WO2014086122A1 - 连续化无溶剂制备高纯度akd的设备及方法 - Google Patents

连续化无溶剂制备高纯度akd的设备及方法 Download PDF

Info

Publication number
WO2014086122A1
WO2014086122A1 PCT/CN2013/072498 CN2013072498W WO2014086122A1 WO 2014086122 A1 WO2014086122 A1 WO 2014086122A1 CN 2013072498 W CN2013072498 W CN 2013072498W WO 2014086122 A1 WO2014086122 A1 WO 2014086122A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
acid chloride
inner cylinder
heat exchange
continuously
Prior art date
Application number
PCT/CN2013/072498
Other languages
English (en)
French (fr)
Inventor
孙宝篪
谭安琪
Original Assignee
苏州天马精细化学品股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州天马精细化学品股份有限公司 filed Critical 苏州天马精细化学品股份有限公司
Priority to JP2015544311A priority Critical patent/JP6051313B2/ja
Priority to US14/649,703 priority patent/US9562027B2/en
Priority to EP13860044.0A priority patent/EP2930172B1/en
Publication of WO2014086122A1 publication Critical patent/WO2014086122A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D305/00Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms
    • C07D305/02Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms not condensed with other rings
    • C07D305/04Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D305/08Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/70Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles, blades or arms
    • B01F27/707Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles, blades or arms the paddles co-operating, e.g. intermeshing, with elements on the receptacle wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0066Stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1806Stationary reactors having moving elements inside resulting in a turbulent flow of the reactants, such as in centrifugal-type reactors, or having a high Reynolds-number
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1812Tubular reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/20Stationary reactors having moving elements inside in the form of helices, e.g. screw reactors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/87Preparation of ketenes or dimeric ketenes
    • C07C45/89Preparation of ketenes or dimeric ketenes from carboxylic acids, their anhydrides, esters or halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/88Ketenes; Dimeric ketenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D305/00Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms
    • C07D305/02Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms not condensed with other rings
    • C07D305/10Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms not condensed with other rings having one or more double bonds between ring members or between ring members and non-ring members
    • C07D305/12Beta-lactones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00076Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00076Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
    • B01J2219/00081Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00092Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00094Jackets

Definitions

  • the present invention relates to a process for continuously preparing AKD (mercapto or alkenyl enone dimer), and in particular to a method for continuously measuring and continuously reacting a raw material in the absence of a solvent. High purity AKD method. Background technique
  • AKD mercapto or alkenyl enone dimer
  • the AKD products currently produced on an industrial scale are obtained by batch production. As the market demand grows, this type of production shows great limitations and many defects, such as high quality fluctuations, high labor costs, large raw materials and energy consumption. In recent years, the continuous preparation of AKD has become the development direction of large-scale production.
  • CN1596252A disclose a method for continuously preparing AKD, but the above method is to continuously add the raw acid chloride and the tertiary amine of the raw material in a one-time continuous whole, which will cause the reaction temperature to rise sharply, and the material viscosity is drastic. Increased, difficult to operate, can not get high purity production p
  • Chinese patent CN101845030A also discloses a method for continuously preparing AKD.
  • This patent uses a specially designed reactor, the main body of which is a conveyor with interrupted vanes, into which a fixed stir bar is inserted.
  • the tertiary amine of one of the materials is added in one time, and the other acid chloride is added in two portions.
  • the purity of the product is greatly improved compared with the control, and the iodine value of the obtained product can be stabilized at 43,
  • the iodine value is about 2 lower than the iodine value of the batch produced product, and the melting point is about 0.5 ⁇ rC, which means that there are more impurities, the product purity is not high enough, and the product quality is not good; if the material acid chloride is added three times, Due to the limitation of the length of the reactor, the reaction time is short, especially after the last batch of materials is added, the stirring is insufficient, and the purity of the obtained product is not significantly improved.
  • the above factors affecting the quality of the obtained product are as follows: (1) In the absence of solvent, the reaction proceeds very rapidly.
  • the object of the present invention is to overcome the deficiencies of the prior art and to provide a stable and continuous method for preparing high-purity AKD to meet the needs of industrial scale production.
  • the present invention adopts a technical scheme for continuously purifying a solvent-free apparatus for preparing high-purity AKD:
  • the apparatus used includes a reactor capable of continuously mixing a raw material, and the reactor has The inner cylinder and the outer cylinder are coaxially arranged.
  • the inner cylinder is driven by the motor to rotate relative to the outer cylinder, and a ring-shaped cylindrical passage is formed between the inner cylinder and the outer cylinder, and the annular cylindrical passage is divided into the conveying section along the axial direction.
  • a mixing section and the conveying section and the mixing section are arranged one above the other in the axial direction of the annular cylindrical passage, wherein the conveying section is provided with blades for conveying and stirring materials, and the root of the blade is fixed on the inner cylinder, the blade is The end portion is matched with the inner wall of the outer cylinder, and the mixing section is provided with a shearing piece and a kneading piece for shearing and mixing the material, the shearing piece is composed of a supporting block and a shearing bar, and one end of the supporting block is fixed in the inner cylinder The other end is fixedly connected with the shear rod, and one side of the shear rod is matched with the inner wall of the outer cylinder, and the kneading piece is composed of a strut and a kneading block, one end of the strut is fixed on the outer cylinder, and the other end is fixed.
  • the kneading block is fixedly connected, and one side of the kneading block is matched with the outer wall of the inner cylinder;
  • the reactor is provided with a tertiary amine feed port connecting the annular column passage, three to ten acid chloride feed ports and one discharge port a tertiary amine feed port and a first acid chloride feed port are located at one end of the annular cylindrical passage in the reactor, and one discharge port is located at the other end of the annular cylindrical passage, and the remaining respective acid chloride feed ports are An acid chloride feed port is arranged along the axial interval of the annular cylindrical passage;
  • the reactor is also equipped with two sets of heat exchange systems inside and outside, wherein the inner heat exchange system uses the inner wall of the inner cylinder as a heat exchange interface, and The pipeline, the heat exchange medium and the inner cavity of the inner cylinder are formed, and the outer wall of the outer heat exchange system is used as a heat exchange interface, and is composed of a pipeline, a heat exchange medium
  • the blade may be a spiral blade, and a stirring rod is disposed in the interval of the blade, the stirring rod has a column shape, one end of which is fixedly mounted on the outer tube, and the other end and the inner tube The outer wall clearance fits.
  • the annular cylindrical passage is a chamber formed between the inner cylinder and the outer cylinder, and the cross section of the annular cylindrical passage is seen as an annular space in the radial direction, and is viewed as an axial direction. A transparent ring-shaped cylindrical space.
  • the support block is in the form of a block, one end of which is fixed on the inner tube, the other end extends to the inner wall of the outer tube and is fixedly connected with a shear rod; the shear rod is rod-shaped, sheared One side of the rod cooperates with the inner wall of the outer cylinder.
  • the shear rod can scrape the material adhered to the inner wall of the outer cylinder.
  • the support rod has a rod shape, one end of which is fixed on the outer cylinder, and the other end extends to the outer wall of the inner cylinder and is fixedly connected with the kneading block; the kneading block is in the form of a block, and the kneading block is The side is matched with the outer wall of the inner cylinder.
  • the inner cylinder is driven by the motor to rotate relative to the outer cylinder, and the kneading block can scrape the material adhered to the outer wall of the inner cylinder.
  • the internal heat exchange system is provided with a rotary joint, and the rotary joint is connected to the inner cavity of the inner cylinder.
  • the water jacket is fixedly mounted on the outer wall of the outer cylinder, and has a casing, an inner casing, an upper head, a lower head, an inlet pipe and an outlet pipe structure.
  • the device may be formed by connecting at least two devices having the same internal structure in series.
  • the raw material is a tertiary amine and an acid chloride
  • the tertiary amine used is:
  • R1, R2, and R3 are a C1 to C6 fluorenyl group, an alkenyl group or a cyclodecyl group;
  • R is a decyl or alkenyl group of C8 C22;
  • the apparatus used includes a reactor capable of continuously mixing and reacting raw materials, and the reactor has an inner cylinder and an outer cylinder which are coaxially arranged.
  • the inner cylinder is driven by the motor to rotate relative to the outer cylinder, and the inner cylinder and the outer cylinder Forming a ring-shaped cylindrical passage between the cylinders, the annular cylindrical passage is divided into a conveying section and a mixing section in the axial direction, and the conveying section and the mixing section are arranged one above another in the axial direction of the annular cylindrical passage, wherein the conveying section There are blades for conveying and stirring materials, and the root of the blade is fixed on the inner cylinder, and the end of the blade is matched with the inner wall of the outer cylinder, and the mixing section is provided with shearing sheets and kneading for shearing and mixing materials.
  • the cutting piece is composed of a supporting block and a shearing rod.
  • One end of the supporting block is fixed on the inner cylinder, and the other end is fixedly connected with the shearing rod.
  • One side of the shearing rod is matched with the inner wall of the outer cylinder, and the kneading piece is supported by the supporting rod.
  • the kneading block is composed, one end of the strut is fixed on the outer cylinder, and the other end is fixedly connected to the kneading block, one side of the kneading block is matched with the outer wall of the inner cylinder;
  • the reactor is provided with a connecting ring-shaped channel a tertiary amine feed port, three to ten acid chloride feed ports and one discharge port, one tertiary amine feed port and the first acid chloride feed port are located at one end of the axial direction of the ring cylindrical passage in the reactor, one discharge The mouth is located at the other end of the annular cylindrical passage, and the remaining respective acid chloride feed ports are arranged along the axial interval of the annular cylindrical passage from the first acid chloride feed port; the reactor is also equipped with two sets of heat exchange inside and outside.
  • the system wherein the inner heat exchange system uses the inner wall of the inner cylinder as a heat exchange interface, and is composed of a pipeline, a heat exchange medium and an inner cavity of the inner cylinder, and the outer wall of the outer heat exchange system serves as a heat exchange interface, and The pipeline, the heat exchange medium and the water jacket on the outer edge of the outer cylinder are formed;
  • the raw material to be continuously fed to the reactor is prepared in advance, and the molar ratio of the tertiary amine to the acid chloride in any unit time is 1.05 1.2:1, wherein the acid chloride added to the reactor is continuously divided into three to ten channels. Add more points, the amount of acid chloride added per channel is 10 ⁇ 60% of the total weight of the acid chloride added in any unit time ;
  • the tertiary amine is continuously added from the tertiary amine feed port in the reactor by using a metering pump as required in the first step, and the acid chloride is divided into three to ten channels by using a metering pump as required in the first step.
  • the corresponding three to ten acid chloride feed ports are continuously added from the reactor.
  • the main motor drives the inner cylinder to rotate relative to the outer cylinder, forcing the added material to be in the ring.
  • the conveying section of the cylindrical passage is conveyed and stirred by the blade, and is sufficiently sheared and mixed by the relative movement of the shearing piece and the kneading piece in the mixing section of the annular cylindrical passage, due to the multi-point addition of the acid chloride combined with the conveying section and the mixing section in the ring
  • the cylindrical passages are alternately arranged one after another in the axial direction, so that the added materials can fully undergo the dimerization reaction, and gradually move from the inlets of the reactors along the annular cylindrical passages to the discharge port to dimerize the materials.
  • the temperature of the material in the reactor is controlled by the internal and external two heat exchange systems in the range of 50 ⁇ 100 °C, the viscosity of the material is controlled in the range of 1 ⁇ 70 Pa*s, and the residence time of the material in the reactor is 5 ⁇ 20 minutes until the reaction product is continuously discharged from the discharge port;
  • the reaction product continuously discharged from the discharge port of the reactor falls into the continuous extractor, and the extraction mixture is obtained by continuously adding a dilute mineral acid solution to the continuous extractor and dispersing the reaction product, and finally the extraction mixture is input into the sedimentation.
  • the pool is separated from the oil phase and the water phase.
  • the oil phase of the upper layer is a molten AKD product, which is discharged from the overflow port of the sedimentation tank.
  • the water phase of the lower layer is a solution of a tertiary amine mineral acid salt, which is discharged from the lower mouth of the sedimentation tank.
  • the tertiary amine may be selected from one of the following compounds of the general formula (I): triethylamine; dimethylcyclohexylamine; dimethylisopropylamine.
  • the acid chloride may be selected from one of the following compounds of the formula ( ⁇ ): palmitoyl chloride; stearoyl chloride; a mixture of palmitoyl chloride and stearoyl chloride in any weight ratio; isostearyl chloride; isostearyl chloride, A mixture of palmitoyl chloride and stearoyl chloride in any weight ratio.
  • the preferred molar ratio of the tertiary amine to the acid chloride is 1.06 1.15: 1
  • the optimal molar ratio of the tertiary amine to the acid chloride is 1.08 - 1.12: 1 ⁇
  • the temperature of the material in the reactor is preferably controlled to be 50 to 90 V, and the temperature range is preferably 55 to 85 °C.
  • the dilute mineral acid solution may be a dilute hydrochloric acid solution or a dilute sulfuric acid solution.
  • the continuously prepared AKD can be directly emulsified into an AKD emulsion; or washed by water, dehydrated, and cooled and formed commercially. The tertiary amine mineral acid salt solution is recovered and the tertiary amine is recycled.
  • AKD is a dimer of a mercapto or alkenyl enone, and the structural formula:
  • R is a decyl or alkenyl group of C8 C22.
  • the reaction for generating AKD includes acid chloride dehydrochlorination dimerization and hydrogen chloride and tertiary amine neutralization, and the reaction formula of acid chloride and tertiary amine is:
  • the reaction of the acid chloride with the tertiary amine is characterized by a very rapid reaction and a strong exotherm, resulting in a rapid increase in the viscosity of the material, which makes the reaction difficult to control, incomplete reaction between materials, and thus affects the purity of the resulting product.
  • the temperature of the material rises sharply, and the viscosity is much higher than 100 Pa, seconds (Pa * s), so that normal stirring and heat transfer are impossible.
  • Related studies have shown that under different conditions, the crystal form of the tertiary amine hydrochloride will vary greatly.
  • the acid chloride reacts with an equimolar amount of a tertiary amine (or a slight excess of a tertiary amine) to form a dendritic elongated crystal; and in the presence of a solvent or a large excess of a tertiary amine, a coarser slant is formed.
  • a crystal of a square crystal In the former case, the viscosity of the material is large, and it is difficult to achieve sufficient mixing effect by mechanical force such as stirring or shearing, the reaction heat cannot be removed in time, and the temperature is difficult to control.
  • the branched elongated crystals are surrounded by unreacted acid chlorides and tertiary amines, and the reaction is not complete, resulting in a decrease in product quality.
  • the reverse is improved due to the presence of solvent or a large excess of tertiary amine.
  • a coarser crystal is formed, the viscosity of the material is greatly reduced, the entrainment of the raw material is reduced, the reaction is relatively complete, and the purity of the product is improved.
  • the solvent recovery process equipment is cumbersome, increasing energy consumption and environmental pollution; and a large excess of tertiary amines increases the recovery cost. Neither is feasible.
  • the present invention addresses this problem by proposing a novel process operation and specific equipment.
  • the idea of the invention is to strengthen the mixing of the reaction materials under the condition of no solvent, and realize the controllable viscosity of the reactants on the basis of controllable temperature of the reactants, thereby achieving controllable product quality, that is, stable continuous preparation.
  • High purity AKD First, the tertiary amine of one of the materials is continuously fed from the tertiary amine feed port in the reactor, and the other material acid chloride is divided into three to ten channels from the corresponding three to ten acid chloride feeds in the reactor.
  • the continuous addition of the mouth that is, the start is a reaction in which a tertiary amine and a part of the acid chloride are continuously added at the same time, and the tertiary amine is relatively large in excess, which acts as a solvent or a dilution, and in this environment, the formed amine salt has good crystallization.
  • the encapsulation phenomenon of unreacted materials is reduced, and then the acid chloride is continuously added in portions along the length of the reactor through other feed ports, so that the total reaction heat is greatly dispersed, and the reaction process is easily controlled.
  • the conveying section of the reactor also cuts and stirs the material at the same time as the material is conveyed, and the material is mainly axially mixed, and the stirring rod in the blade interval can scrape the material on the inner cylinder wall. , to prevent the material from holding the shaft.
  • a mixing section is further provided in the axial direction of the annular cylindrical passage, and the mixing section is provided with a shearing sheet and a kneading sheet for shearing and mixing the material.
  • the added material is sufficiently sheared and mixed by the relative movement of the shearing piece and the kneading piece in the mixing section of the annular cylindrical passage, thereby enhancing the mixing of the viscous material in the radial direction, and on the other hand, self-cleaning is achieved.
  • the shearing rod on the shearing sheet can scrape off the material adhered to the inner wall of the outer cylinder to prevent the material from forming a wall on the outer cylinder
  • the kneading block on the kneading sheet can scrape off the material adhered to the outer wall of the inner cylinder to prevent the material from being on the inner cylinder. Holding the shaft, reducing the thermal resistance, and effective heat transfer increase the chance of material reaction and ensure sufficient residence time.
  • the heat of reaction generated by the material in the conveying section and the mixing section is controlled by the inner and outer heat exchange systems on the reactor to control the temperature of the material in the reactor, and the temperature of the reaction material is further controlled.
  • the present invention has the following advantages and effects compared with the prior art:
  • the process can realize the heat dispersion of the reaction, maintain good heat conduction, mix the materials sufficiently, and complete the reaction, so that the reaction temperature and the viscosity of the material can be easily controlled, and the viscosity of the reaction material is reduced by 10 70 Pa, second (Pa * s), which reduces the vice
  • the reaction occurs with less impurities, ensuring high purity of the product.
  • FIG. 1 is a front elevational view showing the overall structure of the apparatus of the present invention
  • Figure 2 is a partial cross-sectional view of Figure 1;
  • Figure 3 is a cross-sectional view of the A-A of Figure 1;
  • Figure 4 is a cross-sectional view of the B-B of Figure 1;
  • Figure 5 is a schematic view showing the distribution position of the material inlet and outlet and the internal parts of Figure 1.
  • Example 1 Apparatus and method for continuously preparing solvent-free high-purity AKD
  • the starting material is triethylamine in a tertiary amine
  • the acid chloride is a mixture of palmitoyl chloride and stearoyl chloride, wherein the weight ratio of palmitoyl chloride to stearoyl chloride is 7:13.
  • FIG. 2 is a schematic view showing the shape and distribution of the inner parts of a conveying section 5 and a mixing section 7 in the reactor
  • FIG. 3 is a schematic sectional view of the conveying section 5.
  • Figure 4 shows a schematic cross-sectional view of the mixing section 7.
  • the stainless steel mixed reactor has a length of 1800 mm
  • the inner cylinder 1 has a diameter of 133 mm
  • the outer cylinder 2 has a diameter of 219 mm.
  • the inner cylinder 1 and the outer cylinder 2 are coaxially disposed.
  • the inner cylinder 1 is driven by the motor 3 to rotate relative to the outer cylinder 2, and a ring-shaped cylindrical passage 4 is formed between the inner cylinder 1 and the outer cylinder 2, and the annular cylindrical passage 4 is divided into three conveying sections 5 in the axial direction.
  • the conveying section 5 is provided with a blade 6 for conveying and agitating the material, the nominal pitch of the conveying section is 60 mm, the root of the blade 6 is fixed to the inner cylinder 1, and the end of the blade 6 is clearance-fitted with the inner wall of the outer cylinder 2;
  • a stirring rod 18 is disposed in the space of the vane 6, and the stirring rod 18 has a columnar shape, one end of which is fixedly mounted on the outer cylinder 2, and the other end of which is in clearance with the outer wall of the inner cylinder 1.
  • the mixing section 7 is provided with a shearing sheet 8 for shearing and mixing the material, and a kneading sheet 9 composed of a supporting block 10 and a shearing rod 11, and one end of the supporting block 10 is fixed to the inner cylinder 1. The other end is fixedly connected to the shear rod 11, and one side of the shear rod 11 is in clearance with the inner wall of the outer cylinder 2.
  • the kneading sheet 9 is composed of a strut 12 and a kneading block 13, and one end of the strut 12 is fixed on the outer cylinder 2, and One end of the kneading block 13 is fixedly coupled, and one side of the kneading block 13 is in clearance with the outer wall of the inner cylinder 1.
  • the start of the reactor is provided with a tertiary amine feed port 14 and an acid chloride feed port 15 communicating with the annular channel 4, and then spaced 300 500 mm from the first acid chloride feed port 15 along the ring column
  • Two acid chloride feed ports 15 are arranged axially spaced apart from the shaped channels 4, and the material is pumped by a metering pump through a rotameter.
  • a discharge port 16 is provided at the end of the reactor.
  • the reactor is also equipped with two sets of heat exchange systems inside and outside, wherein the inner heat exchange system uses the wall of the inner cylinder 1 as a heat exchange interface, and is composed of a pipeline, a heat exchange medium and an inner cavity of the inner cylinder 1, the inner cylinder One end of 1 is connected with a rotary joint 17 to form a loop; the outer heat exchange system outer cylinder 2 has a cylinder wall as a heat exchange interface, and is composed of a pipeline, a heat exchange medium and a water jacket on the outer edge of the outer cylinder 2, two sets The heat exchange system is connected to the cold heat medium circuit, and the reaction temperature can be flexibly controlled by adjusting the flow rate of the heat and heat medium.
  • the number of reactor revolutions was 60 120 rpm.
  • the reaction product continuously discharged from the reactor discharge port 16 is piped to the continuous extractor, and the extract mixture is obtained by continuously adding a dilute hydrochloric acid solution to the continuous extractor and dispersing the reaction product, and finally extracting the extract mixture into the sedimentation.
  • the pool is separated from the oil phase and the water phase.
  • the oil phase of the upper layer is a molten AKD product and is discharged from the overflow port of the sedimentation tank.
  • the lower aqueous phase is a triethylamine hydrochloride solution and is discharged from the lower mouth of the sedimentation tank. .
  • the feed amount of the starting acid chloride (weight ratio of palmitoyl chloride to stearoyl chloride was 7:13) was 108 kg/hr, and the molar ratio of triethylamine to acid chloride was 1.05 1.10:1.
  • the feed ratio of the three acid chloride inlets is approximately 5:2.5:2.5.
  • the reactor is operated for 17 hours, the maximum temperature of the reaction material is about 85 °C, the material residence time is 8 minutes, the outlet material temperature is about 65 °C, the viscosity is 10 ⁇ 70 Pa*s (Pa*s), 16 samples are taken, and the iodine value is 43.0 44.6, average 43.77, melting point 50.3 50.5 °C, the measured melting point is the same as the batch method product.
  • Example 2 Apparatus and method for continuously preparing solvent-free high-purity AKD
  • the starting material is triethylamine in a tertiary amine
  • the acid chloride is a mixture of palmitoyl chloride and stearoyl chloride, wherein the weight ratio of palmitoyl chloride to stearoyl chloride is 13:7.
  • the equipment, the feeding amount, and the feeding ratio are the same as in the first embodiment.
  • the reactor was operated for 48 hours, and 17 batches were sampled.
  • the iodine value was 44.2 46.2, the average value was 45.25, and the melting point was 48.5 to 49 ° C.
  • the measured melting point was the same as that obtained by the batch method using the raw material formulation.
  • Example 3 Apparatus and method for continuously preparing solvent-free high purity AKD
  • the stainless steel mixed reactor has a length of 3000 mm
  • the inner cylinder 1 has a diameter of 370 mm
  • the outer cylinder 2 has a diameter of 530 mm.
  • the inner cylinder 1 and the outer cylinder 2 are coaxially disposed.
  • the inner cylinder 1 is driven by the motor 3 to rotate relative to the outer cylinder 2, and a ring-shaped cylindrical passage 4 is formed between the inner cylinder 1 and the outer cylinder 2, and the annular cylindrical passage 4 is divided into five conveying sections 5 in the axial direction.
  • mixing sections 7, and the conveying section 5 and the mixing section 7 are arranged one above the other in the axial direction of the annular cylindrical passage 4, wherein the conveying section 5 is provided with blades 6 for conveying and stirring materials, and the conveying section
  • the nominal pitch is 120 mm
  • the root of the blade 6 is fixed to the inner cylinder 1, and the end of the blade 6 is clearance-fitted with the inner wall of the outer cylinder 2
  • the stirring rod 18 is disposed in the interval of the blade 6, and the stirring rod 18 is columnar One end is fixedly mounted on the outer cylinder 2, and the other end is in clearance with the outer wall of the inner cylinder 1.
  • the mixing section 7 is provided with a shearing piece 8 for cutting and mixing the material, and a kneading piece 9 composed of a supporting block 10 and a shearing bar 11, one end of which is fixed to the inner cylinder 1. The other end is fixedly connected to the shear rod 11, and one side of the shear rod 11 is matched with the inner wall of the outer cylinder 2.
  • the kneading sheet 9 is composed of a strut 12 and a kneading block 13, and one end of the strut 12 is fixed on the outer cylinder 2, and One end of the kneading block 13 is fixedly coupled, and one side of the kneading block 13 is in clearance with the outer wall of the inner cylinder 1.
  • the start of the reactor is provided with a tertiary amine feed port 14 and an acid chloride feed port 15 communicating with the annular channel 4, and then spaced 300 500 mm from the first acid chloride feed port 15 along the ring column
  • Three acid chloride feed ports 15 are arranged axially spaced apart from the shaped channels 4, and the material is pumped by a metering pump through a rotameter.
  • a discharge port 16 is provided at the end of the reactor.
  • the reactor is also equipped with two sets of heat exchange systems inside and outside, wherein the inner heat exchange system uses the wall of the inner cylinder 1 as a heat exchange interface, and is composed of a pipeline, a heat exchange medium and an inner cavity of the inner cylinder 1, the inner cylinder One end of 1 is connected with a rotary joint 17, shaped
  • the outer wall of the outer heat exchanger system is used as a heat exchange interface, and is composed of a pipeline, a heat exchange medium and a water jacket on the outer edge of the outer cylinder 2, and two sets of heat exchange systems and a cold heat medium circuit respectively. Connected switching, the reaction temperature can be flexibly controlled by adjusting the flow rate of the cooling medium.
  • the number of reactor revolutions is 45 to 60 rpm.
  • the feed acid chloride (weight ratio of palmitoyl chloride to stearoyl chloride was 13:7) was 540 kg / hr, and the molar ratio of triethylamine to acid chloride was 1.05 1.10:1.
  • the first acid chloride inlet feed was 50% of the total and the other 50% was added to the remaining three inlets.
  • the reactor is operated for six hours, the maximum temperature of the reaction material is about 85 °C, the residence time of the material is 10 minutes, the temperature of the outlet material is 60 ⁇ 65 °C, the viscosity is 10 ⁇ 65 Pa*s (Pa ⁇ s), and five batches of iodine are sampled. The value is 45.3 46.0 and the average is 45.7.
  • Example 4 Apparatus and method for continuously preparing solvent-free high purity AKD
  • the starting material is dimethylcyclohexylamine in a tertiary amine
  • the acid chloride is a mixture of isostearyl chloride and palmitoyl chloride and stearoyl chloride, wherein isostearyl chloride and palmitoyl chloride
  • the weight ratio of the mixture of both stearyl chloride and the stearoyl chloride was 4:6, and the weight ratio of palmitoyl chloride to stearoyl chloride was 7:13.
  • the equipment, the feeding amount and the feeding ratio are the same as those in the third embodiment.
  • the reactor was run for twenty-four hours and samples were taken in ten batches with an iodine value of 44.0 45.9 and an average of 44.9.
  • the reactor has a diameter of 219 mm and an effective length of 1400 mm. It is a reactor with no mixing section and only a conveying section.
  • the conveying section is provided with blades for conveying and stirring materials, and a stirring rod is arranged in the interval of the blades.
  • the raw acid chloride (weight ratio of palmitoyl chloride to stearoyl chloride was 13:7) was 108 kg / hr, and the molar ratio of triethylamine to acid chloride was 1.05 1.10: 1, and all the materials were continuously added at the starting end. After twenty-four hours of operation, the average iodine value was 40.8.
  • the equipment and material formula are the same as in the first example. Without the mixing section, the difference enters the reactor at two points of the acid chloride (the ratio is 7:3).
  • the temperature of the material is up to 115 °C, and the operation is 144 hours.
  • the average iodine value is 44.35, melting point 47.0 ⁇ 48.8 °C, the average is about rc lower than the batch method.
  • Comparative Example 3 The equipment, material formula, ratio, and feeding amount are the same as those in the first embodiment. The difference was added to the reactor at two points in the acid chloride (proportion 7:3), the temperature of the material was up to 94 ° C, and it was run for 5 hours. The iodine value averaged 42.0, the melting point was 50.3 ° C, and the measured melting point was the same as the batch method product.
  • the iodine value is an index indicating the degree of unsaturation in the organic compound, and is an index for measuring the purity of the AKD. The higher the measured iodine value, the higher the purity of the AKD.
  • the tertiary amine of the raw material uses triethylamine, dimethylcyclohexylamine, and dimethylisopropylamine, and the raw acid chloride is a mixture of palmitoyl chloride and stearyl chloride, and isostearyl chloride, palm.
  • reaction process can be well controlled under solvent-free conditions, the temperature and viscosity of the material can be lowered, and side reactions can be reduced to obtain stability. High purity product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Epoxy Compounds (AREA)
  • Accessories For Mixers (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • Paper (AREA)

Abstract

一种连续化无溶剂制备高纯度AKD的设备及方法,该设备包括一种使原料进行连续化混合反应的反应器,该方法包括以下工艺步骤:第一,叔胺在反应器起始端连续加入,酰氯分成三至十路连续加入;第二,在反应器工作状态下,电机(3)带动内筒(1)相对外筒(2)转动,迫使加入的物料在环柱形通道(4)的输送段(5)被叶片(6)输送和搅拌,在混合段(7)被剪切片(8)与捏合片(9)的相对运动充分剪切和混合,结合输送段(5)与混合段(7)在环柱形通道(4)轴向的交替分布,使加入的物料充分发生反应,再通过内外换热系统控制物料温度,直至从出料口(16)连续排出产物。

Description

连续化无溶剂制备高纯度 AKD的设备及方法 技术领域
[0001] 本发明涉及一种连续化制备 AKD (垸基或烯基烯酮二聚体) 的方法, 具体涉及一种 通过原料连续计量并在不存在溶剂条件下,充分混合、连续化反应制备高纯度 AKD的方法。 背景技术
[0002] AKD (垸基或烯基烯酮二聚体)是造纸用的一种施胶剂。目前工业化规模生产的 AKD 产品都是采用批次生产的方式取得。 随着市场需求的增长, 这种生产方式表现出很大的局 限性和诸多缺陷, 比如质量波动大, 人工成本高, 原料、 能源消耗大等。 近年来, AKD的 连续化制备成为大型规模化生产的发展方向。欧洲专利 EP0550107和中国专利 CN1596252A 均公开了连续化制备 AKD的方法,但上述方法都是将原料酰氯与原料叔胺按比例一次性全 份连续加入, 这样做会使反应温度骤升, 物料粘度剧增, 操作困难, 不能得到高纯度的产 p
[0003] 中国专利 CN101845030A也公开了一种连续化制备 AKD的方法。 该专利使用了特 别设计的反应器, 其主体是一台带有间断螺叶的输送机, 螺叶间隔中插入固定的搅拌棒。 在两个实施例中, 物料之一的叔胺一次性加入, 另一种物料酰氯则是分两次加入, 产品纯 度较对照例有了较大提高, 所得产品碘值虽可稳定在 43, 但碘值与批次化生产的产品碘值 相比低约 2, 熔点低约 0.5~rC, 这说明存在更多的杂质, 产品纯度不够高, 产品质量不佳; 若物料酰氯分三次加入, 由于反应器长度的限制, 反应时间短, 特别是最后一批物料加入 后, 搅拌不足, 所得产品纯度没有明显提高。 以上影响所得产品质量的原因在于: (1 ) 在 无溶剂条件下, 反应进行非常迅速, 即使物料之一的酰氯分两点加入, 反应热释放的仍较 集中, 反应温度较难控制, 表现出的物料粘度仍大; (2) 该反应器是依靠间断螺叶进行剪 切捏合, 结构较简单, 轴向、 径向混合强度都较小, 自清洁能力差, 以至可能会在反应器 内物料产生抱轴和结壁现象, 由于散热困难造成反应温度升高、 物料粘度增加, 使物料无 法充分混合, 最终导致酰氯与叔胺的二聚反应不完全, 无法连续化制备高纯度 AKD产品。 为此,如何改进和工艺和设备,以实现连续化制备高纯度的 AKD产品是本发明研究的课题。 发明内容
[0004] 本发明目的是克服现有技术存在的不足,提供一套稳定地连续化制备高纯度 AKD的 方法, 以适应工业化规模生产的需要。
[0005] 为达到上述目的,本发明一种连续化无溶剂制备高纯度 AKD的设备采用的技术方案 是: 采用的设备包括一种能够使原料进行连续化混合反应的反应器, 该反应器具有同轴设 置的内筒和外筒, 在工作状态下内筒由电机带动相对外筒转动, 内筒与外筒之间形成有一 环柱形通道, 该环柱形通道沿轴向分设有输送段和混合段, 而且输送段与混合段在环柱形 通道轴向一隔一布置, 其中, 所述输送段内设有用于输送和搅拌物料的叶片, 叶片的根部 固定在内筒上, 叶片的端部与外筒内壁间隙配合, 所述混合段内设有用于剪切和混合物料 的剪切片和捏合片, 剪切片由支撑块和剪切棒组成, 支撑块的一端固定在内筒上, 另一端 固定连接剪切棒, 剪切棒的一侧与外筒内壁间隙配合, 捏合片由支杆和捏合块组成, 支杆 的一端固定在外筒上, 另一端固定连接捏合块, 捏合块的一侧与内筒外壁间隙配合; 所述 反应器上设有连通环柱形通道的一个叔胺进料口、 三至十个酰氯进料口和一个出料口, 一 个叔胺进料口和第一个酰氯进料口位于反应器中环柱形通道轴向的一端, 一个出料口位于 环柱形通道轴向的另一端, 其余各个酰氯进料口自第一个酰氯进料口起沿环柱形通道的轴 向间隔布置; 所述反应器还配备有内外两套换热系统, 其中, 内换热系统以内筒的筒壁作 为换热界面, 并由管路、 换热介质与内筒的内腔构成, 外换热系统以外筒的筒壁作为换热 界面, 并由管路、 换热介质与外筒外缘上的水夹套构成。
[0006] 上述技术方案中的有关内容解释如下:
1、 上述方案中, 所述叶片可以为螺旋叶片, 所述叶片的间隔中设置有搅拌棒, 所述搅拌棒 呈柱状, 其一端固定安装在所述外筒上, 另一端与所述内筒外壁间隙配合。 [0007] 2、 上述方案中, 所述环柱形通道即内筒与外筒之间形成的腔室, 环柱形通道的横截 面在径向看为一环形空间, 在轴向看为一通透的环柱形空间。
[0008] 3、 上述方案中, 所述支撑块呈块状, 其一端固定在内筒上, 另一端延伸向外筒内壁 并固定连接有剪切棒; 所述剪切棒呈棒状, 剪切棒的一侧与外筒内壁间隙配合, 在反应器 工作状态下由于内筒由电机带动相对外筒转动, 剪切棒可以刮下粘连在外筒内壁上的物料。
[0009] 4、 上述方案中, 所述支杆呈杆状, 其一端固定在外筒上, 另一端延伸向内筒外壁并 固定连接有捏合块; 所述捏合块呈块状, 捏合块的一侧与内筒外壁间隙配合, 在反应器工 作状态下内筒由电机带动相对外筒转动, 捏合块可以刮下粘连在内筒外壁上的物料。
[0010] 5、 上述方案中, 所述内换热系统设有旋转接头, 该旋转接头与内筒的内腔连接。
[0011] 6、 上述方案中, 所述水夹套固定安装在所述外筒外壁上, 具有外壳、 内壳、 上封头、 下封头、 进水管以及出水管结构。
[0012] 7、 上述方案中, 所述设备可以是至少两个内部结构相同的设备串联而成的。
[0013] 为达到上述目的,本发明一种连续化无溶剂制备高纯度 AKD的方法采用的技术方案 是-
( 1 ) 原料
所述原料为叔胺和酰氯;
所用的叔胺为:
Figure imgf000005_0001
在化学通式 ( I ) 中, Rl、 R2、 R3为 C1~C6的垸基、 烯基或环垸基;
所用的酰氯为:
Figure imgf000005_0002
在化学通式 (Π ) 中, R为 C8 C22的垸基或烯基;
(2) 设备
采用的设备包括一种能够使原料进行连续化混合反应的反应器, 该反应器具有同轴设置的 内筒和外筒, 在工作状态下内筒由电机带动相对外筒转动, 内筒与外筒之间形成有一环柱 形通道, 该环柱形通道沿轴向分设有输送段和混合段, 而且输送段与混合段在环柱形通道 轴向一隔一布置, 其中, 所述输送段内设有用于输送和搅拌物料的叶片, 叶片的根部固定 在内筒上, 叶片的端部与外筒内壁间隙配合, 所述混合段内设有用于剪切和混合物料的剪 切片和捏合片, 剪切片由支撑块和剪切棒组成, 支撑块的一端固定在内筒上, 另一端固定 连接剪切棒, 剪切棒的一侧与外筒内壁间隙配合, 捏合片由支杆和捏合块组成, 支杆的一 端固定在外筒上, 另一端固定连接捏合块, 捏合块的一侧与内筒外壁间隙配合; 所述反应 器上设有连通环柱形通道的一个叔胺进料口、 三至十个酰氯进料口和一个出料口, 一个叔 胺进料口和第一个酰氯进料口位于反应器中环柱形通道轴向的一端, 一个出料口位于环柱 形通道轴向的另一端, 其余各个酰氯进料口自第一个酰氯进料口起沿环柱形通道的轴向间 隔布置; 所述反应器还配备有内外两套换热系统, 其中, 内换热系统以内筒的筒壁作为换 热界面, 并由管路、 换热介质与内筒的内腔构成, 外换热系统以外筒的筒壁作为换热界面, 并由管路、 换热介质与外筒外缘上的水夹套构成;
(3 ) 制备工艺
第一步, 事先将需要连续化加入反应器的原料, 按任意单位时间内叔胺与酰氯的摩尔比为 1.05 1.2: 1进行准备, 其中, 将连续化加入反应器的酰氯分三至十路多点加入, 每路酰氯加 入量为任意单位时间内酰氯加入总重量的 10~60%;
第二步, 利用计量泵按第一步中的要求将叔胺从反应器中的所述叔胺进料口连续加入, 同 时利用计量泵按第一步中的要求将酰氯分成三至十路从反应器中对应的三至十个酰氯进料 口连续加入, 在反应器工作状态下, 主电机带动内筒相对外筒转动, 迫使加入的物料在环 柱形通道的输送段被叶片输送和搅拌, 在环柱形通道的混合段被剪切片与捏合片的相对运 动充分剪切和混合, 由于酰氯的多点加入结合输送段与混合段在环柱形通道轴向一隔一交 替分布, 使得加入的物料能够充分发生二聚反应, 并且从反应器的各进口处逐渐沿环柱形 通道向所述出料口方向移动, 在物料发生二聚反应过程中, 通过内外两套换热系统来控制 反应器内物料的温度在 50~100°C范围, 物料的粘度控制在 1~70帕 *秒范围, 物料在反应器 内停留时间在 5~20分钟, 直至从出料口连续排出反应产物;
第三步, 从反应器出料口连续排出的反应产物落入至连续萃取器, 通过向连续萃取器中连 续加入稀无机酸溶液与反应产物分散得到萃取混合液, 最后将萃取混合液输入沉降池进行 油相和水相分离, 上层的油相为熔融的 AKD产物, 自沉降池的溢流口排出, 下层的水相为 叔胺无机酸盐溶液, 自沉降池的下口排出。
[0014] 上述技术方案中的有关内容解释如下:
1、 上述方案中, 所述叔胺可以选择化学通式 ( I ) 中的下列物质中的一种: 三乙胺; 二甲 基环己胺; 二甲基异丙胺。 所述酰氯可以选择化学通式 (Π ) 中的下列物质中的一种: 棕 榈酰氯; 硬脂酰氯; 棕榈酰氯与硬脂酰氯按任意重量比例的混合物; 异硬脂酰氯; 异硬脂 酰氯、 棕榈酰氯与硬脂酰氯按任意重量比例的混合物。
[0015] 2、 上述方案中, 所述叔胺与酰氯的较佳摩尔比为 1.06 1.15: 1, 所述叔胺与酰氯的最 佳摩尔比为 1.08 -1.12: 1 ο
[0016] 3、上述方案中,所述制备工艺中的第二步中,控制反应器内物料的温度较佳在 50~90 V, 温度范围最佳在 55~85 °C。
[0017] 4、 上述方案中, 在所述制备工艺中的第三步中进行油相和水相分离后, 由于按照本 发明制备出来的反应物粘度较低, 故可以采用从反应器顶部溢流出料。
[0018] 5、 上述方案中, 所述制备工艺中的第三步中, 所述稀无机酸溶液可以为稀盐酸溶液 或稀硫酸溶液。 [0019] 6、 上述方案中, 在所述制备工艺中的第三步完成后, 连续制备出的 AKD可直接乳 化做成 AKD乳液; 或经水洗、 脱水, 冷却成型市售。 叔胺无机酸盐溶液经回收处理, 叔胺 循环使用。
[0020] 7、 上述方案中, AKD是垸基或烯基烯酮的二聚体, 结构式:
Figure imgf000008_0001
其中 R为 C8 C22的垸基或烯基。
[0021] 本发明工作原理是: 生成 AKD 的反应包括酰氯脱氯化氢二聚和氯化氢与叔胺的中 和, 酰氯与叔胺的反应式为:
Figure imgf000008_0002
在无溶剂条件下, 酰氯与叔胺反应的特点是反应进行非常迅速, 剧烈放热, 导致物料粘度 急速增高, 这使得该反应难以控制, 物料间反应不完全, 进而影响所得产物的纯度。 在全 部物料集中反应的情况下, 物料温度骤升, 粘度则远超 100 帕,秒 (Pa * s), 以至无法正 常搅拌和传热。 相关研究表明, 在不同条件下, 叔胺盐酸盐的结晶形态会有很大差别。 无 溶剂存在时, 酰氯与叔胺等摩尔 (或叔胺稍过量) 反应, 会生成枝状细长形晶体; 而在有 溶剂存在或叔胺大量过量的情况下, 会生成较粗大的类似斜方晶型的晶体。 前一种情况下, 物料粘度很大, 很难用搅拌或剪切等机械作用力达到充分的混合效果, 反应热量不能及时 移出, 温度难控制。 尤其是枝状的细长晶体中会包裹着一些未反应的酰氯与叔胺, 反应不 能完全, 使产品品质降低。 在第二种情况下, 由于溶剂或大量过量叔胺的存在, 改善了反 应条件, 生成了较粗大的晶体, 物料粘度大大降低, 减少了对原料的包裹夹带, 反应比较 完全, 产品纯度得以提高。 但是溶剂回收的工艺设备繁琐, 增加能源消耗和环境污染; 而 大量过量的叔胺, 增加回收成本。 二者均不可行。 本发明提出了一个新颖的工艺操作和特 定设备, 解决了这个问题。
[0022] 本发明的构思是在无溶剂的条件下, 加强反应物料的混合, 在反应物温度可控的基 础上实现反应物粘度可控, 进而实现产品质量可控, 即稳定的连续制备出高纯度 AKD。 首 先, 将物料之一的叔胺从反应器中的所述叔胺进料口连续加入, 另一种物料酰氯则是被分 成三至十路从反应器中对应的三至十个酰氯进料口连续化加入, 也就是说, 开始是叔胺与 一部分酰氯同时连续加入进行反应, 叔胺相对大大过量, 起到了溶剂或稀释的作用, 在这 种环境下, 生成的胺盐有好的结晶形态, 减少了对未反应物料的包裹现象, 然后沿反应器 长度方向, 通过其他进料口逐份连续加入酰氯, 使总反应热量大大分散, 反应过程从而容 易控制。
[0023] 其次, 反应器的输送段在输送物料的同时也始终对物料剪切、 搅拌, 实现物料发生 轴向为主的混合, 并且叶片间隔中的搅拌棒可以刮下内筒壁上的物料, 防止物料抱轴。
[0024] 本发明还有一个关键之处, 在所述环柱形通道的轴向上还设有混合段, 所述混合段 内设有用于剪切和混合物料的剪切片和捏合片。 这一方面迫使加入的物料在环柱形通道的 混合段被剪切片与捏合片的相对运动充分剪切和混合, 加强了粘稠物料在径向上的混合, 另一方面实现了自清理, 即剪切片上的剪切棒可以刮下粘连在外筒内壁上的物料, 防止物 料在外筒上结壁, 捏合片上的捏合块可以刮下粘连在内筒外壁上的物料, 防止物料在内筒 上抱轴, 降低热阻, 有效传热, 增加了物料反应的机会以及保证了足够的停留时间。
[0025] 再次, 物料在输送段与混合段内产生的反应热由反应器上的内外两套换热系统来控 制反应器内物料的温度, 进一步控制了反应物料的温度。
[0026] 由于上述技术方案运用, 本发明与现有技术相比具有下列优点和效果: 采用本发明 的工艺, 可以实现反应热分散产生, 维持良好的热传导, 物料混合充分, 反应完全, 从而 使反应温度、 物料粘度易于控制, 反应物料粘度降低 10 70 帕,秒 (Pa * s), 减少了副反 应的发生, 杂质少, 保证产品的高纯度。
附图说明
[0027] 图 1为本发明设备整体结构正面示意图;
图 2为图 1的部分剖面示意图;
图 3为图 1的 A-A剖面示意图;
图 4为图 1的 B-B剖面示意图;
图 5为图 1的物料进出口及内件分布位置示意图。
[0028] 以上附图中: 1、 内筒; 2、 外筒; 3、 电机 ; 4、 环柱形通道; 5、 输送段; 6、 叶片;
7、 混合段; 8、 剪切片; 9、 捏合片; 10、 支撑块; 11、 剪切棒; 12、 支杆; 13、 捏合块;
14、 叔胺进料口; 15、 酰氯进料口; 16、 出料口; 17、 旋转接头; 18、 搅拌棒。
具体实施方式
[0029] 下面结合实施例对本发明作进一步描述:
实施例一: 连续化无溶剂制备高纯度 AKD的设备及方法
所述原料为叔胺中的三乙胺, 酰氯为棕榈酰氯与硬脂酰氯的混合物, 其中棕榈酰氯与硬脂 酰氯的重量比为 7: 13。
[0030] 参见图 1至图 5所示, 其中图 2表示的是反应器中一个输送段 5和一个混合段 7中 的内件形状及分布示意图, 图 3表示的是输送段 5的剖面示意图, 图 4表示的是混合段 7 的剖面示意图。 不锈钢混合反应器, 长度 1800毫米, 内筒 1直径为 133毫米, 外筒 2直径 为 219毫米, 内筒 1与外筒 2同轴设置。 在工作状态下内筒 1由电机 3带动相对外筒 2转 动, 内筒 1与外筒 2之间形成有一环柱形通道 4, 该环柱形通道 4沿轴向分设有三个输送段 5和四个混合段 7, 而且输送段 5与混合段 7在环柱形通道 4轴向一隔一布置, 其中, 所述 输送段 5内设有用于输送和搅拌物料的叶片 6, 输送段的名义螺距为 60毫米, 叶片 6的根 部固定在内筒 1上, 叶片 6的端部与外筒 2内壁间隙配合; 所述叶片 6的间隔中设置有搅 拌棒 18, 所述搅拌棒 18呈柱状, 其一端固定安装在所述外筒 2上, 另一端与所述内筒 1外 壁间隙配合。所述混合段 7内设有用于剪切和混合物料的剪切片 8和捏合片 9, 剪切片 8由 支撑块 10和剪切棒 11组成,支撑块 10的一端固定在内筒 1上,另一端固定连接剪切棒 11, 剪切棒 11的一侧与外筒 2内壁间隙配合, 捏合片 9由支杆 12和捏合块 13组成, 支杆 12 的一端固定在外筒 2上, 另一端固定连接捏合块 13, 捏合块 13的一侧与内筒 1外壁间隙配 合。所述反应器的起始端上设有连通环柱形通道 4的一个叔胺进料口 14和一个酰氯进料口 15, 然后相隔 300 500毫米自第一个酰氯进料口 15起沿环柱形通道 4的轴向间隔布置两个 酰氯进料口 15, 物料由计量泵经转子流量计泵入。 在反应器的末端设置有一个出料口 16。 所述反应器还配备有内外两套换热系统, 其中, 内换热系统以内筒 1的筒壁作为换热界面, 并由管路、 换热介质与内筒 1的内腔构成, 内筒 1的一端连接有旋转接头 17, 形成回路; 外换热系统以外筒 2的筒壁作为换热界面, 并由管路、 换热介质与外筒 2外缘上的水夹套 构成, 两套换热系统分别与冷热媒回路相连切换, 通过调节冷热媒流量可以灵活控制反应 温度。 反应器转数为 60 120转 /分。
[0031] 从反应器出料口 16连续排出的反应产物经管道输送至连续萃取器,通过向连续萃取 器中连续加入稀盐酸溶液与反应产物分散得到萃取混合液, 最后将萃取混合液输入沉降池 进行油相和水相分离, 上层的油相为熔融的 AKD产物, 并且自沉降池的溢流口排出, 下层 的水相为三乙胺盐酸盐溶液, 并且自沉降池的下口排出。
[0032] 原料酰氯 (棕榈酰氯与硬脂酰氯的重量比为 7: 13 ) 的投料量为 108公斤 /小时, 三乙 胺与酰氯的摩尔比在 1.05 1.10: 1。三个酰氯入口的进料比例约为 5:2.5:2.5。反应器运行 17 小时, 反应物料最高温度在 85 °C左右, 物料停留时间为 8分钟, 出口物料温度 65 °C左右, 粘度 10~70帕 *秒 (Pa * s), 取样 16个, 碘值 43.0 44.6, 平均值为 43.77, 熔点 50.3 50.5 °C, 所测得的熔点与批次法产品相同。
[0033] 实施例二: 连续化无溶剂制备高纯度 AKD的设备及方法
参见图 1至图 5所示, 所述原料为叔胺中的三乙胺, 酰氯为棕榈酰氯与硬脂酰氯的混合物, 其中棕榈酰氯与硬脂酰氯的重量比为 13 :7。 设备、 投料量、 进料比例与实施例一相同。 反 应器运行 48小时, 取样 17批, 碘值 在 44.2 46.2, 平均值为 45.25, 熔点在 48.5~49°C, 所 测得的熔点与批次法使用该原料配方制得的产品相同。
[0034] 实施例三: 连续化无溶剂制备高纯度 AKD的设备及方法
参见图 1至图 5所示, 不锈钢混合反应器, 长度 3000毫米, 内筒 1直径为 370毫米, 外筒 2直径为 530毫米, 内筒 1与外筒 2同轴设置。在工作状态下内筒 1由电机 3带动相对外筒 2转动, 内筒 1与外筒 2之间形成有一环柱形通道 4, 该环柱形通道 4沿轴向分设有五个输 送段 5和六个混合段 7, 而且输送段 5与混合段 7在环柱形通道 4轴向一隔一布置, 其中, 所述输送段 5内设有用于输送和搅拌物料的叶片 6, 输送段的名义螺距为 120毫米, 叶片 6 的根部固定在内筒 1上, 叶片 6的端部与外筒 2内壁间隙配合; 所述叶片 6的间隔中设置 有搅拌棒 18, 所述搅拌棒 18呈柱状, 其一端固定安装在所述外筒 2上, 另一端与所述内筒 1外壁间隙配合。 所述混合段 7内设有用于剪切和混合物料的剪切片 8和捏合片 9, 剪切片 8由支撑块 10和剪切棒 11组成, 支撑块 10的一端固定在内筒 1上, 另一端固定连接剪切 棒 11, 剪切棒 11的一侧与外筒 2内壁间隙配合, 捏合片 9由支杆 12和捏合块 13组成, 支 杆 12的一端固定在外筒 2上, 另一端固定连接捏合块 13, 捏合块 13的一侧与内筒 1外壁 间隙配合。所述反应器的起始端上设有连通环柱形通道 4的一个叔胺进料口 14和一个酰氯 进料口 15,然后相隔 300 500毫米自第一个酰氯进料口 15起沿环柱形通道 4的轴向间隔布 置三个酰氯进料口 15, 物料由计量泵经转子流量计泵入。 在反应器的末端设置有一个出料 口 16。 所述反应器还配备有内外两套换热系统, 其中, 内换热系统以内筒 1的筒壁作为换 热界面, 并由管路、 换热介质与内筒 1的内腔构成, 内筒 1的一端连接有旋转接头 17, 形 成回路; 外换热系统以外筒 2的筒壁作为换热界面, 并由管路、 换热介质与外筒 2外缘上 的水夹套构成, 两套换热系统分别与冷热媒回路相连切换, 通过调节冷热媒流量可以灵活 控制反应温度。 反应器转数为 45~60转 /分。
[0035] 原料酰氯 (棕榈酰氯与硬脂酰氯的重量比为 13 :7) 的投料量为 540公斤 /小时, 三乙 胺与酰氯的摩尔比在 1.05 1.10: 1。 首个酰氯入口进料量为总量的 50%, 另外的 50%分别 入其余三个入口。 反应器运行六小时, 反应物料最高温度在 85 °C左右, 物料停留时间为 10 分钟, 出口物料温度 60~65 °C, 粘度 10~65帕 *秒 (Pa · s), 取样五批, 碘值 45.3 46.0, 平均值为 45.7。
[0036] 实施例四: 连续化无溶剂制备高纯度 AKD的设备及方法
参见图 1至图 5所示, 所述原料为叔胺中的二甲基环己胺, 酰氯为异硬脂酰氯与棕榈酰氯 和硬脂酰氯二者的混合物, 其中异硬脂酰氯与棕榈酰氯和硬脂酰氯二者的混合物的重量比 为 4:6, 棕榈酰氯和硬脂酰氯的重量比为 7: 13。 设备、 投料量、 进料比例与实施例三相同。 反应器运行二十四小时, 取样十批, 碘值在 44.0 45.9, 平均值为 44.9。
[0037] 对照例一:
反应器直径 219毫米, 有效长度 1400毫米, 为一台不设混合段而只有输送段的反应器, 输 送段内设有用于输送和搅拌物料的叶片, 叶片的间隔中设置有搅拌棒。 原料酰氯 (棕榈酰 氯与硬脂酰氯的重量比为 13 :7)投料量为 108公斤 /小时,三乙胺与酰氯摩尔比为 1.05 1.10: 1, 全部物料在起始端分别连续加入。 运行二十四小时, 碘值平均为 40.8。
[0038] 对照例二:
设备和物料配方同对照例一, 在不设混合段的情况下, 差别在酰氯分两点进入反应器 (比 例为 7:3 ), 物料温度最高 115 °C, 运行 144小时, 碘值平均为 44.35, 熔点 47.0~48.8°C, 平 均较批次法产品低约 rc。
[0039] 对照例三: 设备、 物料配方、 配比、 投料量同实施例 1。 差别在酰氯分两点加入反应器(比例 7:3 ), 物 料温度最高 94°C, 运行 5小时。 碘值平均为 42.0, 熔点 50.3 °C, 所测得的熔点与批次法产 品相同。
[0040] 在以上实施例和对照例中, 碘值是表示有机化合物中不饱和程度的一种指标, 是衡 量 AKD纯度高低的指标, 测得的碘值越高, 表示 AKD的纯度越高。 此外, 在本发明的实 施例中原料叔胺用到了三乙胺、 二甲基环己胺以及二甲基异丙胺, 原料酰氯用到了棕榈酰 氯和硬脂酰氯的混合物以及异硬脂酰氯、 棕榈酰氯和硬脂酰氯三者的混合物, 但本领域技 术人员在上述实施例的启发下, 容易理解在除本发明公开的配方范围外在符合原料叔胺和 酰氯的化学通式 ( 1 )、 ( II ) 内作一定变化, 也能得到相同或相近似的效果。
[0041] 由实施例和对照例可见, 按照本发明所提出的特定工艺和设备, 可以在无溶剂条件 下, 很好的控制反应过程, 降低物料的温度和粘度, 减少副反应, 从而得到稳定的高纯度 的产品。
[0042] 上述实施例只为说明本发明的技术构思及特点, 其目的在于让熟悉此项技术的人士 能够了解本发明的内容并据以实施, 并不能以此限制本发明的保护范围。 凡根据本发明精 神实质所作的等效变化或修饰, 都应涵盖在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种连续化无溶剂制备高纯度 AKD的设备, 其特征在于:
采用的设备包括一种能够使原料进行连续化混合反应的反应器,该反应器具有同轴设置的 内筒和外筒,在工作状态下内筒由电机带动相对外筒转动, 内筒与外筒之间形成有一环柱 形通道,该环柱形通道沿轴向分设有输送段和混合段,而且输送段与混合段在环柱形通道 轴向一隔一布置, 其中, 所述输送段内设有用于输送和搅拌物料的叶片, 叶片的根部固定 在内筒上, 叶片的端部与外筒内壁间隙配合,所述混合段内设有用于剪切和混合物料的剪 切片和捏合片, 剪切片由支撑块和剪切棒组成, 支撑块的一端固定在内筒上, 另一端固定 连接剪切棒, 剪切棒的一侧与外筒内壁间隙配合, 捏合片由支杆和捏合块组成, 支杆的一 端固定在外筒上, 另一端固定连接捏合块, 捏合块的一侧与内筒外壁间隙配合; 所述反应 器上设有连通环柱形通道的一个叔胺进料口、三至十个酰氯进料口和一个出料口,一个叔 胺进料口和第一个酰氯进料口位于反应器中环柱形通道轴向的一端,一个出料口位于环柱 形通道轴向的另一端,其余各个酰氯进料口自第一个酰氯进料口起沿环柱形通道的轴向间 隔布置; 所述反应器还配备有内外两套换热系统, 其中, 内换热系统以内筒的筒壁作为换 热界面,并由管路、换热介质与内筒的内腔构成,外换热系统以外筒的筒壁作为换热界面, 并由管路、 换热介质与外筒外缘上的水夹套构成。
2. 根据权利要求 1所述一种连续化无溶剂制备高纯度 AKD的设备, 其特征在于: 所述叶 片的间隔中设置有搅拌棒, 所述搅拌棒呈柱状, 其一端固定安装在所述外筒上, 另一端与 所述内筒外壁间隙配合。
3. 根据权利要求 1所述一种连续化无溶剂制备高纯度 AKD的设备, 其特征在于: 所述内 换热系统设有旋转接头, 该旋转接头与内筒的内腔连接。
4. 一种连续化无溶剂制备高纯度 AKD的方法, 其特征在于: ( 1 ) 原料
所述原料为叔胺和酰氯;
所用的叔胺为:
—— s
1 ( I ) 在化学通式 ( I ) 中, Rl、 R2、 R3为 C1 C6的垸基、 烯基或环垸基;
所用的酰氯为:
Figure imgf000016_0001
在化学通式 (Π ) 中, R为 C8 C22的垸基或烯基;
(2) 设备
采用的设备包括一种能够使原料进行连续化混合反应的反应器,该反应器具有同轴设置的 内筒和外筒,在工作状态下内筒由电机带动相对外筒转动, 内筒与外筒之间形成有一环柱 形通道,该环柱形通道沿轴向分设有输送段和混合段,而且输送段与混合段在环柱形通道 轴向一隔一布置, 其中, 所述输送段内设有用于输送和搅拌物料的叶片, 叶片的根部固定 在内筒上, 叶片的端部与外筒内壁间隙配合,所述混合段内设有用于剪切和混合物料的剪 切片和捏合片, 剪切片由支撑块和剪切棒组成, 支撑块的一端固定在内筒上, 另一端固定 连接剪切棒, 剪切棒的一侧与外筒内壁间隙配合, 捏合片由支杆和捏合块组成, 支杆的一 端固定在外筒上, 另一端固定连接捏合块, 捏合块的一侧与内筒外壁间隙配合; 所述反应 器上设有连通环柱形通道的一个叔胺进料口、三至十个酰氯进料口和一个出料口,一个叔 胺进料口和第一个酰氯进料口位于反应器中环柱形通道轴向的一端,一个出料口位于环柱 形通道轴向的另一端,其余各个酰氯进料口自第一个酰氯进料口起沿环柱形通道的轴向间 隔布置; 所述反应器还配备有内外两套换热系统, 其中, 内换热系统以内筒的筒壁作为换 热界面,并由管路、换热介质与内筒的内聍构成,外换热系统以外筒的筒壁作为换热界面, 并由管路、 换热介质与外筒外缘上的水夹套构成;
( 3 ) 制备工艺
第一步,事先将需要连续化加入反应器的原料,按任意单位时间内叔胺与酰氯的摩尔比为 1.05 1.2: 1进行准备, 其中, 将连续化加入反应器的酰氯分三至十路多点加入, 每路酰氯 加入量为任意单位时间内酰氯加入总重量的 10~60%;
第二步,利用计量泵按第一步中的要求将叔胺从反应器中的所述叔胺进料口连续加入, 同 时利用计量泵按第一步中的要求将酰氯分成三至十路从反应器中对应的三至十个酰氯进 料口连续加入, 在反应器工作状态下, 主电机带动内筒相对外筒转动, 迫使加入的物料在 环柱形通道的输送段被叶片输送和搅拌,在环柱形通道的混合段被剪切片与捏合片的相对 运动充分剪切和混合,由于酰氯的多点加入结合输送段与混合段在环柱形通道轴向一隔一 交替分布,使得加入的物料能够充分发生二聚反应,并且从反应器的各进口处逐渐沿环柱 形通道向所述出料口方向移动,在物料发生二聚反应过程中,通过内外两套换热系统来控 制反应器内物料的温度在 50~100°C范围, 物料的粘度控制在 1~70帕 *秒范围, 物料在反 应器内停留时间在 5~20分钟, 直至从出料口连续排出反应产物;
第三步,从反应器出料口连续排出的反应产物落入至连续萃取器,通过向连续萃取器中连 续加入稀无机酸溶液与反应产物分散得到萃取混合液,最后将萃取混合液输入沉降池进行 油相和水相分离, 上层的油相为熔融的 AKD产物, 自沉降池的溢流口排出, 下层的水相 为叔胺无机酸盐溶液, 自沉降池的下口排出。
5. 根据权利要求 4所述一种连续化无溶剂制备高纯度 AKD的方法, 其特征在于: 所述叔 胺选择化学通式 ( I ) 中的下列物质中的一种- 三乙胺;
二甲基环己胺;
二甲基异丙胺; 所述酰氯选择化学通式 (Π ) 中的下列物质中的一种:
棕榈酰氯;
硬脂酰氯;
棕榈酰氯与硬脂酰氯按任意重量比例的混合物;
异硬脂酰氯;
异硬脂酰氯、 棕榈酰氯与硬脂酰氯按任意重量比例的混合物。
6. 根据权利要求 4所述一种连续化无溶剂制备高纯度 AKD的方法, 其特征在于: 所述叔 胺与酰氯的摩尔比为 1.06 1.15: 1。
7. 根据权利要求 6所述一种连续化无溶剂制备高纯度 AKD的方法, 其特征在于: 所述叔 胺与酰氯的摩尔比为 1.08 ~1.12: 1。
8. 根据权利要求 4所述一种连续化无溶剂制备高纯度 AKD的方法, 其特征在于: 所述制 备工艺中的第二步中, 控制反应器内物料的温度在 50~90°C。
9. 根据权利要求 8所述一种连续化无溶剂制备高纯度 AKD的方法, 其特征在于: 所述制 备工艺中的第二步中, 控制反应器内物料的温度在 55~85°C。
10. 根据权利要求 4所述一种连续化无溶剂制备高纯度 AKD的方法, 其特征在于: 所述 制备工艺中的第三步中, 所述稀无机酸溶液为稀盐酸溶液或稀硫酸溶液
PCT/CN2013/072498 2012-12-04 2013-03-12 连续化无溶剂制备高纯度akd的设备及方法 WO2014086122A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015544311A JP6051313B2 (ja) 2012-12-04 2013-03-12 無溶媒状態で高純度のアルキルケテンダイマー又はアルケニルケテンダイマーを連続的に調製する装置及び方法
US14/649,703 US9562027B2 (en) 2012-12-04 2013-03-12 Device and method for continuously preparing high-purity AKD without solvent
EP13860044.0A EP2930172B1 (en) 2012-12-04 2013-03-12 Device and method for continuously preparing high-purity akd without solvent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210513320.8A CN102962026B (zh) 2012-12-04 2012-12-04 连续化无溶剂制备高纯度akd的设备及方法
CN201210513320.8 2012-12-04

Publications (1)

Publication Number Publication Date
WO2014086122A1 true WO2014086122A1 (zh) 2014-06-12

Family

ID=47792629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/072498 WO2014086122A1 (zh) 2012-12-04 2013-03-12 连续化无溶剂制备高纯度akd的设备及方法

Country Status (5)

Country Link
US (1) US9562027B2 (zh)
EP (1) EP2930172B1 (zh)
JP (1) JP6051313B2 (zh)
CN (1) CN102962026B (zh)
WO (1) WO2014086122A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017207131A1 (de) * 2017-04-27 2018-10-31 Thyssenkrupp Ag Granulationsvorrichtung
CN108126556A (zh) * 2017-12-27 2018-06-08 郑州沃华机械有限公司 一种可调剪切强度与混合度的动态混合器
CN108522629A (zh) * 2018-05-11 2018-09-14 柳州市壮乡情食品有限公司 一种用于螺蛳粉加工的螺蛳肉清洗装置
CN110013818A (zh) * 2019-05-22 2019-07-16 山东豪迈机械制造有限公司 一种搅拌轴及管式反应器
CN113663567A (zh) * 2020-05-13 2021-11-19 中石化石油工程技术服务有限公司 一种纤维暂堵剂无尘环保添加装置
CN113262744B (zh) * 2021-06-01 2021-10-26 哈尔滨学院 一种化工的管道反应装置
DE102021119066A1 (de) * 2021-07-22 2023-01-26 Hochschule Fulda University of Applied Sciences Vorkonditionierer für den labor- oder versuchsbetrieb,insbesondere zum behandeln von trockenen lebens- oder futtermitteln
CN113680307A (zh) * 2021-09-09 2021-11-23 金川集团股份有限公司 一种卧式旋转反应装置
CN115055154B (zh) * 2022-06-30 2023-07-21 武汉纺织大学 一种聚合物液相增黏装置和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0550107A1 (en) 1991-12-30 1993-07-07 Akzo Nobel N.V. Long-chain ketene dimers
US5672721A (en) * 1995-05-03 1997-09-30 Basf Aktiengesellschaft Preparation of low-solvent alkyl diketenes
CN2555277Y (zh) * 2002-02-01 2003-06-11 南阳市陆德筑路机械制造有限公司 双层逆流型沥青混合料连续拌合设备
CN1596252A (zh) 2001-11-30 2005-03-16 巴斯福股份公司 制备烷基烯酮二聚体的方法
CN101845030A (zh) 2010-01-19 2010-09-29 苏州天马精细化学品股份有限公司 连续化制备akd的方法
CN102974295A (zh) * 2012-12-04 2013-03-20 苏州天马精细化学品股份有限公司 一种适用于有粘稠物料参加或生成的反应器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0274668B1 (de) * 1986-12-19 1992-07-22 List AG Knetmischer
CH672749A5 (zh) * 1986-12-19 1989-12-29 List Ag
SE9300584D0 (sv) * 1993-02-22 1993-02-22 Eka Nobel Ab A process for the production of ketene dimers
JPH10298132A (ja) * 1997-04-24 1998-11-10 Nof Corp ケテンダイマーの製造方法
JP2010150170A (ja) * 2008-12-24 2010-07-08 Nof Corp アルキルケテンダイマーの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0550107A1 (en) 1991-12-30 1993-07-07 Akzo Nobel N.V. Long-chain ketene dimers
US5672721A (en) * 1995-05-03 1997-09-30 Basf Aktiengesellschaft Preparation of low-solvent alkyl diketenes
CN1596252A (zh) 2001-11-30 2005-03-16 巴斯福股份公司 制备烷基烯酮二聚体的方法
CN2555277Y (zh) * 2002-02-01 2003-06-11 南阳市陆德筑路机械制造有限公司 双层逆流型沥青混合料连续拌合设备
CN101845030A (zh) 2010-01-19 2010-09-29 苏州天马精细化学品股份有限公司 连续化制备akd的方法
CN102974295A (zh) * 2012-12-04 2013-03-20 苏州天马精细化学品股份有限公司 一种适用于有粘稠物料参加或生成的反应器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2930172A4

Also Published As

Publication number Publication date
EP2930172A1 (en) 2015-10-14
CN102962026A (zh) 2013-03-13
JP2016505540A (ja) 2016-02-25
CN102962026B (zh) 2014-02-05
US9562027B2 (en) 2017-02-07
EP2930172A4 (en) 2016-08-31
JP6051313B2 (ja) 2016-12-27
EP2930172B1 (en) 2018-10-31
US20150315163A1 (en) 2015-11-05

Similar Documents

Publication Publication Date Title
WO2014086122A1 (zh) 连续化无溶剂制备高纯度akd的设备及方法
CN113563197B (zh) 一种连续绝热硝化制备3-硝基-4-氯三氟甲苯的方法及微反应设备
CN108752161B (zh) 连续流微通道反应器中合成单氯代邻二甲苯的方法
CN110003032B (zh) 一种左旋肉碱的连续化制备方法
CN109206320B (zh) 一种连续生产金刚烷胺盐酸盐的方法
CN109665963A (zh) 一种2,6-二甲基硝基苯的合成方法
CN107628931B (zh) 一种合成苯甲醚及其衍生物的微反应系统与方法
CN110218139A (zh) 一种采用微通道连续流反应器制备联苯衍生物的方法
CN108191674A (zh) 一种联苯胺化合物的合成方法
CN111018907B (zh) 一种缩醛粗品的连续釜式工业化生产方法及系统
CN113845405B (zh) 一种连续合成吡氟酰草胺中间体间三氟甲基苯酚的方法
CN114380694B (zh) 一种连续流制备吲哚布芬中间体的合成方法
CN111848517A (zh) 一种依达拉奉的制备方法
CN114605393A (zh) 一种微通道连续流制备氯沙坦的方法
CN110357769B (zh) 一种制备3,5-二氯-2-戊酮的连续流方法
CN108047033B (zh) 一种制备扁桃酸类化合物的反应装置及其方法
CN108191611A (zh) 一种2,5-二甲基苯酚的连续化合成方法
JP4992288B2 (ja) フルオロアルキルスルホン酸無水物の製造方法
CN101619021A (zh) 卤代对乙酰基苯酚类化合物合成新工艺
US11834388B2 (en) Continuous-flow preparation method of diclofenac sodium
CN214937128U (zh) 液液非均相连续反应系统
CN113880721B (zh) 达泊西汀的合成方法
CN114516813B (zh) 一种双氯芬酸钠的连续流制备方法
CN109369359A (zh) 一种制备对羟基苯乙酮的方法
CN116199632A (zh) 一种采用微流场反应技术制备咪鲜胺的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13860044

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013860044

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015544311

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14649703

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE