WO2021169896A1 - 一种r-t-b系永磁材料及其制备方法和应用 - Google Patents

一种r-t-b系永磁材料及其制备方法和应用 Download PDF

Info

Publication number
WO2021169896A1
WO2021169896A1 PCT/CN2021/077181 CN2021077181W WO2021169896A1 WO 2021169896 A1 WO2021169896 A1 WO 2021169896A1 CN 2021077181 W CN2021077181 W CN 2021077181W WO 2021169896 A1 WO2021169896 A1 WO 2021169896A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
permanent magnet
weight percentage
rtb
based permanent
Prior art date
Application number
PCT/CN2021/077181
Other languages
English (en)
French (fr)
Inventor
付刚
黄清芳
黄佳莹
陈大崑
许德钦
Original Assignee
厦门钨业股份有限公司
福建省长汀金龙稀土有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门钨业股份有限公司, 福建省长汀金龙稀土有限公司 filed Critical 厦门钨业股份有限公司
Publication of WO2021169896A1 publication Critical patent/WO2021169896A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing

Definitions

  • the invention relates to an R-T-B series permanent magnet material and a preparation method and application thereof.
  • RTB series sintered magnets (R refers to rare earth elements, T refers to transition metal elements and metal elements of the third main group, B refers to boron element) is currently the most used rare earth permanent magnet material, which is widely used in electronics, electrical machinery, and medical equipment. , Toys, packaging, hardware machinery, aerospace and other fields, the more common ones are permanent magnet motors, speakers, magnetic separators, computer disk drives, magnetic resonance imaging equipment and meters.
  • heavy rare earth elements such as Dy, Tb, Gd, etc. are generally added to increase the coercivity of materials and improve the temperature coefficient.
  • the price of heavy rare earths is high. This method is used to increase the coercivity of RTB-based sintered magnet products. Force, will increase the cost of raw materials, is not conducive to the application of RTB series sintered magnets.
  • the technical problem to be solved by the present invention is to overcome the defects of degraded magnet performance and poor consistency when B ⁇ 5.88at% in the RTB system magnet in the prior art, and provides an RTB system permanent magnet material and its preparation method and application .
  • the R-T-B series permanent magnetic material of the present invention has high coercivity Hcj and Br, good temperature stability of the magnet, and excellent performance; and its demagnetization curve has no steps, low relative permeability, and good magnetic steel uniformity.
  • the present invention provides a R-T-B series permanent magnet material, which contains: R, Ga, Cu, Al, Fe and B, and also contains one or more of Ti, Zr and Nb, and its content is as follows in weight percentage:
  • R is 28.5-33.03%; said R is a rare earth element containing at least Nd;
  • the content of Ga is more than 0.35%
  • the content of Cu is more than 0.4%;
  • the content of B is 0.84 ⁇ 0.945%
  • the content of Al is less than 0.08%
  • the content of Ti is 0.15-0.255%
  • the content of the Zr is 0.19-0.355 %
  • the content of Nb is 0.19 to 0.505%
  • the R-T-B-based permanent magnet material does not contain Co.
  • the content of R is preferably 28.505% to 33.024% in terms of weight percentage, such as 28.505%, 28.695%, 28.957%, 28.98%, 29.206%, 29.493%, 30.297%, 30.501%, 30.589 %, 31.012%, 31.079%, 31.495%, 31.518%, 31.608%, 31.795%, 32.002%, 32.012%, 32.237%, 32.325% or 33.024%.
  • the Nd content is preferably 8.993% to 32.712% in terms of weight percentage, such as 8.993%, 9.002%, 12.396%, 28.196%, 28.203%, 28.205%, 28.486%, 28.604%, 29.004 %, 29.493%, 30.589%, 30.987%, 31.012%, 31.502%, 31.504%, 31.801%, 31.803%, 32.032%, 32.034% or 32.712%.
  • the R preferably contains Pr.
  • the content of Pr is preferably less than 0.5%, or greater than 17%, for example, 0.092%, 0.104%, 0.201%, 0.202%, 0.203%, 0.209%, 0.293%, 0.299%, 0.303%, 0.309%, 0.312%, 0.353%, 18.105%, 19.987% or 21.295%.
  • the R preferably contains a heavy rare earth element RH.
  • the RH is preferably one or more of Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y.
  • the RH content is preferably 1.5-6.0% in terms of weight percentage, for example, 2.991% or 3.012%.
  • the Ga content is preferably 0.35% ⁇ Ga ⁇ 0.55% in terms of weight percentage, such as 0.352%, 0.353%, 0.354%, 0.391%, 0.392%, 0.398%, 0.403%, 0.405% , 0.491%, 0.492%, 0.502%, 0.503%, 0.504% or 0.511%.
  • the content of Cu is preferably 0.45% ⁇ Cu ⁇ 0.65%, or Cu ⁇ 0.65%;
  • the Cu content is preferably 0.445% to 0.891% in weight percentage, such as 0.445%, 0.449%, 0.452%, 0.491%, 0.501%, 0.503%, 0.586%, 0.592%, 0.595 %, 0.597%, 0.604%, 0.653%, 0.685%, 0.695%, 0.697%, 0.796%, 0.809% or 0.891%.
  • the content of B is preferably 0.915% to 0.94% in terms of weight percentage.
  • the content of B is preferably 0.841%, 0.891%, 0.894%, 0.902%, 0.903%, 0.904%, 0.905%, 0.906%, 0.914%, 0.922%, 0.923%, 0.933%, 0.941%, 0.942% or 0.945%.
  • the content of B is preferably greater than or equal to 0.915 wt% and 5.55 at%; wherein, the wt% is a weight percentage, and the at% is an atomic percentage.
  • the content of Al is less than 0.08% by weight percentage. It should be noted that this content of Al is generally not added actively, specifically due to a very small amount of impurities in the equipment and/or raw materials used in the preparation process, so that the content of Al is less than 0.08%.
  • the content of Al is preferably 0.03% ⁇ Al ⁇ 0.05%, or the content of Al is less than 0.03%, such as 0.031%, 0.033%, 0.034%, 0.035%, 0.036% , 0.037%, 0.039%, 0.041%, 0.042%, 0.043%, 0.045%, 0.047%, 0.048% or 0.049%.
  • the content of Ti is preferably 0.151% to 0.253%, for example, 0.151%, 0.152%, or 0.153% by weight percentage. , 0.154%, 0.201%, 0.203%, 0.204% or 0.253%.
  • the content of Zr is preferably 0.2% ⁇ Zr ⁇ (3.48B-2.67)%, for example, 0.26% ⁇ Zr ⁇ (3.48 B-2.67)%.
  • the content of Zr is preferably 0.192% to 0.354% in terms of weight percentage, for example, 0.192%, 0.194%, 0.204%, 0.205%, 0.262 %, 0.293%, 0.303%, 0.304%, 0.353% or 0.354%.
  • the content of Nb is preferably 0.193% to 0.503%, for example, 0.193%, 0.194%, 0.1987%, 0.206%, 0.207. %, 0.303%, 0.323%, 0.406% or 0.503%.
  • the Nb content or the Ti content is preferably 0.55% or more in atomic percentage.
  • the Fe content is the balance in terms of weight percentage. More preferably, the Fe content is 64.5%-69.2% in weight percentage, such as 64.533%, 65.168%, 65.3303%, 65.796%, 65.812%, 65.892%, 66.092%, 66.121%, 66.152%, 66.748%, 66.799%, 66.863%, 67.177%, 67.263%, 67.581%, 68.41%, 68.433%, 68.504%, 68.665% or 68.993%.
  • the RTB-based permanent magnetic material includes R 2 Fe 14 B main phase, grain boundary phase and rare earth-rich phase; wherein, the grain boundary phase preferably includes R 6 Fe 13 Ga and/or R 6 Fe 13 Cu.
  • the present invention also provides a method for preparing the RTB-based permanent magnet material as described above, and the steps include: sequentially smelting, casting, hydrogen breaking, jet milling, forming, sintering and aging of the raw materials of the RTB-based permanent magnet material. , You can.
  • the raw material of the R-T-B-based permanent magnetic material is known to those skilled in the art as the raw material that satisfies the element content of the R-T-B-based permanent magnetic material as described above.
  • the operation and conditions of the smelting can be conventional in the art.
  • the raw materials are smelted in a high-frequency vacuum melting furnace.
  • the vacuum degree of the smelting furnace is less than 0.1 Pa, more preferably less than 0.02 Pa.
  • the melting temperature is 1450-1550°C, more preferably 1500-1550°C.
  • the operation and conditions of the casting can be conventional in the art, and are generally carried out in an inert atmosphere to obtain an alloy cast piece of RTB-based permanent magnet material.
  • an inert atmosphere e.g. under Ar atmosphere of 5.5 ⁇ 10 4 Pa
  • a rate of 10 2 °C / sec -10 4 °C / sec cooling can.
  • the cooling can be achieved by passing cooling water into the copper roller.
  • the water inlet temperature of the copper roller is ⁇ 25°C, for example, 22.9°C, 23.1°C, 23.4°C, 23.5°C, 23.6°C, 23.7°C, 23.9°C or 24.1°C.
  • the operation and conditions of the hydrogen breaker can be conventional in the art.
  • the hydrogen destruction includes a hydrogen adsorption process and a dehydrogenation process, and the R-T-B series permanent magnet material alloy cast piece can be subjected to hydrogen destruction treatment to obtain R-T-B series permanent magnet material alloy powder.
  • the hydrogen absorption temperature of the hydrogen breaker is 20 to 300°C, for example, 25°C.
  • the hydrogen absorption pressure of the hydrogen breaker is 0.12 to 0.19 MPa, for example, 0.19 MPa.
  • the dehydrogenation time of the hydrogen breaking is 0.5-5h, for example 2h.
  • the dehydrogenation temperature of the hydrogen breakdown is 450-600°C, for example, 550°C.
  • the operation and conditions of the jet mill can be conventional in the art.
  • the jet mill is to send the R-T-B series permanent magnet material alloy powder to the jet mill for jet milling to continue to be crushed to obtain the R-T-B series permanent magnet material fine powder.
  • the oxygen content in the grinding chamber of the jet mill in the jet mill is below 120 ppm.
  • the rotation speed of the sorting wheel in the jet mill is 3500-4300 rpm/min, preferably 3900-4100 rpm/min, for example 4000 rpm/min.
  • the grinding pressure of the jet mill is 0.3-0.5 MPa, for example 0.4 MPa.
  • the median particle size D50 of the fine powder of the R-T-B permanent magnetic material is 3 to 5.5 ⁇ m, for example, 4 ⁇ m.
  • the molding operation and conditions can be conventional in the art.
  • the molding is performed at a magnetic field strength above 1.8T, such as 1.8T, and under the protection of a nitrogen atmosphere.
  • the sintering operation and conditions can be conventional in the art.
  • the sintering temperature is 900-1300°C, more preferably 1000-1100°C, such as 1045°C, 1055°C, 1065°C, 1065°C, 1070°C, 1073°C, 1075°C, 1080°C, 1083°C, 1085°C or 1088°C.
  • the sintering time is 5-10h, for example 8h.
  • the aging operation and conditions can be conventional in the art.
  • the aging includes primary aging and secondary aging.
  • the temperature of the primary aging is 850°C to 950°C, for example, 900°C.
  • the secondary aging temperature is 430°C to 560°C, preferably 450 to 490°C, for example, 450°C, 455°C, 460°C, 470°C, 480°C or 490°C.
  • the time of the primary aging treatment is 2 to 5 hours, for example, 3 hours.
  • the time of the secondary aging treatment is 2 to 5 hours, for example, 3 hours.
  • the invention also provides an application of the aforementioned R-T-B series permanent magnet material in automobile rotors, automobile drive motors, wind power or water pumps.
  • the reagents and raw materials used in the present invention are all commercially available.
  • the formula of RTB-based permanent magnet material is designed to be low in B content, high in Ga content, high in Cu content, free of Al (the equipment used in the preparation process and/or a very small amount of impurities in the raw materials) and not Contains Co.
  • the coercivity Hcj ( ⁇ 17.25kOe) and Br ( ⁇ 12.93kGs) of the RTB-based permanent magnet material are high. After adding heavy rare earth elements, Hcj can reach above 26.75kOe, and the temperature stability of the magnet is good. Excellent performance; and its demagnetization curve has no steps, the relative permeability is low, the coercive force is less than 1.5kOe in the same batch, and the magnetic steel has good uniformity (squareness ⁇ 97%).
  • Fig. 1 is the J-H curve of the R-T-B series permanent magnetic material prepared in Example 12.
  • Fig. 2 is the J-H curve of the R-T-B-based permanent magnetic material prepared in Comparative Example 1, wherein the circled part in Fig. 2 indicates that the J-H curve has a step.
  • the dehydrogenation time of hydrogen breakdown is 2h.
  • the dehydrogenation temperature is 550°C to obtain R-T-B alloy powder.
  • Jet mill The R-T-B alloy powder is sent to a jet mill for jet milling to continue to be broken to obtain R-T-B fine powder.
  • the oxygen content in the grinding chamber of the jet mill in the jet mill is below 120 ppm.
  • the speed of the sorting wheel in the jet mill is 4000 rpm/min.
  • the grinding pressure of the jet mill is 0.4MPa.
  • the median particle diameter D50 of the obtained R-T-B fine powder was 4 ⁇ m.
  • the molding is carried out under the protection of 1.8T magnetic field strength and nitrogen atmosphere.
  • the sintering time is 8h.
  • the temperature of primary aging is 900°C; the temperature of secondary aging (as shown in Table 2) is 460°C.
  • the treatment time of primary aging is 3h, and the treatment time of secondary aging is 3h.
  • the raw materials were prepared according to the formula shown in Table 1, and except for the conditions shown in Table 2, the other process conditions were the same as those in Example 1, and the R-T-B series permanent magnet material was prepared.
  • Examples 1-20 and Comparative Examples 1-12 were measured for specific components using a high-frequency inductively coupled plasma emission spectrometer (ICP-OES, Horiba).
  • ICP-OES high-frequency inductively coupled plasma emission spectrometer
  • the content of Al in the sintered magnet in Table 3 is the sum of the content of Al in the raw material and the content of Al introduced in other raw materials and processes (for example, a crucible made of alumina during smelting).
  • Magnetic performance evaluation The samples of Examples 1-20 and Comparative Examples 1-12 were tested for magnetic performance using the NIM-10000H BH bulk rare earth permanent magnet non-destructive measurement system of China Metrology Institute.
  • the magnetic performance test sample size is a cylinder of 10mm*10mm.
  • the following table shows the magnetic performance test results.
  • the 6-13-1 phase in Table 4 refers to the R 6 Fe 13 Ga or R 6 Fe 13 Cu phase
  • the volume ratio of the 6-13-1 phase to the overall phase refers to R 6 Fe 13 Ga or The volume ratio of the volume of the R 6 Fe 13 Cu phase in the overall phase.
  • the overall phase includes the grain boundary phase, the R 2 T 14 B main phase and the rare earth-rich phase.
  • the magnetic properties of the RTB-based permanent magnet materials in Comparative Examples 1-12 are the best properties that can be obtained after the formulations of Comparative Examples 1-12 have been optimized by technology (water inlet temperature, sintering temperature, and aging temperature).
  • FE-EPMA is used to detect, the vertical orientation surface of RTB-based permanent magnet materials is polished, and the field emission electron probe microanalyzer (FE-EPMA) (JEOL, 8530F) is used to detect.
  • FE-EPMA field emission electron probe microanalyzer
  • T refers to Fe
  • M refers to Ga and/or Cu.
  • Br or Hcj refer to the average value: the average value calculated by testing the remanence or coercivity of 5 rare earth permanent magnetic material samples (cylinder 10mm*10mm) in the same batch.
  • the volume ratio and temperature coefficient of the 6-13-1 phase in the overall phase are also taken after measuring the average value of the performance of 5 rare earth permanent magnetic material samples (cylinder 10mm*10mm) in the same batch. value.
  • each embodiment and comparative example of the present invention several magnets are prepared, and the same batch refers to the sample obtained by cutting the magnet material obtained in each embodiment and comparative example according to the unit of the performance test.
  • the relative permeability is Br/Hcb; among them, Br is the remanence and Hcb is the magnetic coercivity.
  • Br is the remanence
  • Hcb is the magnetic coercivity.
  • Max(Hcj)-Min(Hcj) The maximum value of the coercive force minus the minimum value of the coercive force in the same batch of products. If it is greater than 1.5kOe, the magnetic performance consistency is poor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

一种R-T-B系永磁材料及其制备方法和应用。该R-T-B系永磁材料包含:R、Ga、Cu、Al、Fe和B,还包含Ti、Zr和Nb的一种或多种,以重量百分比计,其含量如下:R的含量为28.5~33.03%;Ga的含量为0.35%以上;Cu的含量为0.4%以上;B的含量为0.84~0.945%;Al的含量为小于0.08%;R-T-B系永磁材料中不含有Co。该R-T-B系永磁材料矫顽力Hcj和Br高,磁体温度稳定性好,性能优异;且其退磁曲线无台阶,相对磁导率低,磁钢均一性好。

Description

一种R-T-B系永磁材料及其制备方法和应用 技术领域
本发明涉及一种R-T-B系永磁材料及其制备方法和应用。
背景技术
R-T-B系烧结磁铁(R指稀土元素,T指过渡金属元素及第三主族金属元素,B指硼元素)是目前使用量最大的稀土永磁材料,被广泛应用于电子、电力机械、医疗器械、玩具、包装、五金机械、航天航空等领域,较常见的有永磁电机、扬声器、磁选机、计算机磁盘驱动器、磁共振成像设备仪表等。
实验中发现,在B含量较高的情况下,会生成较多的富B相,进而影响到产品的剩磁性能。因此,为了提升R-T-B系烧结磁铁的剩磁,通常需要降低B含量,但是当B含量低于5.88at%时,由Nd-Fe-B三元相图可知易形成R 2T 17相,而R 2T 17不具有室温单轴各向异性,进而使得磁体的性能劣化。
现有技术中,一般通过添加重稀土元素例如Dy、Tb、Gd等,以提高材料的矫顽力以及改善温度系数,但重稀土价格高昂,采用这种方法提高R-T-B系烧结磁体产品的矫顽力,会增加原材料成本,不利于R-T-B系烧结磁体的应用。
因此,在不添加或少量添加重稀土的情况下,如何采用低B体系(B<5.88at%)制备得到高矫顽力、高剩磁的R-T-B系磁铁是本领域亟待解决的技术问题。
发明内容
本发明所要解决的技术问题在于克服现有技术中当R-T-B系磁体中B<5.88at%时,磁体性能劣化且一致性差的缺陷,而提供了一种R-T-B系永磁材料及其制备方法和应用。本发明的R-T-B系永磁材料矫顽力Hcj和Br高,磁体温度稳定性好,性能优异;且其退磁曲线无台阶,相对磁导率低,磁钢 均一性好。
本发明提供了一种R-T-B系永磁材料,其包含:R、Ga、Cu、Al、Fe和B,还包含Ti、Zr和Nb的一种或多种,以重量百分比计,其含量如下:
R的含量为28.5~33.03%;所述R为至少含有Nd的稀土元素;
Ga的含量为0.35%以上;
Cu的含量为0.4%以上;
B的含量为0.84~0.945%;
Al的含量为小于0.08%;
当所述R-T-B系永磁材料包含Ti时,所述Ti的含量为0.15~0.255%;
当所述R-T-B系永磁材料包含Zr时,所述Zr的含量为0.19~0.355%;
当所述R-T-B系永磁材料包含Nb时,所述Nb的含量为0.19~0.505%;
所述R-T-B系永磁材料中不含有Co。
本发明中,以重量百分比计,所述R的含量优选地为28.505%~33.024%,例如为28.505%、28.695%、28.957%、28.98%、29.206%、29.493%、30.297%、30.501%、30.589%、31.012%、31.079%、31.495%、31.518%、31.608%、31.795%、32.002%、32.012%、32.237%、32.325%或33.024%。
本发明中,以重量百分比计,所述Nd的含量优选地为8.993%~32.712%,例如为8.993%、9.002%、12.396%、28.196%、28.203%、28.205%、28.486%、28.604%、29.004%、29.493%、30.589%、30.987%、31.012%、31.502%、31.504%、31.801%、31.803%、32.032%、32.034%或32.712%。
本发明中,所述R中优选地包含Pr。
其中,以重量百分比计,所述Pr的含量优选地为小于0.5%,或者大于17%,例如为0.092%、0.104%、0.201%、0.202%、0.203%、0.209%、0.293%、0.299%、0.303%、0.309%、0.312%、0.353%、18.105%、19.987%或21.295%。
本发明中,所述R中优选地包含重稀土元素RH。
其中,所述RH优选地为Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu和Y的一种或多种。
其中,以重量百分比计,所述RH的含量优选地为1.5~6.0%,例如为2.991%或3.012%。
本发明中,以重量百分比计,所述Ga的含量优选地为0.35%≤Ga<0.55%,例如为0.352%、0.353%、0.354%、0.391%、0.392%、0.398%、0.403%、0.405%、0.491%、0.492%、0.502%、0.503%、0.504%或0.511%。
本发明中,以重量百分比计,所述Cu的含量优选地为0.45%≤Cu<0.65%,或者Cu≥0.65%;
本发明中,以重量百分比计,所述Cu的含量优选地为0.445%~0.891%,例如为0.445%、0.449%、0.452%、0.491%、0.501%、0.503%、0.586%、0.592%、0.595%、0.597%、0.604%、0.653%、0.685%、0.695%、0.697%、0.796%、0.809%或0.891%。
本发明中,以重量百分比计,所述B的含量优选地为0.915%~0.94%。
本发明中,以重量百分比计,所述B的含量优选地为0.841%、0.891%、0.894%、0.902%、0.903%、0.904%、0.905%、0.906%、0.914%、0.922%、0.923%、0.933%、0.941%、0.942%或0.945%。
本发明中,所述B的含量优选地≥0.915wt%和5.55at%中的大者;其中,所述wt%为重量百分比,所述at%为原子百分比。
本发明中,以重量百分比计,所述Al的含量<0.08%。需要说明的是,该含量的Al一般不是主动添加,具体是由于制备过程中使用的设备和/或原材料中极少量的杂质,使得Al的含量<0.08%。
其中,以重量百分比计,所述Al的含量优选地为0.03%≤Al<0.05%,或者,所述Al的含量小于0.03%,例如为0.031%、0.033%、0.034%、0.035%、0.036%、0.037%、0.039%、0.041%、0.042%、0.043%、0.045%、0.047%、0.048%或0.049%。
本发明中,以原子百分比计,优选地,当所述R中包含Pr时,B/(Pr+Nd)≥0.405。
本发明中,以原子百分比计,优选地,Ga>7.2941-1.24B。
本发明中,以原子百分比计,优选地,B/R≥0.38。
本发明中,当所述R-T-B系永磁材料包含Ti时,以重量百分比计,以重量百分比计,所述Ti的含量优选地为0.151%~0.253%,例如为0.151%、0.152%、0.153%、0.154%、0.201%、0.203%、0.204%或0.253%。
本发明中,当所述R-T-B系永磁材料包含Zr时,以重量百分比计,所述Zr的含量优选地为0.2%≤Zr<(3.48B-2.67)%,例如0.26%≤Zr<(3.48B-2.67)%。
本发明中,当所述R-T-B系永磁材料包含Zr时,以重量百分比计,所述Zr的含量优选地为0.192%~0.354%,例如为0.192%、0.194%、0.204%、0.205%、0.262%、0.293%、0.303%、0.304%、0.353%或0.354%。
本发明中,当所述R-T-B系永磁材料包含Nb时,以重量百分比计,所述Nb的含量优选地为0.193%~0.503%,例如为0.193%、0.194%、0.1987%、0.206%、0.207%、0.303%、0.323%、0.406%或0.503%。
本发明中,当所述R-T-B系永磁材料包含Nb或Ti时,以原子百分比计,所述Nb的含量或所述Ti的含量优选地为0.55%以上。
本发明中,优选地,以重量百分比计,所述Fe的含量为余量。更优选地,以重量百分比计,所述Fe的含量为64.5%~69.2%,例如为64.533%、65.168%、65.3303%、65.796%、65.812%、65.892%、66.092%、66.121%、66.152%、66.748%、66.799%、66.863%、67.177%、67.263%、67.581%、68.41%、68.433%、68.504%、68.665%或68.993%。
本发明中,优选地,所述R-T-B系永磁材料包含R 2Fe 14B主相、晶界相和富稀土相;其中,所述晶界相优选地包含R 6Fe 13Ga和/或R 6Fe 13Cu。
本发明还提供了一种如前所述的R-T-B系永磁材料的制备方法,其步骤包括:将R-T-B系永磁材料的原料依次进行熔炼、铸造、氢破、气流磨、成型、烧结和时效,即可。
本发明中,所述R-T-B系永磁材料的原料,本领域技术人员知晓为满足如前所述R-T-B系永磁材料的元素含量质量百分比的原料。
本发明中,所述熔炼的操作和条件可为本领域常规。
较佳地,在高频真空熔炼炉中,将所述原料熔炼。
较佳地,所述熔炼炉的真空度小于0.1Pa,更佳地小于0.02Pa。
较佳地,所述熔炼的温度为1450~1550℃,更佳地为1500~1550℃。
本发明中,所述铸造的操作和条件可为本领域常规,一般在惰性气氛中进行,得到R-T-B系永磁材料合金铸片。例如:在Ar气氛中(例如5.5×10 4Pa的Ar气氛下),以10 2℃/秒-10 4℃/秒的速度冷却,即可。
所述冷却可通过铜辊中通入冷却水实现。优选地,所述铜辊的进水温度≤25℃,例如为22.9℃、23.1℃、23.4℃、23.5℃、23.6℃、23.7℃、23.9℃或24.1℃。
本发明中,所述氢破的操作和条件可为本领域常规。一般情况下,所述氢破包括氢吸附过程和脱氢过程,可将所述R-T-B系永磁材料合金铸片进行氢破处理,获得R-T-B系永磁材料合金粉体。
较佳地,所述氢破的吸氢温度为20~300℃,例如为25℃。
较佳地,所述氢破的吸氢压力为0.12~0.19MPa,例如为0.19MPa。
较佳地,所述氢破的脱氢时间为0.5~5h,例如为2h。
较佳地,所述氢破的脱氢温度为450~600℃,例如为550℃。
本发明中,所述气流磨的操作和条件可为本领域常规。较佳地,所述气流磨为将所述R-T-B系永磁材料合金粉体送入气流磨机进行气流磨继续破碎,得到R-T-B系永磁材料细粉。
更佳地,所述气流磨中气流磨机的磨室中含氧量在120ppm以下。
更佳地,所述气流磨中分选轮的转速为3500~4300rpm/min,优选为3900~4100rpm/min,例如为4000rpm/min。
更佳地,所述气流磨的研磨压力为0.3~0.5MPa,例如为0.4MPa。
更佳地,所述R-T-B系永磁材料细粉的中值粒径D50为3~5.5μm,例如为4μm。
本发明中,所述成型的操作和条件可为本领域常规。
较佳地,所述成型在1.8T以上的,例如为1.8T的磁场强度和氮气气氛保护下进行。
本发明中,所述烧结的操作和条件可为本领域常规。
较佳地,所述烧结的温度为900~1300℃,更佳地为1000~1100℃,例如为1045℃、1055℃、1065℃、1065℃、1070℃、1073℃、1075℃、1080℃、1083℃、1085℃或1088℃。
较佳地,所述烧结的时间为5~10h,例如为8h。
本发明中,所述时效的操作和条件可为本领域常规。
较佳地,所述时效包含一级时效和二级时效。
更佳地,所述一级时效的温度为850℃~950℃,例如为900℃。
更佳地,所述二级时效温度为430℃~560℃,优选地为450~490℃,例如为450℃、455℃、460℃、470℃、480℃或490℃。
更佳地,所述一级时效处理的时间为2~5h,例如为3h。
更佳地,所述二级时效处理的时间为2~5h,例如为3h。
本发明还提供了一种如前所述的R-T-B系永磁材料在汽车转子、汽车驱动电机、风电或水泵中的应用。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明所用试剂和原料均市售可得。
本发明的积极进步效果在于:
(1)本发明中,R-T-B系永磁材料的配方设计为B含量低、Ga含量高、Cu含量高、不含Al(制备过程中使用的设备和/或原材料中极少量的杂质)且不含Co。
(2)本发明中,R-T-B系永磁材料的矫顽力Hcj(≥17.25kOe)和Br(≥12.93kGs)高,添加重稀土元素后,Hcj可达26.75kOe以上,磁体温度稳定性好,性能优异;且其退磁曲线无台阶,相对磁导率低,矫顽力同批次极差≤1.5kOe,磁钢均一性好(方形度≥97%)。
(3)由于Co作为战略元素,普通的工艺中通过Co的添加目的是保证剩磁的高温稳定性,然而,本发明的配方设计能够使得R-T-B系永磁材料在不添加Co的基础上,实现了和添加Co元素相当的温度稳定性。
附图说明
图1为实施例12制得的R-T-B系永磁材料的J-H曲线。
图2为对比例1制得的R-T-B系永磁材料的J-H曲线,其中,图2中圆圈部分表示该J-H曲线存在台阶。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
实施例1
本实施例中制备R-T-B系永磁材料所用的原料如表1所示,其制备的工艺如下:
(1)熔炼:按表1所示配方,取配制好的原料放入氧化铝制的坩埚中,在高频真空感应熔炼炉中在真空度小于0.02Pa的条件下,以1500℃的温度进行真空熔炼。
(2)铸造:在真空熔炼后的熔炼炉中通入Ar气体使气压达到5.5万Pa后,进行铸造,将熔融液通过29转/分转速的铜辊制得0.12-0.35mm厚度的速凝合金片,浇铸过程中,铜辊需通入冷冻水,其进水温度≤25℃(如表2所示);以10 2℃/秒-10 4℃/秒的冷却速度获得急冷合金。
(3)氢破:R-T-B合金铸片的氢吸附过程的吸氢温度为25℃;吸氢压力为0.19MPa。
氢破的脱氢时间为2h。脱氢温度为550℃,获得R-T-B合金粉体。
(3)气流磨:将所述R-T-B合金粉体送入气流磨机进行气流磨继续破 碎,得到R-T-B细粉。
气流磨中气流磨机的磨室中含氧量在120ppm以下。
气流磨中分选轮的转速为4000rpm/min。
气流磨的研磨压力为0.4MPa。
得到的R-T-B细粉的中值粒径D50为4μm。
(4)成型:细粉在一定磁场强度下经取向成型得到压坯。
成型在1.8T的磁场强度和氮气气氛保护下进行。
(5)烧结:烧结的温度(如表2所示)为1045℃,
烧结的时间为8h。
(6)时效
一级时效的温度为900℃;二级时效的温度(如表2所示)为460℃。
一级时效的处理时间为3h,二级时效的处理时间为3h。
表1 各实施例、对比例中原料质量百分比
Figure PCTCN2021077181-appb-000001
Figure PCTCN2021077181-appb-000002
实施例2~20、对比例1~12
按表1所示配方配制原料,除表2所示条件外,其他工艺条件均同实施例1,制得R-T-B系永磁材料。
表2
Figure PCTCN2021077181-appb-000003
Figure PCTCN2021077181-appb-000004
Figure PCTCN2021077181-appb-000005
效果实施例
(1)成分测定
实施例1~20、对比例1~12的样品使用高频电感耦合等离子体发射光谱仪(ICP-OES,Horiba)测定具体成分。下表所示为成分检测结果。
表3
Figure PCTCN2021077181-appb-000006
Figure PCTCN2021077181-appb-000007
需要说明的是,表3中烧结磁体中Al的含量是原料中的Al以及在其他原料和工艺(例如熔炼过程中氧化铝制的坩埚)中引入的Al的含量之和。
(2)磁性能检测
磁性能评价:实施例1~20、对比例1~12的样品使用中国计量院的NIM-10000H型BH大块稀土永磁无损测量系统进行磁性能检测。磁性能检测样品大小为10mm*10mm的圆柱,下表所示为磁性能检测结果。
表4
Figure PCTCN2021077181-appb-000008
Figure PCTCN2021077181-appb-000009
注:表4中6-13-1相是指R 6Fe 13Ga或R 6Fe 13Cu相,其中:6-13-1相所占整体物相的 体积比是指R 6Fe 13Ga或R 6Fe 13Cu相的体积在整体物相中的体积比,整体物相包括晶界相、R 2T 14B主相和富稀土相。对比例1~12中R-T-B系永磁材料的磁性能为对比例1~12的配方经工艺优化(进水温度、烧结温度、时效温度)后所能够获得的最佳性能。
1、6-13-1相的检测方法:
微观结构:采用FE-EPMA检测,对R-T-B系永磁材料的垂直取向面进行抛光,采用场发射电子探针显微分析仪(FE-EPMA)(日本电子株式会社(JEOL),8530F)检测。检测晶界中的R 6T 13M相,T指Fe,M指Ga和/或Cu。
2、表4中,Br或Hcj均是指均值:通过测试同一批次中5份稀土永磁材料样品(圆柱10mm*10mm)的剩磁或矫顽力,计算出的平均值。
6-13-1相所占整体物相的体积比以及温度系数也是通过测量同一批次中的5份稀土永磁材料样品(圆柱10mm*10mm)的性能所取的平均值后再取的绝对值。
本发明每一实施例和对比例中制备出的是若干个磁体,同一批次指的就是每一实施例和对比例中所获得的磁体材料按照性能测试的单位切割得到的样品。
(3)磁性能一致性检测
方形度=Hk/Hcj;其中,Hk为当Br为90%Br时,外磁场H的值,Hcj为矫顽力。
相对磁导率为Br/Hcb;其中,Br为剩磁,Hcb为磁感矫顽力,当J-H曲线存在拐点时,磁导率在拐点之前取值。通过测试同一批次中5份稀土永磁材料样品的剩磁和磁感矫顽力,计算出的平均值。
Max(Hcj)-Min(Hcj):同一批次产品中矫顽力最大值减去矫顽力最小值,若大于1.5kOe,则是磁性能一致性差。
下表所示为磁性能一致性检测结果。
表5
Figure PCTCN2021077181-appb-000010
Figure PCTCN2021077181-appb-000011

Claims (10)

  1. 一种R-T-B系永磁材料,其特征在于,其包含:R、Ga、Cu、Al、Fe和B,还包含Ti、Zr和Nb的一种或多种,以重量百分比计,其含量如下:
    R的含量为28.5~33.03%;所述R为至少含有Nd的稀土元素;
    Ga的含量为0.35%以上;
    Cu的含量为0.4%以上;
    B的含量为0.84~0.945%;
    Al的含量为小于0.08%;
    当所述R-T-B系永磁材料包含Ti时,所述Ti的含量为0.15~0.255%;
    当所述R-T-B系永磁材料包含Zr时,所述Zr的含量为0.19~0.355%;
    当所述R-T-B系永磁材料包含Nb时,所述Nb的含量为0.19~0.505%;
    所述R-T-B系永磁材料中不含有Co。
  2. 如权利要求1所述的R-T-B系永磁材料,其特征在于,以重量百分比计,所述Ga的含量为0.35%≤Ga<0.55%,例如为0.352%、0.353%、0.354%、0.391%、0.392%、0.398%、0.403%、0.405%、0.491%、0.492%、0.502%、0.503%、0.504%或0.511%;
    和/或,以重量百分比计,所述Cu的含量为0.45%≤Cu<0.65%,或者Cu≥0.65%;或者,以重量百分比计,所述Cu的含量为0.445%~0.891%,例如为0.445%、0.449%、0.452%、0.491%、0.501%、0.503%、0.586%、0.592%、0.595%、0.597%、0.604%、0.653%、0.685%、0.695%、0.697%、0.796%、0.809%或0.891%;
    和/或,以重量百分比计,所述B的含量为0.915%~0.94%;
    或者,以重量百分比计,所述B的含量为0.841%、0.891%、0.894%、0.902%、0.903%、0.904%、0.905%、0.906%、0.914%、0.922%、0.923%、0.933%、0.941%、0.942%或0.945%;
    或者,所述B的含量为≥0.915wt%和5.55at%中的大者;其中,所述wt%为重量百分比,所述at%为原子百分比;
    和/或,以重量百分比计,所述Al的含量为0.03%≤Al<0.05%,或者, 所述Al的含量小于0.03%,例如为0.031%、0.033%、0.034%、0.035%、0.036%、0.037%、0.039%、0.041%、0.042%、0.043%、0.045%、0.047%、0.048%或0.049%;
    和/或,当所述R-T-B系永磁材料包含Ti时,以重量百分比计,所述Ti的含量为0.151%~0.253%,例如为0.151%、0.152%、0.153%、0.154%、0.201%、0.203%、0.204%或0.253%;
    和/或,当所述R-T-B系永磁材料包含Zr时,以重量百分比计,所述Zr的含量为0.192%~0.354%,例如为0.192%、0.194%、0.204%、0.205%、0.262%、0.293%、0.303%、0.304%、0.353%或0.354%;
    和/或,当所述R-T-B系永磁材料包含Nb时,以重量百分比计,所述Nb的含量为0.193%~0.503%,例如为0.193%、0.194%、0.1987%、0.206%、0.207%、0.303%、0.323%、0.406%或0.503%;
    和/或,当所述R-T-B系永磁材料包含Zr时,以重量百分比计,所述Zr的含量为0.2%≤Zr<(3.48B-2.67)%,优选地为0.26%≤Zr<(3.48B-2.67)%;
    和/或,所述R-T-B系永磁材料包含R 2Fe 14B主相、晶界相和富稀土相;其中,所述晶界相包含R 6Fe 13Ga和/或R 6Fe 13Cu。
  3. 如权利要求1所述的R-T-B系永磁材料,其特征在于,以重量百分比计,所述R的含量为28.505%~33.024%,例如为28.505%、28.695%、28.957%、28.98%、29.206%、29.493%、30.297%、30.501%、30.589%、31.012%、31.079%、31.495%、31.518%、31.608%、31.795%、32.002%、32.012%、32.237%、32.325%或33.024%;
    和/或,以重量百分比计,所述Nd的含量为8.993%~32.712%,例如为8.993%、9.002%、12.396%、28.196%、28.203%、28.205%、28.486%、28.604%、29.004%、29.493%、30.589%、30.987%、31.012%、31.502%、31.504%、31.801%、31.803%、32.032%、32.034%或32.712%;
    和/或,所述R中包含Pr;
    和/或,所述R中包含重稀土元素RH。
  4. 如权利要求3所述的R-T-B系永磁材料,其特征在于,以重量百分比计,所述Pr的含量为小于0.5%,或者大于17%,例如为0.092%、0.104%、0.201%、0.202%、0.203%、0.209%、0.293%、0.299%、0.303%、0.309%、0.312%、0.353%、18.105%、19.987%或21.295%;
    和/或,所述RH为Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu和Y的一种或多种;
    和/或,以重量百分比计,所述RH的含量为1.5~6.0%,例如为2.991%或3.012%;
    和/或,以重量百分比计,所述Fe的含量为余量;
    优选地,以重量百分比计,所述Fe的含量为64.5%~69.2%,例如为64.533%、65.168%、65.3303%、65.796%、65.812%、65.892%、66.092%、66.121%、66.152%、66.748%、66.799%、66.863%、67.177%、67.263%、67.581%、68.41%、68.433%、68.504%、68.665%或68.993%。
  5. 如权利要求1所述的R-T-B系永磁材料,其特征在于,以原子百分比计,当所述R中包含Pr时,B/(Pr+Nd)≥0.405;
    和/或,以原子百分比计,Ga>7.2941-1.24B;
    和/或,以原子百分比计,B/R≥0.38。
  6. 一种如权利要求1~5中任一项所述的R-T-B系永磁材料的制备方法,其特征在于,其步骤包括:将R-T-B系永磁材料的原料依次进行熔炼、铸造、氢破、气流磨、成型、烧结和时效,即可。
  7. 如权利要求6所述的制备方法,其特征在于,所述铸造的工艺按下述步骤进行:在Ar气氛中,以10 2℃/秒-10 4℃/秒的速度冷却,即可;所述冷却可通过铜辊中通入冷却水实现,优选地,所述铜辊的进水温度≤25℃,例如为22.9℃、23.1℃、23.4℃、23.5℃、23.6℃、23.7℃、23.9℃或24.1℃;
    和/或,所述烧结的温度为900~1300℃,较佳地为1000~1100℃,例如为1045℃、1055℃、1065℃、1065℃、1070℃、1073℃、1075℃、1080℃、1083℃、1085℃或1088℃;
    和/或,所述烧结的时间为5~10h,例如为8h;
    和/或,所述时效包含一级时效和二级时效。
  8. 如权利要求7所述的制备方法,其特征在于,所述一级时效处理的时间为2~5h,例如为3h;
    和/或,所述二级时效处理的时间为2~5h,例如为3h;
    和/或,所述一级时效温度为850℃~950℃,例如为900℃;
    和/或,所述二级时效温度为430℃~560℃,较佳地为450~490℃,例如为450℃、455℃、460℃、470℃、480℃或490℃。
  9. 如权利要求6所述的制备方法,其特征在于,在高频真空熔炼炉中,将所述原料熔炼;
    和/或,所述熔炼炉的真空度小于0.1Pa,较佳地小于0.02Pa;
    和/或,所述熔炼的温度为1450~1550℃,较佳地为1500~1550℃;
    和/或,所述氢破的吸氢温度为20~300℃,例如为25℃;
    和/或,所述氢破的吸氢压力为0.12~0.19MPa,例如为0.19MPa;
    和/或,所述氢破的脱氢时间为0.5~5h,例如为2h;
    和/或,所述氢破的脱氢温度为450~600℃,例如为550℃;
    和/或,所述气流磨为将R-T-B系永磁材料合金粉体送入气流磨机进行气流磨继续破碎,得到R-T-B系永磁材料细粉;
    较佳地,所述R-T-B系永磁材料细粉的中值粒径D50为3~5.5μm,例如为4μm;
    和/或,所述气流磨中气流磨机的磨室中含氧量在120ppm以下;
    和/或,所述气流磨中分选轮的转速为3500~4300rpm/min,较佳地为3900~4100rpm/min,例如为4000rpm/min;
    和/或,所述气流磨的研磨压力为0.3~0.5MPa,例如为0.4MPa;
    和/或,所述成型在1.8T以上的,例如为1.8T的磁场强度和氮气气氛保护下进行。
  10. 一种如权利要求1~5中任一项所述的R-T-B系永磁材料在汽车转子、 汽车驱动电机、风电或水泵中的应用。
PCT/CN2021/077181 2020-02-29 2021-02-22 一种r-t-b系永磁材料及其制备方法和应用 WO2021169896A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010132220.5 2020-02-29
CN202010132220.5A CN111326305B (zh) 2020-02-29 2020-02-29 一种r-t-b系永磁材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2021169896A1 true WO2021169896A1 (zh) 2021-09-02

Family

ID=71172950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077181 WO2021169896A1 (zh) 2020-02-29 2021-02-22 一种r-t-b系永磁材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN111326305B (zh)
WO (1) WO2021169896A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111326305B (zh) * 2020-02-29 2022-03-01 厦门钨业股份有限公司 一种r-t-b系永磁材料及其制备方法和应用
CN112216459B (zh) * 2020-09-26 2024-01-26 宁波合力磁材技术有限公司 喇叭用磁性材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050098239A1 (en) * 2003-10-15 2005-05-12 Neomax Co., Ltd. R-T-B based permanent magnet material alloy and R-T-B based permanent magnet
CN110828089A (zh) * 2019-11-21 2020-02-21 厦门钨业股份有限公司 钕铁硼磁体材料、原料组合物及制备方法和应用
CN110853855A (zh) * 2019-11-21 2020-02-28 厦门钨业股份有限公司 一种r-t-b系永磁材料及其制备方法和应用
CN111326305A (zh) * 2020-02-29 2020-06-23 厦门钨业股份有限公司 一种r-t-b系永磁材料及其制备方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031409A (ja) * 2001-07-18 2003-01-31 Hitachi Metals Ltd 耐食性に優れた希土類焼結磁石
WO2003044812A1 (en) * 2001-11-22 2003-05-30 Sumitomo Special Metals Co., Ltd. Nanocomposite magnet
JP6521391B2 (ja) * 2015-01-27 2019-05-29 日立金属株式会社 R−t−b系焼結磁石の製造方法
US10242781B2 (en) * 2015-12-24 2019-03-26 Hitachi Metals, Ltd. Method for manufacturing R-T-B based sintered magnet
US10943717B2 (en) * 2016-02-26 2021-03-09 Tdk Corporation R-T-B based permanent magnet
CN110444386B (zh) * 2019-08-16 2021-09-03 包头天和磁材科技股份有限公司 烧结体、烧结永磁体及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050098239A1 (en) * 2003-10-15 2005-05-12 Neomax Co., Ltd. R-T-B based permanent magnet material alloy and R-T-B based permanent magnet
CN110828089A (zh) * 2019-11-21 2020-02-21 厦门钨业股份有限公司 钕铁硼磁体材料、原料组合物及制备方法和应用
CN110853855A (zh) * 2019-11-21 2020-02-28 厦门钨业股份有限公司 一种r-t-b系永磁材料及其制备方法和应用
CN111326305A (zh) * 2020-02-29 2020-06-23 厦门钨业股份有限公司 一种r-t-b系永磁材料及其制备方法和应用

Also Published As

Publication number Publication date
CN111326305B (zh) 2022-03-01
CN111326305A (zh) 2020-06-23

Similar Documents

Publication Publication Date Title
CN111243809B (zh) 一种钕铁硼材料及其制备方法和应用
TWI741909B (zh) 高Cu高Al的釹鐵硼磁體及其製備方法
WO2021135144A1 (zh) 一种钕铁硼永磁材料、制备方法、应用
WO2021249159A1 (zh) 重稀土合金、钕铁硼永磁材料、原料和制备方法
CN111326306B (zh) 一种r-t-b系永磁材料及其制备方法和应用
WO2021169896A1 (zh) 一种r-t-b系永磁材料及其制备方法和应用
CN110571007A (zh) 一种稀土永磁材料、原料组合物、制备方法、应用、电机
WO2021238783A1 (zh) 一种钕铁硼永磁材料、其原料组合物、其制备方法和应用
WO2021031724A1 (zh) 一种钕铁硼永磁材料及其原料组合物、制备方法和应用
TW202121451A (zh) 釹鐵硼磁體材料、原料組合物及製備方法和應用
CN112992463A (zh) 一种r-t-b磁体及其制备方法
WO2021169903A1 (zh) 一种稀土永磁材料及其制备方法和应用
KR102606749B1 (ko) R-t-b계 영구자석 재료, 원료조성물, 제조방법, 응용
CN113674944A (zh) 一种钕铁硼磁体材料及其制备方法和应用
CN113674943A (zh) 一种钕铁硼磁体材料及其制备方法和应用
CN111312462B (zh) 一种钕铁硼材料及其制备方法和应用
CN111312463B (zh) 一种稀土永磁材料及其制备方法和应用
WO2023280259A1 (zh) 一种耐腐蚀、高性能钕铁硼烧结磁体及其制备方法和用途
TWI816317B (zh) 一種r-t-b磁體及其製備方法
WO2021238784A1 (zh) 钕铁硼永磁材料、其原料组合物、其制备方法
WO2014059772A1 (zh) 高抗腐蚀性Re-(Fe, TM)-B磁体及其制备方法
CN112992461A (zh) 一种r-t-b磁体及其制备方法
WO2016155674A1 (zh) 一种含有Ho和W的稀土磁铁
CN108281272A (zh) 一种低成本高性能烧结钕铁硼磁体的制备方法
WO2023227042A1 (zh) 一种R-Fe-B系永磁材料、制备方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21761030

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21761030

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21761030

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05.07.2023)