WO2014077252A1 - 多層カーボンナノチューブの水分散液 - Google Patents

多層カーボンナノチューブの水分散液 Download PDF

Info

Publication number
WO2014077252A1
WO2014077252A1 PCT/JP2013/080584 JP2013080584W WO2014077252A1 WO 2014077252 A1 WO2014077252 A1 WO 2014077252A1 JP 2013080584 W JP2013080584 W JP 2013080584W WO 2014077252 A1 WO2014077252 A1 WO 2014077252A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous dispersion
electrode film
range
cnts
multilayer
Prior art date
Application number
PCT/JP2013/080584
Other languages
English (en)
French (fr)
Inventor
樽本 直浩
一徳 海下
貴志 秋元
Original Assignee
保土谷化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 保土谷化学工業株式会社 filed Critical 保土谷化学工業株式会社
Publication of WO2014077252A1 publication Critical patent/WO2014077252A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/08Cellulose derivatives
    • C09D101/26Cellulose ethers
    • C09D101/28Alkyl ethers
    • C09D101/286Alkyl ethers substituted with acid radicals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本発明の多層カーボンナノチューブ(CNT)水分散液は、平均繊維外径が50~110nmの範囲の多層CNTとカルボキシメチルセルロースナトリウム(CMCNa)とを含み、粘度(25℃)が100mPa・s以下であると共に、多層CNTの含有量が3~20質量%の範囲にあり、CMCNaの多層CNT当りの質量比が、0.1~0.2の範囲にあり、該水分散液中に残存している凝集粒子の体積基準でのメディアン径(d50)が0.3~0.6μm及びスパン値A[(d90-d50)/d50]が0.9~1.2の範囲にあることを特徴とする。この多層CNT水分散液は、電極膜、特にLIBの電極膜の形成に好適に使用され、極めて高い凝集力がある多層CNTでも高濃度且つ安定に分散されている。

Description

多層カーボンナノチューブの水分散液
 本発明は、多層カーボンナノチューブ(CNT)が水に分散されている分散液、該分散液に且つ物質を配合して得られる電極膜用ペースト、該ペーストを用いて得られる電極膜及びリチウムイオン二次電池に関する。
 約20年前に存在が確認されたカーボンナノチューブ(CNT)は、直径1μm以下のチューブ状材料であり、理想的なものでは、炭素原子の6員環網目構造のシートにより形成されている管が、チューブ軸に対して平行な面となっている。また、このような管が、二層、三層、四層或いはそれ以上の多層構造になっているものもある。
 このような多層CNTは、炭素原子からなる6員環網目構造の数や、チューブの太さによってさまざまな性質を有する。そのため、そうした化学的特性、電気的特性、機械的特性、熱伝導特性、構造特性等の性質を利用して、静電気防止部品、二次電池電極材料、強化樹脂複合材料、電波吸収材料、電熱変換材料、フラットパネルディスプレイ用電界放出陰極材料、透明導電膜等の用途に、多層CNTが適用され始め、さらには、熱電変換素子材料、キャパシタ電極、水素貯蔵材、電気配線、放熱材料、太陽電池材料および触媒担持材料への多層CNTの適用も期待されている。
 例えば、リチウムイオン二次電池(LIB電池)の負極膜では、負極膜用活物質(天然黒鉛、人造黒鉛)と共に150nmの多層CNTを用いて成膜することにより、多層カーボンナノチューブの強化フィラー効果により、負極膜が強化され、LIB電池のサイクル特性が向上することが確認されている。これにより、このような負極膜を備えたLIB電池は、携帯電話、パソコン用に用いられるリチウムイオン電池に既に採用されている。
 現在の問題点は、150nmの多層カーボンナノチューブでLIB電池のサイクル特性を向上させるために、負極膜中に150nmの多層カーボンナノチューブを4~5質量%添加しなければならない事である。
 また、ハイブリッドカーおよび電気自動車に用いる二次電池では、高出力、高容量であることが要求される。このため、この種の用途に使用されるLIB電池では、正極活物質をコバルト酸リチウムからリン酸鉄リチウム、マンガン酸リチウム、三元型活物質NCM(Li[NiMnCo]O)に変更する検討が行われ、一部採用され始めている。
 ところで、コバルト酸リチウムの代わりに使用される上記の正極活物質は、コバルト酸リチウムに比べ、活物質自体の導電性が低く、それ単独では、電極膜の導電性が低くなってしまう。この結果、少量添加で高い導電補助効果が期待できる多層CNTを添加する検討が行われている。
 このように、多層CNTは、電気的、機能的、機械的および複合的効果を併せ持つ材料として様々な用途に適用が検討されているが、添加効果を最大限に引き出すためには、多層CNTが、水、有機溶媒、樹脂溶液、熱硬化性樹脂および熱可塑性樹脂などの分散媒体に均一に分散していることが必須となる。
 しかしながら、多層CNTは、直径1μm以下のチューブ状繊維が絡み合って凝集体を形成し、あるいはネットワーク構造を有している。更には、嵩比重を上げるために、通常、それらを集合させた状態で市販されている。そのため、これらを一本一本に解繊させて分散するのは非常に困難である。また、一本一本に解繊された多層CNT、あるいは数μm~数十μmサイズとなった多層CNTの凝集体は、非常に強い繊維間相互の凝集力(ファンデルワールス力)を有する。そのため、水等の分散媒体中に分散させることが困難であり、いったん解繊・分散した多層CNT或いはその凝集体も、容易に再凝集する。これらの理由から、十分に分散し、かつ分散状態が安定した多層CNTの集合体を得にくいのが現状である。
 このように、CNTは、特異で有用な特性を有するにもかかわらず、分散性の問題から、各種用途への応用が事実上困難となっている。このため、各種の分散媒体にCNTを分散させたとき分散液について種々の検討がなされており、例えば、特許文献1~3には、水を分散媒としたCNT分散液について検討されている。
 例えば、特許文献1には、単層CNTと両性界面活性剤(例えば3-(N,N-ジメチルステアリルアンモニオ)プロパンスルホネートなど)を含むペーストをヨウ化ナトリウム水溶液に分散させた水分散液が示されている。
 また、特許文献2には、2種のアニオン性界面活性剤とノニオン性界面活性剤を含む水溶液中に多層CNTが分散されている多層CNT水分散液が開示されている。
 さらに、特許文献3には、(a)多糖類と、(b)CNTと、(c)パーフルオロアルキル基を有する水溶性化合物とからなるCNT水分散液が開示されている。
 特許文献1および2に記載のCNT水分散液は、良好な分散状態を得るため、両性界面活性剤、イオン性界面活性剤、ノニオン性界面活性剤などの分散剤が使用されているが、これらの分散剤は、この分散液を用いてLIB電池用電極膜を形成したとき、該電極膜の電気伝導性を低下させるおそれがあり、結果的にLIB電池の性能を劣化する恐れがある。
 一方、特許文献3に記載のCNT水分散液は、成分(a)の多糖類及び成分(c)の水溶性化合物がCNTの分散剤として機能するものであり、多糖類としては、LIB電池用電極膜の構成要素(即ち、バインダー成分)としても機能するカルボキシメチルセルロースナトリウム(CMCNa)を使用することができる。例えば、その実施例には、多層CNTに対して300質量%のCMCNaが使用されており、さらに、成分(c)の分散剤(パーフルオロアルキル基を有する水溶性化合物)を用いて、平均繊維径が50nm以下の多層CNTを3質量%以下の低濃度で含む水分散液が調製されている。従って、この分散液を用いてLIB電池用電極膜を形成した場合、やはり、電極膜の形成には、本来望ましくない高抵抗の材料(成分(a)の多糖類及び成分(c)の水溶性化合物)が含まれているため、電極膜の電気伝導性が低下し、LIB電池の性能低下がもたらされるおそれがあり、さらなる改良が必要である。
特開2007-39623 WO2010/041750 特開2012-56788
 本発明の目的は、電極膜、特にLIBの電極膜の形成に好適に使用され、極めて高い凝集力で凝集している多層CNTが高濃度且つ安定に分散された多層CNT水分散液、及びこの水分散液を用いて形成された電極膜用導電ペースト、さらには該導電ペーストから得られる電極膜を提供することにある。
 本発明によれば、平均繊維外径が50~110nmの範囲の多層カーボンナノチューブの水分散液であって、粘度(25℃)が100mPa・s以下であり、該多層カーボンナノチューブに加えてカルボキシメチルセルロースナトリウムを含んでおり、
 前記多層カーボンナノチューブの含有量が3~20質量%の範囲にあり、
 前記カルボキシメチルセルロースナトリウムの前記多層カーボンナノチューブ当りの質量比が、0.1~0.2の範囲にあり、
 レーザー回折・散乱法で測定して、該水分散液中粒子の体積基準でのメディアン径(d50)が0.3~0.6μmの範囲にあり、且つ下記式(1):
  A=(d90-d50)/d50   (1)
  式中、
   d90は、前記粒子の体積基準での90%積算径であり、
   d50は、前記粒子の体積基準での50%積算径(前記メディアン径)
  である、
で定義されるスパン値Aが0.9~1.2の範囲にあることを特徴とする多層カーボンナノチューブの水分散液が提供される。
 また、本発明によれば、上記の多層カーボンナノチューブの水分散液に、バインダー樹脂及び二次電池用の負極活物質または正極活物質が添加されている電極膜用導電ペーストが提供される。
 さらに、本発明によれば、上記の導電性ペーストを用いて得られる電極膜及び該電極膜を有するリチウムイオン二次電池が提供される。
 本発明の上記電極膜においては、通常、厚み方向の体積抵抗値が3000Ω・cm以下である。
 LIB電池用電極膜のバインダーには、NMP有機溶剤に可溶なPVDF(ポリビニリデンフルオライド(2フッ化))タイプと水分散性樹脂タイプ(SBRなど)があるが、本発明の多層CNT水分散液は、分散媒が水であるため、水に分散されている樹脂と容易に混和して電極膜用のペーストを調製することができる。しかも、有機溶剤を使用していないため、電極膜用のペーストや該ペーストを用いての電極膜の作製に際して、環境に与える影響もほとんどない。
 また、水に分散されている樹脂を用いて電極膜を形成する場合には、電極膜形成用のペーストの粘度調整のためにカルボキシメチルセルロースナトリウム(CMCNa)が使用されるが、本発明の多層CNT水分散液では、電極膜(或いはペースト)を形成したときのCMCNa含有割合を多くしないような量で、しかも、電気抵抗の高い他の分散剤を使用することなく、多層CNTを高濃度(3~20質量%)で且つ安定な分散状態で含んでいる。すなわち、本発明の多層CNT分散液は、粒子(即ち、残存する多層CNTの集合体)の粒度分布におけるメディアン径(d50)が0.3~0.6μmであり且つスパン値Aが一定の範囲(0.9~1.2)にあり、多層CNTの分散状態が極めて安定である。従って、この多層CNT水分散液を用いて得られるLIB電池用電極膜は、多層カーボンナノチューブ本来の高い導電性を最大限に発揮され、さらには高抵抗成分の量が可及的に少なく、LIB電池の性能を安定に発揮させることができる。
実施番号1で得た多層CNT水分散液の粒度分布のグラフ。 実施番号2で得た多層CNT水分散液の粒度分布のグラフ。 比較番号1で得た多層CNT水分散液の粒度分布のグラフ。 比較番号2で得た多層CNT水分散液の粒度分布のグラフ。 実施番号3で得た正極膜中の多層CNTの分散状態を示すSEM写真。 実施番号5で得た正極膜中の多層CNTの分散状態を示すSEM写真。 比較番号3で得た正極膜中の多層CNTの分散状態を示すSEM写真。 比較番号4で得た正極膜中の多層CNTの分散状態を示すSEM写真。 実施番号10で得た負極膜中の多層CNTの分散状態を示すSEM写真。 比較番号5で得た負極膜中の多層CNTの分散状態を示すSEM写真。
<多層CNT水分散液>
 本発明の多層CNT水分散液は、分散媒である水に多層CNTが分散されたものであるが、この水分散液は、カルボキシメチルセルロースナトリウム(CMCNa)を含んでおり、これにより、多層CNTの分散状態は、安定に保持されている。
1.多層CNT;
 本発明において、多層CNTとしては、平均繊維外径が50~110nmの範囲にあるものが使用される。平均繊維外径が50nm未満のものは、再凝集し易く、水に安定に分散させることが困難となり、分散粒子のメディアン径(d50)やスパン値Aを所定の範囲に保持することができず、水分散液が必要以上に高粘度になるなどの不都合を生じてしまう。
 また、平均繊維外径が110nmを超える多層CNTを使用した場合には、例えば電極膜の形成に支障を来すこととなる。例えば、電極膜の体積抵抗値を3000Ω・cm以下にするためには電極膜中の多層CNT添加量が多くなってしまい、この結果、電極膜中の電極活物質の比率が低下してしまい、リチウムイオン二次電池の最大容量が低下してしまう。さらに、分散が不安定となり、分散粒子のメディアン径(d50)やスパン値Aが所定の範囲よりも大きくなってしまう。
 また、本発明において用いる多層CNTは、気相成長法の浮遊CVD法により得られた三次元構造を有するものが好適である。他の気相成長法(例えば触媒担持法)で得られる多層CNTは、繊維が屈曲しており、絡み合いが多いため、再凝集し易いが、浮遊CVD法により得られる多層CNTは、繊維の絡み合いが少なく、再凝集し難いからである。
 このような浮遊CVD法により得られ且つ上述した平均繊維外径を有する多層CNTは、例えば、保土谷化学工業株式会社より、多層カーボンナノチューブNT-7(平均繊維径65nm)及びCT-12(平均繊維径105nm)の商品名で市販されている。
 本発明の多層CNT水分散液において、上述した多層CNTの含有量は、3~20質量%、特に5~10質量%の範囲である。水分散液中の多層CNTの含有量が上記範囲よりも少ない場合には、この水分散液を用いて得られる電極膜用ペーストの粘度が低すぎて、良好な電極膜が得られない。また、この含有量が上記範囲を超えると、この水分散液を用いて得られる電極膜用ペーストの粘度が高すぎて、平滑性の高い電極膜が作製できない。
2.CMCNa;
 本発明において用いるカルボキシメチルセルロースのナトリウム塩(CMCNa)は、分散剤として機能するものであるが、本発明の多層CNT水分散液を用いて電極膜用ペーストを調製する際の増粘剤としての機能も有しており、さらに、該ペーストを用いて形成される電極膜中のバインダーとしての機能も有している。
 このようなCMCNaには、種々のエーテル化度を有するものが市販されており、これに限定されるものではないが、エーテル化度は0.45~1.45のものは好ましい、特に以下に挙げるものを好適に使用することができる。
  第一工業製薬製セロゲン5A(エーテル化度0.70~0.80)
  第一工業製薬製セロゲンPL-15(エーテル化度0.45~0.55)
  第一工業製薬製セロゲンWS-C(エーテル化度0.60~0.70)
  第一工業製薬製セロゲンHE-1500F
     (エーテル化度1.15~1.45)
 本発明においては、上記のようなCMCNaを使用することにより、前述した多層CNTを、安定に水に分散させることが可能となる。
 多層CNTの分散剤としては、種々のものが知られている多種存在するが、その構造と分散剤としての機能には、相関がある。例えば、ヘテロ原子は多層CNTに対して親和性が高く、また、水酸基、シクロエーテル環基、アミノ基、アミド基、チオール基等の置換基も多層CNTに対する親和性が高く、この中でも、水酸基やシクロエーテル環基は、特に高い親和性を示す。このような観点から、ポリビニルアルコールは多層カーボンナノチューブを水に分散する際の分散剤として、ポリビニルブチラールは、多層カーボンナノチューブを有機溶媒に分散する際の分散剤として使用されている。
 ところで、CMCNaは、置換基として多数の水酸基を有するシクロエーテル環基が多数連結した分子構造を有しており、上記に述べた通り、水酸基及びシクロエーテル環基は、多層CNTに対して特に高い親和性を示す。従って、CMCNaは、多層CNTの水に対する分散性を高め、多層CNTを単分散せしめ、さらに単分散された多層CNTの表面に付着し、その立体反発効果により、多層CNTの再凝集を防止し、多層CNTを安定した分散状態で分散媒である水中に保持できるのである。
 本発明の多層CNT水分散液において、このようなCMCNaは、多層CNTに対して0.1~0.2の質量比(CMCNa/CNT)で使用される。
 即ち、CMCNaは、高電気抵抗物質であり、しかも電極膜を形成したとき、バインダーとして膜中に残る。このため、これを上記範囲よりも多量に使用すると、多層CNTによる導電性付与効果が損なわれてしまい、電極特性を低下させてしまうこととなる。
 また、CMCNaの使用量が上記範囲よりも少ないと、当然、多層CNTを水に安定に分散させることが困難となってしまう。さらに、この多層CNT水分散液を後述する水分散性樹脂と混合して電極膜用の導電ペーストを調製する場合、この導電ペーストは水系であるため、粘度が低く、このままでは、成膜のハンドリング性が悪い。しかるに、本発明の多層CNT水分散液には、増粘剤として機能するCMCNaが配合されているため、導電ペーストを適度な粘度に保持し、そのハンドリング性が高められる。しかるに、CMCNaの使用量が上記範囲よりも少ないと、その増粘機能が十分に発揮されず、導電性ペーストとしたときのハンドリング性が損なわれてしまうこととなる。
3.多層CNT分散液の調製;
 上述したCMCNaを含む本発明の多層CNT水分散液は、予め調製されたCMCNa水溶液に、前述した条件を満足する量で所定の多層CNTを添加して分散させることにより調製される。
 このような分散のために使用される分散機としては、一般的なものを使用することができる。その具体例は、以下のとおりである。
  (株)シンマルエンタープライズ製ダイノーミル(ビーズミル分散機);
  特殊機化工業(株)の各種分散機、例えば、TKラボディスパー、TKフィルミックス、TKパイプラインミクサー、TKホモミックラインミル
 、TKホモジェッター、TKユニミキサー、TKホモミックラインフロー
 、TKアジホモディスパー;
  (株)セントラル科学貿易製ポリトロン(ホモジナイザー);
  (株)日音医理科機器製作所製ヒストロン(ホモジナイザー);
  (株)日本精機製作所製バイオミキサー;
  (株)小平製作所製ターボ型攪拌機;
  浅田鉄鋼(株)製ウルトラディスパー;
  荏原製作所(株)製エバラマイルザー;
  アズワン(株)製超音波装置または超音波洗浄機;
 上述した分散機を用いて分散処理を行なう際の該機器等の条件設定は、所望する多層カーボンナノチューブの分散状態に応じて、適宜設定すればよい。
 本発明の多層CNT水分散液は、多層CNTとCMCNaのみを含んでいることが最適であるが、上記のようにして本発明の多層CNT水分散液を調製するに際しては、それ自体公知の各種配合剤を添加することもできる。ただし、このような配合剤の添加量は、本発明の多層CNT水分散液の特性(例えば多層CNTによる導電性付与機能やその分散性)を損なわない程度の微量とすべきであり、例えば、多層CNTに対して20質量%以下の量とすべきである。
4.多層CNTの分散状態;
 上記のようにして得られる本発明の多層CNT水分散液は、少量のCMCNaの配合により、多層CNTが安定に分散しているため、その粘度(25℃)は、100mPa・s以下、特に1~80mPa・sの範囲にあり、且つ、レーザー回折・散乱粒度分布計で測定して、多層CNT水分散液中粒子の体積基準でのメディアン径(d50)が、0.3~0.6μm、特に0.4~0.6μmの範囲にある。かかる粒度分布において、下記式(1);
  A=(d90-d50)/d50    (1)
  式中、
   d90は、多層CNT水分散液中粒子の体積基準での90%積算径で
  あり、
   d50は、多層CNT水分散液中粒子の体積基準での50%積算径で
  ある、
で定義されるスパン値Aが0.9~1.2、特に0.95~1.05の範囲にある。
 さらに、上記の粒度分布においては、メディアン径(d90)は、0.9~1.2μm、特に0.95~1.2μmの範囲にあることが好ましく、さらには、下記式(2);
  B=(d90-d10)/d50    (2)
  式中、
   d90及びd50は、前記(1)式で説明したとおりであり、
   d10は、多層CNT水分散液中粒子の体積基準での10%積算径であ
  る、
で定義されるスパン値Bが0.5~2.0、特に0.75~1.5の範囲にあることが望ましい。
 スパン値は粒度分布の広がり度合いを評価する値であり、小さい程粒径分布はシャープになり、粒の大きさが揃っていることを示す。
 本発明において、上記のような粒度分布において、特にD50、D90、スパン値AやBが上記範囲内にあることは、この分散状態において、残った凝集粒子が小さく、且つ著しくシャープなピークを有していることを示している(例えば図1~図3参照)。
 即ち、このような粒度分布を示す本発明の多層CNT水分散液では、この多層CNTが、再凝集することなく、水に安定に分散している。
<電極膜用導電ペースト>
 上述した本発明の多層CNT水分散液は、多層CNTが再凝集することなく安定に水に分散されていることから、その導電性を活かし、この水分散液を用いて電極膜形成用ペーストを形成し、このペーストを用いて電極膜、例えばリチウムイオン二次電池(LIB)の電極膜が形成される。
 本発明の多層CNT水分散液を用いての電極膜形成用ペーストの調製は、この水分散液に、バインダー樹脂や電極用活物質を混合することにより容易に行うことができる。
 バインダー樹脂としては、特に制限されないが、水分散液中に均一に混合し且つ化学的に安定で強固な膜を形成し得るという観点から、スチレンブタジエン共重合体(SBR)のラテックスやポリテトラフルオロエチレン(PTFE)の水分散液などが好適に使用される。SBRのラテックスは、JSR株式会社、日本ゼオン株式会社、ダイセル株式会社などにより市販されている。かかるバインダー樹脂の量は、通常、電極膜形成用ペーストの全質量当り1.0~5.0質量%である。
 また、電極用活物質は、当然のことながら、負極膜形成用導電ペーストでは、負極用活物質が使用され、正極膜形成用導電ペーストでは、正極用活物質が使用される。
 負極用活物質としては、これに限定されるものではないが、カーボン系、チタン酸リチウム系、シリコン系のものが代表的である。
 カーボン系の負極用活物質の具体例としては、人造黒鉛(例えばJFEケミカル株式会社製人造黒鉛)を挙げることができる。
 チタン酸リチウム系の負極用活物質の具体例としては、LiTiO、LiTi、LiTiO、LiTiO、LiTi12、LiTi等を挙げることができる。このようなチタン酸リチウム系の負極用活物質は、例えば東邦チタニウム株式会社より市販されている。
 シリコン系の負極用活物質としては、Si等に代表されるシリコン、SiO等に代表されるシリコン酸化物、Li44Si、SiSn等のシリコン系合金が代表的であり、例えば古河電工株式会社、東レダウコーニング社、信越化学工業株式会社より市販されている。
 正極用活物質としては、これに限定されるものではないが、コバルト酸リチウム(LCO)、リン酸鉄リチウム(LFP)、ニッケル酸リチウム(LNO)、クロム酸リチウム、マンガン酸リチウム(LMO)、チタン酸リチウム(LTO)、スカンジウム酸リチウム、イットリウム酸リチウム、コバルトマンガン酸リチウム、鉄マンガン酸リチウム、銅マンガン酸リチウム、クロムマンガン酸リチウム、ニッケルマンガン酸リチウム、ニッケルバナジウム酸リチウム、コバルトバナジウム酸リチウム、リン酸コバルトリチウム、リン酸鉄リチウム、シリコン材料等が挙げられる。
 これらの電極活物質の量は、その種類によっても異なるが、一般に、電極膜形成用導電ペーストの全質量当り90~98質量%である。
 本発明の多層CNT水分散液に、上述したバインダー樹脂や電極活物質を混合することにより得られる電極用導電ペーストにおいては、多層CNT水分散液中に含まれる成分(分散媒である水以外の成分)が、基本的に多層CNTとCMCNaのみであり、格別の分散剤などの高電気抵抗成分が含まれておらず、しかもCMCNaの量も少量に制限されているため、高電気抵抗成分の配合による導電性の低下を有効に回避することができる。
 例えば、この電極用導電ペーストは、塗布性、成膜性などを考慮して、通常、粘度(25℃)が0.5~50.0Pa・sの範囲に調整されるが、粘度調整のために使用されるCMCNaが多層CNT水分散液に配合されているため、その使用量を可及的に少なくして粘度調整を行うことができる。また、バインダー樹脂を均一に分散させるために、該バインダー樹脂はラテックス等の水分散液の形態で使用されるが、このラテックス調製のために使用される界面活性剤の影響も小さくすることができる。
 また、上述した電極用導電ペーストには、必要に応じて、カーボンブラック、アセチレンブラック、ケッチェンブラック、スーパーP等の導電補助材を添加することもできる。
 上記のようにして調製される電極用導電ペーストは、導電性基体、例えばアルミニウム箔や銅箔などに塗布し、乾燥することにより、リチウムイオン二次電池等の電極膜として使用に供される。
 電極用導電ペーストの塗布は、特に制限されるものではないが、一般的には、グラインドゲージ、ワイヤーバー、それらを用いた自動塗工装置、スピンコーター等により容易に行うことができる。塗布量は、硬化塗膜の厚みが1~500μm、特に5~250μm、特に好ましくは10~100μmとなるような量である。また、塗布に際しては、膜の密度を上げるため、一般的な方法によりプレスされることが好ましい。
 さらに、乾燥温度は、一般に、分散媒である水を速やかに除去し、且つ形成される膜の変形、黄変及び膜物性の低下等を回避するため、通常、50~300℃、特に75~250℃、より好ましくは80~150℃である。
 上記のようにして形成される電極膜においては、所定量の多層CNTが均一に且つ再凝集することなく有効に分散しているため、高い導電性を示し、例えば、その厚み方向の体積抵抗値は、3000Ω・cm以下である。
 以下の実験例により本発明を具体的に説明する。
<実施番号1>
[多層カーボンナノチューブ水分散液の調製法]
 多層カーボンナノチューブ(CNT)として、保土谷化学工業(株)製NT-7(平均繊維径65nm、R値0.10、純度99.5%)を用意した。
 イオン交換水942.5gに、CMCNa(第一工業製薬株式会社製カルボキシメチルセルロースナトリウムWS-C)7.5gを混合し、均一に溶解させた後、50gのNT-7を添加し、ビーズミル分散機(株式会社シンマルエンタープレイズ製、MULTI LAB型ダイノーミル)を用いて分散処理を行い、多層CNTを5質量%含有する水分散液を得た。
[多層CNT水分散液の粘度測定]
 得られた多層CNT水分散液の粘度は、SV型(音叉型振動式)粘度計(エーアンドディーカンパニー株式会社製SV-10)を用いて25℃で粘度測定を行い、その結果を表1に示した。
[多層CNT水分散液の粒度分布測定]
 また、得られた多層CNT水分散液中の多層CNTの分散状態を、レーザー回折/散乱式粒子径分布測定装置(株式会社堀場製作所製LA-950V2)を用いて、累積分布(メディアン径d50、d90及びd10)の測定を行い、これらの値を用いてスパン値A[(d90-d50)/d50]及びスパン値B[(d90-d10)/d50]を求め、それらの結果を表1に示した。粒度分布のグラフは図1に示した。
[多層CNT水分散液の分散状態の顕微鏡観察]
 さらに、得られた多層CNT水分散液の分散状態を、光学顕微鏡を用いて観察し(対物レンズ50倍、デジタルカメラ変倍率0.7)、凝集粒子がなければ、○と記入し、凝集粒子があれば、×と記入した(表1に参照)。
<実施番号2>
 多層CNTとして、保土谷化学工業(株)製CT-12(平均繊維径105nm、R値0.10、純度99.5%)を使用した以外は、実施番号1と同様にして、5質量%多層CNTを含有する水分散液を得た。粘度、粒度分布及び分散状態の光学顕微鏡評価の結果は表1に示し、粒度分布のグラフは図2に示した。
<比較番号1>
 多層CNTとして、実施番号1と同様、保土谷化学工業(株)製NT-7(平均繊維径65nm、R値0.10、純度99.5%)を使用した。
 イオン交換水942.5gに、CMCNa(第一工業製薬株式会社製WS-C)7.5gを混合し、均一に溶解させた後、50gのNT-7を添加し、スリーワンモーターにて攪拌混合を24時間行った。粘度、粒度分布及び分散状態の光学顕微鏡評価の結果は表1に示し、粒度分布のグラフは図3に示した。
<比較例2>
 多層CNTとして、実施番号2と同様、平均繊維径105nmである保土谷化学工業(株)製CT-12)を使用した以外は、比較番号1と同様にして多層CNTを5質量%含有する水分散液を調製し、粘度、粒度分布及び分散状態の光学顕微鏡評価の結果は表1に示し、粒度分布のグラフは図4に示した。
Figure JPOXMLDOC01-appb-T000001
<実施番号3~8>
[正極膜用ペーストの調製]
 実施番号1或いは実施番号2で得られた5wt%多層CNT水分散液に、正極用活物質であるLCO(コバルト酸リチウム、日本化学株式会社製セルシードC-5H)、導電補助材であるAB(アセチレンブラック、電気化学工業株式会社製デンカブラックHS-100)、及びSBRラテックス(JSR株式会社製TRD2001)を混合し、フィルミックス分散機(プライミクス社製)にて多層CNT含有LCO正極膜用導電ペーストを調製した。
 得られた多層CNT含有正極用ペースト中の各成分の固形分比率は表2に示す。
[正極膜の作製]
 上記で調製した多層CNT含有LCO正極膜用導電ペーストをアルミニウム箔上にアプリケーターを用いて塗布し、120℃乾燥機にて乾燥し、多層カーボンナノチューブ含有LCO正極膜を作製した。
 得られた正極膜について、JIS K6911に準拠して、厚み方向の体積抵抗を測定し、その値を表2に示した。
[正極膜中の多層CNTの分散状態]
 上記で形成された正極膜中の多層CNTの分散状態を、走査電子顕微鏡SEM(JEOL JSM-6700F)を用いて観察した(5000倍)。観察結果は、図5(実施番号3)と図6(実施番号5)にそれぞれ示した。
<比較番号3、4>
 比較番号1及び2で調製した多層CNT含有水分散溶液を使用した以外は、実施番号3~8と同様にして、正極膜用ペーストを調製し且つ正極膜を作成した。
 得られた多層CNT含有正極用ペースト中の各成分の固形分比率及び正極膜の体積抵抗を、表2に示した。
 また正極膜中の多層CNTの分散状態を示すSEM写真(倍率5000倍)を、図7(比較番号3)及び図8(比較番号4)にそれぞれ示した。
Figure JPOXMLDOC01-appb-T000002
<実施番号9~11>
[負極膜用ペーストの調製]
 実施番号1で調製した5wt%多層CNT水分散液に、負極用活物質である人造黒鉛(JFEケミカル株式会社製)、及びSBRラテックス(JSR株式会社製TRD2001)を混合し、フィルミックス分散機(プライミクス社製)を用いて、負極膜用導電ペーストを調製した。
 得られた多層カーボンナノチューブ含有負極膜用ペースト中の各成分の固形分比率を表3に示す。
[負極膜の作製]
 上記で調製した負極膜用導電ペーストを銅箔上にアプリケーターを用いて塗布し、120℃乾燥機にて乾燥し、負極膜を作製した。
 正極膜の場合と同様にして、得られた負極膜の体積抵抗を測定し、その値を表3に示した。
[負極膜中の多層CNTの分散状態]
 得られた負極膜中の多層CNTの分散状態を、走査電子顕微鏡(SEM)を用いて観察した(5000倍)。実施番号10で得られた負極膜中の多層CNTの分散状態を示すSEM写真を図9に示した。
<比較番号5>
 比較番号1で調製した5wt%多層CNT含有水分散溶液を使用した以外は、実施番号9~11と同様にして負極膜用ペーストを調製し且つ負極膜を作成した。
 調製された負極膜用ペースト中の各成分の固形分比率及び作成された負極膜の体積抵抗を表3に示した。また、負極膜用ペースト中の多層CNTの分散状態を示すSEM写真は、図10に示した。
Figure JPOXMLDOC01-appb-T000003
[正極膜を用いた二次電池特性の評価]
<実施番号12>
 実施番号5で得られた正極膜、セパレーター、銅箔上に成形された負極を組み込み、これらを有機電解液に含侵させ、リチウムイオン電池を作製してサイクル特性評価を実施し、その結果を正極膜中の各成分の固形分比率と共に表4に示した。
 測定機器は北斗電工株式会社製充放電装置(HJ-2010型)を用いた。
 サイクル特性の評価基準は、以下のとおりである。
電流レートが0.1Cの時;
  〇(良好):100サイクル後の初期容量維持率が95%以上である。
  ×(不可):100サイクル後の初期容量維持率が95%未満である。
電流レートが5Cの時;
  〇(良好):100サイクル後の初期容量維持率が80%以上である。
  ×(不可):100サイクル後の初期容量維持率が80%未満である。
<比較番号6>
 比較番号3で得られた正極膜を使用した以外は、実施番号12の手順に準じてリチウムイオン電池を作製してサイクル特性評価を実施し、その結果を表4に示した。
Figure JPOXMLDOC01-appb-T000004
[負極膜を用いた二次電池特性の評価]
<実施番号13>
 実施番号10で得られた負極膜、セパレーター、アルミ箔上に成形された正極を組み込み、これらを有機電解液に含侵させ、リチウムイオン電池を作製し、実施番号12と同様にしてサイクル特性評価を実施し、その結果を表5に示した。
<比較番号7>
 比較番号5で得られた負極膜を使用した以外は、実施番号13と同様にしてリチウムイオン電池を作製し、サイクル特性評価を実施した。その結果を表5に示した。
Figure JPOXMLDOC01-appb-T000005
 前述した実施番号1~13及び比較番号1~7の結果から、多層CNT水分散液の分散状態は、二次電池の電極膜(正又は負極膜)の導電性能に明らかに影響を与え、最終的に得られる二次電池の性能、例えばサイクル特性に大きく影響することは明白である。
 即ち、平均繊維外径が50~110nmの範囲である多層CNTを3~20質量%含有し、該多層CNTに対する質量比が0.1~0.2となる量のCMCNaを含み且つ所定の残存凝集粒子の粒度分布を有する本発明の水分散液は、良好な導電性能を有する二次電池用電極膜、及び良好な電池特性(例えばサイクル特性)を有する二次電池の作成に最適である。
 本発明の多層CNT含有水分散液は、多層CNTが高濃度で且つ再凝集することなく安定に分散されており、しかも、高電気抵抗成分の量が少なく、このため、電極膜の調製に効果的に使用され、特に高寿命で高速充放電特性に優れたリチウムイオン二次電池の作成に好適に使用される。

Claims (5)

  1.  平均繊維外径が50~110nmの範囲の多層カーボンナノチューブの水分散液であって、粘度(25℃)が100mPa・s以下であり、該多層カーボンナノチューブに加えてカルボキシメチルセルロースナトリウムを含んでおり、
     前記多層カーボンナノチューブの含有量が3~20質量%の範囲にあり、
     前記カルボキシメチルセルロースナトリウムの前記多層カーボンナノチューブ当りの質量比が、0.1~0.2の範囲にあり、
     レーザー回折・散乱法で測定して、該水分散液中粒子の体積基準でのメディアン径(d50)が0.3~0.6μmの範囲にあり、且つ下記式(1):
      A=(d90-d50)/d50   (1)
      式中、
       d90は、前記粒子の体積基準での90%積算径であり、
       d50は、前記粒子の体積基準での50%積算径(前記メディアン径)
      である、
    で定義されるスパン値Aが0.9~1.2の範囲にあることを特徴とする多層カーボンナノチューブの水分散液。
  2.  請求項1に記載の多層カーボンナノチューブの水分散液に、バインダー樹脂及び二次電池用の負極活物質または正極活物質が添加されている電極膜用導電ペースト。
  3.  請求項2に記載の導電性ペーストを用いて得られる電極膜。
  4.  厚み方向の体積抵抗値が3000Ω・cm以下である請求項3に記載の電極膜。
  5.  請求項3に記載の電極膜を有しているリチウムイオン二次電池。
PCT/JP2013/080584 2012-11-13 2013-11-12 多層カーボンナノチューブの水分散液 WO2014077252A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-249781 2012-11-13
JP2012249781A JP2016028109A (ja) 2012-11-13 2012-11-13 多層カーボンナノチューブ含有カルボキシメチルセルロースナトリウム水分散液

Publications (1)

Publication Number Publication Date
WO2014077252A1 true WO2014077252A1 (ja) 2014-05-22

Family

ID=50731164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080584 WO2014077252A1 (ja) 2012-11-13 2013-11-12 多層カーボンナノチューブの水分散液

Country Status (3)

Country Link
JP (1) JP2016028109A (ja)
TW (1) TW201431602A (ja)
WO (1) WO2014077252A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016138998A1 (en) * 2015-03-05 2016-09-09 Arkema France Use of a liquid composition of carbon-based nanofillers for lead battery electrode formulations
WO2017010334A1 (ja) * 2015-07-13 2017-01-19 株式会社カネカ 非水電解質二次電池に用いる電極シートおよび非水電解質二次電池
JP2017024964A (ja) * 2015-07-28 2017-02-02 デンカ株式会社 カーボンナノファイバー分散液およびそれを用いた透明導電膜、透明導電フィルム。
JP2019506701A (ja) * 2015-12-18 2019-03-07 ノルウェージャン ユニバーシティ オブ サイエンス アンド テクノロジー(エヌティーエヌユー) 珪藻被殻を含むアノード
WO2019188538A1 (ja) * 2018-03-29 2019-10-03 日産化学株式会社 エネルギー貯蔵デバイスのアンダーコート層形成用組成物
JP2021508157A (ja) * 2018-02-07 2021-02-25 エルジー・ケム・リミテッド 正極及び該正極を含む二次電池
WO2022137977A1 (ja) * 2020-12-23 2022-06-30 パナソニックIpマネジメント株式会社 電極スラリー用カーボンナノチューブ分散液、負極スラリー、非水電解質二次電池、及び、電極スラリー用カーボンナノチューブ分散液の製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6733318B2 (ja) * 2016-05-31 2020-07-29 日本ゼオン株式会社 電気化学素子電極用組成物、電気化学素子用電極および電気化学素子、並びに電気化学素子電極用組成物の製造方法
KR102387963B1 (ko) 2016-09-07 2022-04-18 덴카 주식회사 전극용 도전성 조성물 및 이를 이용한 전극, 전지
CN108511692A (zh) * 2017-12-21 2018-09-07 中国石油大学(北京) 一种锂离子电池电极及其制备方法
WO2020197672A1 (en) 2019-03-22 2020-10-01 Cabot Corporation Anode electrode compositions and aqueous dispersions for battery applications
JP6860740B1 (ja) 2020-04-27 2021-04-21 東洋インキScホールディングス株式会社 カーボンナノチューブ分散液、それを用いた二次電池電極用組成物、電極膜、および二次電池。
WO2022070810A1 (ja) * 2020-09-29 2022-04-07 日本製紙株式会社 分散液、非水電解質二次電池用電極組成物、非水電解質二次電池用電極、非水電解質二次電池及び非水電解質二次電池用電極の製造方法
JP7459371B2 (ja) 2021-07-13 2024-04-01 関西ペイント株式会社 リチウムイオン電池電極用カーボンナノチューブ分散液
JP7098076B1 (ja) 2021-10-04 2022-07-08 大日精化工業株式会社 カーボン材料分散液及びその使用
WO2023090443A1 (ja) * 2021-11-22 2023-05-25 大阪瓦斯株式会社 リチウムイオン二次電池用電極活物質層形成用組成物

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008189901A (ja) * 2007-01-11 2008-08-21 Honda Motor Co Ltd 熱輸送流体およびその製造方法
JP2008201834A (ja) * 2007-02-16 2008-09-04 Honda Motor Co Ltd 熱輸送流体
WO2009119563A1 (ja) * 2008-03-25 2009-10-01 東レ株式会社 導電性複合体およびその製造方法
JP2010513202A (ja) * 2006-12-20 2010-04-30 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) カーボンナノチューブを基本構造としたエアロゲル
JP2010168724A (ja) * 2008-12-26 2010-08-05 Toyobo Co Ltd 高強度かつ高弾性率の炭素繊維を得るための前駆体繊維の製造方法
WO2010101205A1 (ja) * 2009-03-04 2010-09-10 東レ株式会社 カーボンナノチューブ含有組成物、カーボンナノチューブ製造用触媒体およびカーボンナノチューブ水性分散液
JP2012056789A (ja) * 2010-09-08 2012-03-22 Toray Ind Inc 2層カーボンナノチューブ分散液
JP2012056788A (ja) * 2010-09-08 2012-03-22 Toray Ind Inc カーボンナノチューブ水分散液
WO2012057320A1 (ja) * 2010-10-29 2012-05-03 東レ株式会社 カーボンナノチューブ集合体分散液の製造方法
JP2012155989A (ja) * 2011-01-26 2012-08-16 Kyushu Univ 導電体およびその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010513202A (ja) * 2006-12-20 2010-04-30 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) カーボンナノチューブを基本構造としたエアロゲル
JP2008189901A (ja) * 2007-01-11 2008-08-21 Honda Motor Co Ltd 熱輸送流体およびその製造方法
JP2008201834A (ja) * 2007-02-16 2008-09-04 Honda Motor Co Ltd 熱輸送流体
WO2009119563A1 (ja) * 2008-03-25 2009-10-01 東レ株式会社 導電性複合体およびその製造方法
JP2010168724A (ja) * 2008-12-26 2010-08-05 Toyobo Co Ltd 高強度かつ高弾性率の炭素繊維を得るための前駆体繊維の製造方法
WO2010101205A1 (ja) * 2009-03-04 2010-09-10 東レ株式会社 カーボンナノチューブ含有組成物、カーボンナノチューブ製造用触媒体およびカーボンナノチューブ水性分散液
JP2012056789A (ja) * 2010-09-08 2012-03-22 Toray Ind Inc 2層カーボンナノチューブ分散液
JP2012056788A (ja) * 2010-09-08 2012-03-22 Toray Ind Inc カーボンナノチューブ水分散液
WO2012057320A1 (ja) * 2010-10-29 2012-05-03 東レ株式会社 カーボンナノチューブ集合体分散液の製造方法
JP2012155989A (ja) * 2011-01-26 2012-08-16 Kyushu Univ 導電体およびその製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3033328A1 (fr) * 2015-03-05 2016-09-09 Arkema France Composition liquide de nanocharges carbonees pour les formulations utilisees dans les batteries au plomb.
WO2016138998A1 (en) * 2015-03-05 2016-09-09 Arkema France Use of a liquid composition of carbon-based nanofillers for lead battery electrode formulations
US10826056B2 (en) 2015-07-13 2020-11-03 Kaneka Corporation Electrode sheet used in nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2017010334A1 (ja) * 2015-07-13 2017-01-19 株式会社カネカ 非水電解質二次電池に用いる電極シートおよび非水電解質二次電池
JPWO2017010334A1 (ja) * 2015-07-13 2018-04-26 株式会社カネカ 非水電解質二次電池に用いる電極シートおよび非水電解質二次電池
JP2017024964A (ja) * 2015-07-28 2017-02-02 デンカ株式会社 カーボンナノファイバー分散液およびそれを用いた透明導電膜、透明導電フィルム。
JP2019506701A (ja) * 2015-12-18 2019-03-07 ノルウェージャン ユニバーシティ オブ サイエンス アンド テクノロジー(エヌティーエヌユー) 珪藻被殻を含むアノード
JP2021508157A (ja) * 2018-02-07 2021-02-25 エルジー・ケム・リミテッド 正極及び該正極を含む二次電池
US11929496B2 (en) 2018-02-07 2024-03-12 Lg Energy Solution, Ltd. Positive electrode and secondary battery including same
CN111919314A (zh) * 2018-03-29 2020-11-10 日产化学株式会社 储能器件的底涂层形成用组合物
WO2019188538A1 (ja) * 2018-03-29 2019-10-03 日産化学株式会社 エネルギー貯蔵デバイスのアンダーコート層形成用組成物
JPWO2019188538A1 (ja) * 2018-03-29 2021-04-08 日産化学株式会社 エネルギー貯蔵デバイスのアンダーコート層形成用組成物
JP7318638B2 (ja) 2018-03-29 2023-08-01 日産化学株式会社 エネルギー貯蔵デバイスのアンダーコート層形成用組成物
WO2022137977A1 (ja) * 2020-12-23 2022-06-30 パナソニックIpマネジメント株式会社 電極スラリー用カーボンナノチューブ分散液、負極スラリー、非水電解質二次電池、及び、電極スラリー用カーボンナノチューブ分散液の製造方法

Also Published As

Publication number Publication date
TW201431602A (zh) 2014-08-16
JP2016028109A (ja) 2016-02-25

Similar Documents

Publication Publication Date Title
WO2014077252A1 (ja) 多層カーボンナノチューブの水分散液
JP6857443B2 (ja) 電池用電極組成物および電池用電極を形成する方法
JP6258215B2 (ja) 電極形成組成物
JP6136788B2 (ja) リチウムイオン二次電池用正極及びリチウムイオン二次電池
US20140332731A1 (en) Electrode Composition for Battery
WO2012036172A1 (ja) 微細炭素繊維分散液
US11286164B2 (en) Carbon nanotube, carbon nanotube dispersion, and use thereof
JP6645040B2 (ja) 電気化学素子用導電材分散液、電気化学素子正極用スラリー、電気化学素子用正極および電気化学素子
JP2012252824A (ja) 蓄電素子用電極の製造方法および蓄電素子
JP2022527707A (ja) 電池用途向けのアノード電極組成物および水性分散液
WO2013085509A1 (en) Electrode composition for li ion battery
US20240043695A1 (en) Conductive paste based on nano-hybrid materials
CN115884939A (zh) 碳纳米管、碳纳米管分散液、使用所述碳纳米管的非水电解质二次电池
JP2016539910A (ja) カーボンナノチューブ高含有流体
Assresahegn et al. Graphene nanosheets and polyacrylic acid grafted silicon composite anode for lithium ion batteries
JP2013098085A (ja) 蓄電素子用電極の製造方法および蓄電素子
JP7218661B2 (ja) スラリーの製造方法、活物質層の製造方法、および全固体電池の製造方法
US20230238509A1 (en) Manufacture of electrodes for energy storage devices
CN114789996B (zh) 高分散性的碳纳米管及其制备方法、二次电池
JP2022167301A (ja) リチウムイオン二次電池用正極
JP7194860B1 (ja) カーボンナノチューブ分散液、及びそれを用いた電極用塗料、電極、非水電解質二次電池
JP7390516B1 (ja) 二次電池電極用複合物
JP7339404B2 (ja) 蓄電デバイス電極用分散剤組成物
Predtechenskiy et al. SWCNT vs MWCNT and Nanofibers. Applications in Lithium-Ion Batteries and Transparent Conductive Films
WO2024095843A1 (ja) カーボンナノチューブ分散液、並びにそれを用いた電池電極用組成物及び電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13855071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13855071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP