WO2014069025A1 - 樹脂被覆難燃性繊維糸及びそれを用いる樹脂被覆難燃性繊維織物 - Google Patents

樹脂被覆難燃性繊維糸及びそれを用いる樹脂被覆難燃性繊維織物 Download PDF

Info

Publication number
WO2014069025A1
WO2014069025A1 PCT/JP2013/063198 JP2013063198W WO2014069025A1 WO 2014069025 A1 WO2014069025 A1 WO 2014069025A1 JP 2013063198 W JP2013063198 W JP 2013063198W WO 2014069025 A1 WO2014069025 A1 WO 2014069025A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
coated
metal oxide
titanium dioxide
composite metal
Prior art date
Application number
PCT/JP2013/063198
Other languages
English (en)
French (fr)
Inventor
壯輔 日比
宗寿 関川
沙織 岡戸
Original Assignee
日東紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東紡績株式会社 filed Critical 日東紡績株式会社
Priority to JP2013537350A priority Critical patent/JP5392445B1/ja
Priority to PCT/JP2013/063198 priority patent/WO2014069025A1/ja
Priority to EP13851990.5A priority patent/EP2995717B1/en
Publication of WO2014069025A1 publication Critical patent/WO2014069025A1/ja
Priority to TW103116525A priority patent/TWI457310B/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/46Oxides or hydroxides of elements of Groups 4 or 14 of the Periodic System; Titanates; Zirconates; Stannates; Plumbates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/48Coating with two or more coatings having different compositions
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • D03D1/0035Protective fabrics
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/513Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads heat-resistant or fireproof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/48Oxides or hydroxides of chromium, molybdenum or tungsten; Chromates; Dichromates; Molybdates; Tungstates
    • D06M11/485Oxides or hydroxides of manganese; Manganates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/30Flame or heat resistance, fire retardancy properties

Definitions

  • the present invention relates to a resin-coated flame-retardant fiber and a resin-coated flame-retardant fiber fabric using the same.
  • Resin-coated flame retardant fiber fabrics are known as membrane materials or blinds used in tent warehouses, medium and large tents, truck hoods, sun tents, etc.
  • the resin-coated flame-retardant fiber woven fabric is obtained by weaving resin-coated flame-retardant fiber yarn.
  • resin-coated glass fiber fabric formed by weaving resin-coated glass fiber bundles.
  • the resin-coated glass fiber bundle includes a first resin coating layer that covers the glass fiber bundle, and a second resin coating layer formed on the first resin coating layer.
  • a first resin coating layer that covers the glass fiber bundle
  • a second resin coating layer formed on the first resin coating layer.
  • the resin-coated glass fiber fabric formed by weaving the conventional resin-coated glass fiber bundle has a low heat-shielding property of the second resin-coated layer, it can obtain a sufficient heat-shielding property when used as a heat-resistant blind. There is a problem that you can not.
  • a film material that includes a resin layer that covers a base fabric and includes titanium dioxide particles having a weight average particle diameter of 0.6 to 1.5 ⁇ m and mica particles in the resin layer (for example, patents) Reference 2).
  • the membrane material is said to be able to use a glass fiber woven fabric as the base fabric, and is said to have excellent heat shielding properties.
  • the resin coating layer contains two types of titanium dioxide particles having different particle diameters at a specific mass ratio.
  • the first particles having a relatively large particle size those having a function of effectively shielding the infrared rays of incident light are used, and as the second particles having a relatively small particle size, Those having a function of effectively scattering visible light in incident light are used.
  • the resin-coated difficulty obtained by weaving the resin-coated flame-retardant fiber yarn as warp and weft by using the first particles and the second particles at a specific mass ratio obtained by weaving the resin-coated flame-retardant fiber yarn as warp and weft by using the first particles and the second particles at a specific mass ratio.
  • excellent translucency as well as excellent heat shielding properties can be obtained.
  • the resin-coated flame retardant fiber fabric contains a large amount of titanium dioxide, it has a high whiteness and gives a dazzling impression while it is new. On the other hand, depending on the installation environment, dirt and deterioration yellowing may become noticeable. There is an inconvenience that the beauty is impaired.
  • the present invention eliminates such inconveniences and provides a resin-coated flame-retardant fiber woven fabric, which has excellent heat shielding properties, has a calm color tone, and can maintain aesthetics over a long period of time. It aims at providing a flame-retardant fiber yarn.
  • the present invention provides a resin-coated flame-retardant fiber yarn comprising a resin coating layer for coating the flame-retardant fiber yarn, wherein the resin coating layer has a number average particle diameter of 0.6 to 1.
  • First titanium dioxide particles (A) in the range of 5 ⁇ m and at least one composite metal oxide selected from the group consisting of bismuth manganese composite metal oxide, yttrium manganese composite metal oxide, and iron chromium composite metal oxide Particles (B), and the total content (A + B) of the first titanium dioxide particles and the composite metal oxide particles is 1.5 to 13 with respect to the total mass of the resin-coated flame-retardant fiber yarn.
  • the mass ratio (A / B) of the first titanium dioxide particles to the composite metal oxide particles is in the range of 5 to 70.
  • the first titanium dioxide particles have a function of effectively shielding infrared rays in incident light by having a number average particle diameter in the range of 0.6 to 1.5 ⁇ m.
  • the composite metal oxide is usually used as a color pigment in a dark paint.
  • the color pigment is described in, for example, JP 2010-174175 A.
  • the total content (A + B) of the first titanium dioxide particles and the composite metal oxide particles is equal to the total mass of the resin-coated flame-retardant fiber yarn.
  • the value of the mass ratio (A / B) of the first titanium dioxide particles to the composite metal oxide particles is in the range, the resin-coated flame-retardant fiber fabric is obtained. In addition to having excellent heat shielding properties, it has a moderately dark and calm color tone, and can maintain aesthetics over a long period of time.
  • the resin-coated flame retardant of the present invention When the woven fiber yarn is made of a resin-coated flame-retardant fiber woven fabric, the heat shielding property cannot be obtained.
  • the present invention when the total content (A + B) of the first titanium dioxide particles and the composite metal oxide particles is less than 1.5% by mass with respect to the total mass of the resin-coated flame-retardant fiber yarn, the present invention When the resin-coated flame-retardant fiber yarn is made into a resin-coated flame-retardant fiber fabric, it is impossible to obtain heat shielding properties. On the other hand, when the total content (A + B) of the first titanium dioxide particles and the composite metal oxide particles exceeds 13.0% by mass with respect to the total mass of the resin-coated flame-retardant fiber yarn, The resin-coated flame-retardant fiber yarn of the invention cannot be woven.
  • the resin-coated flame-retardant fiber yarn of the present invention is used as the resin-coated flame-retardant fiber.
  • the value of the mass ratio (A / B) of the first titanium dioxide particles to the composite metal oxide particles exceeds 70, the resin-coated flame-retardant fiber yarn of the present invention is replaced with a resin-coated flame-retardant fiber fabric. The color tone becomes too dark.
  • the total content (A + B) of the first titanium dioxide particles and the composite metal oxide particles is the total mass of the resin-coated flame-retardant fiber yarn.
  • the content is in the range of 4.5 to 13.0% by mass.
  • the mass ratio (A / B) of the first titanium dioxide particles to the composite metal oxide particles is preferably in the range of 15 to 55. .
  • the resin-coated flame-retardant fiber yarn of the present invention is a resin-coated flame-retardant fiber fabric.
  • the color tone becomes bright, and the aesthetic appearance may not be maintained for a long time.
  • the mass ratio (A / B) of the first titanium dioxide particles to the composite metal oxide particles exceeds 55, the resin-coated flame-retardant fiber yarn of the present invention is replaced with a resin-coated flame-retardant fiber fabric. The color tone tends to be dark.
  • the resin coating layer includes second titanium dioxide particles (C) having a number average particle diameter of 0.2 to 0.4 ⁇ m.
  • the second titanium dioxide particles have a function of efficiently scattering visible light in incident light by having a number average particle diameter in the range of 0.2 to 0.4 ⁇ m.
  • the resin-coated flame-retardant fiber yarn of the present invention includes the second titanium dioxide particles together with the first titanium dioxide particles in the resin-coated layer,
  • the translucency can be adjusted without reducing the heat shielding property.
  • the second titanium dioxide particles have a number average particle diameter of less than 0.2 ⁇ m or more than 0.4 ⁇ m, it is impossible to obtain a function of efficiently scattering visible light in incident light.
  • the total content of the first titanium dioxide particles, the composite metal oxide particles, and the second titanium dioxide particles is preferably in the range of 4.5 to 13.1% by mass with respect to the total mass of the resin-coated flame-retardant fiber yarn.
  • the total content (A + B + C) of the first titanium dioxide particles, the composite metal oxide particles, and the second titanium dioxide particles is in the above range with respect to the total mass of the resin-coated flame-retardant fiber yarn.
  • the total content (A + B + C) of the first titanium dioxide particles, the composite metal oxide particles, and the second titanium dioxide particles is 4.5% by mass with respect to the total mass of the resin-coated flame-retardant fiber yarn. If it is less than the above, when the resin-coated flame-retardant fiber yarn of the present invention is made into a resin-coated flame-retardant fiber woven fabric, sufficient heat shielding properties and translucency may not be obtained.
  • the total content (A + B + C) of the first titanium dioxide particles, the composite metal oxide particles, and the second titanium dioxide particles is 13.1 with respect to the total mass of the resin-coated flame-retardant fiber yarn. When it exceeds mass%, the woven property of the resin-coated flame-retardant fiber yarn of the present invention may be lowered.
  • the mass ratio (B / C) of the composite metal oxide particles to the second titanium dioxide particles is It is preferably in the range of 1-20.
  • the mass ratio (B / C) of the composite metal oxide particles to the second titanium dioxide particles is less than 1, the resin-coated flame-retardant fiber yarn of the present invention is used as a resin-coated flame-retardant fiber fabric.
  • the color tone becomes brighter and the aesthetics cannot be maintained for a long time.
  • the resin-coated flame-retardant fiber yarn of the present invention is replaced with a resin-coated flame-retardant fiber fabric.
  • the color tone tends to be dark.
  • the resin-coated flame-retardant fiber fabric of the present invention is characterized by being woven using the resin-coated flame-retardant fiber yarn of the present invention as at least a part of warp or weft.
  • the resin-coated flame-retardant fiber fabric of the present invention has excellent heat-shielding properties and a moderately dark calm color tone by using the resin-coated flame-retardant fiber yarn of the present invention as at least a part of warp or weft. It is possible to maintain aesthetics for a long time.
  • the resin-coated flame-retardant fiber yarn 1 of this embodiment includes a resin coating layer 3 that covers the flame-retardant fiber yarn 2.
  • the resin coating layer 3 includes first titanium dioxide particles having a number average particle diameter of 0.6 to 1.5 ⁇ m and composite metal oxide particles, and further has a number average particle diameter of 0.2 to 0.4 ⁇ m.
  • the 2nd titanium dioxide particle of the range may be included.
  • the first titanium dioxide particles preferably have a number average particle diameter of 0.8 to 1.2 ⁇ m from the viewpoint of easy availability.
  • the composite metal oxide particles may be particles of at least one composite metal oxide selected from the group consisting of bismuth manganese composite metal oxide, yttrium manganese composite metal oxide, and iron chromium composite metal oxide. it can.
  • the composite metal oxide particles are particularly preferably bismuth manganese composite metal oxide because they are easily available.
  • the resin-coated flame-retardant fiber yarn 1 of the present embodiment is woven by using the resin-coated flame-retardant fiber yarn 1 as at least a part of the warp 1a or the weft 1b.
  • a flammable fiber fabric 11 can be obtained. Since the resin-coated flame retardant fiber fabric 11 has flame resistance by using the resin-coated flame retardant fiber yarn 1, it can be suitably used for building materials such as blinds from the viewpoint of fire safety. .
  • the resin-coated flame-retardant fiber fabric 11 is a yarn other than the resin-coated flame-retardant fiber yarn 1 in addition to the resin-coated flame-retardant fiber yarn 1 as long as it does not impair the flame retardancy, flame resistance, heat shielding properties and color tone. May be included as part of the warp 1a or the weft 1b.
  • the resin-coated flame-retardant fiber fabric 11 has excellent heat-shielding properties, has a moderately dark and calm color tone, and can retain aesthetics over a long period of time. Therefore, the resin-coated flame-retardant fiber yarn 1 Is preferably used for all of the warp 1a and the weft 1b.
  • the flame-retardant fiber constituting the flame-retardant fiber yarn 2 is an inorganic fiber that is non-flammable or an organic fiber that has a LOI (Limited Oxygen Index) of 26 or more in accordance with the flame retardancy test method JIS K7201A-1 Is preferably used.
  • LOI Lited Oxygen Index
  • the flame retardant fiber As the flame retardant fiber, glass fiber, carbon fiber, aramid fiber, polyarylate fiber, polyether ketone fiber, polyvinyl chloride fiber, polyvinylidene chloride fiber, polyimide fiber, polyclar fiber, flame retardant nylon fiber, flame retardant Examples include polyester fiber, flame retardant acrylic fiber, flame retardant polypropylene fiber, flame retardant polyethylene fiber, flame retardant polylactic acid fiber, flame retardant rayon fiber, flame retardant cotton fiber, and flame retardant wool. .
  • the flame retardant fiber is preferably glass fiber, carbon fiber, or aramid fiber from the viewpoint of strength, is nonflammable, has a low coefficient of linear expansion, excellent dimensional stability, and is easily available. From the viewpoint, glass fiber is particularly preferable.
  • the flame retardant fiber yarn 2 may be a blend of a plurality of the flame retardant fibers, or a mixture of the flame retardant fibers and non-flame retardant fibers to have a LOI of 26 or more. Good.
  • the flame retardant fiber yarn 2 is made of glass fiber
  • the flame retardant fiber yarn 2 is made of a glass fiber bundle formed by bundling 200 to 1600 glass filaments having a diameter of 3 to 9 ⁇ m, and has a mass of 20 to 70 tex. It is preferable to provide.
  • the glass fiber bundle has a mass in the range of 25 to 45% by mass with respect to the total mass of the resin-coated flame-retardant fiber yarn 1 in order to combine good mechanical strength, excellent appearance, and excellent heat shielding properties. It is preferable.
  • the glass fiber bundle preferably has a mass in the range of 30 to 40% by mass with respect to the total mass of the resin-coated flame-retardant fiber yarn 1 in order to provide better mechanical strength.
  • the glass fiber bundle is preferably made of E glass from the viewpoint of easy availability, and is preferably made of T glass from the viewpoint of mechanical strength and dimensional stability against heat.
  • the linear expansion coefficient of E glass is 5.6 ⁇ 10 ⁇ 6 / K
  • the linear expansion coefficient of T glass is 2.8 ⁇ 10 ⁇ 6 / K.
  • the resin coating layer 3 does not contain the second titanium dioxide particles
  • the total content (A + B) of the first titanium dioxide particles (A) and the composite metal oxide particles (B). ) Is in the range of 1.5 to 13.0% by mass with respect to the total mass of the resin-coated flame-retardant fiber yarn 1, and the mass ratio of the first titanium dioxide particles to the composite metal oxide particles (A / B) is in the range of 5-70.
  • the resin-coated flame-retardant fiber yarn 1 of the present embodiment has excellent heat-shielding properties and a moderately dark and calm color tone when used as the resin-coated flame-retardant fiber woven fabric 11, for a long period of time. The aesthetics can be maintained and excellent weaving properties can be obtained.
  • the resin-coated flame-retardant fiber yarn 1 is a resin-coated flame-retardant fiber fabric 11
  • the first titanium dioxide particles (A) and the composite metal oxide are used in order to obtain better heat shielding properties.
  • the total content (A + B) with the particles (B) is preferably in the range of 4.5 to 13.0% by mass with respect to the total mass of the resin-coated flame-retardant fiber yarn 1.
  • the resin-coated flame-retardant fiber yarn 1 is used as the resin-coated flame-retardant fiber fabric 11
  • the first titanium dioxide particles (A) and the composite metal are obtained in order to obtain a balance between heat insulation and color tone.
  • the total content (A + B) with the oxide particles (B) is more preferably 7.5 to 10.0% by mass with respect to the total mass of the resin-coated flame-retardant fiber yarn 1.
  • the resin-coated flame-retardant fiber yarn 1 has a mass ratio (A) of the first titanium dioxide particles to the composite metal oxide particles in order to obtain a more preferable color tone when the resin-coated flame-retardant fiber fabric 11 is used.
  • the value of / B) is preferably in the range of 15 to 55.
  • the first titanium dioxide particles (A) and the composite are used in order to have better heat shielding and color tone.
  • the total content (A + B) with the metal oxide particles (B) is in the range of 4.5 to 13.0% by mass with respect to the total mass of the resin-coated flame-retardant fiber yarn 1, and the first
  • the mass ratio (A / B) of the titanium dioxide particles to the composite metal oxide particles is particularly preferably in the range of 15 to 55.
  • the resin-coated flame-retardant fiber yarn 1 is a resin-coated flame-retardant fiber fabric 11
  • the first titanium dioxide particles (A) and the above-mentioned are used in order to have even more excellent heat shielding properties and color tone.
  • the total content (A + B) with the composite metal oxide particles (B) is in the range of 7.5 to 10.0% by mass with respect to the total mass of the resin-coated flame-retardant fiber yarn 1, and Most preferably, the mass ratio (A / B) of titanium dioxide particles 1 to the composite metal oxide particles is in the range of 15 to 55.
  • the surface of the first titanium dioxide particles is preferably coated with an oxide or hydroxide of at least one metal selected from the group consisting of aluminum, silicon, zirconium and zinc. Since the surface of the first titanium dioxide particles is coated with the metal oxide or hydroxide, the resin-coated flame-retardant fiber yarn 1 and the resin-coated flame-retardant fiber fabric 11 are compared to white. Even in the case where it is easy to absorb light and has the moderately dark color tone, the photocatalytic activity of the titanium dioxide particles can be suppressed, and the weather resistance of the resin coating layer 3 can be improved.
  • the resin coating layer 3 includes the second titanium dioxide particles
  • the first titanium dioxide particles (A), the composite metal oxide particles (B), and the second The total content (A + B + C) of titanium dioxide particles (C) in the range of 4.5 to 13.1% by mass with respect to the total mass of the resin-coated flame-retardant fiber yarn 1
  • the mass ratio (B / C) of the particles (B) to the second titanium dioxide particles (C) is in the range of 1-20.
  • the resin-coated flame-retardant fiber yarn 1 of the present embodiment has excellent heat-shielding properties and a moderately dark and calm color tone when used as the resin-coated flame-retardant fiber woven fabric 11, for a long period of time.
  • the aesthetics can be maintained and excellent weaving properties can be obtained.
  • the resin-coated flame-retardant fiber yarn 1 of the present embodiment is a resin-coated flame-retardant fiber fabric 11
  • the first titanium dioxide particles (A ), The composite metal oxide particles (B), and the second titanium dioxide particles (C) have a total content (A + B + C) of 4.5 to 4 based on the total mass of the resin-coated flame-retardant fiber yarn 1. 13.1% by mass, the mass ratio (A / B) of the first titanium dioxide particles to the composite metal oxide particles is in the range of 15 to 55, and the composite metal oxide particles ( The mass ratio (B / C) of B) to the second titanium dioxide particles (C) is preferably in the range of 1-20.
  • the resin-coated flame-retardant fiber yarn 1 of the present embodiment is a resin-coated flame-retardant fiber fabric 11
  • the first titanium dioxide particles ( The total content (A + B + C) of A), the composite metal oxide particles (B), and the second titanium dioxide particles (C) is 7.5 with respect to the total mass of the resin-coated flame-retardant fiber yarn 1.
  • the surface of the second titanium dioxide particles is preferably coated with an oxide or hydroxide of at least one metal selected from the group consisting of aluminum, silicon, zirconium and zinc. Since the surface of the second titanium dioxide particles is coated with the metal oxide or hydroxide, the resin-coated flame-retardant fiber yarn 1 and the resin-coated flame-retardant fiber fabric 11 are compared to white. Even in the case of easily absorbing light and having the moderately dark color tone, the photocatalytic activity of the titanium dioxide particles can be suppressed, and the weather resistance of the resin coating layer 3 can be improved.
  • the heat shielding property is preferably 50% or more, and more preferably 55% or more, as solar reflectance.
  • the moderately dark soothing color tone preferably has a lightness L * in the range of L * a * b * color system in the range of 50 to 75, more preferably in the range of 55 to 72.5. A range of 60 to 72 is particularly preferable.
  • the number average particle diameter and the content of each of the first titanium dioxide particles, the second titanium dioxide particles, and the composite metal oxide particles contained in the resin coating layer 3 are as follows. Is dissolved in various organic solvents such as tetrahydrofuran, and the resulting powder is separated using solutions with different specific gravity, or separated only into the desired particles using acid, base, molten alkali salt, etc. It can be measured using a particle size distribution measuring apparatus such as a laser diffraction type (for example, trade name: LS 230, manufactured by Beckman Coulter, Inc.).
  • a laser diffraction type for example, trade name: LS 230, manufactured by Beckman Coulter, Inc.
  • various dispersants such as alkyltrimethylammonium bromide, sodium polymetaphosphate, sodium pyrophosphate nonylphenocta (ethoxy) anol may be used as appropriate in order to prevent aggregation of the powder.
  • the resin coating layer 3 preferably includes a first resin coating layer 4 and a second resin coating layer 5 formed on the first resin coating layer 4.
  • both the first titanium dioxide particles and the composite metal oxide particles are included in the second resin coating layer 5.
  • the second titanium dioxide particles are used.
  • the 1st resin coating layer 4 exists between the flame retardant fiber yarn 2 and the 2nd resin coating layer 5, and improves the adhesiveness with respect to the flame retardant fiber yarn 2 of the 2nd resin coating layer 5 Has action.
  • the second resin coating layer 5 is composed of a vinyl chloride resin composition, a vinyl chloride-vinyl acetate copolymer resin composition, an ethylene-vinyl acetate copolymer composition, a polyethylene resin composition, and a polypropylene resin composition.
  • a vinyl chloride resin composition is formed of a vinyl chloride resin composition because it is excellent in weather resistance and antifouling properties.
  • the vinyl chloride resin composition contains 30% by mass or more, preferably 40% by mass or more of vinyl chloride resin, and contains various additives such as a plasticizer, a flame retardant, and a surfactant in addition to the vinyl chloride resin. You may go out.
  • the first resin coating layer 4 may be made of any resin as long as it has an effect of improving the adhesion of the second resin coating layer 5 to the flame retardant fiber yarn 2.
  • the second resin coating layer 5 is made of a vinyl chloride resin composition
  • it is preferably formed of a vinyl chloride-vinyl acetate copolymer resin because it has excellent adhesiveness with the vinyl chloride resin composition.
  • the first resin coating layer 4 is formed of any of the first titanium dioxide particles, the composite metal oxide particles, and the second titanium dioxide particles. It is preferably not contained, and more preferably a transparent resin coating layer containing no pigment.
  • a first resin solution containing a resin that forms the first resin-coated layer 4 is applied to the flame-retardant fiber yarn 2, and the excess The first resin coating layer 4 is formed by heating after squeezing the first resin solution.
  • a second resin solution containing a resin for forming the second resin coating layer 5 is applied to the flame-retardant fiber yarn 2 coated with the first resin coating layer 4, and the excess second The second resin coating layer 5 is formed by heating after squeezing the resin solution.
  • the first titanium dioxide particles and the composite metal oxide particles are uniformly dispersed together with the resin forming the second resin coating layer 5, and the second dioxide dioxide.
  • the second titanium dioxide particles are also uniformly dispersed.
  • the second resin solution may further contain additives such as a plasticizer, a flame retardant, a dispersant, an oil and fat, a stabilizer, a surfactant, and a pigment.
  • the resin-coated flame-retardant fiber yarn 1 in which the resin coating layer 3 composed of the first resin coating layer 4 and the second resin coating layer 5 is formed on the flame-retardant fiber yarn 2 can be obtained. it can.
  • the resin-coated flame-retardant fiber woven fabric 11 is obtained by weaving the resin-coated flame-retardant fiber yarn 1 as warp 1a and weft 1b using a loom such as a rapier loom. be able to.
  • the resin-coated flame-retardant fiber fabric 11 may be obtained by weaving a combination of a plurality of types of resin-coated flame-retardant fiber yarns 2.
  • the resin-coated flame-retardant fiber fabric 11 can obtain excellent design properties by weaving the resin-coated flame-retardant fiber yarns 2 of different colors in combination. Moreover, the resin-coated flame-retardant fiber fabric 11 can obtain further excellent design properties by including yarns having greatly different color tones.
  • the resin-coated flame-retardant fiber woven fabric 11 has, for example, a warp weaving density of 25 to 70 yarns / 25 mm and a weft yarn weaving density of 15 to 60 yarns / 25 mm, and has both excellent heat shielding properties and good mechanical strength. Therefore, it is preferable that the warp weave density is 40 to 60 yarns / 25 mm, and the weft yarn weave density is 30 to 45 yarns / 25 mm.
  • the resin-coated flame-retardant fiber fabric 11 preferably has a mass per unit area of 250 to 700 g / m 2 , for example.
  • the resin-coated flame-retardant fiber fabric 11 is excellent in dimensional stability by weaving the resin-coated flame-retardant fiber yarn 1 obtained by using the flame-retardant fiber yarn 2 made of glass fiber bundles, so that the solar radiation is obtained. It can be used in an environment where it is heated for a long time, and can be suitably used as various film materials used for blinds, tents and the like.
  • the resin-coated flame-retardant fiber woven fabric 11 is particularly useful for building materials such as blinds because it has excellent heat shielding properties, has a calm color tone, and can maintain aesthetics over a long period of time.
  • Example 1 In this example, first, 400 glass filaments having a diameter of 7 ⁇ m made of E glass were bundled as the flame-retardant fiber yarn 2 to prepare a glass fiber bundle having a mass of 45.0 tex. Next, while conveying the glass fiber bundle at a speed of 250 m / min, the first resin solution is passed through the glass fiber bundle by continuously passing through the tank containing the first resin solution. Impregnated. Here, in the first resin solution, 160 parts by mass of acetone as a solvent was mixed with 42.3 parts by mass of a vinyl chloride-vinyl acetate copolymer resin (manufactured by Kaneka Corporation, trade name: Kanevirak L-EY). Is.
  • a vinyl chloride-vinyl acetate copolymer resin manufactured by Kaneka Corporation, trade name: Kanevirak L-EY.
  • the glass fiber bundle impregnated with the first resin solution is squeezed by passing through a die, and then heated at 300 ° C. for 3 seconds to be coated with the first resin coating layer 4.
  • a fiber bundle was obtained.
  • the second resin solution is a chloride containing 110 parts by mass of a vinyl chloride resin (manufactured by Shin-Daiichi PVC Co., Ltd., trade name: ZEST P21), and 100 parts by mass of additives such as a plasticizer, a surfactant, and a pigment.
  • first titanium dioxide particles having a number average particle size of 1.0 ⁇ m (trade name: JR-1000, manufactured by Teika Co., Ltd.), and bismuth manganese composite metal oxide 0.25 mass% of product particles (manufactured by Nihongo Bix Co., Ltd., trade name: contained in TW-149) and second titanium dioxide particles having a number average particle size of 0.3 ⁇ m (manufactured by Nihongo Bix Co., Ltd.) (Trade name: contained in TW-149).
  • the surfaces of the first titanium dioxide particles and the second titanium dioxide particles are coated with alumina.
  • the glass fiber bundle coated with the first resin coating layer 4 impregnated with the second resin solution is squeezed by passing through a die, and then heated so that the mass becomes 129 tex, A resin-coated glass fiber bundle was obtained as the resin-coated flame-retardant fiber yarn 1 in which the second resin-coated layer 5 was formed on the first resin-coated layer 4.
  • the mass of the glass fiber bundle is 34.09 mass%
  • the mass of the first resin coating layer 4 is 0.01 mass%
  • the second mass is the second mass.
  • the mass of the resin coating layer 5 is 65.00% by mass.
  • Tables 1 and 2 show the compositions of the resin-coated glass fiber bundles obtained in this example.
  • the weaving property is evaluated when the resin-coated glass fiber bundle is woven with a rapier loom with a rotation speed of 200 rpm, when the yarn breakage per 5 m is one or more times, and when it is less than once did.
  • the results are shown in Table 3.
  • the resin-coated glass fiber bundle obtained in this example is plain woven as warp 1a and weft 1b under the conditions of warp weaving density 42/25 mm and weft weaving density 42/25 mm, and resin-coated flame-retardant fiber A resin-coated glass fiber fabric as the fabric 11 was obtained.
  • the void ratio of the resin-coated glass fiber fabric obtained in this example was 11%.
  • the solar reflectance and brightness L * was measured.
  • the resin sheet corresponds to the second resin coating layer 5 of the resin-coated glass fiber bundle obtained in this example, and the solar reflectance and brightness L * measured for the resin sheet are obtained in this example.
  • the solar reflectance and brightness L * measured for the resin-coated glass fiber woven fabric are almost the same.
  • the solar radiation rate was measured according to JIS R 3106 using a self-recording spectrophotometer (trade name: U-4000, manufactured by Hitachi High-Technologies Corporation).
  • the lightness L * was measured by a L * a * b * color system using a color difference meter (trade name: NR-11, manufactured by Nippon Denshoku Industries Co., Ltd.). The results are shown in Table 3.
  • Example 2 In this example, 86.32% by mass of the vinyl chloride resin composition, 12.99% by mass of the first titanium dioxide particles, bismuth manganese composite metal oxide particles (manufactured by Nihongo Bix Co., Ltd., trade name: TW-) A second titanium dioxide particle (contained in a product name: TW-147 manufactured by Nihongo Bix Co., Ltd.) 0.06% by mass.
  • a resin-coated glass fiber bundle as a resin-coated flame-retardant fiber yarn 2 was obtained in exactly the same manner as in Example 1 except that the resin solution was used. Tables 1 and 2 show the compositions of the resin-coated glass fiber bundles obtained in this example.
  • a resin-coated glass fiber fabric as a resin-coated flame-retardant fiber fabric 11 was obtained in exactly the same manner as in Example 1 except that the resin-coated glass fiber bundle obtained in this example was used.
  • the void ratio of the resin-coated glass fiber fabric obtained in this example was 11%.
  • Example 3 In this example, 85.66% by mass of the vinyl chloride resin composition, 12.99% by mass of the first titanium dioxide particles, bismuth manganese composite metal oxide particles (manufactured by Nihongo Bix Co., Ltd., trade name: TW-) 147% by mass) and 0.72% by mass of second titanium dioxide particles (manufactured by Nihongo Bix Co., Ltd., trade names: TW-147 and 1005).
  • a resin-coated glass fiber bundle as a resin-coated flame-retardant fiber yarn 2 was obtained in exactly the same manner as in Example 1 except that the second resin solution was used. Tables 1 and 2 show the compositions of the resin-coated glass fiber bundles obtained in this example.
  • a resin-coated glass fiber fabric as a resin-coated flame-retardant fiber fabric 11 was obtained in exactly the same manner as in Example 1 except that the resin-coated glass fiber bundle obtained in this example was used.
  • the void ratio of the resin-coated glass fiber fabric obtained in this example was 11%.
  • Example 4 83.94% by mass of the vinyl chloride resin composition, 15.75% by mass of the first titanium dioxide particles, bismuth manganese composite metal oxide particles (manufactured by Nihongo Bix Co., Ltd., trade name: TW-) 249% by mass) (contained in 149) and 0.6% by mass of second titanium dioxide particles (manufactured by Nihongo Bix Co., Ltd., trade name: TW-149).
  • a resin-coated glass fiber bundle as a resin-coated flame-retardant fiber yarn 2 was obtained in exactly the same manner as in Example 1 except that the resin solution was used. Tables 1 and 2 show the compositions of the resin-coated glass fiber bundles obtained in this example.
  • a resin-coated glass fiber fabric as a resin-coated flame-retardant fiber fabric 11 was obtained in exactly the same manner as in Example 1 except that the resin-coated glass fiber bundle obtained in this example was used.
  • the void ratio of the resin-coated glass fiber fabric obtained in this example was 11%.
  • Example 5 In this example, 93.79% by mass of the vinyl chloride resin composition, 5.90% by mass of the first titanium dioxide particles, bismuth manganese composite metal oxide particles (manufactured by Nihongo Bix Co., Ltd., trade name: TW-) 0.25% by mass) (contained in 149) and 0.06% by mass of second titanium dioxide particles (manufactured by Nihongo Bix Co., Ltd., trade name: TW-149).
  • a resin-coated glass fiber bundle as a resin-coated flame-retardant fiber yarn 2 was obtained in exactly the same manner as in Example 1 except that the resin solution was used. Tables 1 and 2 show the compositions of the resin-coated glass fiber bundles obtained in this example.
  • a resin-coated glass fiber fabric as a resin-coated flame-retardant fiber fabric 11 was obtained in exactly the same manner as in Example 1 except that the resin-coated glass fiber bundle obtained in this example was used.
  • the void ratio of the resin-coated glass fiber fabric obtained in this example was 11%.
  • a resin-coated glass fiber fabric as a resin-coated flame-retardant fiber fabric 11 was obtained in exactly the same manner as in Example 1 except that the resin-coated glass fiber bundle obtained in this comparative example was used.
  • the porosity of the resin-coated glass fiber woven fabric obtained in this comparative example was 11%.
  • a resin-coated glass fiber fabric as a resin-coated flame-retardant fiber fabric 11 was obtained in exactly the same manner as in Example 1 except that the resin-coated glass fiber bundle obtained in this comparative example was used.
  • the porosity of the resin-coated glass fiber woven fabric obtained in this comparative example was 11%.
  • a resin-coated glass fiber fabric as a resin-coated flame-retardant fiber fabric 11 was obtained in exactly the same manner as in Example 1 except that the resin-coated glass fiber bundle obtained in this comparative example was used.
  • the porosity of the resin-coated glass fiber woven fabric obtained in this comparative example was 11%.
  • the vinyl chloride resin composition 81.97% by mass, the first titanium dioxide particles 17.72% by mass, bismuth manganese composite metal oxide particles (manufactured by Nihongo Bix Co., Ltd., trade name: TW-) 0.25% by mass) (contained in 149) and 0.06% by mass of second titanium dioxide particles (manufactured by Nihongo Bix Co., Ltd., trade name: TW-149).
  • a resin-coated glass fiber bundle as a resin-coated flame-retardant fiber yarn 2 was obtained in exactly the same manner as in Example 1 except that the resin solution was used. Tables 1 and 2 show the compositions of the resin-coated glass fiber bundles obtained in this comparative example.
  • a resin-coated glass fiber fabric as a resin-coated flame-retardant fiber fabric 11 was obtained in exactly the same manner as in Example 1 except that the resin-coated glass fiber bundle obtained in this comparative example was used.
  • the porosity of the resin-coated glass fiber woven fabric obtained in this comparative example was 11%.
  • a resin-coated glass fiber fabric as a resin-coated flame-retardant fiber fabric 11 was obtained in exactly the same manner as in Example 1 except that the resin-coated glass fiber bundle obtained in this comparative example was used.
  • the porosity of the resin-coated glass fiber woven fabric obtained in this comparative example was 11%.
  • a resin-coated glass fiber fabric as a resin-coated flame-retardant fiber fabric 11 was obtained in exactly the same manner as in Example 1 except that the resin-coated glass fiber bundle obtained in this comparative example was used.
  • the porosity of the resin-coated glass fiber woven fabric obtained in this comparative example was 11%.
  • the total amount (A + B) of the first titanium dioxide particles (A) and the bismuth manganese composite metal oxide particles (B) contained in the second resin coating layer 5 is the resin-coated glass fiber.
  • the mass ratio (A / B) of the first titanium dioxide particles to the bismuth manganese composite metal oxide particles is in the range of 1.5 to 13.0% by mass with respect to the total mass of the bundle, and is 5 to 70. It is clear that the resin-coated glass fiber bundles of Examples 1 to 5 in the range have excellent weaving properties.
  • the resin-coated glass fiber fabrics obtained by weaving the resin-coated glass fiber bundles of Examples 1 to 5 have a solar reflectance of 50% or more, an excellent heat shielding property, and a lightness L * of 50. It is clear that it has a moderately dark and calm tone as a blind in the range of ⁇ 75.
  • the first titanium dioxide particles (A) and bismuth manganese contained in the second resin-coated layer 5 Resin obtained by weaving the resin-coated glass fiber bundle of Comparative Example 2 in which the total amount (A + B) with the composite metal oxide particles (B) is 1.44% by mass and less than 1.5% by mass It is clear that the coated glass fiber fabric has a solar reflectance of less than 50% and cannot obtain a sufficient heat shielding property.
  • the resin-coated glass fiber woven fabric obtained by weaving the resin-coated glass fiber bundle of Comparative Example 3 having a value of 3.12 of less than 5 and having a solar reflectance of less than 50% is sufficient. It is apparent that the heat shielding property cannot be obtained, and the lightness L * is less than 50, and the shade has an excessively dark tone.
  • Is 72, and the resin-coated glass fiber fabric obtained by weaving the resin-coated glass fiber bundle of Comparative Example 4 having a value exceeding 70 has a lightness L * exceeding 75 and excessively as a blind. It is clear that it has a bright color tone.
  • the resin-coated glass fiber fabric obtained by weaving the resin-coated glass fiber bundles of Examples 1 to 5 does not contain the first and second titanium dioxide particles in the second resin coating layer 5.
  • the resin-coated glass fiber fabric obtained by weaving the resin-coated glass fiber bundle of Comparative Example 6 containing only the bismuth-manganese composite metal oxide particles has a solar reflectance of less than 50% and has sufficient heat shielding properties. Obviously you can't.
  • SYMBOLS 1 Resin coated flame retardant fiber yarn, 2 ... Flame retardant fiber yarn, 3 ... Resin coating layer, 4 ... 1st resin coating layer, 5 ... 2nd resin coating layer, 11 ... Resin coated flame retardant fiber fabric.

Abstract

 樹脂被覆難燃性繊維織物としたときに、優れた遮熱性を備えると共に、落ち着いた色調を備え、長期に亘って美観を保持できる樹脂被覆難燃性繊維糸を提供する。 樹脂被覆難燃性繊維糸1は、難燃性繊維糸2を被覆する樹脂被覆層3を備える。樹脂被覆層3は、第1の二酸化チタン粒子(A)と、ビスマスマンガン複合金属酸化物、イットリウムマンガン複合金属酸化物、鉄クロム複合金属酸化物からなる群から選択される少なくとも1種の複合金属酸化物粒子(B)とを含む。第1の二酸化チタン粒子と複合金属酸化物粒子との合計含有量(A+B)は樹脂被覆難燃性繊維糸1の全質量に対して1.5~13.0質量%であり、第1の二酸化チタン粒子の複合金属酸化物粒子に対する質量比(A/B)の値は5~70である。

Description

樹脂被覆難燃性繊維糸及びそれを用いる樹脂被覆難燃性繊維織物
 本発明は、樹脂被覆難燃性繊維及びそれを用いる樹脂被覆難燃性繊維織物に関する。
 テント倉庫、中・大型テント、トラックの幌、日除けテント等に用いられる膜材、又はブラインドとして、樹脂被覆難燃性繊維織物が知られている。前記樹脂被覆難燃性繊維織物は樹脂被覆難燃性繊維糸を製織することにより得られ、例えば、樹脂被覆ガラス繊維束を製織してなる樹脂被覆ガラス繊維織物がある。
 前記樹脂被覆ガラス繊維束としては、ガラス繊維束を被覆する第1の樹脂被覆層と、第1の樹脂被覆層上に形成された第2の樹脂被覆層とを備え、第2の樹脂被覆層が顔料を含み、全体的に、又は、該ガラス繊維束の長さ方向に沿って部分的に着色されているものが知られている(例えば、特許文献1参照)。
 前記従来の樹脂被覆ガラス繊維束を製織してなる樹脂被覆ガラス繊維織物は、前記第2の樹脂被覆層の遮熱性が低いため、耐熱性ブラインドとして用いたときに十分な遮熱性を得ることができないという問題がある。
 一方、基布を被覆する樹脂層を備え、該樹脂層に重量平均粒子径が0.6~1.5μmの二酸化チタン粒子と、雲母粒子とを含む膜材料が知られている(例えば、特許文献2参照)。前記膜材料は、前記基布としてガラス繊維織物を用いることができるとされており、優れた遮熱性が得られるとされている。
 また、粒子径の異なる2種類の二酸化チタン粒子を配合することにより、遮熱性を備えるようにした合成樹脂製シートが知られている(例えば、特許文献3参照)。
特開2007-70749号公報 特開2009-279814号公報 特開2006-233139号公報
 そこで、前記樹脂被覆ガラス繊維束等の前記樹脂被覆難燃性繊維糸において、前記樹脂被覆層に、粒子径の異なる2種類の二酸化チタン粒子を特定の質量比で含有させることが考えられる。このとき、相対的に粒子径が大である第1の粒子としては入射光の赤外線を効果的に遮蔽する機能を備えるものを用い、相対的に粒子径が小である第2の粒子としては入射光中の可視光線を効果的に散乱させる機能を備えるものを用いる。
 このようにすると、前記第1の粒子と前記第2の粒子とを特定の質量比で用いることにより、前記樹脂被覆難燃性繊維糸を経糸及び緯糸として製織することにより得られた樹脂被覆難燃性繊維織物において、優れた遮熱性と共に優れた透光性を得ることができる。
 しかしながら、前記樹脂被覆難燃性繊維織物は二酸化チタンを多量に含むので、白色度が高く、新しいうちは眩しい印象を与える一方、設置環境によっては、経年変化により汚れや劣化黄変が目立ちやすくなり美観が損なわれるという不都合がある。
 本発明は、かかる不都合を解消して、樹脂被覆難燃性繊維織物としたときに、優れた遮熱性を備えると共に、落ち着いた色調を備え、長期に亘って美観を保持することができる樹脂被覆難燃性繊維糸を提供することを目的とする。
 かかる目的を達成するために、本発明は、難燃性繊維糸を被覆する樹脂被覆層を備える樹脂被覆難燃性繊維糸において、該樹脂被覆層は、個数平均粒子径0.6~1.5μmの範囲の第1の二酸化チタン粒子(A)と、ビスマスマンガン複合金属酸化物、イットリウムマンガン複合金属酸化物、鉄クロム複合金属酸化物からなる群から選択される少なくとも1種の複合金属酸化物粒子(B)とを含み、該第1の二酸化チタン粒子と該複合金属酸化物粒子との合計含有量(A+B)が該樹脂被覆難燃性繊維糸の全質量に対して1.5~13.0質量%の範囲にあり、該第1の二酸化チタン粒子の該複合金属酸化物粒子に対する質量比(A/B)の値が5~70の範囲にあることを特徴とする。
 前記第1の二酸化チタン粒子は、個数平均粒子径が0.6~1.5μmの範囲にあることにより、入射光中の赤外線を効率的に遮蔽する機能を備えている。また、前記複合金属酸化物は、通常、濃色系塗料において着色顔料として用いられている。前記着色顔料は、例えば、特開2010-174175号公報に記載がある。
 そこで、本発明の樹脂被覆難燃性繊維糸は、前記第1の二酸化チタン粒子と前記複合金属酸化物粒子との合計含有量(A+B)が、前記樹脂被覆難燃性繊維糸の全質量に対して前記範囲にあり、該第1の二酸化チタン粒子の該複合金属酸化物粒子に対する質量比(A/B)の値が前記範囲にあることにより、樹脂被覆難燃性繊維織物としたときに、優れた遮熱性を備えると共に、適度に暗い落ち着いた色調を備え、長期に亘って美観を保持することができる。
 前記第1の二酸化チタン粒子は、個数平均粒子径が0.6μm未満又は、1.5μmを超えるときには、入射光中の赤外線を遮蔽する機能を得ることができず、本発明の樹脂被覆難燃性繊維糸を樹脂被覆難燃性繊維織物としたときに遮熱性を得ることができない。
 また、前記第1の二酸化チタン粒子と前記複合金属酸化物粒子との合計含有量(A+B)が、前記樹脂被覆難燃性繊維糸の全質量に対して1.5質量%未満では、本発明の樹脂被覆難燃性繊維糸を樹脂被覆難燃性繊維織物としたときに遮熱性を得ることができない。一方、前記第1の二酸化チタン粒子と前記複合金属酸化物粒子との合計含有量(A+B)が、前記樹脂被覆難燃性繊維糸の全質量に対して13.0質量%を超えると、本発明の樹脂被覆難燃性繊維糸を製織することができない。
 また、前記第1の二酸化チタン粒子の前記複合金属酸化物粒子に対する質量比(A/B)の値が5未満であるときには、本発明の樹脂被覆難燃性繊維糸を樹脂被覆難燃性繊維織物としたときに遮熱性を得ることができず、色調が過度に明るくなって、長期に亘って美観を保持することができない。一方、前記第1の二酸化チタン粒子の前記複合金属酸化物粒子に対する質量比(A/B)の値が70を超えると、本発明の樹脂被覆難燃性繊維糸を樹脂被覆難燃性繊維織物としたときに、その色調が過度に暗くなる。
 また、本発明の樹脂被覆難燃性繊維糸においては、前記第1の二酸化チタン粒子と前記複合金属酸化物粒子との合計含有量(A+B)が、前記樹脂被覆難燃性繊維糸の全質量に対して4.5~13.0質量%の範囲にあることが好ましい。この結果、本発明の樹脂被覆難燃性繊維糸は、樹脂被覆難燃性繊維織物としたときに、より優れた遮熱性を備えることができる。
 また、本発明の樹脂被覆難燃性繊維糸においては、前記第1の二酸化チタン粒子の前記複合金属酸化物粒子に対する質量比(A/B)の値が15~55の範囲にあることが好ましい。この結果、本発明の樹脂被覆難燃性繊維糸は、樹脂被覆難燃性繊維織物としたときに、その色調を適度に暗くして落ち着いたものとすることができ、さらに長期に亘って美観を保持することができる。
 前記第1の二酸化チタン粒子の前記複合金属酸化物粒子に対する質量比(A/B)の値が15未満では、本発明の樹脂被覆難燃性繊維糸を樹脂被覆難燃性繊維織物としたときに、色調が明るくなって、長期に亘って美観を保持することができないことがある。また、前記第1の二酸化チタン粒子の前記複合金属酸化物粒子に対する質量比(A/B)の値が55を超えると、本発明の樹脂被覆難燃性繊維糸を樹脂被覆難燃性繊維織物としたときに、色調が暗くなる傾向がある。
 また、本発明の樹脂被覆難燃性繊維糸において、前記樹脂被覆層は、個数平均粒子径0.2~0.4μmの範囲の第2の二酸化チタン粒子(C)を含むことが好ましい。前記第2の二酸化チタン粒子は、個数平均粒子径が0.2~0.4μmの範囲にあることにより、入射光中の可視光線を効率的に散乱させる機能を備えている。
 そこで、本発明の樹脂被覆難燃性繊維糸は、前記樹脂被覆層に前記第1の二酸化チタン粒子と共に前記第2の二酸化チタン粒子を含むことにより、樹脂被覆難燃性繊維織物としたときに、その遮熱性を低下させることなく透光性を調整することができる。前記第2の二酸化チタン粒子は、個数平均粒子径が0.2μm未満又は、0.4μmを超えるときには、入射光中の可視光線を効率的に散乱させる機能を得ることができない。
 また、本発明の樹脂被覆難燃性繊維糸において、前記第2の二酸化チタン粒子を含むときには、第1の二酸化チタン粒子と該複合金属酸化物粒子と第2の二酸化チタン粒子との合計含有量(A+B+C)が、前記樹脂被覆難燃性繊維糸の全質量に対して4.5~13.1質量%の範囲にあることが好ましい。前記第1の二酸化チタン粒子と前記複合金属酸化物粒子と第2の二酸化チタン粒子との合計含有量(A+B+C)が、前記樹脂被覆難燃性繊維糸の全質量に対して前記範囲にあることにより、本発明の樹脂被覆難燃性繊維糸を樹脂被覆難燃性繊維織物としたときに、優れた遮熱性と透光性とを兼ね備えることができる。
 前記第1の二酸化チタン粒子と前記複合金属酸化物粒子と第2の二酸化チタン粒子との合計含有量(A+B+C)が、前記樹脂被覆難燃性繊維糸の全質量に対して4.5質量%未満では、本発明の樹脂被覆難燃性繊維糸を樹脂被覆難燃性繊維織物としたときに十分な遮熱性と透光性とを得ることができないことがある。一方、前記第1の二酸化チタン粒子と前記複合金属酸化物粒子と第2の二酸化チタン粒子との合計含有量(A+B+C)が、前記樹脂被覆難燃性繊維糸の全質量に対して13.1質量%を超えると、本発明の樹脂被覆難燃性繊維糸の製織性が低下することがある。
 また、本発明の樹脂被覆難燃性繊維糸において、前記第2の二酸化チタン粒子を含むときには、前記複合金属酸化物粒子の前記第2の二酸化チタン粒子に対する質量比(B/C)の値が1~20の範囲にあることが好ましい。前記複合金属酸化物粒子の前記第2の二酸化チタン粒子に対する質量比(B/C)の値が1未満のときには、本発明の樹脂被覆難燃性繊維糸を樹脂被覆難燃性繊維織物としたときに、色調が明るくなって、長期に亘って美観を保持することができないことがある。また、前記複合金属酸化物粒子の前記第2の二酸化チタン粒子に対する質量比(B/C)の値が20を超えると、本発明の樹脂被覆難燃性繊維糸を樹脂被覆難燃性繊維織物としたときに、色調が暗くなる傾向がある。
 本発明の樹脂被覆難燃性繊維織物は、前記本発明の樹脂被覆難燃性繊維糸を経糸又は緯糸の少なくとも一部に用いて製織してなることを特徴とする。本発明の樹脂被覆難燃性繊維織物は、前記本発明の樹脂被覆難燃性繊維糸を経糸又は緯糸の少なくとも一部に用いることにより、優れた遮熱性を備えると共に、適度に暗い落ち着いた色調を備え、長期に亘って美観を保持することができる。
本発明の樹脂被覆ガラス繊維束の構成を示す説明的断面図。 本発明の樹脂被覆ガラス繊維織物の構成を示す斜視図。
 次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。
 図1に示すように、本実施形態の樹脂被覆難燃性繊維糸1は、難燃性繊維糸2を被覆する樹脂被覆層3を備えている。樹脂被覆層3は、個数平均粒子径0.6~1.5μmの範囲の第1の二酸化チタン粒子と、複合金属酸化物粒子とを含み、さらに、個数平均粒子径0.2~0.4μmの範囲の第2の二酸化チタン粒子を含んでいてもよい。
 前記第1の二酸化チタン粒子は、入手が容易である点から、個数平均粒子径が0.8~1.2μmのものを用いることが好ましい。
 前記複合金属酸化物粒子としては、ビスマスマンガン複合金属酸化物、イットリウムマンガン複合金属酸化物、鉄クロム複合金属酸化物からなる群から選択される少なくとも1種の複合金属酸化物の粒子を用いることができる。前記複合金属酸化物粒子は、入手が容易である点から、特にビスマスマンガン複合金属酸化物を用いることが好ましい。
 本実施形態の樹脂被覆難燃性繊維糸1は、図2に示すように、樹脂被覆難燃性繊維糸1を経糸1a又は緯糸1bの少なくとも一部に用いて製織することにより、樹脂被覆難燃性繊維織物11とすることができる。樹脂被覆難燃性繊維織物11は、樹脂被覆難燃性繊維糸1を用いることにより防炎性を備えているので、火災安全性の観点から、ブラインド等の建材用途に好適に用いることができる。
 樹脂被覆難燃性繊維織物11は、難燃性、防炎性、遮熱性及び色調を損なわない範囲で、樹脂被覆難燃性繊維糸1に加えて樹脂被覆難燃性繊維糸1以外の糸を経糸1a又は緯糸1bの一部として含んでいてもよい。ただし、樹脂被覆難燃性繊維織物11は、優れた遮熱性を備えると共に、適度に暗い落ち着いた色調を備え、長期に亘って美観を保持することができることから、樹脂被覆難燃性繊維糸1を経糸1a及び緯糸1bの全てに用いて製織することが好ましい。
 難燃性繊維糸2を構成する難燃性繊維としては、不燃性である無機繊維又は、難燃性試験法JIS K7201A-1法に準拠したLOI(Limited Oxygen Index)が26以上である有機繊維を用いることが好ましい。前記難燃性繊維として、ガラス繊維、炭素繊維、アラミド繊維、ポリアリレート繊維、ポリエーテルケトン繊維、ポリ塩化ビニル繊維、ポリ塩化ビニリデン繊維、ポリイミド繊維、ポリクラール繊維、難燃性ナイロン繊維、難燃性ポリエステル繊維、難燃性アクリル繊維、難燃性ポリプロピレン繊維、難燃性ポリエチレン繊維、難燃性ポリ乳酸繊維、難燃性レーヨン繊維、難燃性綿繊維、難燃性ウール等を挙げることができる。前記難燃性繊維は、強度の点からガラス繊維、炭素繊維、アラミド繊維のいずれかであることが好ましく、不燃性であり、線膨張係数が低く寸法安定性に優れ、かつ入手が容易である点からガラス繊維であることが特に好ましい。
 難燃性繊維糸2は、前記難燃性繊維を複数混紡したものであってもよく、前記難燃性繊維と非難燃性繊維とを混在させてLOIを26以上としたものであってもよい。
 難燃性繊維糸2がガラス繊維からなる場合、難燃性繊維糸2は直径3~9μmのガラスフィラメントを200~1600本集束して形成されたガラス繊維束からなり、20~70texの質量を備えていることが好ましい。前記ガラス繊維束は、良好な機械的強度、優れた外観及び優れた遮熱性を兼ね備えるために、樹脂被覆難燃性繊維糸1の全質量に対し、25~45質量%の範囲の質量を備えることが好ましい。前記ガラス繊維束は、さらに良好な機械的強度を備えるために、樹脂被覆難燃性繊維糸1の全質量に対し30~40質量%の範囲の質量を備えることが好ましい。
 また、前記ガラス繊維束は、入手が容易である点からはEガラス製であることが好ましく、機械的強度及び熱に対する寸法安定性の点からはTガラス製であることが好ましい。尚、Eガラスの線膨張係数は、5.6×10-6/Kであり、Tガラスの線膨張係数は、2.8×10-6/Kである。
 次に、樹脂被覆層3は、前記第2の二酸化チタン粒子を含まない場合には、前記第1の二酸化チタン粒子(A)と前記複合金属酸化物粒子(B)との合計含有量(A+B)が、樹脂被覆難燃性繊維糸1の全質量に対して1.5~13.0質量%の範囲にあり、該第1の二酸化チタン粒子の該複合金属酸化物粒子に対する質量比(A/B)の値が5~70の範囲にある。この結果、本実施形態の樹脂被覆難燃性繊維糸1は、樹脂被覆難燃性繊維織物11としたときに、優れた遮熱性を備えると共に、適度に暗い落ち着いた色調を備え、長期に亘って美観を保持することができ、優れた製織性を得ることができる。
 ここで、樹脂被覆難燃性繊維糸1は、樹脂被覆難燃性繊維織物11としたときにより優れた遮熱性を得るために、前記第1の二酸化チタン粒子(A)と前記複合金属酸化物粒子(B)との合計含有量(A+B)が、樹脂被覆難燃性繊維糸1の全質量に対して4.5~13.0質量%の範囲にあることが好ましい。また、樹脂被覆難燃性繊維糸1は、樹脂被覆難燃性繊維織物11としたときにより遮熱性と色調とのバランスを得るために、前記第1の二酸化チタン粒子(A)と前記複合金属酸化物粒子(B)との合計含有量(A+B)が、樹脂被覆難燃性繊維糸1の全質量に対して7.5~10.0質量%であることがより好ましい。一方、樹脂被覆難燃性繊維糸1は、樹脂被覆難燃性繊維織物11としたときにより好ましい色調を得るために、前記第1の二酸化チタン粒子の前記複合金属酸化物粒子に対する質量比(A/B)の値が、15~55の範囲にあることが好ましい。
 さらに、樹脂被覆難燃性繊維糸1は、樹脂被覆難燃性繊維織物11としたときに、より優れた遮熱性及び色調を兼ね備えるために、前記第1の二酸化チタン粒子(A)と前記複合金属酸化物粒子(B)との合計含有量(A+B)が、樹脂被覆難燃性繊維糸1の全質量に対して4.5~13.0質量%の範囲にあり、かつ、前記第1の二酸化チタン粒子の前記複合金属酸化物粒子に対する質量比(A/B)の値が15~55の範囲にあることが特に好ましい。また、樹脂被覆難燃性繊維糸1は、樹脂被覆難燃性繊維織物11としたときに、より一層優れた遮熱性及び色調を兼ね備えるために、前記第1の二酸化チタン粒子(A)と前記複合金属酸化物粒子(B)との合計含有量(A+B)が、樹脂被覆難燃性繊維糸1の全質量に対して7.5~10.0質量%の範囲にあり、かつ、前記第1の二酸化チタン粒子の前記複合金属酸化物粒子に対する質量比(A/B)の値が15~55の範囲にあることが最も好ましい。
 前記第1の二酸化チタン粒子の表面は、アルミニウム、ケイ素、ジルコニウム及び亜鉛からなる群から選択される少なくとも一種の金属の酸化物又は水酸化物で被覆されていることが好ましい。前記第1の二酸化チタン粒子の表面が、前記金属の酸化物又は水酸化物で被覆されていることにより、樹脂被覆難燃性繊維糸1及び樹脂被覆難燃性繊維織物11が、白色に比べて光を吸収しやすく前記適度に暗い落ち着いた色調を備える場合であっても、該二酸化チタン粒子の光触媒活性を抑制し、樹脂被覆層3の耐候性を向上させることができる。
 また、樹脂被覆層3は、前記第2の二酸化チタン粒子を含む場合には、前記条件に加え、前記第1の二酸化チタン粒子(A)と前記複合金属酸化物粒子(B)と前記第2の二酸化チタン粒子(C)との合計含有量(A+B+C)が、樹脂被覆難燃性繊維糸1の全質量に対して4.5~13.1質量%の範囲にあり、前記複合金属酸化物粒子(B)の前記第2の二酸化チタン粒子(C)に対する質量比(B/C)の値が1~20の範囲にある。
 この結果、本実施形態の樹脂被覆難燃性繊維糸1は、樹脂被覆難燃性繊維織物11としたときに、優れた遮熱性を備えると共に、適度に暗い落ち着いた色調を備え、長期に亘って美観を保持することができ、優れた製織性を得ることができる。
 また、本実施形態の樹脂被覆難燃性繊維糸1は、樹脂被覆難燃性繊維織物11としたときに、より優れた遮熱性及び色調を兼ね備えるために、前記第1の二酸化チタン粒子(A)と前記複合金属酸化物粒子(B)と前記第2の二酸化チタン粒子(C)との合計含有量(A+B+C)が、樹脂被覆難燃性繊維糸1の全質量に対して4.5~13.1質量%の範囲にあり、前記第1の二酸化チタン粒子の該複合金属酸化物粒子に対する質量比(A/B)の値が15~55の範囲にあり、前記複合金属酸化物粒子(B)の前記第2の二酸化チタン粒子(C)に対する質量比(B/C)の値が1~20の範囲にあることが好ましい。
 また、本実施形態の樹脂被覆難燃性繊維糸1は、樹脂被覆難燃性繊維織物11としたときに、より一層優れた遮熱性及び色調を兼ね備えるために、前記第1の二酸化チタン粒子(A)と前記複合金属酸化物粒子(B)と前記第2の二酸化チタン粒子(C)との合計含有量(A+B+C)が、樹脂被覆難燃性繊維糸1の全質量に対して7.5~10.1質量%の範囲にあり、前記第1の二酸化チタン粒子の該複合金属酸化物粒子に対する質量比(A/B)の値が15~55の範囲にあり、前記複合金属酸化物粒子(B)の前記第2の二酸化チタン粒子(C)に対する質量比(B/C)の値が1~20の範囲にあることがさらに好ましい。
 前記第2の二酸化チタン粒子の表面は、アルミニウム、ケイ素、ジルコニウム及び亜鉛からなる群から選択される少なくとも一種の金属の酸化物又は水酸化物で被覆されていることが好ましい。前記第2の二酸化チタン粒子の表面が、前記金属の酸化物又は水酸化物で被覆されていることにより、樹脂被覆難燃性繊維糸1及び樹脂被覆難燃性繊維織物11が、白色に比べて光を吸収しやすく前記適度に暗い落ち着いた色調を備える場合であっても、二酸化チタン粒子の光触媒活性を抑制し、樹脂被覆層3の耐候性を向上させることができる。
 ここで、前記遮熱性は、日射反射率として50%以上であることが好ましく、55%以上であることがさらに好ましい。また、前記適度に暗い落ち着いた色調は、L表色系による明度Lが50~75の範囲にあることが好ましく、55~72.5の範囲にあることがさらに好ましく、60~72の範囲にあることが特に好ましい。
 尚、樹脂被覆層3中に含まれる前記第1の二酸化チタン粒子、前記第2の二酸化チタン粒子及び、前記複合金属酸化物粒子のそれぞれの個数平均粒子径及び含有量は、前記樹脂被覆層3をテトラヒドロフラン等の各種有機溶剤に溶解したのち、得られた粉体を、比重の異なる溶液を用いて分離し、又は、酸、塩基、溶融アルカリ塩等を用いて、目的とする粒子のみに分離し、レーザー回折式等の粒度分布測定装置(例えば、ベックマン・コールター社製、商品名:LS 230)を用いて測定することができる。前記粒度分布測定においては、前記粉体の凝集を防ぐためにアルキルトリメチルアンモニウムブロマイド、ポリメタリン酸ナトリウム、ピロリン酸ナトリウムノニルフェニオクタ(エトキシ)アノール等の種々の分散剤を適宜用いてもよい。
 樹脂被覆層3は、図1に示すように、第1の樹脂被覆層4と、第1の樹脂被覆層4の上に形成された第2の樹脂被覆層5とを備えることが好ましい。この場合、前記第1の二酸化チタン粒子及び前記複合金属酸化物粒子はいずれも第2の樹脂被覆層5に含まれ、前記第2の二酸化チタン粒子を用いる場合には該第2の二酸化チタン粒子も第2の樹脂被覆層5に含まれる。そして、第1の樹脂被覆層4は、難燃性繊維糸2と第2の樹脂被覆層5との間にあって、第2の樹脂被覆層5の難燃性繊維糸2に対する接着性を向上させる作用を備える。
 前記第2の樹脂被覆層5は、塩化ビニル樹脂組成物、塩化ビニル-酢酸ビニル共重合体樹脂組成物、エチレン-酢酸ビニル共重合体組成物、ポリエチレン樹脂組成物及びポリプロピレン樹脂組成物からなる群から選ばれる樹脂組成物で形成されることが好ましく、耐候性及び防汚性に優れることから、塩化ビニル樹脂組成物により形成されることがさらに好ましい。ここで、塩化ビニル樹脂組成物は、塩化ビニル樹脂を30質量%以上、好ましくは40質量%以上含み、塩化ビニル樹脂の他に、可塑剤、難燃剤、界面活性剤等の各種添加物を含んでいてもよい。
 第1の樹脂被覆層4は、第2の樹脂被覆層5の難燃性繊維糸2に対する接着性を向上させる作用を備えるものであればどのような樹脂からなるものであってもよいが、第2の樹脂被覆層5が塩化ビニル樹脂組成物からなる場合には、該塩化ビニル樹脂組成物との接着性に優れることから、塩化ビニル-酢酸ビニル共重合体樹脂により形成されることが好ましい。また、難燃性繊維糸2との接着性を高めるために、第1の樹脂被覆層4は前記第1の二酸化チタン粒子、前記複合金属酸化物粒子及び前記第2の二酸化チタン粒子のいずれも含まないことが好ましく、顔料を全く含まない透明な樹脂被覆層であることがさらに好ましい。
 本実施形態の樹脂被覆難燃性繊維糸1を製造するときには、まず、難燃性繊維糸2に第1の樹脂被覆層4を形成する樹脂を含む第1の樹脂溶液を塗工し、余分な該第1の樹脂溶液を絞液したのち加熱することにより、第1の樹脂被覆層4を形成する。次に、第1の樹脂被覆層4により被覆された難燃性繊維糸2に第2の樹脂被覆層5を形成する樹脂を含む第2の樹脂溶液を塗工し、余分な該第2の樹脂溶液を絞液したのち加熱することにより、第2の樹脂被覆層5を形成する。
 ここで、第2の樹脂溶液は、第2の樹脂被覆層5を形成する樹脂と共に、前記第1の二酸化チタン粒子及び前記複合金属酸化物粒子が均一に分散されており、前記第2の二酸化チタン粒子を用いる場合には該第2の二酸化チタン粒子も均一に分散されている。また、第2の樹脂溶液は、さらに可塑剤、難燃剤、分散剤、油脂、安定剤、界面活性剤、顔料等の添加剤を含んでいてもよい。
 この結果、難燃性繊維糸2上に、第1の樹脂被覆層4と第2の樹脂被覆層5とからなる樹脂被覆層3が形成された樹脂被覆難燃性繊維糸1を得ることができる。
 本実施形態では、図2に示すように、樹脂被覆難燃性繊維糸1を経糸1a及び緯糸1bとして、レピア織機等の織機を用いて製織することにより、樹脂被覆難燃性繊維織物11得ることができる。樹脂被覆難燃性繊維織物11は、複数種の樹脂被覆難燃性繊維糸2を組み合わせて製織して得られたものであってもよい。
 樹脂被覆難燃性繊維織物11は、異なる色調の樹脂被覆難燃性繊維糸2を組み合わせて製織することにより、優れた意匠性を得ることができる。また、樹脂被覆難燃性繊維織物11は、色調の大きく異なる糸が含まれることにより、さらに優れた意匠性を得ることができる。
 樹脂被覆難燃性繊維織物11は、例えば、経糸の織密度が25~70本/25mm、緯糸の織密度が15~60本/25mmであり、優れた遮熱性及び良好な機械的強度を兼ね備えるために、経糸の織密度が40~60本/25mm、緯糸の織密度が30~45本/25mmであることが好ましい。また、樹脂被覆難燃性繊維織物11は、例えば、単位面積あたりの質量が、250~700g/mであることが好ましい。
 樹脂被覆難燃性繊維織物11は、ガラス繊維束からなる難燃性繊維糸2を用いて得られた樹脂被覆難燃性繊維糸1を製織してなることにより、寸法安定性に優れるので日射による長時間の加熱を受ける環境下での使用が可能であり、ブラインド及びテント等に用いられる各種の膜材として好適に用いることができる。樹脂被覆難燃性繊維織物11は、優れた遮熱性を備えると共に、落ち着いた色調を備え、長期に亘って美観を保持することができることから、ブラインド等の建材用途に特に有用である。
 次に、実施例及び比較例を示す。
 〔実施例1〕
 本実施例では、まず、難燃性繊維糸2として、Eガラス製の直径7μmのガラスフィラメントを400本集束し、45.0texの質量のガラス繊維束を準備した。次に、前記ガラス繊維束を250m/分の速度で搬送しながら、第1の樹脂溶液が収容されている槽内を連続的に通過させることにより、該ガラス繊維束に第1の樹脂溶液を含浸させた。ここで、第1の樹脂溶液は、溶媒としてのアセトン160質量部に、塩化ビニル-酢酸ビニル共重合体樹脂(株式会社カネカ製、商品名:カネビラックL-EY)42.3質量部を混合したものである。
 次に、第1の樹脂溶液を含浸させた前記ガラス繊維束を、ダイスに通過させることにより絞液した後、300℃で3秒間加熱して、第1の樹脂被覆層4で被覆されたガラス繊維束を得た。
 次に、第1の樹脂被覆層4で被覆された前記ガラス繊維束を250m/分の速度で搬送しながら、第2の樹脂溶液が収容されている槽内を連続的に通過させることにより、第1の樹脂被覆層4で被覆された前記ガラス繊維束に第2の樹脂溶液を含浸させた。ここで、第2の樹脂溶液は、塩化ビニル樹脂(新第一塩ビ株式会社製、商品名:ZEST P21)110質量部、可塑剤、界面活性剤、顔料等の添加剤100質量部からなる塩化ビニル樹脂組成物86.70質量%と、個数平均粒子径1.0μmの第1の二酸化チタン粒子(テイカ株式会社製、商品名:JR-1000)12.99質量%と、ビスマスマンガン複合金属酸化物粒子(日弘ビックス株式会社製、商品名:TW-149中に含有される)0.25質量%と、個数平均粒子径0.3μmの第2の二酸化チタン粒子(日弘ビックス株式会社製、商品名:TW-149中に含有される)0.06質量%とからなる。尚、前記第1の二酸化チタン粒子及び前記第2の二酸化チタン粒子の表面はアルミナで被覆されている。
 次に、第2の樹脂溶液を含浸させた第1の樹脂被覆層4で被覆されたガラス繊維束を、ダイスに通過させることにより絞液した後、質量が129texになるように加熱して、第1の樹脂被覆層4上に第2の樹脂被覆層5が形成された樹脂被覆難燃性繊維糸1としての樹脂被覆ガラス繊維束を得た。本実施例で得られた樹脂被覆ガラス繊維束は、その全質量に対し、ガラス繊維束の質量が34.09質量%、第1の樹脂被覆層4の質量が0.01質量%、第2の樹脂被覆層5の質量が65.00質量%となっている。本実施例で得られた樹脂被覆ガラス繊維束の組成を表1、2に示す。
 次に、本実施例で得られた樹脂被覆ガラス繊維束について、製織性を評価した。
 前記製織性は、前記樹脂被覆ガラス繊維束を、回転数200rpmのレピア織機で製織した際に、5m当たりの糸切れが1回以上である場合を×、1回未満である場合を○として評価した。結果を表3に示す。
 次に、本実施例で得られた樹脂被覆ガラス繊維束を経糸1a及び緯糸1bとして、縦糸織密度42本/25mm、緯糸織密度42本/25mmの条件で平織りし、樹脂被覆難燃性繊維織物11としての樹脂被覆ガラス繊維織物を得た。本実施例で得られた樹脂被覆ガラス繊維織物の空隙率は11%であった。
 次に、前記第2の樹脂溶液を板ガラス上に0.5mmの厚さとなるように流延し、180℃の温度で10分間加熱することにより製造した樹脂シートについて、日射反射率及び明度Lを測定した。前記樹脂シートは本実施例で得られた樹脂被覆ガラス繊維束の第2の樹脂被覆層5に相当し、該樹脂シートについて測定された日射反射率及び明度Lは、本実施例で得られた樹脂被覆ガラス繊維織物について測定された日射反射率及び明度Lとほぼ同等である。
 前記日射率は、自記分光光度計(株式会社日立ハイテクノロジーズ製、商品名:U-4000)を用い、JIS R 3106に準拠して測定した。また、前記明度Lは、色差計(日本電色工業株式会社製、商品名:NR-11)を用い、L表色系により測定した。結果を表3に示す。
 〔実施例2〕
 本実施例では、塩化ビニル樹脂組成物86.32質量%と、第1の二酸化チタン粒子12.99質量%と、ビスマスマンガン複合金属酸化物粒子(日弘ビックス株式会社製、商品名:TW-147中に含有される)0.63質量%と、第2の二酸化チタン粒子(日弘ビックス株式会社製、商品名:TW-147中に含有される)0.06質量%とからなる第2の樹脂溶液を用いた以外は、実施例1と全く同一にして、樹脂被覆難燃性繊維糸2としての樹脂被覆ガラス繊維束を得た。本実施例で得られた樹脂被覆ガラス繊維束の組成を表1、2に示す。
 次に、本実施例で得られた樹脂被覆ガラス繊維束について、実施例1と全く同一にして製織性を評価した。結果を表3に示す。
 次に、本実施例で得られた樹脂被覆ガラス繊維束を用いた以外は、実施例1と全く同一にして樹脂被覆難燃性繊維織物11としての樹脂被覆ガラス繊維織物を得た。本実施例で得られた樹脂被覆ガラス繊維織物の空隙率は11%であった。
 次に、本実施例で得られた樹脂被覆ガラス繊維織物について、実施例1と全く同一にして日射反射率及び明度Lを評価した。結果を表3に示す。
 〔実施例3〕
 本実施例では、塩化ビニル樹脂組成物85.66質量%と、第1の二酸化チタン粒子12.99質量%と、ビスマスマンガン複合金属酸化物粒子(日弘ビックス株式会社製、商品名:TW-147中に含有される)0.63質量%と、第2の二酸化チタン粒子(日弘ビックス株式会社製、商品名:TW-147及び1005中に含有される)0.72質量%とからなる第2の樹脂溶液を用いた以外は、実施例1と全く同一にして、樹脂被覆難燃性繊維糸2としての樹脂被覆ガラス繊維束を得た。本実施例で得られた樹脂被覆ガラス繊維束の組成を表1、2に示す。
 次に、本実施例で得られた樹脂被覆ガラス繊維束について、実施例1と全く同一にして製織性を評価した。結果を表3に示す。
 次に、本実施例で得られた樹脂被覆ガラス繊維束を用いた以外は、実施例1と全く同一にして樹脂被覆難燃性繊維織物11としての樹脂被覆ガラス繊維織物を得た。本実施例で得られた樹脂被覆ガラス繊維織物の空隙率は11%であった。
 次に、本実施例で得られた樹脂被覆ガラス繊維織物について、実施例1と全く同一にして日射反射率及び明度Lを評価した。結果を表3に示す。
 〔実施例4〕
 本実施例では、塩化ビニル樹脂組成物83.94質量%と、第1の二酸化チタン粒子15.75質量%と、ビスマスマンガン複合金属酸化物粒子(日弘ビックス株式会社製、商品名:TW-149中に含有される)0.25質量%と、第2の二酸化チタン粒子(日弘ビックス株式会社製、商品名:TW-149中に含有される)0.6質量%とからなる第2の樹脂溶液を用いた以外は、実施例1と全く同一にして、樹脂被覆難燃性繊維糸2としての樹脂被覆ガラス繊維束を得た。本実施例で得られた樹脂被覆ガラス繊維束の組成を表1、2に示す。
 次に、本実施例で得られた樹脂被覆ガラス繊維束について、実施例1と全く同一にして製織性を評価した。結果を表3に示す。
 次に、本実施例で得られた樹脂被覆ガラス繊維束を用いた以外は、実施例1と全く同一にして樹脂被覆難燃性繊維織物11としての樹脂被覆ガラス繊維織物を得た。本実施例で得られた樹脂被覆ガラス繊維織物の空隙率は11%であった。
 次に、本実施例で得られた樹脂被覆ガラス繊維織物について、実施例1と全く同一にして日射反射率及び明度Lを評価した。結果を表3に示す。
 〔実施例5〕
 本実施例では、塩化ビニル樹脂組成物93.79質量%と、第1の二酸化チタン粒子5.90質量%と、ビスマスマンガン複合金属酸化物粒子(日弘ビックス株式会社製、商品名:TW-149中に含有される)0.25質量%と、第2の二酸化チタン粒子(日弘ビックス株式会社製、商品名:TW-149中に含有される)0.06質量%とからなる第2の樹脂溶液を用いた以外は、実施例1と全く同一にして、樹脂被覆難燃性繊維糸2としての樹脂被覆ガラス繊維束を得た。本実施例で得られた樹脂被覆ガラス繊維束の組成を表1、2に示す。
 次に、本実施例で得られた樹脂被覆ガラス繊維束について、実施例1と全く同一にして製織性を評価した。結果を表3に示す。
 次に、本実施例で得られた樹脂被覆ガラス繊維束を用いた以外は、実施例1と全く同一にして樹脂被覆難燃性繊維織物11としての樹脂被覆ガラス繊維織物を得た。本実施例で得られた樹脂被覆ガラス繊維織物の空隙率は11%であった。
 次に、本実施例で得られた樹脂被覆ガラス繊維織物について、実施例1と全く同一にして日射反射率及び明度Lを評価した。結果を表3に示す。
 〔比較例1〕
 本比較例では、塩化ビニル樹脂組成物79.62質量%と、第1の二酸化チタン粒子19.69質量%と、ビスマスマンガン複合金属酸化物粒子(日弘ビックス株式会社製、商品名:TW-147中に含有される)0.63質量%と、第2の二酸化チタン粒子(日弘ビックス株式会社製、商品名:TW-147中に含有される)0.06質量%とからなる第2の樹脂溶液を用いた以外は、実施例1と全く同一にして、樹脂被覆難燃性繊維糸2としての樹脂被覆ガラス繊維束を得た。本比較例で得られた樹脂被覆ガラス繊維束の組成を表1、2に示す。
 次に、本比較例で得られた樹脂被覆ガラス繊維束について、実施例1と全く同一にして製織性を評価した。結果を表3に示す。
 次に、本比較例で得られた樹脂被覆ガラス繊維束を用いた以外は、実施例1と全く同一にして樹脂被覆難燃性繊維織物11としての樹脂被覆ガラス繊維織物を得た。本比較例で得られた樹脂被覆ガラス繊維織物の空隙率は11%であった。
 次に、本比較例で得られた樹脂被覆ガラス繊維織物について、実施例1と全く同一にして日射反射率及び明度Lを評価した。結果を表3に示す。
 〔比較例2〕
 本比較例では、塩化ビニル樹脂組成物86.8質量%と、第1の二酸化チタン粒子1.97質量%と、ビスマスマンガン複合金属酸化物粒子(日弘ビックス株式会社製、商品名:TW-149中に含有される)0.25質量%と、第2の二酸化チタン粒子(日弘ビックス株式会社製、商品名:TW-149中に含有される)0.06質量%とからなる第2の樹脂溶液を用いた以外は、実施例1と全く同一にして、樹脂被覆難燃性繊維糸2としての樹脂被覆ガラス繊維束を得た。本比較例で得られた樹脂被覆ガラス繊維束の組成を表1、2に示す。
 次に、本比較例で得られた樹脂被覆ガラス繊維束について、実施例1と全く同一にして製織性を評価した。結果を表3に示す。
 次に、本比較例で得られた樹脂被覆ガラス繊維束を用いた以外は、実施例1と全く同一にして樹脂被覆難燃性繊維織物11としての樹脂被覆ガラス繊維織物を得た。本比較例で得られた樹脂被覆ガラス繊維織物の空隙率は11%であった。
 次に、本比較例で得られた樹脂被覆ガラス繊維織物について、実施例1と全く同一にして日射反射率及び明度Lを評価した。結果を表3に示す。
 〔比較例3〕
 本比較例では、塩化ビニル樹脂組成物97.34質量%と、第1の二酸化チタン粒子1.97質量%と、ビスマスマンガン複合金属酸化物粒子(日弘ビックス株式会社製、商品名:TW-147中に含有される)0.63質量%と、第2の二酸化チタン粒子(日弘ビックス株式会社製、商品名:TW-147中に含有される)0.06質量%とからなる第2の樹脂溶液を用いた以外は、実施例1と全く同一にして、樹脂被覆難燃性繊維糸2としての樹脂被覆ガラス繊維束を得た。本比較例で得られた樹脂被覆ガラス繊維束の組成を表1、2に示す。
 次に、本比較例で得られた樹脂被覆ガラス繊維束について、実施例1と全く同一にして製織性を評価した。結果を表3に示す。
 次に、本比較例で得られた樹脂被覆ガラス繊維束を用いた以外は、実施例1と全く同一にして樹脂被覆難燃性繊維織物11としての樹脂被覆ガラス繊維織物を得た。本比較例で得られた樹脂被覆ガラス繊維織物の空隙率は11%であった。
 次に、本比較例で得られた樹脂被覆ガラス繊維織物について、実施例1と全く同一にして日射反射率及び明度Lを評価した。結果を表3に示す。
 〔比較例4〕
 本比較例では、塩化ビニル樹脂組成物81.97質量%と、第1の二酸化チタン粒子17.72質量%と、ビスマスマンガン複合金属酸化物粒子(日弘ビックス株式会社製、商品名:TW-149中に含有される)0.25質量%と、第2の二酸化チタン粒子(日弘ビックス株式会社製、商品名:TW-149中に含有される)0.06質量%とからなる第2の樹脂溶液を用いた以外は、実施例1と全く同一にして、樹脂被覆難燃性繊維糸2としての樹脂被覆ガラス繊維束を得た。本比較例で得られた樹脂被覆ガラス繊維束の組成を表1、2に示す。
 次に、本比較例で得られた樹脂被覆ガラス繊維束について、実施例1と全く同一にして製織性を評価した。結果を表3に示す。
 次に、本比較例で得られた樹脂被覆ガラス繊維束を用いた以外は、実施例1と全く同一にして樹脂被覆難燃性繊維織物11としての樹脂被覆ガラス繊維織物を得た。本比較例で得られた樹脂被覆ガラス繊維織物の空隙率は11%であった。
 次に、本比較例で得られた樹脂被覆ガラス繊維織物について、実施例1と全く同一にして日射反射率及び明度Lを評価した。結果を表3に示す。
 〔比較例5〕
 本比較例では、塩化ビニル樹脂組成物86.70質量%と、第1の二酸化チタン粒子12.99質量%と、カーボンブラック(日弘ビックス株式会社製、商品名:1075中に含有される)0.25質量%と、第2の二酸化チタン粒子(日弘ビックス株式会社製、商品名:1005中に含有される)0.06質量%とからなる第2の樹脂溶液を用いた以外は、実施例1と全く同一にして、樹脂被覆難燃性繊維糸2としての樹脂被覆ガラス繊維束を得た。本比較例で得られた樹脂被覆ガラス繊維束の組成を表1、2に示す。
 次に、本比較例で得られた樹脂被覆ガラス繊維束について、実施例1と全く同一にして製織性を評価した。結果を表3に示す。
 次に、本比較例で得られた樹脂被覆ガラス繊維束を用いた以外は、実施例1と全く同一にして樹脂被覆難燃性繊維織物11としての樹脂被覆ガラス繊維織物を得た。本比較例で得られた樹脂被覆ガラス繊維織物の空隙率は11%であった。
 次に、本比較例で得られた樹脂被覆ガラス繊維織物について、実施例1と全く同一にして日射反射率及び明度Lを評価した。結果を表3に示す。
 〔比較例6〕
 本比較例では、塩化ビニル樹脂組成物99.94質量%と、ビスマスマンガン複合金属酸化物粒子(日弘ビックス株式会社製、商品名:TW-147中に含有される)0.06質量%とからなり、第1の二酸化チタン粒子及び第2の二酸化チタン粒子を全く含まない第2の樹脂溶液を用いた以外は、実施例1と全く同一にして、樹脂被覆難燃性繊維糸2としての樹脂被覆ガラス繊維束を得た。本比較例で得られた樹脂被覆ガラス繊維束の組成を表1、2に示す。
 次に、本比較例で得られた樹脂被覆ガラス繊維束について、実施例1と全く同一にして製織性を評価した。結果を表3に示す。
 次に、本比較例で得られた樹脂被覆ガラス繊維束を用いた以外は、実施例1と全く同一にして樹脂被覆難燃性繊維織物11としての樹脂被覆ガラス繊維織物を得た。本比較例で得られた樹脂被覆ガラス繊維織物の空隙率は11%であった。
 次に、本比較例で得られた樹脂被覆ガラス繊維織物について、実施例1と全く同一にして日射反射率及び明度Lを評価した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1~3から、第2の樹脂被覆層5中に含まれる第1の二酸化チタン粒子(A)とビスマスマンガン複合金属酸化物粒子(B)との合計量(A+B)が、樹脂被覆ガラス繊維束の全質量に対し、1.5~13.0質量%の範囲にあり、第1の二酸化チタン粒子のビスマスマンガン複合金属酸化物粒子に対する質量比(A/B)の値が5~70の範囲にある実施例1~5の樹脂被覆ガラス繊維束は、優れた製織性を備えていることが明らかである。
 実施例1~5の樹脂被覆ガラス繊維束に対して、第2の樹脂被覆層5中に含まれる第1の二酸化チタン粒子(A)とビスマスマンガン複合金属酸化物粒子(B)との合計量(A+B)が13.21質量%であって、13.0質量%を超えている比較例1の樹脂被覆ガラス繊維束によれば、製織性に難があることが明らかである。
 また、実施例1~5の樹脂被覆ガラス繊維束を製織して得られた樹脂被覆ガラス繊維織物は、日射反射率が50%以上であって優れた遮熱性を備えると共に、明度Lが50~75の範囲であってブラインドとして適度に暗い落ち着いた色調を備えていることが明らかである。
 実施例1~5の樹脂被覆ガラス繊維束を製織して得られた樹脂被覆ガラス繊維織物に対して、第2の樹脂被覆層5中に含まれる第1の二酸化チタン粒子(A)とビスマスマンガン複合金属酸化物粒子(B)との合計量(A+B)が1.44質量%であって、1.5質量%未満である比較例2の樹脂被覆ガラス繊維束を製織して得られた樹脂被覆ガラス繊維織物は、日射反射率が50%未満であって十分な遮熱性を得ることができないことが明らかである。
 また、実施例1~5の樹脂被覆ガラス繊維束を製織して得られた樹脂被覆ガラス繊維織物に対して、第1の二酸化チタン粒子のビスマスマンガン複合金属酸化物粒子に対する質量比(A/B)の値が3.12であって、5未満である比較例3の樹脂被覆ガラス繊維束を製織して得られた樹脂被覆ガラス繊維織物は、日射反射率が50%未満であって十分な遮熱性を得ることができない上、明度Lが50未満であってブラインドとして過度に暗い色調を備えていることが明らかである。
 また、実施例1~5の樹脂被覆ガラス繊維束を製織して得られた樹脂被覆ガラス繊維織物に対して、第1の二酸化チタン粒子のビスマスマンガン複合金属酸化物粒子に対する質量比(A/B)の値が72であって、70を超えている比較例4の樹脂被覆ガラス繊維束を製織して得られた樹脂被覆ガラス繊維織物は、明度Lが75を超えておりブラインドとして過度に明るい色調を備えていることが明らかである。
 また、実施例1~5の樹脂被覆ガラス繊維束を製織して得られた樹脂被覆ガラス繊維織物に対して、第2の樹脂被覆層5中にビスマスマンガン複合金属酸化物粒子に代えてカーボンブラックを含む比較例5の樹脂被覆ガラス繊維束を製織して得られた樹脂被覆ガラス繊維織物は、日射反射率が50%未満であって十分な遮熱性を得ることができないことが明らかである。
 また、実施例1~5の樹脂被覆ガラス繊維束を製織して得られた樹脂被覆ガラス繊維織物に対して、第2の樹脂被覆層5中に第1及び第2の二酸化チタン粒子を含まず、ビスマスマンガン複合金属酸化物粒子のみを含む比較例6の樹脂被覆ガラス繊維束を製織して得られた樹脂被覆ガラス繊維織物は、日射反射率が50%未満であって十分な遮熱性を得ることができないことが明らかである。
 1…樹脂被覆難燃性繊維糸、 2…難燃性繊維糸、 3…樹脂被覆層、 4…第1の樹脂被覆層、 5…第2の樹脂被覆層、 11…樹脂被覆難燃性繊維織物。

Claims (7)

  1.  難燃性繊維糸を被覆する樹脂被覆層を備える樹脂被覆難燃性繊維糸において、
     該樹脂被覆層は、個数平均粒子径0.6~1.5μmの範囲の第1の二酸化チタン粒子(A)と、ビスマスマンガン複合金属酸化物、イットリウムマンガン複合金属酸化物、鉄クロム複合金属酸化物からなる群から選択される少なくとも1種の複合金属酸化物粒子(B)とを含み、
     該第1の二酸化チタン粒子と該複合金属酸化物粒子との合計含有量(A+B)が該樹脂被覆難燃性繊維糸の全質量に対して1.5~13.0質量%の範囲にあり、
     該第1の二酸化チタン粒子の該複合金属酸化物粒子に対する質量比(A/B)の値が5~70の範囲にあることを特徴とする樹脂被覆難燃性繊維糸。
  2.  請求項1記載の樹脂被覆難燃性繊維糸において、前記第1の二酸化チタン粒子と前記複合金属酸化物粒子との合計含有量(A+B)が該樹脂被覆難燃性繊維糸の全質量に対して4.5~13.0質量%の範囲にあることを特徴とする樹脂被覆難燃性繊維糸。
  3.  請求項1又は請求項2記載の樹脂被覆難燃性繊維糸において、前記第1の二酸化チタン粒子の前記複合金属酸化物粒子に対する質量比(A/B)の値が15~55の範囲にあることを特徴とする樹脂被覆難燃性繊維糸。
  4.  請求項1~請求項3のいずれか1項記載の樹脂被覆難燃性繊維糸において、前記樹脂被覆層は、個数平均粒子径0.2~0.4μmの範囲の第2の二酸化チタン粒子(C)を含むことを特徴とする樹脂被覆難燃性繊維糸。
  5.  請求項4記載の樹脂被覆難燃性繊維糸において、第1の二酸化チタン粒子と該複合金属酸化物粒子と第2の二酸化チタン粒子との合計含有量(A+B+C)が、前記樹脂被覆難燃性繊維糸の全質量に対して4.5~13.2質量%の範囲にあることを特徴とする樹脂被覆難燃性繊維糸。
  6.  請求項4又は請求項5記載の樹脂被覆難燃性繊維糸において、前記複合金属酸化物粒子の前記第2の二酸化チタン粒子に対する質量比(B/C)の値が1~20の範囲にあることを特徴とする樹脂被覆難燃性繊維糸。
  7.  難燃性繊維糸を被覆する樹脂被覆層を備え、該樹脂被覆層は、個数平均粒子径0.6~1.5μmの範囲の第1の二酸化チタン粒子(A)と、ビスマスマンガン複合金属酸化物、イットリウムマンガン複合金属酸化物、鉄クロム複合金属酸化物からなる群から選択される少なくとも1種の複合金属酸化物粒子(B)とを含み、
     該第1の二酸化チタン粒子と該複合金属酸化物粒子との合計含有量(A+B)が該樹脂被覆難燃性繊維糸の全質量に対して1.5~13.0質量%の範囲にあり、
     該第1の二酸化チタン粒子の該複合金属酸化物粒子に対する質量比(A/B)の値が5~70の範囲にある樹脂被覆難燃性繊維糸を経糸又は緯糸の少なくとも一部に用いて製織してなることを特徴とする樹脂被覆難燃性繊維織物。
PCT/JP2013/063198 2013-05-10 2013-05-10 樹脂被覆難燃性繊維糸及びそれを用いる樹脂被覆難燃性繊維織物 WO2014069025A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013537350A JP5392445B1 (ja) 2013-05-10 2013-05-10 樹脂被覆難燃性繊維糸及びそれを用いる樹脂被覆難燃性繊維織物
PCT/JP2013/063198 WO2014069025A1 (ja) 2013-05-10 2013-05-10 樹脂被覆難燃性繊維糸及びそれを用いる樹脂被覆難燃性繊維織物
EP13851990.5A EP2995717B1 (en) 2013-05-10 2013-05-10 Resin-coated fire-resistant fibre thread, and resin-coated fire-resistant woven fabric using same
TW103116525A TWI457310B (zh) 2013-05-10 2014-05-09 Resin-coated flame-retardant filaments and resin-coated flame-resistant fibrous fabrics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/063198 WO2014069025A1 (ja) 2013-05-10 2013-05-10 樹脂被覆難燃性繊維糸及びそれを用いる樹脂被覆難燃性繊維織物

Publications (1)

Publication Number Publication Date
WO2014069025A1 true WO2014069025A1 (ja) 2014-05-08

Family

ID=50112257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063198 WO2014069025A1 (ja) 2013-05-10 2013-05-10 樹脂被覆難燃性繊維糸及びそれを用いる樹脂被覆難燃性繊維織物

Country Status (4)

Country Link
EP (1) EP2995717B1 (ja)
JP (1) JP5392445B1 (ja)
TW (1) TWI457310B (ja)
WO (1) WO2014069025A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020183046A (ja) * 2019-04-26 2020-11-12 独立行政法人国立高等専門学校機構 機能性複合樹脂部材およびその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102188328B1 (ko) * 2019-06-05 2020-12-10 주식회사 알켄즈 투광성을 조절가능한 코팅사를 포함하는 원단

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006233139A (ja) 2005-02-28 2006-09-07 Achilles Corp 太陽光反射性能を有するシート
JP2007070749A (ja) 2005-09-05 2007-03-22 Nitto Boseki Co Ltd 樹脂被覆ガラス繊維織物及び樹脂被覆ガラス繊維束並びにこれらの製造方法
JP2008068482A (ja) * 2006-09-13 2008-03-27 Teijin Fibers Ltd 膜材
JP2009279814A (ja) 2008-05-21 2009-12-03 Hiraoka & Co Ltd 遮熱性膜材料
JP2011052357A (ja) * 2009-09-04 2011-03-17 Hiraoka & Co Ltd 遮熱性採光膜材及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1140704B2 (en) * 1998-12-18 2008-06-18 Ferro GmbH Bismuth manganese oxide pigments
KR100615781B1 (ko) * 2004-12-31 2006-08-25 주식회사 효성 차광성 및 난연성이 우수한 폴리에스터 섬유 및 이를이용한 섬유 제품
CN101735578B (zh) * 2008-11-24 2011-08-03 中国石油天然气股份有限公司 一种阻燃抗紫外聚酯复合材料及其制备方法
JP5493225B2 (ja) * 2009-11-02 2014-05-14 平岡織染株式会社 近赤外線遮蔽性シート及びその製造方法
CA2821869C (en) * 2010-12-03 2020-07-28 3G Mermet Corporation Near infrared reflecting composition and coverings for architectural openings incorporating same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006233139A (ja) 2005-02-28 2006-09-07 Achilles Corp 太陽光反射性能を有するシート
JP2007070749A (ja) 2005-09-05 2007-03-22 Nitto Boseki Co Ltd 樹脂被覆ガラス繊維織物及び樹脂被覆ガラス繊維束並びにこれらの製造方法
JP2008068482A (ja) * 2006-09-13 2008-03-27 Teijin Fibers Ltd 膜材
JP2009279814A (ja) 2008-05-21 2009-12-03 Hiraoka & Co Ltd 遮熱性膜材料
JP2011052357A (ja) * 2009-09-04 2011-03-17 Hiraoka & Co Ltd 遮熱性採光膜材及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020183046A (ja) * 2019-04-26 2020-11-12 独立行政法人国立高等専門学校機構 機能性複合樹脂部材およびその製造方法
JP7116958B2 (ja) 2019-04-26 2022-08-12 独立行政法人国立高等専門学校機構 機能性複合樹脂部材およびその製造方法

Also Published As

Publication number Publication date
JPWO2014069025A1 (ja) 2016-09-08
EP2995717A1 (en) 2016-03-16
EP2995717A4 (en) 2017-03-15
JP5392445B1 (ja) 2014-01-22
EP2995717B1 (en) 2018-07-11
TWI457310B (zh) 2014-10-21
TW201437170A (zh) 2014-10-01

Similar Documents

Publication Publication Date Title
JP4517178B2 (ja) 遮熱効果持続性に優れた採光膜材
JP5146962B2 (ja) 遮熱性膜材料
JP6191054B2 (ja) 遮熱メッシュシェード
JP5062615B2 (ja) 遮熱性に優れた天然繊維調メッシュシート
KR102108340B1 (ko) 유/무기 복합 코팅층을 갖는 코팅사를 이용한 투시성과 열 반사성이 우수한 선스크린 직물 및 이의 제조방법
JP2011093280A (ja) 近赤外線遮蔽性シート及びその製造方法
JP2014040035A (ja) 熱制御性シート
JP6040434B2 (ja) 引裂伝播防止性に優れた不燃性膜天井材料
JP5938830B2 (ja) 可撓性複合シート
JP5392445B1 (ja) 樹脂被覆難燃性繊維糸及びそれを用いる樹脂被覆難燃性繊維織物
JP6212822B2 (ja) 採光性に優れた遮熱膜材
JP6232628B2 (ja) 不燃性膜材
JP6368913B2 (ja) 遮熱性、保温性を有する高透光性膜材
JP5339015B1 (ja) 樹脂被覆難燃性繊維糸及び樹脂被覆難燃性繊維織物
JP6212771B2 (ja) 建築養生メッシュシート
JP2010030203A (ja) 遮熱性を有する膜材
JP6583912B2 (ja) 吸音膜材
JP5990759B2 (ja) 引裂伝播防止性に優れた不燃性膜天井材料
TWI824157B (zh) 被覆樹脂之無機複絲纖維織物及使用其之遮光簾
JP2015101930A (ja) 採光性遮熱膜材
WO2023278134A1 (en) Non-foamed aqueous composition, coated textile and method of making
CN117616166A (zh) 非发泡水性组合物、涂覆的纺织品及其制造方法
US20230009779A1 (en) Non-foamed aqueous composition
US20230002621A1 (en) Non-foamed coated textile and method of making

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013537350

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013851990

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13851990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE