WO2014065325A1 - 加工機におけるパンチの最終デプス検出装置および方法 - Google Patents

加工機におけるパンチの最終デプス検出装置および方法 Download PDF

Info

Publication number
WO2014065325A1
WO2014065325A1 PCT/JP2013/078708 JP2013078708W WO2014065325A1 WO 2014065325 A1 WO2014065325 A1 WO 2014065325A1 JP 2013078708 W JP2013078708 W JP 2013078708W WO 2014065325 A1 WO2014065325 A1 WO 2014065325A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
strain
bending
punch
stress
Prior art date
Application number
PCT/JP2013/078708
Other languages
English (en)
French (fr)
Inventor
隆浩 柴田
英俊 金
小山 純一
Original Assignee
株式会社 アマダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 アマダ filed Critical 株式会社 アマダ
Priority to US14/437,067 priority Critical patent/US9789525B2/en
Priority to EP13849293.9A priority patent/EP2913115B1/en
Publication of WO2014065325A1 publication Critical patent/WO2014065325A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/006Bending sheet metal along straight lines, e.g. to form simple curves combined with measuring of bends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/02Bending sheet metal along straight lines, e.g. to form simple curves on press brakes without making use of clamping means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/20Investigating strength properties of solid materials by application of mechanical stress by applying steady bending forces
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass

Definitions

  • the present invention relates to an apparatus and a method for detecting the final depth of a punch, which is a position where bending is finished from a pinching position in a bending machine for bending a workpiece, and in particular, even when there are variations in material characteristics of the workpiece,
  • the present invention relates to an apparatus and a method for detecting a final punch depth that corrects a reference depth of a punch according to variation in characteristics and performs accurate bending.
  • the pinching position position of the workpiece upper surface
  • the punch final depth which is the position where the bending process ends from the pinching position, is calculated, and the punch is pushed to the final punch depth to perform the bending process.
  • the depth of the punch and the bending angle of the workpiece are closely related, and it was important to obtain an accurate final punch depth in order to perform bending processing at an accurate angle.
  • Patent Documents JP-A-6-134524, JP-A-2000-140943, JP-A-8-24955. Publication).
  • the workpiece to be processed has workpiece deformation characteristics such as plate thickness and material constants, and the workpiece deformation characteristics vary, even if bending is performed at the required depth, the bending angle remains the workpiece. There is a problem that the accuracy error occurs.
  • this tensile test requires cutting out test pieces according to the standard, measuring the plate thickness with a micro gauge, attaching a strain gauge, and performing a tensile test with a tensile tester. A device was required.
  • an object of the present invention is to correct the final depth of the punch in accordance with the variation in the material characteristics of the workpiece even when the material characteristics of the workpiece vary.
  • Another object of the present invention is to provide an apparatus and a method for detecting a final depth of a punch capable of performing an accurate bending process.
  • the present invention provides a processing machine for bending a workpiece by sandwiching the workpiece with first and second bending tools.
  • Conduct material tests on multiple types of workpieces find the relationship between stress and strain
  • (2) Calculate the machining model based on the workpiece using the relationship between stress and strain to determine the relationship between strain and machining load at a specific location (3) Furthermore, a relational expression between the processing load and stress of the workpiece independent of the material is calculated, Thereafter, based on the relational expression between the processing load and stress and the value of strain and processing load in the workpiece to be bent, the relationship between the stress and strain of the workpiece to be bent is obtained as a material constant.
  • Another feature of the present invention is that the final position of the second bending tool in the bending process of the workpiece is calculated based on the material constant and the processing conditions, and based on the final position of the second bending tool. Thus, the workpiece is bent.
  • Another feature of the present invention is that the step of obtaining the relationship between the stress and strain of the workpiece to be bent as a material constant sets the reference position of the second bending tool, and the specific location during the bending operation.
  • the stress and strain of the workpiece to be bent are calculated from the measured values of strain and processing load at the specific location and the approximate expression of the relationship between the processing load and stress in the workpiece. It is that it consists of calculating the material constant which consists of this relationship.
  • Another feature of the present invention is that the step of obtaining the relation between the stress and strain of the workpiece to be bent as a material constant sets the reference position of the second bending tool, and the stroke and the processing during the bending operation. Measure the load, find the value of the strain at the specific location of the workpiece to be bent by the stroke strain conversion formula, and calculate the relationship between the strain at the specific location and the value of the processing load and the processing load and stress at the workpiece. This is to calculate a material constant consisting of the relationship between the stress and strain of the workpiece to be bent from the approximate expression.
  • Another feature of the present invention is a processing machine for bending the workpiece by sandwiching the workpiece with the first and second bending tools. Distinguishing the material characteristics of the workpiece into actual values and nominal values, determining the actual material characteristics during the machining operation, recalculating the optimal operation target value according to the workpiece, and recalculating the optimum The workpiece is bent by operating the first bending tool or the second bending tool in accordance with the operation target value.
  • FIG. 2 is a schematic view around a die and a punch shown in FIG. 1. It is a block diagram which shows schematic structure regarding the control apparatus 9 of the bending machine 7 shown in FIG. It is a flowchart of the punch final depth detection operation by the punch final depth detection apparatus shown in FIG. It is explanatory drawing of the punch final depth detection operation by the punch final depth detection apparatus shown in FIG. It is the schematic of the die
  • FIG. 1 is an overall perspective view showing an outline of a processing machine (first embodiment) embodying the present invention
  • FIG. 2 is a schematic view around a die and a punch shown in FIG. 1
  • FIG. It is a block diagram which shows schematic structure of the control apparatus 9 of the bending machine 7 shown in FIG.
  • this processing machine (bending machine) 7 is provided with a die 7a as a first bending tool provided at the lower portion and a punch 7b as a second bending tool provided at the upper portion.
  • a workpiece (material) carried between the die 7a and the punch 7b is moved along the D-axis direction D (see FIG. 2) up and down as indicated by the arrows, so that the die 7a and the punch 7b It is comprised so that it may be bent by.
  • the bending machine 7 includes a pressure sensor 12 (shown in FIG. 3) provided on the punch 7b for detecting the pressure applied to the punch 7b.
  • a D-axis encoder 16 (shown in FIG. 3) is provided on the upper side of 7b for detecting the slide position of the punch 7b on the D-axis.
  • the bending machine 7 has a control device 9 that controls the entire processing machine.
  • the control device 9 displays a predetermined image and inputs an instruction from an operator. Is provided.
  • the workpiece is bent in accordance with the bending operation input and set by the input display unit 11.
  • the punch final depth final push-in position or punch indentation position described later
  • the final position of the punch is detected, and bending is performed with the detected corrected final depth.
  • the control device 9 also functions as a punch final depth detection device that detects the corrected final depth based on the detection result from the pressure sensor 12 or the D-axis encoder 16 described above.
  • the control device 9 of the bending machine 7 includes a CPU 17 to which a ROM 13 and a RAM 15 are connected via a bus.
  • the CPU 17 further includes the pressure sensor 12 described above via the bus.
  • the input display unit 11 serving as the input unit and the display unit, the D-axis encoder 16, and the database 19 are connected.
  • the CPU 17 is also connected to a driver 25 for driving a cylinder 27 for driving the upper table, on which the punch 7b is mounted, up and down via a bus.
  • the CPU 17 uses punch and die data, product shape data, and workpiece material (work W) data in the database 19 in accordance with settings and instructions from the input display unit 11 and from the ROM 13.
  • the RAM 15 is used in accordance with the computer program to detect the final depth of punch (punch press-in amount) as will be described later, and to perform an input and set bending process.
  • FIG. 4 is a flowchart of the punch final depth detection operation by the punch final depth detection device shown in FIG. 3
  • FIG. 5 is an explanatory diagram of the punch final depth detection operation by the punch final depth detection device shown in FIG. .
  • the punch final depth detection operation is performed by the CPU 17 using the RAM 15 in accordance with the computer program from the ROM 13 as described above.
  • the pinching position is a position where the workpiece W is sandwiched between the die 7a and the punch 7b.
  • the pinching position is a state between the die origin position and the lower end of the punch 7b in a state where the lower end of the punch 7b is in contact with the upper surface of the workpiece W having a thickness t placed on the die 7a.
  • the mold origin position is a lower end position of the punch 7b in a state where the die 7a and the punch 7b are in contact with each other.
  • the lower end position of the punch 7b in a state where the die 7a and the punch 7b are in contact is detected in advance by the D-axis encoder 16 to obtain the mold origin position, and the lower end of the punch 7b is in contact with the upper surface of the workpiece W.
  • the pinching position can be obtained by detecting the position taken by the D-axis encoder 16.
  • the final depth ST of the punch 7b is a position where the punch 7b descends from the pinching position and the bending process is finished.
  • step 101 of FIG. 4 a material (work) machining simulation is performed to obtain an influence coefficient of the material.
  • a workpiece having a predetermined mold and a predetermined plate thickness is set, and a machining simulation is performed on a workpiece having m kinds of stress-strain relationships, and an overload F and a maximum strain ⁇ with respect to i stroke positions S i are determined for each material.
  • Each is calculated based on the following formula.
  • the overload F and the maximum strain ⁇ for the i stroke positions S i are calculated in advance, stored in the database 19, and data is obtained by referring to the database 19. Also good.
  • the calculation processing is performed by the CPU 17 of the control device 9 in accordance with the settings and instructions from the operator from the input display unit 11, punch and die data in the database 19, product shape data, workpiece (work W). And using the RAM 15 in accordance with a computer program stored in the ROM 13, or by connecting another computer to the control device 9 and transferring data to the control device 9 by using the computer. Also good.
  • step 103 the reference depth is calculated and set from the machining information of the workpiece.
  • the CPU 17 of the control device 9 is based on punch and die data, product shape data (bending angle, bending length, etc.) and data of a workpiece (workpiece W) (plate thickness, material, etc.) from the database 19.
  • the reference depth (first target position) is calculated.
  • the reference depth (first target position) is the final lowering position PD of the punch 7b in the bending process, and the punch and die data and product shape data (bending angle, bending length).
  • Etc.) and data (plate thickness, material, etc.) of the workpiece (workpiece W), etc. are calculated by a general method.
  • step 105 the process moves to the machining mode, and the thickness of the workpiece W during machining is measured.
  • the plate thickness of the workpiece W being processed is measured by a general plate thickness measuring device, and the measured value is input via the input display unit 11 and stored in the storage unit such as the RAM 15 or the database 19.
  • step 107 the load applied to the punch 7b is measured by the pressure sensor 12 during machining.
  • the load applied to the punch 7b during processing is detected by the pressure sensor 12, and the detected value is input via the input display unit 11 and stored in the storage unit such as the RAM 15 or the database 19.
  • step 109 the slide position on the D-axis of the punch 7b is detected by the D-axis encoder 16 during machining.
  • the slide position on the D-axis of the punch 7b during machining is detected by the D-axis encoder 16, and the detected value is input via the input display unit 11 and stored in the storage unit such as the RAM 15 or the database 19.
  • step 111 the upper surface position of the workpiece W is calculated based on the load applied to the punch 7b detected by the pressure sensor 12 and the slide position on the D-axis of the punch 7b detected by the D-axis encoder 16.
  • the upper surface position P 0 of the workpiece W is calculated by the CPU 17 of the control device 9 based on the load detection value applied to the punch 7b from the storage unit and the slide position detection value of the punch 7b on the D axis.
  • the upper surface position of the workpiece W is the upper surface position of the workpiece W placed on the die 7a, and is calculated by a general method based on the load detection value and the slide position detection value from the storage unit. .
  • step 113 the actual stroke amount, which is the distance that the punch 7 b has moved from the upper surface position P 0 of the workpiece W, is calculated while sampling the slide position Pi of the punch 7 b on the D axis by the D axis encoder 16.
  • the slide position P i detected by the D-axis encoder 16 is sampled by the CPU 17 of the control device 9, and the actual stroke amount S i actually moved by the punch from the detected material upper surface position P 0 is expressed as follows. Calculated by an expression.
  • M i P 0 -P i -M i
  • M i is the amount of deflection of the machine at each stroke position, and is calculated from the machine shape, bending position, bending length, and load.
  • step 115 the load F i applied to the punch 7b for each actual stroke amount S i actually moved by the punch is detected by the pressure sensor 12, and the load F i and the material influence coefficient EC determined in step 101 are detected.
  • the stress ⁇ i is obtained from i
  • the material constant is obtained from the change of the stress ⁇ i .
  • the stress ⁇ i is expressed by the following equation. Is calculated.
  • ⁇ i EC i * F i
  • the CPU 17 of the control device 9 calculates the maximum strain ⁇ with respect to i stroke positions S from the nominal material information of the workpiece information by the following equation.
  • step 117 the punch and die data, product shape data (bending angle, bending length, etc.), data of the workpiece (workpiece W) (plate thickness, material, etc.) and the measured workpiece W are measured. Based on the plate thickness and the material constant, the final depth (second target position) of the punch is calculated.
  • the punch and die data the product shape data (bending angle, bending length, etc.), the data of the workpiece (work W) (plate thickness, material, etc.) and the measured workpiece are measured.
  • the curvature of the material in the die is calculated.
  • the final depth (second target position) of the punch is calculated.
  • step 119 the punch is lowered to the value of the final depth (second target position) of the punch, and the workpiece W is bent.
  • the final depth of the punch is corrected according to the variation in the material characteristics of the workpiece and the workpiece W is bent. Bending can be performed.
  • FIG. 6 is a schematic view of a die and a punch around another embodiment of the present invention
  • FIG. 7 is a block diagram showing a schematic configuration of a bending machine control device 9 according to another embodiment of the present invention.
  • This processing machine (bending machine) 7 is similar to the first embodiment shown in FIG. 1 in that the second bending machine provided at the upper part of the die 7a as the first bending tool provided at the lower part.
  • the punch 7b By sliding the punch 7b as a tool along the D-axis direction D (see FIG. 6), the workpiece W (material) carried between the die 7a and the punch 7b is moved by the die 7a and the punch 7b. It is configured to bend.
  • the bending machine 7 includes a load sensor 14 (shown in FIG. 7) provided on the punch 7b for detecting the load pressure applied to the work W.
  • a D-axis encoder 16 (shown in FIG. 3) is provided on the punch 7b for detecting the slide position of the punch 7b on the D-axis.
  • the strain measurement camera 31 is provided at a position facing the tip of the punch 7b in the upper part of the die 7a, and the workpiece W facing the upper surface of the workpiece W with which the tip of the punch 7b abuts.
  • the strain at a specific location (X in FIG. 9) is measured.
  • the bending machine 7 has a control device 9 that controls the entire processing machine.
  • the control device 9 displays a predetermined image and inputs an instruction from an operator. Is provided.
  • the workpiece is bent according to the bending operation input and set by the input display unit 11.
  • the punch final position (the final punch pressing position or the punching position described later)
  • the final punch depth is detected, and bending is performed based on the detected corrected final position.
  • the control device 9 of the bending machine 7 includes a CPU 17 to which a ROM 13 and a RAM 15 are connected via a bus.
  • the CPU 17 further includes the load sensor 14 described above via a bus.
  • the input display unit 11 serving as the input unit and the display unit, the D-axis encoder 16, the database 19, and the strain measurement camera 31 are connected.
  • the CPU 17 is also connected to a driver 25 for driving a cylinder 27 for driving the upper table, on which the punch 7b is mounted, up and down via a bus.
  • the CPU 17 uses punch and die data, product shape data, and workpiece material (work W) data in the database 19 in accordance with settings and instructions from the input display unit 11 and from the ROM 13.
  • the RAM 15 is used in accordance with the computer program to detect the final punch position (final depth of the punch) as will be described later, and to perform an input and set bending operation.
  • FIG. 8 is a flowchart of the operation for detecting the final position of the punch according to another embodiment of the present invention, and is an explanatory diagram of the operation for detecting the final position of the punch according to another embodiment of the present invention.
  • the actual processed material has a material property value that differs from the actual value and the nominal value.
  • the difference between these values is the nominal thickness t, the nominal material property (stress strain data or plastic coefficient: C , Work hardening index: n) and actual sheet thickness t ', actual material characteristics (stress strain data or plastic coefficient of specific material: C', work hardening index: n ')
  • the actual material characteristics are discriminated, the optimum operation target value (final position of the punch) is recalculated according to the material, and the machining operation is performed based on the recalculated final position of the punch. It is intended to prevent the variation in angle due to.
  • the pinching position is a position where the workpiece W is sandwiched between the die 7a and the punch 7b. More specifically, the pinching position is the thickness of the workpiece W having a plate thickness t placed on the die 7a.
  • the mold origin position is a lower end position of the punch 7b in a state where the die 7a and the punch 7b are in contact with each other.
  • the lower end position of the punch 7b in a state where the die 7a and the punch 7b are in contact is detected in advance by the D-axis encoder 16 to obtain the mold origin position, and the lower end of the punch 7b is in contact with the upper surface of the workpiece W.
  • the pinching position can be obtained by detecting the position taken by the D-axis encoder 16.
  • the final position DF of the punch 7b is the final position at which the punch 7b descends from the pinching position and the bending process ends.
  • step 201 of FIG. 8 as a pre-process, a material (work) machining simulation is performed to obtain an approximate expression of the relationship between the stress of the material and the machining load.
  • the calculation of the approximate expression of the relationship between the stress of the material and the processing load is performed in advance using an external arithmetic unit.
  • the material property M in plastic deformation is expressed by the relationship between stress ⁇ and strain ⁇ of the material, and this information is obtained by a tensile test.
  • plasticity coefficient: C work hardening index: n is generically called M as a parameter representing material properties
  • M material characteristics
  • the machining model machining load F and strain ⁇ X at a specific location X, where the specific location X is more strained is easier to detect and the measurement accuracy is higher (for example, the outermost layer directly under the punch). Therefore, the specific location X is not particularly limited as long as it can be calculated and can be measured or predicted during the subsequent machining stroke (including a plurality of points or regions).
  • this step 201 m types of materials are selected. For this, a representative material is selected from a range of possibilities as an unknown material to be finally predicted. If the number is large, the number of samples for the subsequent approximate calculation increases, so that the prediction accuracy is improved.
  • FIG. 10 shows a specific example in which the stress-strain relationship is obtained from the strain ⁇ ′ Xi and the processing load F ′ i at various positions of various materials.
  • the calculation time to find this equation (13) is one material calculation time (0.1 to 1H) x m types of materials in a specific machining model, and it takes several hours. Rather than performing these calculations during machining, it is more effective to calculate in advance.
  • step 203 of FIG. 8 the reference position of the punch 7b (reference depth) D O configuration is performed.
  • nominal workpiece thickness is set as the reference position the position of the fixed amount closer than a predetermined position (first target position) D O.
  • first target position is JP 8-24955 (paragraph numbers 0036,0037 and the like: In this case, the reference position is that a table moving position) is described in detail in Therefore, the description is omitted.
  • steps 201 and 203 are the pre-process.
  • a one-stroke machining operation is started with the reference position (first target position) as a target value.
  • strain and machining at a specific location during the one-stroke machining operation are started. The load is measured.
  • the actual processing load F ′ i at the strain ⁇ ′ Xi at a specific position is measured from the strain measurement camera 31 and the load sensor 14 as follows, and F ′ i is converted into a load per unit bending length. .
  • variable marked with represents an actual measurement value when processing an unknown material.
  • step 209 a material constant is calculated.
  • the processing load at each strain during processing is measured by the strain measuring camera 31 and the load sensor 14 set in the die 7a during processing, and the stress-strain relationship ( The material constant is calculated by the following approximate expression.
  • step 213 the punch 7b is moved to the final position of the punch 7b calculated in step 211, and positioning is performed.
  • This step 205 to 213 is a one-stroke machining operation.
  • the graph of FIG. 12 is a result of bending a steel material having a nominal thickness of 3.2 mm at a target angle of 90 ° and measuring the angle.
  • SPCC, SECC, SS400, SPHC, SS400 pickling material and SPHC pickling material are prepared as unknown steel materials, and bending when the bending direction is processed in the direction perpendicular to and parallel to the rolling direction of the plate. The angle was measured.
  • represents the angle when machining at the same final depth calculated with the nominal plate thickness and nominal material (all made of the same steel material), ⁇ ⁇ the actual plate thickness measured for each material, and the nominal Represents the angle when machining at different final depths calculated for the materials (all made of the same steel material), and ⁇ indicates the actual thickness measured for each material and the stress of each material according to the mechanism of this patent- Predicts the strain relationship and represents the angle when machining at the final depth based on the actual material characteristics.
  • represents the variation of 95.91 to 91.51 with respect to the target angle of 90 °.
  • represents a variation of 93.98 to 90.4 with respect to the target angle of 90 °
  • represents a variation of 90.41 to 89.7 with respect to the target angle of 90 °.
  • the thickness of the unknown material being processed is a thickness (actual thickness) different from the nominal thickness
  • the final depth of the punch can be corrected according to the variations in the material properties of the workpiece, and accurate bending can be performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

 ダイとパンチによりワークを挟んでワークの曲げ加工を行う加工機において、ワークの材料特性を、実際値と公称値とに区別し、加工動作中に実際の材料特性を判別して、ワークに合わせた最適の動作目標値を再計算し、その再計算した最適の動作目標値に合わせてパンチを動作させてワークの曲げ加工を行う構成となっている。

Description

加工機におけるパンチの最終デプス検出装置および方法
 本発明は、ワークを曲げ加工するベンディングマシンにおけるピンチング位置から曲げ加工が終了する位置であるパンチの最終デプスの検出装置および方法に関し、特に、ワークの材料特性にばらつきがある場合でも、ワークの材料特性のばらつきに応じてパンチの基準デプスを補正し、正確なベンディング加工を行うパンチ最終デプス検出装置および方法に関するものである。
 一般に、従来のベンディングマシン等の板状のワーク(材料)を曲げ加工する加工機においては、ワークがダイとパンチとによって挟み込まれるピンチング位置(ワーク上面の位置)を検出し、その検出されたピンチング位置に基づいて、ピンチング位置から曲げ加工が終了する位置であるパンチ最終デプスを計算し、そのパンチ最終デプスまでパンチを押し込んでベンディング加工を行うようになっていた。
 なお、パンチのデプスとワークの曲げ角度とは、密接に関係しており、正確な角度のベンディング加工を行うためには、正確なパンチ最終デプスを求めることが重要であった。
  従来、この種の技術としては、例えば以下に示す文献に記載されたものが知られている(特許文献、特開平6-134524号公報、特開2000-140943号公報、特開平8-24955号公報)。
 しかしながら、加工されるワークには、板厚や材料定数等のワーク変形特性があり、そのワーク変形特性にはばらつきがあるため、求められたデプスで曲げ加工をしても、その曲げ角度がワークによって変化してしまい、精度誤差となってしまう問題点があった。
 従来、このように曲げ角度が安定しない場合には、オペレータが、加工後に精度を確認し、誤差が出るたびに、NC装置にフィードバックして最終デプスの補正を行うようにしており、オペレータに負荷がかかり、作業効率が低下してしまうものであった。
 また、従来、ワーク変形特性として、塑性変形領域の材料特性を調べるために、引っ張り試験を行っていた。
 ところが、この引張り試験は、規格に合わせての試験片の切り出し、マイクロゲージによる板厚の測定、ひずみゲージの貼り付け、引張り試験機による引張り試験を行わなければならず、多くの手間と高価な装置が必要となるものであった。
 また、従来、加工中に材料特性を測定する手法として、せん断加工を使った影響係数による材料特性予測があった。
 ところが、せん断加工において検出された個々のブランク材の材料特性を、曲げ加工で使用するには、ブランク材個々に個別管理をする必要があり、管理が煩雑となる問題点があった。
 そこで、本発明は、上記に鑑みてなされたものであり、その目的とするところは、ワークの材料特性にばらつきがある場合でも、ワークの材料特性にばらつきに応じてパンチの最終デプスを補正し、正確なベンディング加工を行うことができるパンチの最終デプス検出装置および方法を提供することにある。
 上記課題を解決するために、本発明は、第1および第2の曲げ工具によりワークを挟んで前記ワークの曲げ加工を行う加工機において、
 前もって
(1)複数種類のワークに対して材料試験を行い、その応力とひずみの関係を求め、
(2)前記応力とひずみの関係を用いてワークに基づく加工モデルを計算して特定箇所のひずみと加工荷重の関係をもとめ、
(3)さらに、材料に依存しないワークの加工荷重と応力との関係式を算出しておき、
 その後に、前記加工荷重と応力との関係式と前記曲げ加工を行うワークにおけるひずみと加工荷重の値に基づいて、前記曲げ加工を行うワークの応力とひずみとの関係を材料定数として求めることを特徴とする。
 本発明の他の特徴は、さらに、前記材料定数および加工条件に基づいて、前記ワークの曲げ加工における前記第2の曲げ工具の最終位置を算出し、その第2の曲げ工具の最終位置に基づいて、前記ワークの曲げ加工が行われることである。
 本発明の他の特徴は、前記曲げ加工を行うワークの応力とひずみとの関係を材料定数として求める工程が、前記第2の曲げ工具の基準位置を設定し、曲げ加工動作中における前記特定個所のひずみと加工荷重の測定を行い、その特定個所のひずみと加工荷重の測定値と前記のワークにおける加工荷重と応力との関係の近似式とから、前記曲げ加工を行うワークの応力とひずみとの関係からなる材料定数を計算することからなることである。
 本発明の他の特徴は、前記曲げ加工を行うワークの応力とひずみとの関係を材料定数として求める工程が、前記第2の曲げ工具の基準位置を設定し、曲げ加工動作中におけるストロークと加工荷重の測定を行い、前記曲げ加工を行うワークの前記特定個所のひずみの値をストロークひずみ換算式により求め、その特定個所のひずみと加工荷重の値と前記ワークにおける加工荷重と応力との関係の近似式とから、前記曲げ加工を行うワークの応力とひずみとの関係からなる材料定数を計算することからなることである。
 本発明の他の特徴は、第1および第2の曲げ工具によりワークを挟んで前記ワークの曲げ加工を行う加工機において、
 前記ワークの材料特性を、実際値と公称値とに区別し、加工動作中に実際の材料特性を判別して、前記ワークに合わせた最適の動作目標値を再計算し、その再計算した最適の動作目標値に合わせて前記第1の曲げ工具あるいは第2の曲げ工具を動作させて前記ワークの曲げ加工を行うことである。
本発明を実施した加工機(ベンディングマシン)の概略を示す説明図である。 図1に示したダイとパンチ回りの概略図である。 図1に示したベンディングマシン7の制御装置9に関する概略構成を示すブロック図である。 図3に示したパンチ最終デプス検出装置によるパンチ最終デプス検出動作のフローチャートである。 図3に示したパンチ最終デプス検出装置によるパンチ最終デプス検出動作の説明図である。 本発明による加工機(ベンディングマシン)の他の実施形態におけるダイとパンチ回りの概略図である。 図6に示した他の実施形態におけるベンディングマシン7の制御装置9に関する概略構成を示すブロック図である。 図6に示した他の実施形態における動作のフローチャートである。 図6に示した他の実施形態における動作の説明図である。 図6に示した他の実施形態における動作説明のためのグラフ図である。 図6に示した他の実施形態における動作の説明図である。 図6に示した他の実施形態における動作説明のためのグラフ図である。
 以下、図面を用いて本発明を実施した実施形態を説明する。
 図1は、本発明を実施した加工機(第1実施形態)の概略を示す全体斜視図であり、図2は、図1に示したダイとパンチ回りの概略図であり、図3は、図1に示したベンディングマシン7の制御装置9の概略構成を示すブロック図である。
 図1に示すように、この加工機(ベンディングマシン)7は、下部に設けられた第1の曲げ工具としてのダイ7aに対して、上部に設けられた第2の曲げ工具としてのパンチ7bをD軸方向D(図2参照)に沿って、矢印で示すように上下にスライド動作させることにより、ダイ7aとパンチ7bとの間に搬入されたワーク(材料)を、ダイ7aとパンチ7bとによって曲げ加工するように構成されている。
 そして、図2および図3に示すように、このベンディングマシン7には、パンチ7bの上部に設けられてパンチ7bに加わった圧力を検出するための圧力センサー12(図3に示す)と、パンチ7bの上部に設けられてパンチ7bのD軸上のスライド位置を検出するためのD軸エンコーダ16(図3に示す)とが設けられている。
 また、ベンディングマシン7は、この加工機全体の制御をつかさどる制御装置9を有しており、その制御装置9には、所定画像の表示を行うと共に、オペレータからの指示を入力する入力表示部11が設けられている。
 そして、制御装置9の制御の基に、入力表示部11により入力設定された曲げ加工動作に従い、ワークの曲げ加工が行われるが、ここでは、後述するパンチの最終デプス(パンチの最終押し込み位置あるいはパンチの最終位置)検出が行われ、その検出された補正最終デプスにより曲げ加工が行われる。
 この制御装置9は、前述した圧力センサー12あるいはD軸エンコーダ16よりの検知結果に基づいて、補正最終デプス量を検出するパンチ最終デプス検出装置としても機能するようになっている。
 図3に示すように、ベンディングマシン7の制御装置9は、ROM13およびRAM15がバスを介して接続されたCPU17を有しており、CPU17には、さらに、バスを介して、上述した圧力センサー12、入力部と表示部とを兼ねる上記入力表示部11、D軸エンコーダ16、データベース19が接続されている。
 また、上記CPU17には、バスを介して、パンチ7bの装着された上部テーブルを上下に駆動するためのシリンダ27を駆動するためのドライバ25も接続されるようになっている。
 ここでは、CPU17が、入力表示部11よりのオペレータからの設定や指示に従い、データベース19内のパンチやダイのデータおよび製品形状データや被加工部材(ワークW)のデータを用いると共に、ROM13よりのコンピュータプログラムに従ってRAM15を用いて、後述するようにパンチの最終デプス(パンチの押し込み量)の検出を行うと共に、入力設定された曲げ加工動作を行うようになっている。
 次に、図4および図5を参照してパンチ最終デプス検出装置の動作について説明する。
 図4は、図3に示したパンチ最終デプス検出装置によるパンチ最終デプス検出動作のフローチャートであり、図5は、図3に示したパンチ最終デプス検出装置によるパンチ最終デプス検出動作の説明図である。
 なお、このパンチ最終デプス検出動作は、上述したように、CPU17が、ROM13よりのコンピュータプログラムに従ってRAM15を用いて行うようになっている。
 ここで、パンチ7bの最終デプスSTについて説明すると、まず、ピンチング位置とは、ワークWがダイ7aとパンチ7bとによって挟み込まれる位置のことである。
 より詳しく説明すると、ピンチング位置とは、ダイ7a上に載置された板厚tのワークWの上面にパンチ7bの下端が接触した状態で、金型原点位置とパンチ7bの下端との間の距離である。ここで、金型原点位置とは、ダイ7aとパンチ7bとが接触した状態でのパンチ7bの下端位置である。
 従って、ダイ7aとパンチ7bとが接触した状態でのパンチ7bの下端位置をD軸エンコーダ16で前もって検出して金型原点位置を得ておき、ワークWの上面にパンチ7bの下端が接触したとされる位置をD軸エンコーダ16で検出することによってピンチング位置が得られる。
 そして、パンチ7bの最終デプスSTは、ピンチング位置から、パンチ7bが下降して曲げ加工が終了する位置となる。
 まず、動作モードがパンチ最終デプス検出モードとなると、図4のステップ101において、材料(ワーク)の加工シミュレーションを行い、材料の影響係数を求める。
 すなわち、所定の金型および所定の板厚のワークが設定され、m種類の応力ひずみ関係を有するワークで加工シミュレーションが行われ、i個のストローク位置Siに対する過重Fと最大ひずみεが各材料ごとに、以下の式に基づいて算出される。なお、ここで、上記i個のストローク位置Siに対する過重Fと最大ひずみεを、前もって計算しておき、データベース19に記憶しておき、そのデータベース19を参照してデータを取得するようにしても良い。

    Fmi = f(Si)
    {Fmi , S}

    εmi = f(Si)
    {εmi , Si }

 続いて、各最大ひずみεに対する応力σmiが、上記材料の応力ひずみ関係より、以下の式に基づいて算出される。

    σmi = f(εmi)
    {σmi , εmi }

 以上のように算出された各ストロークにおける応力と荷重との関係を用いて、材料の影響係数ECiが、以下の式に基づいて算出される。
Figure JPOXMLDOC01-appb-I000001
 ここで、上記計算処理は、制御装置9のCPU17により、入力表示部11よりのオペレータからの設定や指示に従い、データベース19内のパンチやダイのデータおよび製品形状データや被加工部材(ワークW)のデータを用いると共に、ROM13よりのコンピュータプログラムに従ってRAM15を用いて行うようにしても良いし、制御装置9に他のコンピュータを接続し、そのコンピュータで行って制御装置9へデータ転送するようにしても良い。
 次に、ステップ103において、ワークの加工情報から、基準デプスを算出して設定する。
 すなわち、制御装置9のCPU17により、データベース19からのパンチやダイのデータおよび製品形状データ(曲げ角度、曲げ長さ等)や被加工部材(ワークW)のデータ(板厚、材質等)に基づいて、基準デプス(第一目標位置)が算出される。ここで、基準デプス(第一目標位置)とは、図5に示すように、曲げ加工におけるパンチ7bの最終下降位置PDであり、上記パンチやダイのデータおよび製品形状データ(曲げ角度、曲げ長さ等)や被加工部材(ワークW)のデータ(板厚、材質等)に基づいて一般的な方法で算出される。
 次に、ステップ105において、加工モードに移り、加工中におけるワークWの板厚を測定する。
 すなわち、一般の板厚測定器によって、加工中のワークWの板厚が測定され、その測定値が、入力表示部11を介して入力され、RAM15あるいはデータベース19等の記憶部に記憶される。
 次に、ステップ107において、加工中において、圧力センサー12によりパンチ7bにかかる荷重を測定する。
 すなわち、圧力センサー12によって、加工中にパンチ7bにかかる荷重が検出され、その検出値が、入力表示部11を介して入力され、RAM15あるいはデータベース19等の記憶部に記憶される。
 次に、ステップ109において、加工中において、D軸エンコーダ16によってパンチ7bのD軸上のスライド位置を検出する。
 すなわち、D軸エンコーダ16によって、加工中におけるパンチ7bのD軸上のスライド位置が検出され、その検出値が、入力表示部11を介して入力され、RAM15あるいはデータベース19等の記憶部に記憶される。
 次に、ステップ111において、圧力センサー12によって検出されたパンチ7bにかかる荷重およびD軸エンコーダ16によって検出されたパンチ7bのD軸上のスライド位置に基づいてワークWの上面位置を演算する。
 すなわち、制御装置9のCPU17により、記憶部よりのパンチ7bにかかる荷重検出値およびパンチ7bのD軸上のスライド位置検出値に基づいて、ワークWの上面位置P0が算出される。ここで、ワークWの上面位置とは、ダイ7a上に載置されたワークWの上面位置であり、記憶部よりの荷重検出値およびスライド位置検出値に基づいて一般的な方法で算出される。
 次に、ステップ113において、D軸エンコーダ16によってパンチ7bのD軸上のスライド位置Piをサンプリングしながら、パンチ7bがワークWの上面位置P0から移動した距離である実ストローク量を演算する。
 すなわち、制御装置9のCPU17により、D軸エンコーダ16によって検出されたスライド位置Piがサンプリングされ、検出された材料上面位置P0から、実際にパンチが移動した実ストローク量Siが、以下の式によって演算される。
      Si = P0 - Pi - Mi
 ここで、Miは、各ストローク位置における機械のたわみ量で、機械形状、曲げ位置、曲げ長さ、荷重から計算される。
 次に、ステップ115において、実際にパンチが移動した実ストローク量Siごとにおけるパンチ7bにかかる荷重Fiを圧力センサー12によって検出し、その荷重Fiおよびステップ101において求めた材料の影響係数ECiから応力σiを求め、その応力σiの変化から材料定数を求める。
 すなわち、制御装置9のCPU17により、圧力センサー12によって検出された実ストローク量Siごとにおけるパンチ7bにかかる荷重Fiおよび前もって求められた材料の影響係数ECiから、以下の式により応力σiが演算される。
     σi = ECi * Fi
 そして、制御装置9のCPU17により、 ワーク情報の公称材料情報から、i個のストローク位置Sに対する最大ひずみεが以下の式より算出される。この式がストロークひずみ換算式となる。(またはデータベースを参照してデータが取得される)
    εi = f(Si)
    {εi , Si }
 この結果より各ひずみに対する応力データが決まり、以下のような材料特性が得られ、その材料特性から、材料定数が得られる。
    {σ, εi }
 次に、ステップ117において、上記パンチやダイのデータおよび製品形状データ(曲げ角度、曲げ長さ等)や被加工部材(ワークW)のデータ(板厚、材質等)および測定されたワークWの板厚および材料定数に基づいて、パンチの最終デプス(第二目標位置)を演算する。
 すなわち、制御装置9のCPU17により、上記パンチやダイのデータおよび製品形状データ(曲げ角度、曲げ長さ等)や被加工部材(ワークW)のデータ(板厚、材質等)および測定されたワークWの板厚および材料定数に基づいて、加工力の作用により発生する外部モーメントと、ワーク内部に発生する、材料定数から計算される内部曲げモーメントとのつりあい式から、ダイ内の材料の曲率を求め、材料の曲げ形状を求めた後、パンチの最終デプス(第二目標位置)が計算される。
 次に、ステップ119において、そのパンチの最終デプス(第二目標位置)の値までパンチが下降され、ワークWの曲げ加工が行われる。
 このように、本実施形態によれば、ワークの材料特性にばらつきがある場合でも、ワークの材料特性にばらつきに応じてパンチの最終デプスを補正し、ワークWの曲げ加工を行うので、正確なベンディング加工を行うことができるようになる。
 この発明は前述の発明の実施の形態に限定されることなく、以下のように適宜な変更を行うことにより、その他の態様で実施し得るものである。
 次に、図6~図12を参照して、本願発明の他の実施形態について説明する。
 図6は、本願発明の他の実施形態におけるダイとパンチ回りの概略図であり、図7は、本願発明の他の実施形態におけるベンディングマシンの制御装置9の概略構成を示すブロック図である。
 この加工機(ベンディングマシン)7は、図1に示した第1実施形態と同様に、下部に設けられた第1の曲げ工具としてのダイ7aに対して、上部に設けられた第2の曲げ工具としてのパンチ7bをD軸方向D(図6参照)に沿ってスライド動作させることにより、ダイ7aとパンチ7bとの間に搬入されたワークW(材料)を、ダイ7aとパンチ7bとによって曲げ加工するように構成されている。
 そして、図6および図7に示すように、このベンディングマシン7には、パンチ7bの上部に設けられてワークWに加わった荷重圧力を検出するための荷重センサー14(図7に示す)と、パンチ7bの上部に設けられてパンチ7bのD軸上のスライド位置を検出するためのD軸エンコーダ16(図3に示す)とが設けられている。
 そして、図6に示すように、ひずみ測定カメラ31が、ダイ7aの上部における、パンチ7bの先端に対向する位置に設けられ、パンチ7bの先端が当接するワークWの上面に対向するワークWの特定個所(図9のX)のひずみを測定するようになっている。
 また、ベンディングマシン7は、この加工機全体の制御をつかさどる制御装置9を有しており、その制御装置9には、所定画像の表示を行うと共に、オペレータからの指示を入力する入力表示部11が設けられている。
 そして、制御装置9の制御の基に、入力表示部11により入力設定された曲げ加工動作に従い、ワークの曲げ加工が行われるが、ここでは、後述するパンチの最終位置(パンチの最終押し込み位置あるいはパンチの最終デプス)検出が行われ、その検出された補正最終位置により曲げ加工が行われる。
 図7に示すように、ベンディングマシン7の制御装置9は、ROM13およびRAM15がバスを介して接続されたCPU17を有しており、CPU17には、さらに、バスを介して、上述した荷重センサー14、入力部と表示部とを兼ねる上記入力表示部11、D軸エンコーダ16、データベース19、ひずみ測定カメラ31が接続されている。
 また、上記CPU17には、バスを介して、パンチ7bの装着された上部テーブルを上下に駆動するためのシリンダ27を駆動するためのドライバ25も接続されるようになっている。
 ここでは、CPU17が、入力表示部11よりのオペレータからの設定や指示に従い、データベース19内のパンチやダイのデータおよび製品形状データや被加工部材(ワークW)のデータを用いると共に、ROM13よりのコンピュータプログラムに従ってRAM15を用いて、後述するようにパンチの最終位置(パンチの最終デプス)の検出を行うと共に、入力設定された曲げ加工動作を行うようになっている。
 次に、図8~図12を参照してパンチの最終位置検出の動作について説明する。
 図8は、本願発明の他の実施形態におけるパンチの最終位置検出の動作のフローチャートであり、本願発明の他の実施形態におけるパンチの最終位置検出の動作の説明図である。
 なお、このパンチの最終位置検出の動作は、上述したように、CPU17が、ROM13よりのコンピュータプログラムに従ってRAM15を用いて行うようになっている。
 本願発明の他の実施形態におけるパンチの最終位置検出の動作の主な特徴は、以下の通りである。
 実際に加工する加工材料(ワーク)は、材料特性において、実際値と公称値とは違う値を持っており、これらの違いを公称板厚t、公称材料特性(応力ひずみデータあるいは塑性係数: C、 加工硬化指数: n)と実板厚t’、実材料特性(特定材料の応力ひずみデータあるいは塑性係数: C’、 加工硬化指数: n’)とに区別し、加工動作中に制御装置9で実材料特性を判別して、材料に合わせた最適の動作目標値(パンチの最終位置)を再計算し、その再計算したパンチの最終位置に基づいて加工動作を行うことによって、材料のバラツキによる角度のバラツキを防止できるようにしたものである。
 ここでは、特定の金型と公称板厚での加工を想定し、m種類材料(例えば、SPCC、SPHC、SUS304、SUS430、A1100、A5052 etc.)の公称材料特性(応力ひずみデータ値又は、公称塑性係数: C, 公称加工硬化指数: n)、公称板厚t、金型情報より各材料ごとの加工時の荷重と特定箇所のひずみを算出し、これらの情報を使って、応力と加工荷重の関連を表す式(またはデータベース)を作成し、この式(またはデータベース)を使って最終的に、実材料(未知の材料)を加工したときの荷重-ひずみ関係または荷重-ストローク関係から、その加工している材料の応力-ひずみ関係を予測するようにしている。
 ここで、パンチ7bの最終位置D(図11参照)について説明する。まず、ピンチング位置とは、ワークWがダイ7aとパンチ7bとによって挟み込まれる位置のことであり、より詳しく説明すると、ピンチング位置とは、ダイ7a上に載置された板厚tのワークWの上面にパンチ7bの下端が接触した状態で、金型原点位置とパンチ7bの下端との間の距離である。ここで、金型原点位置とは、ダイ7aとパンチ7bとが接触した状態でのパンチ7bの下端位置である。
 従って、ダイ7aとパンチ7bとが接触した状態でのパンチ7bの下端位置をD軸エンコーダ16で前もって検出して金型原点位置を得ておき、ワークWの上面にパンチ7bの下端が接触したとされる位置をD軸エンコーダ16で検出することによってピンチング位置が得られる。
 そして、パンチ7bの最終位置Dは、ピンチング位置から、パンチ7bが下降して曲げ加工が終了する最終位置となる。
 図8のステップ201において、前工程として、材料(ワーク)の加工シミュレーションを行い、材料の応力と加工荷重の関係の近似式を求める。
 この材料の応力と加工荷重の関係の近似式の計算は、材料定数の予測計算を高速化するために、予め、外部の演算装置を使って行われ、このように、事前に応力と加工荷重の関係の近似式を計算して置くことによって、短時間で加工中に材料定数の予測が可能となる。
 なお、この材料の応力と加工荷重の関係の近似式の計算は、制御装置9によって行っても良い。
 次に、材料の応力と加工荷重の関係の近似式の計算の内容について説明する。
 一般的に塑性変形における材料特性Mは、材料の応力σ、ひずみεの関係によって表され、この情報は引っ張り試験によって得られる。
      { ε, σi }         (1)

 この応力とひずみデータの近似式を下式とする。
Figure JPOXMLDOC01-appb-I000002
(ここで、塑性係数: C, 加工硬化指数: nは材料特性を表すパラメータとしてMと総称する)

 なお、その他にも
Figure JPOXMLDOC01-appb-I000003
 の一次式で近似することも可能である。(ここで、a,Yは材料特性を表すパラメータとしてMと総称する)

 そして、外部の演算装置を使って、特定の金型情報と公称板厚情報tと、材料特性M(塑性係数: C, 加工硬化指数: nまたは、応力ひずみデータ{ σi , εi })より、図9に示すように、FEM(有限要素法による加工シミュレーション)を用いて、加工荷重F(単位曲げ長さあたり)から特定箇所XのひずみεXを算出する。(なお、塑性力学計算でも可能である)
 ここで、特定箇所Xは、図9に示すように、パンチ7bの先端が当接するワークWの上面に対向するワークWの特定個所となっている。
Figure JPOXMLDOC01-appb-I000004
 ここで、加工モデル:加工荷重Fと、特定箇所XのひずみεXとし、特定箇所Xはひずみの大きいところの方が、検出しやすく、測定精度が高くなる(例えばパンチ直下の最外層)。よって、特定箇所Xは、計算可能で、その後の加工ストローク中に測定又は予測できる点(複数点又は領域含む)であれば、特にその位置を限定しない。

 なお、このステップ201においては、m種類の材料を選定する。これは最終的に予測する未知の材料として可能性のある範囲のなかから、代表的な材料を選ぶ。数が多ければその後の近似計算のサンプル数が多くなるので予測精度が向上する。

 これらの材料の引っ張り試験を行い、m種類の応力σ、ひずみεの関係を測定する。
 
     { εmi , σmi }      (5)

 この応力とひずみデータは、m種類の材料ごとに近似式(累乗近似)を下式とする。
 (2)より
Figure JPOXMLDOC01-appb-I000005
(ここで、塑性係数: Cm, 加工硬化指数: nmはm種類の材料特性を表すパラメータとしてMmと総称する)

 なお、その他にも
Figure JPOXMLDOC01-appb-I000006
 の一次式で近似することも可能である。(ここで、am,Ymはm種類の材料特性を表すパラメータとしてMmと総称する)

 そして、m種類の材料を(3)加工モデルで、特定箇所Xの各m種類の材料のひずみεXmをm種類の材料ごとに求めると、
(3)より、
Figure JPOXMLDOC01-appb-I000007
 となり、ひずみεXより、m種類の各材料ごとの加工荷重Fmを求める式に変換し下式となる。
Figure JPOXMLDOC01-appb-I000008
 そして、曲げ加工のひずみは、円周方向の単軸ひずみだと仮定すると、特定箇所Xの円周方向のひずみεXとその位置での円周方向の応力の関係は下式となる。
Figure JPOXMLDOC01-appb-I000009
 ここで、特定箇所XのひずみεXにおける加工ストローク途中のひずみをそれぞれεXiとすると、以下のようになり、
Figure JPOXMLDOC01-appb-I000010
(8)より、以下のようになる。

   {εXi, Fmi }          (10)
   
(なお、このデータは実験で実際に加工を行い、加工荷重Fと特定箇所のひずみを測定して求めてもよい)

(9)より、

   {εXiXmi }         (11)

(10)(11)より、
εXiのときの応力σXmiと加工荷重Fmiの関係が求まる。

   {σXmi, Fmi }         (12)

 i個の各ひずみεXiごとに、m種類の材料の応力σXmiと加工荷重Fmiの関係に対して近似式を作成すると、i個の近似式が作成できる。これによって、各ひずみεXiごとに、材料に依存しない応力と加工荷重の関係式が作成できる。
Figure JPOXMLDOC01-appb-I000011
 この近似式を加工前に計算しておけば、以下のステップにおいて加工中に得られる、未知の材料のi個の特定位置のひずみε’Xiと加工荷重F’iから、応力-ひずみ関係(材料定数)を求めることができる。
 なお、種々の材料の特定位置のひずみε’Xiと加工荷重F’iから、応力-ひずみ関係を求めた具体例を、図10に示す。
 この(13)式を求めるまでの計算時間は、FEMの場合、特定の加工モデルでの一つの材料の計算時間(0.1~1H)×m種類の材料となり、数時間の時間がかかることから、加工中にこれらの計算を行うよりは、事前に計算することが有効となる。
 ただし、将来的には計算時間が早くなり、内部演算装置にて加工中に“材料定数予測式の計算”を含めて行う事ができる可能性もある。
 次に、図8のステップ203において、パンチ7bの基準位置(基準デプス)Dの設定が行われる。
 すなわち、公称板厚、公称材料特性(応力-ひずみデータの平均値又は、公称塑性係数: C, 公称加工硬化指数: n)、パンチ情報、ダイ情報、曲げ角度、曲げ長さ等のワークの加工情報によって、所定位置を算出し、図11に示すように、その所定位置より一定量手前の位置を基準位置(第一目標位置)Dと設定する。なお、この基準位置(第一目標位置)Dの設定方法については、特開平8-24955(段落番号0036、0037等:ここでは、基準位置はテーブル移動位置となっている)に詳しく記載されているので、説明は省略する。
 このステップ201、203までが前工程となる。
 次に、図8のステップ205において、基準位置(第一目標位置)を目標値として、1ストロークの加工動作が開始され、ステップ207において、この1ストロークの加工動作中における特定箇所のひずみと加工荷重の測定が行われる。
 すなわち、ひずみ測定カメラ31と荷重センサー14より、以下のように、特定位置のひずみε’Xiにおける実加工荷重F’iが測定され、F’iは単位曲げ長さあたりの荷重に換算される。
 以降、’が付いている変数は未知の材料の加工を行った時の実測値を表すものとする。
 
    { ε’Xi ,F’i }         (14)
    
  次に、ステップ209において、材料定数の計算が行われる。
  すなわち、まず、加工中にダイ7aの中にセットしたひずみ測定カメラ31と荷重センサー14より、加工中の各ひずみにおける加工荷重が測定され、式(13)(14)より、応力-ひずみ関係(材料定数)が、以下の近似式により計算される。
 

   {σ’i , ε’i }          (15)
 
 この応力とひずみデータの近似式は、
 (16)より、
Figure JPOXMLDOC01-appb-I000012
 (ここで、塑性係数: C’, 加工硬化指数: n’は実際に加工している実材料特性を表すパラメータとしてM’と総称する)

 なお、その他にも
Figure JPOXMLDOC01-appb-I000013
 の一次式で近似することも可能である。(a’,Y’は実材料特性を表すパラメータとしてM’と総称する)
 次に、ステップ211において、パンチ7bの最終位置Dの計算が行われる。
 すなわち、実板厚又は公称板厚、式(15)(16)で算出した材料定数(応力ひずみデータ値又は、実塑性係数:C’, 実加工硬化指数: n’)、パンチ情報、ダイ情報、曲げ角度、曲げ長さの情報より、図11に示すように、最終位置決め位置Dが算出される。
 なお、この最終位置決め位置Dの計算方法については、特開2000-140943に詳しく記載されているので、説明は省略する。
 そして、ステップ213において、ステップ211において計算されたパンチ7bの最終位置へパンチ7bが移動され位置決めが行われる。
 このステップ205~213までが1ストローク加工動作となる。
 なお、上記位置決めされたパンチ7bの最終位置に基づいて、ワーク(材料)の実加工動作が行われる。
 以下に、本願発明の他の実施形態に沿って行われた具体例について図12のグラフ図を参照して説明する。
 図12のグラフ図は、公称板厚3.2mmの鉄鋼材を目標角度90°で曲げ加工し、その角度を測定した結果である。
 未知の鉄鋼材料としてSPCC,SECC,SS400,SPHC,SS400酸洗材、SPHC酸洗材を用意し、また曲げ加工方向を板の圧延方向に対して、垂直と並行の方向で加工したときの曲げ角度を測定した。
 図12において、▲は公称板厚と公称材料(すべて同じ鉄鋼材料とする)で計算される同じ最終デプスで加工したときの角度を表し、■はそれぞれの材料を測定した実板厚と、公称材料(すべて同じ鉄鋼材料とする)で計算される異る最終デプスで加工したときの角度を表し、○はそれぞれの材料を測定した実板厚と、本特許の仕組みに従ってそれぞれの材料の応力-ひずみ関係を予測し、その実材料特性に基づいた最終デプスで加工したときの角度を表し、▲は目標角度90°に対して、95.91~91.51のバラツキを表し、
■は目標角度90°に対して、93.98~90.4のバラツキを表し、○は目標角度90°に対して、90.41~89.7のバラツキを表している。
 このグラフから、実板厚と、実材料特性を個別に予測しているためにバラツキ、絶対精度誤差共に小さくなっていることが判り、よって実板厚と、実材料特性を予測して考慮することの効果が示されている。
 また、加工している未知の材料の板厚が公称板厚と異なる板厚(実板厚)であった場合、加工前(ステップ203とステップ205の間)に、板厚測定器によって材料の実板厚t’ を測定する、又は、ノギス、マイクロメータ等で事前に材料の実板厚t’ を測定し、この実板厚を最終位置の演算において、公称板厚の代わりに使用することもでき、これによってさらに予測精度を高めることもできる。また、ピンチング位置と金型原点位置と金型パラメータより算出することも可能である。
 本発明によれば、ワークの材料特性にばらつきがある場合でも、ワークの材料特性にばらつきに応じてパンチの最終デプスを補正し、正確なベンディング加工を行うことができる。

Claims (5)

  1.  第1および第2の曲げ工具によりワークを挟んで前記ワークの曲げ加工を行う加工機において、
     前もって
     (1)複数種類のワークに対して材料試験を行い、その応力とひずみの関係を求め、
     (2) 前記応力とひずみの関係を用いてワークに基づく加工モデルを計算して特定箇所のひずみと加工荷重の関係をもとめ、
     (3) さらに、材料に依存しないワークの加工荷重と応力との関係式を算出しておき、
     その後に、前記加工荷重と応力との関係式と前記曲げ加工を行うワークにおけるひずみと加工荷重の値に基づいて、前記曲げ加工を行うワークの応力とひずみとの関係を材料定数として求めることを特徴とする加工機。
  2.  さらに、前記材料定数および加工条件に基づいて、前記ワークの曲げ加工における前記第2の曲げ工具の最終位置を算出し、その第2の曲げ工具の最終位置に基づいて、前記ワークの曲げ加工が行われることを特徴とする請求項1に記載の加工機。
  3.  前記曲げ加工を行うワークの応力とひずみとの関係を材料定数として求める工程が、前記第2の曲げ工具の基準位置を設定し、曲げ加工動作中における前記特定個所のひずみと加工荷重の測定を行い、その特定個所のひずみと加工荷重の測定値と前記のワークにおける加工荷重と応力との関係の近似式とから、前記曲げ加工を行うワークの応力とひずみとの関係からなる材料定数を計算することからなることを特徴とする請求項1あるいは2に記載の加工機。
  4.  前記曲げ加工を行うワークの応力とひずみとの関係を材料定数として求める工程が、前記第2の曲げ工具の基準位置を設定し、曲げ加工動作中におけるストロークと加工荷重の測定を行い、前記曲げ加工を行うワークの前記特定個所のひずみの値をストロークひずみ換算式により求め、その特定個所のひずみと加工荷重の値と前記ワークにおける加工荷重と応力との関係の近似式とから、前記曲げ加工を行うワークの応力とひずみとの関係からなる材料定数を計算することからなることを特徴とする請求項1あるいは2に記載の加工機。
  5.  第1および第2の曲げ工具によりワークを挟んで前記ワークの曲げ加工を行う加工機において、
    前記ワークの材料特性を、実際値と公称値とに区別し、加工動作中に実際の材料特性を判別して、前記ワークに合わせた最適の動作目標値を再計算し、その再計算した最適の動作目標値に合わせて前記第1の曲げ工具あるいは第2の曲げ工具を動作させて前記ワークの曲げ加工を行うことを特徴とする加工機。
     
PCT/JP2013/078708 2012-10-23 2013-10-23 加工機におけるパンチの最終デプス検出装置および方法 WO2014065325A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/437,067 US9789525B2 (en) 2012-10-23 2013-10-23 Device and method for detecting final depth of punch in machine tool
EP13849293.9A EP2913115B1 (en) 2012-10-23 2013-10-23 Bending machine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-233728 2012-10-23
JP2012233728 2012-10-23
JP2013218951A JP6200274B2 (ja) 2012-10-23 2013-10-22 加工機におけるパンチの最終デプス検出装置および最終デプス検出方法
JP2013-218951 2013-10-22

Publications (1)

Publication Number Publication Date
WO2014065325A1 true WO2014065325A1 (ja) 2014-05-01

Family

ID=50544700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078708 WO2014065325A1 (ja) 2012-10-23 2013-10-23 加工機におけるパンチの最終デプス検出装置および方法

Country Status (4)

Country Link
US (1) US9789525B2 (ja)
EP (1) EP2913115B1 (ja)
JP (1) JP6200274B2 (ja)
WO (1) WO2014065325A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10746641B2 (en) * 2017-03-24 2020-08-18 Honda Motor Co., Ltd. Peel bending moment calculation
TWI726566B (zh) * 2020-01-02 2021-05-01 穎漢科技股份有限公司 退彎模擬方法及退彎模擬系統

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06134524A (ja) 1992-10-26 1994-05-17 Komatsu Ltd 曲げ機械の制御装置
JPH0824955A (ja) 1994-07-08 1996-01-30 Amada Co Ltd 折曲げ加工装置
JP2000140943A (ja) 1998-11-05 2000-05-23 Amada Co Ltd 材料属性の算出方法,折曲げ加工方法およびその装置
JP2001198622A (ja) * 2000-01-17 2001-07-24 Amada Co Ltd 材料属性の算出方法、板材加工方法及び板材加工システム
JP2009119522A (ja) * 2007-11-19 2009-06-04 Amada Co Ltd 材料の応力歪関係予測方法、材料の加工方法および材料の応力歪関係予測装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4408471A (en) 1980-10-29 1983-10-11 Massachusetts Institute Of Technology Press brake having spring-back compensating adaptive control
US4797831A (en) * 1986-11-18 1989-01-10 Cincinnati Incorporated Apparatus for synchronizing cylinder position in a multiple cylinder hydraulic press brake
CA1335638C (en) * 1987-12-04 1995-05-23 Kinshirou Naito Method and device for controlling the stroke of a press
JP3363970B2 (ja) 1993-10-15 2003-01-08 株式会社小松製作所 プレスブレーキのラム位置設定方法およびラム制御装置
DE69529526T2 (de) * 1994-07-08 2003-11-06 Amada Co Verfahren zum biegen mit einer abkantpresse und abkantpresse zum ausführen dieses verfahrens
US7040129B2 (en) 2000-01-17 2006-05-09 Amada Company, Limited Sheet working method, sheet working system, and various devices related to such system
ATE297272T1 (de) 2001-03-16 2005-06-15 Bystronic Laser Ag Verfahren zur einstellung der bahn einer abkantpresse

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06134524A (ja) 1992-10-26 1994-05-17 Komatsu Ltd 曲げ機械の制御装置
JPH0824955A (ja) 1994-07-08 1996-01-30 Amada Co Ltd 折曲げ加工装置
JP2000140943A (ja) 1998-11-05 2000-05-23 Amada Co Ltd 材料属性の算出方法,折曲げ加工方法およびその装置
JP2001198622A (ja) * 2000-01-17 2001-07-24 Amada Co Ltd 材料属性の算出方法、板材加工方法及び板材加工システム
JP2009119522A (ja) * 2007-11-19 2009-06-04 Amada Co Ltd 材料の応力歪関係予測方法、材料の加工方法および材料の応力歪関係予測装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2913115A4

Also Published As

Publication number Publication date
US20150246382A1 (en) 2015-09-03
EP2913115B1 (en) 2018-04-18
JP2014100740A (ja) 2014-06-05
EP2913115A1 (en) 2015-09-02
EP2913115A4 (en) 2016-11-02
US9789525B2 (en) 2017-10-17
JP6200274B2 (ja) 2017-09-20

Similar Documents

Publication Publication Date Title
JP5170089B2 (ja) 薄板のプレス成形装置及びプレス成形方法
Wang et al. Springback control of sheet metal air bending process
WO2010041662A1 (ja) 金属製プレス成形品の割れ判定方法、装置、プログラム及び記録媒体
CN105300799B (zh) 一种准静态单轴压缩实验方法及装置
JP7261984B2 (ja) 打ち抜き装置
JP6200274B2 (ja) 加工機におけるパンチの最終デプス検出装置および最終デプス検出方法
JP4943284B2 (ja) 薄板のプレス成形加工装置
JP2009236540A (ja) 溶溶接構造体の破壊性能評価方法、データベース装置
Tisza et al. Formability investigations of high-strength dual-phase steels
JP2009095877A (ja) 薄板のプレス成形装置及び方法
US6796155B2 (en) Sheet thickness detecting method and device therefor in bending machine, reference inter-blade distance detecting method and device therefor, and bending method and bending device
JP7299578B2 (ja) 冷間圧造用線材または線の塑性加工性の指標測定装置及び冷間圧造用線材または線の塑性加工性の指標測定方法
JP2014094392A (ja) 板金加工方法および板金加工装置
JP2012006038A (ja) 絞りビード試験方法及びその試験方法で求めた物性値を用いたプレス成形解析方法
JP2003311338A (ja) 成形シミュレーション法および同法に適用する見かけの摩擦係数決定方法
KR20100035222A (ko) 금속 재료의 이축 인장 변형량 측정 장치 및 방법
JP5140388B2 (ja) 材料の応力歪関係予測方法、材料の加工方法および材料の応力歪関係予測装置
JP5737657B2 (ja) プレスブレーキを用いた折曲げ加工方法および折曲げ加工システム
Dokšanović et al. Stress–strain relationships and influence of testing parameters on coupon test results
JP6347201B2 (ja) 摩擦係数測定装置及び方法
Diaz-Mendoza et al. Experimental and numerical analysis of the residual stress distribution in a three-point bending test of a TRIP sheet by using ESPI
WO2021205693A1 (ja) 金属板のくびれ限界ひずみ特定方法
KR20240078244A (ko) 금형 수명 예측 방법 및 이를 수행할 수 있는 프로그램
Schikorra et al. Determination of anisotropic hardening of sheet metals by shear tests
JPH11258137A (ja) 金属材料の転造加工性の評価方法および装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13849293

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14437067

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013849293

Country of ref document: EP