CN102956337A - 一种烧结Nd-Fe-B系磁铁的省却工序的制作方法 - Google Patents

一种烧结Nd-Fe-B系磁铁的省却工序的制作方法 Download PDF

Info

Publication number
CN102956337A
CN102956337A CN2012104489465A CN201210448946A CN102956337A CN 102956337 A CN102956337 A CN 102956337A CN 2012104489465 A CN2012104489465 A CN 2012104489465A CN 201210448946 A CN201210448946 A CN 201210448946A CN 102956337 A CN102956337 A CN 102956337A
Authority
CN
China
Prior art keywords
hydrogen
sintered
manufacture method
atomic percent
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012104489465A
Other languages
English (en)
Other versions
CN102956337B (zh
Inventor
永田浩
吴冲浒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Jinlong Rare Earth Co ltd
Original Assignee
Xiamen Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen Tungsten Co Ltd filed Critical Xiamen Tungsten Co Ltd
Priority to CN201210448946.5A priority Critical patent/CN102956337B/zh
Publication of CN102956337A publication Critical patent/CN102956337A/zh
Priority to PCT/CN2013/086806 priority patent/WO2014071873A1/zh
Priority to US14/441,944 priority patent/US20150302960A1/en
Application granted granted Critical
Publication of CN102956337B publication Critical patent/CN102956337B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/04Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/06Extraction of hydrogen
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/007Ferrous alloys, e.g. steel alloys containing silver
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/0536Alloys characterised by their composition containing rare earth metals sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/086Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种烧结Nd-Fe-B系磁铁的省却工序的制作方法,是在制造烧结磁铁中氧含量为2500ppm以下的Nd-Fe-B系烧结磁铁的工序中:在氢破粉碎工序中,使用以氢破粉碎工序之前的工序所得到的平均厚度为0.1~0.5mm的薄片状合金原料,在0.01MPa以上、1MPa以下的氢气压力下保持不超过24小时进行氢破粉碎;然后,不进行气流粉碎,直接使用磁场成形法进行成形,在真空或惰性气体中以900℃~1140℃的温度进行烧结。该方法实现了能够将气流粉碎工序省略掉,达到了可有效利用宝贵的稀土资源,可简化工序,还可以进行低成本的生产的目的;另外,还可以防止气流粉碎法中无论如何都避免不了的氧化作用,使之成为实质上的非氧化工序,使超高性能磁铁的大量制造成为可能。

Description

一种烧结Nd-Fe-B系磁铁的省却工序的制作方法
技术领域
本发明涉及磁铁的制造技术领域,特别是涉及一种烧结Nd-Fe-B系(钕-铁-硼)磁铁的省却工序的制作方法。
背景技术
磁铁是可以产生磁场的物体,为一磁偶极子,能够吸引铁磁性物质如铁、镍、钴等金属。Nd-Fe-B系(钕-铁-硼)磁铁是磁铁中的一种,它是目前发现商品化性能最高的磁铁,被人们称为磁王,拥有极高的磁性能,其最大磁能积(BH)max高过铁氧体(Ferrite)10倍以上;其本身的机械加工性能亦相当之好,工作温度最高可达200摄氏度,而且其质地坚硬,性能稳定,有很好的性价比,故其应用极其广泛。
Nd-Fe-B系(钕-铁-硼)磁铁的制作工艺有二种,一种是烧结钕-铁-硼磁铁,另一种是粘结钕-铁-硼磁铁。现有技术的烧结Nd-Fe-B系(钕-铁-硼)磁铁的制作工艺主要包括如下流程:称量→熔炼→铸造→氢破粉碎→气流粉碎(JM)→成形→烧结→热处理等。
作为Nd-Fe-B系磁铁的粉碎法,氢破粉碎法(HD)+气流微粉碎法(JM)的2段粉碎法是比较常用的。氢破粉碎着眼于使Nd磁铁(即钕铁硼磁铁)合金吸氢,随着氢的吸收,体积不断膨胀使内部产生破损、裂痕或破裂,这是一种比较简单的粉碎方法。而气流粉碎法(JM)是使粉末在几乎无氧的气氛下进行超声加速,互相撞击,并将撞击后的粉末分级为粗粉和粉碎粉。这种分级使用的是能够进行高速旋转的筛状的旋转刀,但是因为必须保证5000rpm左右稳定的转速,会产生旋转刀的消耗问题,同时也需要轴承等精密的机械部件。
另一方面,在现有技术的Nd-Fe-B系磁铁的制作方法中,普遍认为:将粉碎后氧化的超细粉(1μm以下)进行分级,去除被氧化的超细粉是比较好的,这就需要用到粉末的分级设备以及能使惰性气体进行循环再利用的特殊过滤器等复杂设备。
另外,稀土磁铁的细粉末极易和氧发生反应,着火并剧烈燃烧。所以在进行气流粉碎设备的清扫时,实际上是与火粉共同作业,这就给操作人员的作业带来了安全隐患。
随着Nd-Fe-B系磁铁制造的低氧化不断发展,成形至烧结工序的气密性技术的不断进步,成形至烧结工序几乎不氧化。其余会发生氧化的工序为,在大量气流中进行粉碎的气流磨工序。如果使用气流粉碎法无法避免粉末氧化的话,以后将无法成为把氧含量降为更低的时代。
另外,随着稀土资源的不断开采和不断减少,稀土成为宝贵资源。所以必须有效利用稀土,这样一来,气流磨粉碎工序(JM)中0.5~5%程度的粉末损失也会逐渐成为问题。
发明内容
本发明的目的在于克服现有技术之不足,提供一种烧结Nd-Fe-B系磁铁的省却工序的制作方法,是通过对气流粉碎之前的制作过程进行改进,从而实现了能够将气流粉碎工序省略掉,达到了可有效利用宝贵的稀土资源,可简化工序,还可以进行低成本的生产的目的;另外,还可以防止气流粉碎法中无论如何都避免不了的氧化作用,使之成为实质上的非氧化工序,使超高性能磁铁的大量制造成为可能。
本发明解决其技术问题所采用的技术方案是:一种烧结Nd-Fe-B系磁铁的省却工序的制作方法,是在制造烧结磁铁中氧含量为2500ppm以下的Nd-Fe-B系烧结磁铁的工序中:
在氢破粉碎工序中,使用以氢破粉碎工序之前的工序所得到的平均厚度为0.1~0.5mm的薄片状合金原料,在0.01MPa以上、1MPa以下的氢气压力下保持不超过24小时进行氢破粉碎;
然后,不进行气流粉碎,直接使用磁场成形法进行成形,在真空或惰性气体中以900℃~1140℃的温度进行烧结。
进一步的,在氢破粉碎工序中,是在0.01MPa以上、1MPa以下的氢气压力下保持不超过1~6小时进行氢破粉碎。
进一步的,在氢破粉碎工序中,是先将薄片状合金原料预加热至200℃~700℃后再进行氢破粉碎。
进一步的,在氢破粉碎工序后,先通过破碎机或磨碎机处理后,再使用磁场成形法进行成形。
所述磁场成形法进行成形为在模具中使用的是磁场成形和等静压成形组合的2段式成形。
所述薄片状合金原料以原子百分比计,其成分为ReTfAgJhGiDk
其中:
R为包含稀土元素Nd和稀土元素La、Ce、Pr、Sm、Gd、Dy、Tb、Ho、Er、Eu、Tm、Lu、Y中的至少二种,T为包含元素Fe和元素Ru、Co、Ni中的至少一种,A为包含元素B和元素C、P中的至少一种,J为元素Cu、Mn、Si、Cr中的至少一种,G为素Al、Ga、Ag、Bi、Sn中的至少一种,D为元素Zr、Hf、V、Mo、W、Ti、Nb中的至少一种;
e的原子百分比at%为12≤e≤16,
g的原子百分比at%为5≤g≤9,
h的原子百分比at%为0.05≤h≤1,
i的原子百分比at%为0.2≤i≤2.0,
k的原子百分比at%为0≤j≤4,
f的原子百分比at%为f=100―e―g―h―i―k。
所述薄片状合金原料的成分中,其中元素Co含量为1at%以下。
本发明的一种烧结Nd-Fe-B系磁铁的省却工序的制作方法,是在熔炼铸造原料的Nd-Fe-B合金时,铸造出平均厚度为0.1mm~0.5mm的薄片状合金即薄片状铸片,其中,铸造法可以采用目前公知的水冷斜面铸造法、水冷平面圆盘铸造法、双辊法、单辊法及离心铸造法等薄片铸造法。薄片状的Nd-Fe-B铸片放入真空容器中进行氢破粉碎,在0.01MPa至1MPa的氢气氛中放置不超过24小时进行氢破粉碎,之后在真空中脱氢,粉碎基本在该工序结束。在后继的工序中,取出氢破粉碎后的粉末,根据粉末的性质,适当混入防氧化剂、成形助剂、成形润滑剂等。然后,在磁场中成形,成形性与以往的粉末有很大的不同,最好使用以往的简单磨具进行磁场成形和等静压成形(CIP)组合的2段式成形。成形体在真空中脱脂、脱气,在真空或惰性气体中以900℃~1140℃的温度烧结。制成的烧结磁铁的氧含量可心以在1000ppm以下,这是因为不使用气流微粉碎,可减少气氛与粉末接触的机会,实现了低氧含量。
本发明的有益效果是,由于采用了在制造烧结磁铁中氧含量为2500ppm以下的Nd-Fe-B系烧结磁铁的工序中:在氢破粉碎工序中,使用以氢破粉碎工序之前的工序所得到的平均厚度为0.1~0.5mm的薄片状合金原料,在0.01MPa以上、1MPa以下的氢气压力下保持不超过24小时进行氢破粉碎;然后,不进行气流粉碎,直接使用磁场成形法进行成形,在真空或惰性气体中以900℃~1140℃的温度进行烧结。该方法具有节省稀土资源,简化制作工序,降低制作成本的特点。
以往的常识认为,气流粉碎是必须的工序,认为其为必须条件是出于以下考虑:为使具有一定狭小粒度分布的粉末具备成形性、取向性及矫顽力等磁铁特性。
但是,因为粉末与气流中的氧成分接触的机会较多,就算想要降低氧含量,也是有限度的。另外,因为气流粉碎的分级功能,分级后的超细粉实际上多被丢弃。超细粉中含有较多稀土成分,这会产生资源及成本的问题。
本发明针对磁铁基本工序中,气流微粉碎法是否可以省略进行了深入研究和实验。结果发现:在特定条件下制造原料合金的话,气流粉碎法可进行省略。省略了气流粉碎工序,可有效利用宝贵的稀土资源,可简化工序,还可以进行低成本的生产。另外,还可防止气流粉碎法中无论如何都避免不了的氧化作用,使之成为实质上的非氧化工序,使超高性能磁铁的大量制造第一次成为可能。
以下结合实施例对本发明作进一步详细说明;但本发明的一种烧结NdFeB系磁铁的省却工序的制作方法不局限于实施例。
具体实施方式
本发明的一种烧结Nd-Fe-B系磁铁的省却工序的制作方法,是在制造烧结磁铁中氧含量为2500ppm以下的Nd-Fe-B系烧结磁铁的工序中:
在氢破粉碎工序中,使用以氢破粉碎工序之前的工序所得到的平均厚度为0.1~0.5mm的薄片状合金原料,在0.01MPa以上、1MPa以下的氢气压力下保持不超过24小时进行氢破粉碎;
然后,不进行气流粉碎,直接使用磁场成形法进行成形,在真空或惰性气体中以900℃~1140℃的温度进行烧结。
进一步优选的是,在氢破粉碎工序中,是在0.01MPa以上、1MPa以下的氢气压力下保持不超过1~6小时进行氢破粉碎。
进一步优选的是,在氢破粉碎工序中,是先将薄片状合金原料预加热至200℃~700℃后再进行氢破粉碎。
进一步优选的是,在氢破粉碎工序后,先通过破碎机或磨碎机处理后,再使用磁场成形法进行成形。
所述磁场成形法进行成形为在模具中使用的是磁场成形和等静压成形组合的2段式成形。
所述薄片状合金原料以原子百分比计,其成分为ReTfAgJhGiDk
其中:
R为包含稀土元素Nd和稀土元素La、Ce、Pr、Sm、Gd、Dy、Tb、Ho、Er、Eu、Tm、Lu、Y中的至少二种,T为包含元素Fe和元素Ru、Co、Ni中的至少一种,A为包含元素B和元素C、P中的至少一种,J为元素Cu、Mn、Si、Cr中的至少一种,G为素Al、Ga、Ag、Bi、Sn中的至少一种,D为元素Zr、Hf、V、Mo、W、Ti、Nb中的至少一种;
e的原子百分比at%为12≤e≤16,
g的原子百分比at%为5≤g≤9,
h的原子百分比at%为0.05≤h≤1,
i的原子百分比at%为0.2≤i≤2.0,
k的原子百分比at%为0≤j≤4,
f的原子百分比at%为f=100―e―g―h―i―k。
所述薄片状合金原料的成分中,其中元素Co含量为1at%以下。
下面通过几个实施例来进一步说明本发明的一种烧结NdFe-B系磁铁的省却工序的制作方法。
实施例一,
在原料配制过程:准备纯度99.5%的Nd、工业用Fe-B、工业用纯Fe、纯度99.9%的Co、纯度99.5%的Cu、Al、Zr;
以原子百分比at%计,按照成分为ReTfAgJhGiDk来配制。
各元素的含量如下表所示:
Figure BDA00002381021200061
为完成上述配制组成,合计称量、配制了500kg的原料。
在熔炼过程:每次取100kg配制好的原料放入氧化铝制的坩埚中,在高频真空感应熔炼炉中在10-2Pa的真空中以1500℃以下的温度进行真空熔炼。
在铸造过程:在真空熔炼后的熔炼炉中通入Ar气体,在5万Pa压力的真空中,使用以下各铸造法进行铸造;
Figure BDA00002381021200062
Figure BDA00002381021200063
在氢破粉碎过程:向各原料薄片通入0.1MPa的纯度为99.5%的氢气,放置2小时后抽真空,在500℃的温度下抽2小时真空;之后进行冷却,取出氢破粉碎后的试料。
取出的粉末,先通颚式破碎机,再使用#300的超声波振动筛过筛,来回收过筛后的粉末;过筛后的细粉约在99.9%以上。
取消通常使用的气流微粉碎;在氢破粉碎后的粉末中添加作为成形助剂使用的市面上销售的成形用蜡(蜡系)和成形模具润滑剂,合计添加原料重量的0.2wt%,再用V型混料机充分混合2小时。
在磁场中成形过程:全部粉末都使用直角取向型的磁场成型机,在1.8T的取向磁场中,在0.2ton/cm2的成型压力下,1次成形为边长约25mm的100个立方体。一次成形后在0.2T的磁场中退磁;
为使一次成形后的成形体不接触到空气,将其进行密封,使用二次成形机(等静压成形机)在1.4ton/cm2的压力下进行二次成形。
进行了成形后的缺角裂痕调查:永磁材料只要有一点的裂痕缺角破裂就算不良,成形后马上通过目测,只要发现长度1mm以上的破裂缺角裂痕,就判断为不良,计算不良率。
在烧结过程:是将各成形体搬至烧结炉进行烧结;烧结在10-3Pa的真空下,在200℃、900℃的温度下各保持2小时后,以1080℃的温度烧结2小时,之后通入Ar气体使气压达到0.1MPa后,冷却至室温。
在热处理过程:烧结体在高纯度Ar气中,以620℃温度进行1小时热处理后,冷却至室温后取出。
在磁性能评价过程:烧结磁铁使用中国计量院型的NIM-10000H型BH大块稀土永磁无损测量系统进行磁性能检测。
在烧结体中的氧含量评价过程:烧结体中的氧含量使用日本HORIBA公司的EMGA-620W型氧氮分析仪进行检测。
下表是实施例和比较例的磁性能评价和氧含量评价的情况
Figure BDA00002381021200081
从上述实施例可以看出,将不进行气流微碎的粉末作为原料可知道,薄片状原料中存在厚度的最佳条件。
片厚较薄的原料中因为包含较多的非晶相及等轴晶,会导致取向度变差,Br、(BH)max降低。另外,因为存在较多易氧化的超细粉会使氧含量增加,造成矫顽力和方形度的性能变差。
片厚较厚的原料中因为包含较多的α-Fe及2-17相,大的富Nd相,会导致取向度变差,Br、(BH)max降低。另外,因为存在较多极易氧化的富Nd相,会使氧含量增加,造成矫顽力和方形度的性能变差。
将不进行气流微碎的粉末作为原料,对薄片状原料的厚度进行调查后可知,与磁性能相应,存在厚度的最佳条件。
通过对原料厚度进行适当的控制,可以省去气流粉碎。
实施例二,
在原料配制过程:准备纯度99.5%的Nd、工业用Fe-B、工业用纯Fe、纯度99.9%的Co、纯度99.5%的Mn、Ga、Nb
以原子百分比at%计,按照成分为ReTfAgJhGiDk来配制。
各元素的含量如下表所示:
为完成上述配制组成,合计称量、配制了100kg的原料。
在熔炼过程:每次取100kg配制好的原料放入氧化铝制的坩埚中,在高频真空感应熔炼炉中在10-1Pa的真空中以1600℃以下的温度进行真空熔炼。
在铸造过程:在真空熔炼后的熔炼炉中通入Ar气体,在8万Pa的真空中,在水冷圆盘状铸造板上铸造成0.3mm的厚度。
在氢破粉碎过程:
往平均厚度为0.3mm的原料薄片中分别按下表试验号1~7所示压力通入纯度为99.5%的氢气,放置2小时后抽真空。在500℃的温度下抽真空2小时。之后进行冷却,取出氢破后的试料;取出的粉末,先通圆盘式破碎机,再使用#500的超声波振动筛过筛,来回收过筛后的粉末;过筛后的细粉约在99.8%以上;
另外,将厚度同为0.3mm的原料合金放入氢破用炉中,调节为下表试验号8~16所示的温度,通入纯度为99.9%、0.2MPa的氢气进行氢破;取出粉碎后粉末时,先通万能研磨机,再使用#350的超声波振动筛回收粉末;过筛后的细粉约在99.7%以上;
氢气压力表
  试验号 氢气压力(atm)
  1   0.07
  2   0.1
  3   0.5
  4   1
  5   5
  6   10
  7   15
温度表
Figure BDA00002381021200101
取消通常使用的气流微粉碎;在氢破粉碎后的粉末中添加作为成形助剂使用的市面上销售的成形用蜡(蜡系)和成形模具润滑剂,合计添加原料重量的0.4wt%,再用V型混料机充分混合3小时。
在磁场中成形过程:全部粉末都使用直角取向型的磁场成型机,在1.8T的取向磁场中,在0.4ton/cm2的成型压力下,1次成形为边长约25mm的100个立方体。一次成形后在0.1T的磁场中退磁;
为使一次成形后的成形体不接触到空气,将其进行密封,使用二次成形机(等静压成形机)在1.0ton/cm2的压力下进行二次成形。
进行了成形后的缺角裂痕调查:永磁材料只要有一点的裂痕缺角破裂就算不良,成形后马上通过目测,只要发现长度1mm以上的破裂缺角裂痕,就判断为不良,计算不良率。
在烧结过程:将各成形体搬至烧结炉进行烧结;烧结在10-3Pa的真空下,在200℃、900℃的温度下各保持2小时后,以1020℃的温度烧结4小时,之后通入Ar气体使气压达到0.1MPa后,冷却至室温。
在热处理过程:烧结体在高纯度Ar气中,以540℃温度进行1小时热处理后,冷却至室温后取出。
在磁性能评价过程:烧结磁铁使用中国计量院型的NIM-10000H型BH大块稀土永磁无损测量系统进行磁性能检测。
在烧结体中的氧含量评价过程:烧结体中的氧含量使用日本HORIBA公司的EMGA-620W型氧氮分析仪进行检测。
下表是不同压力下实施例和比较例的磁性能评价和氧含量评价的情况
下表是不同温度下实施例和比较例的磁性能评价和氧含量评价的情况
Figure BDA00002381021200112
从上述实施例可以看出,当条件为不进行气流微粉碎时可知,氢破粉碎时存在最适合的粉碎压力。低压力时,无法完全吸氢,也就不能充分粉碎。氢气压力较高时不仅存在安全问题,还存在无法充分粉碎的问题。这是因为主相和富Nd相同时吸氢的话,粉碎较困难。
另外可知,也存在较适宜的开始氢破粉碎的温度范围。随着起始温度的上升,混入主相中的氢气量变少,沿着富Nd相的破裂不断进行。且在超过600℃的高温时,富Nd相的吸氢量也变少了。
当条件为不进行气流微粉碎时可知,氢破粉碎时存在最适合的粉碎压力。通过对原料厚度进行适当的控制,可以省去气流粉碎。另外可知,也存在较适宜的开始氢破粉碎的温度范围。
实施例三,
在原料配制过程:以原子百分比at%计,按照成分为ReTfAgJhGiDk来配制。
各元素的含量如下表所示:
按照上述5个实验号来进行配制,每个实验号称量、配制了100kg的原料。
在熔炼过程:每次取100kg配制好的原料放入氧化镁制的坩埚中,在高频真空感应熔炼炉中在10-1Pa的真空中以1700℃以下的温度进行真空熔炼。
在铸造过程:在真空熔炼后的熔炼炉中通入Ar气体,在9万Pa的真空中,在水冷圆盘状铸造板上铸造成0.3mm的厚度。
在氢破粉碎过程:平均厚度为0.3mm的原料薄片在1Pa的真空中升温至200℃,通入0.1MPa的纯度为99.99%的氢气,放置0.5小时后抽真空;在500℃的温度下抽真空2小时;之后进行冷却,取出氢破后的试料;
取出的粉末,先通连续臼式研磨机,再使用#300的超声波振动筛过筛,来回收过筛后的粉末。过筛后的细粉约在99.95%以上。
取消通常使用的气流微粉碎;在氢破粉碎后的粉末中添加作为成形助剂使用的市面上销售的成形用蜡(蜡系)和成形模具润滑剂,合计添加原料重量的0.4wt%,再用V型混料机充分混合1小时。
在磁场中成形过程:全部粉末都使用直角取向型的磁场成型机,在1.6T的取向磁场中,在0.4ton/cm2的成型压力下,1次成形为边长约25mm的100个立方体。一次成形后在0.1T的磁场中退磁;
为使一次成形后的成形体不接触到空气将其进行密封,使用二次成形机(等静压成形机)在1.0ton/cm2的压力下进行二次成形。
进行了成形后的缺角裂痕调查:永磁材料只要有一点的裂痕缺角破裂就算不良,成形后马上通过目测,只要发现长度2mm以上的破裂缺角裂痕,就判断为不良,计算不良率。
在烧结过程:是将各成形体搬至烧结炉进行烧结。烧结在10-3Pa的真空下,在200℃、500℃、900℃的温度下各保持2小时后,以1080℃的温度烧结4小时,之后通入Ar气体使气压达到0.1MPa后,冷却至室温。
在热处理过程:烧结体在高纯度Ar气中,以540℃温度进行1小时热处理后,冷却至室温后取出。
在磁性能评价过程:烧结磁铁使用中国计量院型的NIM-10000H型BH大块稀土永磁无损测量系统进行磁性能检测。
在烧结体中的氧含量评价过程:烧结体中的氧含量使用日本HORIBA公司的EMGA-620W型氧氮分析仪进行检测。
下表是各实验号的磁性能评价和氧含量评价的情况
从上述实施例可以看出,当条件为不进行气流微粉碎时可知,存在最适合的Co添加量。Co的添加量较多时,粉碎性差,成形不良也会增加。
通过粉末X射线衍射的调查结果,随着Co添加量的增加,可观察到RCo2型、RCo3型的结晶。由此可知含有Co的金属化合物未进行吸氢,这样就会使粉碎性变差,成形性变差。
当条件为不进行气流微粉碎时可知,存在最适合的Co添加量。
本发明的一种烧结Nd-Fe-B系磁铁的省却工序的制作方法,是在熔炼铸造原料的Nd-Fe-B合金时,铸造出平均厚度为0.1mm~0.5mm的薄片状合金即薄片状铸片,其中,铸造法可以采用目前公知的水冷斜面铸造法、水冷平面圆盘铸造法、双辊法、单辊法及离心铸造法等薄片铸造法。薄片状的Nd-Fe-B铸片放入真空容器中进行氢破粉碎,在0.01MPa至1MPa的氢气氛中放置不超过24小时进行氢破粉碎,之后在真空中脱氢,粉碎基本在该工序结束。在后继的工序中,取出氢破粉碎后的粉末,根据粉末的性质,适当混入防氧化剂、成形助剂、成形润滑剂等。然后,在磁场中成形,成形性与以往的粉末有很大的不同,最好使用以往的简单磨具进行磁场成形和等静压成形(CIP)组合的2段式成形。成形体在真空中脱脂、脱气,在真空或惰性气体中以900℃~1140℃的温度烧结。制成的烧结磁铁的氧含量可心以在1000ppm以下,这是因为不使用气流微粉碎,可减少气氛与粉末接触的机会,实现了低氧含量。
上述实施例仅用来进一步说明本发明的一种烧结Nd-Fe-B系磁铁的省却工序的制作方法,但本发明并不局限于实施例,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均落入本发明技术方案的保护范围内。

Claims (8)

1.一种烧结Nd-Fe-B系磁铁的省却工序的制作方法,其特征在于:是在制造烧结磁铁中氧含量为2500ppm以下的Nd-Fe-B系烧结磁铁的工序中:
在氢破粉碎工序中,使用以氢破粉碎工序之前的工序所得到的平均厚度为0.1~0.5mm的薄片状合金原料,在0.01MPa以上、1MPa以下的氢气压力下保持不超过24小时进行氢破粉碎;
然后,不进行气流粉碎,直接使用磁场成形法进行成形,在真空或惰性气体中以900℃~1140℃的温度进行烧结。
2.根据权利要求1所述的烧结Nd-Fe-B系磁铁的省却工序的制作方法,其特征在于:进一步的,在氢破粉碎工序中,是在0.01MPa以上、1MPa以下的氢气压力下保持不超过1~6小时进行氢破粉碎。
3.根据权利要求1或2所述的烧结Nd-Fe-B系磁铁的省却工序的制作方法,其特征在于:进一步的,在氢破粉碎工序中,是先将薄片状合金原料预加热至200℃~700℃后再进行氢破粉碎。
4.根据权利要求1或2所述的烧结Nd-Fe-B系磁铁的省却工序的制作方法,其特征在于:进一步的,在氢破粉碎工序后,先通过破碎机或磨碎机处理后,再使用磁场成形法进行成形。
5.根据权利要求3所述的烧结Nd-Fe-B系磁铁的省却工序的制作方法,其特征在于:进一步的,在氢破粉碎工序后,先通过破碎机或磨碎机处理后,再使用磁场成形法进行成形。
6.根据权利要求1或2所述的烧结Nd-Fe-B系磁铁的省却工序的制作方法,其特征在于:所述磁场成形法进行成形为在模具中使用的是磁场成形和等静压成形组合的2段式成形。
7.根据权利要求1或2所述的烧结Nd-Fe-B系磁铁的省却工序的制作方法,其特征在于:所述薄片状合金原料以原子百分比计,其成分为ReTfAgJhGiDk
其中:
R为包含稀土元素Nd和稀土元素La、Ce、Pr、Sm、Gd、Dy、Tb、Ho、Er、Eu、Tm、Lu、Y中的至少二种,T为包含元素Fe和元素Ru、Co、Ni中的至少一种,A为包含元素B和元素C、P中的至少一种,J为元素Cu、Mn、Si、Cr中的至少一种,G为素Al、Ga、Ag、Bi、Sn中的至少一种,D为元素Zr、Hf、V、Mo、W、Ti、Nb中的至少一种;
e的原子百分比at%为12≤e≤16,
g的原子百分比at%为5≤g≤9,
h的原子百分比at%为0.05≤h≤1,
i的原子百分比at%为0.2≤i≤2.0,
k的原子百分比at%为0≤j≤4,
f的原子百分比at%为f=100―e―g―h―i―k。
8.根据权利要求7所述的烧结Nd-Fe-B系磁铁的省却工序的制作方法,其特征在于:所述薄片状合金原料的成分中,其中元素Co含量为1at%以下。
CN201210448946.5A 2012-11-09 2012-11-09 一种烧结Nd-Fe-B系磁铁的省却工序的制作方法 Active CN102956337B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201210448946.5A CN102956337B (zh) 2012-11-09 2012-11-09 一种烧结Nd-Fe-B系磁铁的省却工序的制作方法
PCT/CN2013/086806 WO2014071873A1 (zh) 2012-11-09 2013-11-08 稀土磁铁成形用粉末和稀土磁铁省略气流粉碎工序的制造方法
US14/441,944 US20150302960A1 (en) 2012-11-09 2013-11-08 Manufacturing method of a powder for compacting rare earth magnet and the rare earth magnet omitting jet milling process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210448946.5A CN102956337B (zh) 2012-11-09 2012-11-09 一种烧结Nd-Fe-B系磁铁的省却工序的制作方法

Publications (2)

Publication Number Publication Date
CN102956337A true CN102956337A (zh) 2013-03-06
CN102956337B CN102956337B (zh) 2016-05-25

Family

ID=47765032

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210448946.5A Active CN102956337B (zh) 2012-11-09 2012-11-09 一种烧结Nd-Fe-B系磁铁的省却工序的制作方法

Country Status (3)

Country Link
US (1) US20150302960A1 (zh)
CN (1) CN102956337B (zh)
WO (1) WO2014071873A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103352181A (zh) * 2013-05-31 2013-10-16 全椒君鸿软磁材料有限公司 Si-Bi-Mn-Be系铁基非晶合金薄带及其制备方法
CN103600070A (zh) * 2013-10-24 2014-02-26 厦门钨业股份有限公司 稀土合金磁性粉末成形体的制造方法和稀土磁铁的制造方法
CN103794354A (zh) * 2014-02-25 2014-05-14 刘洋 一种钕铁硼烧结磁铁的制备方法
WO2014071873A1 (zh) * 2012-11-09 2014-05-15 厦门钨业股份有限公司 稀土磁铁成形用粉末和稀土磁铁省略气流粉碎工序的制造方法
CN103831435A (zh) * 2014-01-27 2014-06-04 厦门钨业股份有限公司 磁体合金粉末与其磁体的制造方法
CN105321647A (zh) * 2014-07-30 2016-02-10 厦门钨业股份有限公司 稀土磁铁用急冷合金和稀土磁铁的制备方法
CN105336464A (zh) * 2015-11-30 2016-02-17 宁波可可磁业有限公司 一种钕铁硼磁性材料的制备方法
CN105405565A (zh) * 2015-12-18 2016-03-16 南京信息工程大学 一种磁性材料及制备方法
CN106448985A (zh) * 2015-09-28 2017-02-22 厦门钨业股份有限公司 一种复合含有Pr和W的R‑Fe‑B系稀土烧结磁铁
CN108172390A (zh) * 2018-01-30 2018-06-15 宁波铄腾新材料有限公司 一种提升驱动电机用富铈磁体性能均匀性的制备方法
US10115507B2 (en) 2013-11-27 2018-10-30 Xiamen Tungsten Co., Ltd. Low-B bare earth magnet
US10381139B2 (en) 2014-03-31 2019-08-13 Xiamen Tungsten Co., Ltd. W-containing R—Fe—B—Cu sintered magnet and quenching alloy
CN110136947A (zh) * 2018-02-09 2019-08-16 宁波招宝磁业有限公司 一种具有耐高温的烧结钕铁硼磁体的制备方法
CN111223628A (zh) * 2020-02-26 2020-06-02 厦门钨业股份有限公司 钕铁硼磁体材料、原料组合物、制备方法、应用
CN111524675A (zh) * 2020-04-30 2020-08-11 福建省长汀金龙稀土有限公司 一种r-t-b系永磁材料及其制备方法和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201614476D0 (en) * 2016-08-25 2016-10-12 Univ Of Birmingham The Method of facilitating separation of Nd from NdFeB magnets
CN113223807B (zh) * 2021-05-31 2022-08-19 包头金山磁材有限公司 一种钕铁硼永磁体及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1347123A (zh) * 2000-10-04 2002-05-01 住友特殊金属株式会社 稀土烧结磁铁及其制造方法
CN1360317A (zh) * 2000-09-19 2002-07-24 住友特殊金属株式会社 稀土磁铁及其制造方法
CN1510700A (zh) * 2002-12-26 2004-07-07 烟台正海磁性材料有限公司 含微量氧的R-Fe-B系烧结磁体及其制造方法
CN102211192A (zh) * 2011-06-09 2011-10-12 天津一阳磁性材料有限责任公司 二次回收料制备高性能钕铁硼的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1047683C (zh) * 1992-09-30 1999-12-22 上海申建冶金机电技术工程公司 一种微晶稀土永磁体的制造方法
JP3415208B2 (ja) * 1993-07-06 2003-06-09 住友特殊金属株式会社 R−Fe−B系永久磁石材料の製造方法
CN1300807C (zh) * 2001-12-19 2007-02-14 株式会社新王磁材 稀土类-铁-硼系合金以及磁各向异性永久磁体粉末及其制造方法
JP2008117855A (ja) * 2006-11-01 2008-05-22 Toyota Motor Corp ナノコンポジット磁石の製造方法
CN101740190B (zh) * 2008-11-26 2013-01-16 绵阳西磁磁电有限公司 一种高性价比高耐腐蚀性烧结钕铁硼磁体及制备方法
CN101812606B (zh) * 2010-03-05 2012-09-05 宁波科田磁业有限公司 铸锭改铸片添加重稀土氧化物制备低成本钕铁硼的方法
CN102956337B (zh) * 2012-11-09 2016-05-25 厦门钨业股份有限公司 一种烧结Nd-Fe-B系磁铁的省却工序的制作方法
CN102982936B (zh) * 2012-11-09 2015-09-23 厦门钨业股份有限公司 烧结Nd-Fe-B系磁铁的省却工序的制作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1360317A (zh) * 2000-09-19 2002-07-24 住友特殊金属株式会社 稀土磁铁及其制造方法
CN1347123A (zh) * 2000-10-04 2002-05-01 住友特殊金属株式会社 稀土烧结磁铁及其制造方法
CN1510700A (zh) * 2002-12-26 2004-07-07 烟台正海磁性材料有限公司 含微量氧的R-Fe-B系烧结磁体及其制造方法
CN102211192A (zh) * 2011-06-09 2011-10-12 天津一阳磁性材料有限责任公司 二次回收料制备高性能钕铁硼的方法

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014071873A1 (zh) * 2012-11-09 2014-05-15 厦门钨业股份有限公司 稀土磁铁成形用粉末和稀土磁铁省略气流粉碎工序的制造方法
CN103352181B (zh) * 2013-05-31 2015-12-09 全椒君鸿软磁材料有限公司 Si-Bi-Mn-Be系铁基非晶合金薄带及其制备方法
CN103352181A (zh) * 2013-05-31 2013-10-16 全椒君鸿软磁材料有限公司 Si-Bi-Mn-Be系铁基非晶合金薄带及其制备方法
CN103600070A (zh) * 2013-10-24 2014-02-26 厦门钨业股份有限公司 稀土合金磁性粉末成形体的制造方法和稀土磁铁的制造方法
US10115507B2 (en) 2013-11-27 2018-10-30 Xiamen Tungsten Co., Ltd. Low-B bare earth magnet
CN103831435B (zh) * 2014-01-27 2018-05-18 厦门钨业股份有限公司 磁体合金粉末与其磁体的制造方法
CN103831435A (zh) * 2014-01-27 2014-06-04 厦门钨业股份有限公司 磁体合金粉末与其磁体的制造方法
CN103794354A (zh) * 2014-02-25 2014-05-14 刘洋 一种钕铁硼烧结磁铁的制备方法
CN103794354B (zh) * 2014-02-25 2015-12-30 东莞市金材五金有限公司 一种钕铁硼烧结磁铁的制备方法
US10381139B2 (en) 2014-03-31 2019-08-13 Xiamen Tungsten Co., Ltd. W-containing R—Fe—B—Cu sintered magnet and quenching alloy
US10096413B2 (en) 2014-07-30 2018-10-09 Xiamen Tungsten Co., Ltd. Quenched alloy for rare earth magnet and a manufacturing method of rare earth magnet
CN105321647A (zh) * 2014-07-30 2016-02-10 厦门钨业股份有限公司 稀土磁铁用急冷合金和稀土磁铁的制备方法
CN105321647B (zh) * 2014-07-30 2018-02-23 厦门钨业股份有限公司 稀土磁铁用急冷合金和稀土磁铁的制备方法
CN108352233A (zh) * 2015-09-28 2018-07-31 厦门钨业股份有限公司 一种复合含有Pr和W的R-Fe-B系稀土烧结磁铁
US10971289B2 (en) 2015-09-28 2021-04-06 Xiamen Tungsten Co., Ltd. Composite R-Fe-B series rare earth sintered magnet comprising Pr and W
CN106448985A (zh) * 2015-09-28 2017-02-22 厦门钨业股份有限公司 一种复合含有Pr和W的R‑Fe‑B系稀土烧结磁铁
WO2017054674A1 (zh) * 2015-09-28 2017-04-06 厦门钨业股份有限公司 一种复合含有Pr和W的R-Fe-B系稀土烧结磁铁
CN105336464A (zh) * 2015-11-30 2016-02-17 宁波可可磁业有限公司 一种钕铁硼磁性材料的制备方法
CN105336464B (zh) * 2015-11-30 2017-06-30 宁波可可磁业股份有限公司 一种钕铁硼磁性材料的制备方法
CN105405565A (zh) * 2015-12-18 2016-03-16 南京信息工程大学 一种磁性材料及制备方法
CN105405565B (zh) * 2015-12-18 2018-01-23 南京信息工程大学 一种磁性材料及制备方法
CN108172390A (zh) * 2018-01-30 2018-06-15 宁波铄腾新材料有限公司 一种提升驱动电机用富铈磁体性能均匀性的制备方法
CN110136947A (zh) * 2018-02-09 2019-08-16 宁波招宝磁业有限公司 一种具有耐高温的烧结钕铁硼磁体的制备方法
CN110136947B (zh) * 2018-02-09 2021-01-29 宁波招宝磁业有限公司 一种具有耐高温的烧结钕铁硼磁体的制备方法
CN111223628A (zh) * 2020-02-26 2020-06-02 厦门钨业股份有限公司 钕铁硼磁体材料、原料组合物、制备方法、应用
CN111524675A (zh) * 2020-04-30 2020-08-11 福建省长汀金龙稀土有限公司 一种r-t-b系永磁材料及其制备方法和应用
CN111524675B (zh) * 2020-04-30 2022-02-08 福建省长汀金龙稀土有限公司 一种r-t-b系永磁材料及其制备方法和应用

Also Published As

Publication number Publication date
US20150302960A1 (en) 2015-10-22
WO2014071873A1 (zh) 2014-05-15
CN102956337B (zh) 2016-05-25

Similar Documents

Publication Publication Date Title
CN102956337B (zh) 一种烧结Nd-Fe-B系磁铁的省却工序的制作方法
CN102982936B (zh) 烧结Nd-Fe-B系磁铁的省却工序的制作方法
US9427804B2 (en) Method for producing a high-performance neodymium—iron—boron rare earth permanent magnetic material
CN103212710B (zh) 一种钕铁硼稀土永磁材料的制造方法
CN103050267B (zh) 一种基于细粉热处理的烧结Nd-Fe-B系磁铁制作方法
CN103996519B (zh) 一种高性能钕铁硼稀土永磁器件的制造方法
CN101812606B (zh) 铸锭改铸片添加重稀土氧化物制备低成本钕铁硼的方法
CN103996524B (zh) 一种含La和Ce的钕铁硼稀土永磁体的制造方法
EP3327734B1 (en) Method for producing a rare earth-cobalt-based composite magnetic material
CN103996475A (zh) 一种具有复合主相的高性能钕铁硼稀土永磁体及制造方法
JP2017188659A (ja) セリウム含有ネオジム鉄ホウ素磁石およびその製造方法
CN101031984B (zh) 稀土类烧结磁体及其制造方法
CN103996522A (zh) 一种含Ce的钕铁硼稀土永磁体的制造方法
CN109585113A (zh) 一种烧结钕铁硼磁体的制备方法
WO2012003702A1 (zh) 一种梯度电阻R-Fe-B系磁体及其生产方法
CN107134360A (zh) 一种晶界改性制备高性能y基稀土永磁体的方法
CN107564651B (zh) 一种高剩磁材料及其制备方法
CN101447268B (zh) 一种钕铁硼永磁材料及其制备方法
WO2021031724A1 (zh) 一种钕铁硼永磁材料及其原料组合物、制备方法和应用
CN101370606A (zh) 稀土类烧结磁体及其制造方法
CN107689279A (zh) 一种提高烧结钕铁硼复合磁体矫顽力的方法
CN105118655A (zh) 一种纳米锌粉晶界改性制备高矫顽力磁体的方法
CN106298134B (zh) 一种双主相烧结永磁材料及制备方法和应用
CN114823027A (zh) 一种高硼钕铁硼永磁材料及其制备方法
CN103996523A (zh) 一种含La的高性能钕铁硼稀土永磁体的制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20190329

Address after: No. 1005 Anling Road, Huli District, Xiamen City, Fujian Province, 361000

Co-patentee after: FUJIAN CHANGTING GOLDEN DRAGON RARE-EARTH Co.,Ltd.

Patentee after: XIAMEN TUNGSTEN Co.,Ltd.

Address before: No. 1005 Anling Road, Huli District, Xiamen City, Fujian Province, 361000

Patentee before: XIAMEN TUNGSTEN Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220615

Address after: 366300 No. 31, Tingzhou Avenue South Road, Changting County, Longyan City, Fujian Province

Patentee after: FUJIAN CHANGTING GOLDEN DRAGON RARE-EARTH Co.,Ltd.

Address before: No. 1005 Anling Road, Huli District, Xiamen City, Fujian Province, 361000

Patentee before: XIAMEN TUNGSTEN Co.,Ltd.

Patentee before: FUJIAN CHANGTING GOLDEN DRAGON RARE-EARTH Co.,Ltd.

TR01 Transfer of patent right
CP03 Change of name, title or address

Address after: 366300 new industrial zone, Changting Economic Development Zone, Longyan City, Fujian Province

Patentee after: Fujian Jinlong Rare Earth Co.,Ltd.

Address before: 366300 No. 31, Tingzhou Avenue South Road, Changting County, Longyan City, Fujian Province

Patentee before: FUJIAN CHANGTING GOLDEN DRAGON RARE-EARTH Co.,Ltd.

CP03 Change of name, title or address