WO2014071873A1 - 稀土磁铁成形用粉末和稀土磁铁省略气流粉碎工序的制造方法 - Google Patents

稀土磁铁成形用粉末和稀土磁铁省略气流粉碎工序的制造方法 Download PDF

Info

Publication number
WO2014071873A1
WO2014071873A1 PCT/CN2013/086806 CN2013086806W WO2014071873A1 WO 2014071873 A1 WO2014071873 A1 WO 2014071873A1 CN 2013086806 W CN2013086806 W CN 2013086806W WO 2014071873 A1 WO2014071873 A1 WO 2014071873A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
powder
earth magnet
forming
producing
Prior art date
Application number
PCT/CN2013/086806
Other languages
English (en)
French (fr)
Inventor
永田浩
吴冲浒
Original Assignee
厦门钨业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门钨业股份有限公司 filed Critical 厦门钨业股份有限公司
Priority to US14/441,944 priority Critical patent/US20150302960A1/en
Publication of WO2014071873A1 publication Critical patent/WO2014071873A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/04Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/06Extraction of hydrogen
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/007Ferrous alloys, e.g. steel alloys containing silver
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/0536Alloys characterised by their composition containing rare earth metals sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/086Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to the field of manufacturing a magnet, and more particularly to a method for producing a powder for forming a rare earth magnet in which a jet milling step is omitted, and a method for producing a rare earth magnet in which a jet milling step is omitted.
  • the rare earth magnet is a magnet based on the intermetallic compound R 2 T 14 B, wherein R is a rare earth element, T is iron, or a transition metal element of iron and partially substituted iron, B is boron, and the rare earth magnet has a very high
  • the magnetic properties known as magnetic king, have a maximum magnetic energy product (BH) max higher than the maximum magnetic energy product of the ferrite magnet (Ferrite) more than 10 times.
  • the rare earth magnet has excellent machinability and the highest working temperature. 200 degrees Celsius, and its hard texture, stable performance, good cost performance, and extremely wide application.
  • the manufacturing process of the rare earth magnet has the following two types: one is a sintered rare earth magnet, and the other is a bonded rare earth magnet. Among them, the application of sintered rare earth magnets is more extensive.
  • the manufacturing process of the sintered rare earth magnet mainly includes the following processes: raw material preparation ⁇ melting ⁇ casting ⁇ hydrogen breaking pulverization (HD) ⁇ airflow pulverization (JM) ⁇ magnetic field forming ⁇ sintering ⁇ heat treatment ⁇ magnetic property evaluation ⁇ sintered body Evaluation of oxygen content, etc.
  • Hydrogen pulverization method (HD) focuses on the hydrogen absorption of rare earth magnet alloys (such as neodymium iron boron magnet alloys). With the absorption of hydrogen, the volume of the hydrogen absorption part of the alloy swells to cause internal damage, cracks or cracks. A relatively simple smashing method.
  • the jet pulverization method is to accelerate the ultrasonic waves in an almost oxygen-free atmosphere, collide with each other, and classify the powder after the impact into a powder and an R-rich ultrafine powder (below ⁇ ).
  • the airflow pulverization method is an essential process, and it is considered to be an essential condition for consideration of the following reasons: obtaining a powder having a certain concentration particle size distribution, and improving magnet properties such as formability, orientation, and coercive force .
  • the R-rich ultrafine powder is easily oxidized, and if the R-rich ultrafine powder is not removed from the powder, it is intact.
  • the sintered magnet is produced in a fixed manner, the rare earth element is significantly oxidized in the manufacturing process up to the sintering step, and as a result, the rare earth element R is consumed in combination with oxygen, resulting in the R 2 T 14 B type as the main phase. The amount of crystal phase formed is lowered, and the process of removing ultrafine powder is required.
  • Complex equipment such as grading equipment for powders and special filters that allow inert gas to be recycled.
  • the grading process in the jet pulverization method requires a sieve-like rotary knives capable of high-speed rotation.
  • the consumption of the rotary knives is caused, and precise mechanical parts such as bearings are also required to be consumed.
  • the ultrafine powder of the alloy for the rare earth magnet separated easily reacts with oxygen, catches fire and burns violently, and brings safety hazards to the operation of the operator when cleaning the airflow pulverizing equipment.
  • the main oxidation process is a gas flow pulverization process in which a large amount of gas stream is pulverized.
  • the oxygen content in the gas flow pulverization atmosphere is about 10,000 ppm
  • the sintered body has an oxygen content of about 2,900 ppm to 5,300 ppm. If the oxygen content in the air-crushing atmosphere is controlled to a lower level to obtain a sintered body having a lower oxygen content, it is necessary to further increase the investment cost and the production cost.
  • One of the objects of the present invention is to overcome the deficiencies of the prior art and to provide a method for producing a powder for forming a rare earth magnet which omits the air flow pulverizing step, which is characterized by improving the manufacturing process before the air flow pulverization, and omitting the step of air flow pulverization.
  • the purpose of simplifying the process is achieved, and valuable rare earth resources can be effectively utilized for low-cost production.
  • the method for producing a powder for forming a rare earth magnet in which the rare earth magnet is a magnet containing a main phase of R 2 T 14 B, and the R is at least one selected from the group consisting of rare earth elements including a lanthanum element. And the T is at least one transition metal element including Fe, and the method includes the following steps:
  • the rare earth magnet raw material alloy melt is cast by a sheet casting method to obtain a quenched alloy having an average thickness of 0.2 to 0.4 mm;
  • the rare earth magnet mentioned in the present invention is a sintered magnet.
  • the rare earth magnet mentioned in the present invention may further comprise, in addition to the 11, T and lanthanum elements which are indispensable for forming the main phase of R 2 T 14 B, a rare element lanthanum which accounts for 0.01 at% to 10 at%.
  • the crucible may be at least one selected from the group consisting of Al, Ga, Ca, Sr, Si, Sn, Ge, Ti, Bi, C, S or P.
  • the step of passing the powder through a sieve of 300 mesh to 800 mesh is also included.
  • a process of dehydrogenating the powder is also included.
  • the quenching alloy is at a cooling rate of 10 2 ° C/sec or more and 10 4 ° C/sec or less, and 1 * 10 3 ° C / sec to 8 * 10 3 ° C / sec. The average cooling rate is obtained.
  • the quenching alloy is preheated to 150 ° C to 600 ° C and then subjected to a hydrogen cracking process.
  • the quenched alloy is maintained at a hydrogen pressure of O.OMPa or more and IMPa or less for 1 to 6 hours, and is passed through a sieve of 300 mesh to 800 mesh.
  • the rare earth magnet raw material has a Co content of lat% or less.
  • the airflow pulverization is not performed, but the powder after the hydrogen pulverization is taken out, and the organic additive is appropriately mixed according to the nature of the powder, and then formed in a magnetic field, which is obtained by the present invention.
  • the powder formability is very different from that of the conventional powder. Therefore, it is preferable to select a conventional simple mold to perform two-stage molding in combination of magnetic field forming and isostatic pressing (CIP), and the molded body is degreased and degassed in a vacuum.
  • the sintered magnet can be sintered at a temperature of 900 ° C to 1140 in a vacuum or an inert gas, and the sintered magnet can have an oxygen content of less than 1000 ppm. This is because the gas flow is not pulverized, and the chance of contact with the powder is reduced. High performance magnet with oxygen content.
  • the organic additive is selected from the group consisting of mineral oil, synthetic oil, animal and vegetable oil, organic ester, paraffin, polyethylene wax or modified paraffin.
  • the weight ratio of the organic additive to the rare earth alloy magnetic powder is 0.01 to 1.5:100.
  • the organic ester is methyl octanoate.
  • the methyl octanoate has an excellent lubricating effect, and since the methyl octanoate is volatilized at a high temperature, even when the amount thereof is increased to 1.5% by weight of the rare earth alloy magnetic powder, it is only in the sintered body. Residual traces of C and 0, which provide better lubrication than ordinary additives The performance, the degree of orientation and the formability are improved, and the Br, Hcj, and (BH)max of the magnet are not affected.
  • the quench alloy is in atomic percent at % and its composition is Wherein: R is Nd or contains Nd and at least one selected from the group consisting of La, Ce, Pr, Sm, Gd, Dy, Tb, Ho, Er, Eu, Tm, Lu or Y, T is Fe or contains Fe and is selected From at least one of Ru, Co or Ni, A is B or contains B and at least one selected from C or P, and J is at least one selected from the group consisting of Cu, Mn, Si or Cr, and G is selected From at least one of Al, Ga, Ag, Bi or Sn, D is at least one selected from the group consisting of Zr, Hf, V, Mo, W, Ti or Nb; and e is 12 ⁇ e ⁇ 16,
  • h is 0.05 ⁇ h ⁇ l
  • i 0.2 ⁇ i ⁇ 2.0
  • 0 and N are impurities which are easily mixed during the operation, and there may be a small amount of mixing of 0 and N with a conventional impurity content in the alloy powder.
  • the sheet casting method may employ a conventionally known water-cooled bevel casting method, a water-cooled flat disk casting method, a twin roll method, a single roll method, or a centrifugal casting method.
  • Another object of the present invention is to provide a method for producing a rare earth magnet in which the step is omitted.
  • a method for producing a rare earth magnet in which a rheological pulverization step is omitted wherein the rare earth magnet is a magnet containing a main phase of R 2 T 14 B, and the R is at least one selected from the group consisting of rare earth elements including a lanthanum element.
  • the T is at least one transition metal element including Fe, and includes the following steps:
  • the rare earth magnet raw material alloy melt is cast by a sheet casting method to obtain a quenched alloy having an average thickness of 0.2 to 0.4 mm, and the quenched alloy is crushed under a hydrogen pressure of O.OMPa or more and IMPa or less for 0.5 to 24 hours, and then taken off. Hydrogen, obtained from a 300 mesh to 800 mesh sieve;
  • the step of sintering the formed body to produce a permanent magnet has the following characteristics:
  • the present invention improves the manufacturing process before the airflow pulverization, omits the step of airflow pulverization, thereby achieving the purpose of simplifying the process, and effectively utilizing valuable rare earth resources for low-cost production;
  • the present invention omits the airflow pulverization method, and has the characteristics of saving rare earth resources, simplifying the production process, and reducing the production cost, and obtaining a rare earth sintered magnet having an oxygen content of 1000 ppm or less;
  • Casting process Ar gas is introduced into the melting furnace after vacuum melting to bring the gas pressure to 50,000 Pa, and then cast by the following casting method, at a cooling rate of 10 2 ° C / sec to 10 4 ° C / sec, and 1 *10 3 ° C / sec ⁇ 8 * 10 3 ° C / sec average cooling rate to obtain quenched alloy, casting method and average sheet thickness as shown in Table 2.
  • the thickness of the quenched alloy depends on the speed of the rolls or the speed of the rotating disc.
  • the sheet thickness of the quenched alloy sheet was measured using a micrometer, and 100 sheets were measured to make a sheet thickness record.
  • the measurement should be carried out by random sampling to measure the thickness.
  • the same piece can only be measured once, and the measurement position is close to the geometric center of the alloy piece. The piece is broken for measurement. Sampling is divided into upper, middle and lower layers for sampling.
  • Example 3 Example 4, Example 5, and Example 11, Example 12, and Example 13, 95% of the quenched alloy had a thickness of 0.1 to 0.7 mm.
  • Hydrogen breaking pulverization process The hydrogen quenching furnace in which the quenching alloy is placed is evacuated at room temperature, and then hydrogen gas having a purity of 99.5% is introduced into the hydrogen breaking furnace to a pressure of 0.1 MPa, and after being left for 2 hours, a vacuum is applied. The temperature was raised, and the vacuum was applied at a temperature of 500 for 2 hours, and then cooled, and the powder after the pulverization of hydrogen was taken out.
  • the removed powder was passed through a jaw crusher and sieved through a 300-mesh ultrasonic sieve to recover the sieved powder.
  • the fine powder recovery rate after sieving is above 99.7%.
  • Methyl octanoate was added to the sieved powder, and the methyl octanoate was added in an amount of 0.2% by weight of the sieved powder, and then thoroughly mixed by a V-type mixer.
  • Magnetic field forming process Using a right-angle oriented magnetic field forming machine, the above-mentioned methyl octanoate-added powder was once formed into a cube having a side length of 25 mm in a 1.8 T orientation magnetic field at a molding pressure of 0.2 ton/cm 2 . After one molding, the magnetic field is demagnetized in a magnetic field of 0.2 T; in order to prevent the molded body after the primary molding from coming into contact with air, it is sealed, and a secondary forming machine (isostatic pressing machine) is used at a pressure of 1.4 ton/cm 2 . Secondary forming is performed.
  • a secondary forming machine isostatic pressing machine
  • the permanent magnet material is not bad as long as there is a crack in the cracked corner. Immediately after the molding, the visual inspection is performed, and if the cracked corner crack of the length of lmm or more is found, it is judged to be bad, and the defective rate is calculated.
  • each formed body is moved to a sintering furnace for sintering, and sintered under a vacuum of 10 - 3 Pa for 2 hours at 200 ° C and 900 ° C, and then sintered at a temperature of 1080 for 2 hours, and then passed through. After the Ar gas was brought to a pressure of 0.1 MPa, it was cooled to room temperature.
  • Heat treatment process The sintered body is heat-treated in a high-purity Ar gas at a temperature of 620 for 1 hour, and then cooled to room temperature and taken out.
  • Thickness yield (%) (kGs) ( kOe ) ⁇ Wo) (MGOe) content of the crucible roll cold-cooled turntable (ppm)
  • the present invention controls the average cooling rate of the alloy melt, thereby obtaining a ruthenium having a uniform crystal size, a too small crystal size, and a reduced excessive crystal content, and further capable of obtaining a desired shape while omitting the air jet grinding step.
  • Use powder
  • Example 2 In the preparation process of raw materials: preparing Nd with a purity of 99.5%, Fe-B for industrial use, pure Fe for industrial use, Co with a purity of 99.9%, Mn, Ga and Nb having a purity of 99.5%;
  • the composition is prepared by ReTfAgJhG ⁇ k. The content of each element is shown in Table 3:
  • the prepared raw materials are placed in a crucible made of alumina, and vacuum-smelted at a temperature of 160 CTC or less in a vacuum of lO ⁇ Pa in a high-frequency vacuum induction melting furnace.
  • Casting process After Ar gas is introduced into the melting furnace after vacuum melting to bring the gas pressure to 80,000 Pa, the cooling rate of 10 2 ° C / sec to 10 4 ° C / sec on the water-cooled disk-shaped casting plate, And cast a quenched alloy at an average cooling rate of 1*10 3 °C/sec ⁇ 8*10 3 °C/sec. Divided into 16 equal parts.
  • the thickness of the quenched alloy depends on the rotational speed of the water-cooled disk-shaped cast sheet.
  • the sheet thickness of the quenched alloy sheet was measured using a micrometer, and 100 sheets were measured to make a sheet thickness record. When measuring, it is necessary to take a random sample to measure its thickness. The same piece can only be measured once, and the measurement position is close to the geometric center of the alloy piece. The same piece cannot be broken for measurement. Sampling is divided into upper, middle and lower layers for sampling.
  • the test results showed that the quenched alloy had an average thickness of 0.3 mm, and 98% of the quenched alloy had a thickness of 0.1 to 0.7 mm by weight.
  • Hydrogen breaking pulverization process A hydrogen pulverizing furnace in which an aliquot of a quenched alloy having an average thickness of 0.3 mm is placed in a vacuum at room temperature, and then a hydrogen gas having a purity of 99.5% is introduced to a pressure shown in Table 4, No. 1 to 7. After standing for 6 hours, the vacuum was evacuated at a temperature of 500 ° C for 2 hours, and then cooled to take out the sample after the hydrogen was broken. The sample after the hydrogen breakthrough was passed through a disc crusher and then passed through a 500-mesh sieve. The sieved powder was recovered by sieve.
  • a hydrogen-disrupting furnace in which an aliquot of a quenched alloy having an average thickness of 0.3 mm was placed was vacuumed at room temperature, and then preheated separately to a temperature shown in Table 5, No. 8 to 16, and then a purity of 99.9 was passed. After the hydrogen gas was allowed to stand at 0.2 MPa for 6 hours, the mixture was evacuated at a temperature of 500 ° C for 2 hours, and then cooled, and the sample after hydrogenation was taken out, and sieved through a sieve of 800 mesh to recover the sieved powder. The fine powder recovery rate after sieving is above 99.9%. Methyl octanoate was added to the sieved powder, and the methyl octanoate was added in an amount of 0.4% by weight of the sieved powder, and then thoroughly mixed by a V-type mixer for 3 hours.
  • Magnetic field forming process Using a right-angle oriented magnetic field forming machine, the above-mentioned methyl octanoate-added powder was once formed into a cube having a side length of 25 mm in a 1.8 T orientation magnetic field at a molding pressure of 0.4 ton/cm 2 . One time forming Thereafter, the magnetic field was demagnetized in a magnetic field of 0.1 T; in order to prevent the molded body after the primary molding from coming into contact with air, it was sealed, and a secondary molding machine (isostatic pressing machine) was used under a pressure of 1.0 ton/cm 2 . Secondary forming.
  • a secondary molding machine isostatic pressing machine
  • Heat treatment process The sintered body is heat-treated at a temperature of 540 for 1 hour in high-purity Ar gas, and then cooled to room temperature and taken out.
  • Magnetic performance evaluation process The sintered magnet was tested for magnetic properties using NIM-10000H BH bulk rare earth permanent magnet non-destructive measurement system from China Metrology Institute.
  • Oxygen content evaluation process in the sintered body The oxygen content in the sintered body was measured using an EMGA-620W type oxygen-nitrogen analyzer of Japan HORIBA Co., Ltd.
  • the evaluation results of the magnets of the examples and the comparative examples are shown in Tables 4 and 5: Table 4 Magnetic properties evaluation and oxygen content evaluation of the examples and comparative examples under different pressures Hydrogen pressure forming was not Br SQ (% ( BH)max sintered body oxygen content (atm) yield (%) (kGs)) (MGOe) amount (ppm)
  • Example 25 0.6 14.5 13.3 95.6 52.6 356
  • Example 100 0.5 14.6 13.3 97.8 53.6 345
  • Example 150 0 14.8 13.3 99.2 53.2 234
  • Example 200 0 14.8 13.3 99.1 53.4 236
  • Example 300 0 14.8 13.1 99.1 52.6 216
  • Example 400 0 14.8 13.2 99.2 53.2 215
  • Example 500 0 14.8 13.3 98.2 53.1 156
  • Example 600 0.3 14.6 13.2 95.2 51.4 349
  • Example 700 0.4 14.5 13.2 94.6 51.2 378 It can be seen from the examples of Table 4 that the hydrogen pulverization process of the present invention has the most suitable pulverization pressure: at low pressure, hydrogen cannot be completely absorbed, and it is not sufficiently pulverized; When it is too high, there is not only a safety problem, but also a problem that it cannot be sufficiently pulverized.
  • the present invention controls the average cooling rate of the alloy melt, thereby obtaining a ruthenium having a uniform crystal size, a too small crystal, and a too large crystal content, and can also be obtained when the air jet grinding step is omitted.
  • Example 3 In the preparation of raw materials: preparation of 99.5% purity Nd, industrial Fe-B, industrial pure Fe, purity 99.9% Co, purity 99.9% Pr, Dy, Si, Ag and Ti ; atomic percentage at %, according to the composition
  • Casting process Ar gas is introduced into the melting furnace after vacuum melting to bring the gas pressure to 90,000 Pa, and then cooled at a temperature of 10 2 ° C / sec to 10 4 ° C / sec on a water-cooled disk-shaped casting plate. And quench the alloy at an average cooling rate of 1*10 3 °C/sec ⁇ 8*10 3 °C/sec.
  • the thickness of the quenched alloy depends on the rotational speed of the water-cooled disk-shaped cast sheet.
  • the sheet thickness of the quenched alloy sheet was measured using a micrometer, and 100 sheets were measured to make a sheet thickness record. When measuring, it is necessary to take a random sample to measure its thickness. The same piece can only be measured once, and the measurement position is close to the geometric center of the alloy piece. The same piece cannot be broken for measurement. Sampling is divided into upper, middle and lower layers for sampling.
  • the test results showed that the quenched alloy had an average thickness of 0.3 mm, and 95% of the quenched alloy had a thickness of 0.1 to 0.7 mm by weight.
  • a hydrogen-breaking furnace in which a quenched alloy having an average thickness of 0.3 mm is placed is evacuated at room temperature, and the temperature is raised to 200 ° C, and then a hydrogen gas having a purity of 99.9% is introduced to a pressure of 0.1 MPa, and 0.5 is placed. After an hour, the vacuum was applied while the temperature was raised, and the vacuum was applied at a temperature of 500 ° C for 2 hours; after that, cooling was performed to take out the sample after the hydrogen was broken;
  • the sieve was passed through a continuous white mill and sieved through a 300-mesh sieve to recover the sieved powder.
  • the fine powder recovery after sieving is above 99.95%.
  • Methyl octanoate was added to the sieved powder, and methyl octanoate was added in an amount of 0.4% by weight of the sieved powder, and thoroughly mixed by a V-type mixer for 1 hour.
  • Forming process in a magnetic field Using a right-angle oriented magnetic field forming machine, the above-mentioned methyl octanoate-added powder was once formed into a side length of 25 mm in a 1.6 T oriented magnetic field at a molding pressure of 0.4 ton/cm 2 . cube. After one molding, the magnetic field is demagnetized in a magnetic field of 0.1 T; in order to seal the molded body after the primary molding without contacting the air, a secondary molding machine (isostatic pressing machine) is used under a pressure of 1.0 Oton/cm 2 Perform secondary forming.
  • a secondary molding machine isostatic pressing machine
  • Magnetic performance evaluation process The sintered magnet was tested for magnetic properties using NIM-10000H BH bulk rare earth permanent magnet non-destructive measurement system from China Metrology Institute.
  • Oxygen content evaluation process in the sintered body The oxygen content in the sintered body was measured using an EMGA-620W type oxygen-nitrogen analyzer of Japan HORIBA Co., Ltd. The evaluation results of the magnets of the examples and comparative examples are shown in Table 7:
  • the crushing method of the present invention has an optimum amount of addition of Co.
  • the amount of Co added is large, the pulverizability is poor and the molding failure is also increased.
  • the present invention controls the average cooling rate of the alloy melt, thereby obtaining a ruthenium having a uniform crystal size, a too small crystal, and a too large crystal content, and can also be obtained when the air jet grinding step is omitted.
  • the present invention improves the manufacturing process before the airflow pulverization, omits the step of airflow pulverization, and realizes low-cost production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了稀土磁铁成形用粉末和稀土磁铁省略气流粉碎工序的制造方法,包括以下的步骤:1)铸片:将稀土磁铁原料合金熔融液用薄片铸造法铸造,得到平均厚度为0.2〜0.4mm的急冷合金;2)氢破粉碎:将所述急冷合金在0.01MPa以上、1MPa以下的氢气压力下保持0.5〜24小时获得。其是通过对气流粉碎之前的制作过程进行改进,省略气流粉碎的步骤,从而实现了简化工序的目的,并可有效利用宝贵的稀土资源,进行低成本的生产。

Description

说 明 书 稀土磁铁成形用粉末和稀土磁铁省略气流粉碎工序的制造方法 技术领域
本发明涉及磁铁的制造技术领域, 特别是涉及省略气流粉碎工序的稀土磁铁成形用粉 末制造方法和省略气流粉碎工序的稀土磁铁制造方法。
背景技术
稀土磁铁是以金属间化合物 R2T14B为基础的磁铁, 这其中, R是稀土元素, T是铁、 或者是铁和部分取代铁的过渡金属元素, B是硼, 稀土磁铁拥有极高的磁性能, 被人们称为 磁王, 其最大磁能积 (BH) max高过铁氧体磁铁 (Ferrite) 最大磁能积 10倍以上, 另外, 稀土磁铁的机械加工性能极佳,工作温度最高可达 200摄氏度,而且其质地坚硬,性能稳定, 有很好的性价比, 应用极其广泛。
稀土磁铁的制作工艺有以下二种: 一种是烧结稀土磁铁, 另一种是粘结稀土磁铁。 这 其中, 又以烧结稀土磁铁的应用更为广泛。现有技术中, 烧结稀土磁铁的制作工艺主要包括 如下流程: 原料配制→熔炼→铸造→氢破粉碎 (HD) →气流粉碎 (JM) →磁场成形→烧结 →热处理→磁性能评价→烧结体中的氧含量评价等。
作为稀土磁铁的粉碎法, 氢破粉碎法 (HD) +气流粉碎法 (JM) 的 2段粉碎法是比较 常用的。 氢破粉碎法 (HD) 着眼于使稀土磁铁合金 (比如说钕铁硼磁铁合金) 吸氢, 随着 氢的吸收, 合金吸氢部位体积不断膨胀使内部产生破损、裂痕或破裂, 这是一种比较简单的 粉碎方法。 而气流粉碎法 (JM) 是使粉末在几乎无氧的气氛下进行超声加速, 互相撞击, 并将撞击后的粉末分级为符合要求的粉末和富 R超细粉(Ιμηι以下)。 以往的常识认为, 气 流粉碎法 (JM) 是必须的工序, 认为其为必须条件是基于以下原因考虑: 获得具有一定集 中粒度分布的粉末, 可改善成形性、 取向性及矫顽力等磁铁特性。 与稀土元素 R的含量相对少的其他粉末粒子 (具有相对大的粒径) 相比, 富 R超细粉 极容易被氧化, 如果不把这种富 R超细粉从粉末中除去, 而原封不动地制作烧结磁铁的话, 到烧结工序为止的制造工序中, 稀土元素会进行显著的氧化, 其结果是稀土元素 R消耗在 与氧的结合中, 导致作为主相的 R2T14B型结晶相的生成量降低, 而去除超细粉的工序需要 用到粉末的分级设备以及能使惰性气体进行循环再利用的特殊过滤器等复杂设备。气流粉碎 法中的分级过程需要用到能够进行高速旋转的筛状旋转刀, 但是因为必须保证 3000rpm〜 5000rpm稳定的转速, 会产生旋转刀的消耗问题, 同时也需要消耗轴承等精密的机械部件。 另外, 分离出来的稀土磁铁用合金的超细粉末极易和氧发生反应, 着火并剧烈燃烧, 在进行 气流粉碎设备的清扫时, 会给操作人员的作业带来安全隐患。 随着稀土磁铁制造的低氧化技术不断发展, 成形至烧结工序的气密性技术的不断进步, 因此, 成形至烧结工序几乎没有发生氧化。 因此, 主要发生氧化的工序为在大量气流中进行 粉碎的气流粉碎工序, 如在气流粉碎气氛中的氧含量约为 1万 ppm时, 所制得的烧结体氧 含量约为 2900ppm〜5300ppm, 而如果将气流破碎气氛中的氧含量控制到一更低的程度, 获 得一更低氧含量的烧结体, 则需要进一步加大投资成本和生产成本。
另外, 随着稀土资源的不断开采和不断减少, 稀土成为宝贵资源。 所以必须有效利用 稀土, 这样一来, 气流粉碎 (JM) 工序中 0.5〜3%程度的粉末损失也会逐渐成为问题。 发明内容
本发明的目的之一在于克服现有技术之不足, 提供一种省略气流粉碎工序的稀土磁铁 成形用粉末制造方法,其是通过对气流粉碎之前的制作过程进行改进,省略气流粉碎的步骤, 从而实现了简化工序的目的, 并可有效利用宝贵的稀土资源, 进行低成本的生产。
本发明解决其技术问题所采用的技术方案是:
省略气流粉碎工序的稀土磁铁成形用粉末制造方法, 所述的稀土磁铁为含有 R2T14B主 相的磁铁, 所述的 R为选自包含钇元素在内的稀土元素中的至少一种, 所述 T为包括 Fe的 至少一种过渡金属元素, 其特征在于, 包括以下的步骤:
1 )铸片: 将稀土磁铁原料合金熔融液用薄片铸造法铸造, 得到平均厚度为 0.2〜0.4mm 的急冷合金;
2)氢破粉碎: 将所述急冷合金在 O.OlMPa以上、 IMPa以下的氢气压力下保持 0.5〜24 小时获得粉末。
本发明中提及的稀土磁铁为烧结磁铁。
在推荐的实施方式中, 按重量比计, 95%以上的急冷合金的厚度为 0.1〜0.7mm。 本发明所提及的稀土磁铁除形成 R2T14B主相必不可少的11、 T、 Β元素之外, 还可以 包括占比为 0.01at%〜10 at%的惨杂元素 Μ, 所述 Μ可以为选自 Al、 Ga、 Ca、 Sr、 Si、 Sn、 Ge、 Ti、 Bi、 C、 S或 P中的至少一种。
在推荐的实施方式中, 还包括将所述粉末通过 300目〜 800目的筛的工序。
在推荐的实施方式中, 还包括将所述粉末脱氢的工序。
在推荐的实施方式中, 在氢破粉碎工序后, 还需要通过机械式破碎机或机械式磨碎机 处理, 再过 300目〜 800目的筛获得。
在推荐的实施方式中, 所述急冷合金是以 102°C/秒以上、 104°C/秒以下的冷却速度、 并 1 * 103 °C /秒〜 8 * 103 °C /秒的平均冷却速度获得。
在推荐的实施方式中, 是将急冷合金预加热至 150°C〜600°C之后, 再进行氢破粉碎工 序。
在推荐的实施方式中,是将所述急冷合金在 O.OlMPa以上、 IMPa以下的氢气压力下保 持 1〜6小时, 过 300目〜 800目的筛获得。
在推荐的实施方式中, 所述稀土磁铁原料中, Co含量为 lat%以下。
需要说明的是, 在后继的工序中, 不再进行气流粉碎, 而是选择取出氢破粉碎后的粉 末, 根据粉末的性质, 适当混入有机添加剂, 然后, 在磁场中成形, 由于本发明所获得的粉 末成形性与以往的粉末有很大的不同, 因此,最好选择以往的简单模具进行磁场成形和等静 压成形 (CIP)组合的 2段式成形,成形体在真空中脱脂、脱气,在真空或惰性气体中以 900°C〜 1140 的温度烧结, 制成的烧结磁铁的氧含量可以在 lOOOppm以下, 这是因为不使用气流 微粉碎, 可减少气氛与粉末接触的机会, 获得低氧含量的高性能磁铁。
在推荐的实施例中, 所述有机添加剂从矿物油、 合成油、 动植物油、 有机酯类、 石蜡、 聚乙烯蜡或改性石蜡等中选择。所述有机添加剂与所述稀土合金磁性粉末的重量比为 0.01〜 1.5: 100。
在推荐的实施例中, 所述有机酯类为辛酸甲酯。 在本发明中, 辛酸甲酯的润滑效果极 佳, 由于辛酸甲酯在高温下挥发的特点, 即使在将其添加量增加到稀土合金磁性粉末重量的 1.5%之时, 也仅在烧结体中残留微量的 C、 0, 与普通的添加剂相比, 既可更佳地发挥润滑 性能、 提高取向度和成形性, 又能保证磁铁的 Br、 Hcj、 (BH)max不受影响。
在推荐的实施方式中, 所述急冷合金以原子百分比 at%计, 其成分为
Figure imgf000005_0001
其 中: R为 Nd或包含 Nd和选自 La、 Ce、 Pr、 Sm、 Gd、 Dy、 Tb、 Ho、 Er、 Eu、 Tm、 Lu或 Y中的至少一种, T为 Fe或包含 Fe和选自 Ru、 Co或 Ni中的至少一种, A为 B或包含 B 和选自 C或 P中的至少一种, J为选自 Cu、 Mn、 Si或 Cr中的至少一种, G为选自 Al、 Ga、 Ag、 Bi或 Sn中的至少一种, D为选自 Zr、 Hf、 V、 Mo、 W、 Ti或 Nb中的至少一种; 以及 e为 12≤e≤16,
g为 5≤g≤9,
h为 0.05≤h≤l,
i为 0.2<i<2.0,
k为 0≤j≤4,
Figure imgf000005_0002
需要说明的是, 0、 N作为操作过程中容易混入的杂质, 合金粉末中可能会存在 0、 N 以常规杂质含量的少量混入。
在推荐的实施方式中, 薄片铸造法可以采用目前公知的水冷斜面铸造法、 水冷平面圆 盘铸造法、 双辊法、 单辊法或离心铸造法等。
本发明的目的之二在于提供一种省略工序的稀土磁铁制造方法。
一种省略气流粉碎工序的稀土磁铁制造方法, 所述的稀土磁铁为含有 R2T14B主相的磁 铁, 所述的 R为选自包含钇元素在内的稀土元素中的至少一种, 所述 T为包括 Fe的至少一 种过渡金属元素, 其特征在于, 包括如下的步骤:
稀土磁铁原料合金熔融液用薄片铸造法铸造,得到平均厚度为 0.2〜0.4mm的急冷合金, 将所述急冷合金在 O.OlMPa以上、 IMPa以下的氢气压力下保持 0.5〜24小时破碎, 之后脱 氢, 过 300目〜 800目筛获得粉末; 以及
将所述粉末用磁场成形和等静压成形组合的 2段式成形法加工成形, 制作成形体的工 序; 以及
将所述成形体进行烧结, 制作永久磁铁的工序。 与现有技术相比, 本发明具有如下的特点:
1 )本发明通过对气流粉碎之前的制作过程进行改进, 省略气流粉碎的步骤, 从而实现 了简化工序的目的, 并可有效利用宝贵的稀土资源, 进行低成本的生产;
2) 本发明省略了气流粉碎法, 具有节省稀土资源、 简化制作工序、 降低制作成本的特 点, 并可得到氧含量为 lOOOppm以下的稀土烧结磁铁;
3 ) 由于省略了气流粉碎步骤, 还可以防止气流粉碎法中难以避免的氧化作用, 使之成 为实质上的非氧化工序, 使低氧含量超高性能磁铁的大量制造成为可能。
4)由于仅进行氢破碎工序, 因此, 粉体中细粉的含量较少, 因此, 可以获得 BH (max) 超过 52MG0e的磁体。 具体实施方式 以下结合实施例对本发明作进一步详细说明。 实施例 1
在原料配制过程: 准备纯度 99.5%的 Nd、 工业用 Fe-B、 工业用纯 Fe、 纯度 99.9%的 Co和纯度 99.5%的 Cu、 Al、 Zr; 以原子百分比 at%计, 按照成分为 RJ^AgJhGDk来配制。 各元素的含量如表 1所示: 各元素的配比
R T A J G D
Nd Fe Co B Cu Al Zr
12.5 80 0.4 6 0.2 0.6 0.3 按照表 1中元素组成进行配制, 配置 16份, 每份分别称量、 配制了 100Kg的原料。 熔炼过程: 每次取 1份配制好的原料放入氧化铝制的坩埚中, 在高频真空感应熔炼炉 中在 10— 2Pa的真空中以 1500°C以下的温度进行真空熔炼。 铸造过程: 在真空熔炼后的熔炼炉中通入 Ar气体使气压达到 5万 Pa后, 使用以下铸 造法进行铸造, 以 102°C/秒〜 104°C/秒的冷却速度、并 1*103°C/秒〜 8*103°C/秒的平均冷却速 度获得急冷合金, 铸造方式及平均片厚如表 2中所示。 急冷合金的厚度取决于辊的转速或旋转圆盘的转速。
急冷合金片的片厚使用千分尺进行测量, 测量 100片次, 做好片厚记录。 测量时需随 机取样测量其厚度, 同一片只能测量一次, 且测量位置靠近合金片的几何中心, 不能将同一 片折断进行测量。 取样需分上层、 中层、 下层进行分布取样。
为避免引入杂质、 污染, 测量时需配带清洁一次性手套。
检测结果显示, 按重量比计, 实施例 3、 实施例 4、 实施例 5和实施 11、 实施例 12、 实施例 13中, 95%的急冷合金厚度为 0.1〜0.7mm。
氢破粉碎过程: 在室温下将放置急冷合金的氢破用炉抽真空, 而后向氢破用炉内通入 纯度为 99.5%的氢气至压力 O.lMPa, 放置 2小时后, 边抽真空边升温, 在 500 的温度下抽 真空 2小时, 之后进行冷却, 取出氢破粉碎后的粉末。
取出的粉末, 先通过颚式破碎机, 再使用 300目的超声波筛子过筛, 回收过筛后的粉 末。 过筛后的细粉回收率在 99.7%以上。
在过筛后的粉末中添加辛酸甲酯, 辛酸甲酯的添加量为过筛后粉末重量的 0.2%, 再用 V型混料机充分混合。
磁场成形过程: 使用直角取向型的磁场成型机, 在 1.8T的取向磁场中, 在 0.2ton/cm2 的成型压力下,将上述添加了辛酸甲酯的粉末一次成形成边长为 25mm的立方体,一次成形 后在 0.2T的磁场中退磁; 为使一次成形后的成形体不接触到空气, 将其进行密封, 使用二 次成形机 (等静压成形机) 在 1.4ton/cm2的压力下进行二次成形。
成形后的缺角裂痕调査: 永磁材料只要有一点的裂痕缺角破裂就算不良, 成形后马上 通过目测, 只要发现长度 lmm以上的破裂缺角裂痕, 就判断为不良, 计算不良率。
烧结过程:将各成形体搬至烧结炉进行烧结,烧结在 10— 3Pa的真空下,在 200 和 900°C 的温度下各保持 2小时后,以 1080 的温度烧结 2小时,之后通入 Ar气体使气压达到 O.lMPa 后, 冷却至室温。
热处理过程: 烧结体在高纯度 Ar气中, 以 620 温度进行 1小时热处理后, 冷却至室 温后取出。
磁性能评价过程: 烧结磁铁使用中国计量院的 NIM-10000H型 BH大块稀土永磁无损 实施例和比较例的磁铁的评价结果如表 2中所示:
¾ ¾ ¾ ¾匕匕匕匕匕匕匕匕匕
施施施较较施施施较较较较较较较 表 2 实施例和比较例的磁性能评价和氧含量评价的情况
序 铸造 平均片 ~~成形不 ¾ Ifcj ~~ (BH) max 烧结体氧 水旋铸单急圆
法 έ辊冷冷转盘造 厚 良率 (%) ( kGs) ( kOe ) ^ Wo) (MGOe) 含量 (ppm)
1 比较例 0. 08 19 12. 8 11. 6 87. 5 38. 4 569
78 法 67
). 58
30 48. 32'
48.
78.
78
76 49 从上述实施例可以看出, 急冷合金中存在厚度的最佳条件。 片厚较薄的原料中因为包 含较多的非晶相及等轴晶, 会导致取向度变差, Br、 (BH) max降低, 另外, 因为存在较多 易氧化的超细粉会使氧含量增加,造成矫顽力和方形度的性能变差。片厚较厚的原料中因为 包含较多的 α-Fe及 R2Fe17相, 较大的富 Nd相, 会导致取向度变差, Br、 (BH) max降低, 另外, 因为存在较多极易氧化的富 Nd相, 会使氧含量增加, 造成矫顽力和方形度的性能变 差。 另外, 本发明控制了合金熔液的平均冷却速度, 从而得到结晶大小均匀、 过小结晶和 过大结晶含量降低的甩片,进而可在省略气流磨工序之时,也能获得符合要求的成形用粉末。
实施例 2 在原料配制过程: 准备纯度 99.5%的 Nd、 工业用 Fe-B、 工业用纯 Fe、 纯度 99.9%的 Co、 纯度 99.5%的 Mn、 Ga和 Nb; 以原子百分比 ^%计, 按照成分为 ReTfAgJhG^k来配制。 各元素的含量如表 3所示:
¾ 3 _各元素的 ffi比 R T A J G D
Nd Fe Co B Mn Ga Nb
12.8 80.1 0.3 6 0.2 0.3 0.3 按照表 3中元素组成进行配制, 称量、 配制了 lOOKg的原料。
熔炼过程:取配制好的原料放入氧化铝制的坩埚中,在高频真空感应熔炼炉中在 lO^Pa 的真空中以 160CTC以下的温度进行真空熔炼。
铸造过程: 在真空熔炼后的熔炼炉中通入 Ar气体使气压达到 8万 Pa后, 在水冷圆盘 状铸造板上, 以 102°C/秒〜 104°C/秒的冷却速度、并 1*103°C/秒〜 8*103°C/秒的平均冷却速度 铸造成急冷合金。 分成 16等份。
急冷合金的厚度取决于水冷圆盘状铸造板的转速。
急冷合金片的片厚使用千分尺进行测量, 测量 100片次, 做好片厚记录。 测量时需随 机取样测量其厚度, 同一片只能测量一次, 且测量位置靠近合金片的几何中心, 不能将同一 片折断进行测量。 取样需分上层、 中层、 下层进行分布取样。
为避免引入杂质、 污染, 测量时需配带清洁一次性手套。
检测结果显示, 急冷合金的平均厚度为 0.3mm, 且按重量比计, 98%的急冷合金的厚 度为 0.1〜0.7mm。
氢破粉碎过程: 在室温下依次将放置有一等份平均厚度为 0.3mm的急冷合金的氢破用 炉抽真空, 而后分别通入纯度为 99.5%的氢气至表 4序号 1〜7所示压力, 放置 6小时后,在 500°C的温度下抽真空 2小时, 之后进行冷却, 取出氢破后的试料, 氢破后的试料先通过圆 盘式破碎机, 再使用 500目的筛子过筛回收过筛后的粉末。
另外,在室温下依次将放置有一等份平均厚度为 0.3mm的急冷合金的氢破用炉抽真空, 而后分别预热升温至表 5序号 8〜16所示的温度, 再通入纯度为 99.9%的氢气至 0.2MPa, 放置 6小时后, 在 500°C的温度下抽真空 2小时, 之后进行冷却, 取出氢破后的试料, 使用 800目的筛过筛, 回收过筛后的粉末。 过筛后的细粉回收率在 99.9%以上。 在过筛后的粉末中分别添加辛酸甲酯, 辛酸甲酯的添加量为过筛后粉末重量的 0.4%, 再用 V型混料机充分混合 3小时。
磁场成形过程: 使用直角取向型的磁场成型机, 在 1.8T的取向磁场中, 在 0.4ton/cm2 的成型压力下,将上述添加了辛酸甲酯的粉末一次成形为边长为 25mm的立方体,一次成形 后在 0.1T的磁场中退磁; 为使一次成形后的成形体不接触到空气, 将其进行密封, 使用二 次成形机 (等静压成形机) 在 l.Oton/cm2的压力下进行二次成形。 成形后的缺角裂痕调査: 永磁材料只要有一点的裂痕缺角破裂就算不良, 成形后马上 通过目测, 只要发现长度 lmm以上的破裂缺角裂痕, 就判断为不良, 计算不良率。 烧结过程:将各成形体搬至烧结炉进行烧结,烧结在 10— 3Pa的真空下,在 200 和 900°C 的温度下各保持 2小时后,以 1020 的温度烧结 4小时,之后通入 Ar气体使气压达到 O.lMPa 后, 冷却至室温。
热处理过程: 烧结体在高纯度 Ar气中, 以 540 温度进行 1小时热处理后, 冷却至室 温后取出。
磁性能评价过程: 烧结磁铁使用中国计量院的 NIM-10000H型 BH大块稀土永磁无损 测量系统进行磁性能检测。
烧结体中的氧含量评价过程: 烧结体中的氧含量使用日本 HORIBA公司的 EMGA-620W型氧氮分析仪进行检测。 实施例和比较例的磁铁的评价结果如表 4和表 5中所示: 表 4 不同压力下实施例和比较例的磁性能评价和氧含量评价的情况 序 氢气压力 成形不 Br SQ(% (BH)max 烧结体氧含 号 (atm) 良率 (%) (kGs) ) (MGOe) 量 (ppm)
1 比较例 0.07 89 12.5 9.8 86.6 31.3 345
2 实施例 0.1 0.1 14.4 12.9 98.6 53.6 280
3 实施例 0.5 0 14.7 13 99.1 54.2 287
4 实施例 1 0 14.7 13.1 99.1 54.1 278
5 实施例 5 0 14.7 13.1 98.9 54.2 267
6 实施例 10 0.3 14.5 13.1 98.2 53.2 258
7 比较例 15 12 12.8 12.5 78.5 48.2 324 表 5 不同急冷合金预热温度下实施例的磁性能评价和氧含量评价的情况 实实实实实实实实实 预热温 成形不良 Br Hcj SQ (BH)max 烧结体氧含 施施施施施施施施施 度(°C ) 率 (%) (kGs) (kOe) (%) (MGOe) 量 (ppm) 例 25 0.6 14.5 13.3 95.6 52.6 356 例 100 0.5 14.6 13.3 97.8 53.6 345 例 150 0 14.8 13.3 99.2 53.2 234 例 200 0 14.8 13.3 99.1 53.4 236 例 300 0 14.8 13.1 99.1 52.6 216 例 400 0 14.8 13.2 99.2 53.2 215 例 500 0 14.8 13.3 98.2 53.1 156 例 600 0.3 14.6 13.2 95.2 51.4 349
Figure imgf000011_0001
例 700 0.4 14.5 13.2 94.6 51.2 378 从表 4的实施例可以看出, 本发明的氢破粉碎过程存在最适合的粉碎压力: 低压力时, 无法完全吸氢, 也就不能充分粉碎; 而氢气压力过高时不仅存在安全问题, 还存在无法充分 粉碎的问题, 这是因为主相和富 Nd相同时吸氢的话, 粉碎较困难。 从表 5的实施例可以看出, 也存在较适宜的开始氢破粉碎时急冷合金的预热温度范围, 随着起始温度的上升, 混入主相中的氢气量变少, 破裂沿着富 Nd相不断进行, 而在超过 600 的高温时, 富 Nd相的吸氢量也开始变少, 难以破碎。 同实施例 1, 本发明控制了合金熔液的平均冷却速度, 从而得到结晶大小均勾、 过小结 晶和过大结晶含量降低的甩片,进而可在省略气流磨工序之时,也能获得符合要求的成形用 粉末。
实施例 3 在原料配制过程: 准备纯度 99.5%的 Nd、 工业用 Fe-B、 工业用纯 Fe、 纯度 99.9%的 Co、 纯度 99.9%的 Pr、 Dy、 Si、 Ag和 Ti; 以原子百分比 at%计, 按照成分为
Figure imgf000011_0002
来配制。
各元素的含量如表 6所示: 表 6 各元素的配比
R T A J G D
序号 Nd Pr Dy Fe Co B C Si Ag Ti
1 11 2.8 0.8 74.9 0 6 0.25 0.05 0.2 4
2 11 2.8 0.8 74.4 0.5 6 0.25 0.05 0.2 4
3 11 2.8 0.8 73.9 1 6 0.25 0.05 0.2 4
4 11 2.8 0.8 73.4 1.5 6 0.25 0.05 0.2 4
5 11 2.8 0.8 72.9 2 6 0.25 0.05 0.2 4 按照表 6中 5个试验序号来进行配制, 每个序号分别称量、 配制了 lOOKg的原料。 熔炼过程: 每次取 lOOKg配制好的原料放入氧化镁制的坩埚中, 在高频真空感应熔炼 炉中在 10— 的真空中以 1700°C以下的温度进行真空熔炼。
铸造过程: 在真空熔炼后的熔炼炉中通入 Ar气体使气压达到 9万 Pa后, 在水冷圆盘 状铸造板上, 以 102°C/秒〜 104°C/秒的冷却速度、并 1*103°C/秒〜 8*103°C/秒的平均冷却速度 铸造急冷合金。
急冷合金的厚度取决于水冷圆盘状铸造板的转速。
急冷合金片的片厚使用千分尺进行测量, 测量 100片次, 做好片厚记录。 测量时需随 机取样测量其厚度, 同一片只能测量一次, 且测量位置靠近合金片的几何中心, 不能将同一 片折断进行测量。 取样需分上层、 中层、 下层进行分布取样。
为避免引入杂质、 污染, 测量时需配带清洁一次性手套。
检测结果显示, 急冷合金的平均厚度为 0.3mm, 且按重量比计, 95%的急冷合金的厚 度为 0.1〜0.7mm。
在氢破粉碎过程:在室温下将放置有平均厚度为 0.3mm的急冷合金的氢破用炉抽真空, 升温至 200°C, 而后通入纯度为 99.9%的氢气至压力 0.1MPa, 放置 0.5小时后, 边升温边抽 真空, 在 500°C的温度下抽真空 2小时; 之后进行冷却, 取出氢破后的试料;
氢破后的试料, 先通过连续白式研磨机, 再使用 300目的筛子过筛, 回收过筛后的粉 末。 过筛后的细粉回收率在 99.95%以上。
在过筛后的粉末中添加辛酸甲酯, 辛酸甲酯的添加量为过筛后的粉末重量的 0.4%, 用 V型混料机充分混合 1小时。
磁场中成形过程: 使用直角取向型的磁场成型机,在 1.6T的取向磁场中,在 0.4ton/cm2 的成型压力下,将上述添加了辛酸甲酯的粉末一次成形为边长为 25mm的立方体。一次成形 后在 0.1T的磁场中退磁; 为使一次成形后的成形体不接触到空气将其进行密封, 使用二次 成形机 (等静压成形机) 在 l.Oton/cm2的压力下进行二次成形。
成形后的缺角裂痕调査: 永磁材料只要有一点的裂痕缺角破裂就算不良, 成形后马上 通过目测, 只要发现长度 2mm以上的破裂缺角裂痕, 就判断为不良, 计算不良率。 序号烧结过程:将各成形体搬至烧结炉进行烧结,烧结在 10— 3Pa的真空下,在 200°C、 500°C 实实实比比
和 900°C施施施的温度下各保持 2小时后, 以 1080 的温度烧结 4小时, 之后通入 Ar气体使气压 达到 O.lMPa后, 冷却至室温。 热处理过程: 烧结体在高纯度 Ar气中, 以 540 温度进行 1小时热处理后, 冷却至室 温后取出。
磁性能评价过程: 烧结磁铁使用中国计量院的 NIM-10000H型 BH大块稀土永磁无损 测量系统进行磁性能检测。
烧结体中的氧含量评价过程: 烧结体中的氧含量使用日本 HORIBA公司的 EMGA-620W型氧氮分析仪进行检测。 实施例和比较例磁铁的评价结果如表 7中所示:
表 7 各实施例和比较例的磁性能评价和氧含量评价的情况
99. 4 232 98. 4 254 98. 4 267
4 95. 278
93.
从上述实施例和比较例可以看出, 本发明的破碎方法还存在最适合的 Co添加量, Co 添加量较多时, 粉碎性差, 成形不良也会增加。
通过粉末 X射线衍射的调査结果, 随着 Co添加量的增加, 可观察到 R2Co2型、 R2Co3 型的结晶, 由此可知含有 Co的金属化合物未进行吸氢, 这样就会使粉碎性变差, 成形性变
同实施例 1, 本发明控制了合金熔液的平均冷却速度, 从而得到结晶大小均勾、 过小结 晶和过大结晶含量降低的甩片,进而可在省略气流磨工序之时,也能获得符合要求的成形用 粉末。
上述实施例仅用来进一步说明本发明的几种具体实施方式, 但本发明并不局限于实施 例, 凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰, 均落 入本发明技术方案的保护范围内。 工业实用性
本发明通过对气流粉碎之前的制作过程进行改进, 省略气流粉碎的步骤, 实现低成 本的生产。

Claims

权 利 要 求 书
1、省略气流粉碎工序的稀土磁铁成形用粉末制造方法,所述的稀土磁铁为含有 R2T14B 主相的磁铁, 所述的 R为选自包含钇元素在内的稀土元素中的至少一种, 所述 T为 包括 Fe的至少一种过渡金属元素, 其特征在于, 包括以下的步骤:
1 ) 铸片: 将稀土磁铁原料合金熔融液用薄片铸造法铸造, 得到平均厚度为 0.2〜 0.4mm的急冷合金;
2)氢破粉碎:将所述急冷合金在 O.OlMPa以上、 IMPa以下的氢气压力下保持 0.5〜 24小时获得粉末。
2、 根据权利要求 1所述的省略气流粉碎工序的稀土磁铁成形用粉末制造方法, 其特 征在于: 按重量比计, 95%以上的急冷合金的厚度为 0.1〜0.7mm。
3、 根据权利要求 2所述的省略气流粉碎工序的稀土磁铁成形用粉末制造方法, 其特 征在于: 所述急冷合金是以 102°C/秒以上、 104°C/秒以下的冷却速度、并 1*103°C/秒〜 8*103 °C/秒的平均冷却速度获得。
4、 根据权利要求 1所述的省略气流粉碎工序的稀土磁铁成形用粉末制造方法, 其特 征在于: 还包括将所述粉末脱氢的工序。
5、 根据权利要求 2或 3所述的省略气流粉碎工序的稀土磁铁成形用粉末制造方法, 其特征在于: 所述稀土磁铁还包括占比为 0.01at%〜10at%的掺杂元素 M, 所述 M为 选自 Al、 Ga、 Ca、 Sr、 Si、 Sn、 Ge 、 Ti、 Bi、 C、 S或 P中的至少一种。
6、 根据权利要求 2或 3所述的省略气流粉碎工序的稀土磁铁成形用粉末制造方法, 其特征在于: 还包括将所述粉末通过 300目〜 800目筛的工序, 或在所述氢破粉碎工 序后,还需要通过机械式破碎机或机械式磨碎机处理,再过 300目〜 800目筛的工序。
7、 根据权利要求 2或 3所述的省略气流粉碎工序的稀土磁铁成形用粉末制造方法, 其特征在于: 是将急冷合金预加热至 150°C〜600°C, 而后将所述急冷合金在 O.OlMPa 以上、 IMPa以下的氢气压力下保持 1〜6小时获得粉末。
8、 根据权利要求 2或 3所述的省略气流粉碎工序的稀土磁铁成形用粉末制造方法, 其特征在于: 所述稀土磁铁原料中, Co含量为 lat%以下。
9、 根据权利要求 4所述的省略气流粉碎工序的稀土磁铁成形用粉末制造方法, 其特 征在于: 所述急冷合金以原子百分比 at%计, 其成分为
Figure imgf000016_0001
其中, R为 Nd 或包含 Nd和选自 La、 Ce、 Pr、 Sm、 Gd、 Dy、 Tb、 Ho、 Er、 Eu、 Tm、 Lu或 Y中的 至少一种, T为 Fe或包含 Fe和选自 Ru、 Co或 Ni中的至少一种, A为 B或包含 B 和选自 C或 P中的至少一种, J为选自 Cu、 Mn、 Si或 Cr中的至少一种, G为选自 Al、 Ga、 Ag、 Bi或 Sn中的至少一种, D为选自 Zr、 Hf、 V、 Mo、 W、 Ti或 Nb中的 至少一种; 以及
e为 12≤e≤16,
g为 5≤g≤9,
h为 0.05≤h≤l,
i为 0.2<i<2.0,
k为 0≤j≤4,
Figure imgf000016_0002
10、 省略气流粉碎工序的稀土磁铁制造方法, 所述的稀土磁铁为含有 R2T14B主相的 磁铁, 所述的 R为选自包含钇元素在内的稀土元素中的至少一种, 所述 T为包括 Fe 的至少一种过渡金属元素, 其特征在于, 包括如下的步骤:
稀土磁铁原料合金熔融液用薄片铸造法铸造, 得到平均厚度为 0.2〜0.4mm的急 冷合金, 将所述急冷合金在 O.OlMPa以上、 IMPa以下的氢气压力下保持 0.5〜24小 时破碎, 之后脱氢, 过 300目〜 800目筛获得粉末; 以及
将所述粉末用磁场成形和等静压成形组合的 2段式成形法加工成形,制作成形体 的工序; 以及
将所述成形体进行烧结, 制作永久磁铁的工序。
PCT/CN2013/086806 2012-11-09 2013-11-08 稀土磁铁成形用粉末和稀土磁铁省略气流粉碎工序的制造方法 WO2014071873A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/441,944 US20150302960A1 (en) 2012-11-09 2013-11-08 Manufacturing method of a powder for compacting rare earth magnet and the rare earth magnet omitting jet milling process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210448946.5A CN102956337B (zh) 2012-11-09 2012-11-09 一种烧结Nd-Fe-B系磁铁的省却工序的制作方法
CN201210448946.5 2012-11-09

Publications (1)

Publication Number Publication Date
WO2014071873A1 true WO2014071873A1 (zh) 2014-05-15

Family

ID=47765032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/086806 WO2014071873A1 (zh) 2012-11-09 2013-11-08 稀土磁铁成形用粉末和稀土磁铁省略气流粉碎工序的制造方法

Country Status (3)

Country Link
US (1) US20150302960A1 (zh)
CN (1) CN102956337B (zh)
WO (1) WO2014071873A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102956337B (zh) * 2012-11-09 2016-05-25 厦门钨业股份有限公司 一种烧结Nd-Fe-B系磁铁的省却工序的制作方法
CN103352181B (zh) * 2013-05-31 2015-12-09 全椒君鸿软磁材料有限公司 Si-Bi-Mn-Be系铁基非晶合金薄带及其制备方法
CN103600070B (zh) * 2013-10-24 2017-11-10 厦门钨业股份有限公司 稀土合金磁性粉末成形体的制造方法和稀土磁铁的制造方法
CN104674115A (zh) 2013-11-27 2015-06-03 厦门钨业股份有限公司 一种低b的稀土磁铁
CN103831435B (zh) * 2014-01-27 2018-05-18 厦门钨业股份有限公司 磁体合金粉末与其磁体的制造方法
CN103794354B (zh) * 2014-02-25 2015-12-30 东莞市金材五金有限公司 一种钕铁硼烧结磁铁的制备方法
CN104952574A (zh) 2014-03-31 2015-09-30 厦门钨业股份有限公司 一种含W的Nd-Fe-B-Cu系烧结磁铁
CN105321647B (zh) 2014-07-30 2018-02-23 厦门钨业股份有限公司 稀土磁铁用急冷合金和稀土磁铁的制备方法
CN106448985A (zh) * 2015-09-28 2017-02-22 厦门钨业股份有限公司 一种复合含有Pr和W的R‑Fe‑B系稀土烧结磁铁
CN105336464B (zh) * 2015-11-30 2017-06-30 宁波可可磁业股份有限公司 一种钕铁硼磁性材料的制备方法
CN105405565B (zh) * 2015-12-18 2018-01-23 南京信息工程大学 一种磁性材料及制备方法
GB201614476D0 (en) * 2016-08-25 2016-10-12 Univ Of Birmingham The Method of facilitating separation of Nd from NdFeB magnets
CN108172390B (zh) * 2018-01-30 2020-08-07 宁波铄腾新材料有限公司 一种提升驱动电机用富铈磁体性能均匀性的制备方法
CN110136947B (zh) * 2018-02-09 2021-01-29 宁波招宝磁业有限公司 一种具有耐高温的烧结钕铁硼磁体的制备方法
CN111223628B (zh) * 2020-02-26 2022-02-01 厦门钨业股份有限公司 钕铁硼磁体材料、原料组合物、制备方法、应用
CN111524675B (zh) * 2020-04-30 2022-02-08 福建省长汀金龙稀土有限公司 一种r-t-b系永磁材料及其制备方法和应用
CN113223807B (zh) * 2021-05-31 2022-08-19 包头金山磁材有限公司 一种钕铁硼永磁体及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1112720A (zh) * 1992-09-30 1995-11-29 上海申建冶金机电技术工程公司 高性能微晶稀土永磁体的制造方法
EP1457998A1 (en) * 2001-12-19 2004-09-15 Neomax Co., Ltd. Rare earth element-iron-boron alloy, and magnetically anisotropic permanent magnet powder and method for production thereof
WO2008053371A2 (en) * 2006-11-01 2008-05-08 Toyota Jidosha Kabushiki Kaisha Production method for nanocomposite magnet
CN101740190A (zh) * 2008-11-26 2010-06-16 绵阳西磁磁电有限公司 一种高性价比高耐腐蚀性烧结钕铁硼磁体及制备方法
CN101812606A (zh) * 2010-03-05 2010-08-25 宁波科田磁业有限公司 铸锭改铸片添加重稀土氧化物制备低成本钕铁硼的方法
CN102956337A (zh) * 2012-11-09 2013-03-06 厦门钨业股份有限公司 一种烧结Nd-Fe-B系磁铁的省却工序的制作方法
CN102982936A (zh) * 2012-11-09 2013-03-20 厦门钨业股份有限公司 烧结Nd-Fe-B系磁铁的省却工序的制作方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3415208B2 (ja) * 1993-07-06 2003-06-09 住友特殊金属株式会社 R−Fe−B系永久磁石材料の製造方法
JP3294841B2 (ja) * 2000-09-19 2002-06-24 住友特殊金属株式会社 希土類磁石およびその製造方法
KR100771676B1 (ko) * 2000-10-04 2007-10-31 가부시키가이샤 네오맥스 희토류 소결자석 및 그 제조방법
CN1225750C (zh) * 2002-12-26 2005-11-02 烟台正海磁性材料有限公司 含微量氧的R-Fe-B系烧结磁体及其制造方法
CN102211192B (zh) * 2011-06-09 2012-12-26 天津一阳磁性材料有限责任公司 二次回收料制备高性能钕铁硼的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1112720A (zh) * 1992-09-30 1995-11-29 上海申建冶金机电技术工程公司 高性能微晶稀土永磁体的制造方法
EP1457998A1 (en) * 2001-12-19 2004-09-15 Neomax Co., Ltd. Rare earth element-iron-boron alloy, and magnetically anisotropic permanent magnet powder and method for production thereof
WO2008053371A2 (en) * 2006-11-01 2008-05-08 Toyota Jidosha Kabushiki Kaisha Production method for nanocomposite magnet
CN101740190A (zh) * 2008-11-26 2010-06-16 绵阳西磁磁电有限公司 一种高性价比高耐腐蚀性烧结钕铁硼磁体及制备方法
CN101812606A (zh) * 2010-03-05 2010-08-25 宁波科田磁业有限公司 铸锭改铸片添加重稀土氧化物制备低成本钕铁硼的方法
CN102956337A (zh) * 2012-11-09 2013-03-06 厦门钨业股份有限公司 一种烧结Nd-Fe-B系磁铁的省却工序的制作方法
CN102982936A (zh) * 2012-11-09 2013-03-20 厦门钨业股份有限公司 烧结Nd-Fe-B系磁铁的省却工序的制作方法

Also Published As

Publication number Publication date
CN102956337A (zh) 2013-03-06
CN102956337B (zh) 2016-05-25
US20150302960A1 (en) 2015-10-22

Similar Documents

Publication Publication Date Title
WO2014071873A1 (zh) 稀土磁铁成形用粉末和稀土磁铁省略气流粉碎工序的制造方法
WO2021098224A1 (zh) 钕铁硼磁体材料、原料组合物及制备方法和应用
JP6419869B2 (ja) セリウム含有ネオジム鉄ホウ素磁石およびその製造方法
WO2014071874A1 (zh) 一种稀土磁铁成形用粉末和稀土磁铁省略气流粉碎工序的制造方法
US9427804B2 (en) Method for producing a high-performance neodymium—iron—boron rare earth permanent magnetic material
US10109401B2 (en) Method for increasing coercive force of magnets
WO2011145674A1 (ja) 希土類永久磁石の製造方法および希土類永久磁石
JP2021516870A (ja) 低B含有R−Fe−B系焼結磁石及び製造方法
WO2015149685A1 (zh) 一种含W的R‐Fe‐B‐Cu系烧结磁铁及急冷合金
JP2017188661A (ja) ネオジム鉄ホウ素廃棄物で製造されるネオジム鉄ホウ素永久磁石およびその製造方法
TW202121453A (zh) 釹鐵硼磁體材料、原料組合物及製備方法和應用
TWI617676B (zh) 複合含有Pr和W的R-Fe-B系稀土燒結磁鐵
TW202121451A (zh) 釹鐵硼磁體材料、原料組合物及製備方法和應用
JP2013001985A (ja) 希土類−遷移金属系合金粉末とその製造方法
CN103878377B (zh) 稀土磁铁用合金粉末、以及稀土磁铁的制造方法
CN113593882B (zh) 2-17型钐钴永磁材料及其制备方法和应用
CN111091945B (zh) 一种r-t-b系永磁材料、原料组合物、制备方法、应用
CN113517104B (zh) 主辅相合金钐钴磁体材料、烧结体用材料、其制备方法和应用
CN113421761B (zh) 一种降低改性磁粉吸附能的高性能烧结钕铁硼制备方法
WO2014056447A1 (zh) 稀土合金磁性粉末成形体的制造方法和稀土磁铁的制造方法
WO2014059772A1 (zh) 高抗腐蚀性Re-(Fe, TM)-B磁体及其制备方法
WO2014040525A1 (zh) 稀土磁铁用合金粉末、稀土磁铁的制造方法及制粉装置
WO2016155674A1 (zh) 一种含有Ho和W的稀土磁铁
CN112074621A (zh) R-t-b系稀土类烧结磁铁用铸造合金薄片
WO2014059771A1 (zh) 含氧Re-(Fe, TM)-B系烧结磁体及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14441944

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13853009

Country of ref document: EP

Kind code of ref document: A1