WO2014071874A1 - 一种稀土磁铁成形用粉末和稀土磁铁省略气流粉碎工序的制造方法 - Google Patents
一种稀土磁铁成形用粉末和稀土磁铁省略气流粉碎工序的制造方法 Download PDFInfo
- Publication number
- WO2014071874A1 WO2014071874A1 PCT/CN2013/086807 CN2013086807W WO2014071874A1 WO 2014071874 A1 WO2014071874 A1 WO 2014071874A1 CN 2013086807 W CN2013086807 W CN 2013086807W WO 2014071874 A1 WO2014071874 A1 WO 2014071874A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rare earth
- powder
- earth magnet
- hydrogen
- alloy
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0577—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/02—Compacting only
- B22F3/04—Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/30—Ferrous alloys, e.g. steel alloys containing chromium with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/0555—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
- H01F1/0556—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together pressed
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/0555—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
- H01F1/0557—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0573—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0576—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/0266—Moulding; Pressing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
- B22F2009/043—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
- B22F2009/048—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by pulverising a quenched ribbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2202/00—Physical properties
- C22C2202/02—Magnetic
Definitions
- the present invention relates to the field of manufacturing a magnet, and more particularly to a method for producing a powder for forming a rare earth magnet which omits a jet milling step and a method for producing a rare earth magnet in which a jet milling step is omitted.
- the rare earth magnet is a magnet based on the intermetallic compound R 2 T 14 B, wherein R is a rare earth element, T is iron, or a transition metal element partially substituted for iron, and B is boron, which has extremely high magnetic properties. It is called magnetic king, and its maximum magnetic energy product (BH) max is higher than the maximum magnetic energy product of ferrite magnets by more than 10 times.
- the rare earth magnet has excellent mechanical processing performance and the working temperature can reach up to 200 degrees Celsius. Moreover, it has a hard texture, stable performance, good cost performance and is extremely widely used.
- the manufacturing process of the rare earth magnet has the following two types: one is a sintered rare earth magnet, and the other is a bonded rare earth magnet. Among them, the application of sintered rare earth magnets is more extensive.
- the manufacturing process of the sintered rare earth magnet mainly includes the following processes: raw material preparation ⁇ melting ⁇ casting ⁇ hydrogen breaking pulverization (HD) ⁇ airflow pulverization (JM) ⁇ magnetic field forming ⁇ sintering ⁇ heat treatment ⁇ magnetic property evaluation ⁇ sintered body Evaluation of oxygen content, etc.
- a two-stage pulverization method of a hydrogen pulverization method (HD) + a jet pulverization method (JM) is relatively common.
- Hydrogen pulverization method (HD) focuses on the hydrogen absorption of rare earth magnet alloys (such as neodymium iron boron magnet alloys). With the absorption of hydrogen, the volume of the hydrogen absorption part of the alloy swells to cause internal damage, cracks or cracks.
- the jet pulverization method (JM) is to accelerate the powder in an almost oxygen-free atmosphere, collide with each other, and classify the powder after the impact into a powder and an ultra-fine powder (hereinafter less than ⁇ ).
- JM gas flow pulverization method
- the R-rich ultrafine powder is easily oxidized, and if the R-rich ultrafine powder is not removed from the powder, it is intact.
- the sintered magnet is produced in a fixed manner, the rare earth element is significantly oxidized in the manufacturing process up to the sintering step, and as a result, the rare earth element R is consumed in combination with oxygen, resulting in the R 2 T 14 B type as the main phase. The amount of crystal phase formed is lowered, and the process of removing ultrafine powder is required.
- Complex equipment such as grading equipment for powders and special filters that allow inert gas to be recycled.
- the grading process in the jet pulverization method requires a sieve-shaped rotary knives capable of high-speed rotation.
- the consumption of the rotary knives is generated, and it is also necessary to consume precise mechanical components such as bearings.
- the ultrafine powder of the alloy for the rare earth magnet separated easily reacts with oxygen, ignites and burns violently, and brings a safety hazard to the operator's work when cleaning the airflow pulverizing equipment.
- the main oxidation process is a gas flow pulverization process in which a large amount of gas stream is pulverized.
- the oxygen content in the gas flow pulverization atmosphere is about 10,000 ppm
- the sintered body has an oxygen content of about 2,900 ppm to 5,300 ppm. If the oxygen content in the air-crushing atmosphere is controlled to a lower level to obtain a sintered body having a lower oxygen content, it is necessary to further increase the investment cost and the production cost.
- One of the objects of the present invention is to overcome the deficiencies of the prior art and to provide a method for producing a powder for forming a rare earth magnet which omits a jet milling process, which is characterized in that the airflow pulverizing process is omitted by improving the manufacturing process before the airflow pulverization. Therefore, it is possible to prevent the oxidation which cannot be avoided in any way in the jet pulverization method, and to make it a substantially non-oxidation step, and it is possible to mass-produce the ultra-high-performance magnet.
- a method for producing a powder for forming a rare earth magnet wherein the rare earth magnet is a magnet containing a main phase of R 2 T 14 B, and the R is at least one selected from the group consisting of rare earth elements including a lanthanum element.
- the T is at least one transition metal element including Fe, and the method includes the following steps:
- the rare earth magnet raw material alloy melt is cast by a sheet casting method to obtain a quenched alloy having an average thickness of 0.2 to 0.4 mm;
- the rare earth magnet mentioned in the present invention is a sintered magnet.
- 95% or more of the quenched alloy has a thickness of 0.1 to 0.7 mm by weight.
- the step of passing the powder through a 300 mesh to 1500 mesh screen is also included.
- a process of dehydrogenating the powder is also included.
- the hydrogen pulverization container has a rotation speed of 30 rpm to 100 rpm.
- the hard sphere is a steel ball of D0.5 mm to D60 mm, a metal Mo ball, and a metal.
- W ball stainless steel ball, tungsten carbide ball, alumina ball, zirconia ball or silicon carbide ball.
- the rare earth raw material mentioned in the present invention may further comprise a doping element yttrium having a proportion of 0.01 at% to 10 at% in addition to the 1, 2, and lanthanum elements which are indispensable for forming the main phase of R 2 T 14 B.
- the crucible may be selected from the group consisting of Al, Ga, Ca, Sr, Si,
- the quenching alloy is at a cooling rate of 10 2 ° C/sec or more and 10 4 ° C/sec or less, and 1*10 3 ° C/sec to 8*10 3 ° C/ The average cooling rate of seconds is obtained, the hydrogen absorbing fracture time of the quenched alloy is 1 to 24 hours, and the vacuum dehydrogenation time of the powder is 0.5 to 10 hours.
- the quenching alloy is preheated to 150 T to 600 ° C and then subjected to a hydrogen cracking process.
- the quench alloy is in atomic percent at % and its composition is Wherein: R is Nd or contains Nd and at least one selected from the group consisting of La, Ce, Pr, Sm, Gd, Dy, Tb, Ho, Er, Eu, Tm, Lu or Y, T is Fe or contains Fe and is selected From at least one of Ru, Co or Ni, A is B or contains B and at least one selected from C or P, and J is at least one selected from the group consisting of Cu, Mn, Si or Cr, and G is selected From at least one of Al, Ga, Ag, Bi or Sn, D is at least one selected from the group consisting of Zr, Hf, V, Mo, W, Ti or Nb; and e is 12 ⁇ e ⁇ 16,
- h is 0.05 ⁇ h ⁇ l
- i 0.2 ⁇ i ⁇ 2.0
- 0 and N are impurities which are easily mixed during the operation, and there may be a small amount of mixing of 0 and N with a conventional impurity content in the alloy powder.
- the rare earth magnet raw material has a Co content of lat% or less.
- the sheet casting method may employ a conventionally known water-cooled bevel casting method, a water-cooled flat disk casting method, a twin roll method, a single roll method, or a centrifugal casting method.
- the airflow pulverization is not performed, but the hydrogen pulverized powder is selected, and the organic additive is appropriately mixed according to the nature of the powder, and then formed in a magnetic field, which is obtained by the present invention.
- the powder formability is very different from that of the conventional powder. Therefore, it is preferable to select a conventional simple mold for two-stage molding in combination of magnetic field forming and isostatic pressing (CIP), and the molded body is degreased and degassed in a vacuum.
- CIP magnetic field forming and isostatic pressing
- the sintered magnet Sintered at a temperature of 900T to 114CTC in a vacuum or an inert gas, the sintered magnet can be made to have an oxygen content of less than 1000 ppm. This is because the gas flow is not pulverized, the chance of contact with the powder is reduced, and the low oxygen content is obtained. High performance magnet.
- the organic additive is selected from mineral oil, synthetic oil, animal and vegetable oil, organic ester, paraffin wax, polyethylene wax or modified paraffin, and the like, and the organic additive and the rare earth alloy magnetic powder The weight ratio is 0.01 to 1.5: 100.
- the organic ester is methyl octanoate.
- the methyl octanoate has an excellent lubricating effect, and since the methyl octanoate is volatilized at a high temperature, even when the amount thereof is increased to 1.5% by weight of the rare earth alloy magnetic powder, it is only in the sintered body. Residual traces of C and 0 provide better lubricity, improved orientation and formability, and ensure that the Br, Hcj, and (BH)max of the magnet are not affected.
- Another object of the present invention is to provide a method for producing a rare earth magnet in which the jet milling step is omitted.
- a method for producing a rare earth magnet in which a rheological pulverization step is omitted wherein the rare earth magnet is a magnet containing a main phase of R 2 T 14 B, and the R is at least one selected from the group consisting of rare earth elements including a lanthanum element.
- the T is at least one transition metal element including Fe and/or Co, and is characterized by comprising the following steps:
- the rare earth magnet raw material alloy melt is cast by a sheet casting method to obtain a quenched alloy having an average thickness of 0.2 to 0.4 mm, and the quenched alloy and a plurality of hard spheres are placed together in a rotatable hydrogen breaking and pulverizing container, and the container is rotated.
- the quenched alloy is hydrogen absorbing and crushed under a hydrogen pressure of O.OMPa or more and below IMPa, and the hard sphere is removed by sieve to obtain a powder;
- the step of sintering the formed body to produce a permanent magnet The step of sintering the formed body to produce a permanent magnet.
- the invention has the following characteristics:
- the present invention omits the airflow pulverization method, and omits the airflow pulverization process, which can bring about the following effects: one can effectively utilize valuable rare earth resources, the second can simplify the process, and the third can perform low-cost production.
- This method can obtain a rare earth sintered magnet having an oxygen content of less than 100 ppm.
- a quenched alloy having an average thickness of 0.2 to 0.4 mm obtained by a step before the hydrogen pulverization step is used, and the quenched alloy and the hard sphere are placed together in a rotating hydrogen pulverization container.
- Hydrogen pulverization is carried out under a hydrogen pressure of O.OlMPa or more and IMPa or less.
- the alloy is ball milled and pulverized in a stainless steel rotating hydrogen furnace vessel by the impact of a hard sphere, thereby increasing the contact between hydrogen and the alloy, resulting in further After pulverization, the powder is obtained by the simultaneous action of hydrogen pulverization and ball milling, and then sieved to obtain a powder which meets the requirements;
- the hard sphere is brought up and then dropped in the direction of rotation, and then the impact of the falling hard sphere and the inner surface of the hard sphere and the inner wall of the container are utilized.
- the grinding action pulverizes the alloy flakes, and the present invention utilizes the impact of the hard spheres to apply an external force to a small amount of the adhered quenched alloy to disperse it, and the hydrogen pulverization can be carried out more smoothly, and the hydrogen is simply broken. It is possible to obtain a low oxygen content powder having more fine powder than the powder obtained by pulverization.
- the present invention selects ball milling under the hydrogen absorption state of the alloy, so that the new surface exposed by the ball mill can fully absorb hydrogen and promote the smooth progress of the pulverization.
- the present invention does not require transfer, and does not require transfer, and avoids oxidation which is difficult to avoid during transfer, and eliminates the possibility of knocking due to intense oxidation.
- Example 1 The present invention will be further described in detail below with reference to the embodiments.
- Example 1
- Raw material preparation process Prepare 99.5% purity Nd, Pr, Dy, Tb, Gd, industrial Fe-B, industrial pure Fe, purity 99.99% Co, purity 99.5% Cu, Al, Zr; atomic percentage at %, according to the composition
- Smelting process The prepared 500 Kg of raw material was divided into 16 equal portions, placed in a crucible made of alumina, and vacuum-smelted at a temperature of 155 CTC in a vacuum of 100 Pa in a high frequency vacuum induction melting furnace.
- Casting process Ar gas is introduced into the melting furnace after vacuum melting to a pressure of 60,000 Pa, and casting is performed by the following casting method, respectively, at a cooling rate of 10 2 ° C / sec to 10 4 ° C / sec, and 1 * 10 3 ° C / sec ⁇ 8 * 10 3 ° C / sec average cooling rate to obtain quenched alloy, the average sheet thickness as shown in Table 2 and Table 3, wherein, Table 2 is made by two-roll quenching method, Table 3 It is made by beveled disc casting.
- the thickness of the quenched alloy depends on the speed of the rolls or the speed of the bevel disk.
- the sheet thickness of the quenched alloy sheet was measured using a micrometer, and 100 sheets were measured to make a sheet thickness record. When measuring, it is necessary to take a random sample to measure its thickness. The same piece can only be measured once, and the measurement position is close to the geometric center of the alloy piece. The same piece cannot be broken for measurement. Sampling is divided into upper, middle and lower layers for sampling.
- Example 3 Example 4, Example 5, and Example 11, Example 12, and Example 13, 95% of the quenched alloy had a thickness of 0.1 to 0.7 mm.
- Hydrogen breaking pulverization process The quenching alloy is placed in a rotating hydrogen furnace vessel with an inner diameter of D800mm together with several steel balls of D10 mm to 40 mm, the vessel is evacuated, and then a hydrogen gas having a purity of 99.999% is introduced to a pressure of 0.03. MPa, hydrogen absorption for 2 hours, during the hydrogen absorption process, the container is rotated at a rotation number of 60 rpm, and ball milling is performed while hydrogen absorption is being performed. Thereafter, a vacuum was drawn for 2 hours at a temperature of 600 °C. After cooling, the powder was taken out.
- the removed powder was first separated from the product by a 2-mesh sieve, and sieved through a 500-mesh ultrasonic vibrating sieve to recover the sieved powder.
- the powder recovery after sieving was 99.5% or more.
- Methyl octanoate was added to the sieved powder, and methyl octanoate was added in an amount of 0.4% by weight of the sieved powder, and thoroughly mixed by a V-type mixer for 1 hour.
- Forming process in a magnetic field Using a right-angle oriented magnetic field forming machine, a powder of methyl octanoate added is formed into a cube having a side length of 40 mm at a molding pressure of 0.2 ton/cm 2 in an oriented magnetic field of 2.1 T. After one molding, the magnetic field was demagnetized in a magnetic field of 0.2 T; in order to seal the molded body after the primary molding without coming into contact with air, a secondary molding machine (isostatic pressing machine) was used under a pressure of 1.2 ton/cm 2 . Secondary forming.
- the permanent magnet material is not bad as long as there is a crack in the cracked corner. Immediately after the molding, the visual inspection is performed, and if the cracked corner crack of the length of lmm or more is found, it is judged to be bad, and the defective rate is calculated.
- each formed body is moved to a sintering furnace for sintering, and the sintering is maintained at a temperature of 20 CTC and 900 ° C for 2 hours under a vacuum of 10 3 Pa, and then at a temperature of 108 CTC in an Ar gas atmosphere of 100 OPa. After sintering for 2 hours, the Ar gas was introduced to bring the gas pressure to O. lMPa, and then cooled to room temperature.
- Heat treatment process The sintered body is heat-treated at a temperature of 450 ° C for 1 hour in a high-purity Ar gas, and then cooled to room temperature and taken out.
- Magnetic performance evaluation process The sintered magnet was tested for magnetic properties using NIM-10000H BH bulk rare earth permanent magnet non-destructive measurement system from China Metrology Institute.
- Oxygen content evaluation process in sintered body The oxygen content in the sintered body is made by Japan HORIBA
- the EMGA-620W oxygen and nitrogen analyzer was tested.
- Table 2 Magnetic properties evaluation and oxygen content evaluation of the examples and comparative examples.
- Table 2 Magnetic properties evaluation and oxygen content evaluation of the examples and comparative examples.
- the steel ball can be placed in a stainless steel rotating hydrogen furnace container at all times without having to take it out.
- a thin film has a relatively large amorphous phase and equiaxed crystals, the degree of orientation is deteriorated, and Br, (BH) max is lowered.
- Br, (BH) max is lowered.
- oxygen is present. The content is increased, resulting in poor coercivity and squareness.
- the thicker raw material contains more ⁇ -Fe and R 2 Fe 17 phases, and a large Nd-rich phase causes the degree of orientation to deteriorate, Br, (BH) max decreases, and because there are more
- the highly oxidizable Nd-rich phase increases the oxygen content and deteriorates the coercivity and squareness.
- the present invention controls the average cooling rate of the alloy melt, thereby obtaining a ruthenium having a uniform crystal size, a too small crystal size, and a reduced excessive crystal content, and further capable of obtaining a desired shape while omitting the air jet grinding step.
- Use powder
- Raw material preparation process Prepare purity of 99.9% Nd, Ho, Y, industrial Fe-B, Fe-P, Fe-Cr, industrial pure Fe, purity 99.9% Ni, Si, purity 99.5% Bi, V; In atomic percentage at%, according to the composition
- Casting process Ar gas is introduced into the melting furnace after vacuum melting to a pressure of 40,000 Pa, and the plate is cast using a water-cooled disk at a cooling rate of 10 2 ° C / sec to 10 4 ° C / sec, and 1 * 10 3 ° C / sec ⁇ 8 * 10 3 ° C / sec of the average cooling rate cast into a quench alloy.
- the thickness of the quenched alloy depends on the rotational speed of the water-cooled disc casting plate.
- the sheet thickness of the quenched alloy sheet was measured using a micrometer, and 100 sheets were measured to make a sheet thickness record.
- the measurement should be carried out by random sampling to measure the thickness.
- the same piece can only be measured once, and the measurement position is close to the geometric center of the alloy piece. The piece is broken for measurement. Sampling is divided into upper, middle and lower layers for sampling.
- the test results showed that the quenched alloy had an average thickness of 0.25 mm, and 98% of the quenched alloy had a thickness of 0.1 to 0.7 mm by weight.
- Hydrogen breaking pulverization process Take the quenching alloy No. 1-7, each part is placed in a stainless steel rotating hydrogen furnace container with an inner diameter of ⁇ 1000mm together with several 40g weight D5mm ⁇ D60mm tungsten carbide balls, and the container is vacuumed. Then, respectively, a hydrogen gas having a purity of 99.99% is introduced to a pressure indicated by a test number of 1 to 7, hydrogen is absorbed for 0.5 hour, and then vacuum is drawn at a temperature of 650 ° C for 2 hours, during hydrogen absorption and vacuuming, The stainless steel rotating hydrogen furnace container was rotated at a rotation number of 30 rpm, and at the same time, hydrogen pulverization and ball milling were carried out.
- the mixture was cooled, the powder was taken out, and the tungsten carbide ball and the powder were separated using a 5-mesh sieve, and the powder was passed through a disc mill and sieved through a 500-mesh ultrasonic vibrating sieve to recover the sieved powder.
- the fine powder recovery rate after sieving is above 99.7%.
- each part is placed in a stainless steel rotating hydrogen furnace container with an inner diameter of D600mm and several D3mm ⁇ 20mm silicon carbide balls with a weight of 20g, and the container is vacuumed.
- hydrogen gas having a purity of 99.999% was introduced to a pressure of 0.3 MPa, hydrogen absorption was carried out for 10 hours, and then vacuum was taken at a temperature of 650 ° C for 2 hours.
- the stainless steel rotating hydrogen furnace is rotated at a rotation number of lOO rpm, and at the same time, hydrogen pulverization and ball milling are performed.
- the mixture was cooled, and the pulverized powder was taken out by hydrogen.
- the SiC balls and the powder were separated using a 5-mesh sieve, and the powder was passed through a disc mill and sieved through a 800-mesh ultrasonic vibrating sieve to recover the sieved powder.
- the sieved powder is above 99.7%.
- Methyl octanoate was added to each of the sieved powders, and methyl octanoate was added in an amount of 0.2% by weight of the sieved powder, and thoroughly mixed by a V-type mixer for 1 hour.
- Forming process in a magnetic field Using a right-angle oriented magnetic field forming machine, a powder of methyl octanoate added is formed into a cube having a side length of 25 mm in a 1.8 T orientation magnetic field at a molding pressure of 0.2 ton/cm 2 . After one forming, it demagnetizes in a magnetic field of 0.2T. In order to seal the molded body after the primary molding without coming into contact with air, secondary molding was performed under a pressure of 1.2 ton/cm 2 using a secondary molding machine (isostatic pressing machine).
- Heat treatment process The sintered body was heat-treated at a temperature of 650 ° C for 1 hour in high-purity Ar gas, and then cooled to room temperature and taken out.
- Magnetic performance evaluation process The sintered magnet was tested for magnetic properties using NIM-10000H BH bulk rare earth permanent magnet non-destructive measurement system from China Metrology Institute.
- Oxygen content evaluation process in sintered body The oxygen content in the sintered body is made by Japan HORIBA
- the EMGA-620W oxygen and nitrogen analyzer was tested.
- the magnetic property evaluation and oxygen content evaluation of the examples and comparative examples under different pressures are shown in Table 5.
- the magnetic property evaluation and oxygen content evaluation of the examples of the different quenching alloy preheating temperatures are shown in Table 6.
- the present invention controls the average cooling rate of the alloy melt, thereby obtaining a ruthenium having a uniform crystal size, a too small crystal size, and a reduced excessive crystal content, and can also be obtained when the air jet grinding step is omitted.
- the required molding powder is
- Raw material preparation process Prepare purity of 99.9% Nd, Pr, Dy, industrial Fe-B, C, industrial pure Fe, purity 99.9% Cu, Sn, Hf, Co; atomic percentage at ° / ⁇ , according to the composition Formulated for RJVAgJhG ⁇ k.
- the thickness of the quenched alloy depends on the rotational speed of the centrifugal casting apparatus.
- the sheet thickness of the quenched alloy sheet was measured using a micrometer, and 100 sheets were measured to make a sheet thickness record. When measuring, it is necessary to take a random sample to measure its thickness. The same piece can only be measured once, and the measurement position is close to the geometric center of the alloy piece. The same piece cannot be broken for measurement. Sampling is divided into upper, middle and lower layers for sampling.
- the test results showed that the quenched alloy had an average thickness of 0.4 mm, and 95% of the quenched alloy had a thickness of 0.1 to 0.7 mm by weight.
- Hydrogen breaking pulverization process a quenching alloy with an average thickness of 0.4 mm is placed in a stainless steel rotating hydrogen furnace container with an inner diameter of ⁇ 1000 mm together with several stainless steel balls of D20 mm to 40 mm having a weight of 10 g, and the container is evacuated and The temperature is raised to 200 ° C in a vacuum of 10 - 2 Pa, hydrogen gas with a purity of 99.999% is introduced to a pressure of 0.1 MPa, hydrogen absorption is carried out for 0.2 hours, and then vacuum is applied at a temperature of 55 CTC for 0.5 hour, during hydrogen absorption and vacuuming.
- the stainless steel rotating hydrogen furnace container was rotated at a number of revolutions of 100 rpm, ball milled and pulverized, and then cooled, and the ball milled powder was taken out.
- Use a 3 mesh sieve The stainless steel ball and the powder were separated, and passed through a continuous white mill and then sieved through a 300-mesh ultrasonic vibrating sieve to recover the sieved powder.
- the powder recovery after sieving was 99.95% or more.
- Methyl octanoate was added to each of the sieved powders, and methyl octanoate was added in an amount of 0.2% by weight of the sieved powder, and thoroughly mixed by a V-type mixer for 1 hour.
- Magnetic field forming process using a magnetic field oriented at right angles type molding machine, the aligning magnetic field of 2.2T at a molding pressure of 0.3ton / C m 2, and the above powder was added methyl caprylate primary molding a side length of 25mm cube. Demagnetization was performed in a magnetic field of 0.15 T after one molding. In order to prevent the molded body after the primary molding from coming into contact with air, it was sealed, and secondary molding was performed under a pressure of 1.0 ton/cm 2 using a secondary molding machine (isostatic pressing machine).
- the permanent magnet material is not bad as long as there is a crack in the cracked corner. Immediately after the molding, the visual inspection is performed, and if the cracked corner crack of the length of lmm or more is found, it is judged to be bad, and the defective rate is calculated.
- Sintering process Each formed body is moved to a sintering furnace for sintering. Sintering was maintained at a temperature of 150 ° C, 650 ° C and 800 ° C for 2 hours under vacuum of 10 _ 2 Pa, and then sintered at a temperature of 1080 ° C for 4 hours, after which Ar gas was introduced to a pressure of 10,000 Pa. After that, cool to room temperature.
- Heat treatment process The sintered body was heat-treated at a temperature of 540 ° C for 1 hour in high-purity Ar gas, and then cooled to room temperature and taken out.
- Magnetic performance evaluation process The sintered magnet was tested for magnetic properties using NIM-10000H BH bulk rare earth permanent magnet non-destructive measurement system from China Metrology Institute.
- Oxygen content evaluation process in sintered body The oxygen content in the sintered body is made by Japan HORIBA
- the EMGA-620W oxygen and nitrogen analyzer was tested.
- the present invention controls the average cooling rate of the alloy melt, thereby obtaining a ruthenium having a uniform crystal size, a too small crystal size, and a reduced excessive crystal content, and can also be obtained when the air jet grinding step is omitted.
- the required molding powder is
- the present invention omits the airflow pulverization and simplifies the process.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Power Engineering (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Hard Magnetic Materials (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Abstract
一种稀土磁铁成形用粉末和稀土磁铁省略气流粉碎工序的制造方法,包括以下的步骤:1)铸片:稀土磁铁原料合金熔融液用薄片铸造法铸造,得到平均厚度为0.2〜0.4mm的急冷合金;2)氢破粉碎:将所述急冷合金和数个硬质球体一同放入转动的氢破粉碎容器中,所述急冷合金在0.01MPa以上、1MPa以下的氢气压力下吸氢破碎,之后冷却物料,过筛去除所述硬质球体获得粉末。其通过对气流粉碎之前的制作过程进行改进,将气流粉碎工序省略掉,从而防止气流粉碎法中无论如何都避免不了的氧化作用,使之成为实质上的非氧化工序,使超高性能磁铁的大量制造成为可能。
Description
技术领域
本发明涉及磁铁的制造技术领域, 特别是涉及一种省略气流粉碎工序的稀土磁铁成形 用粉末制造方法和一种省略气流粉碎工序的稀土磁铁制造方法。
背景技术
稀土磁铁是以金属间化合物 R2T14B为基础的磁铁, 这其中, R是稀土元素, T是铁, 或者是部分取代铁的过渡金属元素, B是硼, 其拥有极高的磁性能, 被人们称为磁王, 其最 大磁能积 (BH) max高过铁氧体磁铁 (Ferrite) 最大磁能积 10倍以上, 另外, 稀土磁铁的 机械加工性能极佳, 工作温度最高可达 200摄氏度, 而且其质地坚硬, 性能稳定, 有很好的 性价比, 应用极其广泛。
稀土磁铁的制作工艺有以下二种: 一种是烧结稀土磁铁, 另一种是粘结稀土磁铁。 这 其中, 又以烧结稀土磁铁的应用更为广泛。现有技术中, 烧结稀土磁铁的制作工艺主要包括 如下流程: 原料配制→熔炼→铸造→氢破粉碎 (HD) →气流粉碎 (JM) →磁场成形→烧结 →热处理→磁性能评价→烧结体中的氧含量评价等。
作为稀土磁铁的粉碎法, 氢破粉碎法 (HD) +气流粉碎法 (JM) 的 2段粉碎法是比较 常用的。 氢破粉碎法 (HD) 着眼于使稀土磁铁合金 (比如说钕铁硼磁铁合金) 吸氢, 随着 氢的吸收, 合金吸氢部位体积不断膨胀使内部产生破损、裂痕或破裂, 这是一种比较简单的 粉碎方法。 而气流粉碎法 (JM) 是使粉末在几乎无氧的气氛下进行超声加速, 互相撞击, 并将撞击后的粉末分级为符合要求的粉末和富 R超细粉(Ιμηι以下)。 以往的常识认为, 气 流粉碎法 (JM) 是必须的工序, 认为其为必须条件是基于以下原因考虑: 获得具有一定集 中粒度分布的粉末, 改善成形性、 取向性及矫顽力等磁铁特性。
与稀土元素 R的含量相对少的其他粉末粒子 (具有相对大的粒径) 相比, 富 R超细粉 极容易被氧化, 如果不把这种富 R超细粉从粉末中除去, 而原封不动地制作烧结磁铁的话, 到烧结工序为止的制造工序中, 稀土元素会发生显著的氧化, 其结果是稀土元素 R消耗在 与氧的结合中, 导致作为主相的 R2T14B型结晶相的生成量降低, 而去除超细粉的工序需要
用到粉末的分级设备以及能使惰性气体进行循环再利用的特殊过滤器等复杂设备。气流粉碎 法中的分级过程需要用到能够进行高速旋转的筛状旋转刀, 但是因为必须保证 3000rpm〜 5000rpm左右稳定的转速, 会产生旋转刀的消耗问题, 同时也需要消耗轴承等精密的机械部 件。 另外, 分离出来的稀土磁铁用合金的超细粉末极易和氧发生反应, 着火并剧烈燃烧, 在 进行气流粉碎设备的清扫时, 会给操作人员的作业带来了安全隐患。
随着稀土磁铁制造的低氧化技术不断发展, 成形至烧结工序的气密性技术的不断进步, 因此, 成形至烧结工序几乎不发生氧化。 因此, 主要发生氧化的工序为在大量气流中进行粉 碎的气流粉碎工序, 如在气流粉碎气氛中的氧含量约为 1万 ppm时, 所制得的烧结体氧含 量约为 2900ppm〜5300ppm, 而如果将气流破碎气氛中的氧含量控制到一更低的程度, 获得 一更低氧含量的烧结体, 则需要进一步加大投资成本和生产成本。
另外, 随着稀土资源的不断开采和不断减少, 稀土成为宝贵资源。 所以必须有效利用 稀土, 这样一来, 气流粉碎 (JM) 工序中 0.5〜3%程度的粉末损失也会逐渐成为问题。 发明内容
本发明的目的之一在于克服现有技术之不足, 提供一种省略气流粉碎工序的稀土磁铁 成形用粉末制造方法,其是通过对气流粉碎之前的制作过程进行改进,将气流粉碎工序省略 掉,从而防止气流粉碎法中无论如何都避免不了的氧化作用,使之成为实质上的非氧化工序, 使超高性能磁铁的大量制造成为可能。
本发明解决其技术问题所采用的技术方案是:
一种省略气流粉碎工序的稀土磁铁成形用粉末制造方法, 所述的稀土磁铁为含有 R2T14B主相的磁铁, 所述的 R为选自包含钇元素在内的稀土元素中的至少一种, 所述 T为 包括 Fe的至少一种过渡金属元素, 其特征在于, 包括以下的步骤:
1 ) 铸片: 稀土磁铁原料合金熔融液用薄片铸造法铸造, 得到平均厚度为 0.2〜0.4mm 的急冷合金;
2)氢破粉碎: 将所述急冷合金和数个硬质球体一同放入可转动氢破粉碎容器中, 转动 容器, 所述急冷合金在 O.OlMPa以上、 IMPa以下的氢气压力下吸氢破碎, 过筛去除所述硬 质球体获得粉末。
需要说明的是, 所述硬质球体在氢破粉碎过程中不发生破碎。
本发明中提及的稀土磁铁为烧结磁铁。
在推荐的实施方式中, 按重量比计, 95%以上的急冷合金的厚度为 0.1〜0.7mm。
在推荐的实施方式中, 还包括将所述粉末通过 300目〜 1500目筛的工序。
在推荐的实施方式中, 还包括将所述粉末脱氢的工序。
在推荐的实施方式中, 所述氢破粉碎容器的旋转速度为 30rpm〜100rpm。
在推荐的实施方式中, 所述硬质球体为 D0.5mm〜D60mm的钢球、 金属 Mo球、 金属
W球、 不锈钢球、 碳化钨球、 氧化铝球、 氧化锆球或碳化硅球。
本发明所提及的稀土原料中除形成 R2T14B主相必不可少的1 、 T、 Β元素之外, 还可 以包括占比为 0.01at%〜10 at%的掺杂元素 Μ, 所述 Μ可以为选自 Al、 Ga、 Ca、 Sr、 Si、
Sn、 Ge 、 Ti、 Bi、 C、 S或 P中的至少一种。
在推荐的实施方式中, 所述的急冷合金是以 102°C/秒以上、 104°C/秒以下的冷却速度、 并 1*103°C/秒〜 8*103°C/秒的平均冷却速度得到的, 所述急冷合金的吸氢破碎时间为 1〜24 小时, 所述粉末的抽真空脱氢时间为 0.5〜10小时。
在推荐的实施方式中, 是将急冷合金预加热至 150T〜 600°C之后, 再进行氢破粉碎工 序。
在推荐的实施方式中, 所述急冷合金以原子百分比 at%计, 其成分为
其 中: R为 Nd或包含 Nd和选自 La、 Ce、 Pr、 Sm、 Gd、 Dy、 Tb、 Ho、 Er、 Eu、 Tm、 Lu或 Y中的至少一种, T为 Fe或包含 Fe和选自 Ru、 Co或 Ni中的至少一种, A为 B或包含 B 和选自 C或 P中的至少一种, J为选自 Cu、 Mn、 Si或 Cr中的至少一种, G为选自 Al、 Ga、 Ag、 Bi或 Sn中的至少一种, D为选自 Zr、 Hf、 V、 Mo、 W、 Ti或 Nb中的至少一种; 以及 e为 12≤e≤16,
g为 5≤g≤9,
h为 0.05≤h≤l,
i为 0.2<i<2.0,
k为 0≤j≤4,
f= 100-e-g-h-i-k。
需要说明的是, 0、 N作为操作过程中容易混入的杂质, 合金粉末中可能会存在 0、 N 以常规杂质含量的少量混入。
在推荐的实施方式中, 所述稀土磁铁原料中, Co含量为 lat%以下。
在推荐的实施方式中, 薄片铸造法可以采用目前公知的水冷斜面铸造法、 水冷平面圆 盘铸造法、 双辊法、 单辊法或离心铸造法等。
需要说明的是,在后继的工序中,不再进行气流粉碎,而是选择取出氢破粉碎后的粉末, 根据粉末的性质, 适当混入有机添加剂, 然后, 在磁场中成形, 由于本发明所获得的粉末成 形性与以往的粉末有很大的不同, 因此,最好选择以往的简单模具进行磁场成形和等静压成 形(CIP)组合的 2段式成形, 成形体在真空中脱脂、 脱气, 在真空或惰性气体中以 900T〜 114CTC的温度烧结, 制成的烧结磁铁的氧含量可以在 lOOOppm以下, 这是因为不使用气流 微粉碎, 可减少气氛与粉末接触的机会, 获得低氧含量的高性能磁铁。
在推荐的实施例中, 所述有机添加剂从矿物油、 合成油、 动植物油、 有机酯类、 石蜡、 聚乙烯蜡或改性石蜡等中选择,所述有机添加剂与所述稀土合金磁性粉末的重量比为 0.01〜 1.5: 100。
在推荐的实施例中,所述有机酯类为辛酸甲酯。在本发明中,辛酸甲酯的润滑效果极佳, 由于辛酸甲酯在高温下挥发的特点, 即使在将其添加量增加到稀土合金磁性粉末重量的 1.5%之时, 也仅在烧结体中残留微量的 C、 0, 与普通的添加剂相比, 既可更佳地发挥润滑 性能、 提高取向度和成形性, 又能保证磁铁的 Br、 Hcj、 (BH)max不受影响。
本发明的目的之二在于提供一种省略气流粉碎工序的稀土磁铁制造方法。
一种省略气流粉碎工序的稀土磁铁制造方法, 所述的稀土磁铁为含有 R2T14B主相的磁 铁, 所述的 R为选自包含钇元素在内的稀土元素中的至少一种, 所述 T为包括 Fe和 /或 Co 的至少一种过渡金属元素, 其特征在于, 包括如下的步骤:
稀土磁铁原料合金熔融液用薄片铸造法铸造,得到平均厚度为 0.2〜0.4mm的急冷合金, 将所述急冷合金和数个硬质球体一同放入可转动氢破粉碎容器中,转动容器,所述急冷合金 在 O.OlMPa以上、 IMPa以下的氢气压力下吸氢破碎, 过筛去除所述硬质球体获得粉末; 以
及
将所述过筛后的粉末用磁场成形和等静压成形组合的 2段式成形法加工成形, 制作成 形体的工序; 以及
将所述成形体进行烧结, 制作永久磁铁的工序。
与现有技术相比, 本发明具有如下的特点:
1 )本发明省略了气流粉碎法, 而省略气流粉碎工序, 可带来以下效果: 一可有效利用 宝贵的稀土资源, 二可简化工序, 三可以进行低成本的生产。
2) 该方法可得到氧含量为 lOOOppm以下的稀土烧结磁铁。
3 ) 在氢破粉碎工序中, 使用以氢破粉碎工序之前的工序所得到的平均厚度为 0.2〜 0.4mm的急冷合金, 将急冷合金和硬质球体一同放入转动的氢破粉碎容器中, 在 O.OlMPa 以上、 IMPa以下的氢气压力下吸氢粉碎, 同时通过硬质球体的撞击在不锈钢旋转氢破炉容 器内对合金进行球磨粉碎, 增加氢气与合金之间的接触, 产生了进一步的粉碎, 粉末通过氢 破粉碎和球磨粉碎同时作用获得, 而后再过筛分离获得符合要求的粉末;
另外, 在球磨转动时, 由于硬质球体与容器内壁的摩擦作用, 将硬质球体依旋转的方 向带上后再落下,而后利用落下的硬质球体的冲击作用以及硬质球体与容器内壁的研磨作用 对合金片进行粉碎,而本发明正是利用硬质球体的冲击作用给少量粘连的急冷合金施加一个 外力, 使其分散, 并使得氢破粉碎能更顺利地进行, 与单纯进行氢破粉碎获得的粉体相比, 其可以获得具有更多细粉的低氧含量粉体。
4) 由于省略了气流粉碎步骤, 可以防止气流粉碎法中难以避免的氧化作用, 使之成为 实质上的非氧化工序, 使低氧含量超高性能磁铁的大量制造成为可能。
5)本发明选择在合金吸氢状态下进行球磨, 因此对于球磨暴露出来的新表面而言, 其 又可以充分吸氢, 促进粉碎的顺利进行。
6) 更进一步地, 相对于氢破之后再进行球磨的工序, 本发明无需进行转移, 也避免了 转移过程中难以避免的氧化作用, 更排除了由于激烈氧化引起爆燃的可能性。
具体实施方式
以下结合实施例对本发明作进一步详细说明。
实施例 1
原料配制过程: 准备纯度 99.5%的 Nd、 Pr、 Dy、 Tb、 Gd, 工业用 Fe-B、 工业用纯 Fe, 纯度 99.99%的 Co,纯度 99.5%的 Cu、 Al、Zr;以原子百分比 at%计,按照成分为
来配制。
各元素的含量如表 1所示:
表 1 各元素的配比
R T A J G D
Nd Pr Dy Tb Gd Fe Co C B Mn Cr Ga Sn W
8 2 1.5 1 1 79.1 0.4 0.1 6 0.2 0.2 0.2 0.2 0.1 按照上述的配比, 合计称量、 配制了 500Kg的原料。
熔炼过程: 将配制好的 500Kg的原料分成 16等份, 分别放入氧化铝制的坩埚中, 在高 频真空感应熔炼炉中在 lOOPa的真空中以 155CTC的温度进行真空熔炼。
铸造过程:在真空熔炼后的熔炼炉中通入 Ar气体至压力 6万 Pa,分别使用以下铸造法 进行铸造, 以 102°C/秒〜 104°C/秒的冷却速度、并 1*103°C/秒〜 8*103°C/秒的平均冷却速度获 得急冷合金, 平均片厚如表 2和表 3中所示, 其中, 表 2中采用双辊急冷法制造, 表 3中采 用斜面盘铸法制造。
急冷合金的厚度取决于辊的转速或斜面盘的转速。
急冷合金片的片厚使用千分尺进行测量, 测量 100片次, 做好片厚记录。 测量时需随 机取样测量其厚度, 同一片只能测量一次, 且测量位置靠近合金片的几何中心, 不能将同一 片折断进行测量。 取样需分上层、 中层、 下层进行分布取样。
为避免引入杂质、 污染, 测量时需配带清洁一次性手套。
检测结果显示, 按重量比计, 实施例 3、 实施例 4、 实施例 5和实施 11、 实施例 12、 实施例 13中, 95%的急冷合金厚度为 0.1〜0.7mm。
氢破粉碎过程: 将急冷合金与数个 D lOmm〜口 40mm的钢球一起放入内径为 D800mm 的旋转氢破炉容器中, 容器抽真空, 而后通入纯度为 99.999%的氢气至压力为 0.03MPa, 吸 氢 2小时, 在吸氢过程中, 容器按 60rpm的旋转数旋转, 在进行吸氢的同时进行球磨粉碎,
之后, 在 600°C的温度下抽 2小时真空。 之后进行冷却, 取出粉末。
取出的粉末先使用 2目的筛子将钢球和产品分离, 再使用 500目的超声波振动筛过筛, 回收过筛后的粉末。 过筛后的粉末回收率在 99.5%以上。
在过筛后的粉末中添加辛酸甲酯, 辛酸甲酯的添加量为过筛后的粉末重量的 0.4%, 用 V型混料机充分混合 1小时。
磁场中成形过程:使用直角取向型的磁场成型机,在 2.1T的取向磁场中,在 0.2ton/cm2 的成型压力下, 将添加了辛酸甲酯的粉末一次成形为边长 40mm的立方体, 一次成形后在 0.2T的磁场中退磁; 为使一次成形后的成形体不接触到空气将其进行密封, 使用二次成形 机 (等静压成形机) 在 1.2ton/cm2的压力下进行二次成形。
成形后的缺角裂痕调査: 永磁材料只要有一点的裂痕缺角破裂就算不良, 成形后马上 通过目测, 只要发现长度 lmm以上的破裂缺角裂痕, 就判断为不良, 计算不良率。
烧结过程:将各成形体搬至烧结炉进行烧结,烧结在 10_3Pa的真空下,在 20CTC和 900°C 的温度下各保持 2小时后, 在 lOOOPa的 Ar气气氛中, 以 108CTC的温度烧结 2小时, 之后 通入 Ar气体使气压达到 O. lMPa后, 冷却至室温。
热处理过程: 烧结体在高纯度 Ar气中, 以 450°C温度进行 1小时热处理后, 冷却至室 温后取出。
磁性能评价过程: 烧结磁铁使用中国计量院的 NIM-10000H型 BH大块稀土永磁无损 测量系统进行磁性能检测。
烧结体中的氧含量评价过程: 烧结体中的氧含量使用日本 HORIBA公司的
EMGA-620W型氧氮分析仪进行检测。
实施例和比较例的磁铁的评价结果如表 2和表 3中所示:
表 2 实施例和比较例的磁性能评价和氧含量评价的情况 序 平均片 成形不良 Br Hcj SQ (BH)max 烧结体氧含 号 厚 (mm) 率 (%) (kGs) (kOe) (%) (MGOe) 量 (ppm)
1 比较例 0.07 21 10.2 11.6 82.3 22.4 689
2 比较例 0.1 1 11.2 35.1 98.2 31.2 276
3 实施例 0.2 0 11.3 35.3 99.1 31.3 275
4 实施例 0.3 0 11.2 35.2 99.1 31.2 269
5 实施例 0.4 0 11.3 34.1 99.2 31.2 283
6 比较例 0.5 1 11.3 34.8 98.5 31.1 265
7 比较例 0.7 24 10.6 27.6 84.2 21.2 324
8 比较例 1 67 10.2 24.3 78.6 18.5 478
表 3 实施例和比较例的磁性能评价和氧含 评价的情况
序 平均片 成形不良 Br Hcj SQ (BH)max 烧结体氧含 号 厚 (mm) 率 (%) (kGs) (kOe) (%) (MGOe) 量 (ppm)
9 比较例 0.05 29 12.6 26.7 77.3 25.3 923
10 比较例 0.1 1 11.2 35.6 98.1 31.2 282
11 实施例 0.2 0 11.3 35.8 99 31.2 275
12 实施例 0.3 0 11.3 35.6 99 31.3 270
13 实施例 0.4 0 11.3 35.6 99 31.3 275
14 比较例 0.5 1 11.2 35.5 98.3 31 271
15 比较例 0.7 23 10.2 28.6 85.5 22.3 578
16 比较例 10 67 9.8 27.5 79.2 19.8 768 从上述实施例和比较例可以看出, 将钢球放入旋转的氢破炉容器中, 在氢破粉碎的同 时进行球磨粉碎,加速氢破粉碎,使氢破粉碎的粉末破碎效果在通过球磨粉碎后进一步增强, 产生了进一步的粉碎。
钢球可常时放置在不锈钢旋转氢破炉容器内, 不必取出。
从上述实施例和比较例可以看出, 急冷合金中存在厚度的最佳条件。 片厚较薄的原料 中因为包含较多的非晶相及等轴晶, 会导致取向度变差, Br、 (BH) max降低, 另外, 因为 存在较多易氧化的超细粉会使氧含量增加,造成矫顽力和方形度的性能变差。而片厚较厚的 原料中因为包含较多的 α-Fe及 R2Fe17相, 大的富 Nd相, 会导致取向度变差, Br、 (BH) max降低, 另外, 因为存在较多极易氧化的富 Nd相, 会使氧含量增加, 造成矫顽力和方形 度的性能变差。
另外, 本发明控制了合金熔液的平均冷却速度, 从而得到结晶大小均匀、 过小结晶和 过大结晶含量降低的甩片,进而可在省略气流磨工序之时,也能获得符合要求的成形用粉末。
实施例 2
原料配制过程: 准备纯度 99.9%的 Nd、 Ho、 Y, 工业用 Fe-B、 Fe-P、 Fe-Cr, 工业用纯 Fe,纯度 99.9%的 Ni、 Si,纯度 99.5%的 Bi、 V;以原子百分比 at%计,按照成分为
来配制。
各元素的含量如表 4所示:
各元素的配比
R Τ A J G D
Nd Ho Y Fe Ni B P Cr Si Bi V
11 2 0.5 78.7 0.3 6.55 0.05 0.2 0.1 0.3 0.3 按照上述配制组成, 合计称量、 配制了 16份 lOOKg的原料。
熔炼过程: 取 lOOKg配制好的原料放入氧化铝制的坩埚中, 在高频真空感应熔炼炉中 在 10—3Pa的真空中以 1600 °C的温度进行真空熔炼。
铸造过程:在真空熔炼后的熔炼炉中通入 Ar气体至压力 4万 Pa,使用水冷圆盘铸造板, 以 102°C/秒〜 104°C/秒的冷却速度、并 1*103°C/秒〜 8*103°C/秒的平均冷却速度铸造成急冷合 金。
急冷合金的厚度取决于水冷圆盘铸造板的转速。
急冷合金片的片厚使用千分尺进行测量, 测量 100片次, 做好片厚记录。 测量时需随 机取样测量其厚度, 同一片只能测量一次, 且测量位置靠近合金片的几何中心, 不能将同一
片折断进行测量。 取样需分上层、 中层、 下层进行分布取样。
为避免引入杂质、 污染, 测量时需配带清洁一次性手套。
检测结果显示, 急冷合金的平均厚度为 0.25mm, 且按重量比计, 98%的急冷合金的厚 度为 0.1〜0.7mm。
氢破粉碎过程:取序号 1-7号的急冷合金,每份分别与数个 40g重量的 D5mm〜D60mm 的碳化钨球一起放入内径为□ 1000mm的不锈钢旋转氢破炉容器中, 容器抽真空, 然后分别 通入纯度为 99.99%的氢气至 1〜7的试验号所示的压力, 吸氢 0.5小时, 而后在 650°C的温 度下抽 2小时真空, 在吸氢和抽真空过程中, 不锈钢旋转氢破炉容器按 30rpm的旋转数旋 转, 同时进行氢破粉碎和球磨粉碎。 之后进行冷却, 取出粉末, 使用 5目的筛子将碳化钨球 和粉末分离,粉末通过圆盘式研磨机后再使用 500目的超声波振动筛过筛, 回收过筛后的粉 末。 过筛后的细粉回收率在 99.7%以上。
另外, 取序号 8-16号的急冷合金, 每份分别与数个重量为 20g的 D3mm〜口 20mm的 碳化硅球一起放入内径为 D600mm的不锈钢旋转氢破炉容器中, 容器抽真空, 分别调整至 以下 8〜16的试验号所示温度后, 通入纯度为 99.999%的氢气至压力为 0.3MPa, 吸氢 10小 时, 而后在 650°C的温度下抽 2小时真空。 在吸氢和抽真空过程中, 不锈钢旋转氢破炉容器 按 lOOrpm的旋转数旋转, 同时进行氢破粉碎和球磨粉碎。 之后进行冷却, 取出氢破粉碎后 的粉末,使用 5目的筛子将碳化硅球和粉末分离,粉末通过圆盘式研磨机后再使用 800目的 超声波振动筛过筛, 回收过筛后的粉末。 过筛后的粉末在 99.7%以上。
在每份过筛后的粉末中添加辛酸甲酯,辛酸甲酯的添加量为过筛后的粉末重量的 0.2%, 用 V型混料机充分混合 1小时。
磁场中成形过程:使用直角取向型的磁场成型机,在 1.8T的取向磁场中,在 0.2ton/cm2 的成型压力下,将添加了辛酸甲酯的粉末一次成形为边长为 25mm的立方体,一次成形后在 0.2T的磁场中退磁。 为使一次成形后的成形体不接触到空气将其进行密封, 使用二次成形 机 (等静压成形机) 在 1.2ton/cm2的压力下进行二次成形。
成形后的缺角裂痕调査: 永磁材料只要有一点的裂痕缺角破裂就算不良, 成形后马上 通过目测, 只要发现长度 lmm以上的破裂缺角裂痕, 就判断为不良, 计算不良率。
烧结过程:将各成形体搬至烧结炉进行烧结,烧结在 lO^Pa的真空下,在 20CTC和 900°C 的温度下各保持 2小时后,以 980°C的温度烧结 4小时,之后通入 Ar气体使气压达到 O.lMPa 后, 冷却至室温。
热处理过程: 烧结体在高纯度 Ar气中, 以 650°C温度进行 1小时热处理后, 冷却至室 温后取出。
磁性能评价过程: 烧结磁铁使用中国计量院的 NIM-10000H型 BH大块稀土永磁无损 测量系统进行磁性能检测。
烧结体中的氧含量评价过程: 烧结体中的氧含量使用日本 HORIBA公司的
EMGA-620W型氧氮分析仪进行检测。
不同压力下实施例和比较例的磁性能评价和氧含量评价的情况见表 5中所示。 不同急 冷合金预热温度下实施例的磁性能评价和氧含量评价的情况见表 6中所示。
表 5 不同压力下实施例和比较例的磁性能评价和氧含量评价的情况 序 氢气压 成形不良 Br Hcj SQ (BH)max 烧结体氧含 号 力 (atm) 率 (%) (kGs) (kOe) (%) (MGOe) 量 (ppm)
1 比较例 0.08 56 12.3 19.2 86.6 32.5 421
2 实施例 0.1 1 13 26.4 98.4 41.2 278
3 实施例 0.6 0 13.1 26.5 99.2 41.3 276
4 实施例 1.5 0 13.2 26.7 99.1 41.2 289
5 实施例 6 0 13.1 26.3 99.1 41.1 282
6 实施例 10 1 13.1 26.4 98.3 40.8 267
7 比较例 15 23 12.2 19.8 75.1 23.8 398
表 6 不同温度下实施例和比较例的磁性能评价和氧含量评价的情况 序 预热温 成形不良 Br Hcj SQ(% (BH)max 烧结体氧含 号 度 (°c ) 率 (%) (kGs) (kOe) ) (MGOe) 量 (ppm)
8 实施例 25 2 13 26.1 96.7 41.4 324
9 实施例 100 1 13.1 26.3 98.2 41.6 356
10 实施例 150 0 13.2 27.2 99.1 42.2 253
11 实施例 200 0 13.3 27.1 99.1 42.3 243
12 实施例 250 0 13.3 27.4 99.1 42.3 212
13 实施例 350 0 13.3 27.3 99 42.1 209
14 实施例 450 0 13.3 27.1 98.2 42.1 162
15 实施例 600 1 13.2 26.7 95.5 41.7 329
16 实施例 650 2 13.1 26.3 94.5 41.6 397 从上述实施例和比较例可以看出, 氢破粉碎时存在最适合的粉碎压力。 低压力时, 急 冷合金无法完全吸氢, 也就不能充分粉碎。而氢气压力较高时不仅存在安全问题, 而且还存 在是无法进行充分粉碎的问题, 这是因为主相和富 Nd相同时吸氢的话, 粉碎较困难, 成形 不良率也很高。
另外, 从上述实施例可以看出, 也存在较适宜的急冷合金的预热温度范围。 随着急冷 合金的预热温度的上升, 混入主相中的氢气量变少, 沿着富 Nd相的破裂不断进行。 但在超 过 600°C的高温时, 富 Nd相的吸氢量也开始变少, 不能达到充分破碎的效果。
同实施例 1, 本发明控制了合金熔液的平均冷却速度, 从而得到结晶大小均匀、 过小结 晶和过大结晶含量降低的甩片,进而可在省略气流磨工序之时,也能获得符合要求的成形用 粉末。
实施例 3
原料配制过程: 准备纯度 99.9%的 Nd、 Pr、 Dy, 工业用 Fe-B, C, 工业用纯 Fe, 纯度 99.9%的 Cu、 Sn、 Hf、 Co; 以原子百分比 at°/†, 按照成分为 RJVAgJhG^k来配制。
各元素的含量如表 7所示:
各元素的配比
R T A J G D
序号 Nd Pr Dy Fe Co B C Cu Sn Hf
1 12 3 0.6 75.9 0 6 0.25 0.05 0.2 2
2 12 3 0.6 75.5 0.4 6 0.25 0.05 0.2 2
3 12 3 0.6 74.9 1 6 0.25 0.05 0.2 2
4 12 3 0.6 74.5 1.4 6 0.25 0.05 0.2 2
5 12 3 0.6 73.9 2 6 0.25 0.05 0.2 2 按照上述 5个实验号来进行配制, 每个实验号分别称量、 配制了 lOOKg的原料。
熔炼过程: 按照实验号每次取 lOOKg配制好的原料放入氧化镁制的坩埚中, 在高频真 空感应熔炼炉中在 lPa的真空中以 160CTC以下的温度进行真空熔炼。
铸造过程:在真空熔炼后的熔炼炉中通入 Ar气体使气压达到 6.5万 Pa后,使用离心铸 造装置, 以 102°C/秒〜 104°C/秒的冷却速度、并 1*103°C/秒〜 8*103°C/秒的平均冷却速度铸造 成急冷合金。
急冷合金的厚度取决于离心铸造装置的转速。
急冷合金片的片厚使用千分尺进行测量, 测量 100片次, 做好片厚记录。 测量时需随 机取样测量其厚度, 同一片只能测量一次, 且测量位置靠近合金片的几何中心, 不能将同一 片折断进行测量。 取样需分上层、 中层、 下层进行分布取样。
为避免引入杂质、 污染, 测量时需配带清洁一次性手套。
检测结果显示, 急冷合金的平均厚度为 0.4mm, 且按重量比计, 95%的急冷合金的厚 度为 0.1〜0.7mm。
氢破粉碎过程:将平均厚度为 0.4mm的急冷合金与数个重量为 10g的 D20mm〜口 40mm 的不锈钢球一起放入内径为□ 1000mm的不锈钢旋转氢破炉容器中,容器抽真空,并在 10—2Pa 的真空中升温至 200°C, 通入纯度为 99.999%的氢气至压力为 0.1MPa, 吸氢 0.2小时, 而后 在 55CTC的温度下抽 0.5小时真空,在吸氢和抽真空过程中,不锈钢旋转氢破炉容器按 lOOrpm 的旋转数旋转, 进行球磨粉碎, 而后进行冷却, 取出球磨粉碎后的粉末。使用 3目的筛子将
不锈钢球和粉末分离,通过连续白式研磨机后再使用 300目的超声波振动筛过筛, 回收过筛 后的粉末。 过筛后的粉末回收率在 99.95%以上。
在每份过筛后的粉末中添加辛酸甲酯,辛酸甲酯的添加量为过筛后的粉末重量的 0.2%, 用 V型混料机充分混合 1小时。
磁场中成形过程:使用直角取向型的磁场成型机,在 2.2T的取向磁场中,在 0.3ton/Cm2 的成型压力下,将上述添加了辛酸甲酯的粉末一次成形为边长 25mm的立方体。一次成形后 在 0.15T的磁场中退磁。 为使一次成形后的成形体不接触到空气, 将其进行密封, 使用二次 成形机 (等静压成形机) 在 l.Oton/cm2的压力下进行二次成形。
成形后的缺角裂痕调査: 永磁材料只要有一点的裂痕缺角破裂就算不良, 成形后马上 通过目测, 只要发现长度 lmm以上的破裂缺角裂痕, 就判断为不良, 计算不良率。
烧结过程:将各成形体搬至烧结炉进行烧结。烧结在 10_2Pa的真空下,在 150°C、 650°C 和 800°C的温度下各保持 2小时后, 以 1080°C的温度烧结 4小时, 之后通入 Ar气体至压力 1万 Pa后, 冷却至室温。
热处理过程: 烧结体在高纯度 Ar气中, 以 540°C温度进行 1小时热处理后, 冷却至室 温后取出。
磁性能评价过程: 烧结磁铁使用中国计量院的 NIM-10000H型 BH大块稀土永磁无损 测量系统进行磁性能检测。
烧结体中的氧含量评价过程: 烧结体中的氧含量使用日本 HORIBA公司的
EMGA-620W型氧氮分析仪进行检测。
各实验号的磁性能评价和氧含量评价的情况如表 8中所示。
表 8 各实验号的磁性能评价和氧含量评价的情况
序 Co添加量 成形不良 Br Hcj SQ (BH)max 烧结体氧含 号 (at% ) 率 (%) (kGs) (kOe) (%) (MGOe) 量 (ppm)
1 实施例 0 0 13.1 18.3 99.4 42.2 245
2 实施例 0.4 0 13 18.1 98.4 42.1 258
3 实施例 1 1 12.9 18.2 98.1 42 265
4 实施例 1.4 2 12.7 17.3 95.7 40.9 276
5 实施例 2 4 12.5 17.1 94.3 36.8 285 从上述实施例可以看出, 存在最适合的 Co添加量。 Co的添加量较多时, 粉碎性差, 成形不良也会增加。 通过粉末 X射线衍射的调査结果, 随着 Co添加量的增加, 可观察到 R2Co2型、 R2Co3型的结晶。 由此可知含有 Co的金属化合物未进行吸氢, 这样就会使粉碎性 变差, 成形性变差。
同实施例 1, 本发明控制了合金熔液的平均冷却速度, 从而得到结晶大小均匀、 过小结 晶和过大结晶含量降低的甩片,进而可在省略气流磨工序之时,也能获得符合要求的成形用 粉末。
上述实施例仅用来进一步说明本发明的几种具体的实施例, 但本发明并不局限于实施 例, 凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰, 均落 入本发明技术方案的保护范围内。
工业实用性
本发明省略了气流粉碎, 简化工序。
Claims
1. 一种省略气流粉碎工序的稀土磁铁成形用粉末制造方法, 所述的稀土磁铁为含有 R2T14B主相的磁铁, 所述的 R为选自包含钇元素在内的稀土元素中的至少一种, 所 述 T为包括 Fe的至少一种过渡金属元素, 其特征在于, 包括以下的步骤:
1 ) 铸片: 稀土磁铁原料合金熔融液用薄片铸造法铸造, 得到平均厚度为 0.2〜 0.4mm的急冷合金;
2)氢破粉碎:将所述急冷合金和数个硬质球体一同放入可转动氢破粉碎容器中, 转动容器, 所述急冷合金在 O.OlMPa以上、 IMPa以下的氢气压力下吸氢破碎, 过筛 去除所述硬质球体获得粉末。
2. 根据权利要求 1所述的一种省略气流粉碎工序的稀土磁铁成形用粉末制造方法, 其特征在于: 按重量比计, 95%以上的急冷合金的厚度为 0.1〜0.7mm。
3. 根据权利要求 1所述的一种省略气流粉碎工序的稀土磁铁成形用粉末制造方法, 其特征在于:还包括将所述粉末脱氢的工序和将所述粉末通过 300目〜 1500目筛的工 序。
4. 根据权利要求 1所述的一种省略气流粉碎工序的稀土磁铁成形用合金粉末的制造 方法, 其特征在于: 所述氢破粉碎容器的旋转速度为 30rpm〜100rpm。
5. 根据权利要求 4所述的一种省略气流粉碎工序的稀土磁铁成形用粉末制造方法, 其特征在于:所述的急冷合金是以 102°C/秒以上、104°C/秒以下的冷却速度、并 1*103°C/ 秒〜 8*103°C/秒的平均冷却速度得到的, 且所述急冷合金的吸氢破碎时间为 1〜24小 时, 所述粉末的脱氢时间为 0.5〜10小时。
6. 根据权利要求 1或 2或 3或 4所述的一种省略气流粉碎工序的稀土磁铁成形用粉 末制造方法, 其特征在于: 所述硬质球体为 D0.5mm〜D60mm的钢球、 金属 Mo球、 金属 W球、 不锈钢球、 碳化钨球、 氧化铝球、 氧化锆球或碳化硅球。
7. 根据权利要求 1或 2或 3或 4所述的一种省略气流粉碎工序的稀土磁铁成形用粉 末制造方法, 其特征在于: 是将急冷合金预加热至 150X〜 60CTC之后, 再进行氢破粉 碎工序。
8. 根据权利要求 1或 2或 3或 4所述的一种省略气流粉碎工序的稀土磁铁成形用粉
末制造方法,其特征在于:所述急冷合金以原子百分比 at%计,其成分为 RJVAgJhG k, 其中, R为 Nd或包含 Nd和选自 La、 Ce、 Pr、 Sm、 Gd、 Dy、 Tb、 Ho、 Er、 Eu、 Tm、 Lu或 Y中的至少一种, T为 Fe或包含 Fe和选自 Ru、 Co或 Ni中的至少一种, A为 B或包含 B和选自 C或 P中的至少一种, J为选自 Cu、 Mn、 Si或 Cr中的至少一种, G为选自 Al、 Ga、 Ag、 Bi或 Sn中的至少一种, D为选自 Zr、 Hf、 V、 Mo、 W、 Ti 或 Nb中的至少一种; 以及
e为 12≤e≤16,
g为 5≤g≤9,
h为 0.05≤h≤l,
i为 0.2≤i≤2.0,
k为 0≤j≤4,
f= 100-e-g-h-i-k。
9. 根据权利要求 1或 2或 3或 4所述的一种省略气流粉碎工序的稀土磁铁成形用粉 末制造方法, 其特征在于: 所述稀土磁铁原料中, Co含量为 lat%以下。
10. 一种省略气流粉碎工序的稀土磁铁制造方法,所述的稀土磁铁为含有 R2T14B主相 的磁铁, 所述的 R为选自包含钇元素在内的稀土元素中的至少一种, 所述 T为包括 Fe的至少一种过渡金属元素, 其特征在于, 包括如下的步骤:
稀土磁铁原料合金熔融液用薄片铸造法铸造, 得到平均厚度为 0.2〜0.4mm的急 冷合金,将所述急冷合金和数个硬质球体一同放入可转动氢破粉碎容器中,转动容器, 所述急冷合金在 O.OlMPa以上、 IMPa以下的氢气压力下吸氢破碎, 过筛去除所述硬 质球体获得粉末;
将所述过筛后的粉末用磁场成形和等静压成形组合的 2段式成形法加工成形,制 作成形体的工序; 以及
将所述成形体进行烧结, 制作永久磁铁的工序。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/441,961 US10381141B2 (en) | 2012-11-09 | 2013-11-08 | Rare earth magnet and a method for manufacturing compactable powder for the rare earth magnet without jet milling |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210452739.7A CN102982936B (zh) | 2012-11-09 | 2012-11-09 | 烧结Nd-Fe-B系磁铁的省却工序的制作方法 |
CN201210452739.7 | 2012-11-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014071874A1 true WO2014071874A1 (zh) | 2014-05-15 |
Family
ID=47856831
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/086807 WO2014071874A1 (zh) | 2012-11-09 | 2013-11-08 | 一种稀土磁铁成形用粉末和稀土磁铁省略气流粉碎工序的制造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10381141B2 (zh) |
CN (1) | CN102982936B (zh) |
WO (1) | WO2014071874A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114823110A (zh) * | 2022-03-28 | 2022-07-29 | 北矿磁材(阜阳)有限公司 | 一种高性能稀土永磁材料制造方法 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102982936B (zh) * | 2012-11-09 | 2015-09-23 | 厦门钨业股份有限公司 | 烧结Nd-Fe-B系磁铁的省却工序的制作方法 |
CN102956337B (zh) * | 2012-11-09 | 2016-05-25 | 厦门钨业股份有限公司 | 一种烧结Nd-Fe-B系磁铁的省却工序的制作方法 |
CN103600070B (zh) * | 2013-10-24 | 2017-11-10 | 厦门钨业股份有限公司 | 稀土合金磁性粉末成形体的制造方法和稀土磁铁的制造方法 |
CN105761925A (zh) * | 2016-04-18 | 2016-07-13 | 中钢集团安徽天源科技股份有限公司 | 一种钬铁镓共晶掺杂制备高性能钕铁硼磁体的方法 |
CN110444360A (zh) * | 2019-07-19 | 2019-11-12 | 宁波可可磁业股份有限公司 | 一种钕铁硼磁体及其制备方法 |
CN111180192B (zh) * | 2020-01-17 | 2021-07-27 | 赣州诚正稀土新材料股份有限公司 | 一种氢破以重稀土代替渗镝的方法及装置 |
CN111180193B (zh) * | 2020-01-17 | 2021-07-27 | 赣州诚正稀土新材料股份有限公司 | 一种无人化柔性磁场成型方法 |
JP7567319B2 (ja) | 2020-03-27 | 2024-10-16 | 株式会社プロテリアル | R-t-b系焼結磁石用合金粉末の製造方法およびジェットミル粉砕システム |
CN113223807B (zh) * | 2021-05-31 | 2022-08-19 | 包头金山磁材有限公司 | 一种钕铁硼永磁体及其制备方法和应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1112720A (zh) * | 1992-09-30 | 1995-11-29 | 上海申建冶金机电技术工程公司 | 高性能微晶稀土永磁体的制造方法 |
US20050081959A1 (en) * | 2003-10-15 | 2005-04-21 | Kim Andrew S. | Method of preparing micro-structured powder for bonded magnets having high coercivity and magnet powder prepared by the same |
CN101740190A (zh) * | 2008-11-26 | 2010-06-16 | 绵阳西磁磁电有限公司 | 一种高性价比高耐腐蚀性烧结钕铁硼磁体及制备方法 |
CN102982936A (zh) * | 2012-11-09 | 2013-03-20 | 厦门钨业股份有限公司 | 烧结Nd-Fe-B系磁铁的省却工序的制作方法 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5049053A (en) * | 1988-08-18 | 1991-09-17 | Hitachi Metals, Ltd. | Metal mold for molding anisotropic permanent magnets |
JP3932143B2 (ja) * | 1992-02-21 | 2007-06-20 | Tdk株式会社 | 磁石の製造方法 |
JP3623571B2 (ja) * | 1995-11-20 | 2005-02-23 | 株式会社Neomax | R−t−b系異方性ボンド磁石の製造方法 |
US6120620A (en) * | 1999-02-12 | 2000-09-19 | General Electric Company | Praseodymium-rich iron-boron-rare earth composition, permanent magnet produced therefrom, and method of making |
JP3294841B2 (ja) * | 2000-09-19 | 2002-06-24 | 住友特殊金属株式会社 | 希土類磁石およびその製造方法 |
KR100771676B1 (ko) * | 2000-10-04 | 2007-10-31 | 가부시키가이샤 네오맥스 | 희토류 소결자석 및 그 제조방법 |
US7258751B2 (en) * | 2001-06-22 | 2007-08-21 | Neomax Co., Ltd. | Rare earth magnet and method for production thereof |
AU2002358316A1 (en) * | 2001-12-18 | 2003-06-30 | Showa Denko K.K. | Alloy flake for rare earth magnet, production method thereof, alloy powder for rare earth sintered magnet, rare earth sintered magnet, alloy powder for bonded magnet and bonded magnet |
CN1442258A (zh) * | 2002-03-05 | 2003-09-17 | 赵宇靖 | 破碎稀土永磁材料的氢爆炉和氢爆工艺 |
WO2007063969A1 (ja) * | 2005-12-02 | 2007-06-07 | Hitachi Metals, Ltd. | 希土類焼結磁石及びその製造方法 |
RU2009123435A (ru) * | 2006-11-21 | 2010-12-27 | Улвак, Инк. (Jp) | Способ изготовления ориентированного тела, прессованного тела и спеченного тела, а также способ изготовления постоянного магнита |
JP5274781B2 (ja) * | 2007-03-22 | 2013-08-28 | 昭和電工株式会社 | R−t−b系合金及びr−t−b系合金の製造方法、r−t−b系希土類永久磁石用微粉、r−t−b系希土類永久磁石 |
WO2009075351A1 (ja) * | 2007-12-13 | 2009-06-18 | Showa Denko K.K. | R-t-b系合金及びr-t-b系合金の製造方法、r-t-b系希土類永久磁石用微粉、r-t-b系希土類永久磁石 |
WO2010082492A1 (ja) * | 2009-01-16 | 2010-07-22 | 日立金属株式会社 | R-t-b系焼結磁石の製造方法 |
CN102379013B (zh) * | 2009-03-31 | 2014-12-17 | 日立金属株式会社 | 纳米复合材料块材磁体及其制造方法 |
JP5197669B2 (ja) * | 2010-03-31 | 2013-05-15 | 株式会社東芝 | 永久磁石およびそれを用いたモータおよび発電機 |
CN102248157B (zh) * | 2011-06-27 | 2013-01-23 | 北京大学 | 提高各向异性稀土永磁粉矫顽力和最高使用温度的方法 |
CN103212710B (zh) * | 2013-05-05 | 2015-01-21 | 沈阳中北真空磁电科技有限公司 | 一种钕铁硼稀土永磁材料的制造方法 |
-
2012
- 2012-11-09 CN CN201210452739.7A patent/CN102982936B/zh active Active
-
2013
- 2013-11-08 WO PCT/CN2013/086807 patent/WO2014071874A1/zh active Application Filing
- 2013-11-08 US US14/441,961 patent/US10381141B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1112720A (zh) * | 1992-09-30 | 1995-11-29 | 上海申建冶金机电技术工程公司 | 高性能微晶稀土永磁体的制造方法 |
US20050081959A1 (en) * | 2003-10-15 | 2005-04-21 | Kim Andrew S. | Method of preparing micro-structured powder for bonded magnets having high coercivity and magnet powder prepared by the same |
CN101740190A (zh) * | 2008-11-26 | 2010-06-16 | 绵阳西磁磁电有限公司 | 一种高性价比高耐腐蚀性烧结钕铁硼磁体及制备方法 |
CN102982936A (zh) * | 2012-11-09 | 2013-03-20 | 厦门钨业股份有限公司 | 烧结Nd-Fe-B系磁铁的省却工序的制作方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114823110A (zh) * | 2022-03-28 | 2022-07-29 | 北矿磁材(阜阳)有限公司 | 一种高性能稀土永磁材料制造方法 |
CN114823110B (zh) * | 2022-03-28 | 2023-08-25 | 北矿磁材(阜阳)有限公司 | 一种高性能稀土永磁材料制造方法 |
Also Published As
Publication number | Publication date |
---|---|
US10381141B2 (en) | 2019-08-13 |
US20150279530A1 (en) | 2015-10-01 |
CN102982936A (zh) | 2013-03-20 |
CN102982936B (zh) | 2015-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014071873A1 (zh) | 稀土磁铁成形用粉末和稀土磁铁省略气流粉碎工序的制造方法 | |
WO2014071874A1 (zh) | 一种稀土磁铁成形用粉末和稀土磁铁省略气流粉碎工序的制造方法 | |
WO2021098224A1 (zh) | 钕铁硼磁体材料、原料组合物及制备方法和应用 | |
JP6419869B2 (ja) | セリウム含有ネオジム鉄ホウ素磁石およびその製造方法 | |
JP5856953B2 (ja) | 希土類永久磁石の製造方法および希土類永久磁石 | |
US9427804B2 (en) | Method for producing a high-performance neodymium—iron—boron rare earth permanent magnetic material | |
WO2010113371A1 (ja) | R-t-b系希土類永久磁石用合金材料、r-t-b系希土類永久磁石の製造方法およびモーター | |
TW202121453A (zh) | 釹鐵硼磁體材料、原料組合物及製備方法和應用 | |
CN110323053B (zh) | 一种R-Fe-B系烧结磁体及其制备方法 | |
JP2011042837A (ja) | 磁気異方性磁石素材及びその製造方法 | |
TW202121451A (zh) | 釹鐵硼磁體材料、原料組合物及製備方法和應用 | |
CN113593882B (zh) | 2-17型钐钴永磁材料及其制备方法和应用 | |
TW202127474A (zh) | 釹鐵硼永磁材料、製備方法、應用 | |
TW201716598A (zh) | 複合含有Pr和W的R-Fe-B系稀土燒結磁鐵 | |
JP5757394B2 (ja) | 希土類永久磁石の製造方法 | |
CN113517126A (zh) | SmCo5型钐钴永磁材料及其制备方法和应用 | |
CN111091945B (zh) | 一种r-t-b系永磁材料、原料组合物、制备方法、应用 | |
WO2012029527A1 (ja) | R-t-b系希土類永久磁石用合金材料、r-t-b系希土類永久磁石の製造方法およびモーター | |
CN112074621A (zh) | R-t-b系稀土类烧结磁铁用铸造合金薄片 | |
CN113421761B (zh) | 一种降低改性磁粉吸附能的高性能烧结钕铁硼制备方法 | |
JPH0917677A (ja) | 耐食性のすぐれたR−Fe−B−C系永久磁石材料の製造方法 | |
CN111785468B (zh) | 一种高性能稀土永磁体及其制备方法 | |
CN113517104A (zh) | 主辅相合金钐钴磁体材料、烧结体用材料、其制备方法和应用 | |
WO2014059771A1 (zh) | 含氧Re-(Fe, TM)-B系烧结磁体及其制造方法 | |
WO2014040525A1 (zh) | 稀土磁铁用合金粉末、稀土磁铁的制造方法及制粉装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13854158 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14441961 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13854158 Country of ref document: EP Kind code of ref document: A1 |