WO2021031724A1 - 一种钕铁硼永磁材料及其原料组合物、制备方法和应用 - Google Patents

一种钕铁硼永磁材料及其原料组合物、制备方法和应用 Download PDF

Info

Publication number
WO2021031724A1
WO2021031724A1 PCT/CN2020/100593 CN2020100593W WO2021031724A1 WO 2021031724 A1 WO2021031724 A1 WO 2021031724A1 CN 2020100593 W CN2020100593 W CN 2020100593W WO 2021031724 A1 WO2021031724 A1 WO 2021031724A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
neodymium iron
iron boron
boron permanent
magnet material
Prior art date
Application number
PCT/CN2020/100593
Other languages
English (en)
French (fr)
Inventor
王金磊
黄清芳
黄佳莹
蓝琴
Original Assignee
厦门钨业股份有限公司
福建省长汀金龙稀土有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门钨业股份有限公司, 福建省长汀金龙稀土有限公司 filed Critical 厦门钨业股份有限公司
Publication of WO2021031724A1 publication Critical patent/WO2021031724A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing

Definitions

  • the invention relates to a neodymium iron boron permanent magnet material and its raw material composition, preparation method and application.
  • Sintered NdFeB is widely used in the fields of power motors, computers and electronic products due to its excellent magnetic properties. With the iteration of products, these fields put forward higher requirements on the temperature coefficient of magnets.
  • the magnetic flux temperature coefficient ⁇ of sintered NdFeB is about -0.11%/°C to -0.14%/°C, while the magnetic flux temperature coefficient ⁇ of sintered samarium cobalt products can reach -0.04%/°C. It can be seen that the absolute value of the temperature coefficient of magnetic flux of sintered NdFeB is much higher than that of sintered samarium cobalt. This performance defect limits the application range of sintered NdFeB products.
  • NdFeB In order to reduce the absolute value of the magnetic flux temperature coefficient of sintered NdFeB magnets, most NdFeB manufacturers generally adopt the following two methods:
  • the technical problem to be solved by the present invention is to overcome the defect that the absolute value of the magnetic flux temperature coefficient of NdFeB in the prior art is too high, and it is difficult to meet the performance requirements of precision instruments such as power motors, computers, and electronic products, and provides A neodymium iron boron permanent magnet material and its raw material composition, preparation method and application.
  • the invention makes the Nb content ⁇ 0.3%wt and the Ga content ⁇ 0.1% in the raw material of the neodymium iron boron permanent magnet material through precise formulation design, thereby preparing a neodymium iron boron permanent magnet material with a low temperature coefficient.
  • the present invention provides a neodymium iron boron permanent magnet material, which contains the following components: Nd is 24.0-29.0%, RH is 3.0-6.0%, Cu is 0.1-0.3%, Co is 1.0-4.0%, Ga is 0.1-0.6%, Nb is 0.3-0.5%, Ti is 0.0-0.3%, and B is 0.90-1.02%, the balance is Fe and unavoidable impurities, and the percentage refers to the content in the neodymium iron boron permanent magnet material Mass percentage; the RH is a heavy rare earth element.
  • the Nd content is preferably 25.5% to 28.5% or 25.5% to 27.5%, such as 25.5%, 26.0%, 27.5% or 28.5%, and the percentage refers to the mass percentage in the neodymium iron boron permanent magnet material .
  • the RH may be a heavy rare earth element conventional in the art, such as Dy and/or Tb, preferably Dy.
  • the RH content is preferably 4.0-6.0% or 4.0-5.5%, such as 4.0%, 5.5% or 6.0%, and the percentage refers to the mass percentage in the neodymium iron boron permanent magnet material.
  • the content of Cu is preferably 0.1% to 0.2%, such as 0.1%, 0.15% or 0.2%, and the percentage refers to the mass percentage in the neodymium iron boron permanent magnet material.
  • the content of Co is preferably 1.0-3.0% or 1.0-2.0%, such as 1.0%, 2.0% or 2.5%, and the percentage refers to the mass percentage in the neodymium iron boron permanent magnet material.
  • the content of Ga is preferably 0.15-0.6% or 0.15-0.5%, such as 0.15%, 0.2%, 0.3%, 0.35%, 0.45%, 0.5% or 0.6%, and the percentage refers to the content of the neodymium The mass percentage of iron-boron permanent magnet materials.
  • the Nb content is preferably 0.3-0.4% or 0.3-0.35%, such as 0.3%, 0.35% or 0.4%, and the percentage refers to the mass percentage in the neodymium iron boron permanent magnet material.
  • the content of Ti is preferably 0.1-0.3% or 0.1-0.2%, such as 0.15%, 0.2% or 0.3%, and the percentage refers to the mass percentage in the neodymium iron boron permanent magnet material.
  • the content of B is preferably 0.92-1.02%, such as 0.95%, and the percentage refers to the mass percentage in the neodymium iron boron permanent magnet material.
  • the content of Ga is 0.15-0.6%, and the content of Nb is 0.3-0.4%; more preferably, the content of Ga is 0.15-0.5%, and the content of Nb is 0.3 ⁇ 0.35%;
  • Ga is 0.20%, Nb is 0.3%, Ga is 0.35%, Nb is 0.4%, Ga is 0.45%, Nb is 0.5%, Ga is 0.5%, Nb is 0.5%, and Ga is 0.6 %, Nb is 0.3%, Ga is 0.5%, Nb is 0.35%, Ga is 0.3%, Nb is 0.4%, or Ga is 0.15%, Nb is 0.5%; the percentages refer to the neodymium iron boron permanent magnet The mass percentage in the material.
  • the neodymium iron boron permanent magnet material contains the following components: Nd is 25.5-28.5%, Dy is 4.0-6.0%, Cu is 0.1-0.2%, and Co is 1.0-3.0% , Ga is 0.15-0.6%, Nb is 0.3-0.4%, Ti is 0.1-0.3% and B is 0.92-1.02%, the balance is Fe and unavoidable impurities, the percentage refers to the neodymium iron boron permanent magnet The mass percentage in the material.
  • the neodymium iron boron permanent magnet material contains the following components: Nd is 25.5-27.5%, Dy is 4.0-5.5%, Cu is 0.1-0.2%, and Co is 1.0-2.0% , Ga is 0.15-0.5%, Nb is 0.3-0.35%, Ti is 0.1-0.2% and B is 0.92-1.02%, the balance is Fe and unavoidable impurities, the percentage refers to the neodymium iron boron permanent magnet The mass percentage in the material.
  • the neodymium iron boron permanent magnet material comprises the following components: Nd is 27.5%, Dy is 4.0%, Cu is 0.2%, Co is 2.5%, Ga is 0.20%, and Nb is 0.3%, 0.15% of Ti and 0.95% of B, the remainder is Fe and inevitable impurities, and the percentage refers to the mass percentage in the neodymium iron boron permanent magnet material.
  • the neodymium iron boron permanent magnet material contains the following components: Nd is 27.5%, Dy is 4.0%, Cu is 0.2%, Co is 2.5%, Ga is 0.35%, and Nb is 0.4%, 0.15% of Ti, and 0.95% of B, the remainder is Fe and unavoidable impurities, and the percentage refers to the mass percentage in the neodymium iron boron permanent magnet material.
  • the neodymium iron boron permanent magnet material contains the following components: Nd is 27.5%, Dy is 4.0%, Cu is 0.2%, Co is 2.5%, Ga is 0.45%, and Nb is 0.5%, 0.15% for Ti, and 0.95% for B, the remainder is Fe and inevitable impurities, and the percentage refers to the mass percentage in the neodymium iron boron permanent magnet material.
  • the neodymium iron boron permanent magnet material contains the following components: Nd is 27.5%, Dy is 4.0%, Cu is 0.2%, Co is 2.5%, Ga is 0.5%, and Nb is 0.5%, 0.15% for Ti, and 0.95% for B, the remainder is Fe and inevitable impurities, and the percentage refers to the mass percentage in the neodymium iron boron permanent magnet material.
  • the neodymium iron boron permanent magnet material contains the following components: Nd is 28.5%, Dy is 3.0%, Cu is 0.1%, Co is 1.0%, Ga is 0.6%, and Nb is 0.3% and B are 0.90%, the balance is Fe and unavoidable impurities, and the percentage refers to the mass percentage in the neodymium iron boron permanent magnet material.
  • the neodymium iron boron permanent magnet material contains the following components: Nd is 27.5%, Dy is 4.0%, Cu is 0.15%, Co is 1.0%, Ga is 0.5%, and Nb is 0.35%, 0.15% Ti, 0.90% B, the balance is Fe and unavoidable impurities, and the percentage refers to the mass percentage in the neodymium iron boron permanent magnet material.
  • the neodymium iron boron permanent magnet material contains the following components: Nd is 26.0%, Dy is 5.5%, Cu is 0.2%, Co is 2.0%, Ga is 0.3%, and Nb is 0.4%, 0.2% for Ti and 0.95% for B, the remainder is Fe and unavoidable impurities, and the percentage refers to the mass percentage in the neodymium iron boron permanent magnet material.
  • the neodymium iron boron permanent magnet material comprises the following components: Nd is 25.5%, Dy is 6.0%, Cu is 0.3%, Co is 4.0%, Ga is 0.15%, Nb is 0.5%, Ti is 0.3%, and B is 1.02%, the remainder is Fe and unavoidable impurities, and the percentage refers to the mass percentage in the neodymium iron boron permanent magnet material.
  • the present invention provides a raw material composition of neodymium iron boron permanent magnet material, which comprises the following components: Nd is 24.0-29.0%, RH is 3.0-6.0%, Cu is 0.1-0.3%, and Co is 1.0-4.0 %, Ga is 0.1-0.6%, Nb is 0.3-0.5%, Ti is 0.0-0.3% and B is 0.90-1.02%, the balance is Fe and unavoidable impurities, the percentage refers to the permanent The mass percentage in the raw material composition of the magnetic material; the RH is a heavy rare earth element.
  • the Nd content is preferably 25.5% to 28.5% or 25.5% to 27.5%, such as 25.5%, 26.0%, 27.5% or 28.5%, and the percentage refers to the raw material composition of the neodymium iron boron permanent magnet material. The mass percentage in.
  • the RH may be a heavy rare earth element conventional in the art, such as Dy and/or Tb, preferably Dy.
  • the RH content is preferably 4.0-6.0% or 4.0-5.5%, such as 4.0%, 5.5% or 6.0%, and the percentage refers to the mass in the raw material composition of the neodymium iron boron permanent magnet material percentage.
  • the content of Cu is preferably 0.1% to 0.2%, such as 0.1%, 0.15% or 0.2%, and the percentage refers to the mass percentage in the raw material composition of the neodymium iron boron permanent magnet material.
  • the content of Co is preferably 1.0-3.0% or 1.0-2.0%, such as 1.0%, 2.0% or 2.5%, and the percentage refers to the mass in the raw material composition of the neodymium iron boron permanent magnet material percentage.
  • the content of Ga is preferably 0.15-0.6% or 0.15-0.5%, such as 0.15%, 0.2%, 0.3%, 0.35%, 0.45%, 0.5% or 0.6%, and the percentage refers to the content of the neodymium
  • the mass percentage in the raw material composition of the iron-boron permanent magnet material is preferably 0.15-0.6% or 0.15-0.5%, such as 0.15%, 0.2%, 0.3%, 0.35%, 0.45%, 0.5% or 0.6%.
  • the Nb content is preferably 0.3-0.4% or 0.3-0.35%, such as 0.3%, 0.35% or 0.4%, and the percentage refers to the mass in the raw material composition of the neodymium iron boron permanent magnet material percentage.
  • the content of Ti is preferably 0.1-0.3% or 0.1-0.2%, such as 0.15%, 0.2% or 0.3%, and the percentage refers to the mass in the raw material composition of the neodymium iron boron permanent magnet material percentage.
  • the content of B is preferably 0.92-1.02%, such as 0.95%, and the percentage refers to the mass percentage in the raw material composition of the neodymium iron boron permanent magnet material.
  • the content of Ga is 0.15-0.6%, and the content of Nb is 0.3-0.4%; more preferably, the content of Ga is 0.15-0.5%, and the content of Nb is 0.3 ⁇ 0.35%;
  • Ga is 0.20%, Nb is 0.3%, Ga is 0.35%, Nb is 0.4%, Ga is 0.45%, Nb is 0.5%, Ga is 0.5%, Nb is 0.5%, Ga is 0.6 %, Nb is 0.3%, Ga is 0.5%, Nb is 0.35%, Ga is 0.3%, Nb is 0.4%, or Ga is 0.15%, Nb is 0.5%; the percentages refer to the neodymium iron boron permanent magnet The mass percentage of the raw material composition of the material.
  • the raw material composition of the neodymium iron boron permanent magnet material contains the following components: Nd is 25.5 to 28.5%, Dy is 4.0 to 6.0%, Cu is 0.1 to 0.2%, Co 1.0-3.0%, Ga is 0.15-0.6%, Nb is 0.3-0.4%, Ti is 0.1-0.3%, and B is 0.92-1.02%, the balance is Fe and unavoidable impurities, the percentage refers to The mass percentage in the raw material composition of the neodymium iron boron permanent magnet material.
  • the raw material composition of the neodymium iron boron permanent magnet material contains the following components: Nd is 25.5% to 27.5%, Dy is 4.0 to 5.5%, Cu is 0.1 to 0.2%, Co 1.0-2.0%, Ga is 0.15-0.5%, Nb is 0.3-0.35%, Ti is 0.1-0.2%, and B is 0.92-1.02%, the balance is Fe and unavoidable impurities, the percentage refers to the The mass percentage in the raw material composition of the neodymium iron boron permanent magnet material.
  • the neodymium iron boron permanent magnet material comprises the following components: Nd is 27.5%, Dy is 4.0%, Cu is 0.2%, Co is 2.5%, Ga is 0.20%, and Nb is 0.3%, 0.15% of Ti, and 0.95% of B, the balance being Fe and unavoidable impurities, and the percentage refers to the mass percentage in the raw material composition of the neodymium iron boron permanent magnet material.
  • the neodymium iron boron permanent magnet material contains the following components: Nd is 27.5%, Dy is 4.0%, Cu is 0.2%, Co is 2.5%, Ga is 0.35%, and Nb is 0.4%, 0.15% of Ti and 0.95% of B, the balance being Fe and inevitable impurities, and the percentage refers to the mass percentage in the raw material composition of the neodymium iron boron permanent magnet material.
  • the neodymium iron boron permanent magnet material contains the following components: Nd is 27.5%, Dy is 4.0%, Cu is 0.2%, Co is 2.5%, Ga is 0.45%, and Nb is 0.5%, Ti is 0.15%, and B is 0.95%, the balance is Fe and inevitable impurities, and the percentage refers to the mass percentage in the raw material composition of the neodymium iron boron permanent magnet material.
  • the neodymium iron boron permanent magnet material contains the following components: Nd is 27.5%, Dy is 4.0%, Cu is 0.2%, Co is 2.5%, Ga is 0.5%, and Nb is 0.5%, Ti is 0.15%, and B is 0.95%, the balance is Fe and inevitable impurities, and the percentage refers to the mass percentage in the raw material composition of the neodymium iron boron permanent magnet material.
  • the neodymium iron boron permanent magnet material contains the following components: Nd is 28.5%, Dy is 3.0%, Cu is 0.1%, Co is 1.0%, Ga is 0.6%, and Nb is 0.3% and B are 0.90%, the balance is Fe and unavoidable impurities, and the percentage refers to the mass percentage in the raw material composition of the neodymium iron boron permanent magnet material.
  • the neodymium iron boron permanent magnet material contains the following components: Nd is 27.5%, Dy is 4.0%, Cu is 0.15%, Co is 1.0%, Ga is 0.5%, and Nb is 0.35%, 0.15% Ti, 0.90% B, the remainder is Fe and unavoidable impurities, and the percentage refers to the mass percentage in the raw material composition of the neodymium iron boron permanent magnet material.
  • the neodymium iron boron permanent magnet material contains the following components: Nd is 26.0%, Dy is 5.5%, Cu is 0.2%, Co is 2.0%, Ga is 0.3%, and Nb is 0.4%, Ti is 0.2%, and B is 0.95%, the balance is Fe and inevitable impurities, and the percentage refers to the mass percentage in the raw material composition of the neodymium iron boron permanent magnet material.
  • the neodymium iron boron permanent magnet material comprises the following components: Nd is 25.5%, Dy is 6.0%, Cu is 0.3%, Co is 4.0%, Ga is 0.15%, Nb is 0.5%, Ti is 0.3%, and B is 1.02%, the balance is Fe and inevitable impurities, and the percentage refers to the mass percentage in the raw material composition of the neodymium iron boron permanent magnet material.
  • the present invention also provides a method for preparing a neodymium iron boron permanent magnet material, which includes the following steps: the raw material composition of the neodymium iron boron permanent magnet material is smelted, cast, crushed, shaped and sintered, and that is, .
  • the smelting and casting process can be a conventional smelting and casting process in the field, for example, smelting and casting in an intermediate frequency vacuum melting furnace.
  • the intermediate frequency vacuum smelting furnace may be an intermediate frequency vacuum induction rapid solidification belt spinning furnace.
  • the thickness of the spun sheet produced by the smelting and casting process in the intermediate frequency vacuum induction rapid-solidifying belt spinning furnace is generally 0.2-0.4 mm, preferably 0.26-0.29 mm.
  • the frequency of the intermediate frequency may be 1500-2500 Hz.
  • the crushing process can be a conventional crushing process in the field, such as hydrogen absorption treatment and dehydrogenation treatment.
  • the hydrogen absorption treatment and/or the dehydrogenation treatment may be performed in a hydrogen furnace.
  • the hydrogen absorption treatment can be carried out under the condition of a hydrogen pressure of 0.1 to 0.15 MPa.
  • the hydrogen breaking pressure change range is less than 0.04MPa/10min, the hydrogen absorption treatment can be considered as complete.
  • the dehydrogenation treatment can be carried out at 500-600°C insulation conditions, such as 550°C.
  • the holding time may be 2 to 4 hours, for example, 4 hours.
  • the hydrogen content of the powder may generally be 500-2000 ppm.
  • the crushing treatment can be carried out according to conventional means in the field, for example, crushing by jet mill.
  • antioxidant and/or lubricant can be added before the jet mill pulverization.
  • the antioxidant and the lubricant generally should not chemically react with the raw materials in the neodymium iron boron permanent magnet material.
  • the addition of the antioxidant and/or the lubricant can prevent the powder from being oxidized during the grinding process; second, it can reduce the friction coefficient of the powder and is easy to shape.
  • the oxygen content in the grinding atmosphere is preferably 40-60 ppm.
  • the oxygen content in the pulverizing atmosphere is less than 40 ppm, it is difficult to control subsequent processes such as forming, sintering and unpacking, and the NdFeB permanent magnet material is prone to uneven oxidation.
  • the oxygen content in the pulverizing atmosphere is greater than 60 ppm, the remanence and coercivity of the neodymium iron boron permanent magnet material may be reduced. If partial oxidation occurs during the jet milling stage, the sintering may be difficult to form.
  • the particle size of the neodymium iron boron permanent magnet material may be 3.4-3.7 ⁇ m in D50, for example, D50 is 3.5 ⁇ m.
  • the molding process can be a conventional molding process in the field, such as magnetic field orientation compression molding or hot pressing thermal deformation.
  • the magnetic field orientation compression molding can be performed in an inert gas atmosphere.
  • the inert gas may be a conventional inert gas in the art, such as nitrogen or argon.
  • cold isostatic pressing treatment can also be performed under the condition of pressure> 240 MPa.
  • the sintering treatment is preferably carried out in an inert gas atmosphere; more preferably, the sintering treatment process is carried out according to the following steps, in an inert gas atmosphere, sintering and cooling are required.
  • the inert gas in the sintering process can be a conventional inert gas in the art, preferably argon or helium.
  • the inert gas generally should not chemically react with the neodymium iron boron permanent magnet material.
  • the sintering is performed in an inert gas atmosphere of -0.05 MPa, for example, in an argon atmosphere of -0.05 MPa.
  • the sintering can be performed in a sintering furnace.
  • the compact obtained after the forming process can be placed in a vacuum sintering furnace.
  • the sintering furnace is also subjected to gas release treatment before the inert gas is introduced.
  • the outgassing treatment can be carried out at 800-900°C, such as 860°C
  • the volatilization of rare earth elements can be effectively reduced, and the heating heat transfer rate and the uniform temperature zone in the furnace can be increased.
  • the sintering temperature may be a conventional sintering temperature in the art, for example, 1050-1090°C, and for example, 1080°C.
  • the sintering time may be a conventional sintering time in the field, for example, 4-8h, and for example 5h.
  • the cooling process can be a conventional cooling process in the field, for example, rapid air cooling with a fan to below 60°C.
  • an aging treatment can be performed according to a conventional process in the field.
  • the aging treatment can be divided into primary aging treatment and secondary aging treatment.
  • the primary aging treatment can be carried out at 900°C.
  • the secondary aging treatment can be carried out at 630°C.
  • the invention also provides a neodymium iron boron permanent magnet material prepared by the aforementioned method.
  • the oxygen content in the neodymium iron boron permanent magnet material is preferably 1000 to 1300 ppm.
  • the invention also provides an application of the neodymium iron boron permanent magnet material as an electronic component in a motor.
  • the motor is preferably a rare earth permanent magnet motor used in the transportation field and/or a motor used in electronic products.
  • the rare earth permanent magnet motor used in the transportation field may be a driver motor in an electric vehicle and/or a vehicle traction motor in an electric vehicle.
  • the electronic product may be one or more of a computer, a vibration motor of a mobile phone, and an electro-acoustic speaker.
  • the reagents and raw materials used in the present invention are all commercially available.
  • Nb content ⁇ 0.3wt.% in the formula by adding elements Ga, Nb and Ga that can be enriched at the grain boundary to prevent abnormal growth of grains and increase the grain boundary phase and the formation energy in the grain boundary phase Nb-containing compounds that hinder the growth of grains, under the conditions of Br ⁇ 1.29T and Hcj ⁇ 1933kA/m, neodymium iron with the absolute value of the temperature coefficient of magnetic flux ⁇ 0.085%/°C in the temperature range of 20 ⁇ 100°C is obtained Boron permanent magnet material.
  • the antioxidants and lubricants were purchased from the neodymium iron boron antioxidants and lubricants produced by Tianjin Yuesheng New Materials Research Institute.
  • the formulations of the sintered NdFeB magnets in the Examples and Comparative Examples are shown in Table 1.
  • the wt.% in Table 1 refers to the mass percentage of the component in the raw material composition of the neodymium iron boron permanent magnet material, and "/" means that the element is not added.
  • the oxygen content is detected by an oxygen, nitrogen and hydrogen analyzer.
  • the NdFeB permanent magnet material in this application has excellent performance, Br ⁇ 1.29T, Hcj ⁇ 1933kA/m, and the absolute value of the magnetic flux temperature coefficient ⁇ 0.085%/°C. On the basis of Hcj and Br, the temperature coefficient of magnetic flux is reduced (Example 1-8);

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

一种钕铁硼永磁材料及其原料组合物、制备方法和应用。该钕铁硼永磁材料包含下述组分:Nd 24.0~29.0%、RH 3.0~6.0%、Cu 0.1~0.3%、Co 1.0~4.0%、Ga 0.1~0.6%、Nb 0.3~0.5%、Ti 0.0~0.3%和B 0.90~1.02%,余量为Fe及不可避免的杂质,百分比是指在钕铁硼永磁材料中的质量百分比;RH为重稀土元素。该钕铁硼永磁材料在Br≥1.29T、Hcj≥1933kA/m的条件下,实现了在20℃~100℃温度区间磁通温度系数α的绝对值≤0.085%/℃,性能优异,能够满足动力电机、计算机及电子产品等精密仪器的性能要求。

Description

一种钕铁硼永磁材料及其原料组合物、制备方法和应用 技术领域
本发明涉及一种钕铁硼永磁材料及其原料组合物、制备方法和应用。
背景技术
烧结钕铁硼以其优异的磁性能,广泛用于动力电机、计算机及电子产品等领域,随着产品的迭代,这些领域对磁体的温度系数提出更高的要求。
目前烧结钕铁硼的磁通温度系数α约为-0.11%/℃至-0.14%/℃,而烧结钐钴产品的磁通温度系数α可达-0.04%/℃。可见,烧结钕铁硼的磁通温度系数的绝对值远高于烧结钐钴的磁通温度系数的绝对值,这一性能上的缺陷限制了烧结钕铁硼产品的应用范围。
为了降低烧结钕铁硼磁体的磁通温度系数的绝对值,大部分钕铁硼生产厂家一般采用以下两种方式:
A.通过添加大量的Co来提高磁体的居里温度。但是Co在钕铁硼中的添加量>8%时,才能获得钕铁硼的磁通温度系数α为-0.06%/℃的效果。该方式成本较高,且Co在该添加量下会导致钕铁硼的内禀矫顽力(intrinsic coercivity,简称Hcj)的下降。
B.通过添加大量Pr、Nd、Dy、Tb等稀土元素来提高磁体的内禀矫顽力。在Dy、Tb的添加量大于5wt.%时,能够获得钕铁硼的磁通温度系数α为-0.09%/℃的效果。但是,该方式显著增加了生产成本,且会导致钕铁硼的剩磁的下降。
因此,如何在保持钕铁硼永磁材料的内禀矫顽力和剩磁的基础上,提供一种低磁通温度系数的钕铁硼永磁材料,是本领域亟待解决的技术问题。
发明内容
本发明所要解决的技术问题在于,克服现有技术中由于钕铁硼的磁通温度系数的绝对值过高,难以满足动力电机、计算机及电子产品等精密仪器的性能要求的缺陷,而提供了 一种钕铁硼永磁材料及其原料组合物、制备方法和应用。
本发明通过精确的配方设计,使得钕铁硼永磁材料的原料中Nb含量≥0.3%wt以及Ga含量≥0.1%,从而制得了一种低温度系数的钕铁硼永磁材料,该钕铁硼永磁材料在20℃~100℃温度区间的磁通温度系数α的绝对值≤0.085%/℃。
本发明提供了一种钕铁硼永磁材料,其包含下述组分:Nd为24.0~29.0%、RH为3.0~6.0%、Cu为0.1~0.3%、Co为1.0~4.0%、Ga为0.1~0.6%、Nb为0.3~0.5%、Ti为0.0~0.3%和B为0.90~1.02%,余量为Fe及不可避免的杂质,百分比是指在所述钕铁硼永磁材料中的质量百分比;所述RH为重稀土元素。
本发明中,所述Nd的含量优选为25.5~28.5%或25.5~27.5%,例如25.5%、26.0%、27.5%或28.5%,百分比是指在所述钕铁硼永磁材料中的质量百分比。
本发明中,所述RH可为本领域常规的重稀土元素,例如Dy和/或Tb,优选为Dy。
本发明中,所述RH的含量优选为4.0~6.0%或4.0~5.5%,例如4.0%、5.5%或6.0%,百分比是指在所述钕铁硼永磁材料中的质量百分比。
本发明中,所述Cu的含量优选为0.1~0.2%,例如0.1%、0.15%或0.2%,百分比是指在所述钕铁硼永磁材料中的质量百分比。
本发明中,所述Co的含量优选为1.0~3.0%或1.0~2.0%,例如1.0%、2.0%或2.5%,百分比是指在所述钕铁硼永磁材料中的质量百分比。
本发明中,所述Ga的含量优选为0.15~0.6%或0.15~0.5%,例如0.15%、0.2%、0.3%、0.35%、0.45%、0.5%或0.6%,百分比是指在所述钕铁硼永磁材料中的质量百分比。
本发明中,所述Nb的含量优选为0.3~0.4%或0.3~0.35%,例如0.3%、0.35%或0.4%,百分比是指在所述钕铁硼永磁材料中的质量百分比。
本发明中,所述Ti的含量优选为0.1~0.3%或0.1~0.2%,例如0.15%、0.2%或0.3%,百分比是指在所述钕铁硼永磁材料中的质量百分比。
本发明中,所述B的含量优选为0.92~1.02%,例如0.95%,百分比是指在所述钕铁硼永磁材料中的质量百分比。
本发明中,优选地,所述Ga的含量为0.15~0.6%,所述Nb的含量为0.3~0.4%;更优选地,所述Ga的含量为0.15~0.5%,所述Nb的含量为0.3~0.35%;例如,Ga为0.20%、 Nb为0.3%,Ga为0.35%、Nb为0.4%,Ga为0.45%、Nb为0.5%,Ga为0.5%、Nb为0.5%,Ga为0.6%、Nb为0.3%,Ga为0.5%、Nb为0.35%、Ga为0.3%、Nb为0.4%,或者,Ga为0.15%、Nb为0.5%;百分比是指在所述钕铁硼永磁材料中的质量百分比。
在本发明一优选实施方式中,所述钕铁硼永磁材料包含下述组分:Nd为25.5~28.5%、Dy为4.0~6.0%、Cu为0.1~0.2%、Co为1.0~3.0%、Ga为0.15~0.6%、Nb为0.3~0.4%、Ti为0.1~0.3%和B为0.92~1.02%,余量为Fe及不可避免的杂质,百分比是指在所述钕铁硼永磁材料中的质量百分比。
在本发明一优选实施方式中,所述钕铁硼永磁材料包含下述组分:Nd为25.5~27.5%、Dy为4.0~5.5%、Cu为0.1~0.2%、Co为1.0~2.0%、Ga为0.15~0.5%、Nb为0.3~0.35%、Ti为0.1~0.2%和B为0.92~1.02%,余量为Fe及不可避免的杂质,百分比是指在所述钕铁硼永磁材料中的质量百分比。
在本发明一优选实施方式中,所述钕铁硼永磁材料包含下述组分:Nd为27.5%、Dy为4.0%、Cu为0.2%、Co为2.5%、Ga为0.20%、Nb为0.3%、Ti为0.15%和B为0.95%,余量为Fe及不可避免的杂质,百分比是指在所述钕铁硼永磁材料中的质量百分比。
在本发明一优选实施方式中,所述钕铁硼永磁材料包含下述组分:Nd为27.5%、Dy为4.0%、Cu为0.2%、Co为2.5%、Ga为0.35%、Nb为0.4%、Ti为0.15%和B为0.95%,余量为Fe及不可避免的杂质,百分比是指在所述钕铁硼永磁材料中的质量百分比。
在本发明一优选实施方式中,所述钕铁硼永磁材料包含下述组分:Nd为27.5%、Dy为4.0%、Cu为0.2%、Co为2.5%、Ga为0.45%、Nb为0.5%、Ti为0.15%和B为0.95%,余量为Fe及不可避免的杂质,百分比是指在所述钕铁硼永磁材料中的质量百分比。
在本发明一优选实施方式中,所述钕铁硼永磁材料包含下述组分:Nd为27.5%、Dy为4.0%、Cu为0.2%、Co为2.5%、Ga为0.5%、Nb为0.5%、Ti为0.15%和B为0.95%,余量为Fe及不可避免的杂质,百分比是指在所述钕铁硼永磁材料中的质量百分比。
在本发明一优选实施方式中,所述钕铁硼永磁材料包含下述组分:Nd为28.5%、Dy为3.0%、Cu为0.1%、Co为1.0%、Ga为0.6%、Nb为0.3%和B为0.90%,余量为Fe及不可避免的杂质,百分比是指在所述钕铁硼永磁材料中的质量百分比。
在本发明一优选实施方式中,所述钕铁硼永磁材料包含下述组分:Nd为27.5%、Dy 为4.0%、Cu为0.15%、Co为1.0%、Ga为0.5%、Nb为0.35%、Ti为0.15%和B为0.90%,余量为Fe及不可避免的杂质,百分比是指在所述钕铁硼永磁材料中的质量百分比。
在本发明一优选实施方式中,所述钕铁硼永磁材料包含下述组分:Nd为26.0%、Dy为5.5%、Cu为0.2%、Co为2.0%、Ga为0.3%、Nb为0.4%、Ti为0.2%和B为0.95%,余量为Fe及不可避免的杂质,百分比是指在所述钕铁硼永磁材料中的质量百分比。
在本发明一优选实施方式中,所述钕铁硼永磁材料包含下述组分:Nd为25.5%、Dy为6.0%、Cu为0.3%、Co为4.0%、Ga为0.15%、Nb为0.5%、Ti为0.3%和B为1.02%,余量为Fe及不可避免的杂质,百分比是指在所述钕铁硼永磁材料中的质量百分比。
本发明提供了一种钕铁硼永磁材料的原料组合物,其包含下述组分:Nd为24.0~29.0%、RH为3.0~6.0%、Cu为0.1~0.3%、Co为1.0~4.0%、Ga为0.1~0.6%、Nb为0.3~0.5%、Ti为0.0~0.3%和B为0.90~1.02%,余量为Fe及不可避免的杂质,百分比是指在所述钕铁硼永磁材料的原料组合物中的质量百分比;所述RH为重稀土元素。
本发明中,所述Nd的含量优选为25.5~28.5%或25.5~27.5%,例如25.5%、26.0%、27.5%或28.5%,百分比是指在所述钕铁硼永磁材料的原料组合物中的质量百分比。
本发明中,所述RH可为本领域常规的重稀土元素,例如Dy和/或Tb,优选为Dy。
本发明中,所述RH的含量优选为4.0~6.0%或4.0~5.5%,例如4.0%、5.5%或6.0%,百分比是指在所述钕铁硼永磁材料的原料组合物中的质量百分比。
本发明中,所述Cu的含量优选为0.1~0.2%,例如0.1%、0.15%或0.2%,百分比是指在所述钕铁硼永磁材料的原料组合物中的质量百分比。
本发明中,所述Co的含量优选为1.0~3.0%或1.0~2.0%,例如1.0%、2.0%或2.5%,百分比是指在所述钕铁硼永磁材料的原料组合物中的质量百分比。
本发明中,所述Ga的含量优选为0.15~0.6%或0.15~0.5%,例如0.15%、0.2%、0.3%、0.35%、0.45%、0.5%或0.6%,百分比是指在所述钕铁硼永磁材料的原料组合物中的质量百分比。
本发明中,所述Nb的含量优选为0.3~0.4%或0.3~0.35%,例如0.3%、0.35%或0.4%,百分比是指在所述钕铁硼永磁材料的原料组合物中的质量百分比。
本发明中,所述Ti的含量优选为0.1~0.3%或0.1~0.2%,例如0.15%、0.2%或0.3%, 百分比是指在所述钕铁硼永磁材料的原料组合物中的质量百分比。
本发明中,所述B的含量优选为0.92~1.02%,例如0.95%,百分比是指在所述钕铁硼永磁材料的原料组合物中的质量百分比。
本发明中,优选地,所述Ga的含量为0.15~0.6%,所述Nb的含量为0.3~0.4%;更优选地,所述Ga的含量为0.15~0.5%,所述Nb的含量为0.3~0.35%;例如,Ga为0.20%、Nb为0.3%,Ga为0.35%、Nb为0.4%,Ga为0.45%、Nb为0.5%,Ga为0.5%、Nb为0.5%,Ga为0.6%、Nb为0.3%,Ga为0.5%、Nb为0.35%、Ga为0.3%、Nb为0.4%,或者,Ga为0.15%、Nb为0.5%;百分比是指在所述钕铁硼永磁材料的原料组合物中的质量百分比。
在本发明一优选实施方式中,所述钕铁硼永磁材料的原料组合物中包含下述组分:Nd为25.5~28.5%、Dy为4.0~6.0%、Cu为0.1~0.2%、Co为1.0~3.0%、Ga为0.15~0.6%、Nb为0.3~0.4%、Ti为0.1~0.3%和B为0.92~1.02%,余量为Fe及不可避免的杂质,百分比是指在所述钕铁硼永磁材料的原料组合物中的质量百分比。
在本发明一优选实施方式中,所述钕铁硼永磁材料的原料组合物中包含下述组分:Nd为25.5~27.5%、Dy为4.0~5.5%、Cu为0.1~0.2%、Co为1.0~2.0%、Ga为0.15~0.5%、Nb为0.3~0.35%、Ti为0.1~0.2%和B为0.92~1.02%,余量为Fe及不可避免的杂质,百分比是指在所述钕铁硼永磁材料的原料组合物中的质量百分比。
在本发明一优选实施方式中,所述钕铁硼永磁材料包含下述组分:Nd为27.5%、Dy为4.0%、Cu为0.2%、Co为2.5%、Ga为0.20%、Nb为0.3%、Ti为0.15%和B为0.95%,余量为Fe及不可避免的杂质,百分比是指在所述钕铁硼永磁材料的原料组合物中的质量百分比。
在本发明一优选实施方式中,所述钕铁硼永磁材料包含下述组分:Nd为27.5%、Dy为4.0%、Cu为0.2%、Co为2.5%、Ga为0.35%、Nb为0.4%、Ti为0.15%和B为0.95%,余量为Fe及不可避免的杂质,百分比是指在所述钕铁硼永磁材料的原料组合物中的质量百分比。
在本发明一优选实施方式中,所述钕铁硼永磁材料包含下述组分:Nd为27.5%、Dy为4.0%、Cu为0.2%、Co为2.5%、Ga为0.45%、Nb为0.5%、Ti为0.15%和B为0.95%,余量为Fe及不可避免的杂质,百分比是指在所述钕铁硼永磁材料的原料组合物中的质量 百分比。
在本发明一优选实施方式中,所述钕铁硼永磁材料包含下述组分:Nd为27.5%、Dy为4.0%、Cu为0.2%、Co为2.5%、Ga为0.5%、Nb为0.5%、Ti为0.15%和B为0.95%,余量为Fe及不可避免的杂质,百分比是指在所述钕铁硼永磁材料的原料组合物中的质量百分比。
在本发明一优选实施方式中,所述钕铁硼永磁材料包含下述组分:Nd为28.5%、Dy为3.0%、Cu为0.1%、Co为1.0%、Ga为0.6%、Nb为0.3%和B为0.90%,余量为Fe及不可避免的杂质,百分比是指在所述钕铁硼永磁材料的原料组合物中的质量百分比。
在本发明一优选实施方式中,所述钕铁硼永磁材料包含下述组分:Nd为27.5%、Dy为4.0%、Cu为0.15%、Co为1.0%、Ga为0.5%、Nb为0.35%、Ti为0.15%和B为0.90%,余量为Fe及不可避免的杂质,百分比是指在所述钕铁硼永磁材料的原料组合物中的质量百分比。
在本发明一优选实施方式中,所述钕铁硼永磁材料包含下述组分:Nd为26.0%、Dy为5.5%、Cu为0.2%、Co为2.0%、Ga为0.3%、Nb为0.4%、Ti为0.2%和B为0.95%,余量为Fe及不可避免的杂质,百分比是指在所述钕铁硼永磁材料的原料组合物中的质量百分比。
在本发明一优选实施方式中,所述钕铁硼永磁材料包含下述组分:Nd为25.5%、Dy为6.0%、Cu为0.3%、Co为4.0%、Ga为0.15%、Nb为0.5%、Ti为0.3%和B为1.02%,余量为Fe及不可避免的杂质,百分比是指在所述钕铁硼永磁材料的原料组合物中的质量百分比。
本发明还提供了一种钕铁硼永磁材料的制备方法,其包括下述步骤:将所述的钕铁硼永磁材料的原料组合物经熔炼浇铸、破碎、成型和烧结处理,即可。
本发明中,所述熔炼浇铸的工艺可为本领域常规的熔炼浇铸工艺,例如在中频真空熔炼炉中进行熔炼浇铸。
其中,所述中频真空熔炼炉可为中频真空感应速凝甩带炉。在所述中频真空感应速凝甩带炉经熔炼浇铸工艺制得的甩片厚度一般为0.2~0.4mm,优选为0.26~0.29mm。所述中频的频率可为1500~2500Hz。
本发明中,所述破碎的工艺可为本领域常规的破碎工艺,例如经吸氢处理、脱氢处理,即可。
其中,所述吸氢处理和/或所述脱氢处理可在氢破炉中进行。
其中,所述吸氢处理可在氢气压力0.1~0.15MPa的条件下进行。当氢破压力变化范围小于0.04MPa/10min时,可认为吸氢处理完成。
其中,所述脱氢处理可在500~600℃保温条件下进行,例如550℃。所述保温的时间可为2~4h,例如4h。
其中,所述脱氢处理后,粉体的氢含量一般可为500~2000ppm。
本发明中,所述破碎后,还可按本领域常规手段进行粉碎处理,例如经气流磨粉碎。
其中,所述气流磨粉碎之前,还可添加抗氧化剂和/或润滑剂。所述抗氧化剂和所述润滑剂一般不应与所述钕铁硼永磁材料中的原料发生化学反应。
所述抗氧化剂和/或所述润滑剂的添加,一则能够防止粉料在磨粉过程中发生氧化;二则减少粉体的摩擦系数,易于成型。
其中,所述气流磨粉碎过程中,粉碎气氛中的氧含量优选为40~60ppm。
当所述粉碎气氛中的氧含量<40ppm时,后续成型和烧结拆袋等工艺管控难度较大,钕铁硼永磁材料易发生不均匀的氧化。
当所述粉碎气氛中的氧含量>60ppm时,可能会降低钕铁硼永磁材料的剩磁和矫顽力,若在气流磨阶段发生部分氧化,有可能导致烧结难以成型。
其中,所述气流磨粉碎后,所述钕铁硼永磁材料的粒径可为D50为3.4~3.7μm,例如D50为3.5μm。
本发明中,所述成型的工艺可为本领域常规的成型工艺,例如磁场取向压制成型或热压热变型。
其中,所述磁场取向压制成型可在惰性气体气氛中进行。所述惰性气体可为本领域常规的惰性气体,例如氮气或氩气。
其中,所述磁场取向压制成型后,还可在压力>240MPa的条件下进行冷等静压处理。
本发明中,所述烧结处理优选在惰性气体气氛中进行;更优选地,所述烧结处理的工艺按下述步骤进行,在惰性气体气氛中,经烧结和冷却,即可。
其中,所述烧结过程中的惰性气体可为本领域常规的惰性气体,优选为氩气或氦气。所述惰性气体一般不应与所述钕铁硼永磁材料发生化学反应。
其中,优选地,所述烧结在-0.05MPa的惰性气体气氛中进行,例如-0.05MPa的氩气气氛中。
其中,所述烧结可在烧结炉中进行。一般而言,经所述成型处理后获得的压坯可置于真空烧结炉中。优选地,所述烧结炉在通入所述惰性气体之前,还经放气处理。所述放气处理可在800~900℃的条件下进行,例如860℃
当所述烧结处理在惰性气体气氛中进行时,相比于真空烧结,能够有效减少稀土元素的挥发,增加炉内加热传热速率和均温区。
其中,所述烧结的温度可为本领域常规的烧结温度,例如1050~1090℃,再例如1080℃。
其中,所述烧结的时间可为本领域常规的烧结时间,例如4~8h,再例如5h。
其中,所述冷却的工艺可为本领域常规的冷却工艺,例如开风机快速风冷至60℃以下,即可。
其中,所述冷却后还可按本领域常规的工艺进行时效处理。所述时效处理可分为一级时效处理和二级时效处理。所述一级时效处理可在900℃条件下进行。所述二级时效处理可在630℃条件下进行。
本发明还提供了一种采用前述方法制得的钕铁硼永磁材料。
其中,所述钕铁硼永磁材料中的氧含量优选为1000~1300ppm。
本发明还提供了一种所述的钕铁硼永磁材料在电机中作为电子元器件的应用。
其中,所述电机优选为用于交通运输领域的稀土永磁电机和/或用于电子产品的电机。
所述用于交通运输领域的稀土永磁电机可为电动车中的驱动器电机和/或电动汽车中的车辆牵引电机。
所述电子产品可为计算机、手机震动电机和电声扬声器中的一种或多种。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明所用试剂和原料均市售可得。
本发明的积极进步效果在于:
本发明通过在配方中添加含量≥0.3wt.%的Nb,同时添加能够富集在晶界阻止晶粒的 异常长大和增加晶界相的元素Ga,Nb和Ga和在晶界相中形成能阻碍晶粒长大的含Nb的化合物,Br≥1.29T、Hcj≥1933kA/m的条件下,获得了在20~100℃温度区间磁通温度系数α的绝对值≤0.085%/℃的钕铁硼永磁材料。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
下述实施例及对比例中,防氧化剂及润滑剂购自天津悦圣新材料研究所生产的钕铁硼防氧化剂和润滑剂。
实施例及对比例中烧结钕铁硼磁铁的配方如表1所示。表1中wt.%是指组分在钕铁硼永磁材料的原料组合物中的质量百分比,“/”表示未添加该元素。
表1
Figure PCTCN2020100593-appb-000001
烧结钕铁硼的制备方法:
(1)按照表1所示的原料比例进行配料,并将配方的原材料放入中频真空熔炼炉(中频真空感应速凝甩带炉)中进行熔炼、浇铸。制备的甩片平均厚度0.26~0.29mm之间,并经自动选片机剔除甩片厚度不在0.2~0.4mm之间的厚片和薄片;
(2)在氢破炉中饱和吸氢至氢气压力不再变化(通入氢气压力约0.1~0.15MPa,等到氢破压力变化范围小于0.04MPa/10min时,认为完成吸氢阶段),并在550℃温度下保温4h脱氢,粉体处在半脱氢状态(脱氢后粉体的氢含量为500~2000ppm);在粉体中添加烧结 钕铁硼专用的防氧化剂及润滑剂,在氧含量为40~60ppm的条件下,在气流磨中制备出粉体粒度D50=3.5μm;
(3)在压机磁场取向下压制成型,并经压力>240MPa的冷等静压处理。在氮气含量低于100ppm的环境下拆袋进入到真空烧结炉中。在860℃放气阶段结束后,通入烧结炉内压力为-0.05MPa的氩气,以减少烧结炉内压力差和减少稀土元素的挥发,从而增加炉内加热传热速率和均温区。在1080℃烧结5个小时后,风冷至60℃以下出炉,并分别进行900℃一级时效和630℃二级时效。然后制备出D10*10mm的样品。
效果实施例
使用中国计量院的NIM-10000H型BH大块稀土永磁无损测量系统,对实施例1-8、对比例1-12制得的烧结钕铁硼磁铁进行磁性能检测。下表2所示为磁性能检测结果。表2中,“Br”为剩余磁通密度(remanence),“Hcj”为内禀矫顽力,“Hk/Hcj”为方形度(squareness ratio)。
氧含量采用氧氮氢分析仪进行检测。
表2
Figure PCTCN2020100593-appb-000002
由表2可知:
(1)本申请中的钕铁硼永磁材料性能优异,Br≥1.29T、Hcj≥1933kA/m、磁通温度系数α的绝对值≤0.085%/℃,在保持钕铁硼永磁材料的Hcj和Br的基础上,降低了磁通温度系数(实施例1-8);
(2)基于本申请的配方,原料Ga、Nb、Cu和Co的用量改变,钕铁硼永磁材料的性能明显下降(对比例1-9);
(3)基于本申请的配方,将Ga替换为性能相似的Al,或是将Nb替换为性能相似的Zr,或是将Co替换为性能相似的Mn,均无法获得本申请中的磁通温度系数的钕铁硼永磁材料(对比例10-13)。

Claims (10)

  1. 一种钕铁硼永磁材料,其特征在于,其包含下述组分:Nd为24.0~29.0%、RH为3.0~6.0%、Cu为0.1~0.3%、Co为1.0~4.0%、Ga为0.1~0.6%、Nb为0.3~0.5%、Ti为0.0~0.3%和B为0.90~1.02%,余量为Fe及不可避免的杂质,百分比是指在所述钕铁硼永磁材料中的质量百分比;所述RH为重稀土元素。
  2. 如权利要求1所述的钕铁硼永磁材料,其特征在于,所述Nd的含量为25.5~28.5%或25.5~27.5%,优选为25.5%、26.0%、27.5%或28.5%,百分比是指在所述钕铁硼永磁材料中的质量百分比;
    和/或,所述RH为Dy和/或Tb,优选为Dy;
    和/或,所述RH的含量为4.0~6.0%或4.0~5.5%,优选为4.0%、5.5%或6.0%,百分比是指在所述钕铁硼永磁材料中的质量百分比;
    和/或,所述Cu的含量为0.1~0.2%,优选为0.1%、0.15%或0.2%,百分比是指在所述钕铁硼永磁材料中的质量百分比;
    和/或,所述Co的含量为1.0~3.0%或1.0~2.0%,优选为1.0%、2.0%或2.5%,百分比是指在所述钕铁硼永磁材料中的质量百分比;
    和/或,所述Ga的含量为0.15~0.6%或0.15~0.5%,优选为0.15%、0.2%、0.3%、0.35%、0.45%、0.5%或0.6%,百分比是指在所述钕铁硼永磁材料中的质量百分比;
    和/或,所述Nb的含量为0.3~0.4%或0.3~0.35%,优选为0.3%、0.35%或0.4%,百分比是指在所述钕铁硼永磁材料中的质量百分比;
    和/或,所述Ti的含量为0.1~0.3%或0.1~0.2%,优选为0.15%、0.2%或0.3%,百分比是指在所述钕铁硼永磁材料中的质量百分比;
    和/或,所述B的含量为0.92~1.02%,优选为0.95%,百分比是指在所述钕铁硼永磁材料中的质量百分比。
  3. 如权利要求1或2所述的钕铁硼永磁材料,其特征在于,优选地,所述Ga的含量为0.15~0.6%,所述Nb的含量为0.3~0.4%;优选地,所述Ga的含量为0.15~0.5%,所述Nb的含量为0.3~0.35%;百分比是指在所述钕铁硼永磁材料中的质量百分比;
    或者,所述钕铁硼永磁材料包含下述组分:Nd为25.5~28.5%、Dy为4.0~6.0%、Cu 为0.1~0.2%、Co为1.0~3.0%、Ga为0.15~0.6%、Nb为0.3~0.4%、Ti为0.1~0.3%和B为0.92~1.02%,余量为Fe及不可避免的杂质;优选地,所述钕铁硼永磁材料包含下述组分:Nd为25.5~27.5%、Dy为4.0~5.5%、Cu为0.1~0.2%、Co为1.0~2.0%、Ga为0.15~0.5%、Nb为0.3~0.35%、Ti为0.1~0.2%和B为0.92~1.02%,余量为Fe及不可避免的杂质;百分比是指在所述钕铁硼永磁材料中的质量百分比。
  4. 一种钕铁硼永磁材料的原料组合物,其特征在于,其包含下述组分:Nd为24.0~29.0%、RH为3.0~6.0%、Cu为0.1~0.3%、Co为1.0~4.0%、Ga为0.1~0.6%、Nb为0.3~0.5%、Ti为0.0~0.3%和B为0.90~1.02%,余量为Fe及不可避免的杂质,百分比是指在所述钕铁硼永磁材料的原料组合物中的质量百分比;所述RH为重稀土元素。
  5. 如权利要求4所述的钕铁硼永磁材料的原料组合物,其特征在于,所述Nd的含量为25.5~28.5%或25.5~27.5%,优选为25.5%、26.0%、27.5%或28.5%,百分比是指在所述钕铁硼永磁材料的原料组合物中的质量百分比;
    和/或,所述RH为Dy和/或Tb,优选为Dy;
    和/或,所述RH的含量为4.0~6.0%或4.0~5.5%,优选为4.0%、5.5%或6.0%,百分比是指在所述钕铁硼永磁材料的原料组合物中的质量百分比;
    和/或,所述Cu的含量为0.1~0.2%,优选为0.1%、0.15%或0.2%,百分比是指在所述钕铁硼永磁材料的原料组合物中的质量百分比;
    和/或,所述Co的含量为1.0~3.0%或1.0~2.0%,优选为1.0%、2.0%或2.5%,百分比是指在所述钕铁硼永磁材料的原料组合物中的质量百分比;
    和/或,所述Ga的含量为0.15~0.6%或0.15~0.5%,优选为0.15%、0.2%、0.3%、0.35%、0.45%、0.5%或0.6%,百分比是指在所述钕铁硼永磁材料的原料组合物中的质量百分比;
    和/或,所述Nb的含量为0.3~0.4%或0.3~0.35%,优选为0.3%、0.35%或0.4%,百分比是指在所述钕铁硼永磁材料的原料组合物中的质量百分比;
    和/或,所述Ti的含量为0.1~0.3%或0.1~0.2%,优选为0.15%、0.2%或0.3%,百分比是指在所述钕铁硼永磁材料的原料组合物中的质量百分比;
    和/或,所述B的含量为0.92~1.02%,优选为0.95%,百分比是指在所述钕铁硼永磁材料的原料组合物中的质量百分比。
  6. 如权利要求4或5所述的钕铁硼永磁材料的原料组合物,其特征在于,所述Ga的含量为0.15~0.6%,所述Nb的含量为0.3~0.4%;优选地,所述Ga的含量为0.15~0.5%,所述Nb的含量为0.3~0.35%;百分比是指在所述钕铁硼永磁材料的原料组合物中的质量百分比;
    或者,所述钕铁硼永磁材料包含下述组分:所述钕铁硼永磁材料的原料组合物中包含下述组分:Nd为25.5~28.5%、Dy为4.0~6.0%、Cu为0.1~0.2%、Co为1.0~3.0%、Ga为0.15~0.6%、Nb为0.3~0.4%、Ti为0.1~0.3%和B为0.92~1.02%,余量为Fe及不可避免的杂质;优选地,所述钕铁硼永磁材料的原料组合物中包含下述组分:Nd为25.5~27.5%、Dy为4.0~5.5%、Cu为0.1~0.2%、Co为1.0~2.0%、Ga为0.15~0.5%、Nb为0.3~0.35%、Ti为0.1~0.2%和B为0.92~1.02%,余量为Fe及不可避免的杂质;百分比是指在所述钕铁硼永磁材料的原料组合物中的质量百分比。
  7. 一种钕铁硼永磁材料的制备方法,其特征在于,其包括下述步骤:将如权利要求4~6中任一项所述的钕铁硼永磁材料的原料组合物经熔炼浇铸、破碎、成型和烧结处理,即可。
  8. 如权利要求7所述的钕铁硼永磁材料的制备方法,其特征在于,所述熔炼浇铸在中频真空熔炼炉中进行,优选地,在中频真空感应速凝甩带炉中进行;
    和/或,所述破碎的工艺按下述步骤进行:经吸氢处理、脱氢处理,即可;优选地,所述吸氢处理和/或所述脱氢处理在氢破炉中进行;优选地,所述脱氢处理在500~600℃保温条件下进行,所述保温的时间优选为2~4h;
    和/或,所述破碎后,还进行粉碎处理,优选地,经气流磨粉碎;所述气流磨粉碎过程中,粉碎气氛中的氧含量优选为40~60ppm;所述气流磨粉碎后,所述钕铁硼永磁材料的粒径优选为D50为3.4~3.7μm,更优选为D50为3.5μm;
    和/或,所述成型的方法为磁场取向压制成型或热压热变型;
    和/或,所述烧结处理在惰性气体气氛中进行;优选地,所述烧结处理的工艺按下述步骤进行,在惰性气体气氛中,经烧结和冷却,即可;所述惰性气体优选为氩气或氦气;优选地,所述烧结在-0.05MPa的惰性气体气氛中进行;所述烧结的温度优选为1050~1090℃,更优选为1080℃;所述烧结的时间优选为4~8h,更优选为5h;优选地,所述冷却为开风 机风冷至60℃以下,即可;优选地,所述冷却后还进行时效处理,所述时效处理分为一级时效处理和二级时效处理,所述一级时效处理优选在900℃条件下进行,所述二级时效处理优选在630℃条件下进行。
  9. 一种采用如权利要求7或8所述的钕铁硼永磁材料的制备方法制得的钕铁硼永磁材料;
    优选地,所述钕铁硼永磁材料中的氧含量为1000~1300ppm。
  10. 一种如权利要求1~3和9中任一项所述的钕铁硼永磁材料在电机中作为电子元器件的应用;
    所述电机优选为用于交通运输领域的稀土永磁电机和/或用于电子产品的电机;所述用于交通运输领域的稀土永磁电机优选为电动车中的驱动器电机和/或电动汽车中的车辆牵引电机;所述电子产品优选为计算机、手机震动电机和电声扬声器中的一种或多种。
PCT/CN2020/100593 2019-08-16 2020-07-07 一种钕铁硼永磁材料及其原料组合物、制备方法和应用 WO2021031724A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910760036.2A CN110517838A (zh) 2019-08-16 2019-08-16 一种钕铁硼永磁材料及其原料组合物、制备方法和应用
CN201910760036.2 2019-08-16

Publications (1)

Publication Number Publication Date
WO2021031724A1 true WO2021031724A1 (zh) 2021-02-25

Family

ID=68626334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100593 WO2021031724A1 (zh) 2019-08-16 2020-07-07 一种钕铁硼永磁材料及其原料组合物、制备方法和应用

Country Status (3)

Country Link
CN (1) CN110517838A (zh)
TW (1) TW202108782A (zh)
WO (1) WO2021031724A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110428947B (zh) * 2019-07-31 2020-09-29 厦门钨业股份有限公司 一种稀土永磁材料及其原料组合物、制备方法和应用
CN110517838A (zh) * 2019-08-16 2019-11-29 厦门钨业股份有限公司 一种钕铁硼永磁材料及其原料组合物、制备方法和应用
CN111091945B (zh) * 2019-12-31 2021-09-28 厦门钨业股份有限公司 一种r-t-b系永磁材料、原料组合物、制备方法、应用
CN114373593B (zh) * 2022-03-18 2022-07-05 宁波科宁达工业有限公司 一种r-t-b磁体及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19541948A1 (de) * 1995-11-10 1997-05-15 Schramberg Magnetfab Magnetmaterial und Dauermagnet des NdFeB-Typs
CN102412044A (zh) * 2011-11-16 2012-04-11 宁波同创强磁材料有限公司 一种超低失重烧结钕铁硼磁性材料及其制备方法
CN103805827A (zh) * 2014-01-16 2014-05-21 宁波金科磁业有限公司 纳米非晶低钕复相钕铁硼的制作方法
CN104064346A (zh) * 2014-05-30 2014-09-24 宁波同创强磁材料有限公司 一种钕铁硼磁体及其制备方法
CN105655076A (zh) * 2016-04-06 2016-06-08 湖北汽车工业学院 驱动电机用多主相高矫顽力钕铁硼永磁材料及其制备方法
CN108831650A (zh) * 2018-06-21 2018-11-16 宁波可可磁业股份有限公司 一种钕铁硼磁体及其制备方法
CN110517838A (zh) * 2019-08-16 2019-11-29 厦门钨业股份有限公司 一种钕铁硼永磁材料及其原料组合物、制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001275775A1 (en) * 2000-08-03 2002-02-18 Sanei Kasei Co., Limited Nanocomposite permanent magnet
CN1308344A (zh) * 2000-12-26 2001-08-15 西北有色金属研究院 一种耐热钕铁硼永磁材料及其制备方法
CN107919199A (zh) * 2017-10-17 2018-04-17 浙江东阳东磁稀土有限公司 一种超低剩磁温度系数稀土永磁材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19541948A1 (de) * 1995-11-10 1997-05-15 Schramberg Magnetfab Magnetmaterial und Dauermagnet des NdFeB-Typs
CN102412044A (zh) * 2011-11-16 2012-04-11 宁波同创强磁材料有限公司 一种超低失重烧结钕铁硼磁性材料及其制备方法
CN103805827A (zh) * 2014-01-16 2014-05-21 宁波金科磁业有限公司 纳米非晶低钕复相钕铁硼的制作方法
CN104064346A (zh) * 2014-05-30 2014-09-24 宁波同创强磁材料有限公司 一种钕铁硼磁体及其制备方法
CN105655076A (zh) * 2016-04-06 2016-06-08 湖北汽车工业学院 驱动电机用多主相高矫顽力钕铁硼永磁材料及其制备方法
CN108831650A (zh) * 2018-06-21 2018-11-16 宁波可可磁业股份有限公司 一种钕铁硼磁体及其制备方法
CN110517838A (zh) * 2019-08-16 2019-11-29 厦门钨业股份有限公司 一种钕铁硼永磁材料及其原料组合物、制备方法和应用

Also Published As

Publication number Publication date
CN110517838A (zh) 2019-11-29
TW202108782A (zh) 2021-03-01

Similar Documents

Publication Publication Date Title
WO2021031724A1 (zh) 一种钕铁硼永磁材料及其原料组合物、制备方法和应用
CN111243809B (zh) 一种钕铁硼材料及其制备方法和应用
CN111223627B (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
TWI770730B (zh) 釹鐵硼永磁材料、製備方法、應用
WO2021249159A1 (zh) 重稀土合金、钕铁硼永磁材料、原料和制备方法
JP7470804B2 (ja) ネオジム鉄ホウ素磁石材料、原料組成物、及び製造方法
CN111326306B (zh) 一种r-t-b系永磁材料及其制备方法和应用
CN110323053B (zh) 一种R-Fe-B系烧结磁体及其制备方法
WO2021135143A1 (zh) R-t-b系烧结磁体及其制备方法
CN111081443A (zh) 一种r-t-b系永磁材料及其制备方法和应用
CN111261355B (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
CN111378907A (zh) 一种提高钕铁硼永磁材料矫顽力的辅助合金及应用方法
CN111223626B (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
CN112992463A (zh) 一种r-t-b磁体及其制备方法
TWI750964B (zh) R-t-b系永磁材料、原料組合物、製備方法、應用
WO2021169896A1 (zh) 一种r-t-b系永磁材料及其制备方法和应用
CN111312463B (zh) 一种稀土永磁材料及其制备方法和应用
CN111312462B (zh) 一种钕铁硼材料及其制备方法和应用
CN110853857B (zh) 含Ho和/或Gd的合金、稀土永磁体、原料、制备方法、用途
CN111223628B (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
CN111243808B (zh) 一种钕铁硼材料及其制备方法和应用
CN110739113A (zh) 一种高性能烧结Nd-Fe-B材料及其制备方法
CN111312464B (zh) 一种稀土永磁材料及其制备方法和应用
CN111261356B (zh) 一种r-t-b系永磁材料及其制备方法和应用
WO2016155674A1 (zh) 一种含有Ho和W的稀土磁铁

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20855179

Country of ref document: EP

Kind code of ref document: A1