WO2014083843A1 - ジャイロセンサおよびジャイロセンサを有する複合センサ - Google Patents

ジャイロセンサおよびジャイロセンサを有する複合センサ Download PDF

Info

Publication number
WO2014083843A1
WO2014083843A1 PCT/JP2013/006956 JP2013006956W WO2014083843A1 WO 2014083843 A1 WO2014083843 A1 WO 2014083843A1 JP 2013006956 W JP2013006956 W JP 2013006956W WO 2014083843 A1 WO2014083843 A1 WO 2014083843A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
weights
gyro sensor
axis direction
axis
Prior art date
Application number
PCT/JP2013/006956
Other languages
English (en)
French (fr)
Inventor
知也 城森
智由 土屋
Original Assignee
株式会社デンソー
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, 国立大学法人京都大学 filed Critical 株式会社デンソー
Priority to US14/646,920 priority Critical patent/US9696158B2/en
Priority to CN201380062596.1A priority patent/CN104823020B/zh
Priority to DE112013005703.4T priority patent/DE112013005703T5/de
Publication of WO2014083843A1 publication Critical patent/WO2014083843A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology
    • G01C19/574Structural details or topology the devices having two sensing masses in anti-phase motion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5705Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis
    • G01C19/5712Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis the devices involving a micromechanical structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5705Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology
    • G01C19/574Structural details or topology the devices having two sensing masses in anti-phase motion
    • G01C19/5747Structural details or topology the devices having two sensing masses in anti-phase motion each sensing mass being connected to a driving mass, e.g. driving frames

Definitions

  • the detection weight is driven and oscillated with respect to the substrate plane (xy plane) direction, and angular velocity detection is performed by moving the detection weight in the substrate vertical direction (hereinafter referred to as the z-axis direction) in accordance with the application of the angular velocity.
  • the present invention relates to a gyro sensor to be performed and a composite sensor having the gyro sensor.
  • a gyro sensor as shown in Patent Document 1 is known.
  • This type of gyro sensor has a drive weight that is vibrated in the plane direction of the substrate, and a detection weight connected to the drive weight via a detection spring. The angular velocity is detected based on the fact that the detection weight is vibrated in the vertical direction.
  • the gyro sensor disclosed in Patent Document 1 has a structure in which a drive weight and a detection weight are arranged in a disk shape, and when detecting the angular velocity, the angular velocity is detected by vibrating the drive weight so as to swing around the center of the disk. Yes.
  • the detection weights are opposed to each other like a seesaw on both the left and right sides across the center of the disk so as to vibrate vertically in the direction perpendicular to the disk plane (z-axis direction).
  • Angular velocity detection is performed by obtaining a differential output based on.
  • the gyro sensor as in Patent Document 1 has a problem that an output error becomes large when receiving an impact in the z-axis direction. Specifically, when receiving an impact in the z-axis direction, the detection weight is moved in the z-axis direction on both the left and right sides of the disc center. At this time, if the detection weight moves in synchronism on both the left and right sides, there is no problem because the shock vibration component in each output is canceled when the operation output is taken, but if it is not synchronized, it will appear as a large output error. Become. Such a large output error is not preferable because accurate angular velocity detection cannot be performed.
  • the gyro sensor includes a substrate, a movable part, two detection weights, a coupling spring, and a detection electrode.
  • the substrate includes a fixing portion.
  • the movable part is connected to the fixed part via a support beam.
  • the movable part is When detecting the angular velocity, a driving weight having a mass part that is reciprocally rotated or reciprocated in the y-axis direction on the xy plane based on the displacement of the support beam is provided.
  • Each of the detection weights is connected to the drive weight via a detection beam.
  • the two detection weights are arranged in the x-axis direction and are connected by a coupled spring.
  • the detection electrode is arranged at a predetermined distance from each of the two detection weights in the z-axis direction along the z-axis perpendicular to the xy plane.
  • the gyro sensor having such a configuration changes the distance between the two detection weights and the detection electrode by causing the two detection weights to vibrate in opposite directions in the z-axis direction as the angular velocity is applied.
  • the differential output of the signal indicating the change in the two capacitance values is used. Perform angular velocity detection.
  • both detection weights are connected by a coupled spring, both detection weights can be moved in synchronism, and can always be moved in two patterns, in-phase mode and reverse-phase mode. Since both detection weights move synchronously, the resonance frequency fin of the in-phase mode and the resonance frequency fanti of the anti-phase mode can be obtained, and the resonance frequency fin of the common mode and the anti-phase are based on the setting of each part. The resonance frequency fanti of the mode can be separated. For this reason, an output error when receiving an impact can be suppressed, and a gyro sensor capable of more accurate angular velocity detection can be obtained.
  • the gyro sensor includes a substrate, a movable part, two drive weights, a coupling spring, and a detection electrode.
  • the substrate includes a fixing portion.
  • the movable part is connected to the fixed part via a detection beam.
  • the movable part is When detecting the angular velocity, a detection weight having a mass portion that is reciprocally rotated on the xy plane or reciprocally vibrated in the y-axis direction based on the displacement of the detection beam is provided.
  • the drive weight is configured integrally with the detection weight and is arranged in the x-axis direction.
  • the coupled spring couples the two detection weights.
  • the detection electrode is arranged at a predetermined distance from each of the two detection weights in the z-axis direction along the z-axis perpendicular to the xy plane. That is, two detection weights are integrally formed with respect to the drive weight and arranged in the x-axis direction. Also in the gyro sensor having such a structure, the same effect as that of the gyro sensor according to the first aspect can be obtained.
  • the composite gyro sensor includes the gyro sensor according to the first or second aspect as the first gyro sensor, and is further formed on the substrate and around the z axis on the xy plane.
  • a second gyro sensor that detects an angular velocity of the first gyro sensor, and an acceleration sensor that is formed on the substrate and detects an acceleration in one direction parallel to the xy plane.
  • the first gyro sensor, the second gyro sensor, and the acceleration sensor are 1 It is made into a chip.
  • the first gyro sensor can be integrated with the second gyro sensor or the acceleration sensor into a single chip to form a composite sensor.
  • the composite sensor can be simplified as compared with the case where each sensor is formed on a different chip.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
  • the gyro sensor described in the present embodiment is a sensor for detecting an angular velocity as a physical quantity.
  • the gyro sensor is used for detecting a rotational angular velocity around a center line parallel to the vertical direction of the vehicle. It can also be applied to other than.
  • the gyro sensor is mounted on the vehicle so that the normal direction of the paper surface in FIG. 1 coincides with the vertical direction of the vehicle.
  • the gyro sensor is formed on one surface side of a plate-like substrate 10.
  • the substrate 10 is configured by an SOI (Silicon on insulator) substrate having a structure in which a buried oxide film 13 that is a sacrificial layer is sandwiched between a support substrate 11 and a semiconductor layer 12. .
  • SOI Silicon on insulator
  • Such a sensor structure is configured by etching the semiconductor layer 12 side to the pattern of the sensor structure, and then partially removing the buried oxide film 13 and releasing a part of the sensor structure to be in a floating state. Is done.
  • one direction on a plane parallel to the surface of the semiconductor layer 12 is the x-axis direction in the left-right direction on the plane of the paper
  • the up-down direction on the plane perpendicular to the x-axis direction is the y-axis direction
  • the following description is given with the direction as the z-axis direction.
  • a plane including the x axis and the y axis that are parallel to and orthogonal to the plane of the substrate 10 is defined as an xy plane
  • a direction along the x axis is defined as an x axis direction
  • a direction along the y axis is defined as a y axis direction.
  • An axis perpendicular to the x-axis and the y-axis, that is, an axis perpendicular to the xy plane is defined as a z-axis, and a direction along the z-axis is defined as a z-axis direction.
  • the semiconductor layer 12 is patterned into a fixed portion 20, a movable portion 30 and a beam portion 40.
  • the fixing portion 20 has a buried oxide film 13 remaining at least on a part of the back surface thereof, and is fixed to the support substrate 11 via the buried oxide film 13 without being released from the support substrate 11.
  • the movable part 30 and the beam part 40 constitute a vibrator in the gyro sensor.
  • the movable portion 30 has the buried oxide film 13 on the rear surface side removed, and is released from the support substrate 11 to be in a floating state.
  • the beam portion 40 supports the movable portion 30 and drives and vibrates the movable portion 30 on the xy plane in order to detect the angular velocity, and a part of the movable portion 30 is displaced in the z-axis direction in accordance with the angular velocity application. It is what Specific structures of the fixed portion 20, the movable portion 30, and the beam portion 40 will be described.
  • the fixing unit 20 includes a supporting fixing unit 21 for supporting the movable unit 30 and driving fixing units 22 and 23 to which a driving voltage is applied.
  • the supporting fixing portion 21 is separated from the other portions (the driving fixing portions 22 and 23) of the fixing portion 20, and is disposed at a symmetrical position with the movable portion 30 as the center.
  • the movable portion 30 is supported via a support beam 41 that is a part of the beam portion 40.
  • the support fixing portion 21 is disposed on both the left and right sides with the movable portion 30 as the center, and supports the movable portion 30 at two locations.
  • the driving fixing portions 22 and 23 are applied with a driving voltage, are separated from each other, and are configured to be able to apply different potentials. These driving fixing portions 22 and 23 are configured to include base portions 22a and 23a and comb-like driving fixing electrodes 22b and 23b.
  • the base portions 22a and 23a are disposed so as to surround the periphery of the sensor structure such as the movable portion 30, and the left half of the movable portion 30 in FIG. 1 is surrounded by the base portion 22a, and the right half in FIG. Is surrounded by a base 23a.
  • the fixed electrodes 22b and 23b for driving are connected to the base portions 22a and 23a, and an AC voltage (driving voltage) is externally supplied through a bonding wire connected to a bonding pad (not shown) provided in the base portions 22a and 23a. Can be applied.
  • a desired AC voltage to the base portions 22a and 23a, a desired AC voltage can be applied to each of the driving fixed electrodes 22b and 23b.
  • the fixed driving electrodes 22b and 23b are comb-like electrodes disposed so as to be opposed to the respective comb teeth of the comb-like driving movable electrode 31b provided in the movable portion 30.
  • the fixed driving electrodes 22b and 23b have a plurality of support portions 22c and 23c extending in the x-axis direction, and are equally spaced from each support portion 22c and 23c in the y-axis direction. It is composed of a plurality of comb-like electrodes 22d and 23d.
  • the driving fixed electrodes 22b and 23b having such a structure are connected to the base portions 22a and 23a, so that an AC voltage can be uniformly applied to each of the plurality of comb-like electrodes 22d and 23d.
  • the fixed portion 20 is configured by such a structure.
  • the base portions 22a and 23a are configured to surround the sensor structure and the support fixing portion 21 is partially disposed.
  • the base portions 22a and 23a are partially disposed to support the support fixing portion.
  • Other structures, such as 21 surrounding the sensor structure, may be used.
  • the movable portion 30 is a portion that is driven to vibrate during angular velocity detection or is displaced in response to application of the angular velocity, and has an outer drive weight 31, detection weights 32, 33, and the like.
  • the movable portion 30 has a layout in which detection weights 32 and 33 are built in a part of the beam portion 40 in an outer drive weight 31 that is formed in a substantially annular shape.
  • the outer driving weight 31 is a driving weight disposed outside the detection weights 32 and 33, and has a configuration including a mass part 31a and a driving movable electrode 31b.
  • the mass portion 31a is a portion constituting the outer shape of the outer drive weight 31, and is formed in an annular shape.
  • the mass portion 31a is disposed along the inner wall surfaces of the driving fixing portions 22 and 23.
  • the mass portion 31a serves as a weight, and the outer driving weight 31 is z with the center of the mass portion 31a as the center of rotation. It is configured to be rotatable about an axis.
  • the driving movable electrode 31b is a comb-like electrode disposed so as to face each comb tooth of the comb-like driving fixed electrodes 22b and 23b provided in the driving fixing portions 22 and 23.
  • the driving movable electrode 31b includes a plurality of support portions 31c extending in the x-axis direction, and a plurality of comb-like electrodes arranged at equal intervals from the support portions 31c in the y-axis direction. 31d.
  • the support beam 41 is connected to the tip of the drive movable electrode 31b having such a structure, and this is connected to the support fixing portion 21, whereby the movable portion 30 is suspended from the support fixing portion 21 in a floating state. .
  • the detection weights 32 and 33 have a flat plate shape and are supported inside the mass portion 31a via detection beams 42 and 43 which are parts of the beam portion 40, respectively. Specifically, the detection weights 32 and 33 are arranged in a pair at symmetrical positions with respect to the center of the mass part 31a, and in the present embodiment, two detection weights 32 and 33 are arranged side by side in the x-axis direction. The detection weights 32 and 33 are respectively supported by two detection beams 42 and 43 extending on both sides in the y-axis direction. The connection positions of the detection beams 42 and 43 are connected to the mass part 31a of the detection beam 32. A cantilever structure is obtained by moving the end portion, preferably the end portion on the center side.
  • the detection beam 42 is connected to one side of the detection weight 32 in the x-axis direction (the center side of the mass portion 31a) and detected.
  • the beam 43 is connected to one side of the detection weight 33 in the x-axis direction (the center side of the mass portion 31a).
  • the detection electrode 14 is formed at a position corresponding to the detection weights 32 and 33 on the surface of the support substrate 11 on the semiconductor layer 12 side (dashed line in FIG. 1).
  • the angular velocity is detected based on the distance between the detection electrode 14 and the weights 32 and 33 being displaced.
  • the detection weights 32 and 33 are supported by the cantilever structure as described above, but this makes it possible to improve the S / N ratio. That is, the detection weights 32 and 33 can be displaced in parallel with the xy plane by using a both-end support structure in which the detection beams 42 and 43 are arranged on both sides of the detection weights 32 and 33 in the x-axis direction.
  • the double-supported structure when the double-supported structure is used, the number of connection points of the detection needles 42 and 43 serving as springs increases, the resonance mode increases, and unnecessary resonance modes also increase, which is not preferable. Therefore, it is preferable to support the detection weights 32 and 33 by a cantilever structure as in this embodiment.
  • the beam portion 40 is configured to include a coupled spring 44 in addition to the support beam 41 and the detection beams 42 and 43 described above.
  • the support beam 41 functions as a spring that supports the movable unit 30 in a floating state with respect to the substrate 10 and also supports the movement of the movable unit 30 in the xy plane.
  • the support beam 41 has a structure in which the tip of the support portion 31c of the driving movable electrode 31b and the support fixing portion 21 are connected, and the width of the support beam 41 is made smaller than that of the support portion 31c. To function as. However, it is not necessary to connect the support beam 41 to the drive movable electrode 31b, and the support beam 41 may be disposed at a location different from the drive movable electrode 31b.
  • the detection beams 42 and 43 connect the detection weights 32 and 33 to the mass part 31 a, move the detection weights 32 and 33 into the xy plane integrated with the outer drive weight 31, and are independent of the outer drive weight 31.
  • This is a detection spring that enables movement in the z-axis direction.
  • the detection beams 42 and 43 are constituted by linear beams extending in the y-axis direction, and are arranged one by one on both sides of the detection weights 32 and 33 in the vertical direction on the paper surface. It is connected to the inner peripheral surface of 31a.
  • the connection portion with the detection weights 32 and 33 is twisted and functions as a torsion spring (torsion spring). Accordingly, the detection weights 32 and 33 are supported on the support side and can be displaced on the non-support side.
  • the coupled spring 44 connects the detection weights 32 and 33, and has a folded beam 44a and an intermediate rigid body 44b. By connecting the detection weights 32 and 33 by the coupling spring 44, the detection weights 32 and 33 can be moved synchronously.
  • the folded beam 44a constitutes a torsion spring, and is disposed closer to the center of the mass portion 31a than the detection beams 42 and 43 on the support side of both detection weights 32 and 33.
  • the folded beam 44a is formed by a beam folded into a rectangular frame shape, and is connected to both corners on the support side of the detection weights 32 and 33, and is parallel to the two sides parallel to the y-axis direction and the x-axis. And one side. Then, the side parallel to the y-axis direction after the folded beam 44a is twisted and functions as a torsion spring.
  • the intermediate rigid body 44b connects the two folded beams 44a.
  • the intermediate rigid body 44b is a linear member, and is connected to the center position of the side parallel to the y-axis of the folded beam 44a.
  • the intermediate rigid body 44b has a thickness in the y-axis direction that is greater than the thickness in the x-axis direction of the folded beam 44a. For this reason, the folded beam 44a is displaced during the sensor operation, and the intermediate rigid body 44b is connected to each other while maintaining the distance between the folded beams 44a without being twisted and deformed.
  • the pair of detection weights 32 and 33 supported by the detection beams 42 and 43 are arranged in the mass portion 31a, and the detection weights 32 and 33 are connected via the coupling spring 44.
  • a gyro sensor having a structure is configured.
  • a symbol with a black circle in the circle indicates that it vibrates in the direction perpendicular to the paper surface
  • a symbol with a cross in the circle indicates that it vibrates in the vertical direction on the paper surface.
  • the gyro sensor performs an operation of driving and vibrating the outer driving weight 31 as a basic operation.
  • the outer driving weight 31 is moved around the center of the mass portion 31a.
  • An operation of reciprocating rotational vibration is performed.
  • the driving fixed electrodes 22b and 23b An electrostatic force in the y-axis direction is generated between the driving movable electrode 31b. Based on this electrostatic force, the outer driving weight 31 is reciprocally rotated with the center of the mass portion 31a as the center of rotation. Further, as indicated by the arrows in FIG.
  • the detection weights 32 and 33 are vibrated in the opposite direction with respect to the vibration direction of the outer drive weight 31. Then, the vibration of the outer driving weight 31 is monitored while changing the frequency of the AC voltage, and the AC voltage frequency is adjusted to a desired driving resonance frequency.
  • the gyro sensor when detecting the angular velocity, performs a basic operation in which the movable portion 30 is driven and vibrated.
  • the detection weights 32 and 33 are displaced in the opposite directions in the z-axis direction by the Coriolis force. To do. Due to this displacement, the distance between the detection weights 32 and 33 and the detection electrode 14 changes, and the capacitance value of the capacitor formed by the detection weights 32 and 33 and the detection electrode 14 changes. And since the distance between the detection weights 32 and 33 and the detection electrode 14 changes according to the magnitude
  • the angular velocity is detected by reading the change in the capacitance value of each capacitor based on the signal extracted through the wiring pattern (not shown) drawn from the detection electrode 14 arranged opposite to the detection weights 32 and 33. be able to.
  • the capacitance value of the capacitor is obtained by obtaining the differential output of the signal extracted from each of the two sets of angular velocity detection structures using the pair of detection weights 32 and 33 and the detection electrode 14. Changes can be read. For this reason, it becomes possible to distinguish and detect angular velocity and acceleration.
  • the angular velocity is detected based on the detection principle as described above.
  • the two detection weights 32 and 33 are connected by the coupling spring 44, they move in synchronization. For this reason, the detection weights 32 and 33 move in the in-phase mode that vibrates in the same direction in the z-axis direction and the anti-phase mode that vibrates in the opposite directions to each other. It will have. This will be described with reference to FIGS. 4A to 4C.
  • FIGS. 4A to 4C The states of the gyro sensor according to the present embodiment in a stationary state, an in-phase mode, and a reverse-phase mode are schematically depicted as shown in FIGS. 4A to 4C, respectively. That is, the detection weights 32 and 33 are supported by the detection beams 42 and 43 on the support side, and are connected to the folded beam 44a and the intermediate rigid body 44b constituting the coupled spring 44 on the support side. Of these, the portions parallel to the y-axis of the detection beams 42 and 43 and the frame beam 44a are torsion springs. In FIGS. 4A to 4C, these torsion spring portions are indicated by circles, and the rigid body portions are indicated by square marks.
  • the frame beam 44a is shown by two circles and one square mark between each of the detection weights 32 and 33 and the intermediate rigid body 44b, but the frame beam 44a is parallel to the y-axis. These two sides are torsion springs, and one side parallel to the x-axis is a rigid body.
  • the detection weight 32, the detection beams 42 and 43, and the coupling spring 44 are in a state parallel to the xy plane.
  • the non-supporting sides of the detection weights 32 and 33 are both displaced in the same direction, and the intermediate rigid body 44b is displaced in the opposite direction to the detection weights 32 and 33.
  • the reverse phase mode as shown in FIG. 4C, the non-supporting sides of the detection weights 32 and 33 are displaced in the opposite directions.
  • the detection weights 32 and 33 are displaced in the z-axis direction in the opposite directions by the Coriolis force, so that they are vibrated in the reverse phase mode.
  • the signals extracted from the two sets of angular velocity detection structures are differentially amplified if both change in the common mode. For this reason, the signal resulting from the vibration based on the impact is canceled out.
  • the shock is applied in the common mode, but when the resonance frequency of the anti-phase mode inherent to the gyro sensor is located in the vicinity of the resonance frequency of the common mode, the excitation of the common mode induces the vibration of the anti-phase mode. It will be. For this reason, it appears as an output error.
  • the resonance magnification (response strength) changes according to various frequency components included in the impact. Specifically, it has been confirmed that the frequency characteristic (response curve) of the resonance magnification when driven in the common mode is expressed as shown in FIG. 5, and the resonance magnification is the largest at the resonance frequency fin of the common mode. Become. The resonance magnification rapidly decreases in other frequency regions around the resonance frequency fin of the common mode, and decreases as the distance from the resonance frequency fin of the common mode decreases.
  • the resonance frequency fanti of the anti-phase mode exists separately from the resonance frequency fin of the common mode, and the resonance frequency fanti of the anti-phase mode is sufficiently smaller than the resonance frequency fin of the common mode, but the resonance magnification is increased to some extent.
  • the vibration in the common mode excited by the shock induces the movement of vibrating the two detection weights 32 and 33 in the opposite direction, that is, the vibration in the reverse phase mode, and generates the output error as described above.
  • the resonance magnification at the resonance frequency fanti increases as the resonance frequency fanti of the antiphase mode is closer to the resonance frequency fin of the inphase mode. It was done. That is, as shown in FIG. 5, the resonance magnification is attenuated centering on the resonance frequency fin of the common mode. However, if the resonance frequency fanti of the anti-phase mode is too close to the resonance frequency fin of the common mode, the anti-phase mode vibration is induced without being sufficiently attenuated by the shock.
  • the resonance frequency fin of the in-phase mode and the resonance frequency fanti of the anti-phase mode away from each other, the common-mode vibration excited by the impact is sufficiently attenuated near the anti-mode resonance frequency fanti. It can be said that the induction of the movement in the reverse phase mode can be suppressed.
  • the frequency characteristics of the resonance magnification the length of the intermediate rigid body 44b is set in addition to the spring or the like that allows displacement in the z-axis direction, that is, in the case of this embodiment, the detection beams 42 and 43 and the folded beam 44a. Can be adjusted based on. Based on this, the inventors adjusted the frequency characteristics of the resonance magnification by adjusting a spring or the like that allows displacement in the z-axis direction. As a result, if the resonance frequency fanti of the antiphase mode is separated from the resonance frequency fin of the common mode, the resonance magnification at the resonance frequency fanti of the antiphase mode can be reduced.
  • each detection weight moves independently and synchronizes. Therefore, the movement of the in-phase mode and the reverse-phase mode could not be made. For this reason, the resonance frequency fin of the in-phase mode and the resonance frequency fanti of the opposite phase mode cannot be separated.
  • the detection weights 32 and 33 since the detection weights 32 and 33 are connected by the coupling spring 44, the detection weights 32 and 33 can be moved in synchronization. Two patterns of movement can be made. Since the detection weights 32 and 33 move in synchronization, the detection weights 32 and 33 can have the resonance frequency fin of the in-phase mode and the resonance frequency fanti of the anti-phase mode, and these can be added to the detection beams 42 and 43 and the folded beam 44a. Thus, the separation can be performed based on the setting of the length of the intermediate rigid body 44b. Therefore, the resonance frequency fanti in the negative phase mode can be separated from the resonance frequency fin in the common phase mode, and the resonance magnification at the resonance frequency fanti in the negative phase mode can be reduced.
  • the greater the D.R. the more the induction of the movement in the reverse phase mode can be suppressed.
  • output errors of the gyro sensor can be suppressed, impact resistance can be improved, and more accurate angular velocity detection can be performed.
  • FIG. 6 when the relationship between D.R. and impact resistance was examined, the results shown in FIG. 6 were obtained. From this figure, it can be seen that the greater the absolute value of D.R., the better the impact resistance.
  • D.R. can be adjusted by setting the length of the intermediate rigid body 44b in addition to the detection beams 42 and 43 and the folded beam 44a, similarly to other resonance frequencies. Hereinafter, this reason will be described.
  • Equations 1 and 2 a and b are constants. However, b> a.
  • Equation 3 (fanti ⁇ fin) / fanti)
  • substituting the anti-phase mode resonance frequency fanti and the in-phase mode resonance frequency fin expressed by Equations 1 and 2 into Equation 3 yields Equation 3. It can.
  • the processing variation of the detection beams 42 and 43 when the gyro sensor is manufactured, there is a variation in the D.R. quality value when actually created with respect to the target value of the D.R. As shown in FIG. 8, the variation is smaller as the target value of D.R. is smaller. Therefore, it is preferable to set the D.R. to a value that is small to some extent so that variation in the D.R. If the variation in workmanship can be suppressed in this way, the D.R. can be set almost according to the target value even when the D.R. near the area sensitive to the impact resistance is targeted and the impact resistance is improved. Therefore, it is possible to increase the robustness as the region is more sensitive to impact resistance. Specifically, as shown in FIG.
  • the detection weights 32 and 33 are connected by the coupling spring 44, so that the resonance frequency fin of the in-phase mode and the resonance frequency fanti of the anti-phase mode are separated. It becomes possible. For this reason, an output error when receiving an impact can be suppressed, and a gyro sensor capable of more accurate angular velocity detection can be obtained.
  • the coupled spring 44 is constituted by a folded beam 44a serving as a torsion spring and an intermediate rigid body 44b. Therefore, it is possible to adjust the DR simply by adjusting the length L of the intermediate rigid body 44b, and it is possible to adjust the DR more easily and accurately than adjusting the detection beams 42 and 43 and the folded beam 44a. Become.
  • the outer drive weight 31 has a frame shape, here a rectangular frame shape, and is separated into two in the x-axis direction, and the two outer drive weights 31 separated are drive coupled springs 31e. It is linked by.
  • the outer drive weight 31 is supported by the support fixing portion 21 via the support beam 41, and can be moved in the x-axis direction (left and right direction in the drawing) by a drive spring 41 a provided on the support beam 41. Since the two separated outer drive weights 31 are connected by the drive coupled spring 31e, the outer drive weights 31 operate more in synchronization.
  • the coupled spring 44 is basically configured in the same manner as in the first embodiment, but since the outer drive weight 31 is separated into two, each of the detection weights 32 and 33 is on the xy plane.
  • the intermediate rigid body 44b is provided with a spring 44ba so that the intermediate rigid body 44b can move.
  • the spring 44ba is a rigid body that is soft in the xy plane direction and hard in the z axis direction so that the movement of the detection weights 32 and 33 on the xy plane can be allowed and the movement in the z axis direction can be restricted.
  • the spring 44ba can be constituted by a frame-shaped folded beam.
  • the rigidity in the twisting direction can be increased. Therefore, as described above, the detection weights 32 and 33 in the z-axis direction can be increased. Can restrict movement.
  • the driving fixing portions 22 and 23 and the driving movable electrode 31b are omitted.
  • the configuration of the first embodiment is that the base portions 22a and 23a provided in the driving fixing portions 22 and 23 and the comb-like driving fixing electrodes 22b and 23b are configured separately from the support beam 41.
  • the other configurations are the same as those in the first embodiment.
  • angular velocity detection can be performed by causing drive vibrations by displacing the separated outer drive weights 31 in opposite directions in the x-axis direction as indicated by arrows in FIG. Since such a driving mode is adopted, the driving direction is different from that of the first embodiment, but other operations are the same as those of the first embodiment.
  • the same effect as that of the first embodiment can be obtained by connecting the two detection weights 32 and 33 by the coupled spring 44.
  • a third embodiment of the present disclosure will be described. This embodiment is also different from the first embodiment because the configuration and driving direction of the movable portion 30 and the beam portion 40 are changed with respect to the first embodiment, and the others are the same as the first embodiment. Only the part will be described.
  • the detection beams 42 and 43 are connected to the support fixing portion 21, and the detection beams 42 and 43 are provided with drive springs 42a and 43a that enable movement in the y-axis direction (vertical direction on the paper surface). It has a configuration. And the detection weights 32 and 33 are made to function also as a drive weight by carrying out drive vibration of the detection weights 32 and 33 connected to the detection beams 42 and 43 by the drive springs 42a and 43a in the y-axis direction. In other words, the detection weights 32 and 33 are formed integrally with the drive weight and arranged in the x-axis direction.
  • the coupled spring 44 has basically the same configuration as that of the first embodiment, but the detection weights 32 and 33 are configured to be movable in the y-axis direction.
  • the intermediate rigid body 44b is provided with a spring 44bb so that movement in the y-axis direction can be permitted.
  • the spring 44bb is a rigid body that is soft in the y-axis direction and hard in the z-axis direction so that the detection weights 32 and 33 can move in the y-axis direction and can be restricted in the z-axis direction.
  • the spring 44bb can be configured by a frame-shaped folded beam.
  • the rigidity in the twisting direction can be increased. Therefore, as described above, the detection weights 32 and 33 in the z-axis direction can be increased. Can restrict movement.
  • the spring 44bb may simply be formed of a simple beam in which the thickness of the intermediate rigid body 44b in the y-axis direction is partially reduced.
  • the driving fixed portions 22 and 23 and the driving movable electrode 31b are omitted, the driving movable electrode 31b is provided in the detection weights 32 and 33, and the driving fixed electrode is provided so as to be opposed thereto. 22b and 23b are provided.
  • the support portion 31c extends in the y-axis direction
  • the comb-shaped electrode 31d extends in the x-axis direction
  • the support portions 22c and 23c also extend in the y-axis direction for the drive fixed electrodes 22b and 23b.
  • Comb-like electrodes 22d and 23d are extended in the x-axis direction. Accordingly, the detection weights 22 and 23 can be driven to vibrate in parallel with the y-axis direction based on the electrostatic force between the comb-shaped electrodes 22d, 23d, and 31d.
  • Such a gyro sensor causes drive vibration by displacing the detection weights 32 and 33 in opposite directions in the y-axis direction. Therefore, the drive direction is different from that of the first embodiment. This is the same as in the first embodiment.
  • the same effect as that of the first embodiment can be obtained by connecting the two detection weights 32 and 33 by the coupled spring 44.
  • the gyro sensor of any one of the first to third embodiments is provided as one of the composite sensors, and the basic structure of the gyro sensor is the same as that of each of the above embodiments. Only portions different from the respective embodiments will be described.
  • the composite sensor provided with the gyro sensor of 1st Embodiment is mentioned as an example and demonstrated here, the gyro sensor concerning 2nd, 3rd embodiment may be sufficient.
  • the composite sensor S ⁇ b> 1 includes the second gyro sensor in addition to the gyro sensor described in the first embodiment as the first gyro sensor 100 with respect to the substrate 10. 200 and the acceleration sensor 400 are integrated into one chip.
  • the second gyro sensor 200 is configured to include first and second vibrators 201 and 202.
  • the vibrators 201 and 202 are provided with detection weights 210 and 220, detection fixed electrodes 230 and 240, servo electrodes 231 and 241, drive weights 250 and 260, fixed electrodes 270 and 280, fixed portions 290 and 300, and the like. It is configured.
  • the detection weights 210 and 220 each have a rectangular frame shape, and include detection movable electrodes 211 and 221 parallel to the x-axis on the outer periphery of the detection weights 210 and 220.
  • the detection fixed electrodes 230 and 240 and the servo electrodes 231 and 241 are arranged around the detection weights 210 and 220 and are arranged to face the detection movable electrodes 211 and 221, respectively.
  • the drive weights 250 and 260 are respectively arranged inside the detection weights 210 and 220 having a rectangular frame shape.
  • the driving weights 250 and 260 are in a block shape, and driving movable electrodes 251 and 261 parallel to the x axis are provided on the outer peripheral portions of the driving weights 250 and 260.
  • the driving fixed electrodes 270 and 280 are disposed around the driving weights 250 and 260, that is, between the detection weights 210 and 220 and the driving weights 250 and 260, and are disposed to face the driving movable electrodes 250 and 260.
  • the fixing portions 290 and 300 are disposed between the detection weights 210 and 220 and the driving weights 250 and 260, and the driving beams 291 and 301 connect the fixing portions 290 and 300 and the driving weights 250 and 260.
  • Support beams 292 and 302 are disposed between the detection weights 210 and 220 and the drive weights 250 and 260 and connect the detection weights 210 and 220 and the drive weights 250 and 260.
  • the detection weights 210 and 220 and the driving weights 250 and 260 are floated on the support substrate 11 at fixed intervals by the fixing portions 290 and 300, the driving beams 291 and 301, and the support beams 292 and 302. It is supported.
  • openings 214 and 224 are respectively formed in portions of the detection weights 210 and 220 where the detection weights 210 and 220 face each other. Accordingly, the driving weights 250 and 260 arranged inside the detection weights 210 and 220 face each other through the openings 214 and 224. Then, the drive weight 250 of the first vibrator 201 and the drive weight 260 of the second vibrator 202 are directly connected by the drive coupling spring 310 through the openings 214 and 224 of the detection weights 210 and 220.
  • the drive weights 250 and 260 are surrounded by the detection weights 210 and 220. For this reason, by providing the openings 214 and 224 in the detection weights 210 and 220, the drive weights 250 and 260 can be directly connected to each other by the drive coupling spring 310.
  • a detection coupled spring 320 is disposed between the detection weight 210 of the first vibrator 201 and the detection weight 220 of the second vibrator 202, and the detection weights 210 and 220 are directly connected by the detection coupled spring 320. It is connected. Of the portions where the detection weights 210 and 220 face each other, one opening end side of the opening 214 and one opening end side of the opening 224 are directly connected by one detection coupling spring 320. . In addition, the other opening end side of the opening 214 and the other opening end side of the opening 242 are directly connected by a single detection coupling spring 320. For this reason, the drive coupled spring 310 is sandwiched between the detection coupled springs 320.
  • the second gyro sensor 200 configured as described above operates as follows. First, when a potential difference is applied between the driving fixed electrodes 270 and 280 and the driving movable electrodes 251 and 261, the driving weights 250 and 260 are displaced in the x-axis direction. Therefore, when an AC voltage having a desired frequency (usually the natural frequency of each of the vibrators 201 and 202) is applied to the drive fixed electrodes 270 and 280, the drive weights 250 and 260 vibrate at that frequency.
  • a desired frequency usually the natural frequency of each of the vibrators 201 and 202
  • the driving weights 250 and 260 are driven in the driving direction (x-axis direction) so that the detection weight 210 of the first vibrator 201 and the detection weight 220 of the second vibrator 202 are in opposite phases (phase difference of 180 °). ), The detection weights 210 and 220 are respectively driven. As a result, the detection weights 210 and 220 vibrate in the x-axis direction similarly to the drive weights 250 and 260.
  • the detection weights 210 and 220 are vibrating in the x-axis direction, if an angular velocity centered on the z-axis perpendicular to the x-axis and the y-axis is applied, a Coriolis force is generated in the y-axis direction. To do.
  • the detection weights 210 and 220 are displaced in the y-axis direction relative to the driving weights 250 and 260 by the force. Since the detection weights 210 and 220 vibrate in mutually opposite phases, the detection movable electrodes 211 and 221 are displaced in opposite directions by Coriolis force when an angular velocity around the z axis perpendicular to one surface of the substrate 10 is applied. Become.
  • the displacement amount of each of the detection weights 210 and 220 is measured by detecting a change in capacitance caused by a change in the distance between the detection movable electrodes 221 and 221 and the detection fixed electrodes 230 and 240. That is, a capacitance change between the detection movable electrodes 211 and 221 and the detection fixed electrodes 230 and 240 is detected, and a voltage corresponding to the servo force is applied to the servo electrodes 231 and 241 so as to suppress the capacitance change. An angular velocity can be obtained from a voltage corresponding to this servo force.
  • the second gyro sensor 200 can detect the acceleration around the z-axis on the xy plane.
  • the acceleration sensor 400 has a movable part 410, a fixed part 420, and a vibration spring 430.
  • the movable portion 410 has a movable weight 411 and a movable electrode 412, and has a structure in which comb-like movable electrodes 412 are provided on two opposite sides of the rectangular movable weight 411.
  • the fixed portion 420 is supported by the support substrate 11 and has a comb-shaped fixed electrode 421 corresponding to the movable electrode 412.
  • the movable electrode 412 and the fixed electrode 421 are spaced apart from each other by a predetermined distance, and a capacitance is formed between them.
  • the movable electrode 412 and the fixed electrode 421 are extended along the x-axis direction.
  • the vibration spring 430 connects the movable weight 411 to the support fixing portion 431 on two sides different from the two sides where the movable electrode 412 is formed on the movable weight 411, for example. Thereby, the movable part 410 can be displaced in the y-axis direction.
  • the acceleration sensor 400 configured as described above, when acceleration having a component parallel to the x-axis direction is applied, the movable portion 410 is displaced accordingly, and the distance between the movable electrode 412 and the fixed electrode 421 changes. Thus, the capacity formed between them changes. Therefore, by generating a potential difference between the fixed portion 420 and the support fixing portion 431, a potential difference is generated between the movable electrode 412 and the fixed electrode 421, and a change in capacitance between them is output. The acceleration in the y-axis direction can be detected.
  • the second gyro sensor 200 and the acceleration sensor 400 can be provided on the substrate 10 as a single chip.
  • the angular velocity in the circumferential direction for example, the roll direction in the vehicle
  • the detection weights 32 and 33 in the z-axis direction as in the first gyro sensor 100, on the xy plane
  • Each component of the first gyro sensor 100 can be formed.
  • each component of the second gyro sensor 200 when detecting the angular velocity in the circumferential direction around the axis parallel to the xy plane, each component of the second gyro sensor 200 is parallel to the z axis. It must be formed on a flat surface. For this reason, the chip on which the second gyro sensor 200 is formed needs to be vertically arranged on the xy plane. Therefore, when detecting two angular velocities of the circumferential direction around the axis parallel to the xy plane and the angular velocities around the z axis by the structure like the second gyro sensor 200, each sensor must be arranged on a different chip. It must be made into one chip.
  • the first gyro sensor 100 can be combined with the second gyro sensor 200 and the acceleration sensor 400 into a single sensor. it can.
  • the composite sensor can be simplified as compared with the case where each sensor is formed on a different chip.
  • the detection electrode 14 is provided on the support substrate 11.
  • the detection electrode 14 may be disposed on the front side of the detection weights 32 and 33 because it may be disposed at a position separated from the detection weights 32 and 33 by a predetermined distance in the z-axis direction.
  • the mass portion 31a disposed outside the detection weights 32 and 33 is formed in an annular shape, other frame shapes, for example, a rectangular frame shape may be used. Further, when the mass portion 31a is driven to vibrate, it is caused to vibrate in the reverse direction, but it may be reciprocated in the y-axis direction.
  • an externally driven internal detection type gyro sensor in which the detection weights 32 and 33 are arranged inside the outer drive weight 31 is taken as an example.
  • an internal drive external detection type gyro sensor in which the detection weight is arranged outside the drive weight is taken as an example.
  • the gyro sensor can be applied to, for example, a gyro sensor that detects an angular velocity in a roll direction in a vehicle.
  • the gyro sensor includes the substrate 10 including the fixed unit 20, the movable unit 30, the two detection weights 32 and 33, the coupling spring 44, and the detection electrode 44.
  • the movable portion 30 is connected to the fixed portion 20 via a support beam 41, and a plane that is parallel to the plane of the substrate 10 and includes the x axis and the y axis perpendicular thereto is defined as the xy plane.
  • a driving weight 31 having 31a is provided.
  • the two detection weights 32 and 33 are connected to the drive weight 31 via detection beams 42 and 43 and are arranged in the x-axis direction.
  • the coupled spring 44 couples the two detection weights 32 and 33.
  • the detection electrode 14 is disposed at a predetermined distance in the z-axis direction from each of the two detection weights 32 and 33, with the direction along the z-axis perpendicular to the xy plane being the z-axis direction. Furthermore, the distance between the two detection weights 32 and 33 and the detection electrode 44 is changed by causing the two detection weights 32 and 33 to vibrate in the opposite directions in the z-axis direction as the angular velocity is applied. Capacitance values of two capacitors formed between the detection weights 32 and 33 and the detection electrode 44 are changed in opposite phases.
  • the gyro sensor includes a substrate including the fixed portion 21, a movable portion, two drive weights 31, a coupling spring 44, and a detection electrode.
  • the movable part is connected to the fixed part 21 via detection beams 42 and 43, and a plane that is parallel to the plane of the substrate and includes the x axis and the y axis perpendicular thereto is defined as the xy plane.
  • Detection weights 32 and 33 having The two drive weights 31 are integrally formed with respect to the detection weights 32 and 33 and are arranged in the x-axis direction.
  • the coupled spring 44 couples the two detection weights 32 and 33.
  • the direction along the z-axis perpendicular to the xy plane is defined as the z-axis direction, and the detection electrodes are arranged at a predetermined distance from the two detection weights 32 and 33 in the z-axis direction.
  • the distance between the two detection weights 32 and 33 and the detection electrode is changed by causing the two detection weights 32 and 33 to vibrate in opposite directions in the z-axis direction in accordance with the angular velocity application, Capacitance values of two capacitors formed between the two detection weights 32 and 33 and the detection electrode are changed in opposite phases.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)
  • Pressure Sensors (AREA)

Abstract

 ジャイロセンサにおいて、外側駆動錘(31)内においてx軸方向に並べて検出錘(32、33)を配置し、連成バネ(44)によって両検出錘(32、33)を連結する。このように、連成バネ(44)によって両検出錘(32、33)を連結することで、同相モードの共振周波数finと逆相モードの共振周波数fantiとを分離することが可能となる。このため、衝撃を受けたときの出力誤差を抑制でき、より正確な角速度検出を行うことが可能なジャイロセンサとすることができる。

Description

ジャイロセンサおよびジャイロセンサを有する複合センサ 関連出願の相互参照
 本開示は、2012年11月29日に出願された日本出願番号2012-261335号、および2013年9月3日に出願された日本出願番号2013-182150号に基づくもので、ここにその記載内容を援用する。
 本開示は、基板平面(xy平面)方向に対して検出錘を駆動振動させると共に、角速度の印加に伴って検出錘を基板垂直方向(以下、z軸方向という)に移動させることで角速度検出を行うジャイロセンサおよびそのジャイロセンサを有する複合センサに関するものである。
 従来より、角速度の検出に用いられるセンサとして、例えば特許文献1に示されるようなジャイロセンサが知られている。この種のジャイロセンサは、基板平面方向に振動させられる駆動錘と、この駆動錘に対して検出バネを介して接続された検出錘とを有し、駆動錘を駆動振動させつつ角速度印加によって基板垂直方向に検出錘が振動させられることに基づいて角速度検出を行う。特許文献1に示されるジャイロセンサでは、ディスク状に駆動錘および検出錘を配置した構造とされ、角速度検出時にはディスク中心を中心として揺動させるように駆動錘を振動させることによって角速度検出を行っている。すなわち、角速度印加に基づいて、ディスク中心を挟んだ左右両側において検出錘がシーソーのように相対向してディスク平面に対する垂直方向(z軸方向)に上下振動させられるため、その左右での上下振動に基づく差動出力を得ることで、角速度検出を行っている。
特開2001-255153号公報
 しかしながら、特許文献1のようなジャイロセンサでは、z軸方向への衝撃を受けたときに出力誤差が大きくなるという問題が発生する。具体的には、z軸方向への衝撃を受けたときに、ディスク中心を挟んだ左右両側においてz軸方向に検出錘が移動させられることになる。このとき、左右両側において共に同調して検出錘が動けば作動出力を取るときに各出力中の衝撃振動成分がキャンセルされるため問題ないが、同調しないと、それが大きな出力誤差として現れることになる。このような大きな出力誤差が発生すると、正確な角速度検出が行えなくなるため、好ましくない。
 本開示は上記点に鑑みて、衝撃を受けたときの出力誤差を抑制でき、より正確な角速度検出を行うことが可能なジャイロセンサを提供することを目的とする。
 本開示の第一の態様によれば、ジャイロセンサは、基板と、可動部と、2つの検出錘と、連成バネと、検出電極とを有する。基板は固定部を備える。可動部は、固定部に対して支持梁を介して接続される。基板の平面と平行で、x軸とそれに直交するy軸とを含む平面をxy平面とし、x軸に沿う方向をx軸方向、y軸に沿う方向をy軸方向とすると、可動部は、角速度検出の際に、支持梁の変位に基づいてxy平面上において往復回転振動もしくはy軸方向に往復振動させられる質量部を有する駆動錘を備える。検出錘のそれぞれは、駆動錘に対して検出梁を介して接続されている。2つの検出錘はx軸方向に並べられており、連成バネにより連結されている。検出電極は、xy平面に垂直なz軸に沿うz軸方向において、2つの検出錘それぞれから所定距離離間して配置されている。
 このような構成のジャイロセンサは、角速度印加に伴って2つの検出錘がz軸方向において互いに逆方向に振動させられることで2つの検出錘と検出電極との間の距離を変化させる。これにより、2つの検出錘と検出電極の間に構成された2つのキャパシタの容量値が互いに逆位相に変化することに基づいて、2つの容量値の変化を示す信号の差動出力を用いて角速度検出を行う。
 そして、連成バネによって両検出錘を連結しているため、両検出錘を同調して動くようにでき、必ず同相モードと逆相モードの2パターンの動きにすることができる。そして、両検出錘が同調して動くことから、同相モードの共振周波数finと逆相モードの共振周波数fantiとを持つようにできると共に、各部の設定に基づいて同相モードの共振周波数finと逆相モードの共振周波数fantiとを分離できる。このため、衝撃を受けたときの出力誤差を抑制でき、より正確な角速度検出を行うことが可能なジャイロセンサとすることができる。
 本開示の第二の態様によれば、ジャイロセンサは、基板と、可動部と、2つの駆動錘と、連成バネと、検出電極とを有する。基板は固定部を備える。可動部は、固定部に対して検出梁を介して接続される。基板の平面に平行で、x軸とそれに直交するy軸とを含む平面をxy平面とし、x軸に沿う方向をx軸方向、y軸に沿う方向をy軸方向とすると、可動部は、角速度検出の際に、検出梁の変位に基づいてxy平面上において往復回転振動もしくはy軸方向に往復振動させられる質量部を有する検出錘を備える。駆動錘は、検出錘に対して一体的に構成され、x軸方向に並べられている。連成バネは、2つの検出錘を連結する。検出電極は、xy平面に垂直なz軸に沿うz軸方向において、2つの検出錘それぞれから所定距離離間して配置されている。つまり、2つの検出錘を駆動錘に対して一体的に構成してx軸方向に並べた構造としたものである。このような構造のジャイロセンサにおいても、第一の態様に係るジャイロセンサと同様の効果を得ることができる。
 本開示の第三の態様によれば、複合ジャイロセンサは、第一もしくは第二の態様に係るジャイロセンサを第1ジャイロセンサとして有し、さらに、基板に形成され、xy平面上におけるz軸周りの角速度を検出する第2ジャイロセンサと、基板に形成され、xy平面に平行な一方向の加速度を検出する加速度センサとを有し、第1ジャイロセンサ、第2ジャイロセンサ、加速度センサが、1チップ化されている。
 このように、第一もしくは第二の態様に係るジャイロセンサを第1ジャイロセンサとれば、第1ジャイロセンサを第2ジャイロセンサや加速度センサと1チップ化して複合センサとすることができる。これにより、各センサを異なるチップに形成する場合と比較して、複合センサの簡素化を図ることが可能となる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。図面において、
本開示の第1実施形態にかかるジャイロセンサの平面図である。 図1のII-II線上の断面図である。 ジャイロセンサの基本動作時の様子を示した模式図である。 ジャイロセンサの検出部の静止状態の様子を示した模式図である。 ジャイロセンサの検出部の同相モードの様子を示した模式図である。 ジャイロセンサの検出部の逆相モードの様子を示した模式図である。 ジャイロセンサの共振倍率の周波数特性(応答曲線)を示した図である。 D.R.と耐衝撃性との関係を示したグラフである。 ジャイロセンサの各部の定数などを示した模式図である。 D.R.の狙い値に対する出来栄えの関係を示した図である。 従来構造の場合と、第1実施形態のように同相モードの共振周波数finと逆相モードの共振周波数fantiを分けた場合と、さらにD.R.がばらつきにくい構造とした場合それぞれの耐衝撃性のバラツキを調べた結果を示した図である。 本開示の第2実施形態にかかるジャイロセンサの平面図である。 駆動連成バネ31eや中間剛体44bに備えられるバネ44baの一例を示した拡大平面図である。 本開示の第3実施形態にかかるジャイロセンサの平面図である。 検出梁42、43に備えられる駆動バネ42a、43aの一例を示した拡大平面図である。 中間剛体44bに備えられるバネ44bbの一例を示した拡大平面図である。 本開示の第4実施形態にかかる複合センサの平面図である。
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
 (第1実施形態)
 本開示の第1実施形態について説明する。本実施形態で説明するジャイロセンサは、物理量として角速度を検出するためのセンサであり、例えば車両の上下方向に平行な中心線周りの回転角速度の検出に用いられるが、勿論、ジャイロセンサを車両用以外に適用することもできる。
 ジャイロセンサは、図1の紙面法線方向が車両の上下方向と一致するようにして車両に搭載される。図1に示すように、ジャイロセンサは、板状の基板10の一面側に形成されている。基板10は、例えば図2に示すように、支持基板11と半導体層12とで犠牲層となる埋込酸化膜13を挟み込んだ構造とされたSOI(Silicon on insulator)基板にて構成されている。このようなセンサ構造は、半導体層12側をセンサ構造体のパターンにエッチングしたのち埋込酸化膜13を部分的に除去し、センサ構造体の一部をリリースしてフローティング状態にすることで構成される。
 なお、半導体層12の表面に平行な面上の一方向であって紙面左右方向をx軸方向、このx軸方向に直角となる紙面上下方向をy軸方向、半導体層12の一面に垂直な方向をz軸方向として、以下の説明を行う。言換えると、基板10の平面に平行であり互いに直交するx軸、y軸を含む面をxy平面とし、x軸に沿う方向をx軸方向とし、y軸に沿う方向をy軸方向とする。また、x軸とy軸に垂直な軸、つまり、xy平面に垂直な軸をz軸とし、z軸に沿う方向をz軸方向とする。
 図1に示すように、半導体層12は、固定部20と可動部30および梁部40とにパターニングされている。固定部20は、少なくともその裏面の一部に埋込酸化膜13が残されており、支持基板11からリリースされることなく、埋込酸化膜13を介して支持基板11に固定された状態とされている。可動部30および梁部40は、ジャイロセンサにおける振動子を構成するものである。可動部30は、その裏面側の埋込酸化膜13が除去されており、支持基板11からリリースされてフローティング状態とされている。梁部40は、可動部30を支持しており、角速度検出を行うために可動部30をxy平面上において駆動振動させると共に、角速度印加に伴って可動部30の一部をz軸方向に変位させるものである。これら固定部20と可動部30および梁部40の具体的な構造を説明する。
 固定部20は、可動部30を支持するための支持用固定部21、駆動用電圧が印加される駆動用固定部22、23とを有した構成とされている。
 支持用固定部21は、例えば、固定部20のうちの他の部分(駆動用固定部22、23)に対して分離されており、可動部30を中心とした対称位置に配置されていて、梁部40の一部である支持梁41を介して可動部30を支持している。本実施形態では、支持用固定部21は、可動部30を中心とした左右両側に配置され、可動部30を二箇所で支持している。
 駆動用固定部22、23は、駆動用電圧が印加されるものであり、互いに分離されていて、異なる電位を印加できるように構成されている。これら駆動用固定部22、23は、基部22a、23aと櫛歯状の駆動用固定電極22b、23bを備えた構成とされている。
 基部22a、23aは、本実施形態では、可動部30などのセンサ構造体の周囲を囲むように配置されており、可動部30の図1中左半分を基部22aで囲み、図1中右半分を基部23aで囲んでいる。この基部22a、23aに対して駆動用固定電極22b、23bが接続されており、基部22a、23aに備えられた図示しないボンディングパッドに接続されるボンディングワイヤを通じて、外部からAC電圧(駆動用電圧)が印加できる構成とされている。この基部22a、23aに対して所望のAC電圧を印加することで、各駆動用固定電極22b、23bにも所望のAC電圧が印加できるようになっている。
 駆動用固定電極22b、23bは、可動部30に備えられた櫛歯状の駆動用可動電極31bの各櫛歯と対向配置された櫛歯状の電極である。具体的には、駆動用固定電極22b、23bは、x軸方向に延設された複数の支持部22c、23cと、各支持部22c、23cからy軸方向に延設された等間隔配置の複数の櫛歯状電極22d、23dにより構成されている。このような構造の駆動用固定電極22b、23bが基部22a、23aに接続されることで、複数の櫛歯状電極22d、23dそれぞれに一様にAC電圧を印加できるようになっている。
 このような構造により、固定部20が構成されている。なお、ここでは基部22a、23aをセンサ構造体の周囲を囲む構成とし、支持用固定部21を部分的に配置した構造としたが、基部22a、23aを部分的に配置し、支持用固定部21をセンサ構造体の周囲を囲む構成とするなど、他の構造としても良い。
 可動部30は、角速度検出の際に駆動振動させられたり、角速度印加に応じて変位する部分であり、外側駆動錘31と検出錘32、33などを有した構成とされている。可動部30は、略円環状とされた外側駆動錘31の中に梁部40の一部を介して検出錘32、33を内蔵したレイアウトとされている。
 外側駆動錘31は、検出錘32、33の外側に配置される駆動錘であり、質量部31aと駆動用可動電極31bとを有した構成とされている。
 質量部31aは、外側駆動錘31の外形を構成している部分であり、円環状で構成されている。質量部31aは、駆動用固定部22、23の内壁面に沿って配置されており、この質量部31aが錘としての役割を果たし、質量部31aの中心を回転中心として外側駆動錘31がz軸回りに回転可能に構成されている。
 駆動用可動電極31bは、駆動用固定部22、23に備えられた櫛歯状の駆動用固定電極22b、23bの各櫛歯と対向配置された櫛歯状の電極である。具体的には、駆動用可動電極31bは、x軸方向に延設された複数の支持部31cと、各支持部31cからy軸方向に延設された等間隔配置の複数の櫛歯状電極31dにより構成されている。このような構造の駆動用可動電極31bの先端に、支持梁41が接続され、これが支持用固定部21に接続されることで、可動部30がフローティング状態で支持用固定部21に懸架される。
 検出錘32、33は、平板状とされ、それぞれ梁部40の一部である検出梁42、43を介して質量部31aの内側に支持されている。具体的には、検出錘32、33は、質量部31aの中心に対して対称位置に一対となって配置されており、本実施形態ではx軸方向に2つ並べて配置されている。検出錘32、33は、それぞれy軸方向の両側に延設された2本の検出梁42、43によって支持されているが、検出梁42、43の接続位置を検出梁32における質量部31aの端部、望ましくは中心側の端部に寄せることで、片持ち構造となるようにしている。つまり、各検出錘32、33を2本の検出梁42、43で支持しつつ、検出梁42を検出錘32におけるx軸方向の片側(質量部31aの中心側)に寄せて接続し、検出梁43を検出錘33におけるx軸方向の片側(質量部31aの中心側)に寄せて接続している。このため、角速度印加時には、検出錘32、33は検出梁42、43で支持されている側(以下、支持側という)の端部は振動の節となってあまり変位せず、その反対側(以下、非支持側という)の端部で大きく変位させることができる。
 そして、図2に示すように、支持基板11のうち半導体層12側の表面における検出錘32、33と対応する位置(図1中一点鎖線)には検出電極14が形成されている。角速度印加時には、この検出電極14と錘32、33との間の距離が変位することに基づいて、角速度検出を行う。
 なお、本実施形態では、上記のように検出錘32、33を片持ち構造によって支持しているが、これによりS/N比を向上させることが可能となる。すなわち、検出錘32、33のx軸方向の両側に検出梁42、43を配置した両持ち構造にすることで検出錘32、33がxy平面と平行に変位する構造にすることもできる。しかしながら、両持ち構造にした場合、バネとなる検出針42、43の接続箇所が増えて、共振モードが増加し、不要な共振モードも増えて好ましくない。したがって、本実施形態のような片持ち構造によって検出錘32、33を支持するのが好ましい。
 梁部40は、上記した支持梁41や検出梁42、43に加えて、連成バネ44を有した構成とされている。
 支持梁41は、可動部30を基板10に対してフローティング状態で支持すると共に、xy平面における可動部30の移動を可能に支持するバネとして機能する。本実施形態では、支持梁41を駆動用可動電極31bにおける支持部31cの先端と支持用固定部21の間を連結させる構造とし、支持梁41の幅を支持部31cよりも小さくすることでバネとして機能するようにしている。しかしながら、支持梁41を駆動用可動電極31bに連結させる必要はなく、駆動用可動電極31bとは別の場所に配置しても良い。
 検出梁42、43は、各検出錘32、33を質量部31aに接続すると共に、検出錘32、33の外側駆動錘31と一体となったxy平面内への移動と外側駆動錘31と独立したz軸方向への移動を可能とする検出バネである。本実施形態では、検出梁42、43は、y軸方向に伸ばされた直線状梁で構成されており、紙面上下方向において検出錘32、33を挟んだ両側に一本ずつ配置され、質量部31aの内周面に接続されている。検出梁42、43のうち特に検出錘32、33との接続箇所が捻じれ、トーションバネ(捻りバネ)として機能する。これにより、検出錘32、33を支持側で支持しつつ、非支持側で変位させられるようになっている。
 連成バネ44は、両検出錘32、33を連結するものであり、折返梁44aと中間剛体44bとを有した構成とされている。この連成バネ44によって両検出錘32、33を連結することにより、検出錘32、33を同調して動くようにできる。
 折返梁44aは、トーションバネを構成するものであり、両検出錘32、33における支持側において検出梁42、43よりも質量部31aの中心側に配置されている。折返梁44aは、四角形の枠体形状に折り返された梁で構成されており、検出錘32、33における支持側の両コーナー部に接続され、y軸方向と平行な2辺とx軸と平行な1辺とによって構成されている。そして、折返梁44aのちのy軸方向と平行な辺が捻じれ、トーションバネとして機能する。
 中間剛体44bは、両折返梁44aを連結するものである。本実施形態では、中間剛体44bを直線状の部材とし、折返梁44aのうちy軸と平行な辺の中心位置に接続してある。中間剛体44bは、y軸方向の厚みが折返梁44aのx軸方向の厚みよりも大きくされている。このため、センサ動作時には折返梁44aが変位し、中間剛体44bは捻じれ変形することなく両折返梁44aの間の距離を保ちながらこれらを連結する。
 以上のような構造により、質量部31a内において検出梁42、43に支持された一対の検出錘32、33が配置されると共に、検出錘32、33が連成バネ44を介して連結された構造のジャイロセンサが構成されている。
 続いて、このように構成されたジャイロセンサの作動について図3を参照して説明する。図3中の丸の中に黒丸を示した記号は紙面垂直方向向こう側、丸の中に×印を示した記号は紙面垂直方向手前側に振動することを示している。
 図3に示すように、角速度検出時には、ジャイロセンサは基本動作として、外側駆動錘31を駆動振動させるという動作、本実施形態の場合には質量部31aの中心を回転中心として外側駆動錘31を往復回転振動させるという動作を行う。具体的には、駆動用固定部22、23に対してAC電圧を印加することにより、外側駆動錘31との間に電位差を発生させると、その電位差に基づき、駆動用固定電極22b、23bと駆動用可動電極31bとの間においてy軸方向の静電気力が発生する。この静電力に基づいて、外側駆動錘31が質量部31aの中心を回転中心として往復回転振動させられる。また、図3中の矢印で示すように、外側駆動錘31の振動方向に対して検出錘32、33が逆方向に振動させられる。そして、AC電圧の周波数を変えながら外側駆動錘31の振動をモニタし、AC電圧の周波数が所望の駆動共振周波数となるように調整する。
 このようにして、角速度検出時には、ジャイロセンサは可動部30が駆動振動されるという基本動作を行う。
 そして、上記した図3のような基本動作を行っている際にジャイロセンサにz軸回りの角速度が印加されると、コリオリ力により、検出錘32、33がz軸方向において互いに逆方向へ変位する。この変位により、検出錘32、33と検出電極14との間の距離が変化し、検出錘32,33と検出電極14とによって構成されるキャパシタの容量値が変化する。そして、検出錘32、33と検出電極14との間の距離が角速度の大きさに応じて変化することから、キャパシタの容量値も角速度の大きさに応じて変化する。
 このため、検出錘32、33それぞれと対向配置された検出電極14から引き出された図示しない配線パターンを通じて取り出された信号に基づいて、各キャパシタの容量値の変化を読み取ることにより、角速度を検出することができる。そして、本実施形態のような構成の場合、一対の検出錘32、33および検出電極14を用いた2組の角速度検出構造それぞれから取り出した信号の差動出力を得ることでキャパシタの容量値の変化を読み取ることが可能となる。このため、角速度と加速度を区別して検出することが可能となる。
 ここで、上記のような検出原理によって角速度検出を行っているが、2つの検出錘32、33は、連成バネ44によって連結されているため、同調して動く。このため、検出錘32、33は、z軸方向において同方向に振動する同相モードと、互いに逆方向に振動する逆相モードで動き、同相モードの共振周波数finと逆相モードの共振周波数fantiを有したものとなる。これについて、図4A~図4Cを参照して説明する。
 本実施形態にかかるジャイロセンサの静止状態、同相モードおよび逆相モードの際の状態を模式的に描くと、それぞれ図4A~図4Cのように表される。すなわち、検出錘32、33が支持側において検出梁42、43に支持され、その支持側において、連成バネ44を構成する折返梁44aおよび中間剛体44bに接続されている。これらのうち、検出梁42、43および枠体梁44aのうちy軸と平行な部分が捻りバネとなる。図4A~図4C中では、これら捻りバネとなる部分を丸印で示してあり、剛体となる部分を四角印で示してある。また、図中では、各検出錘32、33と中間剛体44bとの間において、枠体梁44aを2つの丸印と1つの四角印で示したが、枠体梁44aのうちy軸と平行な2辺が捻りバネ、x軸と平行な1辺が剛体となる。
 静止状態においては、図4Aに示すように、検出錘32、検出梁42、43および連成バネ44がxy平面と平行な状態となる。同相モードにおいては、図4Bに示すように、検出錘32、33の非支持側が共に同方向に変位し、中間剛体44bが検出錘32、33と逆方向に変位する状態となる。また、逆相モードにおいては、図4Cに示すように、検出錘32、33の非支持側が互いに逆方向に変位する状態となる。
 上記したように、通常の駆動状態においては、コリオリ力によって検出錘32、33がz軸方向において互いに逆方向へ変位することから、逆相モードで振動させられることになる。そして、ジャイロセンサに対してz軸方向への衝撃が加えられた場合には、ともに同相モードで変化をするのであれば、2組の角速度検出構造それぞれから取り出した信号を差動増幅していることから、その衝撃に基づく振動に起因する信号が相殺される。しかしながら、衝撃は同相モードで印加されるが、ジャイロセンサ固有の逆相モードの共振周波数が同相モードの共振周波数の近傍に位置している場合、同相モードの励振が逆相モードの振動を誘発することとなる。このため、出力誤差として現れる。
 z軸方向への衝撃を受けたときに、その衝撃に含まれる様々な周波数成分に応じて共振倍率(応答の強さ)が変わる。具体的には、同相モードで駆動させた際の共振倍率の周波数特性(応答曲線)は図5のように表されることを確認しており、同相モードの共振周波数finにおいて最も共振倍率が大きくなる。そして、同相モードの共振周波数finを中心として他の周波数域では急激に共振倍率が低下し、同相モードの共振周波数finから離れるほど低下していく。ただし、同相モードの共振周波数finとは別に逆相モードの共振周波数fantiが存在し、この逆相モードの共振周波数fantiでも同相モードの共振周波数finよりは十分小さいものの、共振倍率がある程度大きくなる。衝撃により励起された同相モードの振動が、2つの検出錘32、33を逆方向へ振動させる動き、すなわち逆相モードの振動を誘発し、上記のような出力誤差を発生させるのである。
 そして、本発明者らが鋭意検討を行ったところ、この逆相モードの共振周波数fantiについては同相モードの共振周波数finの近くに存在するほどその共振周波数fantiでの共振倍率が大きくなることが確認された。すなわち、図5に示されるように同相モードの共振周波数finを中心として共振倍率が減衰されていく。しかしながら、逆相モードの共振周波数fantiが同相モードの共振周波数finに近すぎると、衝撃により励起された同相モードの振動が十分減衰されないまま、逆相モードの振動を誘発することとなるのである。
 したがって、同相モードの共振周波数finと逆相モードの共振周波数fantiとが離れるようにすることで、衝撃により励起される同相モードの振動が、逆相モードの共振周波数fanti付近では十分減衰された領域となるようにでき、逆相モードの動きの誘発を抑制することが可能になると言える。そして、共振倍率の周波数特性ついては、z軸方向の変位を許容するバネ等、つまり本実施形態の場合であれば検出梁42、43や折返梁44aに加えて、中間剛体44bの長さの設定に基づいて調整することができる。これに基づいて、本発明者らがz軸方向の変位を許容するバネ等を調整して共振倍率の周波数特性を調べた。その結果、逆相モードの共振周波数fantiが同相モードの共振周波数finから離れるようにすると、逆相モードの共振周波数fantiでの共振倍率を低下させることができた。
 逆相モードの共振周波数fantiが同相モードの共振周波数finから離れるようにするには、検出錘32、33が同調して動き、同相モードと逆相モードの動きとなるようにすることが必要となる。
 従来のジャイロセンサでは、連成バネで連結されていない完全に分離した2つの検出錘、あるいは、完全に一体の検出錘とされていたため、各検出錘が個々に独立して動き、同調した動きにならないため、同相モードと逆相モードの動きにすることができなかった。このため、同相モードの共振周波数finと逆相モードの共振周波数fantiとを分離することができなかった。
 これに対して、本実施形態では、連成バネ44によって両検出錘32、33を連結しているため、検出錘32、33を同調して動くようにでき、必ず同相モードと逆相モードの2パターンの動きにすることができる。そして、検出錘32、33が同調して動くことから、同相モードの共振周波数finと逆相モードの共振周波数fantiとを持つようにできると共に、これらを検出梁42、43や折返梁44aに加えて、中間剛体44bの長さの設定に基づいて分離することが可能となる。したがって、逆相モードの共振周波数fantiが同相モードの共振周波数finから離れるようにでき、逆相モードの共振周波数fantiでの共振倍率を低下させることが可能となる。
 ここで、逆相モードの共振周波数fantiと同相モードの共振周波数finの差分を逆相モードの共振周波数fantiで割った値(=(fanti―fin)/fanti)をデカップリング率(Decoupling Ratio(以下、D.R.という)と定義する。
 このように、D.R.が大きくなるほど、逆相モードの動きの誘発を抑制することが可能となる。これにより、ジャイロセンサの出力誤差を抑制することができ、耐衝撃性を向上させることが可能となり、より正確な角速度検出を行うことが可能となる。具体的に、D.R.と耐衝撃性との関係を調べたところ、図6に示す結果が得られた。この図からも、D.R.の絶対値が大きくなるほど、耐衝撃性が良くなることが判る。
 ただし、D.R.を大きくすると、耐衝撃性については向上させられるが、その反面、他の周波数の共振モードとの干渉や感度低下を招くため、単にD.R.を大きくするのは好ましくない。したがって、D.R.をあまり大きな値にならないように調整しつつ、耐衝撃性に敏感な領域、つまり耐衝撃性が急峻に悪化する領域となるほど小さな値にならないように、最適な範囲に調整するのが好ましい。
 D.R.の調整は、他の共振周波数と同様、検出梁42、43や折返梁44aに加えて、中間剛体44bの長さの設定により行うことができる。以下、この理由について説明する。
 図7に示すように、検出錘32、33の重さをms、検出梁42、43や折返梁44aのバネ定数をそれぞれks、kc、中間剛体44bの長さをLとすると、逆相モードの共振周波数fantiと同相モードの共振周波数finは、数式1、2のように近似できる。なお、数式1、2中において、a、bは定数である。ただし、b>aである。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 そして、D.R.=(fanti―fin)/fanti)であることから、この式に数式1、2で表される逆相モードの共振周波数fantiと同相モードの共振周波数finを代入すると、数式3を導出できる。この式は、ksが大きく、かつ、Lが大きくなるとD.R.が小さくなることや、ksが小さく、かつ、Lが小さくなるとD.R.が大きくなることを示している。また、D.R.のバラツキはks/kcが影響することを示している。さらに、ks/kc=Kとおくと、数式3を数式4のように変形できる。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 この数式4は、D.R.が小さい、すなわちLおよびKが大きい領域ほど、平方根内のa/LKおよびb/LKの影響が小さくなる領域であることを示している。よって、Kがばらついても、D.R.はばらつき難いことが分かる。
 したがって、検出梁42、43や折返梁44aに加えて、中間剛体44bの長さLの調整を行うだけでD.R.を調整することが可能となる。
 また、検出梁42、43の加工バラツキに起因して、ジャイロセンサを製造したときに、D.R.の狙い値に対して実際に作成したときのD.R.の出来栄え値にバラツキが発生する。このバラツキは、図8に示すように、D.R.の狙い値が小さいほど小さくなるという結果が得られている。したがって、耐衝撃性を考慮してD.R.をある程度大きな値に選択しつつ、D.R.の出来栄えのバラツキを抑制できるように、ある程度小さい値に設定するのが好ましい。そして、このように出来栄えのバラツキを抑制できれば、耐衝撃性に敏感な領域近くのD.R.を狙い値として耐衝撃性を良好にしようとする場合にも、D.R.をほぼ狙い値通りに設定できる。よって、耐衝撃性に敏感な領域ほどロバスト性を強くすることが可能となる。具体的には、図9に示すように、検出錘32、33を連成バネ44で連結して同相モードの共振周波数finと逆相モードの共振周波数fantiを分けた場合(E1)、検出錘を連結していない従来構造(Ec)よりも耐衝撃性を向上させつつ、耐衝撃性のバラツキを抑制できる。検出錘32、33を連成バネ44で連結して同相モードの共振周波数finと逆相モードの共振周波数fantiを分け、さらに、D.R.を調整した場合(E2)、さらに耐衝撃性のバラツキを抑制でき、ロバスト性を強くすることが可能となる。
 以上説明したように、本実施形態のジャイロセンサでは、連成バネ44によって両検出錘32、33を連結しているため、同相モードの共振周波数finと逆相モードの共振周波数fantiとを分離することが可能となる。このため、衝撃を受けたときの出力誤差を抑制でき、より正確な角速度検出を行うことが可能なジャイロセンサとすることができる。
 また、連成バネ44をトーションバネとなる折返梁44aと中間剛体44bとによって構成している。このため、中間剛体44bの長さLの調整を行うだけでD.R.を調整することができ、検出梁42、43や折返梁44aを調整するよりも容易かつ的確にD.R.を調整することが可能となる。
 (第2実施形態)
 本開示の第2実施形態について説明する。本実施形態は、第1実施形態に対して可動部30や梁部40の構成および駆動方向を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
 図10に示すように、外側駆動錘31を枠体形状、ここでは矩形枠体形状にすると共にx軸方向において2つに分離し、分離された2つの外側駆動錘31を駆動連成バネ31eによって連結している。外側駆動錘31は、支持梁41を介して支持用固定部21に支持されており、支持梁41に備えられた駆動バネ41aによってx軸方向(紙面左右方向)に移動可能となっている。そして、分離された2つの外側駆動錘31を駆動連成バネ31eによって連結されていることから、各外側駆動錘31がより同調して動作するようになっている。
 また、連成バネ44については、基本的には第1実施形態と同様の構成とされているが、外側駆動錘31を2つに分離したことから、各検出錘32、33がxy平面上において移動できるように、中間剛体44bにバネ44baを備えた構成としている。このバネ44baは、各検出錘32、33のxy平面上での移動については許容してz軸方向への移動については規制できるように、xy平面方向については柔らかく、z軸方向には硬い剛体として働くようになっている。例えば、図11に示すように、バネ44baを枠体形状の折返梁によって構成することができる。この場合、折返梁のうちy軸方向と平行な方向の梁の長さを短くすることで、捻じれ方向の剛性を上げられるため、上記したように検出錘32、33のz軸方向への移動を規制できる。
 なお、図10では、駆動用固定部22、23や駆動用可動電極31bについては省略してある。これらのうち、駆動用固定部22、23に備えた基部22a、23aと櫛歯状の駆動用固定電極22b、23bを支持梁41と別体で構成している点が第1実施形態の構成と異なっているが、それ以外は、第1実施形態と同様の構成とされている。
 このような構成のジャイロセンサとすることもできる。このようなジャイロセンサでは、図10中の矢印のように、分離された外側駆動錘31をx軸方向において互いに反対方向に変位させることで駆動振動させることで角速度検出を行うことができる。このような駆動形態とされるため、駆動方向が第1実施形態と異なるが、その他の動作については第1実施形態と同様である。そして、このように構成されるジャイロセンサにおいても、連成バネ44によって2つの検出錘32、33を連結することで、第1実施形態と同様の効果を得ることができる。
 (第3実施形態)
 本開示の第3実施形態について説明する。本実施形態も、第1実施形態に対して可動部30や梁部40の構成および駆動方向を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
 図12に示すように、検出梁42、43を支持用固定部21に接続し、検出梁42、43にy軸方向(紙面上下方向)への移動を可能にする駆動バネ42a、43aを備えた構成としている。そして、駆動バネ42a、43aにより、検出梁42、43に接続した検出錘32、33をy軸方向に駆動振動させることで、検出錘32、33を駆動錘としても機能させる。言換えると、検出錘32、33を駆動錘に対して一体的に構成してx軸方向に並べた構造としている。
 連成バネ44については、基本的には第1実施形態と同様の構成とされているが、検出錘32、33がy軸方向に移動可能な構成としたことから、各検出錘32、33のy軸方向への移動を許容できるように、中間剛体44bにバネ44bbを備えている。このバネ44bbは、各検出錘32、33のy軸方向への移動については許容してz軸方向への移動については規制できるように、y軸方向については柔らかく、z軸方向には硬い剛体として働くようになっている。
 例えば、図13Aに示すように、バネ44bbを枠体形状の折返梁によって構成することができる。この場合、折返梁のうちx軸方向と平行な方向の梁の長さを短くすることで、捻じれ方向の剛性を上げられるため、上記したように検出錘32、33のz軸方向への移動を規制できる。また、図13Bに示すように、単にバネ44bbを中間剛体44bのy軸方向の厚みを部分的に薄くした単純梁で構成しても良い。
 なお、図12では、駆動用固定部22、23や駆動用可動電極31bについては省略してあるが、駆動用可動電極31bを検出錘32、33に備え、それに対向するように駆動用固定電極22b、23bを備えるようにしている。駆動用可動電極31bについては、支持部31cをy軸方向、櫛歯状電極31dをx軸方向に延設し、駆動用固定電極22b、23bについても、支持部22c、23cをy軸方向、櫛歯状電極22d、23dをx軸方向に延設している。これにより、各櫛歯状電極22d、23d、31dの間の静電力に基づいて、検出錘22、23をy軸方向に平行に駆動振動させることが可能となる。
 このような構成のジャイロセンサとすることもできる。このようなジャイロセンサは、検出錘32、33をy軸方向において互いに反対方向に変位させることで駆動振動させることになるため、駆動方向が第1実施形態と異なるが、その他の動作については第1実施形態と同様である。そして、このように構成されるジャイロセンサにおいても、連成バネ44によって2つの検出錘32、33を連結することで、第1実施形態と同様の効果を得ることができる。
 (第4実施形態)
 本開示の第4実施形態について説明する。本実施形態は、第1~第3実施形態のいずれかのジャイロセンサを複合センサの1つとして備えるようにしたものであり、ジャイロセンサの基本構造は上記各実施形態と同様であるため、上記各実施形態と異なる部分についてのみ説明する。なお、ここでは第1実施形態のジャイロセンサを備える複合センサを例に挙げて説明するが、第2、第3実施形態にかかるジャイロセンサであっても良い。
 図14に示すように、本実施形態にかかる複合センサS1は、基板10に対して、第1実施形態で説明したジャイロセンサを第1ジャイロセンサ100として備えているのに加え、第2ジャイロセンサ200と加速度センサ400を備えて1チップ化したものである。
 第2ジャイロセンサ200は、第1、第2振動子201、202を有した構成とされている。各振動子201、202は、検出錘210、220、検出固定電極230、240、サーボ電極231、241、駆動錘250、260、固定電極270、280および固定部290、300などが備えられることで構成されている。
 検出錘210、220は、それぞれ矩形枠状をなしており、検出錘210、220の外周部にx軸に平行な検出可動電極211、221を備えている。また、検出固定電極230、240およびサーボ電極231、241が検出錘210、220の周囲に配置されると共に、各検出可動電極211、221にそれぞれ対向配置されている。
 一方、駆動錘250、260は、矩形枠状の検出錘210、220の内側にそれぞれ配置されている。本実施形態では、駆動錘250、260はブロック状になっており、各駆動錘250、260の外周部にx軸に平行な駆動可動電極251、261が設けられている。また、駆動固定電極270、280が駆動錘250、260の周囲すなわち検出錘210、220と駆動錘250、260との間に配置されると共に、駆動可動電極250、260に対向配置されている。
 また、固定部290、300が検出錘210、220と駆動錘250、260との間に配置されると共に、駆動梁291、301が固定部290、300と駆動錘250、260とを連結している。そして、支持梁292、302が検出錘210、220と駆動錘250、260との間に配置されると共に、検出錘210、220と駆動錘250、260とを連結している。これにより、検出錘210、220および駆動錘250、260が、固定部290、300、駆動梁291、301、および支持梁292、302により、支持基板11の上に一定の間隔で浮遊した状態で支持されている。
 さらに、上記のような構造において、検出錘210、220のうち、検出錘210、220同士が対向している部分に開口部214、224がそれぞれ形成されている。これにより、検出錘210、220の内側に配置された各駆動錘250、260が開口部214、224を介して対向している。そして、検出錘210、220の開口部214、224を通じて、第1振動子201の駆動錘250と第2振動子202の駆動錘260とを駆動連成バネ310で直接連結している。
 このように、駆動錘250、260の外側に検出錘210、220を配置した内部駆動外部検出型の構造では、駆動錘250、260が検出錘210、220に囲まれる。このため、検出錘210、220に開口部214、224を設けることにより、駆動錘250、260同士を駆動連成バネ310により直接連結することが可能となる。
 また、第1振動子201の検出錘210と第2振動子202の検出錘220との間には検出連成バネ320が配置されており、検出連成バネ320によって検出錘210、220を直接連結している。そして、各検出錘210、220が対向する部分のうち、開口部214の一方の開口端側と開口部224の一方の開口端側とが1本の検出連成バネ320により直接連結されている。また、開口部214の他方の開口端側と開口部242の他方の開口端側とが1本の検出連成バネ320により直接連結されている。このため、駆動連成バネ310は検出連成バネ320に挟まれた状態になっている。
 このように構成される第2ジャイロセンサ200は、次のように動作する。まず、駆動固定電極270、280と駆動可動電極251、261との間に電位差を与えると駆動錘250、260がx軸方向に変位する。したがって、駆動固定電極270、280に所望の周波数(通常は各振動子201、202の固有振動数)の交流電圧を加えるとその周波数で各駆動錘250、260が振動する。
 このとき、駆動錘250、260は、第1振動子201の検出錘210と第2振動子202の検出錘220とが互いに逆位相(位相差180°)となるように駆動方向(x軸方向)に検出錘210、220をそれぞれ駆動する。これにより、検出錘210、220が駆動錘250、260と同様にx軸方向に振動する。
 このように、検出錘210、220がx軸方向に振動しているときに、x軸およびy軸に垂直なz軸を中心とする角速度が印加された場合、y軸方向にコリオリ力が発生する。その力によって検出錘210、220は駆動錘250、260に対して相対的にy軸方向へ変位する。各検出錘210、220は互いに逆位相で振動するので、各検出可動電極211、221は基板10の一面に垂直なz軸周りの角速度が加わるときにコリオリ力によって互いに逆方向に変位することとなる。
 各検出錘210、220の変位量は、検出可動電極221、221と検出固定電極230、240との距離が変化することにより生じる容量の変化を検出することで測定する。すなわち、検出可動電極211、221と検出固定電極230、240との間の容量変化を検知し、この容量変化を抑えるように、サーボ電極231、241にサーボ力に相当する電圧を印加する。このサーボ力に相当する電圧から角速度を得ることができる。このように、第2ジャイロセンサ200によって、xy平面上におけるz軸周りの加速度を検出することができる。
 一方、加速度センサ400は、可動部410と固定部420および振動バネ430を有した構成とされている。
 可動部410は、可動錘411と可動電極412とを有した構成とされ、矩形状の可動錘411の相対する二辺それぞれに櫛歯状の可動電極412が備えられた構造とされている。
 固定部420は、支持基板11に支持され、可動電極412と対応する櫛歯状の固定電極421を有した構成とされている。可動電極412と固定電極421とは所定距離離間して配置されており、これらの間に容量を形成している。本実施形態の場合、x軸方向に沿って可動電極412および固定電極421を延設してある。
 振動バネ430は、例えば可動錘411における可動電極412が形成された二辺と異なる二辺において、可動錘411を支持固定部431に接続している。これにより、y軸方向において、可動部410を変位させられるようになっている。
 このように構成される加速度センサ400では、x軸方向に平行な成分の加速度が印加されると、それに伴って可動部410が変位し、可動電極412と固定電極421との間の距離が変化して、これらの間に構成される容量が変化する。このため、固定部420と支持固定部431との間に電位差を発生させることで可動電極412と固定電極421との間に電位差を発生させ、これらの間の容量の変化を出力させることで、y軸方向の加速度を検出することができる。
 このように、基板10に対して、第1ジャイロセンサ100に加えて、第2ジャイロセンサ200と加速度センサ400を備えて1チップ化することができる。第1ジャイロセンサ100のように検出錘32、33をz軸方向に変位させることでxy平面と平行な軸を中心する周方向(例えば車両におけるロール方向)の角速度を検出する場合、xy平面上において第1ジャイロセンサ100の各構成要素を形成できる。
 これに対して、仮に第2ジャイロセンサ200のような構造において、xy平面と平行な軸を中心とする周方向の角速度を検出する場合、第2ジャイロセンサ200の各構成要素をz軸に平行な平面上に形成しなければならない。このため、第2ジャイロセンサ200が形成されるチップをxy平面上に垂直に立てて配置する必要がある。したがって、第2ジャイロセンサ200のような構造によってxy平面と平行な軸を中心とする周方向の角速度とz軸周りの角速度の2つの角速度を検出する場合、各センサを異なるチップに配置しなければならず、1チップ化することができない。
 このため、本実施形態のように、第1ジャイロセンサ100の構造を採用することで、第1ジャイロセンサ100を第2ジャイロセンサ200や加速度センサ400と1チップ化することが可能な複合センサにできる。これにより、各センサを異なるチップに形成する場合と比較して、複合センサの簡素化を図ることが可能となる。
 (他の実施形態)
 上記実施形態では、基板10としてSOI基板を用いる場合について説明したが、これは基板10の一例を示したものであり、SOI基板以外のものを用いても良い。また、基板10としてSOI基板を用いたため、検出電極14を支持基板11に備えるようにした。しかしながら、検出電極14については検出錘32、33からz軸方向において所定距離離間した位置に配置されていれば良いことから、検出錘32、33の表側に配置されていても良い。
 また、検出錘32、33の外側に配置される質量部31aを円環状としたが、他の枠体形状、例えば四角形状の枠体としても良い。また、質量部31aを駆動振動させる際に、復回転振動させるようにしたが、y軸方向に往復振動させても良い。
 また、上記各実施形態では、検出錘32、33を外側駆動錘31の内側に配置した外部駆動内部検出型のジャイロセンサを例に挙げた。しかしながら、これらは単なる一例を示したものであり、例えば第4実施形態において第2ジャイロセンサ200として説明した構造、つまり検出錘が駆動錘の外側に配置される内部駆動外部検出型のジャイロセンサに対しても本開示を適用することができる。
 上記ジャイロセンサは、例えば、車両におけるロール方向の角速度検出などを行うジャイロセンサにも適用することができる。
 上記によれば、本開示の一実施形態として、ジャイロセンサは、固定部20を備える基板10と、可動部30と、2つの検出錘32,33と、連成バネ44と、検出電極44を有する。可動部30は、固定部20に対して支持梁41を介して接続されると共に、基板10の平面に平行で、x軸とそれに直交するy軸とを含む平面をxy平面とし、x軸に沿う方向をx軸方向、y軸に沿う方向をy軸方向として、角速度検出の際に、支持梁41の変位に基づいてxy平面上において往復回転振動もしくはy軸方向に往復振動させられる質量部31aを有する駆動錘31を備える。2つの検出錘32,33は、駆動錘31に対して検出梁42、43を介して接続され、x軸方向に並べられている。連成バネ44は2つの検出錘32、33を連結している。検出電極14は、xy平面に対して垂直なz軸に沿う方向をz軸方向として、2つの検出錘32、33それぞれからz軸方向において所定距離離間して配置されている。さらに、角速度印加に伴って2つの検出錘32、33がz軸方向において互いに逆方向に振動させられることで2つの検出錘32、33と検出電極44との間の距離が変化し、2つの検出錘32、33と検出電極44の間に構成された2つのキャパシタの容量値が互いに逆位相に変化するようになっている。
 また、本開示の一実施形態によれば、ジャイロセンサは、固定部21を備える基板と、可動部と、2つの駆動錘31と、連成バネ44と、検出電極とを有する。可動部は、固定部21に対して検出梁42、43を介して接続されると共に、基板の平面に平行で、x軸とそれに直交するy軸とを含む平面をxy平面とし、x軸に沿う方向をx軸方向、y軸に沿う方向をy軸方向として、角速度検出の際に、検出梁の変位に基づいてxy平面上において往復回転振動もしくは前記y軸方向に往復振動させられる質量部を有する検出錘32、33を備える。2つの駆動錘31は、検出錘32,33に対して一体的に構成され、x軸方向に並べられている。連成バネ44は、2つの検出錘32、33を連結している。xy平面に対して垂直なz軸に沿う方向をz軸方向として、検出電極は2つの検出錘32、33それぞれからz軸方向において所定距離離間して配置されている。このジャイロセンサにおいて、角速度印加に伴って2つの検出錘32、33がz軸方向において互いに逆方向に振動させられることで2つの検出錘32、33と検出電極との間の距離が変化し、2つの検出錘32、33と検出電極の間に構成される2つのキャパシタの容量値が互いに逆位相に変化するようになっている。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (7)

  1.  固定部(20)を備える基板(10)と、
     前記固定部(20)に対して支持梁(41)を介して接続されると共に、前記基板の平面に平行で、x軸とそれに直交するy軸とを含む平面をxy平面とし、前記x軸に沿う方向をx軸方向、前記y軸に沿う方向をy軸方向として、角速度検出の際に、前記支持梁の変位に基づいて前記xy平面上において往復回転振動もしくは前記y軸方向に往復振動させられる質量部(31a)を有する駆動錘(31)を備えた可動部(30)と、
     前記駆動錘に対して検出梁(42、43)を介して接続され、前記x軸方向に並べられた2つの検出錘(32、33)と、
     前記2つの検出錘を連結する連成バネ(44)と、
     前記xy平面に対して垂直なz軸に沿う方向をz軸方向として、前記2つの検出錘それぞれから前記z軸方向において所定距離離間して配置された検出電極(14)と、を有し、
     角速度印加に伴って前記2つの検出錘が前記z軸方向において互いに逆方向に振動させられることで前記2つの検出錘と前記検出電極との間の距離が変化し、前記2つの検出錘と前記検出電極の間に構成された2つのキャパシタの容量値が互いに逆位相に変化することに基づいて、2つの容量値の変化を示す信号の差動出力を用いて角速度検出を行うことを特徴とするジャイロセンサ。
  2.  固定部(21)を備える基板と、
     前記固定部(21)に対して検出梁(42、43)を介して接続されると共に、前記基板の平面に平行で、x軸とそれに直交するy軸とを含む平面をxy平面とし、前記x軸に沿う方向をx軸方向、前記y軸に沿う方向をy軸方向として、角速度検出の際に、前記検出梁の変位に基づいて前記xy平面上において往復回転振動もしくは前記y軸方向に往復振動させられる質量部を有する検出錘(32、33)を備えた可動部と、
     前記検出錘に対して一体的に構成され、前記x軸方向に並べられた2つの駆動錘(31)と、
     前記2つの検出錘を連結する連成バネ(44)と、
     前記xy平面に対して垂直なz軸に沿う方向をz軸方向として、前記2つの検出錘それぞれから前記z軸方向において所定距離離間して配置された検出電極と、を有し、
     角速度印加に伴って前記2つの検出錘が前記z軸方向において互いに逆方向に振動させられることで前記2つの検出錘と前記検出電極との間の距離が変化し、前記2つの検出錘と前記検出電極の間に構成された2つのキャパシタの容量値が互いに逆位相に変化することに基づいて、2つの容量値の変化を示す信号の差動出力を用いて角速度検出を行うことを特徴とするジャイロセンサ。
  3.  前記連成バネは、前記2つの検出錘それぞれに接続されたトーションバネ(44a)と、一方の前記検出錘に接続された前記トーションバネと他方の前記検出錘に接続された前記トーションバネとを連結する中間剛体(44b)とを備えていることを特徴とする請求項1または2に記載のジャイロセンサ。
  4.  前記2つの検出錘は、前記検出梁にて片持ちされた片持ち構造とされ、角速度が印加されたときには、前記検出梁を節として該検出錘における前記検出梁によって接続されている側とは反対側の端部において変位させられることを特徴とする請求項1ないし3のいずれか1つに記載のジャイロセンサ。
  5.  前記2つの検出錘は、それぞれ前記検出錘のうちの前記質量部の中心側において前記検出梁に接続されていることを特徴とする請求項4に記載のジャイロセンサ。
  6.  前記固定部には駆動用固定電極(22b、23b)が備えられ、
     前記可動部には円環状で構成された前記質量部の外周に駆動用可動電極(31b)が備えられており、
     前記角速度検出時には、前記駆動用固定電極と前記駆動用可動電極との間に静電引力を発生させることで、前記質量部の中心を回転中心として前記駆動錘を回転振動させることを特徴とする請求項1に記載のジャイロセンサ。
  7.  請求項1ないし6のいずれか1つに記載のジャイロセンサを第1ジャイロセンサ(100)として、
     前記第1ジャイロセンサと、
     前記基板に形成され、前記xy平面上における前記z軸周りの角速度を検出する第2ジャイロセンサ(200)と、
     前記基板に形成され、前記xy平面に平行な一方向の加速度を検出する加速度センサ(400)と、を有し、
    前記第1ジャイロセンサ、前記第2ジャイロセンサ、前記加速度センサが1チップ化されていることを特徴とする複合センサ。
PCT/JP2013/006956 2012-11-29 2013-11-27 ジャイロセンサおよびジャイロセンサを有する複合センサ WO2014083843A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/646,920 US9696158B2 (en) 2012-11-29 2013-11-27 Gyro sensor and composite sensor comprising gyro sensor
CN201380062596.1A CN104823020B (zh) 2012-11-29 2013-11-27 陀螺仪传感器及具有陀螺仪传感器的复合传感器
DE112013005703.4T DE112013005703T5 (de) 2012-11-29 2013-11-27 Gyrosensor und zusammengesetzter Sensor mit Gyrosensor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-261335 2012-11-29
JP2012261335 2012-11-29
JP2013-182150 2013-09-03
JP2013182150A JP6176001B2 (ja) 2012-11-29 2013-09-03 ジャイロセンサ

Publications (1)

Publication Number Publication Date
WO2014083843A1 true WO2014083843A1 (ja) 2014-06-05

Family

ID=50827504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006956 WO2014083843A1 (ja) 2012-11-29 2013-11-27 ジャイロセンサおよびジャイロセンサを有する複合センサ

Country Status (5)

Country Link
US (1) US9696158B2 (ja)
JP (1) JP6176001B2 (ja)
CN (1) CN104823020B (ja)
DE (1) DE112013005703T5 (ja)
WO (1) WO2014083843A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106415204A (zh) * 2014-06-12 2017-02-15 株式会社电装 振动型角速度传感器
CN106415204B (zh) * 2014-06-12 2019-07-16 株式会社电装 振动型角速度传感器
DE102021212100A1 (de) 2021-10-27 2023-04-27 Robert Bosch Gesellschaft mit beschränkter Haftung Mikromechanisches Bauteil für einen Drehratensensor

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9448069B2 (en) * 2012-10-01 2016-09-20 The Royal Institution For The Advancement Of Learning/Mcgill University Microelectromechanical bulk acoustic wave devices and methods
JP2016057073A (ja) * 2014-09-05 2016-04-21 セイコーエプソン株式会社 物理量センサー素子、物理量センサー、電子機器および移動体
FI127203B (en) * 2015-05-15 2018-01-31 Murata Manufacturing Co Vibrating micromechanical sensor for angular velocity
JP6561702B2 (ja) * 2015-09-09 2019-08-21 セイコーエプソン株式会社 物理量検出システム、電子機器及び移動体
JP6812830B2 (ja) * 2017-02-20 2021-01-13 セイコーエプソン株式会社 ジャイロセンサー、電子機器、および移動体
JP6740965B2 (ja) 2017-06-22 2020-08-19 株式会社デンソー 振動型角速度センサ
CN107796383B (zh) * 2017-10-17 2021-03-23 西北工业大学 芯片级旋转调制式mems硅微机械陀螺
JP2019148477A (ja) * 2018-02-27 2019-09-05 セイコーエプソン株式会社 角速度センサー、慣性計測装置、移動体測位装置、携帯型電子機器、電子機器、および移動体
DE102019217505A1 (de) * 2019-11-05 2021-05-06 Robert Bosch Gmbh Inertialsensor mit einem eine Haupterstreckungsebene aufweisendem Substrat und einer über eine Federanordnung mit dem Substrat verbundenen seismischen Masse
DE102020202158A1 (de) 2020-02-19 2021-08-19 Robert Bosch Gesellschaft mit beschränkter Haftung Mikromechanische Drehraten-Sensoranordnung, Drehraten-Sensorarray und entsprechendes Herstellungsverfahren
DE102021200483A1 (de) 2021-01-20 2022-07-21 Robert Bosch Gesellschaft mit beschränkter Haftung Dreiachsiger Drehratensensor mit einem Substrat und einem Doppelrotor
CN113175923A (zh) * 2021-05-19 2021-07-27 瑞声开泰科技(武汉)有限公司 一种mems波动陀螺仪
JP7434233B2 (ja) * 2021-09-14 2024-02-20 株式会社東芝 センサ及び電気装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1010148A (ja) * 1996-06-25 1998-01-16 Japan Aviation Electron Ind Ltd 半導体姿勢センシングチップ
JP2000509812A (ja) * 1996-10-07 2000-08-02 ハーン―シッカート―ゲゼルシャフト フア アンゲワンテ フォルシュンク アインゲトラーゲナー フェライン 直交する1次振動および2次振動の相互干渉を防止した回転速度ジャイロスコープ
JP2008514968A (ja) * 2004-09-27 2008-05-08 コンティ テミック マイクロエレクトロニック ゲゼルシャフト ミット ベシュレンクテル ハフツング 回転速度センサ
JP2009529666A (ja) * 2006-03-10 2009-08-20 コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト 連結棒を有する回転速度センサ
JP2011053185A (ja) * 2009-09-04 2011-03-17 Denso Corp 振動型角速度センサ
WO2012004825A1 (ja) * 2010-07-05 2012-01-12 パイオニア株式会社 回転振動型ジャイロ
JP2012145493A (ja) * 2011-01-13 2012-08-02 Seiko Epson Corp 物理量センサー及び電子機器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3399336B2 (ja) * 1997-12-22 2003-04-21 株式会社豊田中央研究所 検出器
JP2000199714A (ja) * 1999-01-06 2000-07-18 Murata Mfg Co Ltd 角速度センサ
US6443008B1 (en) 2000-02-19 2002-09-03 Robert Bosch Gmbh Decoupled multi-disk gyroscope
JP2006242730A (ja) 2005-03-03 2006-09-14 Toyota Motor Corp センサ及び物理量検出装置
US7617728B2 (en) * 2006-05-17 2009-11-17 Donato Cardarelli Tuning fork gyroscope
JP5884603B2 (ja) 2012-03-30 2016-03-15 株式会社デンソー ロールオーバージャイロセンサ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1010148A (ja) * 1996-06-25 1998-01-16 Japan Aviation Electron Ind Ltd 半導体姿勢センシングチップ
JP2000509812A (ja) * 1996-10-07 2000-08-02 ハーン―シッカート―ゲゼルシャフト フア アンゲワンテ フォルシュンク アインゲトラーゲナー フェライン 直交する1次振動および2次振動の相互干渉を防止した回転速度ジャイロスコープ
JP2008514968A (ja) * 2004-09-27 2008-05-08 コンティ テミック マイクロエレクトロニック ゲゼルシャフト ミット ベシュレンクテル ハフツング 回転速度センサ
JP2009529666A (ja) * 2006-03-10 2009-08-20 コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト 連結棒を有する回転速度センサ
JP2011053185A (ja) * 2009-09-04 2011-03-17 Denso Corp 振動型角速度センサ
WO2012004825A1 (ja) * 2010-07-05 2012-01-12 パイオニア株式会社 回転振動型ジャイロ
JP2012145493A (ja) * 2011-01-13 2012-08-02 Seiko Epson Corp 物理量センサー及び電子機器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106415204A (zh) * 2014-06-12 2017-02-15 株式会社电装 振动型角速度传感器
CN106415204B (zh) * 2014-06-12 2019-07-16 株式会社电装 振动型角速度传感器
DE102021212100A1 (de) 2021-10-27 2023-04-27 Robert Bosch Gesellschaft mit beschränkter Haftung Mikromechanisches Bauteil für einen Drehratensensor

Also Published As

Publication number Publication date
US9696158B2 (en) 2017-07-04
US20150308828A1 (en) 2015-10-29
DE112013005703T5 (de) 2015-09-03
JP2014130129A (ja) 2014-07-10
JP6176001B2 (ja) 2017-08-09
CN104823020A (zh) 2015-08-05
CN104823020B (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
JP6176001B2 (ja) ジャイロセンサ
JP4353087B2 (ja) 回転振動型角速度センサ
JP6191151B2 (ja) 物理量センサ
JP3796991B2 (ja) 角速度センサ
JP5670357B2 (ja) 角速度の振動微小機械センサ
JP6260706B2 (ja) 改良された直交位相補正を有するジャイロスコープ構造体およびジャイロスコープ
JP5884603B2 (ja) ロールオーバージャイロセンサ
ITTO20080981A1 (it) Giroscopio microelettromeccanico con migliorata reiezione di disturbi di accelerazione
JP5425211B2 (ja) マイクロメカニクスによるコリオリ式回転速度センサ
JP2014178317A (ja) 多軸検知能力を有する角速度センサ
JP2006517301A (ja) 多周波memsデバイスを同時加工するための方法及びシステム
FI126070B (en) Improved ring gyroscope structure and gyroscope
JP2012173055A (ja) 物理量センサー、電子機器
JP2005241500A (ja) 角速度センサ
JP2008014727A (ja) 加速度角速度センサ
WO2013094208A1 (ja) 振動型角速度センサ
JP2013096801A (ja) 出力安定性に優れた振動型ジャイロ
WO2018003692A1 (ja) 物理量センサ
JP6146592B2 (ja) 物理量センサー、電子機器
JP2012202799A (ja) バイアス安定性に優れた振動型ジャイロ
JP6304402B2 (ja) 改良されたジャイロスコープ構造体及びジャイロスコープデバイス
JP6740965B2 (ja) 振動型角速度センサ
JP2007101203A (ja) 角速度センサ
JP2011047852A (ja) 慣性センサ
JP3800238B2 (ja) 角速度センサ及び角速度検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859476

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14646920

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130057034

Country of ref document: DE

Ref document number: 112013005703

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13859476

Country of ref document: EP

Kind code of ref document: A1