WO2021135144A1 - 一种钕铁硼永磁材料、制备方法、应用 - Google Patents

一种钕铁硼永磁材料、制备方法、应用 Download PDF

Info

Publication number
WO2021135144A1
WO2021135144A1 PCT/CN2020/100578 CN2020100578W WO2021135144A1 WO 2021135144 A1 WO2021135144 A1 WO 2021135144A1 CN 2020100578 W CN2020100578 W CN 2020100578W WO 2021135144 A1 WO2021135144 A1 WO 2021135144A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
iron boron
neodymium iron
magnet material
boron permanent
Prior art date
Application number
PCT/CN2020/100578
Other languages
English (en)
French (fr)
Inventor
牟维国
谢志兴
黄佳莹
黄清芳
Original Assignee
厦门钨业股份有限公司
福建省长汀金龙稀土有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门钨业股份有限公司, 福建省长汀金龙稀土有限公司 filed Critical 厦门钨业股份有限公司
Priority to EP20910886.9A priority Critical patent/EP4086925A4/en
Priority to US17/787,283 priority patent/US20230021711A1/en
Priority to JP2022539200A priority patent/JP7312915B2/ja
Publication of WO2021135144A1 publication Critical patent/WO2021135144A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • B22F2301/355Rare Earth - Fe intermetallic alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the invention relates to a neodymium iron boron permanent magnet material, a preparation method and an application.
  • Permanent magnet materials have been developed as a key material for supporting electronic devices, and the development direction is moving in the direction of high magnetic energy product and high coercivity.
  • RTB-based permanent magnet materials (R is at least one of rare earth elements and must contain at least one of Nd and Pr) are known as the highest performance magnets in permanent magnets, and are used in voice coil motors (VCM) of hard disk drives , Electric vehicles (EV, HV, PHV, etc.) motors, industrial equipment motors and other motors and home appliances.
  • VCM voice coil motors
  • the technical problem to be solved by the present invention is to overcome the defects of reduced coercivity and mechanical strength caused by high Cu in the prior art neodymium iron boron permanent magnet material, and provide a neodymium iron boron permanent magnet material, preparation method and application.
  • the present invention provides a neodymium iron boron permanent magnet material, the neodymium iron boron permanent magnet material contains R, Al, Cu and Co;
  • the R includes RL and RH;
  • the RL includes one or more light rare earth elements among Nd, La, Ce, Pr, Pm, Sm and Eu;
  • the RH includes one or more heavy rare earth elements among Tb, Gd, Dy, Ho, Er, Tm, Yb, Lu, and Sc;
  • the neodymium iron boron permanent magnet material satisfies the following relationship:
  • RH/R 0-0.11 and not 0.
  • the weight ratio of B/R is 0.034-0.036 or 0.033-0.034, such as 0.0331, 0.033, 0.0339, 0.0332, 0.033 or 0.036.
  • the weight ratio of Al/RH is 0.35-1.25 or 0.12-2, such as 0.489, 1.9, 1, 0.133, 1.06 or 0.78.
  • the RL generally refers to a rare earth element with a lower atomic number and a smaller mass, and is also called a light rare earth element.
  • the RL preferably includes one or more of Nd, Pr and Ce.
  • the RH generally refers to a rare earth element with a relatively high atomic number and a relatively large mass, which is also referred to as a heavy rare earth element.
  • the RH preferably includes Dy and/or Tb.
  • the neodymium iron boron permanent magnet material contains a main phase of NdFeB and an intercrystalline rare-earth-rich phase
  • the intercrystalline rare-earth-rich phase includes RH x -Al y -RL z -Cu m -Co n Phase
  • x is 0.4-5.0
  • y is 0.5-1.1
  • z is 45-92
  • m is 0.5-3.5
  • n is 1.5-7 , for example Tb 3.7 -Al 0.51 -Nd 89.5 -Cu 1.2 -Co 4.6 , Tb 2.4 -Al 1.04 -Nd 90.2 -Cu 1.5 -Co 5.6 , Tb 0.4 Dy 2.5 -Al 0.59 -Nd 89.6 -Cu 1.4 -Co 5.1 , Tb 4.5 -Al 0.68 -Nd 90.4 -Cu 1.3 -Co 5.2 , Tb 3.1 -Al 0.98 -Nd 67.3
  • the volume ratio of the RH x -Al y -RL z -Cu m -Co n phase to the intergranular rare earth-rich phase is 4-10%, more preferably 4.5-6%, For example, 5.8%, 5.6%, 4.5%, 5.4%, 5.5%, or 5.6%.
  • the present invention also provides a neodymium iron boron permanent magnet material, the neodymium iron boron permanent magnet material contains a main phase of NdFeB and an intergranular rare earth rich phase, and the intergranular rare earth rich phase includes RH x -Al y -RL z -Cu m -Co n phase, x is 0.4-5.0, y is 0.5-1.1, z is 45-92, m is 0.5-3.5, n is 1.5-7, the types of RL and RH are as before Said.
  • the RH x -Al y -RL z -Cu m -Co n phase can be Tb 3.7 -Al 0.51 -Nd 89.5 -Cu 1.2 -Co 4.6 , Tb 2.4 -Al 1.04 -Nd 90.2 -Cu 1.5 -Co 5.6 , Tb 0.4 Dy 2.5 -Al 0.59 -Nd 89.6 -Cu 1.4 -Co 5.1 , Tb 4.5 -Al 0.68 -Nd 90.4 -Cu 1.3 -Co 5.2 , Tb 3.1 -Al 0.98 -Nd 67.3 Pr 22.7 -Cu 1.3 -Co 5.1 Or Tb 3.8 -Al 0.77 -Nd 89.2 -Cu 1.2 -Co 5.0 .
  • the volume ratio of the RH x -Al y -RL z -Cu m -Co n phase to the intergranular rare earth-rich phase is 4-10%, more preferably 4.5-6%, For example, 5.8%, 5.6%, 4.5%, 5.4%, 5.5%, or 5.6%.
  • the components and contents in the neodymium iron boron permanent magnet material can be conventional in the art.
  • the neodymium iron boron permanent magnet material includes:
  • the R includes RL and RH;
  • the types of the RL and the RH are as described above;
  • wt.% refers to the mass percentage of the neodymium iron boron permanent magnet material.
  • the content of R is preferably in the range of 28-31wt.% or 29-33wt.%, such as 29wt.%, 31.8wt.%, 29.5wt.%, 31wt.%, 31.5wt.% or 29.2wt. %, wt.% refers to the mass percentage of the neodymium iron boron permanent magnet material.
  • the content of the RH is preferably in the range of 0.5 to 1.5 wt.% or 0.9 to 2.5 wt.%, such as 0.9 wt.%, 0.5 wt.%, 1.5 wt.% or 0.8 wt.%, wt.% Refers to the mass percentage of the neodymium iron boron permanent magnet material.
  • the Cu content range is preferably 0.35 to 0.5wt.% or 0.4 to 0.55wt.%, such as 0.35wt.%, 0.55wt.%, 0.4wt.%, 0.45wt.%, 0.5wt. % Or 0.42wt.%, wt.% refers to the mass percentage of the neodymium iron boron permanent magnet material.
  • the Al content range is preferably 0.44 to 0.85wt.% or 0.5 to 0.95wt.%, such as 0.44wt.%, 0.95wt.%, 0.5wt.%, 0.85wt.% or 0.7wt. %, wt.% refers to the mass percentage of the neodymium iron boron permanent magnet material.
  • the Co content range is preferably 0.85 to 1.3wt.% or 0.95 to 1.5wt.%, such as 0.85wt.%, 1.5wt.%, 0.9wt.%, 0.95wt.%, 1.2wt. % Or 1.3wt.%, wt.% refers to the mass percentage of the neodymium iron boron permanent magnet material.
  • the content of B is preferably in the range of 0.955 to 1.03 wt.% or 1 to 1.05 wt.%, such as 0.96 wt.%, 1.05 wt.%, 1 wt.%, 1.03 wt.% or 1.04 wt.% , Wt.% refers to the mass percentage of the neodymium iron boron permanent magnet material.
  • the neodymium iron boron permanent magnet material may further include M, and the M includes one or more of Nb, Zr, Ti, and Hf.
  • the content of M may range from 0.1 to 0.4 wt.%, preferably 0.15 to 0.25 wt.%, and wt.% refers to the mass percentage of the neodymium iron boron permanent magnet material.
  • the content of Nb is preferably in the range of 0 to 0.5 wt.%, such as 0.2 wt.%, 0.21 wt.%, 0.23 or 0.25 wt.%, and wt.% refers to The mass percentage of the neodymium iron boron permanent magnet material.
  • the content of Zr preferably ranges from 0 to 0.3 wt.%, such as 0.2 wt.%, and wt.% refers to the mass percentage of the neodymium iron boron permanent magnet material.
  • the content of Ti preferably ranges from 0 to 0.3 wt.%, such as 0.21 wt.%, and wt.% refers to the mass percentage of the neodymium iron boron permanent magnet material.
  • RH/R 0-0.11 and not zero.
  • the neodymium iron boron permanent magnet material includes: R is 28 to 31 wt.%, RH is 0.5 to 1.5 wt.%, and Cu is 0.35 to 0.5 wt.%, Al is 0.44 ⁇ 0.85wt.%, Co is 0.85 ⁇ 1.3wt.%, B is 0.955 ⁇ 1.03wt.%, wt.% refers to the mass percentage of the neodymium iron boron permanent magnet material, the balance is Fe and Inevitable impurities.
  • the neodymium iron boron permanent magnet material includes: R is 29 to 33 wt.%, RH is 0.9 to 2.5 wt.%, and Cu is 0.4 to 0.55 wt.%, Al is 0.5 to 0.95 wt.%, Co is 0.95 to 1.5 wt.%, B is 1 to 1.05 wt.%, and wt.% refers to the mass percentage of the neodymium iron boron permanent magnet material, and the balance is Fe and Inevitable impurities.
  • the neodymium iron boron permanent magnet material includes: R is 28 to 31 wt.%, RH is 0.5 to 1.5 wt.%, and Cu is 0.4 to 0.55 wt.%, Al0.5 ⁇ 0.95wt.%, Co is 0.95 ⁇ 1.5wt.%, B is 1 ⁇ 1.05wt.%, Nb is 0 ⁇ 0.5wt.%, Zr is 0 ⁇ 0.3wt.%, Ti is 0 ⁇ 0.3 wt.%, wt.% refers to the mass percentage of the neodymium iron boron permanent magnet material, and the balance is Fe and unavoidable impurities.
  • the neodymium iron boron permanent magnet material includes: Nd is 28.1wt.%, Tb is 0.9wt.%, Cu is 0.35wt.%, Al is 0.44wt. %, Co is 0.85wt.%, B is 0.96wt.%, Nb is 0.2wt.%, wt.% refers to the mass percentage of the neodymium iron boron permanent magnet material, the balance is Fe and unavoidable impurities .
  • the neodymium iron boron permanent magnet material includes: Nd is 31.3wt.%, Tb is 0.5wt.%, Cu is 0.55wt.%, Al is 0.95wt. %, Co is 1.5wt.%, B is 1.05wt.%, Zr is 0.2wt.%, wt.% refers to the mass percentage of the neodymium iron boron permanent magnet material, the balance is Fe and unavoidable impurities .
  • the neodymium iron boron permanent magnet material includes: Nd is 29wt.%, Tb is 0.1wt.%, Dy is 0.4, Cu is 0.4wt.%, and Al is 0. is 5wt.%, Co is 0.9wt.%, B is 1wt.%, Nb is 0.25wt.%, wt.% refers to the mass percentage of the neodymium iron boron permanent magnet material, and the balance is Fe and Inevitable impurities.
  • the neodymium iron boron permanent magnet material includes: Nd is 29.5wt.%, Tb is 1.5wt.%, Cu is 0.45wt.%, Al is 0.52wt. %, Co is 0.95wt.%, B is 1.03 wt.%, Ti is 0.21wt.%, wt.% refers to the mass percentage of the neodymium iron boron permanent magnet material, the balance is Fe and unavoidable impurities .
  • the neodymium iron boron permanent magnet material includes: PrNd is 30.7wt.%, Tb is 0.8wt.%, Cu is 0.5wt.%, Al is 0.85wt. %, Co is 1.2wt.%, B is 1.04wt.%, Nb is 0.21wt.%, wt.% refers to the mass percentage of the neodymium iron boron permanent magnet material, the balance is Fe and unavoidable impurities .
  • the neodymium iron boron permanent magnet material includes: Nd is 28.3wt.%, Tb is 0.9wt.%, Cu is 0.42wt.%, Al is 0.7wt. %, Co is 1.3wt.%, B is 1.05wt.%, Nb is 0.23wt.%, wt.% refers to the mass percentage of the neodymium iron boron permanent magnet material, the balance is Fe and unavoidable impurities .
  • the present invention also provides a method for preparing a neodymium iron boron permanent magnet material, which comprises the following steps: casting, coarsely crushing, crushing, forming, and sintering the molten liquid of the raw material composition of the neodymium iron boron permanent magnet material , You can;
  • the raw material composition of the neodymium iron boron permanent magnet material contains R, Al, Cu and Co;
  • the R includes RL and RH; the type of RL is as described above; the type of RH is as described above;
  • the raw material composition of the neodymium iron boron permanent magnet material satisfies the following relationship:
  • the components and contents in the raw material composition of the neodymium iron boron permanent magnet material can be conventional in the art.
  • the raw material composition of the neodymium iron boron permanent magnet material includes:
  • R 28 ⁇ 33wt.%; RH: 0.5 ⁇ 2.5wt.%; Cu: 0.35 ⁇ 0.55wt.%; Al: 0.44 ⁇ 0.95wt.%;
  • Co 0.85 ⁇ 1.5wt.%
  • B 0.955 ⁇ 1.05wt.%
  • the balance is Fe and unavoidable impurities
  • the R includes RL and RH; wt.% refers to the mass percentage in the raw material composition of the neodymium iron boron permanent magnet material.
  • the molten liquid of the raw material composition of the neodymium iron boron permanent magnet material can be prepared according to a conventional method in the art, for example, smelting in a high-frequency vacuum induction melting furnace.
  • the vacuum degree of the melting furnace may be 5 ⁇ 10 -2 Pa.
  • the temperature of the smelting may be 1550°C or less.
  • the casting process includes casting, and the temperature of the casting may be 1420 to 1460°C, preferably 1425 to 1455°C, for example, 1430°C.
  • Casting is performed after the casting, and the casting method may be: cooling in an Ar gas atmosphere (for example, under an Ar gas atmosphere of 5.5 ⁇ 10 4 Pa) at a rate of 10 2 °C/sec-10 4 °C/sec , You can.
  • the alloy flakes are obtained after the casting, and the thickness of the alloy flakes can be conventional in the art, preferably 0.28-0.32 mm, for example 0.3 mm.
  • the crushing process can be a conventional crushing process in the field, such as hydrogen absorption, dehydrogenation, and cooling treatment.
  • the hydrogen absorption can be performed under the condition of a hydrogen pressure of 0.085 MPa.
  • the dehydrogenation can be carried out under the condition of raising the temperature while drawing a vacuum, and the dehydrogenation temperature is 480-520°C, for example, 500°C.
  • the pulverization process can be a conventional pulverization process in the field, such as jet mill pulverization.
  • the pulverization process is performed in an atmosphere with an oxidizing gas content of 100 ppm or less.
  • the oxidizing gas refers to oxygen or moisture content.
  • the pressure of the grinding chamber for the jet mill pulverization may be 0.68 MPa.
  • the particle size of the powder after being pulverized by the jet mill may be 4.1-4.4 ⁇ m, preferably 4.1-4.3 ⁇ m, for example 4.2 ⁇ m.
  • a lubricant such as zinc stearate
  • the added amount of the lubricant may be 0.05-0.15% of the weight of the powder after mixing, for example 0.12%.
  • the forming process may be a conventional forming process in the field, such as a magnetic field forming method.
  • the sintering process may be a conventional sintering process in the field, for example, sintering and cooling under vacuum conditions (for example, under a vacuum of 5 ⁇ 10 -3 Pa).
  • the sintering temperature may be a conventional sintering temperature in the field, for example, 1000-1100°C, and for example 1070°C.
  • the sintering time may be a conventional sintering time in the art, for example, 6h.
  • Ar gas can be introduced before the cooling to make the gas pressure reach 0.05 MPa.
  • an aging treatment may be included after the sintering.
  • the temperature of the aging treatment may be 490-530°C, preferably 500-520°C, for example 510°C.
  • the time of the aging treatment may be 2.5-4 hours, for example, 3 hours.
  • the invention also provides a neodymium iron boron permanent magnet material prepared by the above method.
  • the invention also provides the application of a neodymium iron boron permanent magnet material as an electronic device in a motor.
  • the electronic device may be a motor rotor magnet.
  • the reagents and raw materials used in the present invention are all commercially available.
  • the NdFeB permanent magnet material of the present invention has excellent magnetic properties: Br ⁇ 13.12kGs, Hcj ⁇ 17.83kOe, BHmax ⁇ 41.38MGOe;
  • the mechanical properties of the neodymium iron boron permanent magnet material of the present invention are also excellent: the bending strength is ⁇ 409 MPa, and the coercive force and mechanical strength can be maintained at a relatively high level at the same time.
  • Figure 1 is the SEM spectrum of the NdFeB permanent magnet material in Example 1, where point 3 is the main phase of Nd 2 Fe 14 B (gray area), point 2 is the grain boundary phase (silver-white area), and point 3 is the grain boundary
  • Table 1 Component and content of raw material composition of neodymium iron boron permanent magnet material (wt.%)
  • Fine pulverization process Under a nitrogen atmosphere with an oxidizing gas content of 100 ppm or less and a pulverization chamber pressure of 0.68 MPa, the powder after hydrogen pulverization is subjected to jet mill pulverization for 3 hours to obtain fine powder, powder The particle size is 4.2 ⁇ m.
  • Oxidizing gas refers to oxygen or moisture.
  • Lubricant is added to the powder after jet mill pulverization, the added amount of lubricant is 0.12% of the weight of the mixed powder, and then fully mixed with a three-dimensional mixer.
  • Magnetic field forming process using a right-angle orientation type magnetic field forming machine, in a 1.8T orientation magnetic field and under a forming pressure of 0.35ton/cm 2 , the above-mentioned lubricant-added powder is formed into a side length of 25mm at a time ⁇ Cube; demagnetized in a 0.2T magnetic field after forming once.
  • a secondary molding machine isostatic press
  • each compact is moved to a sintering furnace for sintering, sintered in a vacuum of 5 ⁇ 10 -3 Pa, sintered at a temperature of 1070°C for 6 hours, and then Ar gas is introduced to make the pressure reach 0.05 MPa, Cool to room temperature.
  • the components of the neodymium iron boron permanent magnet material are measured using a high-frequency inductively coupled plasma emission spectrometer (ICP-OES). Among them, RH x -Al y -RL z -Cu m -Co n phase (x is 0.4-5.0, y is 0.5-1.1, z is 45-92, m is 0.5-3.5, n is 1.5-7) According to the FE-EPMA test. Table 2 below shows the composition detection results, in which the SEM spectrum of the neodymium iron boron permanent magnet material in Example 1 is shown in FIG. 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种钕铁硼永磁材料、制备方法、应用,钕铁硼永磁材料中包含R、Al、Cu和Co;R包括RL和RH;RL包括Nd、La、Ce、Pr、Pm、Sm和Eu中的一种或多种轻稀土元素;RH包括Tb、Gd、Dy、Ho、Er、Tm、Yb、Lu和Sc中的一种或多种重稀土元素;钕铁硼永磁材料满足以下关系式:(1)B/R:0.033~0.037;(2)Al/RH:0.12~2.7。该钕铁硼永磁材料的磁性能和力学性能优异,Br≥13.12kGs,Hcj≥17.83kOe,抗弯强度≥409MPa。

Description

一种钕铁硼永磁材料、制备方法、应用 技术领域
本发明涉及一种钕铁硼永磁材料、制备方法、应用。
背景技术
永磁材料作为支撑电子器件的关键材料被开发出来,发展方向向着高磁能积及高矫顽力的方向进行。R-T-B系永磁材料(R为稀土类元素中的至少一种,必须包含Nd和Pr中的至少一个)已知为永久磁铁中性能最高的磁铁,被用于硬盘驱动器的音圈电机(VCM)、电动车用(EV、HV、PHV等)电机、工业设备用电机等各种电机和家电制品等。
目前,在制备R-T-B系永磁材料过程中,为了提升永磁材料的矫顽力,在R-T-B系永磁材料中加入Cu元素可以有效提高其矫顽力,但Cu添加量超过0.35wt.%以上后,由于Cu在晶界的富集会导致磁体烧结后形成微裂纹从而降低磁体的致密性及强度,并恶化磁体的矫顽力,从而限制了高Cu配方在R-T-B系永磁材料中的可用性。因此,亟需一种钕铁硼永磁体的配方体系来克服高Cu含量带来的磁体强度及矫顽力下降的技术问题。
发明内容
本发明要解决的技术问题是克服现有技术的钕铁硼永磁材料中高Cu引起的矫顽力和力学强度降低的缺陷,而提供一种钕铁硼永磁材料、制备方法、应用。
本发明是通过以下技术方案来解决上述技术问题的:
本发明提供一种钕铁硼永磁材料,所述钕铁硼永磁材料中包含R、Al、Cu和Co;
所述R包括RL和RH;
所述RL包括Nd、La、Ce、Pr、Pm、Sm和Eu中的一种或多种轻稀土元素;
所述RH包括Tb、Gd、Dy、Ho、Er、Tm、Yb、Lu和Sc中的一种或多种重稀土元素;
所述钕铁硼永磁材料满足以下关系式:
(1)B/R:0.033~0.037;
(2)Al/RH:0.12~2.7。
本发明中,其中,较佳地,RH/R:0~0.11且不为0。
本发明中,较佳地,所述B/R的重量比为0.034~0.036或0.033~0.034,例如0.0331、0.033、0.0339、0.0332、0.033或0.036。
本发明中,较佳地,所述Al/RH的重量比为0.35~1.25或0.12~2,例如0.489、1.9、1、0.133、1.06或0.78。
本发明中,所述RL一般是指具有较低的原子序数和较小质量的稀土元素,也称为轻稀土元素。
本发明中,所述RL较佳地包括Nd、Pr和Ce中的一种或多种。
本发明中,所述RH一般是指具有较高的原子序数的较大质量的稀土元素,也称为重稀土元素。
本发明中,所述RH较佳地包括Dy和/或Tb。
本发明中,较佳地,所述钕铁硼永磁材料中包含NdFeB主相和晶间富稀土相,所述晶间富稀土相包含RH x-Al y-RL z-Cu m-Co n物相,x为0.4~5.0,y为0.5~1.1,z为45~92,m为0.5~3.5,n为1.5~7,例如Tb 3.7-Al 0.51-Nd 89.5-Cu 1.2-Co 4.6、Tb 2.4-Al 1.04-Nd 90.2-Cu 1.5-Co 5.6、Tb 0.4Dy 2.5-Al 0.59-Nd 89.6-Cu 1.4-Co 5.1、Tb 4.5-Al 0.68-Nd 90.4-Cu 1.3-Co 5.2、Tb 3.1-Al 0.98-Nd 67.3Pr 22.7-Cu 1.3-Co 5.1或Tb 3.8-Al 0.77-Nd 89.2-Cu 1.2-Co 5.0。其中,所述晶间富稀土相也称为晶界相。
其中,较佳地,所述RH x-Al y-RL z-Cu m-Co n物相占所述晶间富稀土相的体积比为4~10%,更佳地为4.5~6%,例如5.8%、5.6%、4.5%、5.4%、5.5%或者5.6%。
本发明还提供了一种钕铁硼永磁材料,所述钕铁硼永磁材料中包含NdFeB主相和晶间富稀土相,所述晶间富稀土相包含RH x-Al y-RL z-Cu m-Co n物相,x为0.4~5.0,y为0.5~1.1,z为45~92,m为0.5~3.5,n为1.5~7,所述RL和所述RH的种类如前所述。
其中,所述RH x-Al y-RL z-Cu m-Co n物相可为Tb 3.7-Al 0.51-Nd 89.5-Cu 1.2-Co 4.6、Tb 2.4-Al 1.04-Nd 90.2-Cu 1.5-Co 5.6、Tb 0.4Dy 2.5-Al 0.59-Nd 89.6-Cu 1.4-Co 5.1、Tb 4.5-Al 0.68-Nd 90.4-Cu 1.3-Co 5.2、Tb 3.1-Al 0.98-Nd 67.3Pr 22.7-Cu 1.3-Co 5.1或Tb 3.8-Al 0.77-Nd 89.2-Cu 1.2-Co 5.0
其中,较佳地,所述RH x-Al y-RL z-Cu m-Co n物相占所述晶间富稀土相的体积比为4~10%,更佳地为4.5~6%,例如5.8%、5.6%、4.5%、5.4%、5.5%或者5.6%。
本发明中,所述钕铁硼永磁材料中的组分及含量可为本领域常规。较佳地,以质量百分比计,所述钕铁硼永磁材料包括:
R:28~33wt.%;
RH:0.5~2.5wt.%;
Cu:0.35~0.55wt.%;
Al:0.44~0.95wt.%;
Co:0.85~1.5wt.%;
B:0.955~1.05wt.%;
Fe:66~69wt.%;
所述R包括RL和RH;
所述RL和所述RH的种类如前所述;
wt.%是指在所述钕铁硼永磁材料的质量百分比。
其中,所述R的含量范围较佳地为28~31wt.%或者29~33wt.%,例如29wt.%、31.8wt.%、29.5wt.%、31wt.%、31.5wt.%或29.2wt.%,wt.%是指在所述钕铁硼永磁材料的质量百分比。
其中,所述RH的含量范围较佳地为0.5~1.5wt.%或者0.9~2.5wt.%,例如0.9wt.%、 0.5wt.%、1.5wt.%或0.8wt.%,wt.%是指在所述钕铁硼永磁材料的质量百分比。
其中,所述Cu的含量范围较佳地为0.35~0.5wt.%或0.4~0.55wt.%,例如0.35wt.%、0.55wt.%、0.4wt.%、0.45wt.%、0.5wt.%或0.42wt.%,wt.%是指在所述钕铁硼永磁材料的质量百分比。
其中,所述Al的含量范围较佳地为0.44~0.85wt.%或者0.5~0.95wt.%,例如0.44wt.%、0.95wt.%、0.5wt.%、0.85wt.%或0.7wt.%,wt.%是指在所述钕铁硼永磁材料的质量百分比。
其中,所述Co的含量范围较佳地为0.85~1.3wt.%或0.95~1.5wt.%,例如0.85wt.%、1.5wt.%、0.9wt.%、0.95wt.%、1.2wt.%或1.3wt.%,wt.%是指在所述钕铁硼永磁材料的质量百分比。
其中,所述B的含量范围较佳地为0.955~1.03wt.%或1~1.05wt.%,例如0.96wt.%、1.05wt.%、1wt.%、1.03wt.%或1.04wt.%,wt.%是指在所述钕铁硼永磁材料的质量百分比。
其中,所述钕铁硼永磁材料还可包括M,所述M包括Nb、Zr、Ti和Hf中的一种或多种。
所述M的含量范围可为0.1~0.4wt.%,较佳地为0.15-0.25wt.%,wt.%是指在所述钕铁硼永磁材料的质量百分比。
当所述M包括Nb时,所述Nb的含量范围较佳地为0~0.5wt.%,例如0.2wt.%、0.21wt.%、0.23或0.25wt.%,wt.%是指在所述钕铁硼永磁材料的质量百分比。
当所述M包括Zr时,所述Zr的含量范围较佳地为0~0.3wt.%,例如0.2wt.%,wt.%是指在所述钕铁硼永磁材料的质量百分比。
当所述M包括Ti时,所述Ti的含量范围较佳地为0~0.3wt.%,例如0.21wt.%,wt.%是指在所述钕铁硼永磁材料的质量百分比。
其中,较佳地,RH/R:0~0.11且不为0。
在本发明一优选实施方式中,以质量百分比计,所述钕铁硼永磁材料包括:R为 28~31wt.%,RH为0.5~1.5wt.%,Cu为0.35~0.5wt.%,Al为0.44~0.85wt.%,Co为0.85~1.3wt.%,B为0.955~1.03wt.%,wt.%是指在所述钕铁硼永磁材料的质量百分比,余量为Fe及不可避免的杂质。
在本发明一优选实施方式中,以质量百分比计,所述钕铁硼永磁材料包括:R为29~33wt.%,RH为0.9~2.5wt.%,Cu为0.4~0.55wt.%,Al为0.5~0.95wt.%,Co为0.95~1.5wt.%,B为1~1.05wt.%,wt.%是指在所述钕铁硼永磁材料的质量百分比,余量为Fe及不可避免的杂质。
在本发明一优选实施方式中,以质量百分比计,所述钕铁硼永磁材料包括:R为28~31wt.%,RH为0.5~1.5wt.%,Cu为0.4~0.55wt.%,Al0.5~0.95wt.%,Co为0.95~1.5wt.%,B为1~1.05wt.%,Nb为0~0.5wt.%,Zr为0~0.3wt.%,Ti为0~0.3wt.%,wt.%是指在所述钕铁硼永磁材料的质量百分比,余量为Fe及不可避免的杂质。
在本发明一优选实施方式中,以质量百分比计,所述钕铁硼永磁材料包括:Nd为28.1wt.%,Tb为0.9wt.%,Cu为0.35wt.%,Al为0.44wt.%,Co为0.85wt.%,B为0.96wt.%,Nb为0.2wt.%,wt.%是指在所述钕铁硼永磁材料的质量百分比,余量为Fe及不可避免的杂质。
在本发明一优选实施方式中,以质量百分比计,所述钕铁硼永磁材料包括:Nd为31.3wt.%,Tb为0.5wt.%,Cu为0.55wt.%,Al为0.95wt.%,Co为1.5wt.%,B为1.05wt.%,Zr为0.2wt.%,wt.%是指在所述钕铁硼永磁材料的质量百分比,余量为Fe及不可避免的杂质。
在本发明一优选实施方式中,以质量百分比计,所述钕铁硼永磁材料包括:Nd为29wt.%,Tb为0.1wt.%,Dy为0.4,Cu为0.4wt.%,Al为0.为5wt.%,Co为0.9wt.%,B为1wt.%,Nb为0.25wt.%,wt.%是指在所述钕铁硼永磁材料的质量百分比,余量为Fe及不可避免的杂质。
在本发明一优选实施方式中,以质量百分比计,所述钕铁硼永磁材料包括:Nd为29.5wt.%,Tb为1.5wt.%,Cu为0.45wt.%,Al为0.52wt.%,Co为0.95wt.%,B为1.03 wt.%,Ti为0.21wt.%,wt.%是指在所述钕铁硼永磁材料的质量百分比,余量为Fe及不可避免的杂质。
在本发明一优选实施方式中,以质量百分比计,所述钕铁硼永磁材料包括:PrNd为30.7wt.%,Tb为0.8wt.%,Cu为0.5wt.%,Al为0.85wt.%,Co为1.2wt.%,B为1.04wt.%,Nb为0.21wt.%,wt.%是指在所述钕铁硼永磁材料的质量百分比,余量为Fe及不可避免的杂质。
在本发明一优选实施方式中,以质量百分比计,所述钕铁硼永磁材料包括:Nd为28.3wt.%,Tb为0.9wt.%,Cu为0.42wt.%,Al为0.7wt.%,Co为1.3wt.%,B为1.05wt.%,Nb为0.23wt.%,wt.%是指在所述钕铁硼永磁材料的质量百分比,余量为Fe及不可避免的杂质。
本发明还提供了一种钕铁硼永磁材料的制备方法,其包括下述步骤:将所述钕铁硼永磁材料的原料组合物的熔融液经铸造、粗破碎、粉碎、成形、烧结,即可;
所述钕铁硼永磁材料的原料组合物中包含R、Al、Cu和Co;
所述R包括RL和RH;所述RL的种类如前所述;所述RH的种类如前所述;
所述钕铁硼永磁材料的原料组合物满足以下关系式:
(1)B/R:0.033~0.037;
(2)Al/RH:0.12~2.7。
本发明中,所述钕铁硼永磁材料的原料组合物中的组分及含量可为本领域常规。较佳地,以质量百分比计,所述钕铁硼永磁材料的原料组合物包括:
R:28~33wt.%;RH:0.5~2.5wt.%;Cu:0.35~0.55wt.%;Al:0.44~0.95wt.%;
Co:0.85~1.5wt.%;B:0.955~1.05wt.%;余量为Fe及不可避免的杂质;
所述R包括RL和RH;wt.%是指在所述钕铁硼永磁材料的原料组合物中的质量百分比。
本发明中,所述钕铁硼永磁材料的原料组合物的熔融液可按本领域常规方法制得,例如:在高频真空感应熔炼炉中熔炼,即可。所述熔炼炉的真空度可为5×10 -2Pa。所述 熔炼的温度可为1550℃以下。
其中,所述铸造的过程包括浇铸,所述浇铸的温度可为1420~1460℃,较佳地为1425~1455℃,例如1430℃。经所述浇铸之后进行铸造,所述铸造的方式可为:在Ar气气氛中(例如5.5×10 4Pa的Ar气气氛下),以10 2℃/秒-10 4℃/秒的速度冷却,即可。
经所述铸造之后获得合金片,所述合金片的厚度可为本领域常规,较佳地为0.28~0.32mm,例如0.3mm。
本发明中,所述破碎的工艺可为本领域常规的破碎工艺,例如经吸氢、脱氢、冷却处理,即可。
其中,所述吸氢可在氢气压力0.085MPa的条件下进行。
其中,所述脱氢可在边抽真空边升温的条件下进行,脱氢温度为480-520℃,例如500℃。
本发明中,所述粉碎的工艺可为本领域常规的粉碎工艺,例如气流磨粉碎。
其中,较佳地,所述粉碎的工艺在氧化气体含量100ppm以下的气氛下进行。所述氧化气体指的是氧气或水分含量。
其中,所述气流磨粉碎的研磨室压力可为0.68MPa。经所述气流磨粉碎之后的粉体粒度可为4.1~4.4μm,较佳地为4.1~4.3μm,例如4.2μm。
其中,所述粉碎后,可按本领域常规手段添加润滑剂,例如硬脂酸锌。所述润滑剂的添加量可为混合后粉末重量的0.05~0.15%,例如0.12%。
本发明中,所述成形的工艺可为本领域常规的成形工艺,例如磁场成形法。
本发明中,所述烧结的工艺可为本领域常规的烧结工艺,例如,在真空条件下(例如在5×10 -3Pa的真空下),经烧结、冷却,即可。
其中,所述烧结的温度可为本领域常规的烧结温度,例如1000~1100℃,再例如1070℃。所述烧结的时间可为本领域常规的烧结时间,例如6h。所述冷却前可通入Ar气体使气压达到0.05MPa。
本发明中,所述烧结之后还可包括时效处理。
其中,所述时效处理的温度可为490~530℃,较佳地为500~520℃,例如510℃。所述时效处理的时间可为2.5-4小时,例如3h。
本发明还提供了一种采用上述方法制得的钕铁硼永磁材料。
本发明还提供了一种钕铁硼永磁材料作为电机中电子器件的应用。
其中,所述电子器件可为电机转子磁钢。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明所用试剂和原料均市售可得。
本发明的积极进步效果在于:
1)本发明中的钕铁硼永磁材料的磁性能优异:Br≥13.12kGs,Hcj≥17.83kOe,BHmax≥41.38MGOe;
2)本发明中的钕铁硼永磁材料的力学性能也优异:抗弯强度≥409MPa,矫顽力和力学强度能同时保持在较高水平。
附图说明
图1为实施例1中钕铁硼永磁材料的SEM图谱,其中点3为Nd 2Fe 14B主相(灰色区域),点2为晶界相(银白色区域),点3为晶界相中包括的RH x-Al y-RL z-Cu m-Co n物相(灰白色团状物)。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
实施例及对比例中钕铁硼永磁材料的原料配方如表1所示。
表1钕铁硼永磁材料的原料组合物的组分和含量(wt.%)
Figure PCTCN2020100578-appb-000001
上表中,“/”表示不含有该元素。
实施例1~6以及对比例1~4中钕铁硼烧结磁铁制备方法如下:
(1)熔炼过程:按表1所示配方,将配制好的原料放入氧化铝制的坩埚中,在高频真空感应熔炼炉中且在5×10 -2Pa的真空中,以1500℃以下的温度进行真空熔炼。
(2)铸造过程:将熔炼之后所得的熔融液在1430℃下浇铸,通入Ar气体使气压达到5.5万Pa后,进行铸造,并以10 2℃/秒-10 4℃/秒的冷却速度获得急冷合金,合金片的厚度为0.3mm。
(3)氢破粉碎过程:在室温下,将放置急冷合金的氢破用炉抽真空,然后向氢破用炉内通入纯度为99.9%的氢气,维持氢气压力0.085MPa;充分吸氢后,边抽真空边升温,充分脱氢,脱氢时的温度为500℃;然后进行冷却,取出氢破粉碎后的粉末。
(4)微粉碎工序:在氧化气体含量100ppm以下的氮气气氛下以及在粉碎室压力为0.68MPa的条件下,对氢破粉碎后的粉末进行3小时的气流磨粉碎,得到细粉,粉体的粒度为4.2μm。氧化气体指的是氧或水分。
(5)在气流磨粉碎后的粉末中添加润滑剂,润滑剂的添加量为混合后粉末重量的0.12%,再用三维混料机充分混合。
(6)磁场成形过程:使用直角取向型的磁场成型机,在1.8T的取向磁场中以及在 0.35ton/cm 2的成型压力下,将上述添加了润滑剂的粉末一次成形成边长为25mm的立方体;一次成形后在0.2T的磁场中退磁。为了使一次成形后的成形体不接触到空气,将其进行密封,然后再使用二次成形机(等静压成形机),在1.3ton/cm 2的压力下进行二次成形。
(7)烧结过程:将各成形体搬至烧结炉进行烧结,烧结在5×10 -3Pa的真空下,以1070℃的温度烧结6小时,然后通入Ar气体使气压达到0.05MPa后,冷却至室温。
(8)时效处理过程:将烧结体在高纯度Ar气中,以510℃温度进行3h时效处理后,冷却至室温后取出,得到钕铁硼永磁材料。
效果实施例
分别测定实施例1~6和对比例1-4制得的钕铁硼烧结磁铁的磁性能和成分,并采用场发射电子探针显微分析仪(FE-EPMA)观察其磁体的相组成。
(1)钕铁硼永磁材料的各成分使用高频电感耦合等离子体发射光谱仪(ICP-OES)进行测定,其中,RH x-Al y-RL z-Cu m-Co n物相(x为0.4~5.0,y为0.5~1.1,z为45~92,m为0.5~3.5,n为1.5~7)根据FE-EPMA测试得到。下表2所示为成分检测结果,其中实施例1中钕铁硼永磁材料的SEM图谱如图1所示。
表2钕铁硼永磁材料的组分和含量(wt.%)
Figure PCTCN2020100578-appb-000002
上表中,RH x-Al y-RL z-Cu m-Co n物相中:x为0.4~5.0,y为0.5~1.1,z为45~92,m为0.5~3.5,n为1.5~7;“/”表示不含有该元素。
(2)磁性能评价:烧结磁铁使用中国计量院的NIM-10000H型BH大块稀土永磁无损测量系统进行磁性能检测;下表3所示为磁性能检测结果。表3中,“Br”为剩余磁通密度(remanence),“Hcj”为内禀矫顽力(intrinsic coercivity),“BHmax”为最大磁能积(maximum energy product)。
表3钕铁硼永磁材料的性能
Figure PCTCN2020100578-appb-000003
由表3可知:
1)本发明中的钕铁硼永磁材料的磁性能和力学性能均优异:Br≥13.12kGs,Hcj≥17.83kOe,BHmax≥41.38MGOe,抗弯强度≥409MPa(实施例1-6);
2)基于本发明的配方,即使调整R、B、和Al的含量,只要B/R和Al/RH不同时在本申请限定的范围内,不能生成RH x-Al y-RL z-Cu m-Co n物相(x为0.4~5.0,y为0.5~1.1,z为45~88,m为0.5~3.5,n为1.5~7),Br和Hcj不能同时保持在较高水平,抗弯强度也明显下降(对比例1~3);
3)基于本发明的配方,调整B/R和Al/RH的范围值,当两者的值不在本发明限定的范围内,钕铁硼永磁材料的Hcj明显下降,抗弯强度也明显下降(对比例4)。

Claims (10)

  1. 一种钕铁硼永磁材料,其特征在于,所述钕铁硼永磁材料中包含R、Al、Cu和Co;
    所述R包括RL和RH;
    所述RL包括Nd、La、Ce、Pr、Pm、Sm和Eu中的一种或多种轻稀土元素;
    所述RH包括Tb、Gd、Dy、Ho、Er、Tm、Yb、Lu和Sc中的一种或多种重稀土元素;
    所述钕铁硼永磁材料满足以下关系式:
    (1)B/R:0.033~0.037;
    (2)Al/RH:0.12~2.7。
  2. 如权利要求1所述的钕铁硼永磁材料,其特征在于,RH/R:0~0.11且不为0;
    和/或,所述B/R的重量比为0.034~0.036或0.033~0.034,例如0.0331、0.033、0.0339、0.0332、0.033或0.036;
    和/或,所述Al/RH的重量比为0.35~1.25或0.12~2,例如0.489、1.9、1、0.133、1.06或0.78;
    和/或,所述RL包括Nd、Pr和Ce中的一种或多种;
    和/或,所述RH包括Dy和/或Tb。
  3. 如权利要求1或2所述的钕铁硼永磁材料,其特征在于,所述钕铁硼永磁材料中包含NdFeB主相和晶间富稀土相,所述晶间富稀土相包含RH x-Al y-RL z-Cu m-Co n物相,x为0.4~5.0,y为0.5~1.1,z为45~92,m为0.5~3.5,n为1.5~7;
    较佳地,所述RH x-Al y-RL z-Cu m-Co n物相占所述晶间富稀土相的体积比为4~10%,更佳地为4.5~6%,例如5.8%、5.6%、4.5%、5.4%、5.5%或者5.6%。
  4. 一种钕铁硼永磁材料,其特征在于,所述钕铁硼永磁材料中包含NdFeB主相和晶间富稀土相,所述晶间富稀土相包含RH x-Al y-RL z-Cu m-Co n物相,x为0.4~5.0,y为0.5~1.1,z为45~92,m为0.5~3.5,n为1.5~7;
    所述RL和所述RH的种类如权利要求1所述;
    较佳地,所述RH x-Al y-RL z-Cu m-Co n物相占所述晶间富稀土相的体积比为4~10%,更佳地为4.5~6%,例如5.8%、5.6%、4.5%、5.4%、5.5%或者5.6%。
  5. 如权利要求1~4中任一项所述的钕铁硼永磁材料,其特征在于,以质量百分比计,所述钕铁硼永磁材料包括:
    R:28~33wt.%;
    RH:0.5~2.5wt.%;
    Cu:0.35~0.55wt.%;
    Al:0.44~0.95wt.%;
    Co:0.85~1.5wt.%;
    B:0.955~1.05wt.%;
    Fe:66~69wt.%;
    所述R包括RL和RH;
    wt.%是指在所述钕铁硼永磁材料的质量百分比。
  6. 如权利要求5所述的钕铁硼永磁材料,其特征在于,所述R的含量范围为28~31wt.%或者29~33wt.%,例如29wt.%、31.8wt.%、29.5wt.%、31wt.%、31.5wt.%或29.2wt.%,wt.%是指在所述钕铁硼永磁材料的质量百分比;
    和/或,所述RH的含量范围为0.5~1.5wt.%或者0.9~2.5wt.%,例如0.9wt.%、0.5wt.%、1.5wt.%或0.8wt.%,wt.%是指在所述钕铁硼永磁材料的质量百分比;
    和/或,所述Cu的含量范围为0.35~0.5wt.%或0.4~0.55wt.%,例如0.35wt.%、0.55wt.%、0.4wt.%、0.45wt.%、0.5wt.%或0.42wt.%,wt.%是指在所述钕铁硼永磁材料的质量百分比;
    和/或,所述Al的含量范围为0.44~0.85wt.%或者0.5~0.95wt.%,例如0.44wt.%、0.95wt.%、0.5wt.%、0.85wt.%或0.7wt.%,wt.%是指在所述钕铁硼永磁材料的质量百分比;
    和/或,所述Co的含量范围为0.85~1.3wt.%或0.95~1.5wt.%,例如0.85wt.%、1.5wt.%、0.9wt.%、0.95wt.%、1.2wt.%或1.3wt.%,wt.%是指在所述钕铁硼永磁材料的质量百分比;
    和/或,所述B的含量范围为0.955~1.03wt.%或1~1.05wt.%,例如0.96wt.%、1.05wt.%、1wt.%、1.03wt.%或1.04wt.%,wt.%是指在所述钕铁硼永磁材料的质量百分比;
    和/或,所述钕铁硼永磁材料还包括M,所述M包括Nb、Zr、Ti和Hf中的一种或多种;较佳地,所述M的含量范围为0.1~0.4wt.%,更佳地为0.15-0.25wt.%,wt.%是指在所述钕铁硼永磁材料的质量百分比;
    当所述M包括Nb时,所述Nb的含量范围较佳地为0~0.5wt.%,例如0.2wt.%、0.21wt.%、0.23或0.25wt.%,wt.%是指在所述钕铁硼永磁材料的质量百分比;
    当所述M包括Zr时,所述Zr的含量范围较佳地为0~0.3wt.%,例如0.2wt.%,wt.%是指在所述钕铁硼永磁材料的质量百分比;
    当所述M包括Ti时,所述Ti的含量范围较佳地为0~0.3wt.%,例如0.21wt.%,wt.%是指在所述钕铁硼永磁材料的质量百分比。
  7. 一种钕铁硼永磁材料的制备方法,其特征在于,其包括下述步骤:将所述钕铁硼永磁材料的原料组合物的熔融液经铸造、粗破碎、粉碎、成形、烧结,即可;
    所述钕铁硼永磁材料的原料组合物中包含R、Al、Cu和Co;
    所述R包括RL和RH;所述RL和所述RH的种类如权利要求1所述;
    所述钕铁硼永磁材料的原料组合物满足以下关系式:
    (1)B/R:0.033~0.037;
    (2)Al/RH:0.12~2.7。
  8. 如权利要求7所述的制备方法,其特征在于,以质量百分比计,所述钕铁硼永磁材料的原料组合物包括:R:28~33wt.%;RH:0.5~2.5wt.%;Cu:0.35~0.55wt.%;Al:0.44~0.95wt.%;Co:0.85~1.5wt.%;B:0.955~1.05wt.%;余量为Fe及不可避免的杂质;所述R包括RL和RH;wt.%是指在所述钕铁硼永磁材料的原料组合物中的质量百分比;
    和/或,所述铸造的过程包括浇铸,所述浇铸的温度为1420~1460℃,较佳地为1425~1455℃,例如1430℃;
    和/或,经所述铸造之后获得合金片,所述合金片的厚度为0.28~0.32mm,例如0.3mm;
    和/或,经所述粉碎之后的粉体粒度为4.1~4.4μm,较佳地为4.1~4.3μm,例如4.2μm;
    和/或,所述烧结的温度为1000~1100℃,再例如1070℃;
    和/或,所述烧结之后还包括时效处理;较佳地,所述时效处理的温度为490~530℃,较佳地为500~520℃,例如510℃;所述时效处理的时间较佳地为2.5-4小时,例如3h。
  9. 一种如权利要求7或8所述的制备方法制得的钕铁硼永磁材料。
  10. 一种如权利要求1~6和9中任一项所述的钕铁硼永磁材料作为电机中电子器件的应用。
PCT/CN2020/100578 2019-12-31 2020-07-07 一种钕铁硼永磁材料、制备方法、应用 WO2021135144A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20910886.9A EP4086925A4 (en) 2019-12-31 2020-07-07 Neodymium-iron-boron permanent magnet material, preparation method, and application
US17/787,283 US20230021711A1 (en) 2019-12-31 2020-07-07 Neodymium-iron-boron permanent magnet material, preparation method, and application
JP2022539200A JP7312915B2 (ja) 2019-12-31 2020-07-07 ネオジム鉄ホウ素永久磁石材料、製造方法、並びに応用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911425194.9 2019-12-31
CN201911425194.9A CN111180159B (zh) 2019-12-31 2019-12-31 一种钕铁硼永磁材料、制备方法、应用

Publications (1)

Publication Number Publication Date
WO2021135144A1 true WO2021135144A1 (zh) 2021-07-08

Family

ID=70656072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100578 WO2021135144A1 (zh) 2019-12-31 2020-07-07 一种钕铁硼永磁材料、制备方法、应用

Country Status (6)

Country Link
US (1) US20230021711A1 (zh)
EP (1) EP4086925A4 (zh)
JP (1) JP7312915B2 (zh)
CN (1) CN111180159B (zh)
TW (1) TWI770730B (zh)
WO (1) WO2021135144A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111180159B (zh) * 2019-12-31 2021-12-17 厦门钨业股份有限公司 一种钕铁硼永磁材料、制备方法、应用
CN111599563B (zh) * 2020-05-29 2023-04-07 福建省长汀金龙稀土有限公司 钕铁硼永磁材料、其原料组合物、其制备方法
CN111599562B (zh) * 2020-05-29 2024-03-29 福建省金龙稀土股份有限公司 一种钕铁硼永磁材料、其原料组合物、其制备方法和应用
CN113450986A (zh) * 2021-06-04 2021-09-28 福建省长汀金龙稀土有限公司 一种稀土永磁体及其制备方法与应用
CN113674943B (zh) 2021-07-29 2023-01-24 福建省长汀金龙稀土有限公司 一种钕铁硼磁体材料及其制备方法和应用
CN113674944B (zh) 2021-07-29 2023-10-20 福建省长汀金龙稀土有限公司 一种钕铁硼磁体材料及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000331810A (ja) * 1999-05-21 2000-11-30 Shin Etsu Chem Co Ltd R−Fe−B系希土類永久磁石材料
CN101853725A (zh) * 2009-04-03 2010-10-06 中国科学院宁波材料技术与工程研究所 烧结钕铁硼永磁材料的制备方法
CN102592770A (zh) * 2011-01-17 2012-07-18 三环瓦克华(北京)磁性器件有限公司 一种烧结NdFeB磁体及其制造方法
CN103887028A (zh) * 2012-12-24 2014-06-25 北京中科三环高技术股份有限公司 一种烧结钕铁硼磁体及其制造方法
CN103996524A (zh) * 2014-05-11 2014-08-20 沈阳中北通磁科技股份有限公司 一种含La和Ce的钕铁硼稀土永磁体的制造方法
CN104269238A (zh) * 2014-09-30 2015-01-07 宁波科田磁业有限公司 一种高性能烧结钕铁硼磁体和制备方法
CN107610859A (zh) * 2013-11-27 2018-01-19 厦门钨业股份有限公司 一种低b的稀土磁铁
CN108831650A (zh) * 2018-06-21 2018-11-16 宁波可可磁业股份有限公司 一种钕铁硼磁体及其制备方法
CN111180159A (zh) * 2019-12-31 2020-05-19 厦门钨业股份有限公司 一种钕铁硼永磁材料、制备方法、应用

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6511552B1 (en) * 1998-03-23 2003-01-28 Sumitomo Special Metals Co., Ltd. Permanent magnets and R-TM-B based permanent magnets
JP3997413B2 (ja) * 2002-11-14 2007-10-24 信越化学工業株式会社 R−Fe−B系焼結磁石及びその製造方法
JP4318204B2 (ja) * 2003-05-12 2009-08-19 昭和電工株式会社 希土類含有合金薄片の製造方法、希土類磁石用合金薄片、希土類焼結磁石用合金粉末、希土類焼結磁石、ボンド磁石用合金粉末、及びボンド磁石
CN101256859B (zh) * 2007-04-16 2011-01-26 有研稀土新材料股份有限公司 一种稀土合金铸片及其制备方法
JP5115511B2 (ja) * 2008-03-28 2013-01-09 Tdk株式会社 希土類磁石
JP2011258935A (ja) * 2010-05-14 2011-12-22 Shin Etsu Chem Co Ltd R−t−b系希土類焼結磁石
CN103996475B (zh) * 2014-05-11 2016-05-25 沈阳中北通磁科技股份有限公司 一种具有复合主相的高性能钕铁硼稀土永磁体及制造方法
CN105321647B (zh) * 2014-07-30 2018-02-23 厦门钨业股份有限公司 稀土磁铁用急冷合金和稀土磁铁的制备方法
TWI496174B (zh) * 2014-12-26 2015-08-11 China Steel Corp 釹鐵硼磁體及其製造方法
CN106160849B (zh) 2015-04-15 2018-12-28 富士通株式会社 功率估计装置、频谱特征监测装置和光接收机
DE112016002876T5 (de) * 2015-06-25 2018-03-08 Hitachi Metals Ltd. R-T-B basierter Sintermagnet und Verfahren zu seiner Herstellung
JP6488976B2 (ja) * 2015-10-07 2019-03-27 Tdk株式会社 R−t−b系焼結磁石
JP6493138B2 (ja) * 2015-10-07 2019-04-03 Tdk株式会社 R−t−b系焼結磁石
JP7108545B2 (ja) * 2016-01-28 2022-07-28 ノヴェオン マグネティックス,インク. 焼結磁性合金及びそれから誘導される組成物の粒界工学
JP6541038B2 (ja) * 2016-03-28 2019-07-10 日立金属株式会社 R−t−b系焼結磁石
CN106128673B (zh) * 2016-06-22 2018-03-30 烟台首钢磁性材料股份有限公司 一种烧结钕铁硼磁体及其制备方法
JP6702215B2 (ja) * 2017-02-02 2020-05-27 日立金属株式会社 R−t−b系焼結磁石
CN107993828B (zh) * 2017-11-24 2020-05-08 浙江南磁实业股份有限公司 一种永磁体合金材料的制备工艺
CN110619984B (zh) * 2018-06-19 2021-12-07 厦门钨业股份有限公司 一种低B含量的R-Fe-B系烧结磁铁及其制备方法
CN110444360A (zh) * 2019-07-19 2019-11-12 宁波可可磁业股份有限公司 一种钕铁硼磁体及其制备方法
CN110473682B (zh) * 2019-07-19 2021-07-06 宁波可可磁业股份有限公司 一种钕铁硼磁体及其制备工艺
CN110648813B (zh) * 2019-09-30 2020-11-27 厦门钨业股份有限公司 一种r-t-b系永磁材料、原料组合物、制备方法、应用
CN110993234B (zh) * 2019-12-24 2021-06-25 厦门钨业股份有限公司 高Cu高Al的钕铁硼磁体及其制备方法
CN111081444B (zh) * 2019-12-31 2021-11-26 厦门钨业股份有限公司 R-t-b系烧结磁体及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000331810A (ja) * 1999-05-21 2000-11-30 Shin Etsu Chem Co Ltd R−Fe−B系希土類永久磁石材料
CN101853725A (zh) * 2009-04-03 2010-10-06 中国科学院宁波材料技术与工程研究所 烧结钕铁硼永磁材料的制备方法
CN102592770A (zh) * 2011-01-17 2012-07-18 三环瓦克华(北京)磁性器件有限公司 一种烧结NdFeB磁体及其制造方法
CN103887028A (zh) * 2012-12-24 2014-06-25 北京中科三环高技术股份有限公司 一种烧结钕铁硼磁体及其制造方法
CN107610859A (zh) * 2013-11-27 2018-01-19 厦门钨业股份有限公司 一种低b的稀土磁铁
CN103996524A (zh) * 2014-05-11 2014-08-20 沈阳中北通磁科技股份有限公司 一种含La和Ce的钕铁硼稀土永磁体的制造方法
CN104269238A (zh) * 2014-09-30 2015-01-07 宁波科田磁业有限公司 一种高性能烧结钕铁硼磁体和制备方法
CN108831650A (zh) * 2018-06-21 2018-11-16 宁波可可磁业股份有限公司 一种钕铁硼磁体及其制备方法
CN111180159A (zh) * 2019-12-31 2020-05-19 厦门钨业股份有限公司 一种钕铁硼永磁材料、制备方法、应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4086925A4 *

Also Published As

Publication number Publication date
TW202127474A (zh) 2021-07-16
CN111180159B (zh) 2021-12-17
EP4086925A1 (en) 2022-11-09
CN111180159A (zh) 2020-05-19
JP2023504930A (ja) 2023-02-07
US20230021711A1 (en) 2023-01-26
EP4086925A4 (en) 2023-06-28
JP7312915B2 (ja) 2023-07-21
TWI770730B (zh) 2022-07-11

Similar Documents

Publication Publication Date Title
WO2021135144A1 (zh) 一种钕铁硼永磁材料、制备方法、应用
WO2021098224A1 (zh) 钕铁硼磁体材料、原料组合物及制备方法和应用
TWI704238B (zh) 低B含量的R-Fe-B系燒結磁鐵及其製備方法
CN111243809B (zh) 一种钕铁硼材料及其制备方法和应用
TWI755152B (zh) 釹鐵硼磁體材料、原料組合物及製備方法和應用
WO2021098225A1 (zh) 钕铁硼磁体材料、原料组合物及制备方法和应用
KR20210151940A (ko) R-t-b계 희토류 영구자석 재료, 제조방법 및 응용
CN111599562B (zh) 一种钕铁硼永磁材料、其原料组合物、其制备方法和应用
KR102589806B1 (ko) R-t-b계 영구자석 재료, 원료조성물, 제조방법, 응용
CN112992463B (zh) 一种r-t-b磁体及其制备方法
CN111326306A (zh) 一种r-t-b系永磁材料及其制备方法和应用
TWI806464B (zh) 一種釹鐵硼磁體材料及其製備方法和應用
KR102606749B1 (ko) R-t-b계 영구자석 재료, 원료조성물, 제조방법, 응용
WO2021169896A1 (zh) 一种r-t-b系永磁材料及其制备方法和应用
CN113674944A (zh) 一种钕铁硼磁体材料及其制备方法和应用
KR102568268B1 (ko) R-t-b계 영구자석 재료, 원료조성물, 제조방법, 응용
CN112992461B (zh) 一种r-t-b磁体及其制备方法
WO2023227042A1 (zh) 一种R-Fe-B系永磁材料、制备方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910886

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022539200

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020910886

Country of ref document: EP

Effective date: 20220801