WO2014097643A1 - 電子部品パッケージおよびその製造方法 - Google Patents

電子部品パッケージおよびその製造方法 Download PDF

Info

Publication number
WO2014097643A1
WO2014097643A1 PCT/JP2013/007503 JP2013007503W WO2014097643A1 WO 2014097643 A1 WO2014097643 A1 WO 2014097643A1 JP 2013007503 W JP2013007503 W JP 2013007503W WO 2014097643 A1 WO2014097643 A1 WO 2014097643A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic component
plating layer
layer
metal foil
metal
Prior art date
Application number
PCT/JP2013/007503
Other languages
English (en)
French (fr)
Inventor
山下 嘉久
中谷 誠一
川北 晃司
享 澤田
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201380043143.4A priority Critical patent/CN104584207A/zh
Priority to US14/422,990 priority patent/US9595651B2/en
Priority to JP2014528749A priority patent/JP5624697B1/ja
Publication of WO2014097643A1 publication Critical patent/WO2014097643A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/647Heat extraction or cooling elements the elements conducting electric current to or from the semiconductor body
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76871Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
    • H01L21/76873Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers for electroplating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76879Filling of holes, grooves or trenches, e.g. vias, with conductive material by selective deposition of conductive material in the vias, e.g. selective C.V.D. on semiconductor material, plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/034Manufacturing methods by blanket deposition of the material of the bonding area
    • H01L2224/0346Plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/038Post-treatment of the bonding area
    • H01L2224/0382Applying permanent coating, e.g. in-situ coating
    • H01L2224/03825Plating, e.g. electroplating, electroless plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • H01L2224/82009Pre-treatment of the connector or the bonding area
    • H01L2224/8203Reshaping, e.g. forming vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92142Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92144Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations

Definitions

  • the present invention relates to an electronic component package and a manufacturing method thereof. More particularly, the present invention relates to a package product including an electronic component and a manufacturing method thereof.
  • a mounting technology for electronic components such as ICs and inductors
  • a mounting technology using a circuit board or a lead frame there is a mounting technology using a circuit board or a lead frame. That is, there are “packages using a circuit board”, “packages using a lead frame”, and the like as general electronic component package forms.
  • a package using a circuit board has a form in which electronic components are mounted on a circuit board.
  • types of such packages there are generally “wire bonding type (W / B type)” and “flip chip type (F / C type)”.
  • the “lead frame type” has a form including a lead frame composed of leads, die pads, and the like.
  • Various electronic components are bonded by soldering or the like in both lead frame type packages and packages using circuit boards.
  • the conventional technology has a problem that heat dissipation characteristics and connection reliability in high-density mounting are not sufficient.
  • the present invention has been made in view of such points, and an object of the present invention is to provide an electronic component package that realizes improvement in heat radiation characteristics and connection reliability in high-density mounting, and a method for manufacturing the same.
  • a method of manufacturing an electronic component package includes: (I) a step of preparing a metal foil having a main surface A on which an electronic component is arranged and a main surface B opposite to the main surface A and provided with a through hole in the electronic component arrangement region of the main surface A; (Ii) A step of placing the electronic component on the metal foil, wherein the electronic component is placed in the electronic component placement region on the main surface A so that the opening of the through hole provided in the metal foil is covered with the electrode of the electronic component.
  • the step of placing (Iii) forming a sealing resin layer on the main surface A side of the metal foil so as to cover the electronic component, and (iv) forming a metal plating layer on the main surface B side of the metal foil,
  • the wet plating method is performed to form the metal plating layer, and the metal plating layer fills (or fills) the through holes of the metal foil.
  • the layer and the metal foil are integrated.
  • An electronic component package is Sealing resin layer, An electronic component embedded in a sealing resin layer, and a metal wiring layer formed on the sealing resin and bonded to an electrode of the electronic component;
  • the metal wiring layer is composed of a metal plating layer directly bonded to the electrode of the electronic component and a metal foil integrated with the metal plating layer, and the metal plating layer includes a dry plating layer and a wet plating layer.
  • the dry plating layer has a bent shape so that it is directly bonded to the electrode of the electronic component, while the wet plating layer is formed due to the bent shape. It is characterized in that it has a form that has a thickness on the metal foil so as to fill the “dent of the layer”, and the contact interface size between the dry plating layer and the electrode is smaller than the electrode surface of the electrode.
  • the electronic component package of the present invention by directly forming a metal plating layer on the electronic component, it is possible to improve heat dissipation characteristics and connection reliability in high-density mounting.
  • FIG. 1 is a process sectional view schematically showing a method of manufacturing an electronic component package according to the invention.
  • FIG. 2 is a process cross-sectional view schematically showing the method for manufacturing an electronic component package of the present invention.
  • FIG. 3 is an explanatory diagram of the arithmetic average roughness Ra.
  • FIG. 4 is a process cross-sectional view schematically showing the method for manufacturing an electronic component package (first embodiment) of the present invention.
  • FIG. 5 is a process cross-sectional view schematically showing the electronic component package manufacturing method (first embodiment) of the present invention.
  • FIG. 6 is a process cross-sectional view schematically showing the electronic component package manufacturing method (second embodiment) of the present invention.
  • FIG. 1 is a process sectional view schematically showing a method of manufacturing an electronic component package according to the invention.
  • FIG. 2 is a process cross-sectional view schematically showing the method for manufacturing an electronic component package of the present invention.
  • FIG. 3 is an explanatory diagram of the arithm
  • FIG. 7 is a schematic diagram (third embodiment) schematically showing an aspect in obtaining a plurality of electronic component package precursors.
  • FIG. 8 is a process cross-sectional view schematically showing the electronic component package manufacturing method (fourth embodiment) of the present invention.
  • FIG. 9 is a cross-sectional view schematically showing the configuration of the electronic component package of the present invention.
  • FIG. 10 is a schematic diagram for explaining “surface bonding (or direct bonding)” in the present invention.
  • FIG. 11 is a cross-sectional view schematically showing the configuration of the electronic component package of the present invention according to the first embodiment.
  • FIG. 12 is a cross-sectional view schematically showing the configuration of the electronic component package of the present invention according to the second embodiment.
  • FIG. 13 is a cross-sectional view schematically showing the configuration of the electronic component package (light emitting device package) of the present invention according to the fourth embodiment.
  • FIG. 14 is a cross-sectional view schematically showing the configuration of a conventional electronic component package.
  • a package using a circuit board can realize high-density mounting, but has a problem in terms of heat dissipation because it uses a circuit board. Also, the substrate cost itself cannot be ignored, and the cost is not always satisfactory. Furthermore, the cost for wire bonding and flip chip mounting is not negligible in the first place, and further cost reduction is desired (for example, an expensive mounter is required for flip chip mounting).
  • solder flash a so-called “solder flash” problem when the whole is sealed with a resin, and it is not necessarily satisfactory in terms of connection reliability. In other words, during heating in module mounting soldering, the solder material used for joining the components in the package may be re-melted, and may leak into a minute gap (flash) or cause a short circuit. .
  • a main object of the present invention is to provide a packaging technique that can satisfy a preferable heat radiation characteristic and connection reliability, and can realize an inexpensive mounting cost.
  • a method for manufacturing an electronic component package comprising: (I) a step of preparing a metal foil having a main surface A on which an electronic component is arranged and a main surface B opposite to the main surface A and provided with a through hole in the electronic component arrangement region of the main surface A; (Ii) A step of placing the electronic component on the metal foil, wherein the electronic component is placed in the electronic component placement region on the main surface A so that the opening of the through hole provided in the metal foil is covered with the electrode of the electronic component.
  • the step of placing (Iii) forming a sealing resin layer on the main surface A side of the metal foil so as to cover the electronic component, and (iv) forming a metal plating layer on the main surface B side of the metal foil,
  • the wet plating method is performed to form the metal plating layer, and the metal plating layer fills (or fills) the through holes of the metal foil.
  • the layer and the metal foil are integrated.
  • One of the features of the method for manufacturing an electronic component package according to one aspect of the present invention is to use a metal foil provided with through holes in the electronic component placement region, and fill the metal foil through holes with a metal plating layer. Then, the dry plating method and the wet plating method are sequentially performed so that the metal plating layer and the metal foil are integrated to form the metal plating layer.
  • an electronic component package obtained by the above manufacturing method is also provided.
  • Such an electronic component package is Sealing resin layer, An electronic component embedded in a sealing resin layer, and a metal wiring layer formed on the sealing resin and bonded to an electrode of the electronic component;
  • the metal wiring layer is composed of a metal plating layer directly bonded to the electrode of the electronic component and a metal foil integrated with the metal plating layer, and the metal plating layer includes a dry plating layer and a wet plating layer.
  • the dry plating layer has a bent shape so that it is directly bonded to the electrode of the electronic component, while the wet plating layer is formed due to the bent shape. It is characterized in that it has a form that has a thickness on the metal foil so as to fill the “dent of the layer”, and the contact interface size between the dry plating layer and the electrode is smaller than the electrode surface of the electrode.
  • the metal wiring layer includes a “metal plating layer directly bonded to the electrode of the electronic component” and “a metal integrated with the metal plating layer”
  • the metal plating layer has a form in which the dry plating layer is bent so as to be directly bonded to the electrode of the electronic component, while the wet plating layer is formed due to the bent form.
  • the metal foil has a thick form on the metal foil and the contact interface size between the dry plating layer and the electrode is smaller than the electrode surface of the electrode.
  • the metal wiring layer in one embodiment of the present invention includes a metal foil, the metal wiring layer can be easily provided thicker and can have particularly high heat dissipation characteristics.
  • the metal foil and metal plating layer (dry plating layer and wet plating layer) constituting the metal wiring layer can be formed from a material such as copper having high thermal conductivity, and provided as a “thick metal wiring layer”. Therefore, heat can be efficiently released to the outside.
  • packaging is achieved without performing “soldering”, that is, a package that does not use “solder material” is realized. Therefore, the disadvantage of “solder flash” is avoided, and “connection reliability” can be improved in that respect.
  • the package according to one embodiment of the present invention has a “substrate-less structure”. Because it is “substrate-less”, no substrate is used, which contributes to low-cost manufacturing. Further, since packaging can be performed by a simple process compared to wire bonding or flip chip mounting, cost reduction can be achieved in this respect. Furthermore, by using the “thick metal foil”, it is possible to form the “thick metal wiring layer” in a short time, and in that respect, the cost can be reduced.
  • FIG. 1 (a) first, as shown in FIG. 1 (a), “a main surface A on which electronic components are arranged and a main surface B opposite to the main surface A are provided. A metal foil 10 ”provided with a through hole 30 in the electronic component placement region 40 on the surface A is prepared.
  • an electronic component placement area 40 is provided on the main surface A of the metal foil 10, and at least one through hole 30 is provided in the electronic component placement area 40.
  • the “electronic component placement region” is a “surface region of the metal foil” in which the electronic component is placed in a later step (ii), that is, a “metal foil region” overlapping the electronic component.
  • the material of the metal foil 10 is Cu (copper), Al (aluminum), Ag (silver), Pd (palladium), Pt (platinum), Ni (nickel), Ti (titanium), Fe (iron), Zn ( Comprising at least one metal material selected from the group consisting of zinc), Zr (zirconium), Nb (niobium), Mo (molybdenum), Sn (tin), Ta (tantalum) and Au (gold) It may be.
  • Cu (copper) and Al (aluminum) are preferable from the viewpoint of ease of processing processes including “formation of through holes”.
  • the thickness of the metal foil 10 is preferably 9 ⁇ m to 2000 ⁇ m, more preferably 18 ⁇ m to 1000 ⁇ m, and still more preferably 200 ⁇ m to 500 ⁇ m (for example, about 300 ⁇ m).
  • the metal foil 10 preferably has a roughened surface. Specifically, the main surface A of the metal foil 10 (surface on which the electronic component placement region 40 is formed) is a roughened surface. Preferred (see the right side view of FIG. 1B).
  • the sealing resin layer 60 is formed on the roughened surface of the metal foil 10 in the later “forming sealing resin layer” process (see the right side of FIG. 1C). Since the resin material of the sealing resin layer bites into the roughened surface, the adhesive force between the metal foil and the sealing resin layer is increased, and a highly reliable package can be realized.
  • the “roughened surface” means that the main surface A of the metal foil is a rough surface (fine uneven surface).
  • the arithmetic average roughness of the surface of the metal foil 10 It means that Rz is 5.0 ⁇ m or more, preferably 7.0 ⁇ m or more (the upper limit value is not particularly limited, but is, for example, 10.0 ⁇ m or less).
  • Rz representing surface roughness” in this specification refers to the roughness “Rz” defined in JIS B0601. In other words, “Rz” in the present invention has only the reference length in the direction of the average line from the roughness curve as shown in FIG. 3 (in the present invention, “cross-sectional profile of the main surface A of the metal foil”).
  • the sum of the absolute value of (Yv) and the average value is obtained, and this value is expressed in micrometers ( ⁇ m) (refer to JIS B0601: 1994).
  • the through hole 30 can be provided by etching the metal foil 10 using photolithography. Or it can also provide by irradiating the metal foil 10 with a laser and drilling holes. Furthermore, the through hole 30 can be provided by mechanical processing such as punching (punching).
  • the shape of the through hole 30 may be, for example, such that the planar shape viewed from above the metal foil is “circular”. However, the shape of the through hole 30 is not particularly limited to “circular”, and other shapes such as an ellipse, an oval, and a rectangle are possible.
  • the hole size of the through hole 30 is preferably smaller than the electrode size of the electronic component. This is because the electronic component is arranged in a later process so that the opening of the through hole 30 of the metal foil 10 is covered with the electrode of the electronic component. That is, the size of the opening surface of the through hole 30 (that is, the area of the planar shape of the through hole when viewed from above the metal foil) is the electrode surface size of the electronic component (that is, the electrode when viewed in the same manner). Is preferably smaller than the area of the planar shape). For example, the opening surface size of the through hole 30 is preferably about 40% to 95%, more preferably about 60% to 90% of the electrode surface size of the electronic component.
  • step (ii) is performed. That is, as shown in FIG. 1B, at least one type of electronic component 50 is arranged on the metal foil 10. Specifically, the electronic component is placed in the electronic component placement region so that the opening (in particular, the opening surface on the main surface A side) of the through hole 30 provided in the metal foil 10 is covered with the electrode 55 of the electronic component. 50 is arranged.
  • step (ii) the electronic component 50 is arranged so that the opening surface of the through hole 30 and the electrode surface of the electronic component 50 overlap each other.
  • the term “... so as to be in the form of being covered” means that the through hole 30 is not visible on the lower side of the metal foil (that is, when viewed from the main surface B side). This means that the electrode 55 blocks the opening surface of the through hole 30 (particularly the opening surface on the main surface A side).
  • the electronic component 50 is a circuit component / circuit element used in the electronics mounting field, and is not particularly limited as long as it has an electrode larger than the opening surface of the through hole 30.
  • IC for example, control IC
  • MOS metal oxide semiconductor
  • a capacitor for example, a power element, a light emitting element (for example, LED)
  • a chip resistor, a chip capacitor, a chip varistor, a chip thermistor, other chip-shaped multilayer filters, connection terminals and the like can be mentioned.
  • step (iii) is performed. That is, as shown in FIG. 1C, the sealing resin layer 60 is formed on the metal foil 10 on the main surface A side so as to cover the electronic component 50, and the electronic component package precursor 100 'is obtained.
  • the encapsulating resin layer 60 can be provided by applying a resin raw material to the electronic component placement surface of the metal foil 10 by a spin coating method, a doctor blade method, or the like, followed by heat treatment, light irradiation, or the like (that is, applied).
  • the sealing resin layer 60 can be provided by thermosetting or photocuring the resin raw material). Or you may provide the sealing resin layer 60 by bonding a resin film etc. with respect to the electronic component arrangement
  • the sealing resin layer 60 can be provided by filling the mold with an uncured powdery or liquid sealing resin and heat curing.
  • the material of the sealing resin layer 60 may be any kind of material as long as it provides insulation, and may be, for example, an epoxy resin or a silicone resin.
  • the thickness of the sealing resin layer 60 is preferably about 0.5 mm to 5.0 mm, more preferably about 1.2 mm to 1.8 mm.
  • step (iv) is performed. That is, as shown in FIGS. 1D and 1E, the metal plating layer 70 is formed on the main surface B side of the metal foil 10. Specifically, the metal plating layer 70 is formed so as to be joined to “the surface of the metal foil”, “the inner wall of the through hole”, and “the electrode exposed surface of the electronic component that covers at one end of the through hole”.
  • the dry plating method is performed on the main surface B side of the metal foil 10 (see FIG. 1D), and then the wet plating method is performed (see FIG. 1E). ) And a metal plating layer 70 is formed.
  • the through hole 30 of the metal foil 10 is filled with the metal plating layer 70, and the metal plating layer 70 and the metal foil 10 are integrated with each other.
  • the dry plating layer 70 ′ that is directly bonded to the electrode of the electronic component is formed through the through hole, and then the dry plating method is carried out by carrying out the wet plating method.
  • a wet plating layer 70 ′′ that is directly bonded to the plating layer is formed, whereby the metal plating layer 70 and the metal foil 10 are integrated (see FIGS. 1D and 1E).
  • the dry plating layer 70 ′ it is preferable to form a layer having a bent shape along the contour shape of the through hole 30 as the dry plating layer 70 ′.
  • the wet plating layer 70 ′′ it is preferable to form a layer having a thickness on the metal foil 10 so as to fill all the through holes 30. That is, the wet plating method is performed.
  • the manufacturing method of the present invention has process characteristics such as “a metal layer is directly formed on the exposed surface of the metal foil and the electrode of the electronic component”.
  • process characteristics such as “a metal layer is directly formed on the exposed surface of the metal foil and the electrode of the electronic component”.
  • the metal plating layer since a “thick metal foil” is used, the metal plating layer only needs to be thick enough to fill and fill the through hole, and a thick metal layer can be provided in a short time. Therefore, the metal plating layer bonded to the electrode of the electronic component and the metal foil bonded to and integrated with the metal plating layer can be suitably used as the “heat dissipation member” or the like.
  • the dry plating method is performed, the inside of the through hole can be filled without voids and formed with good adhesion by the subsequent wet plating method.
  • the dry plating method includes a vacuum plating method (PVD method) and a chemical vapor deposition method (CVD method), and the vacuum plating method (PVD method) further includes sputtering, vacuum deposition, ion plating, and the like.
  • the wet plating method includes an electroplating method (for example, electrolytic plating), a chemical plating method, a hot dipping method, and the like.
  • electroplating method for example, electrolytic plating
  • sputtering may be performed as a dry plating method
  • an electroplating method for example, electrolytic plating
  • the plating layer 70 is formed along the “surface of the metal foil 10”, “the inner wall of the through hole 30”, and “the electrode exposed surface 55 of the electronic component”, and gradually increases in thickness. However, it is sufficient that the thickness is at least enough to fill and fill the inside of the through hole 30. Therefore, the thickness of the metal plating layer 70 outside the through hole 30 is preferably thinner than the thickness of the metal foil 10.
  • the metal plating layer bonded to the electrode of the electronic component, and the metal foil bonded and integrated with the metal plating layer can be thick and provided in a short time.
  • dry plating is performed to form a dry plating layer 70 ′ having a thickness of 100 nm to 1000 nm, while wet plating is performed to a thickness of 1 ⁇ m to 10 ⁇ m (thickness in a region other than the through hole installation region). (See FIG. 1 (e))). That is, the dry plating layer 70 'is very thin, whereas the wet plating layer 70 "is thick. Since the wet plating layer 70 ′′ is so thick, the inside of the through hole 30 can be filled without voids.
  • the dry plating layer 70 ′ formed by the dry plating method includes, for example, at least one metal material selected from the group consisting of Ti (titanium), Cr (chromium), Ni (nickel), and Cu (copper). It is preferable to consist of.
  • the wet plating layer 70 "formed by the wet plating method preferably includes at least one metal material selected from the group consisting of Cu (copper), Ni (nickel), and Al (aluminum).
  • the metal foil 10, the dry plating layer 70 'and the wet plating layer 70 preferably comprise the same kind of metal material. This is because a package with excellent connection reliability can be obtained.
  • the metal foil 10, the dry plating layer 70 ′, and the wet plating layer 70 ′′ may all include at least a copper component (for example, the metal foil 10 is a copper foil, and dry plating is performed).
  • the layer 70 ′ includes the following Cu thin film layer, and the wet plating layer 70 ′′ may be a copper layer).
  • the dry plating layer 70 ′ is not limited to being formed as a single layer, and may be formed as a plurality of layers.
  • a Ti thin film layer and a Cu thin film layer may be formed by sputtering (more specifically, the Cu thin film layer may be formed after the Ti thin film layer is formed).
  • the metal foil 10 and the metal plating layer 70 formed by a dry plating method and a wet plating method integrated with the metal foil 10 are preferably subjected to a patterning process.
  • a patterning process it is preferable to form the metal wiring layer 80 by patterning the metal foil and the metal plating layer.
  • desired wiring formation for example, formation of a desired wiring pattern including an extraction electrode
  • the patterning process itself is not particularly limited as long as it is a process used in the electronics packaging field.
  • a desired patterning process may be performed by using photolithography that performs resist formation, exposure, development, etching, and the like.
  • the metal wiring layer may include a metal wiring layer that is not in contact with the electrode of the electronic component in addition to the metal wiring layer joined to the electrode of the electronic component. This is because heat can be directly radiated from other than the sealing resin surface and the electrode exposed surface of the electronic component.
  • solder resist layer 90 is formed on the surface of the sealing resin layer so as to partially cover the metal wiring layer 80.
  • the solder resist layer 90 may be formed in the same manner as the solder resist formation generally used in the electronics mounting field.
  • the manufacturing method of the present invention can be carried out in various process modes. This will be described below.
  • Such an embodiment is characterized in that “metal foil provided with electronic component positioning means” is prepared in step (i). Specifically, as shown in FIGS. 4A and 4B, as a positioning means provided on the metal foil 10, “a bank-like support member 20 provided on the metal foil so as to surround the electronic component placement region” is used. Use.
  • the bank-like support member 20 supports an electronic component as can be seen from the embodiments shown in FIGS. 4A to 4G, and can therefore be referred to as an “electronic component support”.
  • the bank-like support member 20 is not particularly limited as long as the bank-like support member 20 is provided so as to protrude so as to surround the electronic component placement region 40 and is used for positioning the electronic component in the “electronic component placement step”.
  • the material of the bank-like support member 20 may be resin and / or metal.
  • the resin of the bank-like support member 20 include an epoxy resin, a silicone resin, a polyimide resin, a phenol resin, and an acrylic resin.
  • the bank-like support member 20 can be provided by printing a resin raw material in a pattern shape. Alternatively, it may be provided by using a photo-sensitive resin raw material and using photolithography for performing exposure and development used in the electronics packaging field. Moreover, as a metal material of the electronic component support body 20, Cu (copper), Al (aluminum), or those alloys can be mentioned, for example. In this case, the bank-like support member 20 can be provided by performing metal plating in a pattern shape. Alternatively, the main surface A of the metal foil 10 may be entirely plated with metal, and then etched into a pattern shape using photolithography.
  • the bank-like support member 20 preferably does not have adhesiveness to the electronic component.
  • the height of the bank-like support member 20 may be high enough to substantially position the electronic component and prevent misalignment in the “electronic component placement step”.
  • the height is preferably lower than the height of the component (for example, the height of the bank-like support member 20 may be about 50 to 500 ⁇ m).
  • the bank-like support member 20 may be provided before the through hole 30 is formed, or may be provided after the through hole 30 is formed.
  • the electronic component 50 is arranged on the electronic component arrangement region 40 surrounded by the bank-like support member 20. That is, the electronic component 50 is disposed so as to fit into the bank-like support member 20 on the metal foil. In other words, it can be said that the electronic component 50 is arranged so as to be within a space region surrounded by the bank-like support member 20. Thereby, the electronic component 50 can be arrange
  • the process after the electronic component 50 is arranged is the same as the above-described embodiment, and the desired electronic component package is obtained by forming the sealing resin layer 60 and the metal plating layer 70 (70 ′, 70 ′′).
  • the bank-like support member 20 also has a function of holding and fixing the arranged electronic component 50. Therefore, in the first embodiment, it is possible to more stably perform the process processing after the electronic components are arranged.
  • This embodiment is characterized in that “metal foil provided with electronic component positioning means (positioning means different from the first embodiment)” is prepared in step (i). Specifically, as shown in FIGS. 6A and 6B, “the recessed portion 25 provided in the electronic component placement region by machining the metal foil” is used as positioning means provided in the metal foil 10.
  • the electronic component 50 can be more accurately arranged in the electronic component arrangement region of the metal foil without separately providing the bank-like support member 20 on the metal foil. That is, by using the recessed portion 25, the electronic component can be arranged so that the through hole 30 of the metal foil 10 is reliably covered with the electrode 55 of the electronic component.
  • the metal foil 10 is counterbored to form the recessed portion 25, and the recessed portion 25 is used as the electronic component placement region 40 (FIG. 6A).
  • the electronic component 50 is arranged on the electronic component arrangement region 40 formed by the recessed portion 25.
  • the electronic component 50 is disposed so as to be at least partially fitted into the recess 25 of the metal foil.
  • the electronic component 50 is arranged so as to fit in the space region formed by the recessed portion 25.
  • the recessed portion 25 also has a function of holding and fixing the placed electronic component 50, so that the process processing after placing the electronic component is more stable. Can be implemented automatically.
  • the depth dimension L 1 of the recess 25 is not particularly limited, but may preferably be about 5% to 50%, more preferably about 10% to 30% of the thickness L 2 of the metal foil 10 ( (See FIG. 6 (a)). With such a depth dimension, the electronic component 50 can be particularly preferably held and fixed by the recessed portion 25.
  • the process after the electronic component 50 is arranged is the same as that described above.
  • the desired electronic component package 100 is obtained through the formation of the sealing resin layer 60 and the formation of the metal plating layer 70 (70 ', 70 ").
  • the third embodiment is an embodiment suitable for “collective manufacturing of a plurality of electronic component packages”. That is, according to this embodiment, a plurality of electronic component packages can be manufactured in a lump.
  • a metal foil provided with a plurality of package precursor regions is used.
  • a plurality of positioning means such as “a bank-like support member 20 provided on a metal foil so as to surround the electronic component placement region” or “a recessed portion 25 provided in the electronic component placement region by counterboring the metal foil”.
  • Use metal foil Use metal foil.
  • the electronic components used in the plurality of electronic component packages are respectively arranged so as to be positioned in each of the plurality of package precursor regions (see FIG. 7).
  • an “electronic component package precursor in which a plurality of precursors are integrated” can be collectively obtained. Therefore, finally, when a dicing process is performed (see FIG. 7), a plurality of electronic component packages are obtained. That is, after the step (iv), a plurality of electronic component packages can be obtained by performing a dicing process so that the “plurality of package precursor regions” are separated separately.
  • the fourth embodiment is an embodiment suitable for “manufacturing a light emitting device package”.
  • the present invention is suitable for a light emitting device package even when a light emitting device is included in an electronic component (that is, when a light emitting device is included as an electronic component to be arranged in the electronic component arrangement region in step (ii)).
  • the product can be manufactured.
  • the phosphor layer and the transparent resin layer are formed as the sealing resin layer.
  • the phosphor layer 44 is disposed on the light emitting element 50 disposed on the metal foil 10, and then a transparent resin layer 46 is formed so as to cover the light emitting element and the phosphor layer (FIG. 8A). To (c)).
  • the formation of the phosphor layer and the formation of the transparent resin layer itself may be the same as a method generally used in conventional LED package manufacturing.
  • a process similar to that in the first embodiment or the second embodiment is performed (see FIGS. 8D to 8H).
  • the electronic component package 100 having a desired light emitting device package form can be finally obtained.
  • An electronic component package according to one embodiment of the present invention is a package obtained by the above manufacturing method.
  • FIG. 9 schematically shows a configuration of an electronic component package 100 according to one embodiment of the present invention.
  • the electronic component package 100 includes a sealing resin layer 60, an electronic component 50, and a metal wiring layer 80 bonded to an electrode 55 of the electronic component.
  • the electronic component 50 is embedded in the sealing resin layer 60.
  • the electronic component 50 is embedded in the sealing resin layer 60 so as to be flush with the sealing resin layer 60. That is, the “surface of the electronic component 50” and the “surface of the sealing resin layer 60” are substantially on the same plane. More preferably, the electrode part 55 of the electronic component is flush with the sealing resin layer 60 (that is, the surface of the electrode 55 of the electronic component and the surface of the sealing resin layer 60 are substantially on the same plane. Preferably).
  • the metal wiring layer 80 includes a metal plating layer 70 bonded to the electrode of the electronic component and a metal foil 10 bonded to the metal plating layer.
  • the metal plating layer 70 has a two-layer structure including a “relatively positioned wet plating layer (70 ′′)” and a “relatively positioned dry plating layer (70 ′)”. is doing. Specifically, a dry plating layer 70 ′ is provided so as to be directly bonded to the electrode 55 and the metal foil 10 of the electronic component, and a wet plating layer 70 ′′ is provided on the dry plating layer 70 ′.
  • the expression “relatively positioned outside” in the present invention substantially means that it is located more distal to the “electrode exposed surface of the electronic component”.
  • the expression “positioned relatively inside” substantially means that it is located more proximal to the “electrode exposed surface of the electronic component”.
  • the metal foil 10 included in the metal wiring layer 80 is Cu (copper), Al (aluminum), Ag (silver), Pd (palladium), Pt (platinum), Ni (nickel), Ti (titanium), Fe (iron), Zn (zinc), Zr (zirconium), Nb (niobium), Mo (molybdenum), It comprises at least one metal material selected from the group consisting of Sn (tin), Ta (tantalum), and Au (gold).
  • Cu (copper) and Al (aluminum) are preferable.
  • the thickness of the metal foil 10 is preferably 9 ⁇ m to 2000 ⁇ m, more preferably 18 ⁇ m to 1000 ⁇ m (for example, about 300 ⁇ m).
  • the metal foil 10 is covered with the sealing resin layer 60 so that the roughened surface is joined to the sealing resin layer 60 as shown in FIG. It is preferable.
  • the “roughened surface” substantially means that the arithmetic average roughness Rz of the surface of the metal foil is 5.0 ⁇ m or more, preferably 7.0 ⁇ m or more.
  • one or more types of electronic components 50 are embedded in the sealing resin layer 60.
  • electronic components include an IC (for example, a control IC), an inductor, a semiconductor element (for example, a MOS (metal oxide semiconductor)), a capacitor, a power element, a light emitting element (for example, an LED) chip resistor, a chip capacitor, Examples include chip varistors, chip thermistors, other chip-shaped multilayer filters, and connection terminals.
  • the electrode part 55 of the electronic component is preferably flush with the sealing resin layer 60, and the metal plating layer 70 is provided so as to be joined to the electrode part 55.
  • the sealing resin layer 60 in which the electronic component is embedded includes, for example, an epoxy resin or a silicone resin.
  • the thickness of the sealing resin layer is preferably about 0.5 mm to 5.0 mm, more preferably about 1.2 mm to 1.8 mm.
  • a relatively thick metal foil 10 is preferably used.
  • the thickness of the metal plating layer 70 is preferably thinner than the thickness of the metal foil 10.
  • the thick metal wiring layer 80 is suitably implement
  • an “electronic component electrode” and a “metal foil” are electrically connected to each other via a “metal plating layer”, thereby realizing a suitable wiring form of the metal wiring layer.
  • an electronic component when an electronic component generates heat, an effect that the heat can be suitably radiated through a metal plating layer or a metal foil can be achieved.
  • the dry plating layer 70 ′ constituting the metal plating layer 70 is very thin (preferably may have a nano-order thickness), whereas the wet plating layer 70 ′′ is thick (preferably micron). Most of the metal plating layer 70 is occupied by the wet plating layer 70 ".
  • the dry plating layer 70 ′ preferably has a thickness of 100 nm to 1000 nm (eg, about 300 nm of Ti and about 600 nm of Cu), while the wet plating layer 70 ′′ is preferably about 1 to 10 ⁇ m. Yes.
  • the dry plating layer 70 ′ may have a bent shape so as to be directly bonded to the electrode 55 of the electronic component (see the lower side view of FIG. 9).
  • the wet plating layer 70 ′′ fills the “recessed portion of the dry plating layer 70 ′” formed due to such a bent shape, and has a thickness (more specifically, provided on the metal foil).
  • the thickness of the dry plating layer 70 ′ may be as follows.
  • the dry plating layer 70 ′ is formed by a dry plating method, and therefore, at least one selected from the group consisting of Ti (titanium), Cr (chromium), Ni (nickel), and Cu (copper). It is preferable to comprise the metal material.
  • the dry plating layer 50 ' may be made of other metal materials such as Ag (silver), Al (aluminum), Al alloy, Au (gold), Pt (platinum), Sn (tin) and W (tungsten). ) Etc., and may comprise at least one selected from the group consisting of. Since the dry plating layer can also function as a stress relaxation layer, it can be said that the package of the present invention is excellent in connection reliability.
  • the wet plating layer 70 is formed by a wet plating method, and therefore includes at least one metal material selected from the group consisting of Cu (copper) and Al (aluminum). Further, the material of the wet plating layer 70 ′′ is at least one selected from the group consisting of other metal materials such as silver (Ag), palladium (Pd), platinum (Pt) and nickel (Ni). May be included. However, in the case where “heat dissipation characteristics” are particularly important, the material of the wet plating layer 70 is preferably a material having high thermal conductivity and effectively contributing to the heat dissipation characteristics, and therefore Cu (copper) is particularly preferable.
  • the metal foil 10, the dry plating layer 70 ′ and the wet plating layer 70 ′′ contain the same kind of metal material.
  • the dry plating layer 70 ′ is not limited to being formed as a single layer, and may be a plurality of layers.
  • the dry plating layer 70 ′ may have a two-layer structure including a dry plating layer made of Ti and a dry plating layer made of Cu thereon.
  • the metal wiring layer 80 and the electrode 55 of the electronic component are directly “surface bonded” (or “direct bonded”) to each other by the metal plating layer 70.
  • the metal wiring layer 80 and the electronic component 50 are electrically interconnected.
  • “Surface bonding (or direct bonding)” as used herein refers to a mode in which the main surfaces of each element (upper surface / lower surface) contact each other, in particular, the main surfaces of each element (upper surface / lower surface). Are substantially in contact with each other in a range where they overlap each other (especially, all contact within the range of the through holes of the metal foil).
  • the main surface of the electrode of the electronic component (the lower main surface exposed from the through hole of the metal foil)” and “the main surface of the metal plating layer positioned inside the through hole of the metal foil (the upper main surface).
  • Surface means an aspect in which they all come in contact with each other.
  • “surface bonding (or direct bonding)” used in this specification means a metal plating layer (particularly, the dry plating layer) positioned inside the through hole of the metal foil and the main part of the electrode part of the electronic component. This means a mode in which the surface regions are in full contact (that is, a mode in which “lower main surface region A” and “upper main surface region B” in FIG. 10 are all in contact).
  • the metal plating layer 70 in which the heat of the electronic component 50 is surface bonded (or directly bonded) to the electrode 55 and bonded thereto is surface bonded (or directly bonded) to the electrode 55 and bonded thereto.
  • the metal plating layer 70 and the thick metal foil 10 also function as a heat sink and can particularly effectively contribute to heat dissipation measures for the package.
  • the form that is the surface bonding (or direct bonding) between the electrode 55 of the electronic component and the metal wiring layer 80 has no inclusion that obstructs heat conduction as compared with the case of mounting using wire bonding or bump, and is markedly different. It is in a form that efficiently dissipates heat.
  • the package of the present invention can have excellent heat dissipation characteristics, it can bring about an effect of increasing the characteristics and operation life of the electronic parts. Denaturation and discoloration "can be effectively prevented.
  • surface bonding (or direct bonding) the electric resistance is excellent as compared with the case of electrical connection via wires or bumps. Therefore, in the package of the present invention, an effect of allowing a larger current to flow can be obtained.
  • a light-emitting element package such as an LED package
  • a light-emitting element package with higher luminance can be realized by the present invention due to high heat dissipation characteristics, a large current, and the like.
  • the contact interface size between the dry plating layer 70 ′ and the electrode 55 is smaller than the electrode surface of the electrode 55.
  • the “contact interface size between the dry plating layer 70 ′ and the electrode 55” is preferably about 40% to 95%, more preferably about 60% to 90% of the electrode surface size of the electronic component. .
  • a resist layer may be provided so as to be a more preferable aspect as a packaged product. That is, a resist layer may be provided for the metal wiring layer. More specifically, it is preferable that a solder resist layer 90 is provided so as to at least partially cover the metal wiring layer 80 as shown in FIG.
  • the solder resist layer 90 may be the same as the solder resist generally used in the electronics mounting field.
  • the bank-like support member 20 is embedded in the sealing resin layer 60 as shown in FIG. Yes.
  • the bank-like support member 20 is preferably embedded in the sealing resin layer 60 so as to be flush with the sealing resin layer 60. That is, preferably, “the surface of the bank-like support member 20” and “the surface of the sealing resin layer 60” are substantially on the same plane.
  • the electronic component 50 is also “same”
  • the “surface of the bank-like support member 20” and the “surface of the sealing resin layer 60” are substantially in the preferred embodiment of the electronic component package 100.
  • the “surface of the electronic component 50” and the “surface of the sealing resin layer 60” are substantially on the same plane.
  • the height of the bank-like support member 20 may be about 50 to 500 ⁇ m.
  • the electronic component 50 is embedded at a position closer to the upper surface of the sealing resin layer 60 due to the positioning means, that is, the bank-like support member 20. Therefore, the heat from the electronic component 50 is easily radiated through the upper surface of the sealing resin layer. That is, in this aspect, desirable high heat dissipation characteristics can be suitably realized not only from the viewpoint of the thicker metal wiring layer 80 but also from the viewpoint of the arrangement level of the electronic component 50 in the sealing resin layer 60.
  • the bank-like support member 20 when the bank-like support member 20 is made of a material having high thermal conductivity such as a metal material, the bank-like support member 20 can function as a heat sink like the metal wiring layer 80, and the package It can contribute effectively to further heat dissipation measures.
  • the bank-like support member 20 when the bank-like support member 20 is made of a resin material, the bank-like support member 20 can be used as a stress relaxation member, and an effect of reducing stress that may occur in an electronic component package product can be achieved.
  • the “depression 25” is used as the positioning means in the method of manufacturing the electronic component package product
  • at least a part of the boundary surface between the sealing resin layer 60 and the metal wiring layer 80 is used as shown in FIG.
  • a concave surface is formed on the surface.
  • the electronic component 50 is preferably provided so as to fit in the concave surface 25.
  • the electronic component is generally close to the metal wiring layer 80 (preferably, the portion other than the electrode of the electronic component may be in direct contact with the metal wiring layer 80). Therefore, the heat from the electronic component can be radiated more suitably through the metal wiring layer 80.
  • the recess dimension L 1 of the concave surface 25 is not particularly limited, but is preferably about 5% to 50%, more preferably 10% to 30% of the thickness L 2 of the metal foil portion 10 of the metal wiring layer 80. It may be about (see FIG. 12). With such a depth dimension, the electronic component 50 can be particularly preferably held and fixed by the recessed portion 25.
  • the electronic component package of the present invention can be configured as a light emitting device package. That is, in the case where a light emitting element is included as an electronic component, the light emitting element package as shown in FIG. 13 can be obtained.
  • a phosphor layer and a transparent resin layer are provided.
  • the sealing resin layer in which the electronic component and the electronic component support are embedded as shown in FIG. 13, “the phosphor layer 44 formed on the light emitting element 50” and “ It is preferable that a transparent resin layer 46 ”formed so as to cover the light emitting element 50 and the phosphor layer 44 is provided.
  • a light emitting device package product can be realized as the electronic component package 100 of the present invention.
  • the materials and thicknesses of the “phosphor layer” and “transparent resin layer” may be those conventionally used in general LED packages.
  • the “light emitting element” is an element that emits light, and substantially means, for example, a light emitting diode (LED) and an electronic component including them. Accordingly, the “light emitting element” in the present invention is used to represent an aspect including not only “LED bare chip (ie, LED chip)” but also “discrete type in which the LED chip is molded”. Note that not only the LED chip but also a semiconductor laser chip can be used.
  • the dry plating layer 70 ′ and / or the bank-like support member 20 can be suitably used as the “reflection layer”.
  • the “reflective layer” is positioned immediately below or in the immediate vicinity of the light emitting element, the downward light emitted from the light emitting element can be efficiently reflected by the reflective layer (electronic component support). That is, “light emitted downward” can be directed upward.
  • the dry plating layer 70 'and / or the bank-like support member 20 includes a metal selected from the group consisting of Ag (silver) and Al (aluminum). It is preferable.
  • the electronic component package provided with the bank-like support member 20 is excellent in terms of light extraction from the upper surface of the sealing resin layer.
  • the light emitting element 50 is embedded in a resin layer (particularly, the transparent resin layer 46 described above) at a position closer to the upper surface thereof. . Therefore, in the light emitting device package of the present invention, the light extraction efficiency from the upper surface (light extraction surface) of the resin layer can be improved (see FIG. 13).
  • First aspect A method for manufacturing an electronic component package, comprising: (I) a step of preparing a metal foil having a main surface A on which an electronic component is arranged and a main surface B opposite to the main surface A and provided with a through hole in the electronic component arrangement region of the main surface A; (Ii) a step of placing the electronic component on the metal foil, the step of placing the electronic component in the electronic component placement region so that the opening of the through hole is covered with an electrode of the electronic component; (Iii) forming a sealing resin layer on the main surface A side of the metal foil so as to cover the electronic component, and (iv) forming a metal plating layer on the main surface B side of the metal foil, In step (iv), after performing the dry plating method, the wet plating method is performed to form the metal plating layer, and the metal plating layer fills the through hole of the metal foil, and the metal plating layer, the metal foil, A method for manufacturing an electronic component
  • An electronic device characterized by using a bank-like support member provided on a metal foil so as to surround the electronic component placement region or a recessed portion provided in the electronic component placement region by counterboring the metal foil as the positioning means.
  • Third aspect The method for manufacturing an electronic component package according to the first aspect or the second aspect, wherein the electrode of the electronic component has an electrode surface larger than the opening of the through hole of the metal foil.
  • Fourth aspect In any one of the first to third aspects, the dry plating method is used to form a dry plating layer that is directly bonded to the electrode of the electronic component through the through hole.
  • a method of manufacturing an electronic component package wherein a wet plating layer that directly joins a dry plating layer is formed by performing a plating method.
  • 5th aspect The manufacturing method of the electronic component package characterized by forming in the said 4th aspect the layer which has a bending form along the outline shape of a through-hole as a dry-type plating layer.
  • Sixth aspect The method of manufacturing an electronic component package according to the fourth aspect or fifth aspect, wherein the wet plating layer is a layer having a thickness on the metal foil that fills all the through holes.
  • a dry plating method is performed to form a dry plating layer having a thickness of 100 nm to 1000 nm, while a wet plating method is performed to obtain a thickness of 1 ⁇ m to 10 ⁇ m.
  • a method of manufacturing an electronic component package comprising forming a wet plating layer (thickness in a region other than a through-hole installation region).
  • Eighth aspect The method of manufacturing an electronic component package according to any one of the first to seventh aspects, wherein sputtering is performed as a dry plating method and electroplating is performed as a wet plating method.
  • Ninth aspect Manufacturing an electronic component package according to any one of the first to eighth aspects, wherein the metal wiring layer is formed by subjecting the integrated metal foil and the metal plating layer to a patterning process.
  • Method. Tenth aspect: In any one of the first to ninth aspects, Including a light emitting element as an electronic component to be arranged in step (ii); In the step (iii), instead of forming the sealing resin layer, a phosphor layer is disposed on the light emitting element, and a transparent resin layer is formed so as to cover the light emitting element and the phosphor layer. Manufacturing method.
  • an electronic component package Sealing resin layer, Electronic components embedded in the sealing resin layer, It has a metal wiring layer formed on a sealing resin and bonded to an electrode of an electronic component,
  • the metal wiring layer is composed of a metal plating layer directly joined to the electrode of the electronic component and a metal foil integrated with the metal plating layer, and the metal plating layer includes a dry plating layer and a wet plating layer.
  • the dry plating layer formed due to the bent form of the wet plating layer while the dry plating layer has a bent shape so as to be directly bonded to the electrode of the electronic component.
  • An electronic component package characterized by having a form that fills a recess and has a thickness on a metal foil, and that a contact interface size between a dry plating layer and an electrode is smaller than an electrode surface of the electrode.
  • Twelfth aspect In the eleventh aspect, a bank-like support member provided on the metal foil so as to surround the electronic component, or a recessed portion of the metal foil provided so that the electronic component is at least partially accommodated.
  • An electronic component package characterized by further comprising: Thirteenth aspect : The electronic component according to the eleventh aspect or the twelfth aspect, wherein the thickness of the metal plating layer (thickness in a region other than the hollow portion of the dry plating layer) is thinner than the thickness of the metal foil. package.
  • the electronic component package according to any one of the eleventh to thirteenth aspects, wherein the metal foil has a thickness of 18 ⁇ m to 1000 ⁇ m.
  • the dry plating layer has a thickness of 100 nm to 1000 nm, while the wet plating layer has a thickness of 1 ⁇ m to 10 ⁇ m (other than the depression of the dry plating layer) A thickness of the region).
  • the metal foil comprises at least one metal material selected from the group consisting of Cu and Al;
  • the dry plating layer comprises at least one metal material selected from the group consisting of Ti, Cr, Ni and Cu, and the wet plating layer is at least one type selected from the group consisting of Cu, Ni and Al
  • An electronic component package comprising a metal material.
  • Seventeenth aspect The electronic component package according to the sixteenth aspect, wherein the metal foil, the dry plating layer, and the wet plating layer comprise the same kind of metal material.
  • Eighteenth aspect The electronic component package according to any one of the eleventh to seventeenth aspects, further comprising a resist layer provided on the metal wiring layer.
  • a light emitting element is provided as an electronic component, and a phosphor layer is provided on the light emitting element instead of the sealing resin layer.
  • an electronic component package comprising a transparent resin layer covering the phosphor layer.
  • An electronic component package was produced according to the present invention.
  • the main members used for package manufacture are as follows. The following process was performed to produce an electronic component package.
  • a “board-less”, “wire bondingless bumpless”, and “solder-free” package could be obtained.
  • a bumpless metal plating layer can be formed integrally with a thick metal foil on the “electrode exposed surface of an electronic component”, and the metal plating layer and the thick metal foil can be suitably used as a heat sink. It could be confirmed.
  • the present invention can be suitably used for various applications in the electronics mounting field.
  • the present invention can be suitably applied to a power supply package (POL converter, for example, a step-down DC-DC converter), an LED package, a component built-in module, and the like.
  • POL converter for example, a step-down DC-DC converter
  • LED package for example, a LED package
  • component built-in module for example, a component built-in module, and the like.

Abstract

 本発明の電子部品パッケージを製造するための方法は、(i)電子部品が配置される主面Aおよびそれに対向する主面Bを有し、主面Aの電子部品配置領域にて貫通穴が設けられた金属箔を用意する工程、(ii)電子部品を前記金属箔に配置する工程であって、貫通穴の開口部が電子部品の電極で蓋される形態となるように電子部品を電子部品配置領域に配置する工程、(iii)電子部品を覆うように金属箔の主面A側に封止樹脂層を形成する工程、ならびに、(iv)金属箔の主面B側に金属めっき層を形成する工程を含んで成る。工程(iv)では、乾式めっき法を実施した後で湿式めっき法を実施して金属めっき層を形成しており、金属めっき層によって金属箔の貫通穴が充填され、金属めっき層と金属箔とが一体化される。

Description

電子部品パッケージおよびその製造方法
 本発明は、電子部品パッケージおよびその製造方法に関する。より詳細には、本発明は電子部品を備えたパッケージ品およびその製造方法に関する。
 電子機器の進展に伴い、エレクトロニクス分野では様々な実装技術が開発されている。例示すると、ICやインダクタなどの電子部品の実装技術(パッケージング技術)として、回路基板やリードフレームを用いた実装技術が存在する。つまり、一般的な電子部品のパッケージ形態としては「回路基板を用いたパッケージ」および「リードフレームを用いたパッケージ」などが存在する。
 「回路基板を用いたパッケージ」(図14(a)参照)は、回路基板上に電子部品が実装された形態を有している。かかるパッケージの種類としては「ワイヤボンディング型(W/B型)」と「フリップチップ型(F/C型)」とが一般に存在する。「リードフレーム・タイプ」(図14(b)参照)は、リードやダイパッドなどから成るリードフレームを含んだ形態を有している。リードフレーム・タイプのパッケージ、回路基板を用いたパッケージともに、各種の電子部品がはんだ付けなどでボンディングされている。
米国特許第7927922号公報 米国特許第7202107号公報 特表2008-522396号公報
 しかしながら、従来の技術においては、放熱特性および高密度実装における接続信頼性の点で十分ではないという問題がある。
 本発明は、かかる点に鑑みてなされてものであり、放熱特性および高密度実装における接続信頼性の向上を実現する電子部品パッケージおよびその製造方法を提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係る電子部品パッケージの製造方法は、
 (i)電子部品が配置される主面Aおよびそれに対向する主面Bを有し、主面Aの電子部品配置領域にて貫通穴が設けられた金属箔を用意する工程、
 (ii)電子部品を金属箔に配置する工程であって、金属箔に設けられた貫通穴の開口部が電子部品の電極で蓋されるように電子部品を主面Aにおける電子部品配置領域に配置する工程、
 (iii)電子部品を覆うように金属箔の主面A側に封止樹脂層を形成する工程、ならびに
 (iv)金属箔の主面B側に金属めっき層を形成する工程
を含んで成り、
 工程(iv)では、乾式めっき法を実施した後で湿式めっき法を実施して金属めっき層を形成しており、金属めっき層によって金属箔の貫通穴が充填され(又は埋められ)、金属めっき層と金属箔とが一体化されることを特徴とする。
 また、本発明の一態様に係る電子部品パッケージは、
 封止樹脂層、
 封止樹脂層に埋設された電子部品、および
 封止樹脂上に形成され、かつ、電子部品の電極に接合されている金属配線層
を有して成り、
 金属配線層が、電子部品の電極に対して直接的に接合した金属めっき層およびその金属めっき層と一体化した金属箔から構成されており、また
 金属めっき層が、乾式めっき層と湿式めっき層とから成る2層構造を有し、乾式めっき層が電子部品の電極に直接的に接合するように屈曲した形態を有する一方、湿式めっき層が屈曲した形態に起因して形成された“乾式めっき層の窪み部”を満たして金属箔上に厚みを有する形態を有し、また
 乾式めっき層と電極との接触界面サイズが電極の電極面よりも小さいことを特徴とする。
 本発明の電子部品パッケージによれば、電子部品に、直接、金属めっき層を形成することにより、放熱特性および高密度実装における接続信頼性の向上を実現することができる。
図1は発明の電子部品パッケージの製造方法を模式的に示した工程断面図である。 図2は本発明の電子部品パッケージの製造方法を模式的に示した工程断面図である。 図3は算術平均粗さRaの説明図である。 図4は本発明の電子部品パッケージの製造方法(第1実施形態)を模式的に示した工程断面図である。 図5は本発明の電子部品パッケージの製造方法(第1実施形態)を模式的に示した工程断面図である。 図6は本発明の電子部品パッケージの製造方法(第2実施形態)を模式的に示した工程断面図である。 図7は複数の電子部品パッケージ前駆体を得る際の態様を模式的に表した模式図法(第3実施形態)である。 図8は本発明の電子部品パッケージの製造方法(第4実施形態)を模式的に示した工程断面図である。 図9は本発明の電子部品パッケージの構成を模式的に示す断面図である。 図10は本発明における「面接合(もしくは直接接合)」を説明するための模式図である。 図11は第1実施形態に従った本発明の電子部品パッケージの構成を模式的に示した断面図である。 図12は第2実施形態に従った本発明の電子部品パッケージの構成を模式的に示した断面図である。 図13は第4実施形態に従った本発明の電子部品パッケージ(発光素子パッケージ)の構成を模式的に示した断面図である。 図14は従来技術の電子部品パッケージの構成態様を模式的に示した断面図である。
(本発明の基礎となった知見)
 本発明者は、「背景技術」の欄において記載した従来のパッケージ技術に関し、以下の問題が生じることを見出した。
 「回路基板を用いたパッケージ」(図14(a)参照)は、高密度実装を実現できるものの、回路基板を用いているので放熱性の点では課題を残している。また、基板コスト自体も無視できず、コスト的には必ずしも満足のいくものとはいえない。更に、そもそもワイヤーボンディグやフリップチップ実装を行うためのコストも無視できず、更なるコスト低減が望まれている(例えば、フリップチップ実装では高価なマウンターが必要である)。
 「リードフレーム・タイプ」(図14(b)参照)は、リードフレームで微細な加工が困難であるため、高密度な実装には向かない。更に両タイプともに、はんだ付けがなされているので、全体を樹脂で封止した場合、いわゆる“はんだフラッシュ”の問題が懸念され、接続信頼性の点では必ずしも満足のいくものとはいえない。つまり、モジュール実装はんだ付けにおける加熱に際して、パッケージ内の部品接合に用いられているはんだ材料が、再溶融してしまい、微細な隙間に浸み出たり(フラッシュ)、短絡を起こしたりする虞がある。
 本発明はかかる事情に鑑みて為されたものである。即ち、本発明の主たる目的は、好適な放熱特性および接続信頼性を満たすと共に、低廉な実装コストを実現できるパッケージング技術を提供することである。
 このため、本願発明者らは、従来技術の延長線上で対応するのではなく、新たな方向で対処することによって上記目的の達成を試みた。その結果、上記目的が達成された電子部品パッケージおよびその製造方法の発明に至った。具体的には、本発明の一態様では、電子部品パッケージを製造するための方法であって、
 (i)電子部品が配置される主面Aおよびそれに対向する主面Bを有し、主面Aの電子部品配置領域にて貫通穴が設けられた金属箔を用意する工程、
 (ii)電子部品を金属箔に配置する工程であって、金属箔に設けられた貫通穴の開口部が電子部品の電極で蓋されるように電子部品を主面Aにおける電子部品配置領域に配置する工程、
 (iii)電子部品を覆うように金属箔の主面A側に封止樹脂層を形成する工程、ならびに
 (iv)金属箔の主面B側に金属めっき層を形成する工程
を含んで成り、
 工程(iv)では、乾式めっき法を実施した後で湿式めっき法を実施して金属めっき層を形成しており、金属めっき層によって金属箔の貫通穴が充填され(又は埋められ)、金属めっき層と金属箔とが一体化されることを特徴とする。
 かかる本発明の一態様に係る電子部品パッケージの製造方法の特徴の1つは、電子部品配置領域にて貫通穴が設けられた金属箔を用いると共に、金属めっき層によって金属箔の貫通穴が充填され、金属めっき層と金属箔とが一体化するように乾式めっき法および湿式めっき法を逐次的に実施して金属めっき層を形成することである。
 本発明の一態様では、上記製造方法によって得られる電子部品パッケージも提供される。かかる電子部品パッケージは、
 封止樹脂層、
 封止樹脂層に埋設された電子部品、および
 封止樹脂上に形成され、かつ、電子部品の電極に接合されている金属配線層
を有して成り、
 金属配線層が、電子部品の電極に対して直接的に接合した金属めっき層およびその金属めっき層と一体化した金属箔から構成されており、また
 金属めっき層が、乾式めっき層と湿式めっき層とから成る2層構造を有し、乾式めっき層が電子部品の電極に直接的に接合するように屈曲した形態を有する一方、湿式めっき層が屈曲した形態に起因して形成された“乾式めっき層の窪み部”を満たして金属箔上に厚みを有する形態を有し、また
 乾式めっき層と電極との接触界面サイズが電極の電極面よりも小さいことを特徴とする。
 本発明の一態様に係る電子部品パッケージの特徴の1つは、金属配線層が、「電子部品の電極に対して直接的に接合した金属めっき層」および「その金属めっき層と一体化した金属箔」から構成されており、金属めっき層においては乾式めっき層が電子部品の電極に直接的に接合するように屈曲した形態を有する一方、湿式めっき層がその屈曲した形態に起因して形成された窪み部を満たして金属箔上に厚みを持った形態を有し、かつ、乾式めっき層と電極との接触界面サイズが電極の電極面よりも小さいことである。
 上述したように、本発明の一態様に従えば、望ましい放熱特性および接続信頼性を達成できると共に、低廉な実装コストのパッケージングが実現される。
 “放熱特性”についていえば、本発明の一態様ではワイヤボンディングやバンプを介した実装が為されておらず(即ち、パッケージがワイヤボンディングレス・バンプレスとなっており)、金属配線層を介して効率よく放熱されるようになっている。特に、本発明の一態様における金属配線層は、金属箔が含まれているので、より厚く設けることが容易であり、放熱特性を特に高くすることができる。つまり、金属配線層を構成する金属箔ならびに金属めっき層(乾式めっき層および湿式めっき層)は熱伝導性の高い銅などの材質から形成でき、かつ、“厚みの大きい金属配線層”として設けることができるので、それを介して効率よく熱を外部へと逃がすことができる。
 また、本発明の一態様では“はんだ付け”を行わずにパッケージングを達成しており、即ち“はんだ材料”を用いないパッケージが実現されている。それゆえ、“はんだフラッシュ”なる不都合は回避されており、その点で“接続信頼性”の向上を図ることができる。
 更には、本発明の一態様に係るパッケージは“基板レス構造”となっている。“基板レス”ゆえ、基板を用いていないので、その分だけ低コスト製造に寄与する。また、ワイヤーボンディングやフリップチップ実装などと比べて簡易なプロセスでパッケージングできるので、その点でも低コスト化を図ることができる。さらに、“厚みの大きい金属箔”を利用することで、“厚みの大きい金属配線層”を短時間で形成でき、その点でも低コスト化を図ることができる。
 以下にて、本発明の一態様に係る電子部品パッケージおよびその製造方法を詳細に説明する。尚、図面に示す各種の要素は、本発明の理解のために模式的に示したにすぎず、寸法比や外観などは実物と異なり得ることに留意されたい。
[本発明の製造方法]
 まず、本発明の一態様に係る電子部品パッケージの製造方法について説明する。図1(a)~(f)および図2(a)~(c)に本発明の一態様に係る製造方法に関連したプロセスを模式的に示している。本発明の一態様に係る製造方法は、まず工程(i)として、図1(a)に示すように「電子部品が配置される主面Aおよびそれに対向する主面Bを有し、その主面Aの電子部品配置領域40にて貫通穴30が設けられた金属箔10」を用意する。
 図示するように、金属箔10の主面Aには電子部品配置領域40が設けられており、その電子部品配置領域40に貫通穴30が少なくとも1つ設けられている。本発明において「電子部品配置領域」とは、後刻の工程(ii)にて電子部品を配置する“金属箔の表面領域”、つまり、電子部品と重なる“金属箔領域”である。
 金属箔10の材質としては、Cu(銅)、Al(アルミニウム)、Ag(銀)、Pd(パラジウム)、Pt(白金)、Ni(ニッケル)、Ti(チタン)、Fe(鉄)、Zn(亜鉛)、Zr(ジルコニウム)、Nb(ニオブ)、Mo(モリブデン)、Sn(スズ)、Ta(タンタル)およびAu(金)から成る群から選択される少なくとも1種の金属材料を含んで成るものであってよい。特に、“貫通穴の形成”などを含む加工プロセスの容易さの点からCu(銅)、Al(アルミニウム)が好ましい。金属箔10の厚さは、好ましくは9μm~2000μm、より好ましくは18μm~1000μm、更に好ましくは200μm~500μm(例えば、約300μm)である。金属箔10は、粗化面を有していることが好ましく、具体的には、金属箔10の主面A(電子部品配置領域40を形成する面)が粗化面となっていることが好ましい(図1(b)の右側図参照)。これによって、後刻の“封止樹脂層の形成”プロセスにおいて、金属箔10の粗化面に対して封止樹脂層60が形成されることになり(図1(c)の右側図参照)、封止樹脂層の樹脂材が粗化面に食い込むので金属箔と封止樹脂層との接着力が増し、信頼性の高いパッケージを実現することができる。
 尚、本発明において『粗化面』とは、金属箔の主面Aが粗い面(微細な凹凸面)となっていることを意味しており、例えば金属箔10の表面の算術平均粗さRzが5.0μm以上、好ましくは7.0μm以上となっていることを実質的に意味している(その上限値は特に制限はないものの、例えば10.0μm以下である)。ここで、本明細書でいう「表面粗さを表すRz」とは、JIS B0601で規定されている粗さ“Rz”のことを指している。つまり、本発明における『Rz』は、図3に示すような粗さ曲線(本発明でいうと「金属箔の主面Aの断面形状プロファイル」)からその平均線の方向に基準長さだけを抜き取り、この抜取り部分の平均線から縦倍率の方向に測定した、最も高い山頂から5番目までの山頂の標高(Yp)の絶対値の平均値と、最も低い谷底から5番目までの谷底の標高(Yv)の絶対値の平均値との和を求め、この値をマイクロメートル(μm)で表したものをいう(JIS B0601:1994参照)。
 貫通穴30は、フォトリソグラフィーを利用して金属箔10にエッチング処理を施すことによって設けることができる。あるいは、金属箔10にレーザを照射して穴加工を施すことによっても設けることができる。さらには、パンチング加工(打ち抜き加工)などの機械的加工処理によっても貫通穴30を設けることができる。貫通穴30の形状は、例えば金属箔の上方から見た平面形状が“円形”となるようなものでよい。しかしながら、貫通穴30の形状は、“円形”に特に限定されるものではなく、楕円形、長円形、矩形などの他の形状も可能である。
 貫通穴30の孔サイズは、電子部品の電極サイズよりも小さいことが好ましい。なぜなら、後刻の工程において、金属箔10の貫通穴30の開口部が電子部品の電極で蓋される形態となるように電子部品を配置するからである。つまり、貫通穴30の開口面サイズ(即ち、上述のような金属箔の上方から見た場合の貫通穴の平面形状の面積)が電子部品の電極面サイズ(即ち、同様に見た場合の電極の平面形状の面積)よりも小さいことが好ましい。例えば、貫通穴30の開口面サイズは、電子部品の電極面サイズの好ましくは40%~95%程度であり、より好ましくは60%~90%程度である。
 工程(i)に引き続いて工程(ii)を実施する。つまり、図1(b)に示すように、少なくとも1種類の電子部品50を金属箔10に配置する。具体的には、金属箔10に設けられた貫通穴30の開口部(特に主面A側における開口面)が電子部品の電極55で蓋される形態となるように電子部品配置領域に電子部品50を配置する。
 工程(ii)では、貫通穴30の開口面と電子部品50の電極面とが相互に重なるように電子部品50を配置する。ここでいう『・・・蓋される形態となるように・・・』といった用語は、貫通穴30を金属箔の下側(つまり、主面B側から見た場合に反対側が見えないように電極55が貫通穴30の開口面(特に主面A側における開口面)を塞いでいる態様を意味している。
 電子部品50は、エレクトロニクス実装分野で用いられる回路部品・回路素子であって、貫通穴30の開口面より大きい電極を有していれば、特に制限はない。あくまでも例示にすぎないが、かかる電子部品の種類としては、IC(例えばコントロールIC)、インダクタ、半導体素子(例えば、MOS(金属酸化物半導体))、コンデンサ、パワー素子、発光素子(例えばLED)、チップ抵抗、チップコンデンサ、チップバリスタ、チップサーミスタ、その他チップ状の積層フィルター、接続端子などを挙げることができる。
 工程(ii)に引き続いて工程(iii)を実施する。つまり、図1(c)に示すように、電子部品50を覆うように主面A側の金属箔10上に封止樹脂層60を形成し、電子部品パッケージ前駆体100’を得る。
 封止樹脂層60は、樹脂原料をスピンコート法やドクターブレード法などにより金属箔10の電子部品配置面に塗布した後で熱処理や光照射などに付すことによって設けることができる(即ち、塗布した樹脂原料を熱硬化または光硬化させることによって封止樹脂層60を設けることができる)。あるいは、別法にて金属箔10の電子部品配置面に対して樹脂フィルムなどを貼り合わせることによって封止樹脂層60を設けてもよい。さらには、未硬化状態の粉体状もしくは液状の封止樹脂を金型に充填し、加熱硬化により封止樹脂層60を設けることができる。
 封止樹脂層60の材質は、絶縁性を供するものであればいずれの種類の材質であってもよく、例えば、エポキシ系樹脂やシリコーン系樹脂などであってよい。封止樹脂層60の厚さは、好ましくは0.5mm~5.0mm程度、より好ましくは1.2mm~1.8mm程度である。
 工程(iii)に引き続いて工程(iv)を実施する。つまり、図1(d)および図1(e)に示すように、金属箔10の主面B側に金属めっき層70を形成する。具体的には、「金属箔の表面」、「貫通穴の内壁」および「貫通穴の一端にて蓋をする電子部品の電極露出面」と接合するように、金属めっき層70を形成する。
 図示するように、まず、金属箔10の主面B側に対して乾式めっき法を実施し(図1(d)参照)、次いで、湿式めっき法を実施することによって(図1(e)参照)、金属めっき層70を形成する。これにより、金属箔10の貫通穴30を金属めっき層70で埋め、金属めっき層70と金属箔10とを相互に一体化させる。
 これにつき換言すれば、乾式めっき法を実施することによって、貫通穴を介して電子部品の電極に直接的に接合する乾式めっき層70’を形成し、次いで、湿式めっき法を実施することによって乾式めっき層に直接的に接合する湿式めっき層70”を形成し、それによって、金属めっき層70と金属箔10とを一体化させる(図1(d)および図1(e)参照)。
 図1(d)に示すように、乾式めっき層70’としては、貫通穴30の輪郭形状に沿った屈曲形態を有した層を形成することが好ましい。つまり、乾式めっき法を実施して非常に薄い層を形成することが好ましく、それによって、電子部品パッケージ前駆体100’の輪郭形状に沿った形態の乾式めっき層70’を形成することが好ましい。一方、図1(e)に示すように、湿式めっき層70”としては、貫通穴30を全て満たして金属箔10上に厚みを有する層を形成することが好ましい。つまり、湿式めっき法を実施して相対的に厚い層を形成することが好ましく、それによって、金属箔10の貫通穴30を埋めることが好ましい。
 本発明の製造方法は、「金属箔および電子部品の電極の露出面に対してダイレクトに金属層を形成する」といったプロセス的特徴を有している。特に、“厚みの大きい金属箔”を利用するので、金属めっき層の厚さは貫通穴を充填して埋めるだけの厚さがあればよく、短時間で厚い金属層を設けることができる。それゆえ、電子部品の電極と接合した金属めっき層および金属めっき層と接合して一体化した金属箔を「放熱部材」などとして好適に利用することができる。また、製造プロセスの点では、乾式めっき法を実施するからこそ、後刻の湿式めっき法で貫通穴の内部をボイドなく充填し、かつ、密着力良く形成できるといえる。
 乾式めっき法は、真空めっき法(PVD法)と化学気相めっき法(CVD法)とを含んでおり、真空めっき法(PVD法)が更にスパッタリング、真空蒸着およびイオンプレーディングなどを含んで成る。一方、湿式めっき法は、電気めっき法(例えば電解めっき)、化学めっき法および溶融めっき法などを含んで成る。ある好適な一態様として、本発明の製造方法では、乾式めっき法としてスパッタリングを実施し、湿式めっき法として電気めっき法(例えば電解めっき)を実施してよい。
 乾式めっき法によって形成される乾式めっき層70’(図1(d)参照)と、湿式めっき法によって形成される湿式めっき層70”(図1(e)参照)の2層から構成される金属めっき層70は、その形成工程において、「金属箔10の表面」、「貫通穴30の内壁」および「電子部品の電極露出面55」に沿って形成され、かつ、徐々に厚みを増していくことになるが、その厚さは少なくとも貫通穴30の内部を充填して埋めるだけの厚さがあればよい。それゆえ、貫通穴30の外部における金属めっき層70の厚さは金属箔10の厚さより薄いことが好ましい。これにより、厚みの大きい金属箔を出発材料とすることで、電子部品の電極と接合した金属めっき層、および金属めっき層と接合して一体化した金属箔を厚く、かつ、短時間に設けることができる。好ましくは、乾式めっき法を実施して100nm~1000nm厚さの乾式めっき層70’を形成する一方、湿式めっき法を実施して1μm~10μm厚さ(貫通穴の設置領域以外の領域における厚さ(図1(e)参照))の湿式めっき層70”を形成する。つまり、乾式めっき層70’は非常に薄いのに対して、湿式めっき層70”は厚く設けられる。湿式めっき層70”がそのように厚く設けられるので、貫通穴30の内部をボイドなく充填できる。
 乾式めっき法によって形成される乾式めっき層70’は、例えば、Ti(チタン)、Cr(クロム)、Ni(ニッケル)およびCu(銅)から成る群から選択される少なくとも1種類の金属材料を含んで成ることが好ましい。一方、湿式めっき法によって形成される湿式めっき層70”は、Cu(銅)、Ni(ニッケル)およびAl(アルミニウム)から成る群から選択される少なくとも1種類の金属材料を含んで成ることが好ましい。金属箔10、乾式めっき層70’および湿式めっき層70”が同種の金属材料を含んで成ることが好ましい。接続信頼性に優れたパッケージとすることができるからである。1つ例示すると、金属箔10、乾式めっき層70’および湿式めっき層70”が全て、少なくとも銅成分を含んでなるものであってよい(例えば、金属箔10が銅箔であって、乾式めっき層70’が下記のCu薄膜層を含んでおり、湿式めっき層70”が銅層となっていてよい)。
 あくまでも一例にすぎないが、乾式めっき層70’は、単一層として形成することに限らず、複数の層として形成してもよい。例えば、乾式めっき層70’としては、スパッタリングによりTi薄膜層とCu薄膜層とを形成してよい(より具体的には、Ti薄膜層を形成した後にCu薄膜層を形成してよい)。この場合、かかる2層構造のスパッタ層上に湿式めっき層70”としてCuめっき層を電解めっきで形成することが好ましい。
 金属箔10およびそれと一体化した乾式めっき法および湿式めっき法で形成された金属めっき層70はパターニング処理に付すことが好ましい。具体的には、図1(f)に示すように、金属箔および金属めっき層をパターニング処理することによって、金属配線層80を形成することが好ましい。換言すれば、パターンニング処理によって所望の配線形成(例えば、取り出し電極を含む所望の配線パターン形成)を行うことができる。かかるパターンニング処理自体は、エレクトロニクス実装分野で用いられている処理であれば特に制限はない。例えば、レジスト形成~露光・現像~エッチングなどを実施するフォトリソグラフィーを利用することによって所望のパターニング処理を実施してよい。
 なお、金属配線層には、電子部品の電極と接合された金属配線層の他に、電子部品の電極に接しない金属配線層が存在しても良いことは言うまでもない。封止樹脂面や電子部品の電極露出面以外から直接放熱させることができるからである。
 金属箔および金属めっき層のパターニング処理後においては、かかるパターン化された金属配線層に対してレジスト層を形成することが好ましい。例えば、図2(a)に示すように、金属配線層80を部分的に覆うように封止樹脂層の表面上にてソルダーレジスト層90を形成することが好ましい。かかるソルダーレジスト層90の形成は、エレクトロニクス実装分野で一般に用いられているソルダーレジスト形成と同様であってよい。
 以上のような工程を経ることによって(例えば図2(b)に示すようなダイシング処理なども付加的に経ることによって)、最終的には図2(c)に示すような電子部品パッケージ100を得ることができる。
 本発明の製造方法は、種々のプロセス態様で実施することができる。以下それについて説明する。
(第1実施形態)
 第1実施形態に従った本発明の製造方法のプロセスを図4(a)~(g)および図5(a)~(c)に示す。
 かかる実施形態では、工程(i)において「電子部品の位置決め手段が設けられた金属箔」を用意することを特徴としている。具体的には、図4(a)および(b)に示すように、金属箔10に設けられる位置決め手段として「電子部品配置領域を取り囲むように金属箔上に設けた土手状支持部材20」を用いる。
 「土手状支持部材20」は、図4(a)~(g)に示す態様から分かるように、電子部品を支持するものでもあり、それゆえ、“電子部品支持体”と称すこともできる。土手状支持部材20は、電子部品配置領域40を取り囲むように隆起した形態で設けられ、“電子部品の配置工程”における電子部品の位置決めに供するものであれば、特に制限はない。例えば、土手状支持部材20の材質は、樹脂および/または金属などであってよい。土手状支持部材20の樹脂としては、例えば、エポキシ樹脂、シリコーン樹脂、ポリイミド樹脂、フェノール樹脂、アクリル樹脂などを挙げることができる。この場合、土手状支持部材20は、樹脂原料をパターン形状に印刷することによって設けることができる。あるいは、感光性を有する樹脂原料を用い、エレクトロニクス実装分野で用いられている露光・現像などを実施するフォトリソグラフィーを利用することによって設けてもよい。また、電子部品支持体20の金属材料としては、例えば、Cu(銅)、Al(アルミニウム)、もしくはそれらの合金などを挙げることができる。この場合、土手状支持部材20は、金属めっきをパターン形状に施すことによって設けることができる。あるいは、金属箔10の主面Aに対して金属めっきを全面的に施し、次いで、フォトリソグラフィーを利用してパターン形状にエッチングすることによって設けてもよい。後刻の“電子部品の配置”プロセスにて電子部品のリワーク性を確保する観点から、土手状支持部材20は電子部品に対して粘着性を有していないことが好ましい。土手状支持部材20の高さは、“電子部品の配置工程”において実質的に電子部品を位置決めしてズレを防止するだけの高さがあればよく、電子部品配置領域40の底面からみて電子部品の高さよりも低いことが好ましい(例えば、土手状支持部材20の高さは、50~500μm程度であってよい)。尚、かかる第1実施形態において、土手状支持部材20は、貫通穴30の形成前に設けてよいし、あるいは、貫通穴30の形成後に設けてもよい。
 かかる第1実施形態では、図4(c)に示すように、土手状支持部材20で囲まれた電子部品配置領域40上に電子部品50が配置される。つまり、金属箔上において土手状支持部材20に嵌り込むように電子部品50を配置する。換言すれば、土手状支持部材20で囲まれた空間領域に収まるように電子部品50を配置するともいえる。これにより、電子部品50をより正確に電子部品配置領域に配置することができ、金属箔10の貫通穴30が電子部品の電極55で好適に蓋されることになる。
 電子部品50を配置した後の工程は、上述した態様と同様であり、封止樹脂層60の形成、金属めっき層70(70’、70”)の形成を経ることによって、所望の電子部品パッケージ100を得ることができる(図5参照)。尚、例えば図4(c)に示す態様から分かるように、土手状支持部材20は、配置された電子部品50を保持固定する機能も有しているので、第1実施形態では、電子部品の配置後のプロセス処理をより安定的に実施することができる。
(第2実施形態)
 第2実施形態に従った本発明の製造方法のプロセスを図6(a)~(f)に示す。
 かかる実施形態では、工程(i)において「電子部品の位置決め手段(実施形態1とは異なる位置決め手段)が設けられた金属箔」を用意することを特徴としている。具体的には、図6(a)および(b)に示すように、金属箔10に設けられる位置決め手段として「金属箔をザグリ加工して電子部品配置領域に設けた陥凹部25」を用いる。
 この第2実施形態では、金属箔上に土手状支持部材20を別途設けることなく、電子部品50をより正確に金属箔の電子部品配置領域に配置することができる。つまり、陥凹部25を利用することによって、金属箔10の貫通穴30が電子部品の電極55で確実に蓋されるように電子部品を配置することができる。
 具体的には、工程(i)では、金属箔10をザグリ加工して陥凹部25を形成し、その陥凹部25を電子部品配置領域40として用いる(図6(a))。そして、図6(b)に示すように、陥凹部25により形成された電子部品配置領域40上に電子部品50を配置する。図示されるように、金属箔の陥凹部25に少なくとも部分的に嵌り込むように電子部品50を配置する。換言すれば、陥凹部25により形成された空間領域に収まるように電子部品50を配置する。これにより、電子部品50をより正確に金属箔の電子部品配置領域に位置付られ、金属箔10の貫通穴30が電子部品の電極55で蓋される形態が得られる。
 尚、例えば図6(b)に示す態様から分かるように、陥凹部25は、配置された電子部品50を保持固定する機能をも有しているので、電子部品配置後のプロセス処理をより安定的に実施することができる。
 陥凹部25の深さ寸法Lは、特に制限するわけではないが、金属箔10の厚みLの好ましくは5%~50%程度、より好ましくは10%~30%程度であってよい(図6(a)参照)。かかる深さ寸法であると、陥凹部25によって特に好適に電子部品50を保持固定することが可能となる。
 電子部品50を配置した後の工程は、上述した態様と同様である。つまり、封止樹脂層60の形成、金属めっき層70(70’、70”)の形成などを経ることによって、所望の電子部品パッケージ100が得られることになる。
(第3実施形態)
 かかる第3実施形態は、「複数の電子部品パッケージの一括製造」に適した実施形態である。つまり、かかる実施形態に従えば、複数の電子部品パッケージを一括して製造することができる。具体的には、工程(i)では、パッケージ前駆体領域を複数備えた金属箔を用いる。例えば、「電子部品配置領域を取り囲むように金属箔上に設けた土手状支持部材20」または「金属箔をザグリ加工して電子部品配置領域に設けた陥凹部25」などの位置決め手段を複数有する金属箔を用いる。そして、工程(ii)では、複数のパッケージ前駆体領域の各々にて位置付けられるように、複数の電子部品パッケージにそれぞれ用いられる電子部品を各々配置する(図7参照)。このような工程を経ることによって、結果的に「複数の前駆体が一体化した電子部品パッケージ前駆体」を一括して得ることができる。従って、最終的には、ダイシング処理を行うと(図7参照)、複数個の電子部品パッケージが得られることになる。つまり、工程(iv)の後において、“複数のパッケージ前駆体領域”がそれぞれ別個に分かれるようにダイシング処理することによって、複数個の電子部品パッケージを得ることができる。
(第4実施形態)
 かかる第4実施形態は、「発光素子パッケージの製造」に適した実施形態である。本発明は、電子部品に発光素子が含まれる場合(つまり、工程(ii)において電子部品配置領域に配置する電子部品として発光素子が含まれている場合)であっても、好適に発光素子パッケージ品の製造を行うことができる。かかる場合、封止樹脂層の形成として、蛍光体層および透明樹脂層の形成を行う。具体的には、金属箔10に配置された発光素子50上に蛍光体層44を配置し、次いで、発光素子および蛍光体層を覆うように透明樹脂層46を形成する(図8(a)~(c)参照)。蛍光体層の形成および透明樹脂層の形成自体は、常套的なLEDパッケージ製造で一般に用いられている方法と同様であってよい。以降の工程は、上記第1実施形態または第2実施形態と同様なプロセスを実施する(図8(d)~(h)参照)。これによって、最終的に所望の発光素子パッケージ形態を有する電子部品パッケージ100を得ることができる。
[本発明の電子部品パッケージ]
 次に、本発明の一態様に係る電子部品パッケージについて説明する。本発明の一態様に係る電子部品パッケージは、上記製造方法で得られるパッケージである。
 図9に、本発明の一態様に係る電子部品パッケージ100の構成を模式的に示す。図示されるように、電子部品パッケージ100は、封止樹脂層60、電子部品50、および、電子部品の電極55に接合されている金属配線層80を有して成る。
 図9に示されるように、電子部品50は封止樹脂層60に埋設されている。特に本発明の電子部品パッケージでは電子部品50が封止樹脂層60と面一状態でその封止樹脂層60に埋設されている。つまり、「電子部品50の表面」と「封止樹脂層60の表面」とが実質的に同一平面上にある。より好ましくは、電子部品の電極部分55が封止樹脂層60と面一状態となっている(つまり、電子部品の電極55の表面と封止樹脂層60の表面とが実質的に同一平面上にあることが好ましい)。
 図9に示されるように、金属配線層80は、電子部品の電極に接合された金属めっき層70、および金属めっき層に接合された金属箔10から成る。さらに、金属めっき層70は「相対的に外側に位置付けられた湿式めっき層(70”)」と「相対的に内側に位置付けられた乾式めっき層(70’)」とから成る2層構造を有している。具体的には、電子部品の電極55および金属箔10に直接的に接合するように乾式めっき層70’が設けられており、その乾式めっき層70’上に湿式めっき層70”が設けられている。これから分かるように、本発明でいう「相対的に外側に位置付けられた」といった表現は「電子部品の電極露出面」に対してより遠位に位置していることを実質的に意味する一方、「相対的に内側に位置付けられた」といった表現は、「電子部品の電極露出面」に対してより近位に位置していることを実質的に意味している。
 金属配線層80に含まれている金属箔10(または別の観点でとらえると、封止樹脂層と接着した状態で設けられている金属箔10)は、Cu(銅)、Al(アルミニウム)、Ag(銀)、Pd(パラジウム)、Pt(白金)、Ni(ニッケル)、Ti(チタン)、Fe(鉄)、Zn(亜鉛)、Zr(ジルコニウム)、Nb(ニオブ)、Mo(モリブデン)、Sn(スズ)、Ta(タンタル)、およびAu(金)から成る群から選択される少なくとも1種の金属材料を含んで成る。特に、Cu(銅)、Al(アルミニウム)が好ましい。金属箔10の厚さは、好ましくは9μm~2000μm、より好ましくは18μm~1000μm(例えば、約300μm)である。金属箔10が粗化面を有している場合、同じく図9に示すように、粗化面が封止樹脂層60と接合するように金属箔10が封止樹脂層60に覆われていることが好ましい。尚、上述した通り、『粗化面』とは、金属箔の表面の算術平均粗さRzが5.0μm以上、好ましくは7.0μm以上となっていることを実質的に意味している。
 本発明のパッケージでは、1種類以上の電子部品50が封止樹脂層60に埋設されている。そのような電子部品としては、例えば、IC(例えばコントロールIC)、インダクタ、半導体素子(例えば、MOS(金属酸化物半導体))、コンデンサ、パワー素子、発光素子(例えばLED)チップ抵抗、チップコンデンサ、チップバリスタ、チップサーミスタ、その他チップ状の積層フィルター、接続端子などを挙げることができる。特に本発明では、電子部品の電極部分55が封止樹脂層60と面一状態となっていることが好ましく、その電極部分55と接合するように金属めっき層70が設けられている。
 電子部品が埋設されている封止樹脂層60は、例えば、エポキシ系樹脂やシリコーン系樹脂などを含んで成る。かかる封止樹脂層の厚さは、好ましくは0.5mm~5.0mm程度、より好ましくは1.2mm~1.8mm程度である。
 本発明の電子部品パッケージにおいては、相対的に厚い金属箔10が用いられていることが好ましい。逆の見方をすれば、金属めっき層70の厚さが、金属箔10の厚さより薄いことが好ましい。このように本発明では金属箔10が厚いので、厚い金属配線層80が結果として好適に実現されている。かかる電子部品パッケージにおいて「電子部品の電極」と「金属箔」とが「金属めっき層」を介して相互に電気接続されており、これにより金属配線層の好適な配線形態が実現されている。このような配線形態においては、電子部品が発熱する場合、その熱を金属めっき層や金属箔を介して好適に放熱させることができる効果が奏され得る。
 尚、金属めっき層70を構成する乾式めっき層70’は非常に薄いものであるのに対して(好ましくはナノオーダーの厚さを有し得る)、湿式めっき層70”は厚く(好ましくはミクロンオーダーの厚さを有し得る)、金属めっき層70の大部分は湿式めっき層70”が占めている。例示すると、乾式めっき層70’が好ましくは100nm~1000nm厚さ(例えば約300nmのTi及び約600nmのCuの厚さ)を有する一方、湿式めっき層70”が好ましくは1~10μm程度となっている。
 特に本発明の電子部品パッケージ100では、乾式めっき層70’は電子部品の電極55に直接的に接合するように屈曲した形態を有し得る(図9下側図参照)。その一方、湿式めっき層70”は、かかる屈曲した形態に起因して形成された「乾式めっき層70’の窪み部」を満たして金属箔上に厚み(より具体的にはその上に設けられた乾式めっき層70’上にて厚み)を有する形態を有し得る(図9下側図参照)。
 乾式めっき層70’は、乾式めっき法によって形成されたものであり、それゆえ、Ti(チタン)、Cr(クロム)、Ni(ニッケル)およびCu(銅)から成る群から選択される少なくとも1種類の金属材料を含んで成ることが好ましい。また、乾式めっき層50’の材質は、その他の金属材料、例えば、Ag(銀)、Al(アルミニウム)、Al合金や、Au(金)、Pt(白金)、Sn(スズ)およびW(タングステン)などから成る群から選択される少なくとも1種を含んで成るものであってよい。尚、乾式めっき層は、応力緩和層としても機能し得るので、その点でも本発明のパッケージは接続信頼性に優れているといえる。一方、湿式めっき層70”は、湿式めっき法によって形成されたものであり、それゆえ、Cu(銅)およびAl(アルミニウム)から成る群から選択される少なくとも1種類の金属材料を含んで成ることが好ましい。また、湿式めっき層70”の材質は、その他の金属材料、例えば、銀(Ag)、パラジウム(Pd)、白金(Pt)およびニッケル(Ni)から成る群から選択される少なくとも1種を含んで成るものであってよい。しかしながら“放熱特性”を特に重視する場合では、湿式めっき層70”の材質は熱伝導性が高く放熱特性に効果的に寄与するものが好ましく、それゆえCu(銅)が特に好ましい。接続信頼性に優れたパッケージとする観点からは、金属箔10、乾式めっき層70’および湿式めっき層70”が同種の金属材料を含んで成ることが好ましい。また、乾式めっき層70’は、単一層として形成することに限らず、複数の層であってもよい。例えば、乾式めっき層70’は、Tiからなる乾式めっき層とその上にCuからなる乾式めっき層とから構成された2層構造を有していてもよい。
 図9に示す態様から分かるように、本発明の電子部品パッケージ100では、金属配線層80と電子部品の電極55とは金属めっき層70によって相互にダイクレクトに“面接合”(もしくは“直接接合”)しており、それによって、金属配線層80と電子部品50とが電気的に相互接続されている。ここでいう『面接合(もしくは直接接合)』とは、各要素の主面同士(上側面・下側面)が相互に接触する態様、特に、各要素の主面同士(上側面・下側面)が相互に重なり合う範囲で全て接触する態様(特に金属箔の貫通穴の範囲内において全て接触する態様)を実質的に意味している。具体的には、“電子部品の電極の主面(金属箔の貫通穴から露出する下側の主面)”と“金属箔の貫通穴の内部に位置づけられる金属めっき層の主面(上側主面)”とが相互に重なり合う範囲で全て接触する態様を意味している。換言すれば、本明細書で用いる『面接合(もしくは直接接合)』とは、金属箔の貫通穴の内部に位置づけられる金属めっき層(特にはその乾式めっき層)および電子部品の電極部分の主面領域同士が全接触する態様を意味している(つまり、図10における“下側主面領域A”と“上側主面領域B”とが全て接触する態様に相当する)。
このような“面接合(もしくは直接接合)”であるがゆえ、本発明の電子部品パッケージ100では、電子部品50の熱を電極55に面接合(もしくは直接接合)した金属めっき層70およびそれと接合して一体化した厚い金属箔10を介して効率よく外部へと逃がすことができる。つまり、金属めっき層70および厚い金属箔10は、ヒートシンクとしても機能しており、パッケージの放熱対策に特に効果的に寄与し得る。
 電子部品の電極55と金属配線層80の面接合(もしくは直接接合)である形態は、ワイヤーボンディングやバンプを介在した実装の場合と比較して、熱伝導を阻害する介在物がなく、格段に効率よく放熱される形態になっている。このように、本発明のパッケージは、優れた放熱特性を有し得るので、電子部品の特性や動作寿命が増す効果がもたらされ得、また、熱に起因した“電子部品や封止樹脂の変性・変色”なども効果的に防止され得る。また、“面接合(もしくは直接接合)”ゆえ、ワイヤーやバンプを介した電気接続の場合と比較して電気抵抗にも優れている。そのため、本発明のパッケージでは、より大きな電流を流すことができる効果なども奏され得る。例えば、LEDパッケージなどの発光素子パッケージの場合を例にとると、高放熱特性や大電流などに起因して、より高輝度な発光素子パッケージを本発明で実現できる。
 更には図示するように、本発明の電子部品パッケージ100では、乾式めっき層70’と電極55との接触界面サイズが電極55の電極面よりも小さくなっている。例えば、「乾式めっき層70’と電極55との接触界面サイズ」は、電子部品の電極面サイズの好ましくは40%~95%程度であり、より好ましくは60%~90%程度となっている。
 尚、本発明においてはパッケージ品としてより好適な態様となるようにレジスト層が設けられていてもよい。つまり、金属配線層に対してレジスト層が設けられていてよい。より具体的には、図9に示すように金属配線層80を少なくとも部分的に覆うようにソルダーレジスト層90が設けられていることが好ましい。かかるソルダーレジスト層90は、エレクトロニクス実装分野で一般に用いられているソルダーレジストと同様であってよい。
 電子部品パッケージ品の製造方法にて「土手状支持部材20」が位置決め手段として用いられた場合では、図11に示されるように、封止樹脂層60内に土手状支持部材20が埋設されている。かかる場合、好ましくは土手状支持部材20が封止樹脂層60と面一状態でその封止樹脂層60に埋設されている。つまり、好ましくは「土手状支持部材20の表面」と「封止樹脂層60の表面」とが実質的に同一平面上にある。電子部品50も同様に“面一”となっているので、かかる電子部品パッケージ品100の好適な態様では、「土手状支持部材20の表面」と「封止樹脂層60の表面」とが実質的に同一平面上にあると共に、「電子部品50の表面」と「封止樹脂層60の表面」とが実質的に同一平面上になっている。あくまでも例示にすぎないが、土手状支持部材20の高さ寸法は、50~500μm程度であり得る。
 図11に示される電子部品パッケージ品100では、電子部品50は、位置決め手段、即ち、土手状支持部材20に起因して、封止樹脂層60の上側表面により近い位置に埋設されている。それゆえ、電子部品50からの熱が封止樹脂層の上側表面を介して放熱され易くなっている。つまり、かかる態様では、より厚い金属配線層80の観点だけでなく、封止樹脂層60内における電子部品50の配置レベルの観点からも、望ましい高放熱特性を好適に実現することができる。また、土手状支持部材20が金属材料などの熱伝導性の高い材料から構成されている場合では、かかる土手状支持部材20を、金属配線層80と同様にヒートシンクとして機能させることができ、パッケージの更なる放熱対策に効果的に寄与し得る。一方、土手状支持部材20が樹脂材料から構成されている場合では、かかる土手状支持部材20を応力緩和部材として用いることができ、電子部品パッケージ品において生じ得る応力を減じる効果が奏され得る。
 電子部品パッケージ品の製造方法にて「陥凹部25」が位置決め手段として用いられた場合では、図12に示されるように、封止樹脂層60と金属配線層80との境界面の少なくとも一部に凹面が形成されている。かかる場合、好ましくは電子部品50がかかる凹面25に収まるように設けられている。かかる電子部品パッケージ品では、電子部品が全体的に金属配線層80に近接したものとなり(好ましくは、電子部品の電極以外の部分が金属配線層80と直接的に接触した形態となり得)、それゆえ、電子部品からの熱を金属配線層80を介して更に好適に放熱させることができる。
 尚、凹面25の窪み寸法Lは、特に制限するわけではないが、金属配線層80の金属箔部分10の厚みLの好ましくは5%~50%程度、より好ましくは10%~30%程度であってよい(図12参照)。かかる深さ寸法であると、陥凹部25によって特に好適に電子部品50が保持固定され得る。
 本発明の電子部品パッケージは発光素子パッケージとして構成することが可能である。つまり、電子部品として発光素子が含まれる場合では、図13に示すような発光素子パッケージの構成とすることができる。かかる発光素子パッケージ品100では、蛍光体層および透明樹脂層が設けられていることが好ましい。具体的には、「電子部品および電子部品支持体を埋設している封止樹脂層」に代えて、図13に示すように、「発光素子50上に形成された蛍光体層44」および「発光素子50および蛍光体層44を覆うように形成された透明樹脂層46」が設けられていることが好ましい。これによって、本発明の電子部品パッケージ100として発光素子パッケージ品を実現できる。かかる“蛍光体層”および“透明樹脂層”の材質・厚さなどは、一般的なLEDパッケージにて常套的に用いられているものを採用してよい。尚、本明細書において『発光素子』とは、光を発する素子であって、例えば発光ダイオード(LED)およびそれらを含む電子部品のことを実質的に意味している。従って、本発明における『発光素子』は、「LEDのベアチップ(即ちLEDチップ)」のみならず、「LEDチップがモールドされたディスクリート・タイプ」をも包含した態様を表すものとして用いている。尚、LEDチップに限らず、半導体レーザーチップなども用いることができる。
 図示されるように、発光素子パッケージの場合、乾式めっき層70’および/または土手状支持部材20を“反射層”として好適に用いることができる。かかる場合、発光素子の直下または直近に“反射層”が位置付けられるので、発光素子から発された下向きの光を反射層(電子部品支持体)で効率的に反射させることができる。つまり、“下向きに発された光”を上方へと向けることが可能となる。このような高反射特性を特に重視するならば、乾式めっき層70’および/または土手状支持部材20は、Ag(銀)およびAl(アルミニウム)などから成る群から選択される金属を含んで成ることが好ましい。
 発光素子からの光取出しの点でいえば、土手状支持部材20が設けられている電子部品パッケージは封止樹脂層の上側表面からの光取り出しの点でも優れている。具体的には、かかる電子部品パッケージでは、土手状支持部材20に起因して、発光素子50が樹脂層(特に上記の透明樹脂層46)内において、その上側表面により近い位置に埋設されている。従って、本発明の発光素子パッケージは、樹脂層の上側表面(光取出し面)からの光取出し効率が向上し得る(図13参照)。
 最後に、本発明は下記の態様を有するものであることを確認的に付言しておく。
第1態様:電子部品パッケージを製造するための方法であって、
 (i)電子部品が配置される主面Aおよびそれに対向する主面Bを有し、主面Aの電子部品配置領域にて貫通穴が設けられた金属箔を用意する工程、
 (ii)電子部品を前記金属箔に配置する工程であって、貫通穴の開口部が電子部品の電極で蓋される形態となるように電子部品を電子部品配置領域に配置する工程、
 (iii)電子部品を覆うように金属箔の主面A側に封止樹脂層を形成する工程、ならびに
 (iv)金属箔の主面B側に金属めっき層を形成する工程
を含んで成り、
工程(iv)では、乾式めっき法を実施した後で湿式めっき法を実施して金属めっき層を形成しており、金属めっき層によって金属箔の貫通穴が充填され、金属めっき層と金属箔とが一体化されることを特徴とする、電子部品パッケージの製造方法。
第2態様:上記第1態様において、工程(i)の金属箔として電子部品の位置決め手段が設けられた金属箔を用意し、それによって、工程(ii)では位置決め手段を利用して電子部品を電子部品配置領域に配置しており、
 位置決め手段としては、電子部品配置領域を取り囲むように金属箔上に設けた土手状支持部材、または、金属箔をザグリ加工して電子部品配置領域に設けた陥凹部を用いることを特徴とする電子部品パッケージの製造方法。
第3態様:上記第1態様または第2態様において、電子部品の電極が、金属箔の貫通穴の開口部よりも大きい電極面を有することを特徴とする電子部品パッケージの製造方法。
第4態様:上記第1態様~第3態様のいずれかにおいて、乾式めっき法を実施することによって、貫通穴を介して電子部品の電極に直接的に接合する乾式めっき層を形成し、また
 湿式めっき法を実施することによって、乾式めっき層に直接的に接合する湿式めっき層を形成することを特徴とする電子部品パッケージの製造方法。
第5態様:上記第4態様において、乾式めっき層として、貫通穴の輪郭形状に沿った屈曲形態を有する層を形成することを特徴とする電子部品パッケージの製造方法。
第6態様:上記第4態様または第5態様において、湿式めっき層として、貫通穴を全て満たして金属箔上に厚みを有する層を形成することを特徴とする電子部品パッケージの製造方法。
第7態様:上記第1態様~第6態様のいずれかにおいて、乾式めっき法を実施して100nm~1000nm厚さの乾式めっき層を形成する一方、湿式めっき法を実施して1μm~10μm厚さ(貫通穴の設置領域以外の領域における厚さ)の湿式めっき層を形成することを特徴とする電子部品パッケージの製造方法。
第8態様:上記第1態様~第7態様のいずれかにおいて、乾式めっき法としてスパッタリングを実施する一方、湿式めっき法として電気めっきを実施することを特徴とする電子部品パッケージの製造方法。
第9態様:上記第1態様~第8態様のいずれかにおいて、一体化した金属箔および金属めっき層をパターニング処理に付すことによって、金属配線層を形成することを特徴とする電子部品パッケージの製造方法。
第10態様:上記第1態様~第9態様のいずれかにおいて、
工程(ii)で配置する電子部品として発光素子を含み、
工程(iii)では封止樹脂層の形成に代えて、発光素子上に蛍光体層を配置し、発光素子および蛍光体層を覆うように透明樹脂層を形成することを特徴とする電子部品パッケージの製造方法。
第11態様:電子部品パッケージであって、
 封止樹脂層、
 封止樹脂層に埋設された電子部品、
 封止樹脂上に形成され、かつ、電子部品の電極に接合されている金属配線層
を有して成り、
 金属配線層が、電子部品の電極に対して直接的に接合した金属めっき層および金属めっき層と一体化した金属箔から構成されており、また
 金属めっき層が、乾式めっき層と湿式めっき層とから成る2層構造を有し、乾式めっき層が電子部品の電極に直接的に接合するように屈曲した形態を有する一方、湿式めっき層が屈曲した形態に起因して形成された乾式めっき層の窪み部を満たして金属箔上に厚みを有する形態を有し、また
 乾式めっき層と電極との接触界面サイズが電極の電極面よりも小さいことを特徴とする、電子部品パッケージ。
第12態様:上記第11態様において、電子部品を取り囲むように金属箔上に設けられた土手状支持部材、または、電子部品が少なくとも部分的に収容されるように設けられた金属箔の陥凹部を更に有して成ることを特徴とする電子部品パッケージ。
第13態様:上記第11態様または第12態様において、金属めっき層の厚さ(乾式めっき層の窪み部以外の領域における厚さ)が、金属箔の厚さよりも薄いことを特徴とする電子部品パッケージ。
第14態様:上記第11態様~第13態様のいずれかにおいて、金属箔が18μm~1000μmの厚さを有することを特徴とする電子部品パッケージ。
第15態様:上記第11態様~第14態様のいずれかにおいて、乾式めっき層が100nm~1000nmの厚さを有する一方、湿式めっき層が1μm~10μmの厚さ(乾式めっき層の窪み部以外の領域における厚さ)を有することを特徴とする電子部品パッケージ。
第16態様:上記第11態様~第15態様のいずれかにおいて、
金属箔がCuおよびAlから成る群から選択される少なくとも1種類の金属材料を含んで成り、
 乾式めっき層がTi、Cr、NiおよびCuから成る群から選択される少なくとも1種類の金属材料を含んで成り、また
 湿式めっき層がCu、NiおよびAlから成る群から選択される少なくとも1種類の金属材料を含んで成ることを特徴とする電子部品パッケージ。
第17態様:上記第16態様において、金属箔と乾式めっき層と湿式めっき層とが同種の金属材料を含んで成ることを特徴とする電子部品パッケージ。
第18態様:上記第11態様~第17態様のいずれかにおいて、金属配線層に対して設けられたレジスト層を更に有していることを特徴とする電子部品パッケージ。
第19態様:上記第11態様~第18態様のいずれかにおいて、金属配線層の少なくとも一部が電子部品パッケージの放熱部材となっていることを特徴とする電子部品パッケージ。
第20態様:上記第11態様~第19態様のいずれかにおいて、電子部品として発光素子を有して成り、また
 封止樹脂層に代えて、発光素子上に蛍光体層が設けられ、発光素子および蛍光体層を覆う透明樹脂層が設けられていることを特徴とする電子部品パッケージ。
 以上、本発明の実施形態について説明してきたが、あくまでも典型例を例示したに過ぎない。従って、本発明はこれに限定されず、種々の態様が考えられることを当業者は容易に理解されよう。
  本発明に従って電子部品パッケージを作製した。
《使用材料》
 パッケージ製造に使用した主たる部材は、次の通りである。
Figure JPOXMLDOC01-appb-I000001

以下のプロセスを実施して、電子部品パッケージを作製した。
Figure JPOXMLDOC01-appb-I000002
 上記プロセスを実施することによって“基板レス”、“ワイヤボンディングレス・バンプレス”、“はんだ材料を用いない”パッケージを得ることができた。
また、「電子部品の電極露出面」に対してバンプレスの金属めっき層を厚い金属箔と一体化させて形成することができ、その金属めっき層および厚い金属箔をヒートシンクとして好適に利用できることも確認できた。
 本発明は、エレクトロニクス実装分野の各種用途に好適に用いることができる。例えば、本発明は、電源パッケージ(POLコンバータ、例えば降圧型DC-DCコンバータ)、LEDパッケージや部品内蔵モジュールなどに好適に適用することができる。
関連出願の相互参照
 本出願は、日本国特許出願第2012-279969号(出願日:2012年12月21日、発明の名称「電子部品パッケージおよびその製造方法」)に基づくパリ条約上の優先権を主張する。当該出願に開示された内容は全て、この引用により、本明細書に含まれるとする。
  10 金属箔
  20 土手状支持部材
  25 陥凹部
  30 貫通穴
  40 電子部品配置領域
  50 電子部品
  55 電子部品の電極
  60 封止樹脂層
  44 蛍光体層
  46 透明樹脂層
  70 金属めっき層
  70’ 乾式めっき層
  70” 湿式めっき層
  80 金属配線層
  90 レジスト層
  100’ 電子部品パッケージ前駆体
  100 電子部品パッケージ

Claims (20)

  1. 電子部品パッケージを製造するための方法であって、
     (i)電子部品が配置される主面Aおよびそれに対向する主面Bを有し、該主面Aの電子部品配置領域にて貫通穴が設けられた金属箔を用意する工程、
     (ii)電子部品を前記金属箔に配置する工程であって、前記貫通穴の開口部が電子部品の電極で蓋される形態となるように該電子部品を前記電子部品配置領域に配置する工程、
     (iii)前記電子部品を覆うように前記金属箔の前記主面A側に封止樹脂層を形成する工程、ならびに
     (iv)前記金属箔の前記主面B側に金属めっき層を形成する工程
    を含んで成り、
     前記工程(iv)では、乾式めっき法を実施した後で湿式めっき法を実施して前記金属めっき層を形成しており、該金属めっき層によって前記金属箔の前記貫通穴が充填され、該金属めっき層と該金属箔とが一体化されることを特徴とする、電子部品パッケージの製造方法。
  2. 前記工程(i)の前記金属箔として前記電子部品の位置決め手段が設けられた金属箔を用意し、それによって、前記工程(ii)では該位置決め手段を利用して前記電子部品を前記電子部品配置領域に配置しており、
     前記位置決め手段としては、前記電子部品配置領域を取り囲むように前記金属箔上に設けた土手状支持部材、または、前記金属箔をザグリ加工して前記電子部品配置領域に設けた陥凹部を用いることを特徴とする、請求項1に記載の電子部品パッケージの製造方法。
  3. 前記電子部品の前記電極が、前記金属箔の前記貫通穴の開口部よりも大きい電極面を有することを特徴とする、請求項1に記載の電子部品パッケージの製造方法。
  4. 前記乾式めっき法を実施することによって、前記貫通穴を介して前記電子部品の前記電極に直接的に接合する乾式めっき層を形成し、また
     前記湿式めっき法を実施することによって、前記乾式めっき層に直接的に接合する湿式めっき層を形成することを特徴とする、請求項1に記載の電子部品パッケージの製造方法。
  5. 前記乾式めっき層として、前記貫通穴の輪郭形状に沿った屈曲形態を有する層を形成することを特徴とする、請求項4に記載の電子部品パッケージの製造方法。
  6. 前記湿式めっき層として、前記貫通穴を全て満たして前記金属箔上に厚みを有する層を形成することを特徴とする、請求項4に記載の電子部品パッケージの製造方法。
  7. 前記乾式めっき法を実施して100nm~1000nm厚さの乾式めっき層を形成する一方、前記湿式めっき法を実施して1μm~10μm厚さ(前記貫通穴の設置領域以外の領域における厚さ)の湿式めっき層を形成することを特徴とする、請求項1に記載の電子部品パッケージの製造方法。
  8. 前記乾式めっき法としてスパッタリングを実施する一方、前記湿式めっき法として電気めっきを実施することを特徴とする、請求項1に記載の電子部品パッケージの製造方法。
  9. 前記一体化した金属箔および前記金属めっき層をパターニング処理に付すことによって、金属配線層を形成することを特徴とする、請求項1に記載の電子部品パッケージの製造方法。
  10. 前記工程(ii)で配置する前記電子部品として発光素子を含み、
    前記工程(iii)では前記封止樹脂層の形成に代えて、前記発光素子上に蛍光体層を配置し、該発光素子および該蛍光体層を覆うように透明樹脂層を形成することを特徴とする、請求項1に記載の電子部品パッケージの製造方法。
  11. 電子部品パッケージであって、
     封止樹脂層、
     前記封止樹脂層に埋設された電子部品、および
     前記封止樹脂上に形成され、かつ、前記電子部品の電極に接合されている金属配線層
    を有して成り、
     前記金属配線層が、前記電子部品の電極に対して直接的に接合した金属めっき層および該金属めっき層と一体化した金属箔から構成されており、また
     前記金属めっき層が、乾式めっき層と湿式めっき層とから成る2層構造を有し、該乾式めっき層が前記電子部品の前記電極に直接的に接合するように屈曲した形態を有する一方、該湿式めっき層が該屈曲した形態に起因して形成された該乾式めっき層の窪み部を満たして前記金属箔上に厚みを有する形態を有し、また
     前記乾式めっき層と前記電極との接触界面サイズが該電極の電極面よりも小さいことを特徴とする、電子部品パッケージ。
  12. 前記電子部品を取り囲むように前記金属箔上に設けられた土手状支持部材、または、前記電子部品が少なくとも部分的に収容されるように設けられた前記金属箔の陥凹部を更に有して成ることを特徴とする、請求項11に記載の電子部品パッケージ。
  13. 前記金属めっき層の厚さ(前記乾式めっき層の前記窪み部以外の領域における厚さ)が、前記金属箔の厚さよりも薄いことを特徴とする、請求項11に記載の電子部品パッケージ。
  14. 前記金属箔が18μm~1000μmの厚さを有することを特徴とする、請求項11に記載の電子部品パッケージ。
  15. 前記乾式めっき層が100nm~1000nmの厚さを有する一方、前記湿式めっき層が1μm~10μmの厚さ(前記乾式めっき層の前記窪み部以外の領域における厚さ)を有することを特徴とする、請求項11に記載の電子部品パッケージ
  16. 前記金属箔がCuおよびAlから成る群から選択される少なくとも1種類の金属材料を含んで成り、
     前記乾式めっき層がTi、Cr、NiおよびCuから成る群から選択される少なくとも1種類の金属材料を含んで成り、また
     前記湿式めっき層がCu、NiおよびAlから成る群から選択される少なくとも1種類の金属材料を含んで成ることを特徴とする、請求項11に記載の電子部品パッケージ。
  17. 前記金属箔と前記乾式めっき層と前記湿式めっき層とが同種の金属材料を含んで成ることを特徴とする、請求項16に記載の電子部品パッケージ。
  18. 前記金属配線層に対して設けられたレジスト層を更に有していることを特徴とする、請求項11に記載の電子部品パッケージ。
  19. 前記金属配線層の少なくとも一部が前記電子部品パッケージの放熱部材となっていることを特徴とする、請求項11に記載の電子部品パッケージ。
  20. 前記電子部品として発光素子を有して成り、また
     前記封止樹脂層に代えて、前記発光素子上に蛍光体層が設けられ、該発光素子および該蛍光体層を覆う透明樹脂層が設けられていることを特徴とする、請求項11に記載の電子部品パッケージ。
PCT/JP2013/007503 2012-12-21 2013-12-20 電子部品パッケージおよびその製造方法 WO2014097643A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380043143.4A CN104584207A (zh) 2012-12-21 2013-12-20 电子部件封装以及其制造方法
US14/422,990 US9595651B2 (en) 2012-12-21 2013-12-20 Electronic component package and method for manufacturing same
JP2014528749A JP5624697B1 (ja) 2012-12-21 2013-12-20 電子部品パッケージおよびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-279969 2012-12-21
JP2012279969 2012-12-21

Publications (1)

Publication Number Publication Date
WO2014097643A1 true WO2014097643A1 (ja) 2014-06-26

Family

ID=50978001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007503 WO2014097643A1 (ja) 2012-12-21 2013-12-20 電子部品パッケージおよびその製造方法

Country Status (4)

Country Link
US (1) US9595651B2 (ja)
JP (1) JP5624697B1 (ja)
CN (1) CN104584207A (ja)
WO (1) WO2014097643A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104894514A (zh) * 2015-03-31 2015-09-09 嘉兴中科奥度新材料有限公司 具有金属纳米粒子镀层的多孔金属箔制品及其制备方法
US9812385B2 (en) 2015-05-25 2017-11-07 Panasonic Intellectual Property Management Co., Ltd. Electronic component package including electronic component, metal member, and sealing resin
JP2018018937A (ja) * 2016-07-27 2018-02-01 Shマテリアル株式会社 多列型led用配線部材及びその製造方法
JP2021090070A (ja) * 2019-08-26 2021-06-10 マクセルホールディングス株式会社 半導体装置用基板及び半導体装置
CN115084046A (zh) * 2022-07-20 2022-09-20 威海市泓淋电力技术股份有限公司 一种混合集成半导体封装及其制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015114662A1 (de) * 2015-09-02 2017-03-02 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines optoelektronischen Halbleiter-Bauteils, optoelektronisches Halbleiter-Bauteil, Temporärer Träger
JP6862087B2 (ja) * 2015-12-11 2021-04-21 株式会社アムコー・テクノロジー・ジャパン 配線基板、配線基板を有する半導体パッケージ、およびその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250888A (ja) * 1999-12-22 2001-09-14 General Electric Co <Ge> フレキシブル基板上の相互接続用金属にダイを位置合せするための装置及び方法並びにそれによって得られた製品
JP2002170921A (ja) * 2000-12-01 2002-06-14 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
JP2005019754A (ja) * 2003-06-26 2005-01-20 Sony Corp 複合部品及びその製造方法
JP2009253284A (ja) * 2008-04-02 2009-10-29 General Electric Co <Ge> 取外し可能な相互接続構造体の製造方法
JP2012134500A (ja) * 2010-12-22 2012-07-12 General Electric Co <Ge> 半導体デバイスパッケージを製作するための方法

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3934073A (en) * 1973-09-05 1976-01-20 F Ardezzone Miniature circuit connection and packaging techniques
US4935312A (en) 1987-06-25 1990-06-19 Nippon Mining Co., Ltd. Film carrier having tin and indium plated layers
JPH0198237A (ja) 1987-10-12 1989-04-17 Matsushita Electric Ind Co Ltd 半導体装置の実装方法
US4835067A (en) 1988-01-21 1989-05-30 Electro Alloys Corp. Corrosion resistant electroplating process, and plated article
US4889584A (en) * 1989-03-31 1989-12-26 Meiko Electronics Co., Ltd. Method of producing conductor circuit boards
JP2941523B2 (ja) 1991-10-25 1999-08-25 ローム株式会社 半導体装置
DE69310334T2 (de) * 1992-12-22 1997-08-14 Citizen Watch Co Ltd Mit hartem Kohlenstoff beschichtetes Material
KR0169820B1 (ko) 1995-08-22 1999-01-15 김광호 금속 회로 기판을 갖는 칩 스케일 패키지
JP3728847B2 (ja) 1997-02-04 2005-12-21 株式会社日立製作所 マルチチップモジュールおよびその製造方法
US6319834B1 (en) * 1999-08-18 2001-11-20 Advanced Micro Devices, Inc. Method and apparatus for improved planarity metallization by electroplating and CMP
US6242282B1 (en) * 1999-10-04 2001-06-05 General Electric Company Circuit chip package and fabrication method
US6453549B1 (en) * 1999-12-13 2002-09-24 International Business Machines Corporation Method of filling plated through holes
JP2001217354A (ja) 2000-02-07 2001-08-10 Rohm Co Ltd 半導体チップの実装構造、および半導体装置
EP1814154A1 (en) 2000-02-25 2007-08-01 Ibiden Co., Ltd. Multilayer printed circuit board and multilayer printed circuit manufacturing method
US6566258B1 (en) * 2000-05-10 2003-05-20 Applied Materials, Inc. Bi-layer etch stop for inter-level via
US6452258B1 (en) 2000-11-06 2002-09-17 Lucent Technologies Inc. Ultra-thin composite surface finish for electronic packaging
JP3692314B2 (ja) 2001-07-17 2005-09-07 日東電工株式会社 配線回路基板
KR100447968B1 (ko) 2001-08-07 2004-09-10 주식회사 하이닉스반도체 웨이퍼 레벨 패키지의 제조방법
US20030060041A1 (en) 2001-09-21 2003-03-27 Intel Corporation Dual-stack, ball-limiting metallurgy and method of making same
JP3900961B2 (ja) 2002-02-18 2007-04-04 日立電線株式会社 樹脂接着用銅箔およびその製造方法
JP3682654B2 (ja) 2002-09-25 2005-08-10 千住金属工業株式会社 無電解Niメッキ部分へのはんだ付け用はんだ合金
JP4101705B2 (ja) * 2003-06-18 2008-06-18 三菱伸銅株式会社 金属層形成方法
DE10334576B4 (de) 2003-07-28 2007-04-05 Infineon Technologies Ag Verfahren zum Herstellen eines Halbleiterbauelements mit einem Kunststoffgehäuse
FI117814B (fi) 2004-06-15 2007-02-28 Imbera Electronics Oy Menetelmä elektroniikkamoduulin valmistamiseksi
CN101032034A (zh) * 2004-06-30 2007-09-05 克里公司 用于封装发光器件的芯片级方法和芯片级封装的发光器件
FI117369B (fi) 2004-11-26 2006-09-15 Imbera Electronics Oy Menetelmä elektroniikkamoduulin valmistamiseksi
JP4449724B2 (ja) 2004-12-08 2010-04-14 株式会社デンソー 半導体モジュール
JP2006278774A (ja) 2005-03-29 2006-10-12 Hitachi Cable Ltd 両面配線基板の製造方法、両面配線基板、およびそのベース基板
JP2008251644A (ja) 2007-03-29 2008-10-16 Sharp Corp 半導体発光装置
US8237259B2 (en) 2007-06-13 2012-08-07 Infineon Technologies Ag Embedded chip package
US9953910B2 (en) 2007-06-21 2018-04-24 General Electric Company Demountable interconnect structure
US20080318055A1 (en) 2007-06-21 2008-12-25 General Electric Company Recoverable electronic component
JP5155616B2 (ja) * 2007-07-25 2013-03-06 沖プリンテッドサーキット株式会社 Rfidタグ、rfidシステムおよびrfidタグの製造方法
TWI364801B (en) 2007-12-20 2012-05-21 Chipmos Technologies Inc Dice rearrangement package structure using layout process to form a compliant configuration
TW200947740A (en) 2008-05-05 2009-11-16 Univ Nat Central Process for encapsulating LED chip by fluorescent material
FI123205B (fi) 2008-05-12 2012-12-31 Imbera Electronics Oy Piirimoduuli ja menetelmä piirimoduulin valmistamiseksi
US20090289362A1 (en) 2008-05-21 2009-11-26 Texas Instruments Incorporated Low Inductance Ball Grid Array Device Having Chip Bumps on Substrate Vias
JP5093353B2 (ja) 2008-08-12 2012-12-12 株式会社村田製作所 部品内蔵モジュールの製造方法及び部品内蔵モジュール
JP2010080528A (ja) 2008-09-24 2010-04-08 Shinko Electric Ind Co Ltd 半導体パッケージの製造方法
WO2010041630A1 (ja) 2008-10-10 2010-04-15 日本電気株式会社 半導体装置及びその製造方法
JP5382911B2 (ja) 2008-11-12 2014-01-08 東洋鋼鈑株式会社 酸化物超電導線材用金属積層基板の製造方法及び該基板を用いた酸化物超電導線材
JP5147677B2 (ja) 2008-12-24 2013-02-20 新光電気工業株式会社 樹脂封止パッケージの製造方法
WO2011062252A1 (ja) 2009-11-19 2011-05-26 株式会社村田製作所 部品内蔵モジュールの製造方法および部品内蔵モジュール
JP5577694B2 (ja) 2009-12-24 2014-08-27 株式会社村田製作所 部品内蔵モジュール
JP5450885B2 (ja) 2010-04-02 2014-03-26 インクテック カンパニー リミテッド 両面プリント回路基板の製造方法
JP5647492B2 (ja) 2010-11-15 2014-12-24 新光電気工業株式会社 半導体パッケージの製造方法
JP5118238B2 (ja) * 2011-06-27 2013-01-16 ファナック株式会社 耐食性と歩留まりを向上させたプリント基板
US8900929B2 (en) 2012-03-21 2014-12-02 Stats Chippac, Ltd. Semiconductor device and method for forming openings and trenches in insulating layer by first LDA and second LDA for RDL formation
JP5521130B1 (ja) 2012-08-30 2014-06-11 パナソニック株式会社 電子部品パッケージおよびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250888A (ja) * 1999-12-22 2001-09-14 General Electric Co <Ge> フレキシブル基板上の相互接続用金属にダイを位置合せするための装置及び方法並びにそれによって得られた製品
JP2002170921A (ja) * 2000-12-01 2002-06-14 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
JP2005019754A (ja) * 2003-06-26 2005-01-20 Sony Corp 複合部品及びその製造方法
JP2009253284A (ja) * 2008-04-02 2009-10-29 General Electric Co <Ge> 取外し可能な相互接続構造体の製造方法
JP2012134500A (ja) * 2010-12-22 2012-07-12 General Electric Co <Ge> 半導体デバイスパッケージを製作するための方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104894514A (zh) * 2015-03-31 2015-09-09 嘉兴中科奥度新材料有限公司 具有金属纳米粒子镀层的多孔金属箔制品及其制备方法
US9812385B2 (en) 2015-05-25 2017-11-07 Panasonic Intellectual Property Management Co., Ltd. Electronic component package including electronic component, metal member, and sealing resin
JP2018018937A (ja) * 2016-07-27 2018-02-01 Shマテリアル株式会社 多列型led用配線部材及びその製造方法
JP2021090070A (ja) * 2019-08-26 2021-06-10 マクセルホールディングス株式会社 半導体装置用基板及び半導体装置
JP7412376B2 (ja) 2019-08-26 2024-01-12 マクセル株式会社 半導体装置用基板
CN115084046A (zh) * 2022-07-20 2022-09-20 威海市泓淋电力技术股份有限公司 一种混合集成半导体封装及其制造方法

Also Published As

Publication number Publication date
CN104584207A (zh) 2015-04-29
JPWO2014097643A1 (ja) 2017-01-12
US20150236233A1 (en) 2015-08-20
US9595651B2 (en) 2017-03-14
JP5624697B1 (ja) 2014-11-12

Similar Documents

Publication Publication Date Title
JP5624697B1 (ja) 電子部品パッケージおよびその製造方法
JP5624700B1 (ja) 電子部品パッケージおよびその製造方法
JP5521130B1 (ja) 電子部品パッケージおよびその製造方法
US9825209B2 (en) Electronic component package and method for manufacturing the same
JP5624698B1 (ja) 電子部品パッケージおよびその製造方法
JP6335619B2 (ja) 配線基板及び半導体パッケージ
EP2596691B1 (en) Radiant heat circuit board and method for manufacturing the same
JP2016021557A (ja) 電子部品パッケージ
JP5624696B1 (ja) 電子部品パッケージおよびその製造方法
JP6280710B2 (ja) 配線基板、発光装置及び配線基板の製造方法
JP6317989B2 (ja) 配線基板
JP6392163B2 (ja) 配線基板及びその製造方法、半導体装置
JP6868455B2 (ja) 電子部品パッケージおよびその製造方法
KR100923784B1 (ko) 방열 특성이 우수한 금속 회로 기판 및 그 제조 방법
CN215266272U (zh) 基于铜箔载板的高散热板级扇出封装结构
TWI743618B (zh) 封裝載板及發光裝置
JP2016086082A (ja) 電子部品パッケージおよびその製造方法
JP2016004915A (ja) 電子部品パッケージの製造方法および電子部品パッケージ
JP2015233092A (ja) 電子部品パッケージの製造方法および電子部品パッケージ
CN113327900A (zh) 基于铜箔载板的高散热板级扇出封装结构及其制备方法
KR20120009727A (ko) 방열회로기판 및 그의 제조 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014528749

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13866028

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14422990

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13866028

Country of ref document: EP

Kind code of ref document: A1