WO2014080670A1 - 酸性ガス含有ガス処理用分離膜及びその製造方法、酸性ガス又はメタンガスの分離方法、並びに酸性ガス又はメタンガスの製造方法 - Google Patents

酸性ガス含有ガス処理用分離膜及びその製造方法、酸性ガス又はメタンガスの分離方法、並びに酸性ガス又はメタンガスの製造方法 Download PDF

Info

Publication number
WO2014080670A1
WO2014080670A1 PCT/JP2013/071719 JP2013071719W WO2014080670A1 WO 2014080670 A1 WO2014080670 A1 WO 2014080670A1 JP 2013071719 W JP2013071719 W JP 2013071719W WO 2014080670 A1 WO2014080670 A1 WO 2014080670A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
separation membrane
mixed
hydrocarbon group
acid
Prior art date
Application number
PCT/JP2013/071719
Other languages
English (en)
French (fr)
Inventor
智彦 倉橋
蔵岡 孝治
Original Assignee
東洋ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋ゴム工業株式会社 filed Critical 東洋ゴム工業株式会社
Priority to JP2014548478A priority Critical patent/JP6196236B2/ja
Priority to EP13857209.4A priority patent/EP2933014A4/en
Priority to US14/442,781 priority patent/US20150321150A1/en
Priority to CN201380059543.4A priority patent/CN104797328A/zh
Priority to CA2891107A priority patent/CA2891107A1/en
Publication of WO2014080670A1 publication Critical patent/WO2014080670A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0083Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • C10L3/104Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • B01D2256/245Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/05Biogas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2181Inorganic additives
    • B01D2323/21811Metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/548Membrane- or permeation-treatment for separating fractions, components or impurities during preparation or upgrading of a fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention is for effectively using digestive gas containing, for example, acid gas and methane gas obtained by biological treatment of garbage and the like, and in particular, acid gas or methane gas contained in digestion gas.
  • the present invention relates to an acid gas-containing separation membrane for separation and a method for producing the same.
  • the present invention also relates to an acid gas or methane gas separation method using an acid gas-containing gas processing separation membrane, and an acid gas or methane gas production method.
  • digestion gas is generated by mixing acid gas (carbon dioxide, hydrogen sulfide, etc.) and combustible gas (methane gas, etc.). Since this digestion gas can be combusted as it is, it can be used as a fuel for thermal power generation, for example. Recently, from the viewpoint of effective use of energy, methane gas, which is a combustible component, is extracted from the digestion gas, and this is used. It is used as a raw material for city gas and as a raw material for hydrogen used in fuel cells.
  • separation membranes are arranged in two stages, and gas other than methane gas in the mixed gas is stepped by passing the mixed gas through the separation membrane of each stage.
  • methane concentrator that separates the methane gas and increases the concentration of methane gas (see, for example, Patent Document 1).
  • the methane concentrator of Patent Document 1 separates a gas A having a molecular diameter smaller than that of methane gas from a mixed gas.
  • the permeability coefficient ratio A / methane between gas A and methane is 5 or more and gas A
  • An inorganic porous film having a characteristic of a transmittance of 1 ⁇ 10 ⁇ 9 (mol ⁇ m ⁇ 2 ⁇ s ⁇ 1 ⁇ Pa ⁇ 1 ) or more is used. It is said that by using such a separation membrane, a gas having a high methane concentration can be recovered in a high yield.
  • the methane concentrator of Patent Document 1 uses a separation membrane that separates the gas A having a molecular diameter smaller than that of methane gas, and the gas A includes carbon dioxide. According to the example of the same document, values of 3.3 to 20 are shown as the permeability coefficient ratio CO 2 / CH 4 between carbon dioxide and methane.
  • the gas separation filter of Patent Document 2 intends to improve the carbon dioxide separation performance by introducing a functional group containing basic nitrogen (N) and silicon (Si) on the surface of the separation membrane. It is. In order to exhibit sufficient carbon dioxide separation performance, it is important to form a uniform membrane while introducing a sufficient number of functional groups on the surface of the separation membrane.
  • the number of functional groups that can be introduced is determined by the molecular structure of the raw material (the number of reaction sites), and the carbon dioxide separation performance is improved only by improving the separation membrane itself. Has its limits.
  • the number of functional groups introduced into the separation membrane increases, steric hindrance is likely to occur in the molecular structure, which may adversely affect uniform membrane formation.
  • the present invention has been made in view of the above problems, and it is possible to separate acidic gas or methane gas from digestive gas containing acidic gas such as carbon dioxide and methane gas, and to obtain acidic methane gas having a high concentration. It aims at providing the separation membrane for gas containing gas processing, and its manufacturing method. Moreover, it aims at providing the separation method of acidic gas or methane gas using the separation membrane for acidic gas containing gas processing, and the manufacturing method of acidic gas or methane gas.
  • the characteristic structure of the separation membrane for acid gas-containing gas treatment according to the present invention for solving the above problems is as follows:
  • the object is to dope a polysiloxane network structure into which hydrocarbon groups have been introduced with a metal salt having an affinity for acidic gas.
  • the hydrocarbon group of the polysiloxane network has an affinity for carbon dioxide and methane gas, so it is acidic with the polysiloxane network.
  • Doping a metal salt having an affinity for gas (including carbon dioxide) can synergistically increase the affinity of the separation membrane for carbon dioxide. Therefore, when a digestion gas containing an acid gas such as carbon dioxide and methane gas is passed through the separation membrane for acid gas-containing gas processing of this configuration, the carbon dioxide in the digestion gas is selectively contained in the polysiloxane network structure. It is attracted to the surface and passes through the separation membrane as it is. As a result, the methane gas component in the digestion gas is concentrated, and a high concentration of methane gas can be obtained efficiently.
  • the polysiloxane network structure into which the hydrocarbon group is introduced is a composite polysiloxane network structure obtained by a reaction between a tetraalkoxysilane and a hydrocarbon group-containing trialkoxysilane containing the hydrocarbon group. Is preferred.
  • tetraalkoxysilane and hydrocarbon group-containing trialkoxysilane containing hydrocarbon groups are used as raw materials, and these are reacted to form a composite polysiloxane network structure. Is forming.
  • This composite polysiloxane network structure has a characteristic that combines a stable structure derived from tetraalkoxysilane and a high carbon dioxide affinity derived from a hydrocarbon group-containing trialkoxysilane. Therefore, if this composite polysiloxane network structure is used for an acid gas-containing gas treatment separation membrane, the methane gas component in the digestion gas can be efficiently concentrated.
  • the tetraalkoxysilane is tetramethoxysilane or tetraethoxysilane (referred to as A),
  • the hydrocarbon group-containing trialkoxysilane is preferably one in which an alkyl group having 1 to 6 carbon atoms or a phenyl group is bonded to the Si atom of trimethoxysilane or triethoxysilane (hereinafter referred to as B).
  • the separation membrane for acid gas-containing gas treatment of this configuration since the above significant combination is selected as tetraalkoxysilane (A) and hydrocarbon group-containing trialkoxysilane (B), a stable structure and A composite polysiloxane network structure having high carbon dioxide affinity can be obtained efficiently.
  • the acidic gas-containing gas treatment separation membrane using the composite polysiloxane network structure can be used as one having excellent carbon dioxide or methane gas separation performance.
  • the blending ratio (A / B) of A and B is preferably set to 1/9 to 9/1 in molar ratio.
  • the tetraalkoxysilane (A) and the hydrocarbon group-containing trialkoxysilane (B) have a molar ratio of 1/9 to 9/1 which is an appropriate blending ratio. Since it is set, it is possible to obtain an acid gas-containing gas treatment separation membrane capable of efficiently separating acid gas or methane gas.
  • the metal salt is an acetate, nitrate, carbonate, borate, or phosphate of at least one metal selected from the group consisting of Li, Na, K, Mg, Ca, Ni, Fe, and Al. Preferably there is.
  • the above significant metal salt is selected as the metal salt having affinity with acid gas (including carbon dioxide).
  • acid gas including carbon dioxide.
  • the carbon dioxide in the digestion gas is surely attracted to the surface of the polysiloxane network structure, and the carbon dioxide selectively permeates the separation membrane.
  • the methane gas component in the digestion gas is concentrated, and a high concentration methane gas can be obtained.
  • the characteristic configuration of the method for producing a separation membrane for acid gas-containing gas treatment according to the present invention is as follows: (A) a preparatory step for preparing a first preparatory liquid in which an acid catalyst, water, and an organic solvent are mixed, and a second preparatory liquid in which a metal salt having an affinity for an acid catalyst, an organic solvent, and an acid gas is mixed; (B) a first mixing step of mixing tetraalkoxysilane with the first preparation liquid; (C) a second mixing step of mixing the hydrocarbon group-containing trialkoxysilane with the mixed liquid obtained in the first mixing step; (D) a third mixing step of mixing the second preparatory solution with the mixed solution obtained in the second mixing step; (E) an application step of applying the mixed liquid obtained in the third mixing step to the inorganic porous support; (F) Formation of forming a polysiloxane network structure in which a hydrocarbon group doped with the metal salt is introduced on the surface
  • the method for producing a separation membrane for acid gas-containing gas treatment of this configuration by using a hydrocarbon group-containing trialkoxysilane-derived hydrocarbon group and a metal salt having an affinity for acid gas, carbon dioxide is obtained.
  • a separation membrane having a synergistic increase in affinity for can be obtained.
  • the raw material liquid is divided into a first preparation liquid in which an acid catalyst, water and an organic solvent are mixed, and a second preparation liquid in which a metal salt having an affinity for an acid catalyst, an organic solvent and an acid gas is mixed.
  • the characteristic configuration of the method for producing a separation membrane for acid gas-containing gas treatment according to the present invention is as follows: (A) a preparatory step for preparing a first preparatory liquid in which an acid catalyst, water, and an organic solvent are mixed, and a second preparatory liquid in which a metal salt having an affinity for an acid catalyst, an organic solvent, and an acid gas is mixed; (B) a first mixing step of mixing the first preparation liquid and the second preparation liquid; (C) a second mixing step of mixing tetraalkoxysilane with the mixed liquid obtained in the first mixing step; (D) a third mixing step in which a hydrocarbon group-containing trialkoxysilane is mixed with the mixed liquid obtained in the second mixing step; (E) an application step of applying the mixed liquid obtained in the third mixing step to the inorganic porous support; (F) Formation of forming a polysiloxane network structure in which a hydrocarbon group doped with the metal salt is introduced on the
  • the affinity for carbon dioxide is the same as described above. Can be obtained synergistically, and furthermore, a uniform and dense separation membrane for treating gas containing acid gas can be formed which is excellent in carbon dioxide or methane gas separation performance.
  • the characteristic configuration of the method for producing a separation membrane for acid gas-containing gas treatment according to the present invention is as follows: (A) a preparation step of preparing a preparation liquid in which an acid catalyst, water, and an organic solvent are mixed; (B) a first mixing step in which tetraalkoxysilane is mixed with the preparation liquid obtained in the preparation step; (C) a second mixing step of mixing the hydrocarbon group-containing trialkoxysilane with the mixed liquid obtained in the first mixing step; (D) a third mixing step of mixing a metal salt having an affinity with an acid gas into the mixed solution obtained in the second mixing step; (E) an application step of applying the mixed liquid obtained in the third mixing step to the inorganic porous support; (F) Formation of forming a polysiloxane network structure in which a hydrocarbon group doped with the metal salt is introduced on the surface of the inorganic porous support by heat-treating the inorganic porous support after the coating step is completed Process
  • a synergistic effect with a hydrocarbon group derived from an alkoxysilane can provide a separation membrane with a synergistically enhanced affinity for carbon dioxide, and a uniform and dense acidity with excellent carbon dioxide or methane gas separation performance.
  • a separation membrane for gas-containing gas processing can be formed.
  • the tetraalkoxysilane is tetramethoxysilane or tetraethoxysilane (referred to as A),
  • the hydrocarbon group-containing trialkoxysilane is preferably one in which an alkyl group having 1 to 6 carbon atoms or a phenyl group is bonded to the Si atom of trimethoxysilane or triethoxysilane (hereinafter referred to as B).
  • the above significant combination is selected as the tetraalkoxysilane (A) and the hydrocarbon group-containing trialkoxysilane (B).
  • A tetraalkoxysilane
  • B hydrocarbon group-containing trialkoxysilane
  • the acidic gas-containing gas treatment separation membrane using the composite polysiloxane network structure can be used as one having excellent carbon dioxide or methane gas separation performance.
  • the blending ratio (A / B) of A and B is preferably set to 1/9 to 9/1 in molar ratio.
  • the molar ratio 1/9 to 9 in which tetraalkoxysilane (A) and hydrocarbon group-containing trialkoxysilane (B) are in an appropriate blending ratio Therefore, it is possible to obtain an acid gas-containing gas treatment separation membrane capable of efficiently separating acid gas or methane gas.
  • the metal salt is an acetate, nitrate, carbonate, borate, or phosphate of at least one metal selected from the group consisting of Li, Na, K, Mg, Ca, Ni, Fe, and Al. Preferably there is.
  • the significant metal salt is selected as a metal salt having an affinity for acid gas (including carbon dioxide), carbon dioxide or An acid gas-containing gas treatment separation membrane having excellent methane gas separation performance can be obtained.
  • the characteristic configuration of the method for separating acidic gas or methane gas according to the present invention is as follows: In the acidic gas-containing gas treatment separation membrane according to any one of the above, digestion gas containing acidic gas and methane gas is passed to separate the acidic gas or the methane gas.
  • the digestion gas containing acid gas and methane gas is passed through the separation membrane for treating gas containing gas that is excellent in the separation performance of carbon dioxide or methane gas.
  • the characteristic configuration of the method for producing acid gas or methane gas according to the present invention for solving the above problems is as follows.
  • the acidic gas-containing gas processing separation membrane according to any one of the above is to pass a digestion gas containing an acidic gas and methane gas to extract the acidic gas or the methane gas.
  • the digestion gas containing acid gas and methane gas is allowed to pass through a uniform and dense separation membrane for acid gas-containing gas treatment having excellent separation performance of carbon dioxide or methane gas. By this, it becomes possible to take out acid gas or methane gas efficiently.
  • the acidic gas-containing gas treatment separation membrane of the present invention is for treating digestion gas obtained by biological treatment of, for example, garbage.
  • Digestion gas is a mixed gas containing acid gas (mainly carbon dioxide and hydrogen sulfide etc.) and methane gas.
  • digestion gas contains carbon dioxide and methane gas.
  • Handle as a mixed gas. Accordingly, in the following description, carbon dioxide is taken as an example of the acidic gas, and the acidic gas-containing gas processing separation membrane is described as a carbon dioxide separation membrane that selectively attracts carbon dioxide for convenience.
  • the separation membrane for treatment of acid gas-containing gas of the present invention can also be configured as a methane gas separation membrane that selectively attracts methane gas, and moreover, carbon dioxide / methane that can simultaneously separate carbon dioxide and methane gas.
  • a methane gas separation membrane can also be used.
  • the separation membrane for treatment of acid gas-containing gas may be simply referred to as “separation membrane”.
  • the acidic gas-containing gas treatment separation membrane is constituted by doping a polysiloxane network structure into which a hydrocarbon group has been introduced with a metal salt having an affinity for acidic gas.
  • the polysiloxane network structure into which a hydrocarbon group is introduced is obtained by a reaction between a tetraalkoxysilane and a hydrocarbon group-containing trialkoxysilane containing a hydrocarbon group.
  • Tetraalkoxysilane is a tetrafunctional alkoxysilane represented by the following formula (1).
  • a preferred tetraalkoxysilane in the formula (1) is tetramethoxysilane (TMOS) in which R 1 to R 4 are the same methyl group or tetraethoxysilane (TEOS) in which the same ethyl group is used.
  • TMOS tetramethoxysilane
  • TEOS tetraethoxysilane
  • the hydrocarbon group-containing trialkoxysilane containing a hydrocarbon group is a trifunctional alkoxysilane represented by the following formula (2).
  • a preferred hydrocarbon group-containing trialkoxysilane is a trimethoxysilane in which R 6 to R 8 in the formula (2) are the same methyl group or a triethoxysilane in which the same ethyl group is a Si atom of 1 to 6 carbon atoms. In which an alkyl group or a phenyl group is bonded.
  • Examples include silane, hexyltrimethoxysilane, hexyltriethoxysilane, phenyltrimethoxysilane, and phenyltriethoxysilane.
  • the hydrocarbon group R 5 is present in the polysiloxane network structure and forms a certain organic-inorganic composite.
  • methyltrimethoxysilane or methyltriethoxysilane (the hydrocarbon group having 1 carbon atom) is Mainly having affinity for carbon dioxide, and having an alkyl group or phenyl group having 2 to 6 carbon atoms bonded to Si atom of trimethoxysilane or triethoxysilane (hydrocarbon group having 2 to 6 carbon atoms) Has been found to have an affinity mainly for methane gas.
  • the tetrafunctional alkoxysilane is synthesized.
  • A tetrafunctional alkoxysilane
  • B trifunctional alkoxysilane
  • An appropriate blending ratio found by the present inventors is 1/9 to 9/1 in terms of A / B molar ratio, and a preferred blending ratio is 3/7 to 7/3 in terms of A / B molar ratio, A more preferable blending ratio is such that A / B is a molar ratio of 4/6 to 6/4. With such a blending ratio, a composite polysiloxane network structure having both a stable structure and a high carbon dioxide affinity can be efficiently obtained.
  • the composition of the trifunctional alkoxysilane (B) of the formula (2) that is one of the raw materials For example, when increasing the selectivity (affinity) for carbon dioxide, increase the content of methyltrimethoxysilane or methyltriethoxysilane in the trifunctional alkoxysilane to increase the selectivity (affinity) for methane gas.
  • the content of an alkyl group having 2 to 6 carbon atoms or a phenyl group bonded to the Si atom of trimethoxysilane or triethoxysilane contained in the trifunctional alkoxysilane is increased.
  • the trifunctional alkoxysilane (B) Methyltrimethoxysilane or methyltriethoxysilane (referred to as B1), and a C2-C6 alkyl group or phenyl group bonded to the Si atom of trimethoxysilane or triethoxysilane (referred to as B2).
  • B1 Methyltrimethoxysilane or methyltriethoxysilane
  • B2 a C2-C6 alkyl group or phenyl group bonded to the Si atom of trimethoxysilane or triethoxysilane
  • An appropriate blending ratio in the trifunctional alkoxysilane (B) found by the present inventors is 1/9 to 9/1 in terms of a molar ratio of B1 / B2, and a preferable blending ratio is 3 in a molar ratio of B1 / B2.
  • a more preferable blending ratio is B / 6 / B2 in a molar ratio of 4/6 to 6/4.
  • the composite polysiloxane network structure of the above formula (3) is doped with a metal salt having an affinity for carbon dioxide.
  • the metal salt includes acetate, nitrate, carbonate, borate, or phosphate of at least one metal selected from the group consisting of Li, Na, K, Mg, Ca, Ni, Fe, and Al. Can be mentioned. Of these, magnesium acetate or magnesium nitrate is preferred. Since the above metal salts such as magnesium acetate have a good affinity with carbon dioxide, it has a hydrocarbon group R 5 (particularly, when R 5 is a methyl group) contained in the polysiloxane network structure. The synergistic effect makes it possible to separate carbon dioxide with high efficiency.
  • the metal salt is doped by, for example, an impregnation method in which a composite polysiloxane network structure is immersed in an aqueous solution containing the metal salt, and the metal salt is impregnated alone or with other substances inside the composite polysiloxane network structure. Done.
  • the acidic gas-containing gas treatment separation membrane of the present invention is produced by performing the following steps (a) to (f). Hereinafter, each step will be described in detail.
  • the 1st preparatory liquid which mixed the acid catalyst, water, and the organic solvent is prepared.
  • the first preparation liquid is used in the “first mixing step” of the next step.
  • the compounding amount of each of the acid catalyst, water, and organic solvent is 0.005 to 0.1 mol of acid catalyst, It is preferable to adjust to 5 to 10 mol and organic solvent 5 to 60 mol.
  • the compounding amount of the acid catalyst is less than 0.005 mol, the hydrolysis rate becomes low and the time required for producing the separation membrane becomes long.
  • the compounding amount of the acid catalyst is more than 0.1 mol, the hydrolysis rate becomes excessive, and it becomes difficult to obtain a uniform separation membrane.
  • the hydrolysis rate decreases and the sol-gel reaction described later does not proceed sufficiently.
  • the amount of water is more than 10 mol, the hydrolysis rate becomes excessive, and the pore size is enlarged, so that it is difficult to obtain a dense separation membrane.
  • the concentration of the mixed solution containing the tetraalkoxysilane and hydrocarbon group-containing trialkoxysilane described later is lowered, and the number of coating times (number of steps) of the mixed solution is increased, resulting in production efficiency. Decreases.
  • the acid catalyst for example, nitric acid, hydrochloric acid, sulfuric acid and the like are used. Of these, nitric acid or hydrochloric acid is preferred.
  • the organic solvent for example, methanol, ethanol, propanol, butanol, benzene, toluene and the like are used. Of these, methanol or ethanol is preferred.
  • a second preparation liquid is further prepared by mixing an acid catalyst, an organic solvent, and a metal salt having an affinity for carbon dioxide.
  • the second preparation liquid is used in a “third mixing step” described later.
  • the compounding amount of each of the acid catalyst, the organic solvent, and the metal salt is 0.001 to 0.1 mol of the acid catalyst and 1 mol of the organic catalyst with respect to 1 mol of the total amount of tetraalkoxysilane and hydrocarbon group-containing trialkoxysilane described later. It is preferable to adjust to 0.1 to 10 mol of the solvent and 0.01 to 0.3 mol of the metal salt.
  • the hydrolysis rate becomes low and the time required for producing the separation membrane becomes long.
  • the hydrolysis rate becomes excessive, and it becomes difficult to obtain a uniform separation membrane.
  • the blending amount of the metal salt is less than 0.01 mol, it is difficult to efficiently separate carbon dioxide or methane gas because the attractive force of carbon dioxide is not sufficient.
  • the amount of the metal salt is more than 0.3 mol, the pores of the separation membrane may be blocked by the metal salt.
  • the same acid catalyst and organic solvent as the first preparation liquid can be used.
  • the metal salt having an affinity for carbon dioxide those described in the above item “Separation membrane for treatment of acid gas-containing gas” can be used.
  • tetraalkoxysilane is mixed into the first preparation liquid prepared in the preparation step.
  • a sol-gel reaction in which tetraalkoxysilane repeats hydrolysis and polycondensation starts in the mixed solution.
  • tetraalkoxysilane those described in the above-mentioned item “Separation membrane for treatment of acid gas-containing gas” can be used.
  • TEOS tetraethoxysilane
  • the sol-gel reaction is considered to proceed as shown in Scheme 1 below.
  • Scheme 1 is a model representing the progress of the sol-gel reaction and does not necessarily reflect the actual molecular structure as it is.
  • a part of ethoxy groups of tetraethoxysilane are hydrolyzed and dealcoholized to produce silanol groups. Further, some ethoxy groups of tetraethoxysilane are not hydrolyzed and can remain as they are.
  • some silanol groups associate with neighboring silanol groups and are polycondensed by dehydration. As a result, a siloxane skeleton in which silanol groups or ethoxy groups remain is formed.
  • silanol groups or ethoxy groups exist in a state of being dispersed substantially evenly in the siloxane skeleton.
  • the molecular weight of the siloxane is not very high and is in an oligomer rather than a polymer. Therefore, the silanol group or ethoxy group-containing siloxane oligomer is in a state of being dissolved in a mixed liquid containing an organic solvent.
  • (C) Second mixing step / (d) Third mixing step As a second mixing step, a hydrocarbon group-containing trialkoxysilane is mixed with a mixed solution containing the siloxane oligomer obtained in the first mixing step. Thereby, reaction of a siloxane oligomer and a hydrocarbon group containing trialkoxysilane starts. Further, as the third mixing step, the second preparation solution is mixed with the mixed solution obtained in the second mixing step. The third mixing step is preferably performed within 30 minutes after the second mixing step.
  • the raw material liquid is divided into a first preparation liquid in which an acid catalyst, water, and an organic solvent are mixed, and a second preparation liquid in which an acid catalyst, an organic solvent, and a metal salt having an affinity for carbon dioxide are mixed.
  • a method of reacting two preparation liquids is adopted. For this reason, the hydrolysis of the hydrocarbon group-containing trialkoxysilane proceeds rapidly when the second mixing step is performed, or the pH of the mixed solution may fluctuate greatly when the third mixing step is performed.
  • the sol-gel reaction can proceed in a stable state.
  • the pH of the mixed solution may greatly increase from about 0.8 to about 4 to 6, and in this case, the sol-gel reaction is stable.
  • the finally obtained separation membrane for acid gas-containing gas treatment may not have a uniform and dense structure.
  • a metal salt having an affinity for carbon dioxide is taken into the produced polysiloxane.
  • the hydrocarbon group-containing trialkoxysilane those described in the item “Separation membrane for gas treatment containing acid gas” described above can be used.
  • Scheme 2 is a model representing the progress of the reaction, and does not necessarily reflect the actual molecular structure as it is.
  • the silanol group or ethoxy group of the siloxane oligomer reacts with the ethoxy group of methyltriethoxysilane, and the dealcoholization is performed to form a polysiloxane bond.
  • the silanol group or ethoxy group of the siloxane oligomer is dispersed substantially uniformly in the siloxane skeleton as described above, the silanol group or ethoxy group of the siloxane oligomer that proceeds in the second mixing step and the third mixing step. It is considered that the reaction (dealcoholization) of styrene with the ethoxy group of methyltriethoxysilane proceeds almost equally.
  • the liquid mixture (a colloidal solution or suspension of polysiloxane fine particles) obtained in the third mixing process is coated on the inorganic porous support.
  • the material for the inorganic porous support include silica-based ceramics, silica-based glass, alumina-based ceramics, stainless steel, titanium, and silver.
  • the inorganic porous support has a structure in which an inflow portion into which gas flows and an outflow portion from which gas flows out are provided.
  • the gas inflow portion is an opening provided in the inorganic porous support
  • the gas outflow portion is the outer surface of the inorganic porous support. Since innumerable pores are formed on the outer surface, gas can flow out from the entire outer surface.
  • an inorganic porous support may be configured by preparing a solid flat plate or a bulk body made of an inorganic porous material and forming a gas flow path by hollowing out a part thereof. .
  • the pore diameter of the inorganic porous support is preferably about 0.01 to 100 ⁇ m. When the pore size of the inorganic porous body is relatively large (for example, 50 ⁇ m or more), it is preferable to provide an intermediate layer on the surface of the inorganic porous support.
  • the mixed solution When the mixed solution is directly applied to the surface of the inorganic porous support having a relatively large pore diameter, the mixed solution may excessively penetrate into the pores and do not stay on the surface, which may make film formation difficult. Therefore, by providing an intermediate layer on the surface of the inorganic porous support, the entrance of the pores is narrowed by the intermediate layer, and the application of the mixed liquid becomes easy.
  • the material for the intermediate layer include ⁇ -alumina, ⁇ -alumina, silica, silicalite, and the like.
  • the method for applying the mixed solution to the inorganic porous support include a dipping method, a spray method, and a spin method.
  • the dipping method is a preferable coating method because the mixed solution can be uniformly and easily applied to the surface of the inorganic porous support.
  • a specific procedure of the dipping method will be described.
  • the inorganic porous support is immersed in the mixed solution obtained in the third mixing step.
  • the immersion time is preferably 5 seconds to 10 minutes so that the mixed solution can sufficiently penetrate into the pores of the inorganic porous support. If the immersion time is shorter than 5 seconds, the film thickness is not sufficient, and if it exceeds 10 minutes, the film thickness becomes too large.
  • the inorganic porous support is pulled up from the mixed solution.
  • the pulling speed is preferably 0.1 to 2 mm / second.
  • the pulled up inorganic porous support is dried.
  • the drying conditions are preferably 15 to 40 ° C. and 0.5 to 3 hours. If the drying time is less than 0.5 hours, sufficient drying cannot be performed, and the drying state hardly changes even if the drying time exceeds 3 hours.
  • the drying is completed, a product in which polysiloxane fine particles are adhered to the surface of the inorganic porous support (including the inner surface of the pores) is obtained.
  • the amount of polysiloxane fine particles attached to the inorganic porous support can be increased by repeating a series of steps of immersing, pulling up and drying the inorganic porous support multiple times.
  • a liquid mixture can be uniformly apply
  • a heating means such as a calciner is used. A specific procedure for the heat treatment will be described. First, the inorganic porous support is heated up to a firing temperature described later. The temperature raising time is preferably 1 to 24 hours.
  • the temperature rising time is shorter than 1 hour, it is difficult to obtain a uniform film due to a rapid temperature change, and if it is longer than 24 hours, the film may be deteriorated by heating for a long time.
  • firing is performed for a certain time.
  • the firing temperature is preferably 30 to 300 ° C, more preferably 50 to 200 ° C. If the baking temperature is lower than 30 ° C., sufficient baking cannot be performed, so that a dense film cannot be obtained. If the baking temperature is higher than 300 ° C., the film may be deteriorated by heating at a high temperature.
  • the firing time is preferably 0.5 to 6 hours. When the baking time is shorter than 0.5 hours, sufficient baking cannot be performed, so that a dense film cannot be obtained.
  • the film When the baking time is longer than 6 hours, the film may be deteriorated by heating for a long time. After firing, the inorganic porous support is cooled to room temperature.
  • the cooling time is preferably 5 to 10 hours. If the cooling time is shorter than 5 hours, the film may be cracked or peeled off due to a rapid temperature change, and if it is longer than 10 hours, the film may be deteriorated.
  • a separation membrane is formed on the surface of the inorganic porous support after cooling (including the inner surface of the pores). After this “forming step”, returning to the “coating step” described above and repeating the coating step and the forming step a plurality of times, a separation membrane having a denser and more uniform membrane quality on the surface of the inorganic porous support. Can be formed.
  • the acidic gas-containing separation membrane for gas treatment of the present invention is produced.
  • a gas attracting layer having sites (methyl groups) for attracting a specific gas (carbon dioxide in this embodiment) is formed in the surface and pores of the base inorganic porous support.
  • the gas attraction layer may be formed on the surface of the inorganic porous support through the intermediate layer.
  • the concentrated methane gas can be used as a raw material for city gas and a raw material for hydrogen used in fuel cells.
  • the gas attraction layer of the separation membrane has a site for attracting methane gas (hydrocarbon group having carbon number of ethyl group or more)
  • methane gas is selectively attracted, and methane gas permeates through the pores as they are. Therefore, in this case, methane gas that has permeated through the separation membrane can be recovered and used as a raw material for city gas or a raw material for hydrogen used in a fuel cell.
  • the first preparation liquid is mixed in the initial stage of production, and the second preparation liquid is mixed in the late stage of production.
  • Two preparation liquids may be mixed simultaneously from the initial stage of production. That is, it is possible to manufacture the acidic gas-containing gas treatment separation membrane of the present invention by the following steps.
  • (A) Preparatory process The 1st preparatory liquid which mixed the acid catalyst, water, and the organic solvent, and the 2nd preparatory liquid that mixed the acid catalyst, the organic solvent, and the metal salt which has an affinity with acidic gas are prepared.
  • (B) First mixing step The first preparation solution and the second preparation solution are mixed.
  • (C) Second mixing step Tetraalkoxysilane is mixed with the mixed liquid (solution containing a metal salt) obtained in the first mixing step.
  • (D) Third mixing step A hydrocarbon group-containing trialkoxysilane is mixed with the mixed solution (mixed solution containing a siloxane oligomer) obtained in the second mixing step.
  • the sol-gel reaction of alkoxysilane can proceed without rapid hydrolysis of alkoxysilane solution and large fluctuations in pH, so it has excellent separation performance of carbon dioxide or methane gas.
  • a uniform and dense separation membrane can be formed.
  • the acidic gas-containing gas treatment separation membrane of the present invention can be produced by the following steps.
  • (A) Preparatory process The preparation liquid which mixed the acid catalyst, water, and the organic solvent is prepared.
  • (C) 2nd mixing process A hydrocarbon group containing trialkoxysilane is mixed with the liquid mixture (mixed liquid containing a siloxane oligomer) obtained at the 1st mixing process.
  • (E) Coating step The mixed solution (metal salt-containing colloidal solution or suspension) obtained in the third mixing step is coated on the inorganic porous support.
  • the composition of the preparation liquid is prepared so that the pH of the mixed liquid (mixed liquid containing the siloxane oligomer) obtained in the first mixing step is in the range of 0.8 to 2.5.
  • a carbon dioxide separation membrane as a separation membrane was produced according to the “method for producing a separation membrane for treatment of acid gas-containing gas” described in the above embodiment.
  • tetraethoxysilane Shin-Etsu Chemical LS-2430, manufactured by Shin-Etsu Chemical Co., Ltd.
  • methyltriethoxysilane Silane-Etsu Chemical
  • Example 1 magnesium acetate tetrahydrate (manufactured by Aldrich) was used as a metal salt having an affinity for carbon dioxide.
  • [Alkoxysilane] Tetraethoxysilane 4.16g ⁇ Methyltriethoxysilane 5.34g
  • [First preparation liquid] ⁇ Water 1.80g ⁇ Nitric acid 0.03g ⁇ Ethanol 45.96g * Nitric acid, water, and ethanol were mixed and stirred for about 30 minutes to prepare a first preparation solution (the same applies to Examples 2 to 5 below).
  • tetraethoxysilane was added to the first preparation liquid and stirred for 1 hour, then methyltriethoxysilane was added and stirred for 2.5 hours, and then the second preparation liquid ( The additional solution was added and stirred for 2 hours to prepare a separation membrane-forming alkoxide solution (mixed solution).
  • the pH of the alkoxide solution for forming a separation membrane was 0.61.
  • a tubular body of alumina ceramic was prepared as an inorganic porous support, and an alkoxide solution for forming a separation membrane was applied to the surface by a dipping method.
  • the lifting speed of the dipping method was 1 mm / s, and after the lifting, the film was dried at room temperature for 1 hour.
  • heat treatment was performed in a calciner. The heat treatment was performed by heating from room temperature (25 ° C.) to 150 ° C. over 5 hours, holding at 150 ° C. for 2 hours, and cooling to 25 ° C. over 5 hours. This heat treatment was repeated 4 times to complete the separation membrane of Example 1.
  • Example 2 magnesium acetate tetrahydrate (manufactured by Aldrich) was used as a metal salt having an affinity for carbon dioxide. Since the preparation conditions, coating conditions, and heat treatment conditions of the alkoxide solution for forming a separation membrane are the same as those in Example 1, detailed description thereof is omitted. The pH of the alkoxide solution for forming a separation membrane was 0.60.
  • Example 3 magnesium acetate tetrahydrate (manufactured by Aldrich) was used as a metal salt having an affinity for carbon dioxide.
  • [Alkoxysilane] Tetraethoxysilane 4.16g ⁇ Methyltriethoxysilane 5.34g
  • [First preparation liquid] Water 1.80g ⁇ Nitric acid 0.03g ⁇ Ethanol 45.96g
  • [Second preparation solution] ⁇ Magnesium acetate tetrahydrate 0.53g ⁇ Nitric acid 0.48g ⁇ Ethanol 1.79g
  • the separation membrane of Example 3 As a preparation procedure of the separation membrane of Example 3, first the first preparation liquid and the second preparation liquid (additional solution) were first mixed and stirred for 30 minutes, then tetraethoxysilane was added and stirred for 1 hour, Methyltriethoxysilane was added and stirred for 1 hour to prepare a separation membrane forming alkoxide solution (mixed solution). The pH of the alkoxide solution for forming a separation membrane was 0.95. Next, a tubular body of alumina ceramic was prepared as an inorganic porous support, and an alkoxide solution for forming a separation membrane was applied to the surface by a dipping method.
  • the lifting speed of the dipping method was 1 mm / s, and after the lifting, the film was dried at room temperature for 1 hour.
  • heat treatment was performed in a calciner. The heat treatment was performed by heating from room temperature (25 ° C.) to 150 ° C. over 5 hours, holding at 150 ° C. for 2 hours, and cooling to 25 ° C. over 5 hours. This heat treatment was repeated 4 times to complete the separation membrane of Example 3.
  • Example 4 magnesium acetate tetrahydrate (manufactured by Aldrich) was used as a metal salt having an affinity for carbon dioxide. Since the preparation conditions, coating conditions, and heat treatment conditions of the alkoxide solution for forming a separation membrane are the same as those in Example 3, detailed description thereof is omitted. The pH of the alkoxide solution for forming a separation membrane was 0.82.
  • Example 5 magnesium acetate tetrahydrate (manufactured by Aldrich) was used as a metal salt having an affinity for carbon dioxide. Since the preparation conditions, coating conditions, and heat treatment conditions of the alkoxide solution for forming a separation membrane are the same as those in Example 3, detailed description thereof is omitted. The pH of the alkoxide solution for forming a separation membrane was 0.67.
  • Example 6 magnesium nitrate hexahydrate (manufactured by Aldrich) was used as a metal salt having an affinity for carbon dioxide.
  • [Alkoxysilane] Tetraethoxysilane 6.48g ⁇ Methyltriethoxysilane 3.70g
  • Metal salt]
  • Preparation solution ⁇ Water 1.87g ⁇ Nitric acid 0.03g ⁇ Ethanol 47.79g * Preparation solution was prepared by mixing nitric acid, water and ethanol and stirring for about 30 minutes.
  • tetraethoxysilane was added to the preparation liquid and stirred for 1 hour, then methyltriethoxysilane was added and stirred for 2.5 hours, and magnesium nitrate hexahydrate was further added.
  • an alkoxide solution (mixed solution) for forming a separation membrane was prepared.
  • a tubular body of alumina ceramic was prepared as an inorganic porous support, and an alkoxide solution for forming a separation membrane was applied to the surface by a dipping method.
  • the lifting speed of the dipping method was 1 mm / s, and after the lifting, the film was dried at room temperature for 1 hour.
  • a metal salt-undoped separation membrane was prepared by not blending a metal salt having an affinity with acidic gas.
  • Tetraethoxysilane (Shin-Etsu Silicone LS-2430, manufactured by Shin-Etsu Chemical Co., Ltd.) is used as the tetraalkoxysilane, and methyltriethoxysilane (Shin-Etsu Chemical Co., Ltd., Shin-Etsu Silicone LS-1890) is used as the hydrocarbon-containing trialkoxysilane.
  • Nitric acid (reagent special grade 69.5%, manufactured by Wako Pure Chemical Industries, Ltd.) was used as the acid catalyst, and ethanol (reagent special grade 99.5%, manufactured by Wako Pure Chemical Industries, Ltd.) was used as the organic solvent. .
  • ethanol (reagent special grade 99.5%, manufactured by Wako Pure Chemical Industries, Ltd.) was used as the organic solvent. .
  • These raw materials are the same as those used in the examples.
  • [Alkoxysilane] Tetraethoxysilane 6.50g ⁇ 3.71 g of methyltriethoxysilane
  • Preparation solution ⁇ Water 1.87g ⁇ Nitric acid 0.03g ⁇ Ethanol 47.89g * Preparation solution was prepared by mixing nitric acid, water and ethanol and stirring for about 30 minutes.
  • ⁇ Separation performance confirmation test> The separation membranes of Examples 1 to 6 and Comparative Example 1 were subjected to confirmation tests regarding the separation performance of carbon dioxide and methane gas.
  • the confirmation test the separation performance of carbon dioxide and methane gas was evaluated through nitrogen.
  • the gas molecular diameter of nitrogen is 3.64cm
  • the gas molecular diameter of carbon dioxide is 3.3mm
  • the gas molecular diameter of methane gas is 3.8cm. Therefore, in a mixed system of carbon dioxide / nitrogen, carbon dioxide having a gas molecular diameter smaller than that of nitrogen easily permeates the separation membrane. It becomes difficult to penetrate.
  • the separation membranes doped with the metal salts of Examples 1 to 6 had excellent carbon dioxide permeability to nitrogen.
  • the separation membranes of Examples 1 to 3 and 6 showed about 4.2 to 4.5 times higher carbon dioxide separation performance than the separation membrane not doped with the metal salt of Comparative Example 1. .
  • the separation membrane for gas treatment containing acid gas of the present invention the separation of carbon dioxide from a mixed gas containing carbon dioxide and methane gas imitating digestion gas was also examined.
  • Magnesium nitrate hexahydrate as a metal salt It was found that the separation membrane of Example 6 doped with a particularly excellent carbon dioxide separation performance.
  • the separation membrane for acid gas containing gas treatment of the present invention is excellent in the separation performance of carbon dioxide or methane gas, it has a high concentration from digestion gas obtained by biological treatment of garbage etc. It was suggested that it is very useful as a separation membrane for obtaining methane gas.
  • the separation membrane for acid gas-containing gas treatment of the present invention and the production method thereof, the separation method of acid gas or methane gas, and the production method of acid gas or methane gas are used in city gas production facilities, hydrogen supply facilities for fuel cells, etc. Is available. Furthermore, the present invention can also be applied to exhaust gas, natural gas, gas by-produced in petroleum refining, etc. discharged from factories and power plants.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 二酸化炭素等の酸性ガスとメタンガスとを含有する消化ガスから酸性ガス又はメタンガスを分離し、高濃度のメタンガスを得ることが可能な酸性ガス含有ガス処理用分離膜を提供する。 炭化水素基が導入されたポリシロキサン網目構造体に、酸性ガスと親和性を有する金属塩をドープしてなる酸性ガス含有ガス処理用分離膜とする。炭化水素基が導入されたポリシロキサン網目構造体は、テトラアルコキシシランと、炭化水素基を含有する炭化水素基含有トリアルコキシシランとの反応によって得られる複合ポリシロキサン網目構造体である。テトラアルコキシシランは、テトラメトキシシラン又はテトラエトキシシランであり、炭化水素基含有トリアルコキシシランは、トリメトキシシラン又はトリエトキシシランのSi原子に炭素数1~6のアルキル基又はフェニル基が結合したものである。

Description

酸性ガス含有ガス処理用分離膜及びその製造方法、酸性ガス又はメタンガスの分離方法、並びに酸性ガス又はメタンガスの製造方法
 本発明は、例えば、生ごみ等を生物学的処理することによって得られる酸性ガス及びメタンガスを含有する消化ガスを有効利用するためのものであり、特に、消化ガスに含まれる酸性ガス又はメタンガスを分離する酸性ガス含有ガス処理用分離膜及びその製造方法に関する。また、本発明は、酸性ガス含有ガス処理用分離膜を用いた酸性ガス又はメタンガスの分離方法、並びに酸性ガス又はメタンガスの製造方法に関する。
 生ごみ等を生物学的処理すると、酸性ガス(二酸化炭素、硫化水素等)と可燃性ガス(メタンガス等)とが混合した消化ガスが発生する。この消化ガスは、そのままの状態でも燃焼可能であるため、例えば、火力発電等の燃料に使用できるが、最近ではエネルギーの有効利用の観点から、消化ガスから可燃成分であるメタンガスを取り出し、これを都市ガスの原料としたり、燃料電池に使用する水素の原料に利用されている。
 従来、消化ガス等の混合ガスからメタンガスを分離する技術として、分離膜を二段に配置し、各段の分離膜に混合ガスを通過させることにより、混合ガス中のメタンガス以外のガスを段階的に分離してメタンガスの濃度を高めるメタン濃縮装置があった(例えば、特許文献1を参照)。特許文献1のメタン濃縮装置は、混合ガスからメタンガスより分子径の小さい気体Aを分離するものであるが、分離膜として、気体Aとメタンとの透過係数比A/メタンが5以上且つ気体Aの透過率が1×10-9(mol・m-2・s-1・Pa-1)以上の特性を有する無機多孔質膜を使用している。このような分離膜を使用することで、メタン濃度が高いガスを高収率で回収できるとされている。
 混合ガスから高濃度のメタンガスを得るにあたっては、混合ガスから二酸化炭素を分離すれば、混合ガス中のメタンガスの濃度が相対的に高まることになるため、結果として高濃度のメタンガスを得ることが可能となる。混合ガスから二酸化炭素を分離する技術として、環状のシロキサン結合によって形成された複数の細孔を有する非晶質酸化物からなる分離膜において、Siの側鎖に塩基性を有する窒素(N)とシリコン(Si)とを含有する官能基を結合させたものを使用したガス分離フィルタがあった(例えば、特許文献2を参照)。特許文献2のガス分離フィルタによれば、二酸化炭素等の酸性ガスが狭い細孔内を効率よく通過するため、分離性能を高めることができるとされている。
特開2008-260739号公報 特開2000-279773号公報
 分離膜を使用して混合ガス中のメタンガスを濃縮するためには、混合ガスに含まれる二酸化炭素を効率よく透過させることが可能な分離膜を開発する必要がある。この点、特許文献1のメタン濃縮装置は、メタンガスより分子径の小さい気体Aを分離する分離膜を使用しており、気体Aには二酸化炭素も含まれる。そして、同文献の実施例によれば、二酸化炭素とメタンとの透過係数比CO/CHとして、3.3~20の値が示されている。しかしながら、この程度の透過係数比ではメタンガスのロスが大きく、特許文献1のように分離膜を二段に構成し、さらに非透過ガスを再循環させる等の複雑な装置構成としなければ、実用レベルでメタンガスの濃縮を十分に行うことは困難であった。
 特許文献2のガス分離フィルタは、分離膜の表面に塩基性を有する窒素(N)とシリコン(Si)とを含有する官能基を導入することにより、二酸化炭素の分離性能を高めようとするものである。十分な二酸化炭素の分離性能を発揮させるためには、分離膜の表面に十分な数の官能基を導入しつつ、均一な膜を形成することが重要となる。しかしながら、特許文献2の分離膜は、原材料の分子構造(反応サイトの数)によって導入可能な官能基の数が決まるものであり、分離膜自体の改良のみで二酸化炭素の分離性能を向上させることには限界がある。また、分離膜に導入される官能基の数が多くなると、その分子構造中に立体障害が生じ易くなり、均一な膜形成に悪影響を及ぼす虞がある。
 本発明は、上記問題点に鑑みてなされたものであり、二酸化炭素等の酸性ガスとメタンガスとを含有する消化ガスから酸性ガス又はメタンガスを分離し、高濃度のメタンガスを得ることが可能な酸性ガス含有ガス処理用分離膜、及びその製造方法を提供することを目的とする。また、酸性ガス含有ガス処理用分離膜を用いた酸性ガス又はメタンガスの分離方法、並びに酸性ガス又はメタンガスの製造方法を提供することを目的とする。
 上記課題を解決するための本発明に係る酸性ガス含有ガス処理用分離膜の特徴構成は、
 炭化水素基が導入されたポリシロキサン網目構造体に、酸性ガスと親和性を有する金属塩をドープしてなることにある。
 本構成の酸性ガス含有ガス処理用分離膜によれば、ポリシロキサン網目構造体が有する炭化水素基は元来二酸化炭素やメタンガスとの親和性を有しているため、ポリシロキサン網目構造体に酸性ガス(二酸化炭素も含む)と親和性を有する金属塩をドープすることにより、分離膜の二酸化炭素に対する親和性を相乗的に高めることができる。従って、本構成の酸性ガス含有ガス処理用分離膜に、二酸化炭素等の酸性ガスとメタンガスとを含有する消化ガスを通過させると、消化ガス中の二酸化炭素が選択的にポリシロキサン網目構造体の表面に誘引され、そのまま分離膜を透過することになる。その結果、消化ガス中のメタンガス成分が濃縮され、高濃度のメタンガスを効率的に得ることができる。
 本発明に係る酸性ガス含有ガス処理用分離膜において、
 前記炭化水素基が導入された前記ポリシロキサン網目構造体は、テトラアルコキシシランと、前記炭化水素基を含有する炭化水素基含有トリアルコキシシランとの反応によって得られる複合ポリシロキサン網目構造体であることが好ましい。
 本構成の酸性ガス含有ガス処理用分離膜によれば、テトラアルコキシシランと、炭化水素基を含有する炭化水素基含有トリアルコキシシランとを原料としており、これらを反応させて複合ポリシロキサン網目構造体を形成している。この複合ポリシロキサン網目構造体は、テトラアルコキシシラン由来の安定した構造と、炭化水素基含有トリアルコキシシラン由来の高い二酸化炭素親和性とを併せ持った特性を有している。従って、この複合ポリシロキサン網目構造体を酸性ガス含有ガス処理用分離膜に利用すれば、消化ガス中のメタンガス成分の濃縮を効率的に行うことが可能となる。
 本発明に係る酸性ガス含有ガス処理用分離膜において、
 前記テトラアルコキシシランは、テトラメトキシシラン又はテトラエトキシシラン(これを、Aとする)であり、
 前記炭化水素基含有トリアルコキシシランは、トリメトキシシラン又はトリエトキシシランのSi原子に炭素数1~6のアルキル基又はフェニル基が結合したもの(これを、Bとする)であることが好ましい。
 本構成の酸性ガス含有ガス処理用分離膜によれば、テトラアルコキシシラン(A)、及び炭化水素基含有トリアルコキシシラン(B)として上記の有意な組み合わせを選択しているため、安定した構造と高い二酸化炭素親和性とを併せ持った複合ポリシロキサン網目構造体を効率よく得ることができる。この複合ポリシロキサン網目構造体を用いた酸性ガス含有ガス処理用分離膜は、二酸化炭素又はメタンガスの分離性能に優れたものとして利用され得る。
 本発明に係る酸性ガス含有ガス処理用分離膜において、
 前記Aと前記Bとの配合比率(A/B)が、モル比で1/9~9/1に設定されていることが好ましい。
 本構成の酸性ガス含有ガス処理用分離膜によれば、テトラアルコキシシラン(A)と炭化水素基含有トリアルコキシシラン(B)とが適切な配合比率であるモル比1/9~9/1に設定されているので、酸性ガス又はメタンガスを効率よく分離することが可能な酸性ガス含有ガス処理用分離膜を得ることができる。
 本発明に係る酸性ガス含有ガス処理用分離膜において、
 前記金属塩は、Li、Na、K、Mg、Ca、Ni、Fe、及びAlからなる群から選択される少なくとも一種の金属の酢酸塩、硝酸塩、炭酸塩、ホウ酸塩、又はリン酸塩であることが好ましい。
 本構成の酸性ガス含有ガス処理用分離膜によれば、酸性ガス(二酸化炭素も含む)と親和性を有する金属塩として上記の有意な金属塩を選択しているため、この分離膜に消化ガスを通過させると、消化ガス中の二酸化炭素がポリシロキサン網目構造体の表面に確実に誘引され、二酸化炭素が選択的に分離膜を透過する。その結果、消化ガス中のメタンガス成分が濃縮され、高濃度のメタンガスを得ることができる。
 上記課題を解決するための本発明に係る酸性ガス含有ガス処理用分離膜の製造方法の特徴構成は、
 (a)酸触媒、水、及び有機溶媒を混合した第一準備液、並びに酸触媒、有機溶媒、及び酸性ガスと親和性を有する金属塩を混合した第二準備液を調製する準備工程と、
 (b)前記第一準備液にテトラアルコキシシランを混合する第一混合工程と、
 (c)前記第一混合工程で得られた混合液に炭化水素基含有トリアルコキシシランを混合する第二混合工程と、
 (d)前記第二混合工程で得られた混合液に前記第二準備液を混合する第三混合工程と、
 (e)前記第三混合工程で得られた混合液を無機多孔質支持体に塗布する塗布工程と、
 (f)前記塗布工程が完了した無機多孔質支持体を熱処理し、当該無機多孔質支持体の表面に前記金属塩がドープされた炭化水素基が導入されたポリシロキサン網目構造体を形成する形成工程と、
を包含することにある。
 本構成の酸性ガス含有ガス処理用分離膜の製造方法によれば、炭化水素基含有トリアルコキシシラン由来の炭化水素基と、酸性ガスと親和性を有する金属塩とを使用することにより、二酸化炭素に対する親和性が相乗的に高められた分離膜を得ることができる。また、原料液を、酸触媒、水、及び有機溶媒を混合した第一準備液と、酸触媒、有機溶媒、及び酸性ガスと親和性を有する金属塩を混合した第二準備液とに分けて調製し、2つの準備液を反応させる方式とすることで、アルコキシシラン溶液の加水分解が急激に進行したり、金属塩の混合時にアルコキシシラン溶液のpHが大きく変動することを防止している。その結果、二酸化炭素又はメタンガスの分離性能に優れた均一且つ緻密な酸性ガス含有ガス処理用分離膜を形成することが可能となる。
 上記課題を解決するための本発明に係る酸性ガス含有ガス処理用分離膜の製造方法の特徴構成は、
 (a)酸触媒、水、及び有機溶媒を混合した第一準備液、並びに酸触媒、有機溶媒、及び酸性ガスと親和性を有する金属塩を混合した第二準備液を調製する準備工程と、
 (b)前記第一準備液と前記第二準備液とを混合する第一混合工程と、
 (c)前記第一混合工程で得られた混合液にテトラアルコキシシランを混合する第二混合工程と、
 (d)前記第二混合工程で得られた混合液に炭化水素基含有トリアルコキシシランを混合する第三混合工程と、
 (e)前記第三混合工程で得られた混合液を無機多孔質支持体に塗布する塗布工程と、
 (f)前記塗布工程が完了した無機多孔質支持体を熱処理し、当該無機多孔質支持体の表面に前記金属塩がドープされた炭化水素基が導入されたポリシロキサン網目構造体を形成する形成工程と、
を包含することにある。
 本構成の酸性ガス含有ガス処理用分離膜の製造方法によれば、第一準備液と第二準備液とを初めに混合しても、先に説明したものと同様に、二酸化炭素に対する親和性が相乗的に高められた分離膜を得ることができ、さらに、二酸化炭素又はメタンガスの分離性能に優れた均一且つ緻密な酸性ガス含有ガス処理用分離膜を形成することが可能となる。
 上記課題を解決するための本発明に係る酸性ガス含有ガス処理用分離膜の製造方法の特徴構成は、
 (a)酸触媒、水、及び有機溶媒を混合した準備液を調製する準備工程と、
 (b)前記準備工程で得られた準備液にテトラアルコキシシランを混合する第一混合工程と、
 (c)前記第一混合工程で得られた混合液に炭化水素基含有トリアルコキシシランを混合する第二混合工程と、
 (d)前記第二混合工程で得られた混合液に酸性ガスと親和性を有する金属塩を混合する第三混合工程と、
 (e)前記第三混合工程で得られた混合液を無機多孔質支持体に塗布する塗布工程と、
 (f)前記塗布工程が完了した無機多孔質支持体を熱処理し、当該無機多孔質支持体の表面に前記金属塩がドープされた炭化水素基が導入されたポリシロキサン網目構造体を形成する形成工程と、
を包含することにある。
 本構成の酸性ガス含有ガス処理用分離膜の製造方法によれば、第二混合工程で得られた混合液に酸性ガスと親和性を有する金属塩を混合しているため、炭化水素基含有トリアルコキシシラン由来の炭化水素基との相乗効果により、二酸化炭素に対する親和性が相乗的に高められた分離膜を得ることができ、さらに、二酸化炭素又はメタンガスの分離性能に優れた均一且つ緻密な酸性ガス含有ガス処理用分離膜を形成することが可能となる。
 本発明に係る酸性ガス含有ガス処理用分離膜の製造方法において、
 前記テトラアルコキシシランは、テトラメトキシシラン又はテトラエトキシシラン(これを、Aとする)であり、
 前記炭化水素基含有トリアルコキシシランは、トリメトキシシラン又はトリエトキシシランのSi原子に炭素数1~6のアルキル基又はフェニル基が結合したもの(これを、Bとする)であることが好ましい。
 本構成の酸性ガス含有ガス処理用分離膜の製造方法によれば、テトラアルコキシシラン(A)、及び炭化水素基含有トリアルコキシシラン(B)として上記の有意な組み合わせを選択しているため、安定した構造と高い二酸化炭素親和性とを併せ持った複合ポリシロキサン網目構造体を効率よく得ることができる。この複合ポリシロキサン網目構造体を用いた酸性ガス含有ガス処理用分離膜は、二酸化炭素又はメタンガスの分離性能に優れたものとして利用され得る。
 本発明に係る酸性ガス含有ガス処理用分離膜の製造方法において、
 前記Aと前記Bとの配合比率(A/B)が、モル比で1/9~9/1に設定されていることが好ましい。
 本構成の酸性ガス含有ガス処理用分離膜の製造方法によれば、テトラアルコキシシラン(A)と炭化水素基含有トリアルコキシシラン(B)とが適切な配合比率であるモル比1/9~9/1に設定されているので、酸性ガス又はメタンガスを効率よく分離することが可能な酸性ガス含有ガス処理用分離膜を得ることができる。
 本発明に係る酸性ガス含有ガス処理用分離膜の製造方法において、
 前記金属塩は、Li、Na、K、Mg、Ca、Ni、Fe、及びAlからなる群から選択される少なくとも一種の金属の酢酸塩、硝酸塩、炭酸塩、ホウ酸塩、又はリン酸塩であることが好ましい。
 本構成の酸性ガス含有ガス処理用分離膜の製造方法によれば、酸性ガス(二酸化炭素も含む)と親和性を有する金属塩として上記の有意な金属塩を選択しているため、二酸化炭素又はメタンガスの分離性能に優れた酸性ガス含有ガス処理用分離膜を得ることができる。
 上記課題を解決するための本発明に係る酸性ガス又はメタンガスの分離方法の特徴構成は、
 前記何れか一つに記載の酸性ガス含有ガス処理用分離膜に、酸性ガス及びメタンガスを含有する消化ガスを通過させ、前記酸性ガス又は前記メタンガスを分離することにある。
 本構成の酸性ガス又はメタンガスの分離方法によれば、二酸化炭素又はメタンガスの分離性能に優れた均一且つ緻密な酸性ガス含有ガス処理用分離膜に、酸性ガス及びメタンガスを含有する消化ガスを通過させることにより、酸性ガス又はメタンガスを効率よく分離することが可能となる。
 上記課題を解決するための本発明に係る酸性ガス又はメタンガスの製造方法の特徴構成は、
 前記何れか一つに記載の酸性ガス含有ガス処理用分離膜に、酸性ガス及びメタンガスを含有する消化ガスを通過させ、前記酸性ガス又は前記メタンガスを取り出すことにある。
 本構成の酸性ガス又はメタンガスの製造方法によれば、二酸化炭素又はメタンガスの分離性能に優れた均一且つ緻密な酸性ガス含有ガス処理用分離膜に、酸性ガス及びメタンガスを含有する消化ガスを通過させることにより、酸性ガス又はメタンガスを効率よく取り出すことが可能となる。
 以下、本発明に係る酸性ガス含有ガス処理用分離膜及びその製造方法、酸性ガス又はメタンガスの分離方法、並びに酸性ガス又はメタンガスの製造方法に関する実施形態について説明する。ただし、本発明は、以下に説明する構成に限定されることを意図しない。
<酸性ガス含有ガス処理用分離膜>
 本発明の酸性ガス含有ガス処理用分離膜は、例えば、生ごみ等を生物学的処理することによって得られる消化ガスを処理するためのものである。消化ガスは、酸性ガス(二酸化炭素を主成分とし、その他に硫化水素等を含む)とメタンガスとを含有する混合ガスであるが、本明細書では、消化ガスを二酸化炭素とメタンガスとを含有する混合ガスとして取り扱う。従って、以後の説明では、酸性ガスとして二酸化炭素を例に挙げて説明し、酸性ガス含有ガス処理用分離膜については、便宜上、二酸化炭素を選択的に誘引する二酸化炭素分離膜として説明する。ただし、本発明の酸性ガス含有ガス処理用分離膜は、メタンガスを選択的に誘引するメタンガス分離膜として構成することも可能であり、さらには、二酸化炭素とメタンガスとを同時に分離可能な二酸化炭素/メタンガス分離膜とすることも可能である。以後、酸性ガス含有ガス処理用分離膜を、単純に「分離膜」と称する場合がある。
 酸性ガス含有ガス処理用分離膜は、炭化水素基が導入されたポリシロキサン網目構造体に、酸性ガスと親和性を有する金属塩をドープすることにより構成される。炭化水素基が導入されたポリシロキサン網目構造体は、テトラアルコキシシランと、炭化水素基を含有する炭化水素基含有トリアルコキシシランとの反応によって得られる。
 テトラアルコキシシランは、下記の式(1)で表される四官能性アルコキシシランである。
Figure JPOXMLDOC01-appb-C000001
 好ましいテトラアルコキシシランは、式(1)において、R~Rが同一のメチル基であるテトラメトキシシラン(TMOS)又は同一のエチル基であるテトラエトキシシラン(TEOS)である。
 炭化水素基を含有する炭化水素基含有トリアルコキシシランは、下記の式(2)で表される三官能性アルコキシシランである。
Figure JPOXMLDOC01-appb-C000002
 好ましい炭化水素基含有トリアルコキシシランは、式(2)において、R~Rが同一のメチル基であるトリメトキシシラン又は同一のエチル基であるトリエトキシシランのSi原子に炭素数1~6のアルキル基又はフェニル基が結合したものである。例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、ペンチルトリメトキシシラン、ペンチルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシランが挙げられる。
 式(1)の四官能性アルコキシシランと、式(2)の三官能性アルコキシシランを反応させると、例えば、下記の式(3)で表される複合ポリシロキサン網目構造体が得られる。
Figure JPOXMLDOC01-appb-C000003
 式(3)の複合ポリシロキサン網目構造体は、ポリシロキサンネットワーク構造中に炭化水素基Rが存在しており、ある種の有機-無機複合体を形成している。
 ここで、本発明者らは、式(2)の三官能性アルコキシシランの特性について検討を行ったところ、メチルトリメトキシシラン又はメチルトリエトキシシラン(炭化水素基の炭素数が1のもの)は主に二酸化炭素に対して親和性を有し、トリメトキシシラン又はトリエトキシシランのSi原子に炭素数2~6のアルキル基又はフェニル基が結合したもの(炭化水素基の炭素数が2~6のもの)は主にメタンガスに対して親和性を有することを突き止めた。そして、式(1)の四官能性アルコキシシランと、式(2)の三官能性アルコキシシランとの反応から、式(3)の複合ポリシロキサン網目構造体を合成するにあたり、四官能性アルコキシシラン(これをAとする)と、三官能性アルコキシシラン(これをBとする)とを最適な配合比率に設定しておくことが、二酸化炭素又はメタンガスの分離性能に優れた分離膜を形成するために重要となることを見出した。本発明者らが見出した適切な配合比率はA/Bがモル比で1/9~9/1であり、好ましい配合比率はA/Bがモル比で3/7~7/3であり、より好ましい配合比率はA/Bがモル比で4/6~6/4である。このような配合比率とすれば、安定した構造と高い二酸化炭素親和性とを併せ持った複合ポリシロキサン網目構造体を効率よく得ることができる。
 二酸化炭素又はメタンガスの選択性を高めるためには、原料の一つである式(2)の三官能性アルコキシシラン(B)について、その組成を調整することも有効となる。例えば、二酸化炭素に対する選択性(親和性)を高める場合は、三官能性アルコキシシラン中に含まれるメチルトリメトキシシラン又はメチルトリエトキシシランの含有量を多くし、メタンガスに対する選択性(親和性)を高める場合は、三官能性アルコキシシラン中に含まれるトリメトキシシラン又はトリエトキシシランのSi原子に炭素数2~6のアルキル基又はフェニル基が結合したものの含有量を多くする。すなわち、四官能性アルコキシシラン(A)と三官能性アルコキシシラン(B)との配合比率(A/B)を上記の適切な範囲に設定した上で、三官能性アルコキシシラン(B)のうち、メチルトリメトキシシラン又はメチルトリエトキシシラン(これをB1とする)と、トリメトキシシラン又はトリエトキシシランのSi原子に炭素数2~6のアルキル基又はフェニル基が結合したもの(これをB2とする)との配合比率(B1/B2)を最適化する。本発明者らが見出した三官能性アルコキシシラン(B)における適切な配合比率はB1/B2がモル比で1/9~9/1であり、好ましい配合比率はB1/B2がモル比で3/7~7/3であり、より好ましい配合比率はB1/B2がモル比で4/6~6/4である。
 上記式(3)の複合ポリシロキサン網目構造体には二酸化炭素と親和性を有する金属塩がドープされる。金属塩としては、Li、Na、K、Mg、Ca、Ni、Fe、及びAlからなる群から選択される少なくとも一種の金属の酢酸塩、硝酸塩、炭酸塩、ホウ酸塩、又はリン酸塩が挙げられる。これらのうち、酢酸マグネシウム又は硝酸マグネシウムが好ましい。酢酸マグネシウム等を初めとする上記金属塩は、二酸化炭素との親和性が良好であるため、ポリシロキサン網目構造体に含まれる炭化水素基R(特に、Rがメチル基の場合)との相乗効果により、高い効率で二酸化炭素を分離することが可能となる。金属塩をドープする方法は、例えば、複合ポリシロキサン網目構造体を、金属塩を含む水溶液に浸漬し、複合ポリシロキサン網目構造体の内部に金属塩を単独又は他の物質とともに含浸させる含浸法により行われる。
<酸性ガス含有ガス処理用分離膜の製造方法>
 本発明の酸性ガス含有ガス処理用分離膜は、以下の工程(a)~(f)を実施することにより製造される。以下、各工程について詳細に説明する。
(a)準備工程
 準備工程として、酸触媒、水、及び有機溶媒を混合した第一準備液を調製する。第一準備液は、次工程の「第一混合工程」において使用されるものである。酸触媒、水、及び有機溶媒の夫々の配合量は、後述のテトラアルコキシシラン及び炭化水素基含有トリアルコキシシランの合計量1モルに対して、酸触媒0.005~0.1モル、水0.5~10モル、有機溶媒5~60モルに調整することが好ましい。酸触媒の配合量が0.005モルより少ない場合、加水分解速度が小さくなり、分離膜の製造に要する時間が長くなる。酸触媒の配合量が0.1モルより多い場合、加水分解速度が過大となり、均一な分離膜が得られ難くなる。水の配合量が0.5モルより少ない場合、加水分解速度が小さくなり、後述のゾル-ゲル反応が十分に進行しない。水の配合量が10モルより多い場合、加水分解速度が過大となり、細孔径が肥大化するため緻密な分離膜が得られ難くなる。有機溶媒の配合量が5モルより少ない場合、後述のテトラアルコキシシラン及び炭化水素基含有トリアルコキシシランを含む混合液の濃度が高くなり、緻密で均一な分離膜が得られ難くなる。有機溶媒の配合量が60モルより多い場合、後述のテトラアルコキシシラン及び炭化水素基含有トリアルコキシシランを含む混合液の濃度が低くなり、混合液のコーティング回数(工程数)が増加して生産効率が低下する。酸触媒としては、例えば、硝酸、塩酸、硫酸等が使用される。これらのうち、硝酸又は塩酸が好ましい。有機溶媒としては、例えば、メタノール、エタノール、プロパノール、ブタノール、ベンゼン、トルエン等が使用される。これらのうち、メタノール又はエタノールが好ましい。
 準備工程では、さらに、酸触媒、有機溶媒、及び二酸化炭素と親和性を有する金属塩を混合した第二準備液を調製する。第二準備液は、後述の「第三混合工程」において使用されるものである。酸触媒、有機溶媒、及び金属塩の夫々の配合量は、後述のテトラアルコキシシラン及び炭化水素基含有トリアルコキシシランの合計量1モルに対して、酸触媒0.001~0.1モル、有機溶媒0.1~10モル、金属塩0.01~0.3モルに調整することが好ましい。酸触媒の配合量が0.001モルより少ない場合、加水分解速度が小さくなり、分離膜の製造に要する時間が長くなる。酸触媒の配合量が0.1モルより多い場合、加水分解速度が過大となり、均一な分離膜が得られ難くなる。有機溶媒の配合量が0.1モルより少ない場合、後述のテトラアルコキシシラン及び炭化水素基含有トリアルコキシシランを含む混合液の濃度が高くなり、緻密で均一な分離膜が得られ難くなる。有機溶媒の配合量が10モルより多い場合、後述のテトラアルコキシシラン及び炭化水素基含有トリアルコキシシランを含む混合液の濃度が低くなり、混合液のコーティング回数(工程数)が増加して生産効率が低下する。金属塩の配合量が0.01モルより少ない場合、二酸化炭素の誘引力が十分でないため、二酸化炭素又はメタンガスを効率よく分離することが困難となる。金属塩の配合量が0.3モルより多い場合、分離膜の細孔が金属塩によって閉塞される虞がある。酸触媒及び有機溶媒は、第一準備液と同様のものを使用することができる。二酸化炭素と親和性を有する金属塩としては、上述の「酸性ガス含有ガス処理用分離膜」の項目で説明したものを使用することができる。
(b)第一混合工程
 第一混合工程として、準備工程で調製した第一準備液にテトラアルコキシシランを混合する。このとき、混合液中において、テトラアルコキシシランが加水分解及び重縮合を繰り返すゾル-ゲル反応が開始する。テトラアルコキシシランは、上述の「酸性ガス含有ガス処理用分離膜」の項目で説明したものを使用することができる。例えば、テトラアルコキシシランの一例としてテトラエトキシシラン(TEOS)を使用した場合、ゾル-ゲル反応は下記のスキーム1のように進行すると考えられる。なお、このスキーム1は、ゾル-ゲル反応の進行を表す一つのモデルであり、実際の分子構造をそのまま反映しているとは限らない。
Figure JPOXMLDOC01-appb-C000004
 スキーム1によれば、初めに、テトラエトキシシランの一部のエトキシ基が加水分解され、脱アルコール化することによりシラノール基が生成する。また、テトラエトキシシランの一部のエトキシ基は加水分解されず、そのまま残存し得る。次いで、一部のシラノール基が近傍のシラノール基と会合し、脱水することにより重縮合する。その結果、シラノール基又はエトキシ基が残存したシロキサン骨格が形成される。上記の加水分解反応、及び脱水・重縮合反応は混合液系内で略均等に進行するため、シラノール基又はエトキシ基はシロキサン骨格中に略均等に分散した状態で存在する。この段階では、シロキサンの分子量はそれほど大きいものではなく、ポリマーよりもむしろオリゴマーの状態にある。従って、シラノール基又はエトキシ基含有シロキサンオリゴマーは、有機溶媒を含む混合液に溶解した状態にある。
(c)第二混合工程/(d)第三混合工程
 第二混合工程として、第一混合工程で得られたシロキサンオリゴマーを含む混合液に炭化水素基含有トリアルコキシシランを混合する。これにより、シロキサンオリゴマーと炭化水素基含有トリアルコキシシランとの反応が開始する。さらに、第三混合工程として、第二混合工程で得られた混合液に第二準備液を混合する。第三混合工程は、第二混合工程の実施後、30分以内に実施することが好ましい。本発明は、原料液を、酸触媒、水、及び有機溶媒を混合した第一準備液と、酸触媒、有機溶媒、及び二酸化炭素と親和性を有する金属塩を混合した第二準備液とに分けて調製し、2つの準備液を反応させる方式を採用している。このため、第二混合工程を実施する際に炭化水素基含有トリアルコキシシランの加水分解が急激に進行したり、第三混合工程を実施する際に混合溶液のpHが大きく変動したりすることがなく、安定した状態でゾル-ゲル反応を進行させることができる。ちなみに、原料液を一度に投入する従来の方法では、条件によっては混合溶液のpHが約0.8から約4~6程度にまで大きく上昇することがあり、この場合、ゾル-ゲル反応が安定せず、最終的に得られる酸性ガス含有ガス処理用分離膜を均一且つ緻密な構造にすることができなくなる虞がある。
 第三混合工程を実施すると、生成したポリシロキサンに二酸化炭素と親和性を有する金属塩が取り込まれる。炭化水素基含有トリアルコキシシランは、上述の「酸性ガス含有ガス処理用分離膜」の項目で説明したものを使用することができる。例えば、炭化水素基含有トリアルコキシシランの一例としてメチルトリエトキシシランを使用した場合、反応は下記のスキーム2のように進行すると考えられる。なお、このスキーム2は、反応の進行を表す一つのモデルであり、実際の分子構造をそのまま反映しているとは限らない。
Figure JPOXMLDOC01-appb-C000005
 スキーム2によれば、シロキサンオリゴマーのシラノール基又はエトキシ基と、メチルトリエトキシシランのエトキシ基とが反応し、脱アルコール化することによりポリシロキサン結合が生成する。ここで、シロキサンオリゴマーのシラノール基又はエトキシ基は、上述のようにシロキサン骨格中に略均等に分散しているため、第二混合工程及び第三混合工程によって進行するシロキサンオリゴマーのシラノール基又はエトキシ基とメチルトリエトキシシランのエトキシ基との反応(脱アルコール化)も略均等に進行すると考えられる。その結果、生成したポリシロキサン結合中にはメチルトリエトキシシラン由来のシロキサン結合が略均等に生成し、従って、メチルトリエトキシシラン由来のエチル基もポリシロキサン結合中に略均等に存在する。また、ゾル-ゲル反応時にポリシロキサンに取り込まれた金属塩もポリシロキサン結合中に略均等に分散していると考えられる。この段階では、ポリシロキサンの分子量はある程度大きくなっており、第三混合工程を終えた混合液は、ポリシロキサン微粒子が液中に分散したコロイド溶液又は懸濁液の状態にある。
(e)塗布工程
 塗布工程として、第三混合工程で得られた混合液(ポリシロキサン微粒子のコロイド溶液又は懸濁液)を無機多孔質支持体に塗布する。無機多孔質支持体の材質としては、例えば、シリカ系セラミックス、シリカ系ガラス、アルミナ系セラミックス、ステンレス、チタン、銀等が挙げられる。無機多孔質支持体の構造は、ガスが流入する流入部と、ガスが流出する流出部とが設けられたものとする。例えば、ガス流入部は無機多孔質支持体に設けられた開口部であり、ガス流出部は無機多孔質支持体の外表面である。外表面には無数の細孔が形成されているため、外表面全体からガスが流出し得る。無機多孔質体の構成例としては、内部にガス流路が設けられた円筒構造、円管構造、スパイラル構造等が挙げられる。また、無機多孔質材料で構成される中実の平板体やバルク体を用意し、その一部を刳り抜いてガス流路を形成することで、無機多孔質支持体を構成しても構わない。無機多孔質支持体の細孔径は、0.01~100μm程度とすることが好ましい。無機多孔質体の細孔径が比較的大きい場合(例えば、50μm以上の場合)は、無機多孔質支持体の表面に中間層を設けておくことが好ましい。細孔径が比較的大きい無機多孔質支持体の表面に混合液を直接塗布すると、混合液が細孔内部に過剰に浸透して表面に留まらず、成膜が難しくなることがある。そこで、無機多孔質支持体の表面に中間層を設けておくことで、細孔の入口が中間層によって狭められ、混合液の塗布が容易になる。中間層の材料としては、例えば、α-アルミナ、γ-アルミナ、シリカ、シリカライト等が挙げられる。
 無機多孔質支持体に混合液を塗布する方法は、例えば、ディッピング法、スプレー法、スピン法等が挙げられる。これらのうち、ディッピング法は、無機多孔質支持体の表面に混合液を均等且つ容易に塗布できるため、好ましい塗布方法である。ディッピング法の具体的な手順について説明する。
 先ず、無機多孔質支持体を第三混合工程で得られた混合液に浸漬する。浸漬時間は、無機多孔質支持体の細孔に混合液が十分に浸透するように5秒~10分とすることが好ましい。浸漬時間が5秒より短いと十分な膜厚にならず、10分を超えると膜厚が大きくなり過ぎてしまう。次いで、混合液から無機多孔質支持体を引き上げる。引き上げ速度は、0.1~2mm/秒とすることが好ましい。引き上げ速度が0.1mm/秒より遅くなると膜厚が大きくなり過ぎてしまい、2mm/秒より速いと十分な膜厚にならない。次いで、引き上げた無機多孔質支持体を乾燥させる。乾燥条件は、15~40℃で0.5~3時間とすることが好ましい。乾燥時間が0.5時間未満では十分な乾燥ができず、3時間を超えても乾燥状態は殆ど変化しない。乾燥が終わると、無機多孔質支持体の表面(細孔の内面を含む)にポリシロキサン微粒子が付着したものが得られる。なお、無機多孔質支持体の浸漬、引き上げ、乾燥の一連の手順を複数回繰り返すことにより、無機多孔質支持体へのポリシロキサン微粒子の付着量を増加させることができる。また、一連の手順を繰り返すことで、無機多孔質支持体に混合液を均一に塗布することができるため、最終的に得られる酸性ガス含有ガス分離膜の性能を向上させることができる。
(f)形成工程
 形成工程として、塗布工程が完了した無機多孔質支持体を熱処理し、当該無機多孔質支持体の表面に、金属塩がドープされた炭化水素基が導入されたポリシロキサン網目構造体を形成する。熱処理は、例えば、焼成器等の加熱手段が用いられる。熱処理の具体的な手順について説明する。
 先ず、無機多孔質支持体を後述の焼成温度に達するまで昇温する。昇温時間は、1~24時間が好ましい。昇温時間が1時間より短いと急激な温度変化により均一な膜が得られ難く、24時間より長いと長時間の加熱により膜が劣化する虞がある。昇温後、一定時間で焼成を行う。焼成温度は、30~300℃が好ましく、50~200℃がより好ましい。焼成温度が30℃より低いと十分な焼成を行えないため緻密な膜が得られず、300℃より高いと高温の加熱により膜が劣化する虞がある。焼成時間は、0.5~6時間が好ましい。焼成時間が0.5時間より短いと十分な焼成を行えないため緻密な膜が得られず、6時間より長いと長時間の加熱により膜が劣化する虞がある。焼成が終わったら、無機多孔質支持体を室温まで冷却する。冷却時間は、5~10時間が好ましい。冷却時間が5時間より短いと急激な温度変化により膜に亀裂や剥離が発生する虞があり、10時間より長いと膜が劣化する虞がある。冷却後の無機多孔質支持体の表面(細孔の内面を含む)には分離膜が形成される。なお、この「形成工程」の後、上述した「塗布工程」に戻り、塗布工程と形成工程とを複数回繰り返すと、無機多孔質支持体の表面に、より緻密で且つ均一な膜質の分離膜を形成することができる。
 以上の工程(a)~(f)を実施することにより、本発明の酸性ガス含有ガス処理用分離膜が製造される。この分離膜は、ベースとなる無機多孔質支持体の表面及び細孔内に、特定のガス(本実施形態の場合、二酸化炭素)を誘引するサイト(メチル基)を有するガス誘引層が形成されている。ガス誘引層は、中間層を介して無機多孔質支持体の表面に形成してもよい。分離膜に二酸化炭素とメタンガスとを含む消化ガスを通過させると、ガス誘引層に二酸化炭素が選択的に誘引され、二酸化炭素は細孔をそのまま透過する。このため、消化ガス中のメタンガス成分が濃縮され、高濃度のメタンガスを効率的に得ることができる。濃縮されたメタンガスは、都市ガスの原料や、燃料電池に使用する水素の原料に利用することができる。なお、分離膜のガス誘引層がメタンガスを誘引するサイト(エチル基以上の炭素数を有する炭化水素基)を有する場合は、二酸化炭素とメタンガスとを含む消化ガスを通過させると、ガス誘引層にメタンガスが選択的に誘引され、メタンガスは細孔をそのまま透過する。従って、この場合は、分離膜を透過したメタンガスを回収し、これを都市ガスの原料や、燃料電池に使用する水素の原料に利用することができる。
 上記実施形態による酸性ガス含有ガス処理用分離膜の製造方法では、第一準備液を製造初期段階で混合し、第二準備液を製造後期段階で混合しているが、第一準備液と第二準備液とを製造初期段階から同時に混合しておいても構わない。すなわち、以下の工程により、本発明の酸性ガス含有ガス処理用分離膜を製造することが可能である。
(a)準備工程
 酸触媒、水、及び有機溶媒を混合した第一準備液、並びに酸触媒、有機溶媒、及び酸性ガスと親和性を有する金属塩を混合した第二準備液を調製する。
(b)第一混合工程
 第一準備液と第二準備液とを混合する。
(c)第二混合工程
 第一混合工程で得られた混合液(金属塩を含む溶液)にテトラアルコキシシランを混合する。
(d)第三混合工程
 第二混合工程で得られた混合液(シロキサンオリゴマーを含む混合液)に炭化水素基含有トリアルコキシシランを混合する。
(e)塗布工程
 第三混合工程で得られた混合液(ポリシロキサン微粒子のコロイド溶液又は懸濁液)を無機多孔質支持体に塗布する。
(f)形成工程
 塗布工程が完了した無機多孔質支持体を熱処理し、当該無機多孔質支持体の表面に金属塩がドープされた炭化水素基が導入されたポリシロキサン網目構造体を形成する。
 このような手順であっても、アルコキシシラン溶液の急激な加水分解やpHの大きな変動を伴わずにアルコキシシランのゾル-ゲル反応を進行させることができるので、二酸化炭素又はメタンガスの分離性能に優れた均一且つ緻密な分離膜を形成することが可能となる。
 さらに、本発明では、単一の準備液を使用して分離膜を製造することも可能である。例えば、以下の工程により、本発明の酸性ガス含有ガス処理用分離膜を製造することができる。
(a)準備工程
 酸触媒、水、及び有機溶媒を混合した準備液を調製する。
(b)第一混合工程
 準備工程で得られた準備液にテトラアルコキシシランを混合する。
(c)第二混合工程
 第一混合工程で得られた混合液(シロキサンオリゴマーを含む混合液)に炭化水素基含有トリアルコキシシランを混合する。
(d)第三混合工程
 第二混合工程で得られた混合液(ポリシロキサン微粒子のコロイド溶液又は懸濁液)に酸性ガスと親和性を有する金属塩を混合する。
(e)塗布工程
 第三混合工程で得られた混合液(金属塩含有コロイド溶液又は懸濁液)を無機多孔質支持体に塗布する。
(f)形成工程
 塗布工程が完了した無機多孔質支持体を熱処理し、当該無機多孔質支持体の表面に金属塩がドープされた炭化水素基が導入されたポリシロキサン網目構造体を形成する。
 このような手順であっても、アルコキシシラン溶液の急激な加水分解やpHの大きな変動を伴わなければ、二酸化炭素又はメタンガスの分離性能に優れた均一且つ緻密な分離膜を形成することが可能となる。例えば、第一混合工程で得られた混合液(シロキサンオリゴマーを含む混合液)のpHが0.8~2.5の範囲に収まるように、準備液の組成を調製する。
 以下、本発明の酸性ガス含有ガス処理用分離膜に関する実施例について説明する。上述の実施形態で説明した「酸性ガス含有ガス処理用分離膜の製造方法」に従って、分離膜である二酸化炭素分離膜を作製した。全ての実施例及び比較例に共通で、テトラアルコキシシランとしてテトラエトキシシラン(信越化学工業株式会社製 信越シリコーンLS-2430)を使用し、炭化水素基含有トリアルコキシシランとしてメチルトリエトキシシラン(信越化学工業株式会社製 信越シリコーンLS-1890)を使用し、酸触媒として硝酸(和光純薬工業株式会社製 試薬特級 69.5%)を使用し、有機溶媒としてエタノール(和光純薬工業株式会社製 試薬特級 99.5%)を使用した。実施例1~6及び比較例1で使用した原材料の配合を表1に示す。
Figure JPOXMLDOC01-appb-T000006
<実施例1>
 実施例1は、二酸化炭素と親和性を有する金属塩として、酢酸マグネシウム四水和物(Aldrich社製)を使用した。
〔アルコキシシラン〕
・テトラエトキシシラン    4.16g
・メチルトリエトキシシラン  5.34g
〔第一準備液〕
・水             1.80g
・硝酸            0.03g
・エタノール        45.96g
*硝酸、水、及びエタノールを混合して約30分間攪拌することにより、第一準備液を調製した(以降の実施例2~5でも同様)。
〔第二準備液〕
・酢酸マグネシウム四水和物  0.53g
・硝酸            0.48g
・エタノール         1.79g
*硝酸、及びエタノールを混合して約1時間攪拌し、その後、酢酸マグネシウム四水和物を添加して約1時間攪拌することにより、第二準備液を調製した(以降の実施例2~5でも同様)。第二準備液は、第一準備液に追加して使用され、表1では「追加溶液」として示してある。
 実施例1の分離膜の作製手順として、第一準備液にテトラエトキシシランを添加して1時間攪拌し、次いでメチルトリエトキシシランを添加して2.5時間攪拌し、次いで第二準備液(追加溶液)を添加して2時間攪拌することにより、分離膜形成用アルコキシド溶液(混合液)を調製した。分離膜形成用アルコキシド溶液のpHは0.61であった。次に、無機多孔質支持体としてアルミナ系セラミックスの管状体を準備し、その表面に分離膜形成用アルコキシド溶液をディッピング法によって塗布した。ディッピング法の引き上げ速度は1mm/sとし、引き上げ後は室温で1時間乾燥させた。分離膜形成用アルコキシド溶液の塗布及び乾燥を2回繰り返した後、焼成器で熱処理を行った。熱処理条件は、室温(25℃)から150℃まで5時間かけて加熱し、150℃で2時間保持し、25℃まで5時間かけて冷却した。この熱処理を4回繰り返し、実施例1の分離膜を完成させた。
<実施例2>
 実施例2は、二酸化炭素と親和性を有する金属塩として、酢酸マグネシウム四水和物(Aldrich社製)を使用した。分離膜形成用アルコキシド溶液の調製条件、塗布条件、及び熱処理条件は実施例1と同様のため、詳細な説明は省略する。分離膜形成用アルコキシド溶液のpHは0.60であった。
〔アルコキシシラン〕
・テトラエトキシシラン    3.97g
・メチルトリエトキシシラン  5.10g
〔第一準備液〕
・水             1.72g
・硝酸            0.03g
・エタノール        43.90g
〔第二準備液〕
・酢酸マグネシウム四水和物  1.02g
・硝酸            0.94g
・エタノール         3.33g
<実施例3>
 実施例3は、二酸化炭素と親和性を有する金属塩として、酢酸マグネシウム四水和物(Aldrich社製)を使用した。
〔アルコキシシラン〕
・テトラエトキシシラン    4.16g
・メチルトリエトキシシラン  5.34g
〔第一準備液〕
・水             1.80g
・硝酸            0.03g
・エタノール        45.96g
〔第二準備液〕
・酢酸マグネシウム四水和物  0.53g
・硝酸            0.48g
・エタノール         1.79g
 実施例3の分離膜の作製手順として、最初に第一準備液と第二準備液(追加溶液)とを混合して30分間攪拌し、次いでテトラエトキシシランを添加して1時間攪拌し、次いでメチルトリエトキシシランを添加して1時間攪拌することにより、分離膜形成用アルコキシド溶液(混合液)を調製した。分離膜形成用アルコキシド溶液のpHは0.95であった。次に、無機多孔質支持体としてアルミナ系セラミックスの管状体を準備し、その表面に分離膜形成用アルコキシド溶液をディッピング法によって塗布した。ディッピング法の引き上げ速度は1mm/sとし、引き上げ後は室温で1時間乾燥させた。分離膜形成用アルコキシド溶液の塗布及び乾燥を2回繰り返した後、焼成器で熱処理を行った。熱処理条件は、室温(25℃)から150℃まで5時間かけて加熱し、150℃で2時間保持し、25℃まで5時間かけて冷却した。この熱処理を4回繰り返し、実施例3の分離膜を完成させた。
<実施例4>
 実施例4は、二酸化炭素と親和性を有する金属塩として、酢酸マグネシウム四水和物(Aldrich社製)を使用した。分離膜形成用アルコキシド溶液の調製条件、塗布条件、及び熱処理条件は実施例3と同様のため、詳細な説明は省略する。分離膜形成用アルコキシド溶液のpHは0.82であった。
〔アルコキシシラン〕
・テトラエトキシシラン    3.97g
・メチルトリエトキシシラン  5.10g
〔第一準備液〕
・水             1.72g
・硝酸            0.03g
・エタノール        43.90g
〔第二準備液〕
・酢酸マグネシウム四水和物  1.02g
・硝酸            0.94g
・エタノール         3.33g
<実施例5>
 実施例5は、二酸化炭素と親和性を有する金属塩として、酢酸マグネシウム四水和物(Aldrich社製)を使用した。分離膜形成用アルコキシド溶液の調製条件、塗布条件、及び熱処理条件は実施例3と同様のため、詳細な説明は省略する。分離膜形成用アルコキシド溶液のpHは0.67であった。
〔アルコキシシラン〕
・テトラエトキシシラン    3.80g
・メチルトリエトキシシラン  4.87g
〔第一準備液〕
・水             1.64g
・硝酸            0.03g
・エタノール        41.98g
〔第二準備液〕
・酢酸マグネシウム四水和物  1.47g
・硝酸            1.38g
・エタノール         4.84g
<実施例6>
 実施例6は、二酸化炭素と親和性を有する金属塩として、硝酸マグネシウム六水和物(Aldrich社製)を使用した。
〔アルコキシシラン〕
・テトラエトキシシラン    6.48g
・メチルトリエトキシシラン  3.70g
〔金属塩〕
・硝酸マグネシウム六水和物  0.13g
〔準備液〕
・水             1.87g
・硝酸            0.03g
・エタノール        47.79g
*硝酸、水、及びエタノールを混合して約30分間攪拌することにより、準備液を調製した。
 実施例6の分離膜の作製手順として、準備液にテトラエトキシシランを添加して1時間攪拌し、次いでメチルトリエトキシシランを添加して2.5時間攪拌し、さらに硝酸マグネシウム六水和物を添加して2時間攪拌することにより、分離膜形成用アルコキシド溶液(混合液)を調製した。次に、無機多孔質支持体としてアルミナ系セラミックスの管状体を準備し、その表面に分離膜形成用アルコキシド溶液をディッピング法によって塗布した。ディッピング法の引き上げ速度は1mm/sとし、引き上げ後は室温で1時間乾燥させた。分離膜形成用アルコキシド溶液の塗布及び乾燥を2回繰り返した後、焼成器で熱処理を行った。熱処理条件は、室温(25℃)から150℃まで5時間かけて加熱し、150℃で2時間保持し、25℃まで5時間かけて冷却した。この熱処理を4回繰り返し、実施例6の分離膜を完成させた。
<比較例1>
 比較例1として、酸性ガスと親和性を有する金属塩を配合しないことにより、金属塩未ドープの分離膜を作製した。なお、テトラアルコキシシランとしてテトラエトキシシラン(信越化学工業株式会社製 信越シリコーンLS-2430)を使用し、炭化水素基含有トリアルコキシシランとしてメチルトリエトキシシラン(信越化学工業株式会社製 信越シリコーンLS-1890)を使用し、酸触媒として硝酸(和光純薬工業株式会社製 試薬特級 69.5%)を使用し、有機溶媒としてエタノール(和光純薬工業株式会社製 試薬特級 99.5%)を使用した。これらの原材料は実施例で使用したものと同一である。
〔アルコキシシラン〕
・テトラエトキシシラン    6.50g
・メチルトリエトキシシラン  3.71g
〔準備液〕
・水             1.87g
・硝酸            0.03g
・エタノール        47.89g
*硝酸、水、及びエタノールを混合して約30分間攪拌することにより、準備液を調製した。
 比較例1の分離膜の作製手順として、準備液にテトラエトキシシランを添加して1時間攪拌し、次いでメチルトリエトキシシランを添加して2.5時間攪拌することにより、分離膜形成用アルコキシド溶液(混合液)を調製した。分離膜形成用アルコキシド溶液のpHは0.75であった。次に、無機多孔質支持体としてアルミナ系セラミックスの管状体を準備し、その表面に分離膜形成用アルコキシド溶液をディッピング法によって塗布した。ディッピング法の引き上げ速度は1mm/sとし、引き上げ後は室温で1時間乾燥させた。分離膜形成用アルコキシド溶液の塗布及び乾燥を2回繰り返した後、焼成器で熱処理を行った。熱処理条件は、室温(25℃)から150℃まで5時間かけて加熱し、150℃で2時間保持し、25℃まで5時間かけて冷却した。この熱処理を4回繰り返し、比較例1の分離膜を完成させた。
<分離性能確認試験>
 実施例1~6及び比較例1の分離膜について、二酸化炭素及びメタンガスの分離性能に関する確認試験を行った。確認試験では、窒素を介することにより、二酸化炭素及びメタンガスの分離性能を評価した。ここで、窒素の気体分子径は3.64Åであり、二酸化炭素の気体分子径は3.3Åであり、メタンガスの気体分子径は3.8Åである。従って、二酸化炭素/窒素の混合系では、窒素よりも気体分子径が小さい二酸化炭素は分離膜を透過し易く、メタンガス/窒素の混合系では、窒素よりも気体分子径が大きいメタンガスは分離膜を透過し難いものとなる。このような気体毎に異なる性質を利用し、さらに膜の特性(官能基)を適切に設定すれば、混合系から二酸化炭素又はメタンガスを分離することが可能となる。確認試験では、実施例1~6及び比較例1の分離膜について、窒素、メタンガス、及び二酸化炭素の気体透過性(透過速度)を計測し、この透過速度を用いて透過速度比α(CO/N)を求めた。試験手順として、真空乾燥を1時間行って細孔内の水分を完全に除去した分離膜を準備し、これを閉鎖空間に配置して窒素、メタンガス、及び二酸化炭素の単独ガスを0.1MPaの圧力で個別に流入させ、夫々の単独ガスの透過率〔mol/(m×s(秒)×Pa)〕を測定した。分離性能確認試験の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000007
 表2に示されるように、実施例1~6の金属塩をドープした分離膜は、窒素に対する二酸化炭素の透過性が優れたものとなっていた。特に、実施例1~3、及び6の分離膜は、比較例1の金属塩をドープしていない分離膜と比べて、約4.2~4.5倍の高い二酸化炭素分離性能を示した。
 また、本発明の酸性ガス含有ガス処理用分離膜について、消化ガスを模した二酸化炭素とメタンガスとを含む混合ガスからの二酸化炭素の分離についても検討したところ、金属塩として硝酸マグネシウム六水和物をドープした実施例6の分離膜が、特に優れた二酸化炭素分離性能を有することが分かった。具体的には、比較例1の分離膜では、二酸化炭素/メタンガスからの二酸化炭素の透過率比はα(CO/CH)=81.70であったが、実施例6の分離膜は、二酸化炭素/メタンガスからの二酸化炭素の透過率比がα(CO/CH)=103.81となり、高い二酸化炭素分離性能を示した。なお、この実施例6の透過率比α(CO/CH)=103.81は、従来技術として先に示した特許文献1の透過率比α(CO/CH)=3.3~20と比較すると、顕著に高いものであることが理解される。
 以上より、本発明の酸性ガス含有ガス処理用分離膜は、二酸化炭素又はメタンガスの分離性能に優れたものであるため、生ごみ等を生物学的処理することによって得られる消化ガスから高濃度のメタンガスを得る分離膜として大変有用であることが示唆された。
 本発明の酸性ガス含有ガス処理用分離膜及びその製造方法、酸性ガス又はメタンガスの分離方法、並びに酸性ガス又はメタンガスの製造方法は、都市ガスの製造設備や、燃料電池への水素供給設備等において利用可能である。さらに、本発明は、工場や発電所から排出される排ガス、天然ガス、石油精製において副生するガス等を対象とすることも可能である。

Claims (13)

  1.  炭化水素基が導入されたポリシロキサン網目構造体に、酸性ガスと親和性を有する金属塩をドープしてなる酸性ガス含有ガス処理用分離膜。
  2.  前記炭化水素基が導入された前記ポリシロキサン網目構造体は、テトラアルコキシシランと、前記炭化水素基を含有する炭化水素基含有トリアルコキシシランとの反応によって得られる複合ポリシロキサン網目構造体である請求項1に記載の酸性ガス含有ガス処理用分離膜。
  3.  前記テトラアルコキシシランは、テトラメトキシシラン又はテトラエトキシシラン(これを、Aとする)であり、
     前記炭化水素基含有トリアルコキシシランは、トリメトキシシラン又はトリエトキシシランのSi原子に炭素数1~6のアルキル基又はフェニル基が結合したもの(これを、Bとする)である請求項2に記載の酸性ガス含有ガス処理用分離膜。
  4.  前記Aと前記Bとの配合比率(A/B)が、モル比で1/9~9/1に設定されている請求項3に記載の酸性ガス含有ガス処理用分離膜。
  5.  前記金属塩は、Li、Na、K、Mg、Ca、Ni、Fe、及びAlからなる群から選択される少なくとも一種の金属の酢酸塩、硝酸塩、炭酸塩、ホウ酸塩、又はリン酸塩である請求項1~4の何れか一項に記載の酸性ガス含有ガス処理用分離膜。
  6.  (a)酸触媒、水、及び有機溶媒を混合した第一準備液、並びに酸触媒、有機溶媒、及び酸性ガスと親和性を有する金属塩を混合した第二準備液を調製する準備工程と、
     (b)前記第一準備液にテトラアルコキシシランを混合する第一混合工程と、
     (c)前記第一混合工程で得られた混合液に炭化水素基含有トリアルコキシシランを混合する第二混合工程と、
     (d)前記第二混合工程で得られた混合液に前記第二準備液を混合する第三混合工程と、
     (e)前記第三混合工程で得られた混合液を無機多孔質支持体に塗布する塗布工程と、
     (f)前記塗布工程が完了した無機多孔質支持体を熱処理し、当該無機多孔質支持体の表面に前記金属塩がドープされた炭化水素基が導入されたポリシロキサン網目構造体を形成する形成工程と、
    を包含する酸性ガス含有ガス処理用分離膜の製造方法。
  7.  (a)酸触媒、水、及び有機溶媒を混合した第一準備液、並びに酸触媒、有機溶媒、及び酸性ガスと親和性を有する金属塩を混合した第二準備液を調製する準備工程と、
     (b)前記第一準備液と前記第二準備液とを混合する第一混合工程と、
     (c)前記第一混合工程で得られた混合液にテトラアルコキシシランを混合する第二混合工程と、
     (d)前記第二混合工程で得られた混合液に炭化水素基含有トリアルコキシシランを混合する第三混合工程と、
     (e)前記第三混合工程で得られた混合液を無機多孔質支持体に塗布する塗布工程と、
     (f)前記塗布工程が完了した無機多孔質支持体を熱処理し、当該無機多孔質支持体の表面に前記金属塩がドープされた炭化水素基が導入されたポリシロキサン網目構造体を形成する形成工程と、
    を包含する酸性ガス含有ガス処理用分離膜の製造方法。
  8.  (a)酸触媒、水、及び有機溶媒を混合した準備液を調製する準備工程と、
     (b)前記準備工程で得られた準備液にテトラアルコキシシランを混合する第一混合工程と、
     (c)前記第一混合工程で得られた混合液に炭化水素基含有トリアルコキシシランを混合する第二混合工程と、
     (d)前記第二混合工程で得られた混合液に酸性ガスと親和性を有する金属塩を混合する第三混合工程と、
     (e)前記第三混合工程で得られた混合液を無機多孔質支持体に塗布する塗布工程と、
     (f)前記塗布工程が完了した無機多孔質支持体を熱処理し、当該無機多孔質支持体の表面に前記金属塩がドープされた炭化水素基が導入されたポリシロキサン網目構造体を形成する形成工程と、
    を包含する酸性ガス含有ガス処理用分離膜の製造方法。
  9.  前記テトラアルコキシシランは、テトラメトキシシラン又はテトラエトキシシラン(これを、Aとする)であり、
     前記炭化水素基含有トリアルコキシシランは、トリメトキシシラン又はトリエトキシシランのSi原子に炭素数1~6のアルキル基又はフェニル基が結合したもの(これを、Bとする)である請求項6~8の何れか一項に記載の酸性ガス含有ガス処理用分離膜の製造方法。
  10.  前記Aと前記Bとの配合比率(A/B)が、モル比で1/9~9/1に設定されている請求項9に記載の酸性ガス含有ガス処理用分離膜の製造方法。
  11.  前記金属塩は、Li、Na、K、Mg、Ca、Ni、Fe、及びAlからなる群から選択される少なくとも一種の金属の酢酸塩、硝酸塩、炭酸塩、ホウ酸塩、又はリン酸塩である請求項6~10の何れか一項に記載の酸性ガス含有ガス処理用分離膜の製造方法。
  12.  請求項1~5の何れか一項に記載の酸性ガス含有ガス処理用分離膜に、酸性ガス及びメタンガスを含有する消化ガスを通過させ、前記酸性ガス又は前記メタンガスを分離する酸性ガス又はメタンガスの分離方法。
  13.  請求項1~5の何れか一項に記載の酸性ガス含有ガス処理用分離膜に、酸性ガス及びメタンガスを含有する消化ガスを通過させ、前記酸性ガス又は前記メタンガスを取り出す酸性ガス又はメタンガスの製造方法。
PCT/JP2013/071719 2012-11-21 2013-08-09 酸性ガス含有ガス処理用分離膜及びその製造方法、酸性ガス又はメタンガスの分離方法、並びに酸性ガス又はメタンガスの製造方法 WO2014080670A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014548478A JP6196236B2 (ja) 2012-11-21 2013-08-09 ガス処理用分離膜及びその製造方法、二酸化炭素又はメタンガスの分離方法、並びに二酸化炭素又はメタンガスの製造方法
EP13857209.4A EP2933014A4 (en) 2012-11-21 2013-08-09 SEPARATING MEMBRANE FOR THE TREATMENT OF GASES CONTAINING ACIDIC GAS, PROCESS FOR PRODUCING THE SAME, PROCESS FOR SEPARATING ACID GAS OR GASEOUS METHANE, AND PROCESS FOR PRODUCING ACID GAS OR GASEOUS METHANE
US14/442,781 US20150321150A1 (en) 2012-11-21 2013-08-09 Separation membrane for treating gas containing acidic gas and method for producing same, method for separating acidic gas or methane gas, and method for producing acidic gas or methane gas
CN201380059543.4A CN104797328A (zh) 2012-11-21 2013-08-09 含有酸性气体的气体处理用分离膜及其制造方法、酸性气体或甲烷气体的分离方法、及酸性气体或甲烷气体的制造方法
CA2891107A CA2891107A1 (en) 2012-11-21 2013-08-09 Separation membrane for treating gas containing carbon dioxide and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012255002 2012-11-21
JP2012-255002 2012-11-21

Publications (1)

Publication Number Publication Date
WO2014080670A1 true WO2014080670A1 (ja) 2014-05-30

Family

ID=50775861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071719 WO2014080670A1 (ja) 2012-11-21 2013-08-09 酸性ガス含有ガス処理用分離膜及びその製造方法、酸性ガス又はメタンガスの分離方法、並びに酸性ガス又はメタンガスの製造方法

Country Status (6)

Country Link
US (1) US20150321150A1 (ja)
EP (1) EP2933014A4 (ja)
JP (1) JP6196236B2 (ja)
CN (1) CN104797328A (ja)
CA (1) CA2891107A1 (ja)
WO (1) WO2014080670A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015174066A (ja) * 2014-03-18 2015-10-05 東洋ゴム工業株式会社 酸性ガス含有ガス処理用分離膜、及び酸性ガス含有ガス処理用分離膜の製造方法
WO2016121888A1 (ja) * 2015-01-30 2016-08-04 日本碍子株式会社 分離膜構造体
WO2016121887A1 (ja) * 2015-01-30 2016-08-04 日本碍子株式会社 分離膜構造体
CN105833731A (zh) * 2015-02-03 2016-08-10 东洋橡胶工业株式会社 氧气富化膜、及氧气富化膜的制造方法
WO2016152280A1 (ja) * 2015-03-23 2016-09-29 東洋ゴム工業株式会社 酸性ガス含有ガス処理用分離膜、及び酸性ガス含有ガス処理用分離膜の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2909395C (en) * 2013-05-10 2018-11-06 Gwan Shig Kim Device for separating carbon dioxide using silicone separation film and method for manufacturing the same
WO2014199703A1 (ja) * 2013-06-12 2014-12-18 東洋ゴム工業株式会社 酸性ガス含有ガス処理用分離膜、及び酸性ガス含有ガス処理用分離膜の製造方法
US10173178B1 (en) * 2015-04-27 2019-01-08 Bloom Energy Corporation Carbon dioxide separator membrane structure, method of manufacturing same, and carbon dioxide separator including same
JP6787715B2 (ja) * 2016-07-25 2020-11-18 株式会社ナノメンブレン ガス透過膜
US10913658B2 (en) 2017-06-09 2021-02-09 Massachusetts Institute Of Technology Carbon dioxide removal using lithium borate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0871384A (ja) * 1994-08-31 1996-03-19 Kyocera Corp 積層無機分離体
JP2000157853A (ja) * 1998-09-22 2000-06-13 Kyocera Corp ガス分離フィルタおよびその製造方法
JP2000279773A (ja) 1999-03-31 2000-10-10 Kyocera Corp ガス分離フィルタおよびその製造方法
JP2003047831A (ja) * 2001-08-01 2003-02-18 Kyocera Corp 流体分離フィルタ及びその製造方法
JP2005046668A (ja) * 2003-07-29 2005-02-24 Kyocera Corp 流体分離フィルタ及びその製造方法
JP2008260739A (ja) 2007-04-13 2008-10-30 Noritake Co Ltd メタン濃縮装置およびメタン濃縮方法
JP2009233540A (ja) * 2008-03-26 2009-10-15 Hiroshima Univ 分離膜および分離膜の製造方法
WO2012147727A1 (ja) * 2011-04-26 2012-11-01 東洋ゴム工業株式会社 メタン分離膜および二酸化炭素分離膜、並びにそれらの製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000005579A (ja) * 1998-06-19 2000-01-11 Kyocera Corp 二酸化炭素分離膜及びその製造方法
CN101856595B (zh) * 2010-06-10 2012-12-19 南京工业大学 金属掺杂的有机无机复合SiO2膜的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0871384A (ja) * 1994-08-31 1996-03-19 Kyocera Corp 積層無機分離体
JP2000157853A (ja) * 1998-09-22 2000-06-13 Kyocera Corp ガス分離フィルタおよびその製造方法
JP2000279773A (ja) 1999-03-31 2000-10-10 Kyocera Corp ガス分離フィルタおよびその製造方法
JP2003047831A (ja) * 2001-08-01 2003-02-18 Kyocera Corp 流体分離フィルタ及びその製造方法
JP2005046668A (ja) * 2003-07-29 2005-02-24 Kyocera Corp 流体分離フィルタ及びその製造方法
JP2008260739A (ja) 2007-04-13 2008-10-30 Noritake Co Ltd メタン濃縮装置およびメタン濃縮方法
JP2009233540A (ja) * 2008-03-26 2009-10-15 Hiroshima Univ 分離膜および分離膜の製造方法
WO2012147727A1 (ja) * 2011-04-26 2012-11-01 東洋ゴム工業株式会社 メタン分離膜および二酸化炭素分離膜、並びにそれらの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2933014A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015174066A (ja) * 2014-03-18 2015-10-05 東洋ゴム工業株式会社 酸性ガス含有ガス処理用分離膜、及び酸性ガス含有ガス処理用分離膜の製造方法
WO2016121888A1 (ja) * 2015-01-30 2016-08-04 日本碍子株式会社 分離膜構造体
WO2016121887A1 (ja) * 2015-01-30 2016-08-04 日本碍子株式会社 分離膜構造体
JPWO2016121888A1 (ja) * 2015-01-30 2017-11-16 日本碍子株式会社 分離膜構造体
JPWO2016121887A1 (ja) * 2015-01-30 2017-11-16 日本碍子株式会社 分離膜構造体
US10478783B2 (en) 2015-01-30 2019-11-19 Ngk Insulators, Ltd. Separation membrane structure
US10486109B2 (en) 2015-01-30 2019-11-26 Ngk Insulators, Ltd. Separation membrane structure
JP2020078803A (ja) * 2015-01-30 2020-05-28 日本碍子株式会社 分離膜構造体
CN105833731A (zh) * 2015-02-03 2016-08-10 东洋橡胶工业株式会社 氧气富化膜、及氧气富化膜的制造方法
WO2016152280A1 (ja) * 2015-03-23 2016-09-29 東洋ゴム工業株式会社 酸性ガス含有ガス処理用分離膜、及び酸性ガス含有ガス処理用分離膜の製造方法
JPWO2016152280A1 (ja) * 2015-03-23 2017-11-02 東洋ゴム工業株式会社 酸性ガス含有ガス処理用分離膜、及び酸性ガス含有ガス処理用分離膜の製造方法

Also Published As

Publication number Publication date
US20150321150A1 (en) 2015-11-12
EP2933014A1 (en) 2015-10-21
CA2891107A1 (en) 2014-05-30
JP6196236B2 (ja) 2017-09-13
EP2933014A4 (en) 2016-07-13
CN104797328A (zh) 2015-07-22
JPWO2014080670A1 (ja) 2017-01-05

Similar Documents

Publication Publication Date Title
JP6196236B2 (ja) ガス処理用分離膜及びその製造方法、二酸化炭素又はメタンガスの分離方法、並びに二酸化炭素又はメタンガスの製造方法
JP6253764B2 (ja) 酸性ガス含有ガス処理用分離膜、及び酸性ガス含有ガス処理用分離膜の製造方法
JP6177360B2 (ja) 二酸化炭素分離膜
JP5497297B2 (ja) 三価元素を添加したシリカ系微孔質シリカ層を含むガス分離膜
JP6196178B2 (ja) 酸性ガス含有ガス処理用分離膜、及び酸性ガス含有ガス処理用分離膜の製造方法
Wang et al. Improved stability of ethyl silicate interlayer-free membranes by the rapid thermal processing (RTP) for desalination
KR20160095615A (ko) 산소 부화막, 및 산소 부화막의 제조 방법
JP6232061B2 (ja) 酸性ガス含有ガス処理用分離膜、及び酸性ガス含有ガス処理用分離膜の製造方法
JP2004275943A (ja) 流体分離フィルタ及びその製造方法
JP4212581B2 (ja) Co2分離用メソポーラス複合体およびそれを用いるco2分離法
JP4250473B2 (ja) 流体分離フィルタの製造方法
JP6457659B2 (ja) 酸性ガス含有ガス処理用分離膜、及び酸性ガス含有ガス処理用分離膜の製造方法
JP2017127804A (ja) 酸性ガス含有ガス処理用分離膜の製造方法
WO2016152280A1 (ja) 酸性ガス含有ガス処理用分離膜、及び酸性ガス含有ガス処理用分離膜の製造方法
JP2019042681A (ja) 酸性ガス含有ガス処理用分離膜
JP2005270887A (ja) ケイ素基質耐水蒸気膜及びこれを用いた水素ガス分離材並びにこれらの製造方法
JP2018103092A (ja) 酸性ガス含有ガス処理用分離膜の製造方法
JP2018008188A (ja) ガス分離装置、及びガス分離方法
JP2018008189A (ja) ガス分離装置、及びガス分離方法
JP2004188352A (ja) 流体分離フィルタの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857209

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2891107

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2014548478

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14442781

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013857209

Country of ref document: EP