (ja) * | 2020-05-01 | 2023-04-04 | 矢崎総業株式会社 | 樹脂組成物、被覆電線及びワイヤーハーネス |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61211353A (ja) * | 1985-03-15 | 1986-09-19 | Furukawa Electric Co Ltd:The | 難燃性ポリオレフイン系樹脂組成物の製造方法 |
JPS6327543A (ja) | 1986-07-21 | 1988-02-05 | Sekisui Jushi Co Ltd | 難燃性樹脂組成物 |
JPS63172753A (ja) * | 1987-01-09 | 1988-07-16 | Fujikura Ltd | 難燃架橋性樹脂組成物 |
JPH0273838A (ja) * | 1988-09-09 | 1990-03-13 | Kurabe:Kk | 難熱性ポリオレフィン組成物 |
JPH02120345A (ja) * | 1988-10-31 | 1990-05-08 | Manatsuku Kk | 難燃性ポリオレフィン組成物 |
JPH0578530A (ja) * | 1991-09-18 | 1993-03-30 | Hitachi Cable Ltd | 難燃性ポリオレフイン組成物 |
JPH06220264A (ja) * | 1993-01-28 | 1994-08-09 | Hitachi Cable Ltd | 難燃性樹脂組成物及び難燃性絶縁電線 |
JPH06313071A (ja) * | 1993-05-06 | 1994-11-08 | Sumitomo Electric Ind Ltd | 耐熱難燃耐油性樹脂組成物とそれからの絶縁電線および熱収縮チューブ |
JPH10324783A (ja) * | 1997-05-23 | 1998-12-08 | Nippon Unicar Co Ltd | 難燃性絶縁カバー用組成物 |
JP2005171172A (ja) | 2003-12-15 | 2005-06-30 | Auto Network Gijutsu Kenkyusho:Kk | 架橋型難燃性樹脂組成物ならびにこれを用いた絶縁電線およびワイヤーハーネス |
JP2009051918A (ja) | 2007-08-25 | 2009-03-12 | Furukawa Electric Co Ltd:The | 難燃性絶縁電線 |
WO2011108590A1 (ja) * | 2010-03-02 | 2011-09-09 | 矢崎総業株式会社 | 自動車用絶縁電線 |
JP2011219530A (ja) * | 2010-04-05 | 2011-11-04 | Autonetworks Technologies Ltd | 電線被覆材用組成物、絶縁電線及びワイヤーハーネス |
JP2011233335A (ja) * | 2010-04-27 | 2011-11-17 | Yazaki Corp | 自動車用電線 |
JP2012067149A (ja) * | 2010-09-21 | 2012-04-05 | J-Power Systems Corp | 難燃耐外傷性組成物及び難燃耐外傷性絶縁電線 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06234889A (ja) * | 1993-02-08 | 1994-08-23 | Sumitomo Electric Ind Ltd | 耐摩耗性組成物及びそれを用いた電線 |
JP3331925B2 (ja) * | 1997-03-31 | 2002-10-07 | 住友電装株式会社 | 耐摩耗性難燃樹脂組成物及びその製造方法並びに絶縁電線 |
JP3835313B2 (ja) * | 2002-03-08 | 2006-10-18 | 住友電装株式会社 | オレフィン系熱可塑性エラストマー組成物および被覆電線 |
KR100454272B1 (ko) * | 2003-11-12 | 2004-10-27 | 엘지전선 주식회사 | 비할로겐계 고분자 조성물 및 이를 이용한 자동차용 전선 |
JP4846991B2 (ja) * | 2004-06-03 | 2011-12-28 | 株式会社オートネットワーク技術研究所 | 被覆電線 |
JP5095426B2 (ja) * | 2008-01-23 | 2012-12-12 | 矢崎総業株式会社 | 被覆電線及びワイヤハーネス |
JP5643139B2 (ja) * | 2011-03-22 | 2014-12-17 | 矢崎総業株式会社 | 被覆電線 |
JP2012221610A (ja) * | 2011-04-05 | 2012-11-12 | Yazaki Corp | 耐熱アルミニウム電線 |
-
2013
- 2013-01-07 JP JP2013000413A patent/JP6121720B2/ja active Active
- 2013-12-18 CN CN201380069703.3A patent/CN104903978A/zh active Pending
- 2013-12-18 KR KR1020157020762A patent/KR20150103715A/ko not_active Application Discontinuation
- 2013-12-18 WO PCT/JP2013/083945 patent/WO2014106928A1/ja active Application Filing
- 2013-12-18 EP EP13870313.7A patent/EP2942785A4/en not_active Withdrawn
-
2015
- 2015-07-06 US US14/791,610 patent/US20150310962A1/en not_active Abandoned
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61211353A (ja) * | 1985-03-15 | 1986-09-19 | Furukawa Electric Co Ltd:The | 難燃性ポリオレフイン系樹脂組成物の製造方法 |
JPS6327543A (ja) | 1986-07-21 | 1988-02-05 | Sekisui Jushi Co Ltd | 難燃性樹脂組成物 |
JPS63172753A (ja) * | 1987-01-09 | 1988-07-16 | Fujikura Ltd | 難燃架橋性樹脂組成物 |
JPH0273838A (ja) * | 1988-09-09 | 1990-03-13 | Kurabe:Kk | 難熱性ポリオレフィン組成物 |
JPH02120345A (ja) * | 1988-10-31 | 1990-05-08 | Manatsuku Kk | 難燃性ポリオレフィン組成物 |
JPH0578530A (ja) * | 1991-09-18 | 1993-03-30 | Hitachi Cable Ltd | 難燃性ポリオレフイン組成物 |
JPH06220264A (ja) * | 1993-01-28 | 1994-08-09 | Hitachi Cable Ltd | 難燃性樹脂組成物及び難燃性絶縁電線 |
JPH06313071A (ja) * | 1993-05-06 | 1994-11-08 | Sumitomo Electric Ind Ltd | 耐熱難燃耐油性樹脂組成物とそれからの絶縁電線および熱収縮チューブ |
JPH10324783A (ja) * | 1997-05-23 | 1998-12-08 | Nippon Unicar Co Ltd | 難燃性絶縁カバー用組成物 |
JP2005171172A (ja) | 2003-12-15 | 2005-06-30 | Auto Network Gijutsu Kenkyusho:Kk | 架橋型難燃性樹脂組成物ならびにこれを用いた絶縁電線およびワイヤーハーネス |
JP2009051918A (ja) | 2007-08-25 | 2009-03-12 | Furukawa Electric Co Ltd:The | 難燃性絶縁電線 |
WO2011108590A1 (ja) * | 2010-03-02 | 2011-09-09 | 矢崎総業株式会社 | 自動車用絶縁電線 |
JP2011219530A (ja) * | 2010-04-05 | 2011-11-04 | Autonetworks Technologies Ltd | 電線被覆材用組成物、絶縁電線及びワイヤーハーネス |
JP2011233335A (ja) * | 2010-04-27 | 2011-11-17 | Yazaki Corp | 自動車用電線 |
JP2012067149A (ja) * | 2010-09-21 | 2012-04-05 | J-Power Systems Corp | 難燃耐外傷性組成物及び難燃耐外傷性絶縁電線 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2942785A4 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10483017B2 (en) | 2014-08-25 | 2019-11-19 | Fujikura Ltd. | Flame retardant resin composition, cable using same and optical fiber cable |
CN106795340B (zh) * | 2014-08-25 | 2020-04-07 | 株式会社藤仓 | 阻燃性树脂组合物和使用该阻燃性树脂组合物的缆线以及光纤缆线 |
CN106795340A (zh) * | 2014-08-25 | 2017-05-31 | 株式会社藤仓 | 阻燃性树脂组合物和使用该阻燃性树脂组合物的缆线以及光纤缆线 |
US10221304B2 (en) | 2014-10-02 | 2019-03-05 | Dow Global Technologies Llc | High frequency weldable ethylene-based polymer compositions with good flame retardancy |
WO2016054242A1 (en) * | 2014-10-02 | 2016-04-07 | Dow Global Technologies Llc | High frequency weldable ethylene-based polymer compositions with good flame retardancy |
CN107075227A (zh) * | 2014-10-02 | 2017-08-18 | 陶氏环球技术有限责任公司 | 具有良好阻燃性的高频可焊乙烯类聚合物组合物 |
CN107075227B (zh) * | 2014-10-02 | 2020-07-10 | 陶氏环球技术有限责任公司 | 具有良好阻燃性的高频可焊乙烯类聚合物组合物 |
CN107709444A (zh) * | 2015-06-29 | 2018-02-16 | 陶氏环球技术有限责任公司 | 用过氧化物引发剂制备交联的聚烯烃的组合物和方法 |
US20180163034A1 (en) * | 2015-06-29 | 2018-06-14 | Dow Global Technologies Llc | Compositions and Methods for Making Crosslinked Polyolefins with Peroxide Initiator |
WO2017000121A1 (en) * | 2015-06-29 | 2017-01-05 | Dow Global Technologies Llc | Compositions and methods for making crosslinked polyolefins with peroxide initiator |
US10703890B2 (en) * | 2015-06-29 | 2020-07-07 | Dow Global Technologies Llc | Compositions and methods for making crosslinked polyolefins with peroxide initiator |
CN107709444B (zh) * | 2015-06-29 | 2021-06-11 | 陶氏环球技术有限责任公司 | 用过氧化物引发剂制备交联的聚烯烃的组合物和方法 |
CN113402804A (zh) * | 2015-06-29 | 2021-09-17 | 陶氏环球技术有限责任公司 | 用过氧化物引发剂制备交联的聚烯烃的组合物和方法 |
CN113402804B (zh) * | 2015-06-29 | 2024-01-09 | 陶氏环球技术有限责任公司 | 用过氧化物引发剂制备交联的聚烯烃的组合物和方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104903978A (zh) | 2015-09-09 |
JP2014132530A (ja) | 2014-07-17 |
US20150310962A1 (en) | 2015-10-29 |
JP6121720B2 (ja) | 2017-04-26 |
EP2942785A1 (en) | 2015-11-11 |
EP2942785A4 (en) | 2016-08-24 |
KR20150103715A (ko) | 2015-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6121720B2 (ja) | 耐熱架橋電線 | |
JP6681158B2 (ja) | 多層絶縁電線及び多層絶縁ケーブル | |
JP6152110B2 (ja) | 難燃性樹脂組成物、難燃性熱収縮チューブ、及び難燃性絶縁電線 | |
JP2006310093A (ja) | ノンハロゲン系絶縁電線およびワイヤーハーネス | |
JP2015002062A (ja) | ノンハロゲン難燃性電線ケーブル | |
JP4255368B2 (ja) | 架橋型難燃性樹脂組成物ならびにこれを用いた絶縁電線およびワイヤーハーネス | |
JP2009051918A (ja) | 難燃性絶縁電線 | |
JP2006179452A (ja) | ノンハロゲン電線、電線束及び自動車用ワイヤーハーネス | |
US20190375147A1 (en) | Hollow extrusion-molded body, crosslinked body thereof, heat-shrinkable tube, and multilayered heat-shrinkable tube | |
JP2015072743A (ja) | 電線及びケーブル | |
JP2019014794A (ja) | 樹脂組成物、樹脂被覆材、自動車用ワイヤーハーネス及び自動車用ワイヤーハーネスの製造方法 | |
JP6065341B2 (ja) | 耐熱難燃性ゴム組成物及び絶縁電線、ゴムチューブ | |
JP4379947B2 (ja) | 難燃性樹脂組成物とそれの絶縁電線、チューブ、熱収縮チューブ、フラットケーブル及び直流用高圧電線 | |
JP2015002063A (ja) | ノンハロゲン難燃性電線 | |
JP7363557B2 (ja) | 難燃性樹脂組成物、難燃性絶縁電線および難燃性ケーブル | |
JP6622519B2 (ja) | 絶縁電線及びこれを用いたワイヤーハーネス | |
JP5449245B2 (ja) | 難燃性樹脂組成物及びそれを用いた成形物品 | |
JP5531971B2 (ja) | 難燃性樹脂組成物を用いた電線・ケーブル | |
JP5637177B2 (ja) | 耐ワニス性電線・耐ワニス性ケーブル | |
JP5695886B2 (ja) | アルミニウム電線及びアルミニウム電線用絶縁体組成物 | |
JP2011054283A (ja) | 電線・ケーブル被覆用難燃性組成物および電線・ケーブル | |
JP7272218B2 (ja) | 難燃性絶縁電線 | |
WO2012005357A1 (ja) | 太陽光集電ケーブル | |
JP2001206993A (ja) | 耐熱難燃性組成物 | |
JP2017069130A (ja) | 絶縁電線 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13870313 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2013870313 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013870313 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20157020762 Country of ref document: KR Kind code of ref document: A |