WO2014059772A1 - 高抗腐蚀性Re-(Fe, TM)-B磁体及其制备方法 - Google Patents

高抗腐蚀性Re-(Fe, TM)-B磁体及其制备方法 Download PDF

Info

Publication number
WO2014059772A1
WO2014059772A1 PCT/CN2013/074081 CN2013074081W WO2014059772A1 WO 2014059772 A1 WO2014059772 A1 WO 2014059772A1 CN 2013074081 W CN2013074081 W CN 2013074081W WO 2014059772 A1 WO2014059772 A1 WO 2014059772A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder material
magnet
metal
added
powder
Prior art date
Application number
PCT/CN2013/074081
Other languages
English (en)
French (fr)
Inventor
孙绪新
孙斌
Original Assignee
中磁科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中磁科技股份有限公司 filed Critical 中磁科技股份有限公司
Publication of WO2014059772A1 publication Critical patent/WO2014059772A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties

Definitions

  • the invention belongs to the field of rare earth permanent magnet materials. It mainly relates to a preparation method of a Re-(Fe, TM)-B sintered magnet.
  • uncoated magnets are usually placed continuously for a long period of time under high temperature, high pressure, and high humidity conditions, and the weight loss per unit surface area quantitatively reflects the corrosion resistance of the magnet.
  • Re-(Fe, TM)-B magnets there are two main methods for improving the corrosion resistance of Re-(Fe, TM)-B magnets.
  • One is to improve the corrosion resistance of the magnet surface by surface treatment (such as electroplating, electrophoresis, coating), but Existing surface treatment techniques often have the disadvantages of high cost, high pollution environment, and magnetic properties of the magnet.
  • the other is to improve the intrinsic corrosion resistance of the Re-(Fe, TM)-B magnet itself.
  • the Chinese invention patent application "a highly corrosion-resistant Re-(Fe, TM)-B-based magnet and its preparation method” (CN200910116871.9) provides a method for processing a protective layer for a magnet before sintering, Before sintering, the cylinder is placed in the alloy melt for high-temperature sintering, so that the alloy atoms form a protective layer with a thickness of 2 ⁇ m on the surface of the cylinder, and some atoms penetrate into the inside of the magnet.
  • one or more microalloying elements are usually added in the smelting stage, in order to form one or more grain boundary phase alloys with better corrosion resistance in the metallurgical structure of the magnet, which can be improved. And improving the corrosion resistance of the grain boundary phase, so that the corrosion resistance of the magnet is improved.
  • the disadvantage of this method is that some trace alloying elements directly enter the interior of the main phase Nd 2 Fe 14 B grains, which reduces the magnetic properties of the magnets and also reduces the effect of trace alloying elements on the corrosion resistance of the magnets.
  • the invention aims to solve the problems existing in the prior art, and provides a low-cost preparation and anti-corrosion Corrosion-resistant Re-(Fe, TM)-B magnet and its preparation method.
  • the preparation method provided by the invention comprises the following process steps:
  • Re-(Fe, TM)-B system magnet material is smelted and then coarsely crushed, and then further crushed to obtain a powder material having an average particle diameter of 0.5 mm, wherein Re is selected from the group consisting of Pr-Nd, Nd, Dy, and Tb. , Gd, Ho or a mixture thereof, TM is selected from the group consisting of Al, Nb, Cu, Ga, Co, Zr or a mixture thereof;
  • step 2 The powder material obtained in the step 1 is further ground by a jet mill until the average particle diameter of the powder material is 5 ⁇ m;
  • the powder materials obtained by pulverizing or grinding in steps 1 and 2 are subjected to a mixing treatment before the next treatment, so that the powder materials are uniformly mixed;
  • a metal having an average particle size of less than 80 ⁇ m (about 200 mesh) is added to the powder material (such as Cu powder, Co powder, Nb). Powder, A1 powder, liquid Ga, or a mixture thereof) or a metal oxide (Dy 2 0 3 , Tb 4 0 7 , or a mixture thereof), and added after stirring. Among them, it is preferred to add an elemental metal.
  • the additive When metal or metal oxide is added, it needs to be filled with nitrogen and oxygen in a closed container before being added.
  • the present invention also provides a Re-(Fe, TM)-B magnet prepared by this method.
  • the corrosion resistance of the Re-(Fe, TM)-B magnet prepared by the method is mainly due to the fact that the added powder is distributed on the surface of the magnetic powder particles, and in the case of vacuum sintering, a trace amount
  • the alloying element only diffuses with the magnetic powder particles or the surface layer of the main phase crystal Nd 2 Fe 14 B to form one or more grain boundary phase alloys with good corrosion resistance, thereby improving the corrosion resistance of the magnet while avoiding
  • the microalloying elements enter the magnetic grains and damage the magnetic properties of the magnet.
  • the object of the present invention is to form a new crystal by adding a trace amount of a metal element or a metal oxide to a large portion of the Nd-rich phase at a low cost in the case of medium crushing, jet milling or mixing. Boundary phase, thereby maximizing the trace element of metal or metal oxide The corrosion resistance is improved to meet the customer's actual use requirements while minimizing damage to the magnetic properties of the magnet.
  • Weight loss test conditions 120 °C, 100% humidity, 2 atmospheres, continuous placement 240 small sample size: ⁇ 10*10 cylinder.
  • Weight loss test conditions 120 °C, 100% humidity, 2 atmospheres, continuous placement 240 small sample size: ⁇ 10* 10 cylinder.
  • Weight loss test conditions 120 ° C, 100% humidity, 2 atmospheres of continuous placement 480 small sample size: ⁇ 10 * 10 cylinder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

高抗腐蚀性Re-(Fe,TM)-B磁体的制备方法:1)将Re-(Fe,TM)-B体系磁体材料熔炼后进行粗破碎,进行中碎,得到平均粒径0.5mm的粉末材料,其中Re选自Pr-Nd、Nd、Dy、Tb、Gd、Ho或其混合,TM选自Al、Nb、Cu、Ga、Co、Zr或其混合;2)将步骤1所得粉末材料经气流磨一步研磨至粉末材料平均粒径小于5μm;3)将步骤2所得粉末材料经磁场成型、真空烧结、时效处理后,得到所需产品;其中步骤1和步骤2所得粉末材料,在进行下一步处理前进行混料处理使粉末材料混合均匀;其中在进行中碎、气流磨研磨、及混料处理中一个或多个操作时向粉末材料中添加平均粒度小于80μm的金属或金属氧化物。

Description

高抗腐蚀性 Re-iFe, TM)-B磁体及其制备方法 技术领域
本发明属于稀土永磁材料领域。 主要涉及 Re-(Fe, TM)-B烧结磁体的制备 方法。
背景技术
随着稀土永磁材料应用领域的不断扩大, 客户对稀土永磁产品的要求也 在不断的提高。 诸如风力发电机、 汽车电机、 电梯电机、 压缩机电机、 核磁 共振、 音圈电机、 仪器仪表、 传感器等应用领域, 均对 Re-(Fe, TM)-B磁体的 抗腐蚀性提出了很高的要求。
一般地, 通常用无镀层磁体在高温、 高压、 高湿环境条件下长时间连续 放置, 单位表面积上所产生的重量损失定量地反映磁体的抗腐蚀性。
目前, 提高 Re-(Fe, TM)-B磁体的抗腐蚀性, 主要有两种方法, 一种是通 过表面处理(如电镀、 电泳、 涂层)技术来提高磁体外表的抗腐蚀性, 但现 有表面处理技术往往有成本高、 污染环境大、 影响磁体磁性能的缺点。 另一 种是提高 Re-(Fe, TM)-B磁体本身本征抗腐蚀性。例如,中国发明专利申请"一 种高耐腐蚀 Re-(Fe, TM)-B系磁体及其制备方法" ( CN200910116871.9 )提供 了一种在烧结前为磁体加工保护层的方法, 具体做法是在烧结前, 将圓柱体 放置在合金熔液中进行高温烧结, 使合金原子在圓柱体表面形成厚度为 ^ 2 μ m 的防护层, 并有部分原子渗透进入磁体内部, 这种方法固然可以提高磁体 的抗腐蚀性, 但由于此方法有两次烧结的过程, 比常规的方法多了一次烧结 过程, 将提高烧结工段的成本; 且只能通过单质金属元素来提高抗腐蚀性, 提高了原材料成本单质金属的价格高于金属氧化物的价格。由于烧结 Re-Fe-B 磁体的腐蚀行为表现为晶界相优先腐蚀, 因此, 可通过改善晶界相的抗腐蚀 性来提高磁体的抗腐蚀性。 在现有技术中, 通常是熔炼阶段中添加一种或多 种微量合金化元素, 以期在磁体金相结构中, 形成一种或多种具有较好抗腐 蚀性能的晶界相合金, 可改善和提高晶界相的抗腐蚀性, 从而磁体的抗腐蚀 性得到提高。 但这种工艺方法的缺点是部分微量合金化元素直接进入主相 Nd2Fe14B 晶粒内部, 降低了磁体的磁性能, 同时也降低了微量合金化元素改 善磁体抗腐蚀性的效果。
发明内容
本发明旨在解决现有技术所存在的问题, 提供一种制备成本低廉且抗腐 蚀性能的 Re-(Fe, TM)-B磁体及其制备方法。
本发明所提供的制备方法包括如下工艺步骤:
1 ) 将 Re-(Fe, TM)-B体系磁体材料熔炼后进行粗破碎, 然后进一步进 行中碎, 得到平均粒径 0.5mm的粉末材料, 其中 Re选自 Pr-Nd、 Nd、 Dy、 Tb、 Gd、 Ho或其混合, TM选自 Al、 Nb、 Cu、 Ga、 Co、 Zr或其混合;
2 ) 将步骤 1所得粉末材料经气流磨进一步研磨至粉末材料平均粒径小 5μπι;
3 ) 将步骤 2所得粉末材料经磁场成型、 真空烧结、 时效处理后, 得到 所需产品;
其中, 步骤 1和步骤 2的粉碎或研磨所得粉末材料, 在进行下一步处理 前, 进行混料处理, 使粉末材料混合均匀;
其中, 在进行中碎、 气流磨研磨、 及混料处理操作中一个或多个操作时, 向粉末材料中添加平均粒度小于 80μιη (约为 200目 )的金属(如 Cu粉、 Co 粉、 Nb粉、 A1粉、 液态 Ga, 或其混合物)或金属氧化物 (Dy203、 Tb407, 或其混合物), 添加后搅拌均勾。 其中, 优选添加单质金属。
其中添加金属或金属氧化物时, 其在被添加前需在密闭容器中进行充氮 排氧,排氧过程一般要进行 5-20分钟,具体时间按照添加量的多少进行决定, 添加物越少, 排氧时间越短; 排氧结束后将被添加物添加入粉料中进行均匀 混料, 其中基于粉料的重量和原成份中稀土的含量, 添加物的添加量 <2% (粉 末材料总质量), 并且使得质量比 Re: ( Fe,TM ) :B=2:14:1的比例进行添加, Re代表稀土, TM代表 Al、 Nb、 Cu、 Ga、 Co、 Zr等非稀土金属, B代表硼。
本发明还提供由此方法所制备的 Re-(Fe, TM)-B磁体。
本发明人惊讶地发现, 由此方法所制备的 Re-(Fe, TM)-B磁体的抗腐蚀性 的增强, 主要是由于添加的粉末在磁粉颗粒表面均勾分布, 在真空烧结时, 微量合金化元素只和磁粉颗粒或主相晶粒 Nd2Fe14B表层发生扩散, 形成一种 或多种具有良好抗腐蚀性的晶界相合金, 从而提高了磁体的抗腐蚀性, 同时 又避免了微量合金化元素进入磁性晶粒内部损害磁体磁性能。
本发明的目的是在成本较低的情况下, 在中碎、 气流磨或混料时, 通过 添加微量的金属单质元素或金属氧化物, 使其大部分进入富 Nd相中, 形成新 的晶界相, 从而最大程度地发挥微量金属单质元素或金属氧化物对磁体本征 抗腐蚀性的改善作用, 达到客户的实际使用要求, 同时将其对磁体磁性能的 损害降到最小。
具体实施方式
实施例 1:
在设计成分为 (NdPr ) 31.5Fe64.73Alo.5Nbo.5Co1.oZro.25B1.o2 (质量百分比) 的 配方中, 为了提高矫顽力, 有两种方法, 一种是以常规方法制备, 在熔炼过 程中加入 0.5% Cu, 称为磁体 1 ; 另一种是以本发明所提供的方法制备, 在中 碎后气流磨前, 将 200目的、 0.5%Cu粉加入, 称为磁体 2。 两种合金分别经 熔炼、 粗破、 中碎、 气流磨、 混料、 磁场成型、 真空烧结、 时效处理后进行 磁性能测量(试验方法: 用磁化特性自动测量仪对毛坯进行测量, 标准: 中华 人民共和国国家标准 ( GB/T 13650-2000 ) -烧结钕铁硼永磁材料 )和失重实验 测试。 测试结果见表 1 :
表 1: 磁体的磁性能和失重测试
Figure imgf000004_0001
失重实验条件: 120°C、 100%湿度、 2个大气压的环境下连续放置 240小 样品尺寸: φ 10*10圓柱。
从表中结果可以看出: 磁体 2无论磁性能还是抗腐蚀性均比磁体 1优越。 实施例 2:
在设计成分为 (NdPr sDyQ Fe^sAlQ^CucuCoLQZrQ B^质量百分比)的 配方中, 为了提高矫顽力, 有两种方法, 一种以常规方法制备, 是在熔炼过 程中加入 0.4%Ga, 称为磁体 3; 另一种是以本发明所提供的方法制备, 在气 流磨后混料前,将 0.4%液态金属 Ga加入,称为磁体 4。两种合金分别经熔炼、 粗破、 中碎、 气流磨、 混料、 磁场成型、 真空烧结、 时效处理后进行磁性能 测量和失重实验测试。 测试结果见下表 2: 表 2: 磁体的磁性能和失重测试
磁体编号 磁性 失重 Br(KGs) Hcj(KOe) (BH)m(MGOe) ( mg/cm2 )
3 13.77 14.45 46.61 8.2
4 13.88 14.70 47.62 0.16 失重实验条件: 120°C、 100%湿度、 2个大气压的环境下连续放置 240小 样品尺寸: φ 10* 10圓柱。
从表 2中结果可以看出: 磁体 4无论磁性能还是抗腐蚀性, 均比磁体 3 优越。
实施例 3:
在涉及成分为 (NdPr^TbiFe^wAl ^Cuo CoLoZra BLcn (质量百分比)的 配方中, 为了提高矫顽力, 有两种方法, 一种是在熔炼过程中添加单质金属 元素 5%Dy, 成为磁体 5; 另一种是在熔炼过程中添加单质金属元素 3.2%的 Dy, 气流磨混料前添加金属氧化物 1.8%的 Dy203, 成为磁体 6。 两种合金分 别经熔炼、 粗破、 中碎、 气流磨、 混料、 磁场成型、 真空烧结、 时效处理后 进行磁性能测量和额失重试验测试。 测试结果见下表 3 :
表 3: 磁体的磁性能和失重测试
Figure imgf000005_0001
失重实验条件: 120°C、 100%湿度、 2个大气压的环境下连续放置 480小 样品尺寸: φ10* 10圓柱。
从表 3 中结果可以看出: 磁体 6无论磁性能还是抗腐蚀性, 均比磁体 5 优越。
在中碎、 气流磨、 混料时, 通过添加微量金属单质元素、 金属氧化物等, 不仅可以增加磁体的磁性能, 增强磁体的抗腐蚀性, 而且在生产成本上, 也 较表面处理有所减少, 且对环境友好。
以上公开的仅为本发明的几个具体实施例, 但是, 本发明并非局限于此, 任何本领域的技术人员能思之的变化都应落入本发明的保护范围。

Claims

权 利 要 求 书
1. 一种高抗腐蚀性 Re-(Fe, TM)-B磁体制备方法包括如下工艺步骤:
1 ) 将 Re-(Fe, TM)-B体系磁体材料熔炼后进行粗破碎, 然后进一步进 行中碎, 得到平均粒径 0.5mm的粉末材料, 其中 Re选自 Pr-Nd、 Nd、 Dy、 Tb、 Gd、 Ho或其混合, TM选自 Al、 Nb、 Cu、 Ga、 Co、 Zr或其混合;
2 ) 将步骤 1所得粉末材料经气流磨进一步研磨至粉末材料平均粒径小 5μπι;
3 ) 将步骤 2所得粉末材料经磁场成型、 真空烧结、 时效处理后, 得到 所需产品;
其中, 步骤 1和步骤 2所得粉末材料, 在进行下一步处理前, 进行混料 处理, 使粉末材料混合均匀;
其中, 在进行中碎、 气流磨研磨、 及混料处理中一个或多个操作时, 向 粉末材料中添加平均粒度小于 80μιη的金属或金属氧化物。
2.如权利要求 1 所述的方法, 其中所添加的金属选自 Cu、 Co、 Nb、 Al 粉、 Ga或其混合物, 其中所述金属氧化物选自 Dy203、 Tb407或其混合物, 添 加后搅拌均匀。
3.如权利要求 2所述的方法, 其中所添加的是金属单质。
4.如权利要求 1所述的方法,其中所添加的金属或金属氧化物在被添加之 前在密闭容器中进行充惰性气体排氧处理。
5.如权利要求 4所述的方法, 其中所述排氧过程要进行 5分钟以上。
6.如权利要求 1所述的方法, 其中所添加金属或金属氧化物时, 以粉末材 料的质量百分比计, 添加量 < 2%。
7.根据权利要求 6所述的方法,其中所添加金属或金属氧化物的添加量使 得最终产物中质量比为 Re: ( Fe, TM ) : B=2:14:l , 其中 Re代表稀土元素, TM代表所 Al、 Nb、 Cu、 Ga、 Co、 Zr非稀土金属, B代表硼。
8. 一种 Re-(Fe, TM)-B磁体, 其由权利要求 1-7中任一所述的方法制得。
PCT/CN2013/074081 2012-10-17 2013-04-11 高抗腐蚀性Re-(Fe, TM)-B磁体及其制备方法 WO2014059772A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210393641.9 2012-10-17
CN201210393641.9A CN103779061B (zh) 2012-10-17 2012-10-17 高抗腐蚀性Re-(Fe,TM)-B磁体及其制备方法

Publications (1)

Publication Number Publication Date
WO2014059772A1 true WO2014059772A1 (zh) 2014-04-24

Family

ID=50487511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/074081 WO2014059772A1 (zh) 2012-10-17 2013-04-11 高抗腐蚀性Re-(Fe, TM)-B磁体及其制备方法

Country Status (2)

Country Link
CN (1) CN103779061B (zh)
WO (1) WO2014059772A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104493168A (zh) * 2014-12-27 2015-04-08 株洲茂翔硬质合金有限公司 一种金属陶瓷制品的制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104064301B (zh) * 2014-07-10 2017-02-15 北京京磁电工科技有限公司 一种钕铁硼磁体及其制备方法
CN108269665A (zh) * 2017-12-27 2018-07-10 宁波招宝磁业有限公司 一种钕铁硼磁体及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1905088A (zh) * 2006-08-04 2007-01-31 北京工业大学 一种制备高矫顽力烧结稀土—铁—硼永磁材料的方法
CN101055779A (zh) * 2007-03-08 2007-10-17 上海交通大学 晶界添加氧化物或氮化物提高钕铁硼永磁材料性能的方法
CN101315825A (zh) * 2007-05-31 2008-12-03 北京中科三环高技术股份有限公司 一种耐高温永磁体合金及其制造方法
CN101562067A (zh) * 2008-04-18 2009-10-21 沈阳中北通磁科技有限公司 一种耐腐蚀的钕铁硼稀土永磁体的制造方法
CN102543343A (zh) * 2011-12-31 2012-07-04 北京工业大学 铝纳米颗粒掺杂制备的高矫顽力和高耐蚀性烧结钕-铁-硼基永磁材料及制备方法
CN102543342A (zh) * 2011-12-31 2012-07-04 北京工业大学 铜纳米颗粒掺杂制备的高矫顽力和高耐蚀性烧结钕-铁-硼基永磁材料及制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393105A (ja) * 1986-10-08 1988-04-23 Fuji Elelctrochem Co Ltd 等方性ボンド磁石の製造方法
JP2001006911A (ja) * 1999-06-21 2001-01-12 Shin Etsu Chem Co Ltd 希土類永久磁石の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1905088A (zh) * 2006-08-04 2007-01-31 北京工业大学 一种制备高矫顽力烧结稀土—铁—硼永磁材料的方法
CN101055779A (zh) * 2007-03-08 2007-10-17 上海交通大学 晶界添加氧化物或氮化物提高钕铁硼永磁材料性能的方法
CN101315825A (zh) * 2007-05-31 2008-12-03 北京中科三环高技术股份有限公司 一种耐高温永磁体合金及其制造方法
CN101562067A (zh) * 2008-04-18 2009-10-21 沈阳中北通磁科技有限公司 一种耐腐蚀的钕铁硼稀土永磁体的制造方法
CN102543343A (zh) * 2011-12-31 2012-07-04 北京工业大学 铝纳米颗粒掺杂制备的高矫顽力和高耐蚀性烧结钕-铁-硼基永磁材料及制备方法
CN102543342A (zh) * 2011-12-31 2012-07-04 北京工业大学 铜纳米颗粒掺杂制备的高矫顽力和高耐蚀性烧结钕-铁-硼基永磁材料及制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104493168A (zh) * 2014-12-27 2015-04-08 株洲茂翔硬质合金有限公司 一种金属陶瓷制品的制备方法

Also Published As

Publication number Publication date
CN103779061A (zh) 2014-05-07
CN103779061B (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
CN103093914B (zh) 一种高性能钕铁硼磁体及其制备方法
CN102959648B (zh) R-t-b系稀土类永久磁铁、电动机、汽车、发电机、风力发电装置
CN105244131B (zh) 高抗裂度、高矫顽力的多主相Nd-Fe-B型永磁体及其制备方法
JP6504044B2 (ja) 希土類系永久磁石
JP6424664B2 (ja) 希土類系永久磁石
CN105225781B (zh) 一种高耐蚀性多硬磁主相Ce永磁体及其制备方法
CN101315825B (zh) 一种耐高温永磁体合金及其制造方法
CN110993234B (zh) 高Cu高Al的钕铁硼磁体及其制备方法
CN103824668A (zh) 一种低重稀土高矫顽力烧结钕铁硼磁体及其制备方法
US7192493B2 (en) R-T-B system rare earth permanent magnet and compound for magnet
WO2014071873A1 (zh) 稀土磁铁成形用粉末和稀土磁铁省略气流粉碎工序的制造方法
CN109585113A (zh) 一种烧结钕铁硼磁体的制备方法
CN106710765A (zh) 一种高矫顽力烧结钕铁硼磁体及其制备方法
JP2015057820A (ja) R−t−b系焼結磁石
EP3355319A1 (en) Corrosion-resistant sintered neodymium-iron-boron magnet rich in lanthanum and cerium, and manufacturing method
TW202121451A (zh) 釹鐵硼磁體材料、原料組合物及製備方法和應用
JPWO2004029995A1 (ja) R−t−b系希土類永久磁石
CN102543343A (zh) 铝纳米颗粒掺杂制备的高矫顽力和高耐蚀性烧结钕-铁-硼基永磁材料及制备方法
CN113593882A (zh) 2-17型钐钴永磁材料及其制备方法和应用
WO2021169896A1 (zh) 一种r-t-b系永磁材料及其制备方法和应用
WO2014059772A1 (zh) 高抗腐蚀性Re-(Fe, TM)-B磁体及其制备方法
CN114171275A (zh) 一种多元合金钕铁硼磁性材料及其制备方法
CN108172390B (zh) 一种提升驱动电机用富铈磁体性能均匀性的制备方法
CN108777228B (zh) 一种混料加氢改善富铈磁体磁性能的方法
CN113517104A (zh) 主辅相合金钐钴磁体材料、烧结体用材料、其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13846964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13846964

Country of ref document: EP

Kind code of ref document: A1