JP2010168724A - 高強度かつ高弾性率の炭素繊維を得るための前駆体繊維の製造方法 - Google Patents

高強度かつ高弾性率の炭素繊維を得るための前駆体繊維の製造方法 Download PDF

Info

Publication number
JP2010168724A
JP2010168724A JP2009293608A JP2009293608A JP2010168724A JP 2010168724 A JP2010168724 A JP 2010168724A JP 2009293608 A JP2009293608 A JP 2009293608A JP 2009293608 A JP2009293608 A JP 2009293608A JP 2010168724 A JP2010168724 A JP 2010168724A
Authority
JP
Japan
Prior art keywords
carbon
fiber
carbon nanotubes
spinning
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009293608A
Other languages
English (en)
Other versions
JP5261367B2 (ja
Inventor
Yukihiro Abe
幸浩 阿部
Hirokazu Nishimura
浩和 西村
Koichi Hirao
公一 平尾
Shinsuke Yamaguchi
信輔 山口
Daisuke Sakura
大介 佐倉
Yoshihiro Watanabe
義弘 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Exlan Co Ltd
Toyobo Co Ltd
Original Assignee
Japan Exlan Co Ltd
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Exlan Co Ltd, Toyobo Co Ltd filed Critical Japan Exlan Co Ltd
Priority to JP2009293608A priority Critical patent/JP5261367B2/ja
Publication of JP2010168724A publication Critical patent/JP2010168724A/ja
Application granted granted Critical
Publication of JP5261367B2 publication Critical patent/JP5261367B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】
高引張強度かつ高引張弾性率の炭素繊維を製造することができる前駆体繊維の製造方法を提供する。
【解決手段】
以下の工程を含むことを特徴とする、炭素繊維の前駆体繊維の製造方法:(1)カルボキシメチルセルロースの水溶液を調製する工程;(2)このカルボキシメチルセルロースの水溶液にカーボンナノチューブを添加し、超音波を照射してカーボンナノチューブを分散させ、カーボンナノチューブ分散液を調製する工程;(3)このカーボンナノチューブ分散液とポリアクリロニトリル系ポリマーとロダン塩とを含む紡糸原液を調製する工程;(4)この紡糸原液から湿式又は乾湿式紡糸法によって凝固糸を得る工程;そして(5)この凝固糸を延伸して炭素繊維の前駆体繊維を得る工程。
【選択図】なし

Description

本発明は、高強度かつ高弾性率の炭素繊維を得るための前駆体繊維の製造方法に関する。また、本発明は、かかる製造方法によって得られる前駆体繊維、及びかかる前駆体繊維から得られる高強度かつ高弾性率の炭素繊維に関する。さらに、本発明は、かかる前駆体繊維の製造に使用する紡糸原液に関する。
炭素繊維は、軽量かつ高強度、高弾性率という極めて優れた物性を有することから、釣竿、ゴルフクラブやスキー板等の運動用具からCNGタンク、フライホイール、風力発電用風車、タービンブレード等の形成材料、道路、橋脚等の構造物の補強材、さらには、航空機、宇宙用素材として使われ、さらにその用途は広がりつつある。
このような炭素繊維の用途の拡大につれて、より高強度、高弾性率を有する炭素繊維の開発が望まれるようになってきている。
炭素繊維は、ポリアクリロニトリルを原料とするPAN系炭素繊維と、石炭由来のコールタール、石油由来のデカントオイルやエチレンボトムなどを出発原料とするピッチ系炭素繊維に大別される。いずれの炭素繊維も、まずこれらの原料から前駆体繊維を製造し、この前駆体繊維を高温で加熱して耐炎化、予備炭素化、及び炭素化することによって製造される。
物性の点から見ると、現在市販されているPAN系炭素繊維は、最大6GPa程度という極めて高い引張強度を達成することができるが、引張弾性率が発現しにくく、最大でも300GPa程度に留まっている。一方、現在市販されているピッチ系炭素繊維は、最大800GPa程度という極めて高い引張弾性率を達成することができるが、引張強度が発現しにくく、最大でも3GPa程度に留まっている。航空機や宇宙用素材として使用するためには、高引張強度かつ高引張弾性率の炭素繊維が望ましいが、このように、現在提案されている炭素繊維の中にこの要件を満たすものは存在しない。
一方、特許文献1には、ポリアクリロニトリル系ポリマーにカーボンナノチューブを添加して紡糸することによって得られた前駆体繊維(カーボンナノチューブ含有PAN系前駆体繊維)が、従来のPAN系前駆体繊維より高い引張弾性率を示すことが開示されている。
しかし、特許文献1の方法で得られた前駆体繊維は、引張弾性率の点では優れるものの、断面形状が円形ではなく大きく歪んでいるため、この前駆体繊維から得られる炭素繊維は従来のPAN系炭素繊維のような高い引張強度を示さない。従って結局、高引張強度及び高引張弾性率という二つの特性を両立させた炭素繊維は未だ得られていない。
米国特許第6852410号
本発明は、かかる従来技術の現状に鑑み創案されたものであり、その目的は、高引張強度(具体的には6GPa以上の引張強度)かつ高引張弾性率(具体的には300GPa以上の引張弾性率)の炭素繊維を製造することができる前駆体繊維及びその製造方法を提供することにある。
本発明者は、上記目的を達成するために、特許文献1の方法の改良について鋭意検討した結果、特許文献1の方法で得られるカーボンナノチューブ含有PAN系前駆体繊維の断面形状が大きく歪む理由は、紡糸原液の溶剤としてジメチルホルムアミド(DMF)を使用しているためであり、ロダン塩の水溶液を紡糸原液の溶剤として使用すると、略円形断面のカーボンナノチューブ含有PAN系前駆体繊維が得られることを見出した。しかし、溶剤としてDMFの代わりにロダン塩の水溶液を使用すると、紡糸原液にカーボンナノチューブ分散液を添加した際に瞬時にカーボンナノチューブが凝集・析出しやすく、得られた凝固糸中に凝集・析出物の塊が散在するため、延伸時にこの塊を起点に糸切れを生じやすく、十分な延伸を行うことができないこと、このため前駆体繊維中のポリマー鎖及びカーボンナノチューブの配向が不十分になり、カーボンナノチューブの添加により本来期待されるべき高い引張強度および引張弾性率を発現することができないことが判明した。また、カーボンナノチューブが紡糸原液中で多量に凝集・析出すると、紡糸原液の曵糸性がなくなったり、紡糸口金のフィルター詰まりを起こし、紡糸不可能になることが判明した。そこで、本発明者らは、ロダン塩の水溶液を紡糸原液の溶剤として使用しつつも紡糸原液中のカーボンナノチューブの析出を抑制する方法についてさらに検討したところ、カーボンナノチューブを添加する際にカルボキシメチルセルロースを分散剤として併用すると、カーボンナノチューブが安定に溶剤中に分散されて凝集・析出しにくくなることを見出し、本発明の完成に至った。
即ち、本発明によれば、以下の工程を含むことを特徴とする、炭素繊維の前駆体繊維の製造方法が提供される:
(1)カルボキシメチルセルロースの水溶液を調製する工程;
(2)このカルボキシメチルセルロースの水溶液にカーボンナノチューブを添加し、超音波を照射してカーボンナノチューブを分散させ、カーボンナノチューブ分散液を調製する工程;
(3)このカーボンナノチューブ分散液とポリアクリロニトリル系ポリマーとロダン塩とを含む紡糸原液を調製する工程;
(4)この紡糸原液から湿式又は乾湿式紡糸法によって凝固糸を得る工程;そして
(5)この凝固糸を延伸して炭素繊維の前駆体繊維を得る工程。
また、本発明によれば、上記方法によって製造される、炭素繊維の前駆体繊維であって、略円形断面を有しかつカーボンナノチューブを含むことを特徴とする炭素繊維の前駆体繊維が提供される。
さらに、本発明によれば、上記前駆体繊維を耐炎化、予備炭素化及び炭素化することによって製造される炭素繊維であって、6GPa以上の引張強度及び300GPa以上の引張弾性率を有することを特徴とする炭素繊維が提供される。
さらに、本発明によれば、ロダン塩、ポリアクリロニトリル系ポリマー、カーボンナノチューブ、及びカルボキシメチルセルロースを含む水溶液からなる紡糸原液であって、カルボキシメチルセルロースの分散作用によりカーボンナノチューブが水中に分散していることを特徴とする紡糸原液が提供される。
本発明のカーボンナノチューブ含有PAN系前駆体繊維の製造方法では、紡糸原液の溶剤としてロダン塩の水溶液を使用しているので、略円形断面の前駆体繊維を得ることができる。また、カルボキシメチルセルロースを分散剤として使用して紡糸原液からのカーボンナノチューブの凝集・析出を抑制しているため、得られた糸は、凝集・析出物の塊を含まず、十分に延伸させてポリマー鎖及びカーボンナノチューブを配向させることができる。従って、かかる前駆体繊維から得られる炭素繊維は、適切に配向されたカーボンナノチューブの含有および高分子鎖の配向に起因する高い引張強度及び高い引張弾性率を示す。
以下、本発明のカーボンナノチューブ含有PAN系炭素繊維の前駆体繊維の製造方法について詳述する。本発明の製造方法ではまず、カルボキシメチルセルロースの水溶液を調製する(工程(1))。
本発明で使用するカルボキシメチルセルロースは、市販のナトリウム塩、カリウム塩が使用される。また、これらの混合物を使用することもできる。
カルボキシメチルセルロースの水溶液の調製は、水にカルボキシメチルセルロースを添加して約5℃〜約100℃で加熱しながら攪拌することによって容易に行うことができる。カルボキシメチルセルロースの濃度は、0.002〜9重量%(紡糸原液中の終濃度で0.001〜5重量%)であることが好ましく、0.1〜8重量%であることがさらに好ましい。上記下限未満では、カーボンナノチューブの分散剤としての効果を十分発揮できないおそれがある。また、上記上限を越えると、やはりカーボンナノチューブの分散剤としての効果を十分に発揮しなくなるおそれがある。
次に、このカルボキシメチルセルロースの水溶液にカーボンナノチューブを添加し、超音波を照射してカーボンナノチューブを分散させ、カーボンナノチューブ分散液を調製する(工程(2))。
本発明で使用するカーボンナノチューブは、単層カーボンナノチューブ、二層カーボンナノチューブ、多層カーボンナノチューブのいずれであっても良く、これらの混合物であっても良い。各種カーボンナノチューブの末端は、閉じていても良いし、穴が開いていても良い。カーボンナノチューブの直径は、好ましくは0.4nm以上100nm以下であり、より好ましくは0.8nm以上80nm以下である。カーボンナノチューブの長さは、制限されるものではなく、任意の長さのものを用いることができるが、好ましくは0.6μm以上200μm以下であり、より好ましくは1μm以上200μm以下である。
本発明で使用するカーボンナノチューブの純度は、炭素純度として80%以上であることが好ましく、より好ましくは90%以上、さらに好ましくは95%以上である。炭素純度は、示差熱分析により決定される。カーボンナノチューブの不純物としては、非晶炭素成分や触媒金属が挙げられる。空気中での200℃以上での加熱、または、過酸化水素水で洗浄することにより、非晶炭素成分を除くことができる。さらに、塩酸、硝酸、硫酸等の鉱酸で洗浄後、水洗することにより鉄等のカーボンナノチューブ製造時の触媒金属を除去することができる。本発明では、これらの精製操作を組み合わせることにより、種々の不純物を除去し、炭素純度を高めたカーボンナノチューブを使用することが好ましい。
カーボンナノチューブの添加量は、次の工程(3)で使用するポリアクリロニトリル系ポリマーの量に対して0.01〜5重量%であることが好ましく、0.1〜3重量%であることがさらに好ましい。上記下限未満では、得られる前駆体繊維中のカーボンナノチューブ量が少なくなり、十分高い引張弾性率を達成できないおそれがある。また、上記上限を越えると、紡糸原液に曵糸性がなくなり、紡糸が困難になるおそれがある。超音波照射は、約0〜70℃の温度で約1時間〜3日間行う。溶液が目視で黒色透明になれば、カーボンナノチューブは十分分散している。
次に、このカーボンナノチューブ分散液とポリアクリロニトリル系ポリマーとロダン塩とを含む紡糸原液を調製する(工程(3))。
紡糸原液の調製においては、カーボンナノチューブ分散液にポリアクリロニトリル系ポリマーとロダン塩を添加してもよいし、また、ポリアクリロニトリル系ポリマーをロダン塩水溶液に溶かしたポリマー溶液とカーボンナノチューブ分散液を混合してもよい。前者の場合、ポリアクリロニトリル系ポリマーとロダン塩の添加は同時であってもよく、また、どちらを先に添加してもよい。添加は一度に行う必要はなく、分けて行ってもよい。ポリアクリロニトリル系ポリマーを添加するときは、必要により水を添加して水スラリーの状態にすることが好ましい。この場合、添加される水を予め多くし、後で常圧下又は減圧下で徐々に水を留去して紡糸原液の粘度を調整してもよい。
本発明で使用するポリアクリロニトリル系ポリマーとしては、ポリアクリロニトリル、および、アクリロニトリルと共重合可能なビニル単量体からなる共重合体を使うことができる。共重合体としては、耐炎化反応に有効な作用を有するアクリロニトリル−メタクリル酸共重合体、アクリロニトリル−メタクリル酸メチル共重合体、アクリロニトリル−アクリル酸共重合体、アクリロニトリル−イタコン酸共重合体、アクリロニトリル−メタクリル酸−イタコン酸共重合体、アクリロニトリル−メタクリル酸メチル−イタコン酸共重合体、アクリロニトリル−アクリル酸−イタコン酸共重合体等が挙げられ、いずれの場合もアクリロニトリル成分が85モル%以上であることが好ましい。これらのポリマーは、アルカリ金属またはアンモニアとの塩を形成していても良い。また、これらのポリマーは単独または2種以上の混合物としても使用できる。
ポリアクリロニトリル系ポリマーの使用量は、紡糸原液中、5〜30重量%になるような量であることが好ましく、さらに好ましくは10〜20重量%になるような量である。上記下限未満では、紡糸張力をかけることができず、繊維自身および糸中のカーボンナノチューブの配向が不足し、強度不足の原因となるおそれがある。また、上記下限を越えると紡糸時に背圧上昇の原因となるおそれがある。
本発明で使用するロダン塩は、チオシアン酸と1価または2価の金属との塩であればよく、中でもチオシアン酸ナトリウム、チオシアン酸カリウムが好ましい。また、これらの混合物を用いることもできる。ロダン塩は極めて溶解しにくいため、ロダン塩の添加は、分散液を激しく攪拌しながら行うことが好ましい。必要により、ロダン塩を完全に溶解させるため、分散液を約30℃〜約90℃に加熱してもよい。
ロダン塩の使用量は、紡糸原液中、30〜60重量%になるような量であることが好ましく、さらには40〜55重量%であることが好ましい。上記下限未満では、ポリアクリロニトリル系ポリマーが溶解できないおそれがある。また、上記上限を越えると、ロダン塩が析出したり、いったん分散したカーボンナノチューブが凝集し、析出してしまうおそれがある。
以上の工程(1)〜(3)によって得られた紡糸原液は、ロダン塩、ポリアクリロニトリル系ポリマー、カーボンナノチューブ、及びカルボキシメチルセルロースを含む水溶液からなる。この水溶液中では、カルボキシメチルセルロースの分散作用によりカーボンナノチューブが水中に安定に分散しており、何らかの衝撃が加えられても析出しにくくなっている。
本発明の紡糸原液の粘度は、通常30℃で、湿式紡糸では、2〜20Pa・secであることが好ましく、乾湿式紡糸では100〜500Pa・secであることが好ましい。それぞれの紡糸方法において、上記範囲を下回ると、紡糸時にノズル面に紡糸原液が付着してしまう恐れがあったり、吐出糸条の切断や品質斑の問題があり、上記範囲を上回ると、メルトフラクチャーが生じて安定に紡糸を行うことができなくなるなど、紡糸の操業性に問題が生じるおそれがある。
次に、この紡糸原液から湿式又は乾湿式紡糸法によって凝固糸を得る(工程(4))。
紡糸口金の孔径は、通常、湿式紡糸では0.03〜0.1mmであることが好ましく、乾湿式紡糸では0.1〜0.3mmであることが好ましい。上記範囲を下回ると、紡糸時にドラフト比が小さくなり生産性を著しく損なうおそれがあったり、吐出糸条の切断や品質斑の問題があり、上記範囲を上回ると、紡糸原液の吐出線速度が小さくなり凝固槽内での糸の張力が大きくなるなど、紡糸の操業性に問題が生じるおそれがある。
凝固浴としては、水、塩化亜鉛もしくは塩化アルミニウム等のルイス酸塩水溶液、又はロダン塩水溶液を用いることが好ましい。ルイス酸塩又はロダン塩の濃度は10〜20重量%であることが好ましく、温度は−5〜10℃に保つことが好ましい。ルイス酸塩又はロダン塩の濃度が10重量%未満では、吐出された紡糸原液の表面から急速に凝固が進み、繊維中心部の凝固が不充分となり、均一な糸の構造形成が行われないおそれがある。また、20重量%よりも濃度が高いと、凝固が遅くなり、巻き取りまでの工程で隣接する糸同士の接着を生じるおそれがある。また、凝固は多段で行われることが好ましく、特に好ましくは2〜3段で行われる。凝固が1段の場合、糸中心部までの凝固が不充分となり、均一な糸構造の形成ができないおそれがある。また、4段以上では、生産設備が重厚となり、現実的でない。
紡糸時の引き取り速度は、3〜20m/分の範囲にあることが好ましい。3m/分未満では、生産性が極めて低くなるおそれがある。一方、20m/分を越えると、紡糸口金近傍での糸切れが多発し、操業性を著しく損なうおそれがある。
次に、工程(4)で得られた凝固糸を延伸して炭素繊維の前駆体繊維を得る(工程(5))。延伸することによって、繊維中の分子鎖の配向性を高めて力学物性に優れた炭素繊維を得ることができる。延伸は、トータルの延伸倍率が4〜12倍になるように行うことが好ましく、より好ましくは、トータルの延伸倍率が5〜7倍になるように行う。トータルの延伸倍率が上記下限未満では、糸中のカーボンナノチューブの配向が不充分で、ポリアクリロニトリル系ポリマーが緻密に配向した炭素繊維前駆体を得ることができないおそれがある。また、トータルの延伸倍率が上記上限を越える場合は、延伸時に糸切れが頻発し、延伸安定性に欠けるおそれがある。延伸操作は、冷延伸、熱水中での延伸、蒸気中での延伸のいずれの方法でも良い。また、1度に延伸しても、多段で延伸しても良い。
以上の工程(1)〜(5)によって得られた前駆体繊維は、高引張強度を発揮するのに必要な略円形断面を有し、しかも高引張弾性率をもたらすカーボンナノチューブを適切な配向で含む。従って、この前駆体繊維を耐炎化、予備炭素化、及び炭素化すれば、6GPa以上の引張強度及び300GPa以上の引張弾性率を有する高強度高弾性率の炭素繊維を得ることができる。なお、本発明の炭素繊維の引張強度及び引張弾性率の上限は特に制限されないが、実際にはそれぞれ12GPa及び800GPa程度である。
本発明では、前駆体繊維の耐炎化、予備炭素化、及び炭素化は、常法に従って行えばよく、例えば、前駆体繊維をまず、空気中で延伸比0.8〜2.5で延伸しながら200〜300℃で耐炎化し、次に、不活性気体中で延伸比0.9〜1.5で延伸しながら300〜800℃に加熱して予備炭素化し、さらに、不活性気体中で延伸比0.9〜1.1で1000〜2000℃に加熱して炭素化することによって炭素繊維を得ることができる。
予備炭素化処理および炭素化処理時に用いられる不活性気体としては、窒素、アルゴン、キセノン、および二酸化炭素等が挙げられる。経済的な観点からは窒素が好ましく用いられる。炭素化処理時の最高到達温度は所望の炭素繊維の力学物性に応じて1200〜3000℃の間で設定される。一般的に炭素化処理の最高到達温度が高い程、得られる炭素繊維の引張弾性率が大きくなる。一方、引張強度は1500℃で極大となる。本発明では、炭素化処理を1000〜2000℃、より好ましくは1200〜1700℃、さらに好ましくは1300〜1600℃で行うことにより、引張弾性率と引張強度の2つの力学物性を最大限に発現させることが可能である。
以下、実施例で本発明をさらに具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
なお、本実施例で得た炭素繊維の引張強度および引張弾性率は、JIS R7606(2000)「炭素繊維−単繊維の引張特性の試験方法」に従ってNMB社製引張試験機「TG200NB」を用いて測定した。また、カルボキシメチルセルロースは、市販品のナトリウム塩をそのまま使用した。
実施例1
紡糸原液の調製:水98gにカルボキシメチルセルロースのナトリウム塩2gを添加し、70℃で5分間加熱撹拌した。放冷後、孔径10μmのメンブレンフィルターでろ過したろ液に、二層カーボンナノチューブ(Unidym社製XOグレード)0.3gを添加し、超音波装置(日本精機社製Ultrasonic Homogenizer MODEL US−300T)で20kHz、300Wの超音波を2時間照射して、分散液を得た。500mlナスフラスコに上記カーボンナノチューブ分散液50.15gと水分含有率25%のAN94−MAA6共重合体20gを測り取り、撹拌してスラリー状にした。撹拌しながらチオシアン酸ナトリウム44.2gを2時間かけて添加した。室温で1時間撹拌した後、エバポレーターで水10.8gを留去し、紡糸原液を得た。
紡糸:上記紡糸原液を80℃にて孔径0.15mm、孔数10の紡糸口金から押し出し、エアギャップ長5mmを経て0℃の15重量%チオシアン酸ナトリウム水溶液15lからなる凝固浴中へ導入した後、5重量%チオシアン酸ナトリウム水溶液で水洗した。その後、2倍に延伸し、水洗し、さらに0.2重量%硝酸で洗浄した。この後、さらにこの糸を沸騰水中で3倍延伸を行い、アミノ変性シリコーン油剤を付与して、150℃、5分間乾燥することにより、単糸繊度1.0dTexの前駆体繊維を得た。この繊維の断面形状を図1に示す。図1からわかるように、略円形断面の前駆体繊維が得られた。
耐炎化処理:上記の前駆体繊維を空気中で一定長にて、1段目220℃、2段目230℃、3段目240℃、4段目250℃でそれぞれ1時間加熱して、比重1.38の耐炎化処理糸を得た。
予備炭素化処理:上記耐炎化処理糸を窒素気流中で一定長にて、700℃で2分間加熱して予備炭素化処理糸を得た。
炭素化処理:上記予備炭素化処理糸を窒素気流中で一定長にて、1200℃で2分間加熱して炭素繊維を得た。得られた炭素繊維の引張強度及び引張弾性率を表1に示す。
実施例2
実施例1において二層カーボンナノチューブの代わりに単層カーボンナノチューブ(CNI社製Hipco)を使用した以外は実施例1と同様にして炭素繊維を得た。得られた炭素繊維の引張強度及び引張弾性率を表1に示す。なお、前駆体繊維の断面形状を確認したところ、実施例1と同様に略円形断面であった。
実施例3
実施例1において二層カーボンナノチューブの代わりに多層カーボンナノチューブ(Bayer社製Baytubes)を使用した以外は実施例1と同様にして炭素繊維を得た。得られた炭素繊維の引張強度及び引張弾性率を表1に示す。なお、前駆体繊維の断面形状を確認したところ、実施例1と同様に略円形断面であった。
実施例4
実施例1においてAN94−MAA6共重合体の代わりにAN95−MA5共重合体を使用した以外は、実施例1と同様にして炭素繊維を得た。得られた炭素繊維の引張強度及び引張弾性率を表1に示す。なお、前駆体繊維の断面形状を確認したところ、実施例1と同様に略円形断面であった。
実施例5
実施例3においてAN94−MAA6共重合体の代わりにAN95−MAA4−IA1共重合体を使用した以外は、実施例3と同様にして炭素繊維を得た。得られた炭素繊維の引張強度及び引張弾性率を表1に示す。なお、前駆体繊維の断面形状を確認したところ、実施例1と同様に略円形断面であった。
実施例6
実施例1においてAN94−MAA6共重合体の代わりにPANを使用した以外は、実施例1と同様にして炭素繊維を得た。得られた炭素繊維の引張強度及び引張弾性率を表1に示す。なお、前駆体繊維の断面形状を確認したところ、実施例1と同様に略円形断面であった。
実施例7
実施例6において二層カーボンナノチューブの代わりに単層カーボンナノチューブを使用した以外は、実施例6と同様にして炭素繊維を得た。得られた炭素繊維の引張強度及び引張弾性率を表1に示す。なお、前駆体繊維の断面形状を確認したところ、実施例1と同様に略円形断面であった。
実施例8
実施例4において二層カーボンナノチューブの代わりに多層カーボンナノチューブを使用した以外は、実施例4と同様にして炭素繊維を得た。得られた炭素繊維の引張強度及び引張り弾性率を表1に示す。なお、前駆体繊維の断面形状を確認したところ、実施例1と同様に略円形断面であった。
実施例9
実施例1において二層カーボンナノチューブを1.0g使用した以外は、実施例1と同様にして炭素繊維を得た。得られた炭素繊維の引張強度及び引張り弾性率を表1に示す。なお、前駆体繊維の断面形状を確認したところ、実施例1と同様に略円形断面であった。
比較例1
紡糸原液の調製:500mlナスフラスコに水39.2mlと水分含有率25%のAN94−MAA6共重合体20gを測り取り、撹拌してスラリー状にした。撹拌しながらチオシアン酸ナトリウム44.2gを2時間かけて添加した。室温で1時間撹拌した後、60℃まで加熱して均一な紡糸原液を得た。紡糸、耐炎化処理、予備炭素化処理、炭素化処理については実施例1と同様に処理を行い、炭素繊維を得た。得られた炭素繊維の引張強度及び引張弾性率を表1に示す。なお、前駆体繊維の断面形状を確認したところ、実施例1と同様に略円形断面であった。
比較例2
紡糸原液の調製:ジメチルホルムアミド600mlに二層カーボンナノチューブ(Unidym社製XOグレード)0.025gを添加し、超音波装置(BRANSON 3510R MT)で42kHz,100Wの超音波を36時間照射した。この分散液を合計6本調製した。500ml三口フラスコ中でジメチルホルムアミド100mlを撹拌しながら乾燥したAN94−MAA6共重合体15gを30分間かけて添加した。70℃15分間加熱して均一な溶液にした。室温まで放冷後、上記のカーボンナノチューブ分散液を150mlずつ添加してジメチルホルムアミド3600mlを留去して紡糸原液とした。
紡糸:上記紡糸原液を80℃にて孔径0.15mm、孔数1の紡糸口金から押し出し、エアギャップ長40mmを経て−60℃に冷却したメタノール15lからなる凝固浴中へ導入し、糸を巻き取った。−60℃のメタノール中に1昼夜糸を漬けた後、9倍延伸を行い、アミノ変性シリコーン油剤を付与して、150℃、5分間乾燥することにより、単糸繊度1.8dTexの前駆体繊維を得た。この繊維の断面形状を図2に示す。図2からわかるように、この前駆体繊維は略円形断面ではなく、歪な断面形状をしている。
耐炎化処理、予備炭素化処理、炭素化処理を実施例1と同様にして行い炭素繊維を得た。得られた炭素繊維の引張強度及び引張弾性率を表1に示す。
表1からわかるように、カーボンナノチューブを添加し、紡糸原液の溶剤としてロダン塩水溶液を使用し、分散剤としてカルボキシメチルセルロースを使用した実施例1〜9はいずれも、高い引張強度及び引張弾性率の炭素繊維が得られているのに対し、カーボンナノチューブを使用せず、分散剤を使用しなかった比較例1(従来の一般的なPAN系炭素繊維)は、引張強度は高いが引張弾性率が劣る。また、カーボンナノチューブは使用したが、紡糸原液の溶剤としてDMFを使用し、分散剤も使用しなかった比較例2(特許文献1の炭素繊維)は、引張弾性率は比較例1より高いが、繊維の断面が歪んでいるため、引張強度が劣る。
本発明の製造方法によって得られた前駆体繊維を使用すれば、高い引張強度と高い引張弾性率を兼ね備えた炭素繊維を得ることができる。かかる炭素繊維は、航空機材料や宇宙船材料として極めて有用である。
実施例1で得られた前駆体繊維の断面写真である。 比較例2で得られた前駆体繊維の断面写真である。

Claims (5)

  1. 以下の工程を含むことを特徴とする、炭素繊維の前駆体繊維の製造方法:
    (1)カルボキシメチルセルロースの水溶液を調製する工程;
    (2)このカルボキシメチルセルロースの水溶液にカーボンナノチューブを添加し、超音波を照射してカーボンナノチューブを分散させ、カーボンナノチューブ分散液を調製する工程;
    (3)このカーボンナノチューブ分散液とポリアクリロニトリル系ポリマーとロダン塩とを含む紡糸原液を調製する工程;
    (4)この紡糸原液から湿式又は乾湿式紡糸法によって凝固糸を得る工程;そして
    (5)この凝固糸を延伸して炭素繊維の前駆体繊維を得る工程。
  2. 工程(3)で調製される紡糸原液が、30〜60重量%のロダン塩、5〜30重量%のポリアクリロニトリル系ポリマー、ポリアクリロニトリル系ポリマーに対して0.01〜5重量%のカーボンナノチューブ、及び0.001〜5重量%のカルボキシメチルセルロースを含むことを特徴とする請求項1に記載の方法。
  3. 請求項1又は2に記載の方法によって製造される、炭素繊維の前駆体繊維であって、略円形断面を有しかつカーボンナノチューブを含むことを特徴とする炭素繊維の前駆体繊維。
  4. 請求項3に記載の炭素繊維の前駆体繊維を耐炎化、予備炭素化、及び炭素化することによって製造される炭素繊維であって、6GPa以上の引張強度及び300GPa以上の引張弾性率を有することを特徴とする炭素繊維。
  5. ロダン塩、ポリアクリロニトリル系ポリマー、カーボンナノチューブ、及びカルボキシメチルセルロースを含む水溶液からなる紡糸原液であって、カルボキシメチルセルロースの分散作用によりカーボンナノチューブが水中に分散していることを特徴とする紡糸原液。
JP2009293608A 2008-12-26 2009-12-25 高強度かつ高弾性率の炭素繊維を得るための前駆体繊維の製造方法 Active JP5261367B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009293608A JP5261367B2 (ja) 2008-12-26 2009-12-25 高強度かつ高弾性率の炭素繊維を得るための前駆体繊維の製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008332240 2008-12-26
JP2008332240 2008-12-26
JP2009293608A JP5261367B2 (ja) 2008-12-26 2009-12-25 高強度かつ高弾性率の炭素繊維を得るための前駆体繊維の製造方法

Publications (2)

Publication Number Publication Date
JP2010168724A true JP2010168724A (ja) 2010-08-05
JP5261367B2 JP5261367B2 (ja) 2013-08-14

Family

ID=42701116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009293608A Active JP5261367B2 (ja) 2008-12-26 2009-12-25 高強度かつ高弾性率の炭素繊維を得るための前駆体繊維の製造方法

Country Status (1)

Country Link
JP (1) JP5261367B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159517A (ja) * 2009-01-09 2010-07-22 Toyobo Co Ltd 高強度かつ高弾性率の炭素繊維を得るための前駆体繊維の製造方法
WO2014077252A1 (ja) * 2012-11-13 2014-05-22 保土谷化学工業株式会社 多層カーボンナノチューブの水分散液
JP2015203168A (ja) * 2014-04-15 2015-11-16 国立研究開発法人産業技術総合研究所 凝集紡糸構造体の製造方法
JP2016540131A (ja) * 2013-06-21 2016-12-22 コーロン インダストリーズ インク 炭素繊維用ポリアクリロニトリル系前駆体繊維及びその製造方法
CN109023592A (zh) * 2018-05-08 2018-12-18 中国科学院宁波材料技术与工程研究所 一种高拉伸强度高拉伸模量碳纤维及其制备方法
JP2021507139A (ja) * 2017-12-18 2021-02-22 アソシアシオン・プール・ル・デベロップマン・ドゥ・ランセニュマン・エ・デ・ルシェルシュ・オープレ・デ・ユニヴェルシテ・デ・サントル・ドゥ・ルシェルシュ・エ・デ・ザントルプリーズ・ダキテーヌ・(アーデーエーエルアー) リサイクル綿から炭素繊維を生産する方法、及びこの方法で得られた繊維の、複合材料から物品を形成するための使用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6852410B2 (en) * 2002-07-01 2005-02-08 Georgia Tech Research Corporation Macroscopic fiber comprising single-wall carbon nanotubes and acrylonitrile-based polymer and process for making the same
JP2006200114A (ja) * 2004-12-21 2006-08-03 Mitsubishi Rayon Co Ltd アクリル繊維、その製造方法および炭素繊維
JP2006292495A (ja) * 2005-04-08 2006-10-26 Toray Ind Inc カーボンナノチューブ組成物、バイオセンサーおよびそれらの製造方法
JP2007320828A (ja) * 2006-06-02 2007-12-13 Horiba Ltd カーボンナノチューブ含有物質の作成方法
JP2008230935A (ja) * 2007-03-23 2008-10-02 Chemicals Evaluation & Research Institute カーボンナノチューブの水分散方法
JP2010530929A (ja) * 2007-01-30 2010-09-16 ジョージア テック リサーチ コーポレイション 炭素繊維および炭素膜、ならびにそれらの作製方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6852410B2 (en) * 2002-07-01 2005-02-08 Georgia Tech Research Corporation Macroscopic fiber comprising single-wall carbon nanotubes and acrylonitrile-based polymer and process for making the same
JP2006200114A (ja) * 2004-12-21 2006-08-03 Mitsubishi Rayon Co Ltd アクリル繊維、その製造方法および炭素繊維
JP2006292495A (ja) * 2005-04-08 2006-10-26 Toray Ind Inc カーボンナノチューブ組成物、バイオセンサーおよびそれらの製造方法
JP2007320828A (ja) * 2006-06-02 2007-12-13 Horiba Ltd カーボンナノチューブ含有物質の作成方法
JP2010530929A (ja) * 2007-01-30 2010-09-16 ジョージア テック リサーチ コーポレイション 炭素繊維および炭素膜、ならびにそれらの作製方法
JP2008230935A (ja) * 2007-03-23 2008-10-02 Chemicals Evaluation & Research Institute カーボンナノチューブの水分散方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159517A (ja) * 2009-01-09 2010-07-22 Toyobo Co Ltd 高強度かつ高弾性率の炭素繊維を得るための前駆体繊維の製造方法
WO2014077252A1 (ja) * 2012-11-13 2014-05-22 保土谷化学工業株式会社 多層カーボンナノチューブの水分散液
JP2016540131A (ja) * 2013-06-21 2016-12-22 コーロン インダストリーズ インク 炭素繊維用ポリアクリロニトリル系前駆体繊維及びその製造方法
JP2015203168A (ja) * 2014-04-15 2015-11-16 国立研究開発法人産業技術総合研究所 凝集紡糸構造体の製造方法
JP2021507139A (ja) * 2017-12-18 2021-02-22 アソシアシオン・プール・ル・デベロップマン・ドゥ・ランセニュマン・エ・デ・ルシェルシュ・オープレ・デ・ユニヴェルシテ・デ・サントル・ドゥ・ルシェルシュ・エ・デ・ザントルプリーズ・ダキテーヌ・(アーデーエーエルアー) リサイクル綿から炭素繊維を生産する方法、及びこの方法で得られた繊維の、複合材料から物品を形成するための使用
JP7368923B2 (ja) 2017-12-18 2023-10-25 アソシアシオン・プール・ル・デベロップマン・ドゥ・ランセニュマン・エ・デ・ルシェルシュ・オープレ・デ・ユニヴェルシテ・デ・サントル・ドゥ・ルシェルシュ・エ・デ・ザントルプリーズ・ダキテーヌ・(アーデーエーエルアー) リサイクル綿から炭素繊維を生産する方法、及びこの方法で得られた繊維の、複合材料から物品を形成するための使用
CN109023592A (zh) * 2018-05-08 2018-12-18 中国科学院宁波材料技术与工程研究所 一种高拉伸强度高拉伸模量碳纤维及其制备方法
CN109023592B (zh) * 2018-05-08 2020-09-01 中国科学院宁波材料技术与工程研究所 一种高拉伸强度高拉伸模量碳纤维及其制备方法

Also Published As

Publication number Publication date
JP5261367B2 (ja) 2013-08-14

Similar Documents

Publication Publication Date Title
JP5536439B2 (ja) 高強度かつ高弾性率の炭素繊維を得るための前駆体繊維の製造方法
JP5261405B2 (ja) 高強度かつ高弾性率の炭素繊維を得るための前駆体繊維の製造方法
JP5697258B2 (ja) 高強度かつ高弾性率の炭素繊維を得るための前駆体繊維の製造方法
JP5251524B2 (ja) 高強度かつ高弾性率の炭素繊維を得るための前駆体繊維の製造方法
JP5261367B2 (ja) 高強度かつ高弾性率の炭素繊維を得るための前駆体繊維の製造方法
JP4940948B2 (ja) 耐炎繊維、炭素繊維およびそれらの製造方法
JP5544510B2 (ja) コンポジット繊維およびコンポジット繊維の製造方法
JP2011500978A (ja) カーボンファイバおよびフィルムならびにその製造方法
US9409337B2 (en) Polyacrylonitrile/cellulose nano-structure fibers
CN101768798B (zh) 一种海藻酸钠/碳纳米管复合纤维的制备方法
CN104695040A (zh) 一种高强聚丙烯腈纳米复合纤维的制备方法
JP2009197365A (ja) 炭素繊維前駆体繊維の製造方法、及び、炭素繊維の製造方法
JPWO2011102400A1 (ja) 高強度かつ高弾性率の炭素繊維を得るための前駆体繊維の製造方法
CN113832560B (zh) 一种黏土-纤维素-海藻酸复合阻燃大纤维及其制备和应用
JP2007182657A (ja) 炭素繊維前駆体繊維用重合体組成物
JP2007291557A (ja) 炭素繊維およびその製造方法
TWI422633B (zh) 聚丙烯腈系共聚物與奈米碳管的複合材料、碳纖維以及碳纖維的製法
JP4582819B1 (ja) 高強度ポリアクリロニトリル系炭素繊維の製造方法
JPWO2020090597A1 (ja) 炭素繊維前駆体繊維および炭素繊維の製造方法
JP2010174161A (ja) 炭素繊維前駆体繊維用ポリアクリロニトリル系重合体の分散体の製造方法
Ranjan et al. Multi-walled carbon nanotube/polymer composite: a nano-enabled continuous fiber
JP2007211356A (ja) カーボンナノファイバーの製造方法
CN114318593B (zh) 富勒烯掺杂高规整度的碳纳米纤维及其制备方法与应用
Hiremath Structure And Properties Of Cnt Yarns And Cnt/Cnf Reinforced Pan-Based Carbon Fibers
Li et al. Regenerated cellulose/multiwalled carbon nanotube composite films with enhanced mechanical properties prepared in NaOH/urea aqueous solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5261367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250