WO2023227042A1 - 一种R-Fe-B系永磁材料、制备方法及应用 - Google Patents

一种R-Fe-B系永磁材料、制备方法及应用 Download PDF

Info

Publication number
WO2023227042A1
WO2023227042A1 PCT/CN2023/096140 CN2023096140W WO2023227042A1 WO 2023227042 A1 WO2023227042 A1 WO 2023227042A1 CN 2023096140 W CN2023096140 W CN 2023096140W WO 2023227042 A1 WO2023227042 A1 WO 2023227042A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
magnet material
temperature
treatment
grain boundary
Prior art date
Application number
PCT/CN2023/096140
Other languages
English (en)
French (fr)
Inventor
徐兆浦
李广军
刘磊
王娇
宿云婷
Original Assignee
南通正海磁材有限公司
烟台正海磁性材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通正海磁材有限公司, 烟台正海磁性材料股份有限公司 filed Critical 南通正海磁材有限公司
Publication of WO2023227042A1 publication Critical patent/WO2023227042A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets

Definitions

  • the invention belongs to the technical field of R-Fe-B series permanent magnet materials, and in particular relates to an R-Fe-B series permanent magnet material and its preparation method and application.
  • Sintered R-Fe-B permanent magnets are widely used in fields such as power motors, computers and electronic products due to their excellent magnetic properties. With the iteration of products, these fields have put forward higher requirements for the temperature coefficient of magnets. Especially with the development of air conditioning, electric vehicles and other related fields, there is an increasing demand for NdFeB magnets in multi-field applications, and their performance requirements are also getting higher and higher.
  • R-Fe-B series sintered magnets compared with Sm-Co series permanent magnets is poor corrosion resistance, which limits the application of this type of magnets in humid and high-temperature environments. Therefore, regarding R-Fe-B series Research on the corrosion resistance of sintered magnets is of great significance. Especially in recent years, with the increasing awareness of environmental protection and energy conservation in various countries around the world, there is an urgent need for environmentally friendly, energy-saving, efficient permanent magnet motors such as wind turbines used in humid environments such as seaside and grasslands, and high-performance products with excellent corrosion resistance. R-Fe-B based sintered magnet.
  • the present invention provides an R-Fe-B series permanent magnet material, which is characterized in that the permanent magnet material has the following properties: Br ⁇ 13.3KGs, Hcj ⁇ 25.1Koe;
  • the 20-day HAST weight loss of the permanent magnetic material is ⁇ 1 mg/cm 2 .
  • the R-Fe-B series permanent magnet material has the following properties: Br is 13.3-15.0KGs, Hcj is 25-34Koe; HAST weight loss in 20 days is 0.1-0.5mg/cm 2 ; resistance Bending strength is 445-470Mpa.
  • the components of the R-Fe-B series permanent magnet material include Ti and Ga, wherein the Ti content is ⁇ 0.2wt% and the Ga content is ⁇ 0.2wt%; and 1 ⁇ Ti/Ga ⁇ 2 .
  • the R-Fe-B series permanent magnet material is characterized in that, based on 100% mass percentage, it contains the following components: R is 26.0-32.0%, RH is 0.3-4.0%, Co 0.5 ⁇ 3.0%, Cu 0.1 ⁇ 0.25%, Ga 0.2 ⁇ 0.4%, Ti 0.2 ⁇ 0.4%, Al 0 ⁇ 0.4%, B 0.95 ⁇ 1.05%, the balance is Fe and inevitable impurities , where R is neodymium (Nd) and/or praseodymium (Pr), RH is dysprosium (Dy) and/or terbium (Tb);
  • the mass percentage of the element content must satisfy the following relationship: 1)1 ⁇ Ti/Ga ⁇ 2; 2)5 ⁇ Co/Cu ⁇ 15.
  • the mass ratio of the balance of R a RH b T c Ga d Cu e Al F C Og Fe to the permanent magnet material is 6 to 11 wt%.
  • the R is Nd or PrNd, and the content of R is preferably 26.5% to 31.0%, preferably 26.5%, 27.0%, 27.5%, 28%, 28.5%, 29.0%, 29.5% ,30.0%, 30.5% or 31%.
  • the RH is at least one of Dy and Tb, and the RH content range is preferably 0.3%-3.5%, such as 0.5%, 0.8%, 1.0%, 1.3%, 1.5%, 1.8% , 2.5%, 2.8%, 3.0%, 3.1% or 3.5%.
  • the content of Co is 1.0 to 3.0%, preferably 0.5%, 1%, 1.5%, 2.0%, 2.5% or 3.0%.
  • the content of Cu is 0.1 to 0.25%, preferably 0.1%, 0.12%, 0.15%, 0.17%, 0.18%, 0.2%, 0.23% or 0.25%.
  • the content of Ga is 0.2% to 0.4%, preferably 0.2%, 0.25%, 0.3%, 0.35% or 0.4%.
  • the content of Ti is 0.2% to 0.4%, preferably 0.2%, 0.25%, 0.28%, 0.30%, 0.32%, 0.35%, 0.38% or 0.40%.
  • the Al content is 0.05% to 0.35%, preferably 0.1%, 0.15%, 0.2%, 0.25%, 0.3% or 0.35%.
  • the content of B is 0.97-1.03%, preferably 0.97%, 0.98%, 0.99%, 1.0%, 1.01%, 1.02% or 1.03%.
  • the unavoidable impurities are, for example, at least one of C, N, O, etc.; preferably, the oxygen content is 300 to 900 ppm, the carbon content is 400 to 800 ppm, and the nitrogen content is 200 to 600 ppm. .
  • the invention also provides a method for preparing a Re-Fe-B series permanent magnet material, which is characterized in that it includes the following steps: smelting and casting, coarse crushing, and fine crushing the raw materials of the Re-Fe-B series permanent magnet material. , molding, sintering, processing, and diffusion treatment to obtain the Re-Fe-B series permanent magnet material.
  • the smelting and casting process is carried out in a medium frequency vacuum induction rapid condensation strip furnace, the linear speed of the casting quenching roller is 1m/s ⁇ 2m/s, the casting temperature is 1380 ⁇ 1480°C, and the thickness of the scales after smelting and casting The average value is 0.20-0.30mm.
  • the coarse crushing process is carried out as follows: hydrogen absorption, dehydrogenation and cooling in a hydrogen crushing furnace, the hydrogen absorption treatment pressure is 90-110KPa, and the dehydrogenation treatment temperature is 550-620 °C, dehydrogenation time 3 ⁇ 6h.
  • the fine crushing is performed by an inert gas jet mill, and the inert gas is, for example, nitrogen, argon, etc.
  • the oxygen content is controlled to be ⁇ 50 ppm
  • the particle size SMD is 2.3 to 2.7 ⁇ m, preferably 2.5 ⁇ m, X90/X10 ⁇ 4.5, and X100 ⁇ 12.5 ⁇ m.
  • X90/X10 ⁇ 4.5, and X100 ⁇ 12.5 ⁇ m, higher Br and Hcj can be obtained, and the weight loss level and flexural strength will also be improved.
  • antioxidants can also be added during the fine crushing process and the mixture can be mixed for 3 to 6 hours.
  • the mass of the antioxidant is 1 to 2% of the total mass of the permanent magnet material; the antioxidant is selected from one or more of 1,3,5-trichlorotoluene, dibutylhydroxytoluene, and 4-hexylresorcinol. .
  • the antioxidant has lubricating function.
  • the fine crushing process can be used to prepare fine powder with uniform particle size distribution. At the same time, due to the use of inert gas jet mill, the nitrogen content of the powder is at a low level.
  • the molding process is magnetic field orientation compression molding of ⁇ 1.5T.
  • the powder is in a completely sealed press and is continuously filled with nitrogen for protection.
  • the sintering process is carried out as follows: first, the compact prepared by the molding process is decarburized and degassed in 2-10 temperature zones, then sintered in a vacuum, then sintered in an inert atmosphere, and cooled .
  • the temperatures of 2 to 10 temperature zones are different from each other.
  • the decarburization and gassing treatment can be performed at a gradient rising temperature.
  • the decarburization and gassing treatment is first performed in the first temperature zone, and then the next temperature zone is sequentially entered, for example, the decarburization and gassing process is performed in the second temperature zone.
  • the temperature in the first temperature zone may be 200-380°C, preferably 280-320°C, such as 300°C;
  • the temperature of the second temperature zone may be higher than the first temperature zone, such as 450-720°C, preferably 580-620°C, such as 600°C;
  • the temperature of the third temperature zone may be higher than the second temperature zone, such as 750-1000°C , preferably 880-920°C, such as 900°C.
  • the temperature of vacuum sintering is 1000-1020°C, and the time of vacuum sintering is 1-2 hours.
  • the sintering temperature in the inert atmosphere is 1030-1050°C
  • the sintering time in the inert atmosphere is 2-4 hours
  • the pressure during sintering in the inert atmosphere is 10-30KPa.
  • the inert atmosphere is, for example, nitrogen or argon.
  • a fan can be used to cool it to below 50°C at 100 KPa.
  • the sintering process is carried out as follows: the compact prepared by the molding process is put into the sintering furnace under nitrogen protection, and then passed through the first temperature zone 200-380°C and the second temperature zone 450-720°C. °C and the third temperature zone 750-1000°C, perform decarburization and gassing treatment for 1 to 3 hours respectively, then conduct vacuum sintering at 1000-1020°C for 1-2 hours, and then fill with 10-30KPa argon gas for 1030-1050°C. Pressure holding sintering treatment for 2 to 4 hours. Then fill it with argon to about 100KPa and turn on the fan to cool it down to below 50°C.
  • the present invention adopts decarburization and gassing treatment process, vacuum sintering and pressure-maintaining sintering process, which can keep the C, N, O and other elements in the permanent magnet material at a lower level, and at the same time improve the density and bending strength of the permanent magnet material. high.
  • the diffusion treatment is grain boundary diffusion treatment, which can be carried out according to conventional processes in this field, such as Tb and Dy vapor diffusion.
  • the temperature of the diffusion treatment can be 850-950°C, such as 900°C
  • the diffusion time can be 10-50h, such as 36h.
  • a stress relief aging treatment needs to be carried out at a temperature of 450 to 650°C, such as 550°C, and a time of 3 to 6 hours.
  • the oxygen content of the Re-Fe-B series permanent magnet material is 300-900 ppm
  • the carbon content is 400-800 ppm
  • the nitrogen content is 200-600 ppm.
  • the present invention also provides the application of the above-mentioned Re-Fe-B series permanent magnet material in a motor as a motor rotor magnet.
  • Beneficial effects of the present invention :
  • the present invention makes the grain boundary phase of the permanent magnet material contain elements that are effective in Hcj, weight loss performance and mechanical properties of the permanent magnet material.
  • Beneficial elements such as Ti, Ga, Cu, etc. are evenly distributed in the grain boundary phase in a certain proportion. It not only plays the role of refining grains, increasing grain boundary wettability and corrosion resistance, and preventing abnormal growth of grains, but also improves the main phase of permanent magnet materials in combination with optimized airflow grinding and sintering processes. and the microstructural structure of the grain boundary phase, thereby producing an R-Fe-B series permanent magnet material with excellent comprehensive properties.
  • the Re-Fe-B series permanent magnet material has a temperature range of Br ⁇ 13.3KGs and Hcj ⁇ 25.1Koe. Under the conditions, the 20-day HAST weight loss of permanent magnet materials is ⁇ 3mg/cm 2 , with excellent weight loss performance, flexural strength >440Mpa, and excellent comprehensive performance.
  • Figure 1 is a backscattered scanning electron microscope analysis diagram of the permanent magnet material in Example 1.
  • Smelting According to the formula shown in Table 1, put the prepared raw materials into the crucible, and conduct it in a medium-frequency vacuum induction rapid condensation belt furnace.
  • the linear speed of the casting quenching roller is 1.5m/second, and the casting temperature is 1450°C.
  • the average scale thickness is 0.25mm.
  • HD treatment coarse crushing: undergo hydrogen absorption, dehydrogenation and cooling treatment in a hydrogen crushing furnace.
  • the hydrogen absorption treatment pressure is 100KPa
  • the dehydrogenation treatment temperature is 580°C
  • the dehydrogenation time is 4.5 hours.
  • Sintering First put the compact into the sintering furnace under nitrogen protection, and then perform decarburization and gassing treatment at 300°C, 600°C, and 900°C for 2 hours, and then conduct vacuum sintering at 1015°C for 1.5 hours, and then charge Use 20KPa argon gas for pressure-holding sintering at 1040°C for 3 hours. Then fill it with argon to about 100KPa and turn on the fan to cool it down to below 50°C.
  • the permanent magnet material also needs to undergo grain boundary diffusion treatment and be processed according to the conventional Tb vapor diffusion process in this field.
  • the temperature of the diffusion treatment is 900°C and the diffusion time is 30 hours. After the diffusion treatment, stress relief aging is performed.
  • the processing temperature can be 550°C and the time is 4 hours, and the permanent magnet material is prepared.
  • the permanent magnet materials prepared in Examples 1-10 and Comparative Examples 1-9 were used to measure their magnetic properties, weight loss properties, and flexural strength, as shown in Table 2 below.
  • the residual magnetism (Br), coercive force (Hcj), and magnetic energy product (BH (max) ) in each of Examples 1-10 and Comparative Examples 1-9 of the present invention use the NIM-62000 rare earth permanent magnet measurement system of the Institute of Metrology. Magnetic properties were tested; the weight loss properties were measured using D10-10 sample columns and the German HAST high temperature and high humidity testing machine (130°C, 0.26atm, 100% RH, 480h); the bending strength was measured using a three-point bending equipment and tested in GB/T Tested under 14452-93 (three-point bending) standard.
  • the present invention uses precise formula design to make the grain boundary phase of the permanent magnet material contain elements such as Ti, Ga, and Cu that are beneficial to the Hcj, weight loss performance, and mechanical properties of the permanent magnet material. These elements are based on certain The proportion is evenly distributed in the grain boundary phase, which not only refines the grains, increases the wettability and corrosion resistance of the grain boundaries, and prevents abnormal grain growth, but also combines the optimized airflow grinding process and new The sintering process improves the microstructure of the main phase and grain boundary phase of the permanent magnet material; and through strict process design, the O, C, and N contents in the permanent magnet material are strictly controlled, thereby producing a R -Fe-B series permanent magnet material.
  • elements such as Ti, Ga, and Cu that are beneficial to the Hcj, weight loss performance, and mechanical properties of the permanent magnet material. These elements are based on certain The proportion is evenly distributed in the grain boundary phase, which not only refines the grains, increases the wettability and corrosion resistance of the grain boundaries, and prevents abnormal grain growth, but also
  • O, C, and N elements occupy the effective neodymium-rich phase for high-end permanent magnet materials, making the grain boundary phase brittle, which easily reduces the Hcj and strength of the permanent magnet material.
  • the present invention has achieved Br ⁇ 1.33T, Hcj ⁇ 2000KA/m, 20-day HAST weight loss ⁇ 0.5mg/cm 2 , flexural strength >440Mpa, and excellent comprehensive performance. Magnetic materials.
  • Figure 1 is a backscattered scanning electron microscope analysis diagram of the permanent magnet material of Example 1.
  • the magnet of Example 1 is composed of Nd 2 Fe 14 B main phase (gray area) and grain boundary phase (silver white area), in which the grain boundary phase
  • the composition of _ _ _ _ _ _ The percentage of the total area of the observation area, the grain boundary phase area/the total area of the observation area: 6.2 to 8.9%, that is, the density of the permanent magnet material is uniform.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开了一种R-Fe-B系永磁材料、其制备方法和应用,所述永磁材料具有如下性能:Br≥13.3KGs,Hcj≥25.1Koe;20天HAST失重损失≤3mg/cm2;抗弯强度>440Mpa。本发明通过精确的配方设计和方法设计,在严格控制永磁材料中O、C、N等元素的前提下,使得永磁材料晶界相中含有对永磁材料Hcj、失重性能、力学性能均有益的Ti、Ga、Cu等元素,这些元素按一定比例均匀分布在晶界相中,不仅仅起到了细化晶粒、增加晶界亲润性及耐蚀性,防止晶粒的异常长大的作用,并结合优化的气流磨制粉工艺和烧结工艺,改善了永磁材料主相和晶界相的显微组织结构,从而制得了一种综合性能优异的R-Fe-B系永磁材料。

Description

一种R-Fe-B系永磁材料、制备方法及应用
本申请要求享有申请人于2022年5月24日向中国国家知识产权局提交的申请号为202210576133.8,名称为“一种R-Fe-B系永磁材料、制备方法及应用”的在先专利申请的优先权权益。该在先申请的全文以引用的方式并入本文。
技术领域
本发明属于R-Fe-B系永磁材料技术领域,尤其涉及一种R-Fe-B系永磁材料及其制备方法和应用。
背景技术
烧结R-Fe-B系永磁体以其优异的磁性能,广泛应用于动力电机、计算机及电子产品等领域,随着产品的迭代,这些领域对磁体的温度系数提出了更高的要求。特别是随着空调、电动汽车等相关领域的发展,对钕铁硼磁体的多领域应用的需求越来越多,对其性能要求也越来越高。
同时R-Fe-B系烧结磁体和Sm-Co系永磁体相比最明显的缺点是耐腐蚀性差,从而限制了这类磁体在潮湿、高温环境中的应用,所以关于R-Fe-B系烧结磁体的耐腐蚀问题的研究具有重要意义。特别是近年来随着世界各国环保、节能意识的提高,在海边、草原等潮湿环境中应用的环保、节能、高效的风力发电机等永磁体电机,更是迫切需要耐腐蚀性能优异的高性能R-Fe-B系烧结磁体。
但目前,现有技术中磁体材料的配方并不能够充分利用各个元素对钕铁硼磁性材料磁性能的提升,无法得到兼具高磁学性能、失重性能、力学性能均较佳的磁性材料。
发明内容
为改善上述问题,本发明提供了一种R-Fe-B系永磁材料,其特征在于:所述永磁材料具有如下性能:
Br≥13.3KGs,Hcj≥25.1Koe;
20天HAST失重损失≤3mg/cm2
抗弯强度>440Mpa。
根据本发明的实施方案,所述永磁材料的20天HAST失重损失≤1mg/cm2
根据本发明的实施方案,所述R-Fe-B系永磁材料具有如下性能:Br为13.3-15.0KGs、Hcj为25-34Koe;20天HAST失重损失为0.1-0.5mg/cm2;抗弯强度为445-470Mpa。
根据本发明的实施方案,所述R-Fe-B系永磁材料的组分包括Ti和Ga,其中,Ti含量≥0.2wt%且Ga含量≥0.2wt%;且1<Ti/Ga<2。
根据本发明的实施方案,所述R-Fe-B系永磁材料,其特征在于,按质量百分比100%计,包含如下组分:R为26.0~32.0%,RH为0.3~4.0%、Co为0.5~3.0%、Cu为0.1~0.25%、Ga为0.2~0.4%,Ti为0.2~0.4%,Al为0~0.4%,B为0.95~1.05%,余量为Fe及不可避免的杂质,其中R为钕(Nd)和/或镨(Pr),RH为镝(Dy)和/或铽(Tb);
其中所述元素含量的质量百分比需满足如下关系:
1)1<Ti/Ga<2;
2)5≤Co/Cu<15。
根据本发明的实施方案,所述R-Fe-B系永磁材料包含晶界相,其中,所述晶界相的成分包括RaRHbTicGadCueAlFCOgFe;33≤a≤45;0.1≤b≤16;3≤c≤12;0.4≤d≤2;0.3≤e≤2.0;0.01≤f≤0.1;0.4≤g≤16;a+b+c+d+e+f+g+余=100;
所述RaRHbTicGadCueAlFCOgFe占所述永磁材料的质量比为6~11wt%。
根据本发明的实施方案,所述R为Nd或PrNd,所述R的含量优选为26.5%~31.0%,优选为26.5%、27.0%、27.5%、28%、28.5%、29.0%、29.5%、30.0%、 30.5%或31%。
根据本发明的实施方案,所述的RH为Dy、Tb中的至少1种,RH含量范围优选0.3%-3.5%,例如为0.5%、0.8%、1.0%、1.3%、1.5%、1.8%、2.5%、2.8%、3.0%、3.1%或3.5%。
根据本发明的实施方案,所述Co的含量为1.0~3.0%,优选0.5%、1%、1.5%、2.0%、2.5%或3.0%。
根据本发明的实施方案,所述Cu的含量为0.1~0.25%,优选0.1%、0.12%、0.15%、0.17%、0.18%、0.2%、0.23%或0.25%。
根据本发明的实施方案,所述Ga的含量为0.2~0.4%,优选0.2%、0.25%、0.3%、0.35%或0.4%。
根据本发明的实施方案,所述Ti的含量为0.2~0.4%,优选0.2%、0.25%、0.28%、0.30%、0.32%、0.35%、0.38%或0.40%。
根据本发明的实施方案,所述Al的含量为0.05~0.35%,优选0.1%、0.15%、0.2%、0.25%、0.3%或0.35%。
根据本发明的实施方案,所述B的含量为0.97~1.03%,优选0.97%、0.98%、0.99%、1.0%、1.01%、1.02%或1.03%。
根据本发明的实施方案,所述不可避免的杂质例如为C、N、O等中的至少一种;优选地,氧含量为300~900ppm,碳含量为400~800ppm,氮含量为200~600ppm。
本发明还提供了一种Re-Fe-B系永磁材料的制备方法,其特征在于,其包括如下步骤:将Re-Fe-B系永磁材料的原料经熔炼浇铸、粗破碎、细破碎、成型、烧结、加工、扩散处理,得到所述Re-Fe-B系永磁材料。
根据本发明的实施方案,所述熔炼浇铸工艺在中频真空感应速凝甩带炉中进行,浇铸急冷辊线速度1m/s~2m/s,浇铸温度1380~1480℃,熔炼浇铸后的鳞片厚度均值0.20-0.30mm。
根据本发明的实施方案,所述粗破碎工艺按如下步骤进行:在氢碎炉中经吸氢、脱氢、冷却处理,所述吸氢处理压力90~110KPa,脱氢处理温度为550~620℃,脱氢时间3~6h。
根据本发明的实施方案,所述细破碎通过惰性气体气流磨进行,所述惰性气体例如为氮气、氩气等。优选地,细破碎过程中控制氧含量≤50ppm,粒子的粒度SMD为2.3~2.7μm,优选2.5um,X90/X10≤4.5,X100≤12.5μm。本发明中,X90/X10≤4.5,且X100≤12.5μm,可以获得的更高的Br和Hcj,同时失重水平及抗弯强度也会提高。
根据本发明的实施方案,在细破碎过程中还可以加入抗氧化剂,混料3~6h。抗氧化剂的质量为永磁材料总质量的1~2%;抗氧化剂选自1,3,5-三氯甲苯,二丁基羟基甲苯,4-己基间苯二酚中的一种或几种。所述抗氧化剂具有润滑功能。采用细破碎工艺能够制备得到粒度分布均匀的细粉末,同时由于使用了惰性气体气流磨,使粉末的氮含量处于较低水平。
根据本发明的实施方案,所述成型工艺为≥1.5T的磁场取向压制成型,压制过程粉末处于完全密封状态压机中,且持续充氮气保护。
根据本发明的实施方案,所述烧结工艺按如下步骤进行:先将成型工艺制备的压坯在2-10个温度区域内脱碳放气处理,再真空烧结,再在惰性氛围下烧结,冷却。
优选地,2至10个温度区域的温度彼此不相同,优选地,脱碳放气处理可以在梯度上升的温度下进行。示例性地,当脱碳放气处理在2至10个温度区域依次进行时,首先在第一温度区域脱碳放气处理,然后依次进入下一温度区域,例如第二温度区域脱碳放气处理、第三温度区域脱碳放气处理,或更多个温度区域脱碳放气处理;例如,第一温度区域的温度可以是200-380℃,优选为280-320℃,例如300℃;第二温度区域的温度可以高于第一温度区域,例如450-720℃,优选为580-620℃,如600℃;第三温度区域的温度可以高于第二温度区域,例如750-1000℃,优选为880-920℃,如900℃。采用本发明的脱碳放气处理工艺可以 使抗氧化剂中的C、N、H等元素先后从永磁材料中脱出。
优选地,真空烧结的温度为1000~1020℃,真空烧结的时间为1~2h。
优选地,惰性氛围下烧结的温度为1030~1050℃,惰性氛围下烧结的时间为2~4h;惰性氛围下烧结时的压力为10~30KPa。所述惰性氛围例如为氮气或氩气。
优选地,在惰性氛围下烧结结束后,可以在100KPa下采用风机冷却至50℃以下。
根据本发明的实施方案,所述烧结工艺按如下步骤进行:将成型工艺制备的压坯在氮气保护状态下摆进烧结炉,之后经第一温度区域200-380℃,第二温度区域450-720℃和第三温度区域750-1000℃,分别进行1~3h的脱碳放气处理,再进行1000~1020℃,1~2h的真空烧结,再充10~30KPa氩气进行1030~1050℃,2~4h的保压烧结处理。之后充氩气至约100KPa开风机冷却至50℃以下。
本发明采用脱碳放气处理工艺、真空烧结和保压烧结工艺,可使永磁材料中的C、N、O等元素处于较低水平,同时使永磁材料的密实度及抗弯强度更高。
根据本发明的实施方案,所述扩散处理为晶界扩散处理,可按本领域常规的工艺进行处理,例如Tb、Dy蒸汽扩散。其中,所述扩散处理的温度可为850~950℃,例如900℃,扩散时间为10~50h,例如36h。所述扩散处理后,还需进行去应力时效处理,温度可为450~650℃,例如550℃,时间3~6h。
根据本发明的实施方案,所述Re-Fe-B系永磁材料的氧含量为300~900ppm,碳含量为400~800ppm,氮含量为200~600ppm。
本发明还提供上述Re-Fe-B系永磁材料在电机中作为电机转子磁钢的应用。本发明的有益效果:
本发明通过精确的配方设计和工艺设计,在严格控制永磁材料中O、C、N等元素的前提下,使得永磁材料晶界相中含有对永磁材料Hcj、失重性能、力学性能均有益的Ti、Ga、Cu等元素,这些元素按一定比例均匀分布在晶界相中, 不仅仅起到了细化晶粒、增加晶界亲润性及耐蚀性,防止晶粒的异常长大的作用,并结合优化的气流磨制粉工艺和烧结工艺,改善了永磁材料主相和晶界相的显微组织结构,从而制得了一种综合性能优异的R-Fe-B系永磁材料,该Re-Fe-B系永磁材料在Br≥13.3KGs,Hcj≥25.1Koe的条件下,实现了在永磁材料20天HAST失重损失≤3mg/cm2,失重性能优异,抗弯强度>440Mpa,综合性能优异。
附图说明
图1为实施例1中永磁材料的背散射扫描电镜分析图。
具体实施方式
下文将结合具体实施例对本发明的技术方案做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本发明,而不应被解释为对本发明保护范围的限制。凡基于本发明上述内容所实现的技术均涵盖在本发明旨在保护的范围内。
除非另有说明,以下实施例中使用的原料和试剂均为市售商品,或者可以通过已知方法制备。
实施例1~10和对比例1~9
各实施例1~10和对比例1~9中的永磁材料中的元素质量百分比如下表1所示。
表1R-Fe-B系永磁材料各元素组分及含量(wt%)

表1(续)R-Fe-B系永磁材料各元素组分及含量(wt%)

表1中,“/”指代含量为0。
实施例1-10及对比例1-6中R-Fe-B系永磁材料的制造方法如下:
1)熔炼:按表1所示配方,取配置好的原材料放入坩埚中,在中频真空感应速凝甩带炉中进行,浇铸急冷辊线速度1.5m/秒,浇铸温度1450℃,所炼鳞片厚度均值0.25mm。
2)HD处理(粗破碎):在氢碎炉中经吸氢、脱氢、冷却处理,所述吸氢处理压力100KPa,脱氢处理温度在580℃,脱氢时间4.5h。
3)气流磨(细破碎):通过优化气流磨粉碎工艺参数,粉碎过程中的氧含量≤50ppm,粒度控制SMD为2.5um,X90/X10=4.0,X100=10um。制成粉末需添加永磁材料总质量1.5%的二丁基羟基甲苯,混料5h。
4)成型:采用1.8T的磁场取向压制成型,压制过程粉末处于完全密封状态压机中,且持续充氮气保护。
5)烧结:先把压坯在氮气保护状态下摆进烧结炉,之后经300℃,600℃,900℃分别进行2h的脱碳放气处理,再进行1015℃,1.5h的真空烧结,再充20KPa氩气进行1040℃,3h的保压烧结处理。之后充氩气至约100KPa开风机冷却至50℃以下。
6)扩散:永磁材料还需经晶界扩散处理,按本领域常规的Tb蒸汽扩散工艺进行处理,其中,扩散处理的温度为900℃,扩散时间为30h,扩散处理后,进行去应力时效处理,温度可为550℃,时间4h,制备得到永磁材料。
对比例7
3)气流磨(细破碎):通过优化气流磨粉碎工艺参数,粉碎过程中的氧含 量≤50ppm,粒度控制SMD为2.5um,X90/X10=5.0,X100=25um。制成粉末需添加1.5%二丁基羟基甲苯,混料5h。其余配方、熔炼、HD、压型、烧结、扩散过程同实施例1相同。
对比例8
5)烧结:先把压坯在氮气保护状态下摆进烧结炉,之后经600℃,900℃分别进行2h的脱碳放气处理,再进行1015℃,1.5h的真空烧结,再充20KPa氩气进行1040℃,3h的保压烧结处理。之后充氩气至约100KPa开风机冷却至50℃以下。
其余配方、熔炼、HD、压型、烧结、扩散过程同实施例1相同。
对比例9
5)烧结:先把压坯在氮气保护状态下摆进烧结炉,之后经900℃分别进行2h的脱碳放气处理,再进行1015℃*,1.5h的真空烧结,再充20KPa氩气进行1040℃,3h的保压烧结处理。之后充氩气至约100KPa开风机冷却至50℃以下。
其余配方、熔炼、HD、压型、烧结、扩散过程同实施例1相同。
取各实施例1-10和对比例1-9制得得永磁材料测定其磁性能、失重性能、抗弯强度,如下表2所示。
本发明各实施例1-10和对比例1-9中的剩磁(Br)、矫顽力(Hcj)、磁能积(BH(max))使用计量院的NIM-62000型稀土永磁测量系统进行磁性能检测;失重性能采用D10-10样柱,采用德国HAST高温高湿实验机(130℃,0.26atm,100%RH,480h);抗弯强度使用三点抗弯设备并在GB/T 14452-93(三点弯曲)标准下进行测试。
表2各实施例1~10和对比例1~9制得的钕铁硼永磁材料测定其磁性能、失重性能、抗弯强度

表2(续)各实施例1~10和对比例1~9制得的钕铁硼永磁材料测定其磁性能、失重性能、抗弯强度

由上表可见,本发明通过精确的配方设计,使得该系永磁材料晶界相中含有对永磁材料Hcj、失重性能、力学性能均有益的Ti、Ga、Cu等元素,这些元素按一定比例均匀分布在晶界相中,不仅仅起到了细化晶粒、增加晶界亲润性及耐蚀性,防止晶粒的异常长大的作用,并结合优化的气流磨制粉工艺和新型烧结工艺,改善了永磁材料主相和晶界相的显微组织结构;并通过严格的过程设计,严格控制永磁材料中O、C、N含量,从而制得了一种综合性能优异的R-Fe-B系永磁材料。O、C、N元素对于高端永磁材料来说占用有效的富钕相,使晶界相变脆,易使永磁材料Hcj降低,强度下降。总之,本发明通过精确的配方设计和过程设计,做出了Br≥1.33T、Hcj≥2000KA/m,20天HAST失重损失≤0.5mg/cm2,抗弯强度>440Mpa,综合性能优异的永磁材料。
图1为实施例1的永磁材料的背散射扫描电镜分析图。
选取图1不同区域的晶界相,在2000倍的放大倍数下进行EDS能谱分析,得到晶界中各元素含量(质量百分比)。从图1和EDS能谱分析结果可得实施例1的磁体由Nd2Fe14B主相(灰色区域)和晶界相(银白色区域)组成,其中晶界相 的成分为:Nd33~45Tb0.1~1Ti4~8Ga0.4~1.5Cu0.3~1Al0.01~0.06CO0.4~3Fe;计算不同区域晶界相面积占所选显微组织观测区域总面积的百分比,晶界相面积/观测区域总面积:6.2~8.9%,即所述永磁材料密度均匀。
表3中,晶界相含量的具体检测结果如下:
表3各实施例1~10和对比例1~9制得的钕铁硼永磁材料晶界相微观分析

以上,对本发明的实施方式进行了示例性的说明。但是,本发明的保护范围不拘囿于上述实施方式。凡在本发明的精神和原则之内,本领域技术人员所作出的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种R-Fe-B系永磁材料,其特征在于,所述永磁材料具有如下性能:
    Br≥13.3KGs,Hcj≥25.1Koe;
    20天HAST失重损失≤3mg/cm2
    抗弯强度>440Mpa。
  2. 根据权利要求1所述的永磁材料,其特征在于,所述R-Fe-B系永磁材料具有如下性能:Br为13.3-15.0KGs,Hcj为25-34Koe;20天HAST失重损失为0.1-0.5mg/cm2;抗弯强度为445-470Mpa。
    优选地,所述R-Fe-B系永磁材料的组分包括Ti和Ga,其中,Ti含量≥0.2wt%,Ga含量≥0.2wt%;且1<Ti/Ga<2。
  3. 根据权利要求1或2所述的永磁材料,其特征在于,所述R-Fe-B系永磁材料,按质量百分比100%计,包含如下组分:R为26.0~32.0%,RH为0.3~4.0%、Co为0.5~3.0%、Cu为0.1~0.25%、Ga为0.2~0.4%,Ti为0.2~0.4%,Al为0~0.4%,B为0.95~1.05%,余量为Fe及不可避免的杂质,其中R为钕(Nd)和/或镨(Pr),RH为镝(Dy)和/或铽(Tb);
    其中所述元素含量的质量百分比需满足如下关系:
    1)1<Ti/Ga<2;
    2)5≤Co/Cu<15。
  4. 根据权利要求1-3任一项所述的永磁材料,其特征在于,所述R-Fe-B系永磁材料包含晶界相,其中,所述晶界相的成分包括RaRHbTicGadCueAlFCOgFe;33≤a≤45;0.1≤b≤16;3≤c≤12;0.4≤d≤2;0.3≤e≤2.0;0.01≤f≤0.1;0.4≤g≤16;
    所述RaRHbTicGadCueAlFCOgFe占所述永磁材料的质量比为6~11wt%。
    优选地,所述不可避免的杂质为C、N、O中的至少一种;优选地,氧含量为300~900ppm,碳含量为400~800ppm,氮含量为200~600ppm。
  5. 权利要求1-4任一项所述的永磁材料的制备方法,其特征在于,所述方法包括如下步骤:将Re-Fe-B系永磁材料的原料经熔炼浇铸、粗破碎、细破碎、成型、烧结、加工、扩散处理,得到所述Re-Fe-B系永磁材料。
  6. 根据权利要求5所述的方法,其特征在于,所述粗破碎工艺按如下步骤进行:在氢碎炉中经吸氢、脱氢、冷却处理,所述吸氢处理压力90~110KPa,脱氢处理温度为550~620℃,脱氢时间3~6h。
    优选地,所述细破碎通过惰性气体气流磨进行,所述惰性气体为氮气、氩气等。优选地,细破碎过程中控制氧含量≤50ppm,细破碎过程汇中粒子的粒度SMD为2.3~2.7μm,优选2.5um;优选地,X90/X10≤4.5,X100≤12.5μm。
  7. 根据权利要求5或6所述的方法,其特征在于,所述烧结工艺按如下步骤进行:先将成型工艺制备的压坯在2-10个温度区域内脱碳放气处理,再真空烧结,再在惰性氛围下烧结,冷却。
  8. 根据权利要求7所述的方法,其特征在于,2至10个温度区域的温度彼此不相同,优选地,脱碳放气处理在梯度上升的温度下进行。
  9. 根据权利要求7或8所述的方法,其特征在于,当脱碳放气处理在2至10个温度区域依次进行时,首先在第一温度区域脱碳放气处理,然后依次进入下一温度区域,例如第二温度区域脱碳放气处理、第三温度区域脱碳放气处理,或更多个温度区域脱碳放气处理;例如,第一温度区域的温度是200-380℃;第二温度区域的温度高于第一温度区域,为450-720℃;第三温度区域的温度高于 第二温度区域,为750-1000℃。
  10. 权利要求1-4任一项所述的Re-Fe-B系永磁材料在电机中作为电机转子磁钢的应用。
PCT/CN2023/096140 2022-05-24 2023-05-24 一种R-Fe-B系永磁材料、制备方法及应用 WO2023227042A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210576133.8A CN117153510A (zh) 2022-05-24 2022-05-24 一种R-Fe-B系永磁材料、制备方法及应用
CN202210576133.8 2022-05-24

Publications (1)

Publication Number Publication Date
WO2023227042A1 true WO2023227042A1 (zh) 2023-11-30

Family

ID=88885516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/096140 WO2023227042A1 (zh) 2022-05-24 2023-05-24 一种R-Fe-B系永磁材料、制备方法及应用

Country Status (2)

Country Link
CN (1) CN117153510A (zh)
WO (1) WO2023227042A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101266856A (zh) * 2007-12-28 2008-09-17 烟台正海磁性材料有限公司 耐蚀性优异的高性能R-Fe-B系烧结磁体及其制造方法
US20110298571A1 (en) * 2010-06-04 2011-12-08 Irena Skulj Rare earth magnetic materials comprising gallium and methods of making the same
CN109087768A (zh) * 2018-08-30 2018-12-25 江西理工大学 用于磁悬浮系统的钕铁硼永磁材料及其制备方法
CN111613408A (zh) * 2020-06-03 2020-09-01 福建省长汀金龙稀土有限公司 一种r-t-b系永磁材料、原料组合物及其制备方法和应用
CN112117075A (zh) * 2020-08-24 2020-12-22 宁波晨洋磁材科技有限公司 一种高机械强度镨铁硼永磁体及其制备方法和加工罐

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101266856A (zh) * 2007-12-28 2008-09-17 烟台正海磁性材料有限公司 耐蚀性优异的高性能R-Fe-B系烧结磁体及其制造方法
US20110298571A1 (en) * 2010-06-04 2011-12-08 Irena Skulj Rare earth magnetic materials comprising gallium and methods of making the same
CN109087768A (zh) * 2018-08-30 2018-12-25 江西理工大学 用于磁悬浮系统的钕铁硼永磁材料及其制备方法
CN111613408A (zh) * 2020-06-03 2020-09-01 福建省长汀金龙稀土有限公司 一种r-t-b系永磁材料、原料组合物及其制备方法和应用
CN112117075A (zh) * 2020-08-24 2020-12-22 宁波晨洋磁材科技有限公司 一种高机械强度镨铁硼永磁体及其制备方法和加工罐

Also Published As

Publication number Publication date
CN117153510A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
JP7379362B2 (ja) 低B含有R-Fe-B系焼結磁石及び製造方法
CN111223627B (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
CN111223624B (zh) 一种钕铁硼磁体材料、原料组合物及制备方法和应用
WO2021135144A1 (zh) 一种钕铁硼永磁材料、制备方法、应用
CN111223625B (zh) 钕铁硼磁体材料、原料组合物及制备方法和应用
CN111243807B (zh) 一种钕铁硼磁体材料、原料组合物及制备方法和应用
CN111312461B (zh) 一种钕铁硼磁体材料、原料组合物及制备方法和应用
CN110323053B (zh) 一种R-Fe-B系烧结磁体及其制备方法
CN111599562B (zh) 一种钕铁硼永磁材料、其原料组合物、其制备方法和应用
CN111326306B (zh) 一种r-t-b系永磁材料及其制备方法和应用
CN111261355B (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
CN111223626B (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
JP2024519243A (ja) ネオジム鉄ホウ素磁石材料及びその製造方法並びに応用
KR102606749B1 (ko) R-t-b계 영구자석 재료, 원료조성물, 제조방법, 응용
CN111223628B (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
EP4016562A1 (en) R-t-b series permanent magnet material, raw material composition, preparation method and application
CN112582123B (zh) 低温度系数高使用温度烧结钐钴磁体的制备方法
WO2023227042A1 (zh) 一种R-Fe-B系永磁材料、制备方法及应用
CN114220622A (zh) 抗氧化组合物、稀土永磁体、烧结磁铁类材料、制备方法
CN113593802A (zh) 一种耐腐蚀、高性能钕铁硼烧结磁体及其制备方法和用途
US11993836B2 (en) R-FE-B-based sintered magnet with low B content and preparation method therefor
CN115938783B (zh) 磁性材料及其制备方法
WO2016155674A1 (zh) 一种含有Ho和W的稀土磁铁
EP4354471A1 (en) Auxiliary alloy casting piece, high-remanence and high-coercive force ndfeb permanent magnet, and preparation methods thereof
CN115547662A (zh) 钐钴/铝镍钴复合磁体及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811112

Country of ref document: EP

Kind code of ref document: A1