WO2014057926A1 - 露光装置、露光方法、デバイス製造方法、プログラム、及び記録媒体 - Google Patents

露光装置、露光方法、デバイス製造方法、プログラム、及び記録媒体 Download PDF

Info

Publication number
WO2014057926A1
WO2014057926A1 PCT/JP2013/077313 JP2013077313W WO2014057926A1 WO 2014057926 A1 WO2014057926 A1 WO 2014057926A1 JP 2013077313 W JP2013077313 W JP 2013077313W WO 2014057926 A1 WO2014057926 A1 WO 2014057926A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
substrate
shot
liquid
scanning direction
Prior art date
Application number
PCT/JP2013/077313
Other languages
English (en)
French (fr)
Inventor
真路 佐藤
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to CN201380064286.3A priority Critical patent/CN104838471B/zh
Priority to EP13845003.6A priority patent/EP2908331A4/en
Priority to JP2014540846A priority patent/JP6341090B2/ja
Priority to KR1020157012052A priority patent/KR102219386B1/ko
Publication of WO2014057926A1 publication Critical patent/WO2014057926A1/ja
Priority to US14/681,475 priority patent/US9507265B2/en
Priority to HK15111253.2A priority patent/HK1210545A1/xx
Priority to HK16100428.4A priority patent/HK1212512A1/xx
Priority to US15/361,268 priority patent/US9857700B2/en
Priority to US15/784,907 priority patent/US10444634B2/en
Priority to US16/599,776 priority patent/US10678141B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70525Controlling normal operating mode, e.g. matching different apparatus, remote control or prediction of failure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece

Definitions

  • the present invention relates to an exposure apparatus, an exposure method, a device manufacturing method, a program, and a recording medium.
  • This application claims priority based on the Japan patent application 2012-227051 for which it applied on October 12, 2012, and uses the content here.
  • an immersion exposure apparatus that exposes a substrate with exposure light via a liquid as disclosed in Patent Document 1 below is known.
  • an immersion exposure apparatus for example, if a liquid flows out from a predetermined space or remains on an object such as a substrate, an exposure failure may occur. As a result, a defective device may occur.
  • An object of an aspect of the present invention is to provide an exposure apparatus and an exposure method that can suppress the occurrence of exposure failure.
  • Another object of the present invention is to provide a device manufacturing method, a program, and a recording medium that can suppress the occurrence of defective devices.
  • the substrate is moved with the exposure light through the liquid between the emission surface and the substrate while moving the substrate in the scanning direction with respect to the exposure light emitted from the emission surface of the optical member.
  • An exposure apparatus that sequentially exposes each of the plurality of shot areas, a first member disposed at least at a part of the periphery of the optical member, a second member disposed at a part of the periphery of the optical member, A liquid immersion member capable of forming a liquid immersion space, a drive device capable of moving the second member relative to the first member, and a control device for controlling the drive device, A control device that exposes shot areas in a column different from one column before or after each of a plurality of shot regions arranged in a direction crossing the scanning direction included in the column is sequentially exposed.
  • the substrate is moved by the exposure light through the liquid between the emission surface and the substrate while moving the substrate in the scanning direction with respect to the exposure light emitted from the emission surface of the optical member.
  • An exposure apparatus that sequentially exposes each of the plurality of shot areas, the first member having a first lower surface and disposed at least at a part of the periphery of the optical member, and opposed to the first lower surface through a gap And a second member disposed on at least a portion of the periphery of the optical path of the exposure light, and capable of forming a liquid immersion space.
  • An immersion member a driving device capable of moving the second member relative to the first member, and a control device for controlling the driving device, and arranged in a direction intersecting a scanning direction included in one row on the substrate.
  • Each of the plurality of shot areas is exposed before or after being sequentially exposed.
  • the exposure of the shot region in a row different from the one row is performed, and the control device performs the first movement period of the substrate from the end of exposure of the first shot region included in the same row to the start of exposure of the second shot region.
  • the second operation of the second member in the second movement period of the substrate from the end of exposure of the third shot area in one row to the start of exposure of the fourth shot region in another row.
  • an exposure apparatus for controlling a driving device is provided.
  • the substrate is moved by the exposure light through the liquid between the emission surface and the substrate while moving the substrate in the scanning direction with respect to the exposure light emitted from the emission surface of the optical member.
  • An exposure apparatus that sequentially exposes each of the plurality of shot areas, a first member disposed at least at a part of the periphery of the optical member, a second member disposed at a part of the periphery of the optical member, Including a liquid immersion member capable of forming a liquid immersion space, a drive device capable of moving the second member relative to the first member, and a control device for controlling the drive device, wherein Before or after sequentially exposing the first and second shot areas of one dimension, the third and fourth shot areas having a second dimension different from the first dimension in the scanning direction are sequentially exposed, and the control device From the end of exposure of the first shot area, The first movement of the second member in the first movement period of the substrate until the start of light and the second movement of the second member in the second movement period of the substrate from
  • the substrate is moved by the exposure light through the liquid between the emission surface and the substrate while moving the substrate in the scanning direction with respect to the exposure light emitted from the emission surface of the optical member.
  • An exposure apparatus that sequentially exposes each of the plurality of shot areas, the first member having a first lower surface and disposed at least at a part of the periphery of the optical member, and opposed to the first lower surface through a gap And a second member disposed on at least a portion of the periphery of the optical path of the exposure light, and capable of forming a liquid immersion space.
  • An immersion member, a drive device that can move the second member relative to the first member, and a control device that controls the drive device, and the first and second shot areas having the first dimension in the scanning direction are sequentially exposed. Different from the first dimension with respect to the scanning direction before or after being exposed The third and fourth shot areas having dimensions are sequentially exposed, and the control device performs the first operation of the second member in the first movement period of the substrate from the end of exposure of the first shot area to the start of exposure of the second shot area.
  • An exposure apparatus for controlling the driving device is provided so that the second operation of the second member in the second movement period of the substrate from the end of exposure of the third shot area to the start of exposure of the fourth shot area is different.
  • the substrate is moved with the exposure light through the liquid between the emission surface and the substrate while moving the substrate in the scanning direction with respect to the exposure light emitted from the emission surface of the optical member.
  • An exposure apparatus that sequentially exposes each of the plurality of shot areas, a first member disposed at least at a part of the periphery of the optical member, a second member disposed at a part of the periphery of the optical member, A liquid immersion member capable of forming a liquid immersion space, a drive device capable of moving the second member relative to the first member, and a control device for controlling the drive device, each of which is related to the scanning direction.
  • the third and fourth shot areas of the third dimension are sequentially exposed with respect to the scanning direction.
  • the exposure of the second shot area from the end of exposure of the one shot area The first operation of the second member in the first movement period of the substrate until the start, and the second operation of the second member in the second movement period of the substrate from the end of exposure of the third shot area to the start of exposure of the fourth shot area.
  • the substrate is moved by the exposure light through the liquid between the emission surface and the substrate while moving the substrate in the scanning direction with respect to the exposure light emitted from the emission surface of the optical member.
  • An exposure apparatus that sequentially exposes each of the plurality of shot areas, the first member having a first lower surface and disposed at least at a part of the periphery of the optical member, and opposed to the first lower surface through a gap And a second member disposed on at least a portion of the periphery of the optical path of the exposure light, and capable of forming a liquid immersion space.
  • a dipping member comprising a drive device capable of moving the second member relative to the first member; and a control device for controlling the drive device, wherein the first and second shots have first and second dimensions in the scanning direction, respectively.
  • the third dimension in the scan direction before or after the areas are sequentially exposed.
  • the third and fourth shot areas are sequentially exposed, and the control device includes a first operation of the second member in the first movement period of the substrate from the end of exposure of the first shot area to the start of exposure of the second shot area,
  • an exposure apparatus that controls the driving device so that the second operation of the second member in the second movement period of the substrate from the end of exposure of the third shot area to the start of exposure of the fourth shot area is different.
  • the substrate is moved by the exposure light through the liquid between the emission surface and the substrate while moving the substrate in the scanning direction with respect to the exposure light emitted from the emission surface of the optical member.
  • An exposure apparatus that sequentially exposes each of the plurality of shot areas, a first member disposed at least at a part of the periphery of the optical member, a second member disposed at a part of the periphery of the optical member, A liquid immersion member capable of forming a liquid immersion space, a drive device capable of moving the second member relative to the first member, and a control device for controlling the drive device, the control device comprising: In the first movement period of the substrate from the end of exposure of the first shot area to the start of exposure of the second shot area, the second member is moved to one side in the direction intersecting the scanning direction under the first movement condition, and the second shot area During the second exposure period of the substrate from the start of exposure to the end of exposure There are first moved condition to the other side of the direction in which the second member intersect
  • the substrate is moved by the exposure light through the liquid between the emission surface and the substrate while moving the substrate in the scanning direction with respect to the exposure light emitted from the emission surface of the optical member.
  • An exposure apparatus that sequentially exposes each of the plurality of shot areas, the first member having a first lower surface and disposed at least at a part of the periphery of the optical member, and opposed to the first lower surface through a gap And a second member disposed on at least a portion of the periphery of the optical path of the exposure light, and capable of forming a liquid immersion space.
  • the control device controls the second shot region from the end of exposure of the first shot region.
  • the second member intersects the scanning direction.
  • the first member is moved to one side of the scanning direction under the first moving condition, and the second member is moved to the other side in the direction intersecting the scanning direction in the second exposure period of the substrate from the start of exposure of the second shot region to the end of exposure.
  • An exposure apparatus is provided that controls the driving device so as to be moved under a second movement condition different from the condition.
  • the substrate is moved by the exposure light through the liquid between the emission surface and the substrate while moving the substrate in the scanning direction with respect to the exposure light emitted from the emission surface of the optical member.
  • An exposure apparatus that sequentially exposes each of the plurality of shot areas, a first member disposed at least at a part of the periphery of the optical member, a second member disposed at a part of the periphery of the optical member, A liquid immersion member capable of forming a liquid immersion space, a drive device capable of moving the second member relative to the first member, and a control device for controlling the drive device, A control device that exposes shot areas in a column different from one column before or after each of a plurality of shot regions arranged in a direction crossing the scanning direction included in the column is sequentially exposed. Control the drive unit, the shot area of a certain row From exposure end, then it is exposed, relative to the first member an exposure apparatus for moving the second member is provided in the moving period of the substrate to the exposure start of the shot area
  • the substrate is moved by the exposure light through the liquid between the emission surface and the substrate while moving the substrate in the scanning direction with respect to the exposure light emitted from the emission surface of the optical member.
  • An exposure apparatus that sequentially exposes each of the plurality of shot areas, the first member having a first lower surface and disposed at least at a part of the periphery of the optical member, and opposed to the first lower surface through a gap And a second member disposed on at least a portion of the periphery of the optical path of the exposure light, and capable of forming a liquid immersion space.
  • An immersion member a driving device capable of moving the second member relative to the first member, and a control device for controlling the driving device, and arranged in a direction intersecting a scanning direction included in one row on the substrate.
  • Each of the plurality of shot areas is exposed before or after being sequentially exposed. After that, a shot area in a row different from the one row is exposed, and the control device controls the drive unit so that the shot in another row is exposed after the exposure of the shot region in one row is completed.
  • An exposure apparatus is provided that moves the second member relative to the first member during the movement period of the substrate until the exposure of the region starts.
  • the exposure apparatus according to any one of the first, second, third, fourth, fifth, sixth, seventh, eighth, ninth and tenth aspects.
  • a device manufacturing method is provided that includes using to expose a substrate and developing the exposed substrate.
  • the substrate is moved by the exposure light through the liquid between the emission surface and the substrate while moving the substrate in the scanning direction with respect to the exposure light emitted from the emission surface of the optical member.
  • the substrate is moved by the exposure light through the liquid between the emission surface and the substrate while moving the substrate in the scanning direction with respect to the exposure light emitted from the emission surface of the optical member.
  • a liquid immersion space is formed using a liquid immersion member including a second member having a second upper surface and a second lower surface that can be opposed to the substrate and disposed at least at a part of the periphery of the optical path of the exposure light.
  • An exposure method includes moving the second member relative to the first member in at least a portion of the substrate exposure such that the second operation of the second member is different.
  • the substrate is moved by the exposure light through the liquid between the emission surface and the substrate while moving the substrate in the scanning direction with respect to the exposure light emitted from the emission surface of the optical member.
  • the two shot areas are sequentially exposed, and the exposure light emitted from the exit surface through the liquid in the immersion space before or after the first and second shot areas are exposed, the first in the scanning direction.
  • the 3rd and 4th shot areas of the 2nd size different from the size are sequentially The first movement of the second member in the first movement period of the substrate from the end of exposure of the first shot area to the start of exposure of the second shot area, and the fourth shot area from the end of exposure of the third shot area Moving the second member relative to the first member in at least a part of the exposure of the substrate so that the second operation of the second member in the second movement period of the substrate until the start of exposure is different.
  • An exposure method is provided.
  • the substrate is moved by the exposure light through the liquid between the emission surface and the substrate while moving the substrate in the scanning direction with respect to the exposure light emitted from the emission surface of the optical member.
  • a liquid immersion space is formed using a liquid immersion member including a second member having a second upper surface and a second lower surface that can be opposed to the substrate and disposed at least at a part of the periphery of the optical path of the exposure light.
  • the liquid is projected through the liquid in the immersion space.
  • the exposure light emitted from the surface sequentially exposes the third and fourth shot areas having a second dimension different from the first dimension in the scanning direction, and the exposure of the second shot area from the end of the exposure of the first shot area.
  • the substrate is moved by the exposure light through the liquid between the emission surface and the substrate while moving the substrate in the scanning direction with respect to the exposure light emitted from the emission surface of the optical member.
  • Sequential exposure of the first and second shot areas, and scanning with exposure light emitted from the exit surface through the liquid in the immersion space before or after exposure of the first and second shot areas Sequential exposure of 3rd and 4th shot areas of 3rd dimension with respect to direction
  • the first movement of the second member during the first movement period of the substrate from the end of exposure of the first shot area to the start of exposure of the second shot area, and from the end of exposure of the third shot area to the fourth shot area Moving the second member relative to the first member in at least part of the exposure of the substrate so that the second operation of the second member in the second movement period of the substrate until the start of exposure is different.
  • the substrate is moved by the exposure light through the liquid between the emission surface and the substrate while moving the substrate in the scanning direction with respect to the exposure light emitted from the emission surface of the optical member.
  • a liquid immersion space is formed using a liquid immersion member including a second member having a second upper surface and a second lower surface that can be opposed to the substrate and disposed at least at a part of the periphery of the optical path of the exposure light.
  • the exposure light emitted from the exit surface sequentially exposes the third and fourth shot areas having the third dimension in the scanning direction, and the exposure of the second shot area starts from the end of the exposure of the first shot area.
  • the substrate is moved by the exposure light through the liquid between the emission surface and the substrate while moving the substrate in the scanning direction with respect to the exposure light emitted from the emission surface of the optical member.
  • the second member In the first movement period of the substrate from the exposure end of the first shot area to the start of exposure of the second shot area, the second member is moved to one side in the direction intersecting the scanning direction under the first movement condition.
  • the basis from the start of exposure to the end of exposure of the second shot area In at least part of the exposure of the substrate, the first member is moved so that the second member is moved to the other side in the second exposure period in a direction crossing the scanning direction under a second movement condition different from the first movement condition. Moving the second member relative to the exposure method.
  • the substrate is moved with the exposure light through the liquid between the emission surface and the substrate while moving the substrate in the scanning direction with respect to the exposure light emitted from the emission surface of the optical member.
  • a liquid immersion space is formed using a liquid immersion member including a second member having a second upper surface and a second lower surface that can be opposed to the substrate and disposed at least at a part of the periphery of the optical path of the exposure light.
  • the second member sequentially exposing the first and second shot areas of the substrate with the exposure light emitted from the exit surface through the liquid in the immersion space, and the second shot from the end of exposure of the first shot area.
  • the second member In the first movement period of the substrate until the exposure of the area starts, the second member The other side in the direction in which the second member intersects the scanning direction in the second exposure period of the substrate from the start of exposure to the end of exposure in the second shot area, moved to one side in the direction intersecting the inspection direction. And moving the second member relative to the first member in at least part of the exposure of the substrate so that the substrate is moved under a second movement condition different from the first movement condition.
  • the substrate is moved by the exposure light through the liquid between the emission surface and the substrate while moving the substrate in the scanning direction with respect to the exposure light emitted from the emission surface of the optical member.
  • the substrate is moved by the exposure light through the liquid between the emission surface and the substrate while moving the substrate in the scanning direction with respect to the exposure light emitted from the emission surface of the optical member.
  • a liquid immersion space is formed using a liquid immersion member including a second member having a second upper surface and a second lower surface that can be opposed to the substrate and disposed at least at a part of the periphery of the optical path of the exposure light.
  • An exposure method includes moving the second member relative to the first member during the movement period of the substrate until the exposure of the shot region is started.
  • the exposure method according to any one of the twelfth, thirteenth, fourteenth, fifteenth, sixteenth, seventeenth, eighteenth, nineteenth, twentieth, and twenty-first aspects.
  • a device manufacturing method is provided that includes using to expose a substrate and developing the exposed substrate.
  • the computer is exposed via the liquid between the emission surface and the substrate while moving the substrate in the scanning direction with respect to the exposure light emitted from the emission surface of the optical member.
  • a program for executing control of an exposure apparatus that sequentially exposes each of a plurality of shot areas of a substrate with light, the first member having a first lower surface and disposed on at least a part of the periphery of the optical member;
  • a liquid immersion member including a second upper surface opposed to the first lower surface through a gap and a second member disposed on at least a part of the periphery of the optical path of the exposure light and having a second lower surface capable of facing the substrate.
  • the liquid immersion space is formed, and the exposure light emitted from the exit surface through the liquid in the liquid immersion space is arranged in a direction crossing the scanning direction included in one row on the substrate. Sequentially expose each of multiple shot areas And before or after exposing the shot area included in one row, exposing the shot area in a row different from the one row through the liquid in the immersion space, and included in the same row.
  • the first operation of the second member in the first movement period of the substrate from the end of exposure of the first shot region to the start of exposure of the second shot region, and the fourth operation in another row from the end of exposure of the third shot region in one row Moving the second member relative to the first member in at least part of the exposure of the substrate so that the second operation of the second member in the second movement period of the substrate until the start of exposure of the shot area is different. are provided.
  • the computer is exposed via the liquid between the emission surface and the substrate while moving the substrate in the scanning direction with respect to the exposure light emitted from the emission surface of the optical member.
  • a program for executing control of an exposure apparatus that sequentially exposes each of a plurality of shot areas of a substrate with light, the first member having a first lower surface and disposed on at least a part of the periphery of the optical member;
  • a liquid immersion member including a second upper surface opposed to the first lower surface through a gap and a second member disposed on at least a part of the periphery of the optical path of the exposure light and having a second lower surface capable of facing the substrate.
  • the liquid immersion space is formed, and the first and second shot regions having the first dimension in the scanning direction are sequentially exposed with the exposure light emitted from the exit surface through the liquid in the liquid immersion space. And before exposing the first and second shot areas Sequentially exposes the third and fourth shot areas having a second dimension different from the first dimension in the scanning direction with exposure light emitted from the exit surface through the liquid in the immersion space after the exposure.
  • the first operation of the second member in the first movement period of the substrate from the end of exposure of the first shot area to the start of exposure of the second shot area, and from the end of exposure of the third shot area to the start of exposure of the fourth shot area A program for executing the movement of the second member relative to the first member in at least a part of the exposure of the substrate so that the second movement of the second member during the second movement period of the substrate is different.
  • the computer is exposed via the liquid between the emission surface and the substrate while moving the substrate in the scanning direction with respect to the exposure light emitted from the emission surface of the optical member.
  • a program for executing control of an exposure apparatus that sequentially exposes each of a plurality of shot areas of a substrate with light, the first member having a first lower surface and disposed on at least a part of the periphery of the optical member;
  • a liquid immersion member including a second upper surface opposed to the first lower surface through a gap and a second member disposed on at least a part of the periphery of the optical path of the exposure light and having a second lower surface capable of facing the substrate.
  • the computer is exposed via the liquid between the emission surface and the substrate while moving the substrate in the scanning direction with respect to the exposure light emitted from the emission surface of the optical member.
  • a program for executing control of an exposure apparatus that sequentially exposes each of a plurality of shot areas of a substrate with light, the first member having a first lower surface and disposed on at least a part of the periphery of the optical member;
  • a liquid immersion member including a second upper surface opposed to the first lower surface through a gap and a second member disposed on at least a part of the periphery of the optical path of the exposure light and having a second lower surface capable of facing the substrate.
  • Forming a liquid immersion space sequentially exposing the first and second shot regions of the substrate with exposure light emitted from the emission surface via the liquid in the immersion space, The exposure of the second shot area is opened after the exposure of the shot area is completed.
  • the first movement period of the substrate until the second member is moved to one side in the direction intersecting the scanning direction under the first movement condition
  • in the second exposure period of the substrate from the start of exposure of the second shot region to the end of exposure
  • the second member is moved relative to the first member so that the second member is moved to the other side in the direction intersecting the scanning direction under a second movement condition different from the first movement condition.
  • a program for executing the program are provided.
  • the computer is exposed via the liquid between the emission surface and the substrate while moving the substrate in the scanning direction with respect to the exposure light emitted from the emission surface of the optical member.
  • a program for executing control of an exposure apparatus that sequentially exposes each of a plurality of shot areas of a substrate with light, the first member having a first lower surface and disposed on at least a part of the periphery of the optical member;
  • a liquid immersion member including a second upper surface opposed to the first lower surface through a gap and a second member disposed on at least a part of the periphery of the optical path of the exposure light and having a second lower surface capable of facing the substrate.
  • the liquid immersion space is formed, and the exposure light emitted from the exit surface through the liquid in the liquid immersion space is arranged in a direction crossing the scanning direction included in one row on the substrate.
  • Sequentially expose each of multiple shot areas And exposing a shot region in a row different from the one row through the liquid in the immersion space before or after exposing a shot region included in one row, and a shot region in a certain row A program for executing the movement of the second member relative to the first member during the movement period of the substrate from the end of exposure to the start of exposure of the shot area of another row to be exposed next is provided.
  • a computer-readable recording medium on which a program according to any one of the twenty-third, twenty-fourth, twenty-fifth, twenty-sixth and twenty-seventh aspects is recorded.
  • the occurrence of exposure failure can be suppressed.
  • production of a defective device can be suppressed.
  • FIG. 3 is a side sectional view showing a part of the liquid immersion member according to the first embodiment.
  • FIG. 6 is a diagram illustrating an example of the operation of the liquid immersion member according to the first embodiment. It is the figure which looked at the liquid immersion member concerning a 1st embodiment from the lower part.
  • FIG. 3 is an exploded perspective view illustrating an example of a liquid immersion member according to the first embodiment.
  • FIG. 3 is an exploded perspective view illustrating an example of a liquid immersion member according to the first embodiment.
  • FIG. 6 is a diagram for explaining an example of the operation of the liquid immersion member according to the first embodiment. It is a figure for demonstrating an example of operation
  • FIG. 6 is a schematic diagram for explaining an example of the operation of the liquid immersion member according to the first embodiment. It is a figure for demonstrating an example of operation
  • an XYZ orthogonal coordinate system is set, and the positional relationship of each part will be described with reference to this XYZ orthogonal coordinate system.
  • a predetermined direction in the horizontal plane is defined as an X-axis direction
  • a direction orthogonal to the X-axis direction in the horizontal plane is defined as a Y-axis direction
  • a direction orthogonal to each of the X-axis direction and the Y-axis direction (that is, a vertical direction) is defined as a Z-axis direction.
  • the rotation (inclination) directions around the X axis, Y axis, and Z axis are the ⁇ X, ⁇ Y, and ⁇ Z directions, respectively.
  • FIG. 1 is a schematic block diagram that shows an example of an exposure apparatus EX according to the first embodiment.
  • the exposure apparatus EX of the present embodiment is an immersion exposure apparatus that exposes a substrate P with exposure light EL through a liquid LQ.
  • the immersion space LS is formed so that the optical path K of the exposure light EL irradiated to the substrate P is filled with the liquid LQ.
  • the immersion space LS refers to a portion (space, region) filled with liquid.
  • the substrate P is exposed with the exposure light EL through the liquid LQ in the immersion space LS.
  • water pure water
  • the exposure apparatus EX is an exposure apparatus including a substrate stage and a measurement stage as disclosed in, for example, US Pat. No. 6,897,963 and European Patent Application Publication No. 1713113.
  • an exposure apparatus EX measures a mask stage 1 that can move while holding a mask M, a substrate stage 2 that can move while holding a substrate P, and exposure light EL without holding the substrate P.
  • a movable measuring stage 3 mounted with a measuring member (measuring instrument) C, a measuring system 4 for measuring the position of the substrate stage 2 and the measuring stage 3, and an illumination system IL for illuminating the mask M with the exposure light EL
  • the projection optical system PL that projects an image of the pattern of the mask M illuminated by the exposure light EL onto the substrate P, the liquid immersion member 5 that forms the liquid immersion space LS of the liquid LQ, and the overall operation of the exposure apparatus EX are controlled.
  • a storage device 7 that is connected to the control device 6 and stores various types of information related to exposure.
  • the exposure apparatus EX includes a reference frame 8A that supports various measurement systems including the projection optical system PL and the measurement system 4, an apparatus frame 8B that supports the reference frame 8A, and a reference frame 8A and an apparatus frame 8B. And an anti-vibration device 10 that is disposed between the device frame 8B and suppresses transmission of vibration from the device frame 8B to the reference frame 8A.
  • the vibration isolator 10 includes a spring device and the like. In the present embodiment, the vibration isolator 10 includes a gas spring (for example, an air mount).
  • a detection system that detects the alignment mark of the substrate P
  • a detection system that detects the position of the surface of an object such as the substrate P may be supported by the reference frame 8A.
  • the exposure apparatus EX includes a chamber apparatus 9 that adjusts the environment (at least one of temperature, humidity, pressure, and cleanliness) of the space CS in which the exposure light EL travels.
  • the space CS at least the projection optical system PL, the liquid immersion member 5, the substrate stage 2, and the measurement stage 3 are arranged.
  • the mask stage 1 and at least a part of the illumination system IL are also arranged in the space CS.
  • the mask M includes a reticle on which a device pattern projected onto the substrate P is formed.
  • the mask M includes a transmission type mask having a transparent plate such as a glass plate and a pattern formed on the transparent plate using a light shielding material such as chromium.
  • a reflective mask can also be used as the mask M.
  • the substrate P is a substrate for manufacturing a device.
  • the substrate P includes, for example, a base material such as a semiconductor wafer and a photosensitive film formed on the base material.
  • the photosensitive film is a film of a photosensitive material (photoresist).
  • the substrate P may include another film in addition to the photosensitive film.
  • the substrate P may include an antireflection film or a protective film (topcoat film) that protects the photosensitive film.
  • the illumination system IL irradiates the illumination area IR with the exposure light EL.
  • the illumination area IR includes a position where the exposure light EL emitted from the illumination system IL can be irradiated.
  • the illumination system IL illuminates at least a part of the mask M arranged in the illumination region IR with the exposure light EL having a uniform illuminance distribution.
  • the exposure light EL emitted from the illumination system IL for example, far ultraviolet light (DUV light) such as bright lines (g line, h line, i line) and KrF excimer laser light (wavelength 248 nm) emitted from a mercury lamp, ArF Excimer laser light (wavelength 193 nm), vacuum ultraviolet light (VUV light) such as F 2 laser light (wavelength 157 nm), or the like is used.
  • ArF excimer laser light which is ultraviolet light (vacuum ultraviolet light)
  • the mask stage 1 is movable while holding the mask M.
  • the mask stage 1 is moved by the operation of a drive system 11 including a flat motor as disclosed in US Pat. No. 6,452,292, for example.
  • the mask stage 1 can be moved in six directions of the X-axis, Y-axis, Z-axis, ⁇ X, ⁇ Y, and ⁇ Z directions by the operation of the drive system 11.
  • the drive system 11 may not include a planar motor.
  • the drive system 11 may include a linear motor.
  • the projection optical system PL irradiates the projection area PR with the exposure light EL.
  • the projection region PR includes a position where the exposure light EL emitted from the projection optical system PL can be irradiated.
  • the projection optical system PL projects an image of the pattern of the mask M at a predetermined projection magnification onto at least a part of the substrate P arranged in the projection region PR.
  • the projection optical system PL is a reduction system.
  • the projection magnification of the projection optical system PL is 1 ⁇ 4.
  • the projection magnification of the projection optical system PL may be 1/5 or 1/8. Note that the projection optical system PL may be either an equal magnification system or an enlargement system.
  • the optical axis of the projection optical system PL is parallel to the Z axis.
  • Projection optical system PL may be any of a refractive system that does not include a reflective optical element, a reflective system that does not include a refractive optical element, or a catadioptric system that includes a reflective optical element and a refractive optical element.
  • the projection optical system PL may form either an inverted image or an erect image.
  • the projection optical system PL includes a terminal optical element 13 having an exit surface 12 from which the exposure light EL is emitted.
  • the last optical element 13 is an optical member that constitutes a part of the projection optical system PL.
  • the exit surface 12 emits the exposure light EL toward the image plane of the projection optical system PL.
  • the last optical element 13 is an optical element closest to the image plane of the projection optical system PL among the plurality of optical elements of the projection optical system PL.
  • the projection region PR includes a position where the exposure light EL emitted from the emission surface 12 can be irradiated.
  • the emission surface 12 faces the ⁇ Z axis direction.
  • the exposure light EL emitted from the emission surface 12 travels in the ⁇ Z axis direction.
  • the exit surface 12 is parallel to the XY plane.
  • the exit surface 12 facing the ⁇ Z axis direction may be a convex surface or a concave surface.
  • the exit surface 12 may be inclined with respect to the XY plane, or may include a curved surface.
  • the optical axis of the last optical element 13 is parallel to the Z axis.
  • the exit surface 12 side is the -Z side
  • the entrance surface side is the + Z side.
  • the image plane side of the projection optical system PL is the ⁇ Z side
  • the object plane side of the projection optical system PL is the + Z side.
  • the substrate stage 2 can move in the XY plane including the position (projection region PR) where the exposure light EL from the emission surface 12 can be irradiated while holding the substrate P.
  • the measurement stage 3 is movable in an XY plane including a position (projection region PR) where the exposure light EL from the emission surface 12 can be irradiated with the measurement member (measuring instrument) C mounted.
  • Each of the substrate stage 2 and the measurement stage 3 is movable on the guide surface 14G of the base member 14.
  • the guide surface 14G and the XY plane are substantially parallel.
  • the substrate stage 2 includes, for example, a first holding unit that releasably holds the substrate P as disclosed in US Patent Application Publication No. 2007/0177125, US Patent Application Publication No. 2008/0049209, and the like. It has a 2nd holding part which is arranged around a holding part and holds cover member T so that release is possible.
  • the first holding unit holds the substrate P so that the surface (upper surface) of the substrate P and the XY plane are substantially parallel to each other.
  • the upper surface of the substrate P held by the first holding unit and the upper surface of the cover member T held by the second holding unit are arranged substantially in the same plane.
  • the distance between the emission surface 12 and the upper surface of the substrate P held by the first holding portion is substantially the same as the distance between the emission surface 12 and the upper surface of the cover member T held by the second holding portion. equal.
  • the distance between the emission surface 12 and the upper surface of the substrate P is substantially equal to the distance between the emission surface 12 and the upper surface of the cover member T with respect to the Z-axis direction.
  • the distance between the emission surface 12 and the upper surface of the cover member T is, for example, within 10% of the distance (so-called working distance) between the emission surface 12 and the upper surface of the substrate P when the substrate P is exposed. Including.
  • the upper surface of the substrate P held by the first holding unit and the upper surface of the cover member T held by the second holding unit may not be arranged in the same plane.
  • the position of the upper surface of the substrate P and the position of the upper surface of the cover member T may be different with respect to the Z-axis direction.
  • the upper surface of the cover member T may be inclined with respect to the upper surface of the substrate P, or the upper surface of the cover member T may include a curved surface.
  • the substrate stage 2 and the measurement stage 3 are moved by the operation of the drive system 15 including a flat motor as disclosed in US Pat. No. 6,452,292, for example.
  • the drive system 15 includes a mover 2 ⁇ / b> C disposed on the substrate stage 2, a mover 3 ⁇ / b> C disposed on the measurement stage 3, and a stator 14 ⁇ / b> M disposed on the base member 14.
  • Each of the substrate stage 2 and the measurement stage 3 can move in six directions on the guide surface 14G in the X axis, Y axis, Z axis, ⁇ X, ⁇ Y, and ⁇ Z directions by the operation of the drive system 15.
  • the drive system 15 may not include a planar motor.
  • the drive system 15 may include a linear motor.
  • Measurement system 4 includes an interferometer system.
  • the interferometer system includes a unit that irradiates the measurement mirror of the substrate stage 2 and the measurement mirror of the measurement stage 3 with measurement light and measures the positions of the substrate stage 2 and the measurement stage 3.
  • the measurement system may include an encoder system as disclosed in, for example, US Patent Application Publication No. 2007/0288121.
  • the measurement system 4 may include only one of the interferometer system and the encoder system.
  • the control device 6 determines the substrate stage 2 (substrate P) and the measurement stage 3 (measurement member) based on the measurement result of the measurement system 4.
  • the position control of C) is executed.
  • FIG. 2 is a cross-sectional view of the liquid immersion member 5 parallel to the XZ plane.
  • FIG. 3 is an enlarged view of a part of FIG.
  • FIG. 4 is a diagram illustrating an example of the operation of the liquid immersion member 5.
  • FIG. 5 is a view of the liquid immersion member 5 as viewed from below ( ⁇ Z side). 6 and 7 are exploded perspective views of the liquid immersion member 5.
  • the immersion member 5 forms an immersion space LS for the liquid LQ on an object that can move below the last optical element 13.
  • the object that can move below the last optical element 13 can move in the XY plane including the position facing the exit surface 12.
  • the object can face the emission surface 12 and can be arranged in the projection region PR.
  • the object is movable below the liquid immersion member 5 and can be opposed to the liquid immersion member 5.
  • the object is at least one of the substrate stage 2 (for example, the cover member T of the substrate stage 2), the substrate P held on the substrate stage 2 (first holding unit), and the measurement stage 3. Including one.
  • the immersion space LS is formed so that the optical path K of the exposure light EL between the exit surface 12 of the last optical element 13 and the substrate P is filled with the liquid LQ.
  • the immersion space LS is formed so that only a partial region of the surface of the substrate P including the projection region PR is covered with the liquid LQ.
  • the object is the substrate P.
  • the object may be at least one of the substrate stage 2 and the measurement stage 3, or may be an object different from the substrate P, the substrate stage 2, and the measurement stage 3.
  • the immersion space LS may be formed so as to straddle two objects.
  • the immersion space LS may be formed so as to straddle the cover member T and the substrate P of the substrate stage 2.
  • the immersion space LS may be formed so as to straddle the substrate stage 2 and the measurement stage 3.
  • the immersion space LS is formed so that the optical path K of the exposure light EL emitted from the exit surface 12 of the last optical element 13 is filled with the liquid LQ. At least a part of the immersion space LS is formed in a space between the last optical element 13 and the substrate P (object). At least a part of the immersion space LS is formed in a space between the immersion member 5 and the substrate P (object).
  • the liquid immersion member 5 includes a first member 21 disposed on at least a part of the periphery of the terminal optical element 13, and a second member 22 disposed on at least a part of the periphery of the optical path K below the first member 21. It has.
  • the second member 22 is movable with respect to the first member 21.
  • the first member 21 is disposed at a position farther from the substrate P (object) than the second member 22. At least a part of the second member 22 is disposed between the first member 21 and the substrate P (object). At least a part of the second member 22 is disposed between the terminal optical element 13 and the substrate P (object). The second member 22 may not be disposed between the terminal optical element 13 and the substrate P (object).
  • the first member 21 includes a lower surface 23 facing the ⁇ Z-axis direction, and a liquid recovery unit 24 that is disposed at least partially around the lower surface 23 and can recover the liquid LQ.
  • the liquid recovery unit 24 may be referred to as a fluid recovery unit that can recover a fluid (one or both of the liquid LQ and gas).
  • the second member 22 includes an upper surface 25 facing the + Z-axis direction, a lower surface 26 facing the ⁇ Z-axis direction, and a fluid recovery unit 27 disposed at least partly around the lower surface 26.
  • the liquid recovery unit 24 recovers at least a part of the liquid LQ in the immersion space LS.
  • the fluid recovery unit 27 recovers at least a part of the liquid LQ in the immersion space LS.
  • the lower surface 23 may be referred to as a first lower surface.
  • the upper surface 25 may be referred to as a second upper surface.
  • the lower surface 26 may be referred to as a second lower surface.
  • the first member 21 has an inner surface 28 that faces the side surface 13F of the terminal optical element 13, and an outer surface 29 that faces outward with respect to the optical path K (the optical axis of the terminal optical element 13).
  • the second member 22 has an inner surface 30 that faces the outer surface 29 with a gap. In addition, you may call the inner surface 28 of the 1st member 21 as an opposing surface.
  • the inner side surface 28 of the first member 21 faces the side surface 13F of the last optical element 13 with a gap.
  • the second member 22 can face the lower surface 23.
  • the second member 22 can face the liquid recovery unit 24.
  • At least a part of the upper surface 25 of the second member 22 faces the lower surface 23 with a gap.
  • At least a part of the upper surface 25 faces the emission surface 12 with a gap. Note that the upper surface 25 may not face the emission surface 12.
  • the substrate P (object) can face the lower surface 26.
  • the substrate P (object) can face at least a part of the fluid recovery unit 27. At least a part of the upper surface of the substrate P faces the lower surface 26 with a gap. At least a part of the upper surface of the substrate P faces the emission surface 12 with a gap.
  • the dimension of the gap between the upper surface of the substrate P (object) and the emission surface 12 is larger than the dimension of the gap between the upper surface and the lower surface 26 of the substrate P.
  • the size of the gap between the upper surface of the substrate P (object) and the emission surface 12 may be substantially equal to the size of the gap between the upper surface of the substrate P and the lower surface 26.
  • the size of the gap between the upper surface of the substrate P (object) and the emission surface 12 may be smaller than the size of the gap between the upper surface of the substrate P and the lower surface 26.
  • a first space SP1 is formed between the lower surface 23 and the upper surface 25.
  • a second space SP2 is formed between the lower surface 26 and the upper surface of the substrate P (object).
  • a third space SP3 is formed between the side surface 13F and the inner side surface 28.
  • the upper surface 25 is liquid repellent with respect to the liquid LQ.
  • the upper surface 25 includes the surface of a resin film containing fluorine.
  • the upper surface 25 includes the surface of a film of PFA (Tetra fluoro ethylene-perfluoro alkylvinyl ether copolymer).
  • the upper surface 25 may include the surface of a PTFE (Poly tetra fluoro ethylene) film.
  • the contact angle of the upper surface 25 with respect to the liquid LQ is larger than 90 degrees.
  • the contact angle of the upper surface 25 with respect to the liquid LQ may be larger than 100 degrees, larger than 110 degrees, or larger than 120 degrees.
  • the upper surface 25 is liquid repellent with respect to the liquid LQ, the generation of a gas portion in the liquid LQ of the first space SP1 and the mixing of bubbles in the liquid LQ are suppressed.
  • the contact angle of the upper surface 25 with respect to the liquid LQ may be larger than the contact angle of the upper surface of the substrate P with respect to the liquid LQ.
  • the contact angle of the upper surface 25 with respect to the liquid LQ may be smaller than the contact angle of the upper surface of the substrate P with respect to the liquid LQ.
  • the contact angle of the upper surface 25 with respect to the liquid LQ may be substantially equal to the contact angle of the upper surface of the substrate P with respect to the liquid LQ.
  • the upper surface 25 may be lyophilic with respect to the liquid LQ.
  • the contact angle of the upper surface 25 with respect to the liquid LQ may be smaller than 90 degrees, smaller than 80 degrees, or smaller than 70 degrees. Thereby, the liquid LQ flows smoothly in the first space SP1.
  • the lower surface 23 may be liquid repellent with respect to the liquid LQ.
  • both the lower surface 23 and the upper surface 25 may be liquid repellent with respect to the liquid LQ.
  • the contact angle of the lower surface 23 with respect to the liquid LQ may be greater than 90 degrees, greater than 100 degrees, greater than 110 degrees, or greater than 120 degrees.
  • the lower surface 23 may be liquid repellent with respect to the liquid LQ
  • the upper surface 25 may be lyophilic with respect to the liquid LQ.
  • the contact angle of the lower surface 23 with respect to the liquid LQ may be larger than the contact angle of the upper surface 25 with respect to the liquid LQ.
  • the lower surface 23 may be lyophilic with respect to the liquid LQ.
  • both the lower surface 23 and the upper surface 25 may be lyophilic with respect to the liquid LQ.
  • the contact angle of the lower surface 23 with respect to the liquid LQ may be smaller than 90 degrees, smaller than 80 degrees, or smaller than 70 degrees.
  • the lower surface 23 may be lyophilic with respect to the liquid LQ
  • the upper surface 25 may be lyophobic with respect to the liquid LQ.
  • the contact angle of the lower surface 23 with respect to the liquid LQ may be smaller than the contact angle of the upper surface 25 with respect to the liquid LQ.
  • the lower surface 26 is lyophilic with respect to the liquid LQ.
  • the contact angle of the lower surface 26 with respect to the liquid LQ may be smaller than 90 degrees, smaller than 80 degrees, or smaller than 70 degrees.
  • the contact angle of the lower surface 26 with respect to the liquid LQ is smaller than the contact angle of the upper surface of the substrate P with respect to the liquid LQ.
  • the contact angle of the lower surface 26 with respect to the liquid LQ may be larger than or substantially equal to the contact angle of the upper surface of the substrate P with respect to the liquid LQ.
  • the side surface 13F of the terminal optical element 13 is disposed around the exit surface 12.
  • the side surface 13F is a non-emission surface that does not emit the exposure light EL.
  • the exposure light EL passes through the emission surface 12 and does not pass through the side surface 13F.
  • the lower surface 23 of the first member 21 does not collect the liquid LQ.
  • the lower surface 23 is a non-recovery part and cannot recover the liquid LQ.
  • the lower surface 23 of the first member 21 can hold the liquid LQ with the second member 22.
  • the upper surface 25 of the second member 22 does not collect the liquid LQ.
  • the upper surface 25 is a non-recovery part and cannot recover the liquid LQ.
  • the upper surface 25 of the second member 22 can hold the liquid LQ with the first member 21.
  • the lower surface 26 of the second member 22 does not collect the liquid LQ.
  • the lower surface 26 is a non-recovery part and cannot recover the liquid LQ.
  • the lower surface 26 of the second member 22 can hold the liquid LQ with the substrate P (object).
  • the inner side surface 28, the outer side surface 29, and the inner side surface 30 do not collect the liquid LQ.
  • the inner side surface 28, the outer side surface 29, and the inner side surface 30 are non-recovery parts and cannot recover the liquid LQ.
  • the lower surface 23 is substantially parallel to the XY plane.
  • the upper surface 25 is also substantially parallel to the XY plane.
  • the lower surface 26 is also substantially parallel to the XY plane. That is, the lower surface 23 and the upper surface 25 are substantially parallel.
  • the upper surface 25 and the lower surface 26 are substantially parallel.
  • the lower surface 23 may be non-parallel to the XY plane.
  • the lower surface 23 may be inclined with respect to the XY plane, or may include a curved surface.
  • the upper surface 25 may be non-parallel to the XY plane.
  • the upper surface 25 may be inclined with respect to the XY plane or may include a curved surface.
  • the lower surface 26 may be non-parallel to the XY plane.
  • the lower surface 26 may be inclined with respect to the XY plane and may include a curved surface.
  • the lower surface 23 and the upper surface 25 may be parallel or non-parallel.
  • the upper surface 25 and the lower surface 26 may be parallel or non-parallel.
  • the lower surface 23 and the lower surface 26 may be parallel or non-parallel.
  • the first member 21 has an opening 34 through which the exposure light EL emitted from the emission surface 12 can pass.
  • the second member 22 has an opening 35 through which the exposure light EL emitted from the emission surface 12 can pass.
  • the opening 34 may be called a first opening and the opening 35 may be called a second opening.
  • At least a part of the last optical element 13 is disposed inside the opening 34.
  • a lower surface 23 is disposed around the lower end of the opening 34.
  • An upper surface 25 is disposed around the upper end of the opening 35.
  • a lower surface 26 is disposed around the lower end of the opening 35.
  • At least a part of the inner surface 35U of the second member 22 is inclined upward toward the outside with respect to the radiation direction with respect to the optical path K. At least a part of the inner surface 35U of the second member 22 defines an opening 35 that faces the optical path K.
  • the 2nd member 22 can move smoothly in the state where 35U of inner surfaces of the 2nd member 22 are arranged in immersion space LS. Further, even when the second member 22 moves in a state where the inner surface 35U of the second member 22 is disposed in the immersion space LS, the pressure of the liquid LQ in the immersion space LS is suppressed from fluctuating.
  • the dimension of the opening 34 in the XY plane is larger than the dimension of the opening 35.
  • the dimension of the opening 34 is larger than the dimension of the opening 35 with respect to the X-axis direction.
  • the dimension of the opening 34 is larger than the dimension of the opening 35 with respect to the Y-axis direction.
  • the first member 21 is not disposed directly below the emission surface 12.
  • the opening 34 of the first member 21 is disposed around the emission surface 12.
  • the opening 34 is larger than the exit surface 12.
  • the lower end of the gap formed between the side surface 13F of the last optical element 13 and the first member 21 faces the upper surface 25 of the second member 22.
  • the opening 35 of the second member 22 is disposed so as to face the emission surface 12.
  • the shape of the opening 35 in the XY plane is a rectangular shape.
  • the opening 35 is long in the X-axis direction.
  • the shape of the opening 35 may be an ellipse that is long in the X-axis direction or a polygon that is long in the X-axis direction.
  • the dimension of the opening 34 may be smaller than the dimension of the opening 35.
  • the dimension of the opening 34 may be substantially equal to the dimension of the opening 35.
  • the first member 21 is disposed around the last optical element 13.
  • the first member 21 is an annular member.
  • the first member 21 is disposed so as not to contact the terminal optical element 13.
  • a gap is formed between the first member 21 and the last optical element 13.
  • the first member 21 does not face the emission surface 12.
  • a part of the first member 21 may face the emission surface 12. That is, a part of the first member 21 may be disposed between the emission surface 12 and the upper surface of the substrate P (object).
  • the first member 21 may not be annular.
  • the first member 21 may be disposed in a part of the periphery of the terminal optical element 13 (optical path K).
  • a plurality of the first members 21 may be arranged around the last optical element 13 (optical path K).
  • the second member 22 is disposed around the optical path K.
  • the second member 22 is an annular member.
  • the second member 22 is disposed so as not to contact the first member 21.
  • a gap is formed between the second member 22 and the first member 21.
  • the first member 21 is supported by the apparatus frame 8B via the support member 21S.
  • the first member 21 may be supported by the reference frame 8A via a support member.
  • the second member 22 is supported by the apparatus frame 8B via the support member 22S.
  • the support member 22 ⁇ / b> S is connected to the second member 22 outside the first member 21 with respect to the optical path K.
  • the first member 21 may be supported on the reference frame 8A via a support member.
  • the second member 22 is movable with respect to the first member 21.
  • the second member 22 is movable with respect to the last optical element 13.
  • the relative position between the second member 22 and the first member 21 changes.
  • the relative position between the second member 22 and the last optical element 13 changes.
  • the second member 22 is movable in the XY plane perpendicular to the optical axis of the last optical element 13.
  • the second member 22 is movable substantially parallel to the XY plane.
  • the second member 22 is movable at least in the X-axis direction.
  • the second member 22 may be movable in at least one direction of the Y axis, the Z axis, ⁇ X, ⁇ Y, and ⁇ Z in addition to the X axis direction.
  • the terminal optical element 13 does not move substantially.
  • the first member 21 also does not move substantially.
  • the second member 22 is movable below at least a part of the first member 21.
  • the second member 22 is movable between the first member 21 and the substrate P (object).
  • the dimension of the gap between the outer surface 29 of the first member 21 and the inner surface 30 of the second member 22 changes.
  • the size of the space between the outer surface 29 and the inner surface 30 changes as the second member 22 moves in the XY plane.
  • the dimension of the gap between the outer surface 29 and the inner surface 30 on the + X side with respect to the last optical element 13 is reduced by moving the second member 22 in the ⁇ X axis direction ( The space between the outer side surface 29 and the inner side surface 30 is reduced).
  • the movement of the second member 22 in the + X-axis direction increases the size of the gap between the outer surface 29 and the inner surface 30 on the + X side with respect to the last optical element 13 (between the outer surface 29 and the inner surface 30).
  • the space becomes larger).
  • the movable range (movable range) of the second member 22 is determined so that the first member 21 (outer surface 29) and the second member 22 (inner surface 30) do not contact each other.
  • the second member 22 is moved by the driving device 32.
  • the driving device 32 can move the second member 22 relative to the first member 21.
  • the drive device 32 is controlled by the control device 6.
  • the driving device 32 moves the support member 22S.
  • the second member 22 moves.
  • the drive device 32 includes, for example, a motor, and moves the second member 22 using Lorentz force.
  • the driving device 32 is supported by the device frame 8B via the support member 32S.
  • the second member 22 is supported by the device frame 8B via the support member 22S, the drive device 32, and the support member 32S. Even if vibration is generated by the movement of the second member 22, the vibration isolator 10 suppresses the vibration from being transmitted to the reference frame 8A.
  • the second member 22 may be moved in parallel with at least a part of the period in which the exposure light EL is emitted from the emission surface 12.
  • the second member 22 may be moved in parallel with at least a part of the period in which the exposure light EL is emitted from the emission surface 12 in a state where the immersion space LS is formed.
  • the second member 22 may be moved in parallel with at least a part of the period during which the substrate P (object) moves.
  • the second member 22 may be moved in parallel with at least a part of the period during which the substrate P (object) moves in the state where the immersion space LS is formed.
  • the second member 22 may be moved in the moving direction of the substrate P (object).
  • the second member 22 may be moved in the moving direction of the substrate P in at least a part of the period in which the substrate P is moved.
  • the second member 22 is synchronized with the movement of the substrate P in one direction (+ X axis direction) in the XY plane. May be moved.
  • the liquid immersion member 5 includes a liquid supply unit 31 that supplies the liquid LQ for forming the liquid immersion space LS.
  • the liquid supply unit 31 is disposed on the first member 21.
  • the liquid supply unit 31 may be disposed on both the first member 21 and the second member 22.
  • the liquid supply unit 31 is disposed on the first member 21 and may not be disposed on the second member 22.
  • the liquid supply unit 31 is disposed on the second member 22 and may not be disposed on the first member 21.
  • the liquid supply unit 31 may be arranged on a member different from the first member 21 and the second member 22.
  • the liquid supply unit 31 is disposed inside the liquid recovery unit 24 and the fluid recovery unit 27 with respect to the radial direction with respect to the optical path K (the optical axis of the terminal optical element 13).
  • the liquid supply unit 31 includes an opening (liquid supply port) disposed on the inner surface 28 of the first member 21.
  • the liquid supply unit 31 is disposed so as to face the side surface 13F.
  • the liquid supply unit 31 supplies the liquid LQ to the third space SP3 between the side surface 13F and the inner side surface 28.
  • the liquid supply unit 31 is disposed on each of the + X side and the ⁇ X side with respect to the optical path K (terminal optical element 13).
  • the liquid supply unit 31 may be disposed in the Y axis direction with respect to the optical path K (terminal optical element 13), or around the optical path K (terminal optical element 13) including the X axis direction and the Y axis direction. A plurality of them may be arranged. There may be one liquid supply unit 31. Instead of the liquid supply unit 31 or in addition to the liquid supply unit 31, a liquid supply unit that can supply the liquid LQ may be provided on the lower surface 23.
  • the liquid supply part (liquid supply port) 31 is connected to the liquid supply device 31S via a supply flow path 31R formed inside the first member 21.
  • the liquid supply device 31S can supply the liquid supply unit 31 with the clean and temperature-adjusted liquid LQ.
  • the liquid supply unit 31 supplies the liquid LQ from the liquid supply device 31S in order to form the immersion space LS.
  • An opening 40 is formed between the inner edge of the lower surface 23 and the upper surface 25.
  • the optical path space SPK including the optical path K between the emission surface 12 and the substrate P (object) and the first space SP1 between the lower surface 23 and the upper surface 25 are connected via the opening 40.
  • the optical path space SPK includes a space between the exit surface 12 and the substrate P (object) and a space between the exit surface 12 and the upper surface 25.
  • the opening 40 is disposed so as to face the optical path K.
  • the third space SP3 between the side surface 13F and the inner side surface 28 and the first space SP1 are connected via the opening 40.
  • At least a part of the liquid LQ from the liquid supply unit 31 is supplied to the first space SP1 between the lower surface 23 and the upper surface 25 through the opening 40. At least a part of the liquid LQ supplied from the liquid supply unit 31 to form the immersion space LS is supplied onto the substrate P (object) facing the emission surface 12 through the opening 34 and the opening 35. . Thereby, the optical path K is filled with the liquid LQ. At least a part of the liquid LQ from the liquid supply unit 31 is supplied to the second space SP2 between the lower surface 26 and the upper surface of the substrate P (object).
  • the dimension of the first space SP1 is smaller than the dimension of the second space SP2 with respect to the Z-axis direction.
  • the dimension of the first space SP1 may be substantially equal to the dimension of the second space SP2, or may be larger than the dimension of the second space SP2.
  • the liquid recovery unit 24 is disposed outside the lower surface 23 with respect to the optical path K (the optical axis of the terminal optical element 13).
  • the liquid recovery unit 24 is disposed around the lower surface 23.
  • the liquid recovery unit 24 is disposed around the optical path K of the exposure light EL. Note that the liquid recovery unit 24 may be disposed in a part of the periphery of the lower surface 23. For example, a plurality of liquid recovery units 24 may be arranged around the lower surface 23.
  • the liquid recovery unit 24 is disposed so as to face the first space SP1.
  • the liquid recovery unit 24 recovers at least a part of the liquid LQ in the first space SP1.
  • the fluid recovery unit 27 is disposed outside the lower surface 26 with respect to the optical path K (the optical axis of the terminal optical element 13).
  • the fluid recovery unit 27 is disposed around the lower surface 26.
  • the fluid recovery unit 27 is disposed around the optical path K of the exposure light EL. Note that the fluid recovery unit 27 may be disposed at a part of the periphery of the lower surface 26.
  • a plurality of fluid recovery units 27 may be arranged around the lower surface 26.
  • the fluid recovery unit 27 is disposed so as to face the second space SP2.
  • the fluid recovery unit 27 recovers at least a part of the liquid LQ in the second space SP2.
  • the fluid recovery unit 27 is disposed outside the first member 21 with respect to the optical path K (the optical axis of the terminal optical element 13).
  • the fluid recovery unit 27 is disposed outside the first space SP1 with respect to the optical path K (the optical axis of the terminal optical element 13).
  • the movement of the liquid LQ from one side to the other side of the first space SP1 on the upper surface 25 side and the second space SP2 on the lower surface 26 side is suppressed.
  • the first space SP ⁇ b> 1 and the second space SP ⁇ b> 2 are partitioned by the second member 22.
  • the liquid LQ in the first space SP1 can move to the second space SP2 through the opening 35.
  • the liquid LQ in the first space SP1 cannot move to the second space SP2 without passing through the opening 35.
  • the liquid LQ existing in the first space SP1 outside the opening 35 with respect to the optical path K cannot move to the second space SP2.
  • the liquid LQ in the second space SP2 can move to the first space SP1 through the opening 35.
  • the liquid LQ in the second space SP2 cannot move to the first space SP1 without passing through the opening 35.
  • the liquid LQ present in the second space SP2 outside the opening 35 with respect to the optical path K cannot move to the first space SP1. That is, in this embodiment, the liquid immersion member 5 does not have a flow path that fluidly connects the first space SP1 and the second space SP2 other than the opening 35.
  • the fluid recovery unit 27 recovers at least a part of the liquid LQ in the second space SP2, and does not recover the liquid LQ in the first space SP1.
  • the liquid recovery unit 24 recovers at least a part of the liquid LQ in the first space SP1, and does not recover the liquid LQ in the second space SP2. Note that the liquid recovery unit 24 may recover the liquid LQ on the object (substrate P) when the upper surface 25 of the second member 22 does not exist under the liquid recovery unit 24.
  • liquid LQ that has moved to the outside of the first space SP1 (outside of the outer surface 29) with respect to the optical path K is suppressed by the inner surface 30 from moving onto the substrate P (second space SP2).
  • the liquid recovery unit 24 includes an opening (fluid recovery port) disposed at least in part around the lower surface 23 of the first member 21.
  • the liquid recovery unit 24 is disposed so as to face the upper surface 25.
  • the liquid recovery unit 24 is connected to the liquid recovery device 24C via a recovery flow path (space) 24R formed inside the first member 21.
  • the liquid recovery device 24C can connect the liquid recovery unit 24 and a vacuum system (not shown).
  • the liquid recovery unit 24 can recover at least a part of the liquid LQ in the first space SP1. At least a part of the liquid LQ in the first space SP1 can flow into the recovery channel 24R via the liquid recovery unit 24.
  • the outer surface 29 of the first member 21 and the second member 22 pass through the upper surface of the first member 21 from the third space SP3 between the side surface 13F of the terminal optical element 13 and the inner surface of the first member 21.
  • the liquid LQ that has flowed on the upper surface 25 of the second member 22 through the space between the inner surface 30 and the liquid recovery unit 24 may be recovered. That is, the liquid recovery unit 24 may be used as a recovery unit that recovers the liquid LQ that has flowed from the space SP3 onto the upper surface 25 of the second member 22 without passing through the opening 40.
  • a recovery unit that recovers the liquid LQ from the space SP3 may be provided on the upper surface of the first member 21, or may be provided on at least one of the upper surface 25 and the inner side surface 30 of the second member 22.
  • the liquid recovery unit 24 includes a porous member 36, and the fluid recovery port includes a hole of the porous member 36.
  • the porous member 36 includes a mesh plate.
  • the porous member 36 has a lower surface that can be opposed to the upper surface 25, an upper surface that faces the recovery flow path 24R, and a plurality of holes that connect the lower surface and the upper surface.
  • the liquid recovery unit 24 recovers the liquid LQ through the hole of the porous member 36.
  • the liquid LQ in the first space SP1 recovered from the liquid recovery unit 24 (hole of the porous member 36) flows into the recovery flow path 24R, flows through the recovery flow path 24R, and is recovered by the liquid recovery device 24C.
  • the control device 6 controls the pressure (first space SP1 on the lower surface side of the porous member 36 so that the liquid LQ in the first space SP1 passes through the hole of the porous member 36 and flows into the recovery flow path 24R and does not pass the gas. And the pressure on the upper surface side (pressure in the recovery flow path 24R) are adjusted.
  • An example of a technique for recovering only the liquid through the porous member is disclosed in, for example, US Pat. No. 7,292,313.
  • both the liquid LQ and the gas may be collected (sucked) through the porous member 36. That is, the liquid recovery unit 24 may recover the liquid LQ together with the gas. In addition, when the liquid LQ does not exist under the liquid recovery 24, only the gas may be recovered from the liquid recovery unit 24.
  • the porous member 36 may not be provided on the first member 21. That is, the fluid (one or both of the liquid LQ and the gas) in the first space SP1 may be recovered without passing through the porous member.
  • the lower surface of the liquid recovery unit 24 includes the lower surface of the porous member 36.
  • the lower surface of the liquid recovery unit 24 is disposed around the lower surface 23.
  • the lower surface of the liquid recovery unit 24 is substantially parallel to the XY plane.
  • the lower surface and the lower surface 23 of the liquid recovery unit 24 are disposed in the same plane (they are flush).
  • the lower surface of the liquid recovery unit 24 may be disposed on the + Z side with respect to the lower surface 23, or may be disposed on the ⁇ Z side.
  • the lower surface of the liquid recovery unit 24 may be inclined with respect to the lower surface 23 or may include a curved surface.
  • the liquid recovery part 24 for recovering the fluid (one or both of the liquid LQ and the gas) in the first space SP1 may be disposed on the second member 22 so as to face the first space SP1.
  • the liquid recovery unit 24 may be disposed on both the first member 21 and the second member 22.
  • the liquid recovery unit 24 is disposed on the first member 21 and may not be disposed on the second member 22.
  • the liquid recovery unit 24 is disposed on the second member 22 and may not be disposed on the first member 21.
  • the fluid recovery unit 27 includes an opening (fluid recovery port) disposed at least at a part around the lower surface 26 of the second member 22.
  • the fluid recovery unit 27 is disposed so as to face the upper surface of the substrate P (object).
  • the fluid recovery unit 27 is connected to the liquid recovery device 27C via a recovery flow path (space) 27R formed inside the second member 22.
  • the liquid recovery device 27C can connect the fluid recovery unit 27 and a vacuum system (not shown).
  • the fluid recovery part 27 can recover at least a part of the liquid LQ in the second space SP2. At least a part of the liquid LQ in the second space SP2 can flow into the recovery channel 27R via the fluid recovery unit 27.
  • the fluid recovery unit 27 includes a porous member 37, and the fluid recovery port includes a hole of the porous member 37.
  • the porous member 37 includes a mesh plate.
  • the porous member 37 has a lower surface on which the upper surface of the substrate P (object) can be opposed, an upper surface facing the recovery flow path 27R, and a plurality of holes connecting the lower surface and the upper surface.
  • the liquid recovery unit 27 recovers the fluid (one or both of the liquid LQ and the gas) through the hole of the porous member 37.
  • the liquid LQ in the second space SP2 recovered from the fluid recovery unit 27 (hole of the porous member 37) flows into the recovery flow path 27R, flows through the recovery flow path 27R, and is recovered by the liquid recovery device 27C.
  • the recovery channel 27R is disposed outside the inner side surface 30 with respect to the optical path K (the optical axis of the terminal optical element 13).
  • the recovery flow path 27R is disposed above the liquid recovery unit 27.
  • the gas is recovered together with the liquid LQ via the fluid recovery unit 27.
  • the porous member 37 may not be provided on the second member 22. That is, the fluid (one or both of the liquid LQ and the gas) in the second space SP2 may be recovered without passing through the porous member.
  • the lower surface of the fluid recovery unit 27 includes the lower surface of the porous member 37.
  • the lower surface of the fluid recovery unit 27 is disposed around the lower surface 26.
  • the lower surface of the fluid recovery unit 27 is substantially parallel to the XY plane.
  • the lower surface of the fluid recovery unit 27 is disposed on the + Z side with respect to the lower surface 26.
  • the lower surface and the lower surface 26 of the fluid recovery unit 27 may be arranged in the same plane (may be flush with each other).
  • the lower surface of the fluid recovery unit 27 may be disposed on the ⁇ Z side with respect to the lower surface 26.
  • the lower surface of the fluid recovery unit 27 may be inclined with respect to the lower surface 26 or may include a curved surface.
  • the lower surface of the fluid recovery unit 27 (the porous member 37) may be inclined upward toward the outside with respect to the radiation direction with respect to the optical path K.
  • the lower surface of the fluid recovery unit 27 (the porous member 37) may not have the same height (position in the Z-axis direction) over the entire circumference around the opening 35.
  • a part of the lower surface of the fluid recovery part 27 (porous member 37) located on both sides of the opening 35 in the Y-axis direction is a part of the lower surface of the fluid recovery part 27 (porous member 37) located on both sides of the opening 35 in the X-axis direction. It may be lower than a part.
  • the lower surface of the fluid recovery part 27 (porous member 37) of the second member 22 faces the surface of the substrate P, it is formed on one side in the Y-axis direction with respect to the optical path K of the exposure light.
  • the recovery operation of the liquid LQ from the fluid recovery unit 27 is executed in parallel with the supply operation of the liquid LQ from the liquid supply unit 31, whereby the one-side terminal optical element 13 and the liquid immersion unit are immersed.
  • An immersion space LS is formed with the liquid LQ between the member 5 and the substrate P (object) on the other side.
  • the recovery operation of the fluid from the liquid recovery unit 24 is executed in parallel with the supply operation of the liquid LQ from the liquid supply unit 31 and the recovery operation of the fluid from the fluid recovery unit 27. .
  • a part of the interface LG of the liquid LQ in the immersion space LS is formed between the second member 22 and the substrate P (object).
  • a part of the interface LG of the liquid LQ in the immersion space LS is formed between the first member 21 and the second member 22.
  • a part of the interface LG of the liquid LQ in the immersion space LS is formed between the terminal optical element 13 and the first member 21.
  • the interface LG of the liquid LQ formed between the first member 21 and the second member 22 is appropriately referred to as a first interface LG1.
  • the interface LG formed between the second member 22 and the substrate P (object) is appropriately referred to as a second interface LG2.
  • the interface LG formed between the last optical element 13 and the first member 21 is appropriately referred to as a third interface LG3.
  • the first interface LG1 is formed between the lower surface and the upper surface 25 of the liquid recovery unit 24.
  • the second interface LG2 is formed between the lower surface of the liquid recovery unit 27 and the upper surface of the substrate P (object).
  • the first interface LG1 is formed between the lower surface and the upper surface 25 of the liquid recovery unit 24, and the liquid LQ of the first space SP1 is outside the liquid recovery unit 24 (for example, the inner surface 29 and the inner surface 29).
  • the movement to the space between the side surfaces 30 is suppressed.
  • a space between the outer side surface 29 and the inner side surface 30 is a gas space.
  • the space between the outer side surface 29 and the inner side surface 30 is connected to the space CS.
  • the space between the outer surface 29 and the inner surface 30 is open to the atmosphere.
  • the pressure in the space CS is atmospheric pressure
  • the space between the outer surface 29 and the inner surface 30 is opened to the atmosphere. Therefore, the second member 22 can move smoothly.
  • the pressure in the space CS may be higher or lower than the atmospheric pressure.
  • FIG. 8 is a view of the first member 21 as viewed from the lower surface 23 side.
  • a guide unit 38 that guides at least a part of the liquid LQ from the liquid supply unit 31 is disposed on the lower surface 23 of the first member 21.
  • the guiding portion 38 is a convex portion provided on the lower surface 23.
  • the guiding unit 38 guides at least part of the liquid LQ from the liquid supply unit 31 to the liquid recovery unit 24.
  • the shape of the guiding portion 38 is determined based on the moving direction of the second member 22.
  • the guide portion 38 is provided so as to promote the flow of the liquid LQ in a direction parallel to the moving direction of the second member 22.
  • the shape of the guide unit 38 is such that the liquid LQ flows in the first space SP1 in a direction parallel to the X-axis direction and reaches the liquid recovery unit 24. Determined.
  • the second member 22 moves in the + X-axis direction
  • at least a part of the liquid LQ in the first space SP1 flows in the + X-axis direction by the guide portion 38.
  • the second member 22 moves in the ⁇ X axis direction
  • at least a part of the liquid LQ in the first space SP1 flows in the ⁇ X axis direction by the guide portion 38.
  • the guide portion 38 includes a wall portion 38R disposed at least at a part around the opening 34, and a slit (opening) 38K formed at a part of the wall portion 38R.
  • the wall portion 38 is disposed so as to surround the opening 34.
  • the slits 38K are formed on each of the + X side and the ⁇ X side with respect to the optical path K so that the flow of the liquid LQ in the direction parallel to the X-axis direction is promoted.
  • the flow rate of the liquid LQ in the first space SP1 is increased by the guide portion 38 in the direction parallel to the moving direction of the second member 22.
  • the flow rate of the liquid LQ in the X-axis direction in the first space SP1 is increased by the guide portion 38. That is, the speed of the liquid LQ flowing toward the space between the lower surface and the upper surface 25 of the liquid recovery unit 24 is increased.
  • the position of the first interface LG1 with respect to the first member 21 is prevented from changing, and the shape of the first interface LG1 is prevented from changing. Therefore, the liquid LQ in the first space SP1 is prevented from flowing out of the first space SP1.
  • the position where the slit 38K is formed is not limited to the + X side and the ⁇ X side with respect to the optical path K.
  • slits 38K may be added on the + Y side and the ⁇ Y side with respect to the optical path K. Even when the second member 22 does not move in parallel with the Y axis, slits 38K may be added on the + Y side and the ⁇ Y side with respect to the optical path K.
  • the shape of the guiding portion 38 (such as the position of the slit 38K) may not be determined based on the moving direction of the second member 22.
  • the shape of the guiding portion 38 may be determined so that the liquid LQ flows radially with respect to the optical path K around the entire optical path K.
  • the second member 22 can face the entire lower surface 23.
  • the entire lower surface 23 and the second member 22 are arranged. Is opposed to the upper surface 25.
  • a part of the emission surface 12 and the upper surface 25 of the second member 22 face each other.
  • the lower surface of the liquid recovery unit 24 and the upper surface 25 of the second member 22 face each other.
  • the center of the opening 34 and the center of the opening 35 substantially coincide with each other.
  • the second member 22 is movable in cooperation with the movement of the substrate P (object).
  • the second member 22 is movable independently of the substrate P (object).
  • the second member 22 is movable in parallel with at least part of the movement of the substrate P (object).
  • the second member 22 is movable in a state where the immersion space LS is formed.
  • the second member 22 is movable in a state where the liquid LQ exists in the first space SP1 and the second space SP2.
  • the second member 22 may move when the second member 22 and the substrate P (object) do not face each other. For example, the second member 22 may move when no object is present below the second member 22. The second member 22 may move when the liquid LQ is not present in the space between the second member 22 and the substrate P (object). For example, the second member 22 may move when the immersion space LS is not formed.
  • the second member 22 moves based on the moving condition of the substrate P (object), for example.
  • the control device 6 moves the second member 22 in parallel with at least a part of the movement of the substrate P (object) based on, for example, the movement condition of the substrate P (object).
  • the control device 6 performs the second member while supplying the liquid LQ from the liquid supply unit 31 and collecting the liquid LQ from the fluid recovery unit 27 and the liquid recovery unit 24 so that the immersion space LS is continuously formed. 22 is moved.
  • the second member 22 is movable so that relative movement with the substrate P (object) is small.
  • the second member 22 is movable so that the relative movement between the second member 22 and the substrate P (object) is smaller than the relative movement between the first member 21 and the substrate P (object).
  • the second member 22 may move in synchronization with the substrate P (object).
  • the relative movement includes at least one of relative speed and relative acceleration.
  • the second member 22 has a lower relative velocity with respect to the substrate P (object) in a state where the immersion space LS is formed, that is, in a state where the liquid LQ exists in the second space SP2. You may move on.
  • the second member 22 is configured such that the relative acceleration with respect to the substrate P (object) becomes small in the state where the immersion space LS is formed, that is, in the state where the liquid LQ exists in the second space SP2. You may move on.
  • the second member 22 is in a state where the immersion space LS is formed, that is, in a state where the liquid LQ is present in the second space SP2, the relative speed with respect to the substrate P (object) is the first speed.
  • the second member 22 has a relative acceleration with respect to the substrate P (object) in a state where the immersion space LS is formed, that is, in a state where the liquid LQ is present in the second space SP2. You may move so that it may become smaller than the relative acceleration of the member 21 and the board
  • the second member 22 is movable in the moving direction of the substrate P (object), for example.
  • the second member 22 can move in the + X axis direction (or ⁇ X axis direction).
  • the second member 22 is movable in the + X-axis direction.
  • the second member 22 is movable in the ⁇ X axis direction. That is, in the present embodiment, when the substrate P (object) moves in a certain direction including a component in the X-axis direction, the second member 22 moves in the X-axis direction.
  • the second member 22 may move in the X-axis direction in parallel with at least part of the movement of the substrate P (object) in a certain direction including the component in the X-axis direction.
  • the second member 22 may be movable in the Y-axis direction.
  • the second member 22 may move in the Y-axis direction.
  • the second member 22 is configured so that the relative speed difference with the substrate P (object) becomes small. You may move in the Y-axis direction.
  • FIG. 9 is a diagram illustrating an example of a state in which the second member 22 moves.
  • FIG. 9 is a view of the liquid immersion member 5 as viewed from the lower side ( ⁇ Z side).
  • the second member 22 is moved in the X-axis direction. As described above, the second member 22 may move in the Y-axis direction, or may move in any direction within the XY plane including the component in the X-axis direction (or Y-axis direction). .
  • the second member 22 is as shown in FIGS. 9A to 9C. Next, it moves in the X-axis direction.
  • the second member 22 is movable within a movable range (movable range) defined in the X-axis direction.
  • FIG. 9A shows a state in which the second member 22 is arranged at the end on the most ⁇ X side of the movable range.
  • FIG. 9B shows a state where the second member 22 is arranged at the center of the movable range.
  • FIG. 9C shows a state in which the second member 22 is disposed at the end on the most + X side of the movable range.
  • the position of the second member 22 shown in FIG. 9A is appropriately referred to as a first end position
  • the position of the second member 22 shown in FIG. 9C is appropriately referred to as a second end portion position.
  • the state where the second member 22 is disposed at the center position includes the state where the second member 22 is disposed at the origin.
  • the dimension of the opening 35 is determined based on the dimension of the movable range of the second member 22 so that the exposure light EL from the emission surface 12 passes through the opening 35.
  • the dimension of the movable range of the second member 22 includes the distance between the first end position and the second end position in the X-axis direction. Even if the second member 22 moves in the X-axis direction, the dimension of the opening 35 in the X-axis direction is determined so that the exposure light EL from the emission surface 12 is not irradiated onto the second member 22.
  • the dimension W35 of the opening 35 in the X-axis direction is larger than the sum of the dimension Wpr of the exposure light EL (projection region PR) and the dimension (Wa + Wb) of the movable range of the second member 22.
  • the dimension W35 is set to a size that does not block the exposure light EL from the exit surface 12 even when the second member 22 moves between the first end position and the second end position. Thereby, even if the second member 22 moves, the exposure light EL from the emission surface 12 can be irradiated to the substrate P (object) without being blocked by the second member 22.
  • the measurement stage 3 is disposed so as to face the terminal optical element 13 and the liquid immersion member 5 at least during a period in which the substrate stage 2 is separated from the liquid immersion member 5.
  • the control device 6 supplies the liquid LQ from the liquid supply unit 31 and recovers the liquid LQ from the fluid recovery unit 27 to form the immersion space LS on the measurement stage 3.
  • the control device 6 causes the last optical element 13 and the liquid immersion member 5 to face the substrate stage 2 (substrate P). Then, the substrate stage 2 is moved. With the last optical element 13 and the liquid immersion member 5 facing the substrate stage 2 (substrate P), the liquid LQ is recovered from the fluid recovery unit 27 in parallel with the supply of the liquid LQ from the liquid supply unit 31. As a result, an immersion space LS is formed between the last optical element 13 and the immersion member 5 and the substrate stage 2 (substrate P) so that the optical path K is filled with the liquid LQ.
  • the recovery of the liquid LQ from the liquid recovery unit 24 is performed in parallel with the supply of the liquid LQ from the liquid supply unit 31 and the recovery of the liquid LQ from the fluid recovery unit 27.
  • the control device 6 starts the exposure process for the substrate P.
  • the control device 6 emits the exposure light EL from the illumination system IL in a state where the immersion space LS is formed on the substrate P.
  • the illumination system IL illuminates the mask M with the exposure light EL.
  • the exposure light EL from the mask M is irradiated onto the substrate P via the projection optical system PL and the liquid LQ in the immersion space LS between the emission surface 12 and the substrate P. Accordingly, the substrate P is exposed with the exposure light EL emitted from the emission surface 12 through the liquid LQ in the immersion space LS between the emission surface 12 of the last optical element 13 and the substrate P, and the pattern of the mask M Are projected onto the substrate P.
  • the exposure apparatus EX of the present embodiment is a scanning exposure apparatus (so-called scanning stepper) that projects an image of the pattern of the mask M onto the substrate P while moving the mask M and the substrate P in synchronization with each other in a predetermined scanning direction.
  • the scanning direction (synchronous movement direction) of the substrate P is the Y-axis direction
  • the scanning direction (synchronous movement direction) of the mask M is also the Y-axis direction.
  • the control device 6 moves the substrate P in the Y-axis direction with respect to the projection region PR of the projection optical system PL, and in the illumination region IR of the illumination system IL in synchronization with the movement of the substrate P in the Y-axis direction.
  • the substrate P is irradiated with the exposure light EL through the projection optical system PL and the liquid LQ in the immersion space LS on the substrate P while moving the mask M in the Y-axis direction.
  • FIG. 10 is a diagram illustrating an example of the substrate P held on the substrate stage 2.
  • a plurality of shot areas S that are exposure target areas are arranged in a matrix on the substrate P.
  • the control device 6 moves the substrate P held by the first holding unit in the Y-axis direction (scanning direction) with respect to the exposure light EL emitted from the exit surface 12 of the last optical element 13, and then exits the exit surface.
  • Each of the plurality of shot regions S of the substrate P is sequentially exposed with the exposure light EL emitted from the emission surface 12 through the liquid LQ in the immersion space LS between the substrate 12 and the substrate P.
  • the control device 6 performs exposure light EL (projection region of the projection optical system PL) emitted from the emission surface 12 in a state where the immersion space LS is formed.
  • PR exposure light
  • the substrate P is moved in the Y-axis direction
  • the mask M is moved in the Y-axis direction with respect to the illumination region IR of the illumination system IL in synchronization with the movement of the substrate P in the Y-axis direction.
  • the exposure light EL is irradiated onto the shot region S via the projection optical system PL and the liquid LQ in the immersion space LS on the substrate P.
  • an image of the pattern of the mask M is projected onto the shot area S, and the shot area S is exposed with the exposure light EL emitted from the emission surface 12.
  • the control device 6 moves the substrate P to the Y axis in the XY plane in the state where the immersion space LS is formed in order to start the exposure of the next shot area S.
  • a direction intersecting with for example, the X-axis direction or a direction inclined with respect to the X-axis and Y-axis directions in the XY plane
  • the next shot area S is moved to the exposure start position.
  • the control device 6 starts exposure of the shot area S.
  • the control device 6 sets the shot region with respect to the position (projection region PR) irradiated with the exposure light EL from the emission surface 12.
  • the substrate P is moved in a direction intersecting the Y-axis direction in the XY plane (for example, the X-axis direction or a direction inclined with respect to the X-axis and Y-axis directions in the XY plane) so as to be arranged at the start position.
  • Each of the plurality of shot areas of the substrate P is sequentially exposed while repeating the operation.
  • the operation of moving the substrate P (shot region) in the Y-axis direction with respect to (PR) is appropriately referred to as a scan movement operation.
  • a scan movement operation is appropriately referred to as a scan movement operation.
  • the scan movement operation includes an operation in which the substrate P moves in the Y-axis direction from a state where a certain shot region S is arranged at the exposure start position to a state where it is arranged at the exposure end position.
  • the substrate P intersects with the Y-axis direction in the XY plane from a state where a certain shot area S is arranged at the exposure end position to a state where the next shot area S is arranged at the exposure start position. Includes movement in the direction.
  • the exposure start position includes the position of the substrate P when one end of the shot area S in the Y-axis direction passes through the projection area PR for exposure of the shot area S.
  • the exposure end position includes the position of the substrate P when the other end portion in the Y-axis direction of the shot area S irradiated with the exposure light EL passes through the projection area PR.
  • the exposure start position of the shot area S includes a scan movement operation start position for exposing the shot area S.
  • the exposure start position of the shot area S includes a step movement operation end position for arranging the shot area S at the exposure start position.
  • the exposure end position of the shot area S includes a scan movement operation end position for exposing the shot area S.
  • the exposure end position of the shot area S includes a step movement operation start position for placing the next shot area S at the exposure start position after the exposure of the shot area S is completed.
  • a period during which a scan movement operation is performed for exposure of a certain shot area S will be appropriately referred to as a scan movement period.
  • a period during which the step movement operation is performed for the start of exposure of the next shot area S from the end of exposure of a certain shot area S is appropriately referred to as a step movement period.
  • the scan movement period includes an exposure period from the start of exposure of a certain shot area S to the end of exposure.
  • the step movement period includes a movement period of the substrate P from the end of exposure of a certain shot area S to the start of exposure of the next shot area S.
  • the exposure light EL In the scanning movement operation, the exposure light EL is emitted from the emission surface 12. In the scan movement operation, the exposure light EL is irradiated to the substrate P (object). In the step movement operation, the exposure light EL is not emitted from the emission surface 12. In the step movement operation, the exposure light EL is not irradiated onto the substrate P (object).
  • the control device 6 sequentially exposes each of the plurality of shot regions S of the substrate P while repeating the scan movement operation and the step movement operation.
  • the scan movement operation is a constant speed movement mainly in the Y-axis direction.
  • the step movement operation includes acceleration / deceleration movement.
  • the step movement operation from the end of exposure of a certain shot area S to the start of exposure of the next shot area S includes one or both of acceleration / deceleration movement in the Y-axis direction and acceleration / deceleration movement in the X-axis direction.
  • At least a part of the immersion space LS may be formed on the substrate stage 2 (cover member T).
  • the immersion space LS may be formed so as to straddle the substrate P and the substrate stage 2 (cover member T).
  • the immersion space LS is formed in the substrate stage 2 (cover member T) in at least a part of the scan movement operation and the step movement operation.
  • the measurement stage 3 may be formed.
  • the control device 6 controls the drive system 15 based on the exposure conditions of the plurality of shot regions S on the substrate P to move the substrate P (substrate stage 2).
  • the exposure conditions for the plurality of shot areas S are defined by, for example, exposure control information called an exposure recipe.
  • the exposure control information is stored in the storage device 7.
  • the exposure condition includes arrangement information of the plurality of shot areas S (positions of the plurality of shot areas S on the substrate P).
  • the exposure condition (exposure control information) includes dimension information (dimension information about the Y-axis direction) of each of the plurality of shot regions S.
  • a row of shot regions S is provided on the substrate P.
  • the row of shot regions S is formed by a plurality of shot regions S arranged in the X-axis direction on the substrate P.
  • One row includes a plurality of shot regions S arranged in the X-axis direction.
  • a plurality of rows of shot areas S are provided on the substrate P.
  • a plurality of rows of shot regions S are arranged in the Y-axis direction on the substrate P.
  • the substrate P is provided with columns Ga to Gj of the shot region S.
  • the column Ga is arranged closest to the ⁇ Y side among the plurality of columns Ga to Gj.
  • the column Gb is arranged next to the column Ga.
  • the column Gb is arranged on the + Y side of the column Ga.
  • the column Gc is arranged next to the column Gb.
  • the column Gc is arranged on the + Y side of the column Gb.
  • the columns Gd to Gj are arranged in the Y-axis direction.
  • each of the columns Ga and Gj includes six shot regions S arranged in the X-axis direction on the substrate P.
  • Each of the columns Gb and Gi includes ten shot regions S arranged in the X-axis direction on the substrate P.
  • Each of the columns Gc, Gd, Ge, Gf, Gg, and Gh includes twelve shot regions S arranged in the X-axis direction on the substrate P.
  • the control device 6 sequentially exposes each of the plurality of shot regions S while moving the substrate P under a predetermined movement condition based on the exposure conditions (exposure control information) stored in the storage device 7.
  • the movement condition of the substrate P (object) includes at least one of movement speed, acceleration, movement distance, movement direction, and movement locus in the XY plane.
  • the control device 6 causes the projection region PR of the projection optical system PL and the substrate P to move along the movement locus indicated by the arrow Sr in FIG.
  • the projection region PR is irradiated with the exposure light EL while moving the substrate stage 2 so as to move relatively, and each of the plurality of shot regions S in the column Ga is sequentially exposed with the exposure light EL via the liquid LQ.
  • the control device 6 sequentially exposes each of the plurality of shot regions S included in the column Ga while repeating the scan movement operation and the step movement operation.
  • the shot region S of the column Gb is exposed.
  • the controller 6 sequentially exposes each of the plurality of shot regions S included in the row Gb while repeating the scan movement operation and the step movement operation in the state where the immersion space LS is formed.
  • each of the shot regions S included in the column Gb is sequentially exposed, each of the shot regions S in the column Gc is exposed. Similarly, each of the plurality of shot areas S included in each of the columns Gd to Gj is sequentially exposed.
  • the substrate stage 2 is moved to the substrate exchange position, and the exposed substrate P is unloaded (unloaded) from the substrate stage 2 (first holding unit). ) Is performed.
  • the second member 22 moves in at least a part of the exposure processing of the substrate P.
  • the second member 22 moves in parallel with at least a part of the step movement operation of the substrate P (substrate stage 2) in a state where the immersion space LS is formed.
  • the second member 22 moves in parallel with at least a part of the scanning movement operation of the substrate P (substrate stage 2) in a state where the immersion space LS is formed.
  • the exposure light EL is emitted from the emission surface 12. Note that the second member 22 does not have to move during the scan movement operation. That is, the second member 22 may not move in parallel with the emission of the exposure light EL from the emission surface 12.
  • the second member 22 moves so that the relative movement (relative speed, relative acceleration) with the substrate P (substrate stage 2) is small. Good. Further, when the substrate P (substrate stage 2) performs the scanning movement operation, the second member 22 moves so that the relative movement (relative speed, relative acceleration) with the substrate P (substrate stage 2) becomes small. Also good.
  • FIG. 11 shows the movement of the substrate P when sequentially exposing each of the shot area S1, the shot area S2, and the shot area S3 included in a certain row G while performing the step movement including the component in the + X-axis direction. It is a figure which shows an example of a locus
  • the shot areas S1, S2, and S3 are arranged in the X-axis direction.
  • the substrate P is located under the last optical element 13 from the position d1 to the position d2 adjacent to the position d1 on the + Y side.
  • Path Tp1 path Tp2 from position d2 to position d3 adjacent to + X side with respect to position d2
  • path Tp3 from position d3 to position d4 adjacent to ⁇ Y side with respect to position d3, and from position d4 to
  • the path Tp4 from the position d4 to the position d5 adjacent to the + X side and the path Tp5 from the position d5 to the position d6 adjacent to the position +5 on the + Y side are sequentially moved.
  • the positions d1, d2, d3, d4, d5, and d6 are positions in the XY plane.
  • At least a part of the path Tp1 is a straight line parallel to the Y axis.
  • At least a part of the path Tp3 is a straight line parallel to the Y axis.
  • At least a part of the path Tp5 includes a straight line parallel to the Y axis.
  • the path Tp2 includes a curve passing through the position d2.5.
  • the path Tp4 includes a curve passing through the position d4.5.
  • the position d1 includes the start point of the path Tp1, and the position d2 includes the end point of the path Tp1.
  • the position d2 includes the start point of the path Tp2, and the position d3 includes the end point of the path Tp2.
  • the position d3 includes the start point of the path Tp3, and the position d4 includes the end point of the path Tp3.
  • the position d4 includes the start point of the path Tp4, and the position d5 includes the end point of the path Tp4.
  • the position d5 includes the start point of the path Tp5, and the position d6 includes the end point of the path Tp5.
  • the path Tp1 is a path along which the substrate P moves in the + Y axis direction.
  • the path Tp3 is a path along which the substrate P moves in the ⁇ Y axis direction.
  • the path Tp5 is a path along which the substrate P moves in the + Y axis direction.
  • the path Tp2 and the path Tp4 are paths along which the substrate P moves in a direction whose main component is the + X-axis direction.
  • the exposure light EL is irradiated to the shot region S1 through the liquid LQ.
  • the exposure light EL is irradiated to the shot region S2 through the liquid LQ.
  • the exposure light EL is irradiated to the shot region S3 through the liquid LQ.
  • the exposure light EL is not irradiated.
  • Each of the movement of the substrate P along the path Tp1, the movement along the path Tp3, and the movement along the path Tp5 includes a scan movement operation.
  • Each of the operation of moving the substrate P along the path Tp2 and the operation of moving along the path Tp4 includes a step movement operation.
  • the period during which the substrate P moves along the path Tp1 the period during which the path Tp3 moves, and the period during which the path Tp5 moves are each a scan movement period (exposure period).
  • Each of the period during which the substrate P moves along the path Tp2 and the period during which the substrate P moves along the path Tp4 is a step movement period.
  • FIG. 12 is a schematic diagram illustrating an example of the operation of the second member 22.
  • FIG. 12 is a view of the second member 22 as viewed from the upper surface 25 side.
  • the second member 22 is disposed at the position shown in FIG. 12A with respect to the projection region PR (the optical path K of the exposure light EL).
  • the second member 22 is disposed at the position shown in FIG. 12B with respect to the projection region PR (the optical path K of the exposure light EL).
  • the second member 22 moves in the ⁇ X axis direction opposite to the step movement direction (+ X axis direction) of the substrate P.
  • the second member 22 is disposed at the position shown in FIG. 12C with respect to the projection region PR (the optical path K of the exposure light EL).
  • the second member 22 is disposed at the position shown in FIG. 12D with respect to the projection region PR (the optical path K of the exposure light EL).
  • the second member 22 moves in the + X-axis direction that is the same as the step movement direction (+ X-axis direction) of the substrate P.
  • the second member 22 is disposed at the position shown in FIG. 12E with respect to the projection region PR (the optical path K of the exposure light EL). That is, during the scanning movement operation from the position d3 to the position d4 of the substrate P, the second member 22 moves in the ⁇ X axis direction opposite to the step movement direction (+ X axis direction) of the substrate P.
  • the second member 22 is disposed at the position shown in FIG.
  • the second member 22 is disposed at the position shown in FIG. 12G with respect to the projection region PR (the optical path K of the exposure light EL). That is, during the step movement operation from the position d4 to the position d5 of the substrate P, the second member 22 moves in the same + X axis direction as the step movement direction (+ X axis direction) of the substrate P.
  • the second member 22 is disposed at the position shown in FIG. 12H with respect to the projection region PR (the optical path K of the exposure light EL). That is, during the scanning operation movement from the position d5 to the position d6 of the substrate P, the second member 22 moves in the ⁇ X axis direction opposite to the step movement direction (+ X axis direction) of the substrate P.
  • the position of the second member 22 shown in FIGS. 12A, 12D, and 12G includes the second end position.
  • the position of the second member 22 shown in FIGS. 12B, 12E, and 12H includes the first end position.
  • the position of the second member 22 shown in FIGS. 12C and 12F includes a central position.
  • the position of the second member 22 shown in FIGS. 12A, 12D, and 12G is the second end position
  • the position of the second member 22 shown in FIGS. 12 (E) and 12 (H) is the first end position
  • the position of the second member 22 shown in FIGS. 12 (C) and 12 (F) is The center position.
  • the second member 22 moves in the ⁇ X axis direction so as to change from the state shown in FIG. 12A to the state shown in FIG. That is, the second member 22 moves from the second end position through the center position to the first end position.
  • the second member 22 changes from the state shown in FIG. 12B to the state shown in FIG. 12D through the state shown in FIG. Move in the axial direction. That is, the second member 22 moves from the first end position to the second end position through the center position.
  • the second member 22 moves in the ⁇ X axis direction so as to change from the state shown in FIG. 12D to the state shown in FIG.
  • the second member 22 moves from the second end position through the center position to the first end position.
  • the second member 22 changes from the state shown in FIG. 12E to the state shown in FIG. 12G through the state shown in FIG. Move in the axial direction. That is, the second member 22 moves from the first end position to the second end position through the center position.
  • the second member 22 moves in the ⁇ X axis direction so as to change from the state shown in FIG. 12G to the state shown in FIG. That is, the second member 22 moves from the second end position through the center position to the first end position.
  • the second member 22 moves in the + X-axis direction so that the relative movement with the substrate P becomes small in at least a part of the period in which the substrate P moves along the path Tp2.
  • the second member 22 has a + X-axis direction so that the relative speed with respect to the substrate P in the X-axis direction becomes small during at least a part of the period in which the substrate P includes a + X-axis direction component.
  • the second member 22 moves in the + X-axis direction so that the relative speed with respect to the substrate P in the X-axis direction becomes small during at least a part of the period in which the substrate P moves along the path Tp4.
  • the second member 22 moves in the ⁇ X axis direction during at least a part of the period during which the substrate P moves along the path Tp3.
  • the exposure light EL can pass through the opening 35 even when the second member 22 moves in the + X-axis direction in the movement of the path Tp4.
  • the substrate P moves along the paths Tp1 and Tp5.
  • the second member 22 when the substrate P repeats the scan movement operation and the step movement operation including the component in the + X-axis direction, the second member 22 has the first end portion so that the relative speed with respect to the substrate P becomes small during the step movement operation.
  • the second member 22 is moved from the position to the second end position in the + X-axis direction, and the second member 22 is moved to the second end so that the second member 22 can move again in the + X-axis direction in the next step movement operation during the scan movement operation. Return from the position to the first end position. That is, since the second member 22 moves in the ⁇ X axis direction during at least a part of the period during which the substrate P performs the scanning movement operation, the size of the opening 35 can be minimized.
  • the fluid recovery unit 27 can recover the liquid LQ on the substrate P (object).
  • the movement of the second member 22 in the step movement operation after scanning exposure of the shot area (for example, S2) while moving is the same, but may be different.
  • the movement of the second member 22 when the substrate P moves along the path Tp2 (FIGS. 12B to 12C) and the substrate P moves along the path Tp4.
  • the movement of the second member 22 when moving (FIGS. 12E to 12F to 12G) is the same, but may be different.
  • the movement distance in the + X-axis direction of the second member 22 when the substrate P moves along the path Tp2 and the movement distance in the + X-axis direction of the second member 22 when the substrate P moves along the path Tp4 are: May be different.
  • the second member 22 is not moved in the + X axis direction, or the substrate P is moved in the + Y axis direction.
  • the movement of the second member 22 in the + X-axis direction in the step movement operation after scanning exposure may be reduced.
  • the movement of the second member 22 in the scan movement operation in which the substrate P moves in the + Y axis direction, and the movement of the second member 22 in the scan movement operation in which the substrate P moves in the ⁇ Y axis direction are the same but may be different.
  • the movement of the second member 22 when the substrate P moves along the path Tp1 (FIGS. 12A to 12B) and the movement of the second member 22 when the substrate P moves along the path Tp3 (FIG. (G) to (H) in FIG. 12 are the same, but may be different.
  • FIG. 13 is a diagram illustrating an example of the position of the second member 22 with respect to the terminal optical element 13 (projection region PR).
  • FIG. 13A shows an example in which the second member 22 is arranged at the second end position.
  • FIG. 13B shows an example in which the second member 22 is disposed at a position between the second end position and the center position.
  • FIG. 13C shows an example in which the second member 22 is arranged at the center position.
  • FIG. 13D shows an example in which the second member 22 is disposed at a position between the first end position and the center position.
  • FIG. 13E shows an example in which the second member 22 is arranged at the first end position.
  • the position of the second member 22 shown in FIG. 13A is appropriately referred to as a position Jr.
  • the position of the second member 22 illustrated in FIG. 13B is appropriately referred to as a position Jrm.
  • the position of the second member 22 shown in FIG. 13C is appropriately referred to as a position Jm.
  • the position of the second member 22 shown in FIG. 13D is appropriately referred to as a position Jsm.
  • the position of the second member 22 shown in FIG. 13E is appropriately referred to as a position Js.
  • the control device 6 can control the driving device 32 to move the second member 22 under a predetermined moving condition.
  • the moving condition of the second member 22 includes at least one of a moving direction, a moving speed, an acceleration, and a moving distance.
  • the control device 6 can control at least one of the moving direction, moving speed, acceleration, and moving distance of the second member 22.
  • the control device 6 can control the drive device 32 to change the position of the second member 22 relative to the terminal optical element 13 (projection region PR).
  • the control device 6 can stop the second member 22 at at least one of the position Jr, the position Jrm, the position Jm, the position Jsm, and the position Js.
  • the control device 6 can move the second member 22 between two positions selected from the position Jr, the position Jrm, the position Jm, the position Jsm, and the position Js.
  • the controller 6 is not limited to the position Jr, the position Jrm, the position Jm, the position Jsm, and the position Js, and may be capable of stopping the second member 22 at any other position.
  • the second member 22 moves within a movable range (movable range) determined with respect to the X-axis direction.
  • the position Jr of the second member 22 shown in FIG. 13A is the position on the most + X side (second end position) in the movable range of the second member 22.
  • the position Js of the second member 22 shown in FIG. 13 (E) is the position (first end position) closest to the ⁇ X side in the movable range of the second member 22.
  • a position Jm of the second member 22 shown in FIG. 13C is a center position (center position) in the movable range of the second member 22.
  • a position Jrm of the second member 22 shown in FIG. 13B is a position between the position Jr and the position Jm in the movable range of the second member 22.
  • a position Jsm of the second member 22 shown in FIG. 13D is a position between the position Js and the position Jm in the movable range of the second member 22.
  • the moving distance of the second member 22 between the position Jm and the position Jr is longer than the moving distance of the second member 22 between the position Jm and the position Jrm.
  • the moving distance of the second member 22 between the position Jm and the position Js is longer than the moving distance of the second member 22 between the position Jm and the position Jsm.
  • the second member 22 is disposed at the position Jr (second end position) when the substrate P is at the positions d1, d3, and d5. did.
  • the second member 22 may be disposed at the position Jrm, or may be disposed at the position Jm (center position).
  • the second member 22 when the substrate P is at the positions d2, d4, and d6, the second member 22 is disposed at the position Js (first end position). did.
  • the second member 22 may be disposed at the position Jsm, or may be disposed at the position Jm (center position).
  • the second member 22 when the substrate P is at the positions d2.5 and d4.5, the second member 22 may be arranged at a position different from the position Jm (center position). That is, when the substrate P is at the positions d2.5 and d4.5, the second member 22 may be disposed at the position Jsm, for example, or at the position Jrm.
  • the column for example, The exposure of shot regions S in a column (for example, column Gd) different from column Gc) is performed.
  • the row for example, row Gc is different from the row (for example, row Gc). For example, the exposure of the shot area S in the column Gb) is performed.
  • the control device 6 performs the substrate from the end of exposure of a certain shot region S included in the same column (for example, column Gc) to the start of exposure of another shot region S included in that column (for example, column Gc).
  • the operation (how to move) of the second member 22 during the step movement period of P and the exposure end of the shot region S in another column (for example, column Gd) start from the exposure end of the shot region S in a certain column (for example, column Gc).
  • the driving device 32 is controlled so that the operation (how to move) of the second member 22 during the step movement period of the substrate P is different.
  • the step movement period of the substrate P up to this is appropriately referred to as a first step movement period between the shot areas Sa3 and Sa4.
  • a shot area eg, shot area Se12
  • a certain row eg, row Ge
  • the start of exposure of a shot area eg, shot region Sf1
  • the step movement period of the substrate P is appropriately referred to as a second step movement period between the shot regions Se12 and Sf1.
  • the first step movement period includes a so-called X step movement period. That is, the step movement operation performed during the first step movement period includes a so-called X step movement operation.
  • the second step movement period includes a so-called Y step movement period. That is, the step movement operation performed during the second step movement period includes a so-called Y step movement operation.
  • the movement distance of the substrate P (substrate stage 2) in the XY plane during the Y step movement period is often longer than the movement distance of the substrate P (substrate stage 2) in the XY plane during the X step movement period.
  • the movement distance of the substrate P (substrate stage 2) in the Y step movement period may be shorter than the movement distance of the substrate P (substrate stage 2) in the X step movement period.
  • the movement distance of the substrate P (substrate stage 2) during the Y step movement period may be substantially equal to the movement distance of the substrate P (substrate stage 2) during the X step movement period.
  • FIG. 14 is a diagram schematically illustrating an example of a state in which each of a plurality of shot regions Sc1 to Sc4 included in the same column (for example, column Gc) is sequentially exposed.
  • the shot area Sc4 is arranged next to the shot area Sc3.
  • the shot area Sc3 is arranged next to the shot area Sc2.
  • the shot area Sc2 is arranged next to the shot area Sc1.
  • the shot area Sc4 is arranged on the + X side with respect to the shot area Sc3.
  • the shot area Sc3 is arranged on the + X side with respect to the shot area Sc2.
  • the shot area Sc2 is arranged on the + X side with respect to the shot area Sc1.
  • the control device 6 makes the substrate P relative to the projection region PR of the projection optical system PL along the movement locus indicated by the arrow Sra in FIG.
  • Each of the plurality of shot areas Sc1 to Sc4 included in the column Gc is sequentially exposed via the liquid LQ while repeating the scan movement operation and the step movement operation so as to move.
  • FIG. 15 is a diagram schematically illustrating an example of the operation (how to move) of the second member 22 when each of the shot areas Sc1 to Sc4 is sequentially exposed.
  • FIG. 15A shows a state where the substrate P is disposed at the exposure end position of the shot area Sc1 (scan movement operation end position of the shot area Sc1, step movement operation start position between the shot areas Sc1 and Sc2).
  • FIG. 15B shows a state in which the substrate P is disposed at the exposure start position of the shot area Sc2 (scan movement operation start position of the shot area Sc2, step movement operation end position between the shot areas Sc1 and Sc2).
  • FIG. 15C shows a state in which the substrate P is arranged at the exposure end position of the shot area Sc2 (scan movement operation end position of the shot area Sc2, step movement operation start position between the shot areas Sc2 and Sc3).
  • FIG. 15D shows a state in which the substrate P is disposed at the exposure start position of the shot area Sc3 (scan movement operation start position of the shot area Sc3, step movement operation end position between the shot areas Sc2 and Sc3).
  • the control device 6 performs a scan movement operation of the substrate P including at least movement in the ⁇ Y axis direction from the start of exposure of the shot area Sc1 to the end of exposure of the shot area Sc1.
  • the second member 22 moves from the position Js to the position Jr.
  • the second member 22 is disposed at the position Jr.
  • the second member 22 starts moving from the position Js and moves in the + X-axis direction until reaching the position Jr.
  • step movement between the shot areas Sc1 and Sc2 will be described.
  • the control device 6 performs a step movement operation of the substrate P including at least movement in the ⁇ X axis direction from the end of exposure of the shot area Sc1 to the start of exposure of the shot area Sc2.
  • the second member 22 is moved in the movement direction ( ⁇ X axis direction) of the substrate P. The second member 22 is moved so that the relative speed with the substrate P becomes small.
  • the second member 22 moves from the position Jr to the position Js during the step movement period (first step movement period) of the substrate P between the shot areas Sc1 and Sc2. As shown in FIG. 15B, at the end of the step movement between the shot areas Sc1 and Sc2, the second member 22 is disposed at the position Js. In the step movement period (first step movement period) of the substrate P between the shot areas Sc1 and Sc2, the second member 22 starts moving from the position Jr and moves in the ⁇ X axis direction until reaching the position Js. To do.
  • the exposure of the shot area Sc2 will be described.
  • the control device 6 performs a scan movement operation of the substrate P including at least movement in the + Y-axis direction from the start of exposure of the shot area Sc2 to the end of exposure of the shot area Sc2.
  • the second member 22 moves from the position Js to the position Jr.
  • the second member 22 is disposed at the position Jr.
  • the second member 22 starts moving from the position Js and moves in the + X axis direction until reaching the position Jr.
  • step movement between the shot areas Sc2 and Sc3 will be described.
  • the control device 6 performs a step movement operation of the substrate P including at least movement in the ⁇ X axis direction from the end of exposure of the shot area Sc2 to the start of exposure of the shot area Sc3.
  • the second member 22 is moved in the movement direction ( ⁇ X axis direction) of the substrate P. The second member 22 is moved so that the relative speed with the substrate P becomes small.
  • the second member 22 moves from the position Jr to the position Js during the step movement period (first step movement period) of the substrate P between the shot areas Sc2 and Sc3. As shown in FIG. 15D, at the end of the step movement between the shot areas Sc2 and Sc3, the second member 22 is disposed at the position Js. In the step movement period (first step movement period) of the substrate P between the shot regions Sc2 and Sc3, the second member 22 starts moving from the position Jr and moves in the ⁇ X axis direction until reaching the position Js. To do.
  • the step movement operation of the substrate P for exposure of the shot region Sc3 and the operation (how to move) of the second member 22 are the step movement operation of the substrate P for exposure of the shot region Sc1 and the second movement. This is similar to the operation (how to move) of the two members 22. That is, the scanning movement operation of the substrate P including at least movement in the ⁇ Y axis direction is performed from the start of exposure of the shot area Sc3 to the end of exposure of the shot area Sc3. Further, the second member 22 moves from the position Js to the position Jr during the scan movement period of the substrate P for exposure of the shot area Sc3.
  • the step movement operation between the shot regions Sc3 and Sc4 and the operation (how to move) of the second member 22 are the step movement operation between the shot regions Sc1 and Sc2 and the operation (movement of the second member 22). ). That is, a step movement operation of the substrate P including at least movement in the ⁇ X-axis direction is performed between the end of exposure of the shot area Sc3 and the start of exposure of the shot area Sc4. Further, the second member 22 moves from the position Jr to the position Js during the step movement period of the substrate P between the shot areas Sc3 and Sc4.
  • the step movement operation of the substrate P for exposure of the shot region Sc4 and the operation (how to move) of the second member 22 are the step movement operation of the substrate P for exposure of the shot region Sc2, and the second movement. This is similar to the operation (how to move) of the two members 22. That is, the scanning movement operation of the substrate P including at least movement in the + Y-axis direction is performed between the start of exposure of the shot area Sc4 and the end of exposure of the shot area Sc4. Further, the second member 22 moves from the position Js to the position Jr during the scan movement period of the substrate P for exposure of the shot area Sc4.
  • control device 6 controls the substrate P (substrate stage 2) and the second member 22 with reference to FIGS. The same operation as described with reference to D) is performed.
  • the second member 22 is on one side (+ X side) with respect to the X-axis direction. Move to. In the first step movement period, the substrate P moves to one side (+ X side) at least in the X-axis direction.
  • the second member 22 may continue to move during the first step movement period of the substrate P between the shot regions Sc and Sc included in the same row Gc. In other words, during the period in which the substrate P moves from the exposure end position of the shot region Sc (eg, Sc1) in the row Gc to the exposure start position of the next shot region Sc (eg, Sc2), the final optical element 13 (first member 21) is moved.
  • the moving speed of the second member 22 may not be zero. In other words, the second member 22 does not have to stop with respect to the last optical element 13 (first member 21) in the first step movement period.
  • the second member 22 in the exposure period (scan movement period for exposure of the shot area Sc) from the start of exposure of the shot area Sc (for example, Sc1) to the end of exposure of the shot area Sc (Sc1), the second member 22 is , You may keep moving.
  • the exposure period from the start of exposure of the shot area Sc (for example, Sc1) to the end of exposure of the shot area Sc (Sc1) (scan movement period for exposure of the shot area Sc), between the shot areas Sc and Sc
  • a first step movement period of the substrate P for example, between Sc1 and Sc2
  • an exposure period from the start of exposure to the end of exposure of the next shot area Sc (eg, Sc2) (scan movement period for exposure of the shot area Sc2)
  • the second member 22 may continue to move.
  • the second member 22 may stop with respect to the last optical element 13 (first member 21) in at least a part of the exposure period of the shot region Sc.
  • FIG. 16 shows that after a shot region S (for example, shot region Sc4) in a certain column (for example, column Gc) is exposed, a shot region S (for example, shot region Sd1) in another column (for example, column Gd) is different from that column. It is a figure which shows typically an example of the state in which exposure is performed. With respect to the Y-axis direction, the column Gd including the shot region Sd1 is disposed next to the column Gc including the shot region Sc4. The column Gd is arranged on the + Y side with respect to the column Gc.
  • the position of the shot area Sd1 and the position of the shot area Sc4 are different with respect to the Y-axis direction.
  • the shot area Sd1 is arranged on the + Y side with respect to the shot area Sc4.
  • With respect to the X-axis direction the position of the shot area Sd1 and the position of the shot area Sc4 are different.
  • the shot area Sd1 is arranged on the + X side with respect to the shot area Sc4. Note that the position of the shot area Sd1 and the position of the shot area Sc4 may be the same with respect to the X-axis direction, or the shot area Sd1 may be arranged on the ⁇ X side of the shot area Sc4.
  • the shot area Sd2 is arranged next to the shot area Sd1.
  • the shot area Sd3 is arranged next to the shot area Sd2.
  • the shot area Sd2 is arranged on the ⁇ X side with respect to the shot area Sd1.
  • the shot area Sd3 is arranged on the ⁇ X side with respect to the shot area Sd2.
  • the control device 6 makes the substrate P relative to the projection region PR of the projection optical system PL along the movement locus indicated by the arrow Srb in FIG.
  • the shot region Sc4 included in the column Gc is exposed through the liquid LQ while repeating the scan movement operation and the step movement operation so that the shot region Sd1 moves through the liquid LQ. Exposure.
  • the plurality of shot regions Sd2 and Sd3 included in the row Gd are sequentially exposed via the liquid LQ.
  • FIG. 17 schematically shows an example of the operation (how to move) of the second member 22 when the shot region Sd1 included in the column Gd is exposed after the shot region Sc4 included in the column Gc is exposed. It is.
  • FIG. 17A shows a state in which the substrate P is arranged at the exposure end position of the shot area Sc4 (scan movement operation end position of the shot area Sc4, step movement operation start position between the shot areas Sc4 and Sd1).
  • FIG. 17B shows a state in which the substrate P is moving from the exposure end position of the shot area Sc4 to the exposure start position of the shot area Sd1 (scan movement operation start position of the shot area Sd1).
  • FIG. 17C shows a state in which the substrate P is disposed at the exposure start position of the shot area Sd1 (scan movement operation start position of the shot area Sd1, step movement operation end position between the shot areas Sc4 and Sd1).
  • FIG. 17D shows a state where the substrate P is disposed at the exposure end position of the shot area Sd1 (scan movement operation end position of the shot area Sd1, step movement operation start position between the shot areas Sd1 and Sd2).
  • FIG. 17E shows a state in which the substrate P is arranged at the exposure start position of the shot area Sd2 (scan movement operation start position of the shot area Sd2, step movement operation end position between the shot areas Sd1 and Sd2).
  • the scan movement operation of the substrate P including at least movement in the + Y-axis direction is performed from the start of exposure of the shot area Sc4 to the end of exposure of the shot area Sc4.
  • the second member 22 moves from the position Js to the position Jr.
  • the second member 22 is disposed at the position Jr.
  • the second member 22 may continue to move. Note that the second member 22 may be stopped in at least a part of the scan movement period for exposure of the shot region Sc4.
  • step movement between the shot areas Sc4 and Sd1 will be described. After the scan movement operation of the substrate P for exposure of the shot area Sc4 is completed, the step movement operation of the substrate P between the shot areas Sc4 and Sd1 is performed.
  • the step movement period (second step movement period) of the substrate P from the end of exposure of the shot area Sc4 in the row Gc to the start of exposure in the shot region Sd1 in the row Gd is a shot region included in the same row Gc. It is longer than the step movement period (first step movement period) of the substrate P from the end of exposure of Sc (eg, shot area Sc2) to the start of exposure of the next shot area Sc (eg, shot area Sc3).
  • the step movement distance of the substrate P from the exposure end position of the shot area Sc4 in the row Gc to the exposure start position of the shot region Sd1 in the row Gd is the shot region Sc (for example, included in the same row Gc) It is longer than the step movement distance of the substrate P from the exposure end position of the shot area Sc2) to the exposure start position of the next shot area Sc (for example, the shot area Sc3).
  • the control device 6 performs a step movement operation of the substrate P including at least movement in the ⁇ X axis direction and the ⁇ Y axis direction.
  • the step movement operation of the substrate P between the shot regions Sc4 and Sd1 is the first operation in which the substrate P moves at least in the X-axis direction, as shown in FIGS. 17A and 17B. 17B and 17C, the substrate P includes a second operation that mainly moves in the Y-axis direction.
  • the first operation the state changes from the state shown in FIG. 17A to the state shown in FIG.
  • the second operation the state changes from the state shown in FIG.
  • the first operation includes the movement of the substrate P at least in the X-axis direction.
  • the first operation includes moving the substrate P in one or both of the + Y axis direction and the ⁇ Y axis direction while moving in the ⁇ X axis direction.
  • the second operation includes the movement of the substrate P in the Y-axis direction.
  • the second operation includes a smaller movement (at least one of a movement distance, a movement speed, and an acceleration) of the substrate P in the X-axis direction than the first operation.
  • the second operation includes that the substrate P moves in the ⁇ Y axis direction and does not substantially move in the X axis direction.
  • the substrate P may move in the X axis direction while moving in the Y axis direction.
  • the substrate P may be moved so that the movement of the substrate P in the X operation in the second operation is smaller than the movement of the substrate P in the X operation in the first operation.
  • the control device 6 moves the substrate P at least on the ⁇ X axis.
  • a first operation for moving the substrate P in the direction and a second operation for moving the substrate P mainly in the ⁇ Y-axis direction are performed.
  • the second member 22 moves the substrate P during the period in which the first operation of the substrate P is performed in the step movement period (second step movement period) of the substrate P between the shot regions Sc4 and Sd1. It is moved in the direction ( ⁇ X axis direction). The second member 22 is moved so that the relative speed with the substrate P becomes small. In the present embodiment, the second member 22 is moved from the position Jr to the position during the period in which the first operation of the substrate P is performed in the step movement period (second step movement period) of the substrate P between the shot regions Sc4 and Sd1. Move to Js. As shown in FIG. 17B, the second member 22 is disposed at the position Js during the step movement operation between the shot areas Sc4 and Sd1 (end of the first operation).
  • the second member 22 is disposed at the position Js after the exposure of the shot area Sc4 is finished and before the exposure of the shot area Sd1 is started. During the period in which the first operation of the substrate P is performed, the second member 22 starts moving from the position Jr and moves in the ⁇ X axis direction until reaching the position Js.
  • the second member 22 does not move during the period in which the second operation of the substrate P is performed during the step movement period (second step movement period) of the substrate P between the shot areas Sc4 and Sd1. In other words, the second member 22 stops with respect to the last optical element 13 (first member 21) during the period in which the second operation of the substrate P is performed. In a period in which the second operation of the substrate P is performed, the relative speed of the second member 22 with respect to the last optical element 13 (first member 21) becomes zero.
  • the second member 22 is Does not move in the X-axis direction.
  • the position of the second member 22 is maintained at the position Js.
  • the second member 22 may stop during at least a part of the period during which the first operation of the substrate P is performed. Note that the second member 22 may move during at least a part of the period during which the second operation of the substrate P is performed.
  • the second operation may be performed after the first operation of the substrate P, or the second operation of the substrate P. Thereafter, the first operation may be performed.
  • the first operation and the second operation of the substrate P may be performed alternately in the step movement period (second step movement period) of the substrate P between the shot regions Sc4 and Sd1.
  • the operation of the substrate P may not be divided into the first operation and the second operation.
  • the substrate P may continue to move in the X axis direction and the Y axis direction. In this case, for example, the second member 22 may continue to be moved in the ⁇ X axis direction during a period of change from the state of FIG. 17A to the state of FIG.
  • the control device 6 performs a scan movement operation of the substrate P including at least movement in the ⁇ Y axis direction from the start of exposure of the shot area Sd1 to the end of exposure of the shot area Sd1. Do.
  • the second member 22 does not move during the scan movement period of the substrate P for exposure of the shot area Sd1.
  • the second member 22 stops with respect to the last optical element 13 (first member 21) during the scan movement period of the substrate P for exposure of the shot region Sd1.
  • the relative speed of the second member 22 with respect to the last optical element 13 (first member 21) becomes zero. That is, the second member 22 does not move in the X-axis direction during the scan movement period of the substrate P for exposure of the shot region Sd1 in which the substrate P does not substantially move in the X-axis direction. As shown in FIG.
  • the second member 22 is disposed at the position Js. As shown in FIG. 17D, at the end of exposure of the shot area Sd1, the second member 22 is arranged at the position Js. That is, the position of the second member 22 is maintained at the position Js during the scan movement period of the substrate P for exposure of the shot region Sd1.
  • the second member 22 may move during at least a part of the scan movement period of the substrate P for exposure of the shot region Sd1.
  • step movement between the shot areas Sd1 and Sd2 will be described.
  • the control device 6 performs a step movement operation of the substrate P including at least movement in the + X axis direction from the end of exposure of the shot area Sd1 to the start of exposure of the shot area Sd2.
  • the second member 22 is moved in the movement direction (+ X axis direction) of the substrate P. The second member 22 is moved so that the relative speed with the substrate P becomes small.
  • the second member 22 moves from the position Js to the position Jr during the step movement period (first step movement period) of the substrate P between the shot areas Sd1 and Sd2. As shown in FIG. 17E, at the end of the step movement between the shot areas Sd1 and Sd2, the second member 22 is disposed at the position Jr. In the step movement period (first step movement period) of the substrate P between the shot regions Sd1 and Sd2, the second member 22 starts moving from the position Js and moves in the + X-axis direction until reaching the position Jr. .
  • the scan movement operation of the substrate P for exposure of the shot area Sd2 is performed.
  • a scan movement operation of the substrate P including at least movement in the + Y-axis direction is performed.
  • the second member 22 moves from the position Jr to the position Js during the scan movement period of the substrate P for exposure of the shot area Sd2.
  • step movement between the shot areas Sd2 and Sd3 will be described.
  • a step movement operation of the substrate P including at least movement in the + X-axis direction is performed.
  • the second member 22 moves from the position Js to the position Jr.
  • the controller 6 controls the substrate P (substrate stage 2) and the second member 22 with reference to FIGS. The same operation as described with reference to E) is performed.
  • the operation (how to move) of the two members 22 is different.
  • the second member 22 continues to move during the first step movement period, and the second member 22 during the partial period of the second step movement period (period during which the second operation is performed). The movement of the member 22 stops.
  • the second member 22 is disposed at the position Jr at the start of the step movement period (second step movement period) between the shot areas Sc4 and Sd1.
  • the second member 22 is disposed at the position Js.
  • the second member 22 is disposed at the position Js.
  • the second member 22 is disposed at the position Jr at the end of the step movement period (first step movement period) between the shot areas Sd1 and Sd2.
  • the second member 22 in the step movement period (second step movement period) between the shot areas Sc4 and Sd1 and the step movement period (first step movement period) between the shot areas Sd1 and Sd2, the second member 22 is used.
  • the moving direction of is different.
  • FIG. 17A, FIG. 17B, and FIG. 17C in the step movement period (second step movement period) between the shot areas Sc4 and Sd1, The member 22 moves from the position Jr to the position Js. That is, in the second step movement period, the second member 22 moves in the ⁇ X axis direction. As shown in FIGS.
  • the second member 22 moves from the position Js to the position Jr. That is, in the first step movement period, the second member 22 moves in the + X axis direction.
  • the movement distance of the second member 22 during the step movement period (second step movement period) between the shot areas Sc4 and Sd1 and the step movement period (first step movement period) between the shot areas Sd1 and Sd2. May be substantially equal or different.
  • the movement distance of the second member 22 during the first step movement period may be longer or shorter than the movement distance of the second member 22 during the second step movement period.
  • the second member 22 moves between the position Js and the position Jr in the first step movement period.
  • the second member 22 moves between the position Jr and the position Jsm in the second step movement period.
  • it may move between the position Jr and the position Jm, or may move between the position Jr and the position Jrm.
  • the second member 22 may move between the position Jrm and the position Js, may move between the position Jrm and the position Jsm, or the position Jrm You may move between the positions Jm.
  • the second member 22 moves between the position Jr and the position Js in the second step movement period. It may move, may move between position Js and position Jm, and may move to position Js and position Jsm.
  • the second member 22 may move between the position Jsm and the position Jr, may move between the position Jsm and the position Jrm, or the position Jsm You may move between the positions Jm.
  • the second member 22 has a step movement period (second step movement period) between the shot areas Sc4 and Sd1 and a step movement period (first step movement period) between the shot areas Sd1 and Sd2.
  • the moving speeds may be substantially equal or different.
  • the moving speed of the second member 22 during the first step moving period may be higher or lower than the moving speed of the second member 22 during the second step moving period.
  • the second member 22 has a step movement period (second step movement period) between the shot areas Sc4 and Sd1 and a step movement period (first step movement period) between the shot areas Sd1 and Sd2.
  • the acceleration may be substantially equal or different.
  • the acceleration of the second member 22 during the first step movement period may be higher or lower than the acceleration of the second member 22 during the second step movement period.
  • the second member 22 is movable in the X-axis direction
  • the movement direction of the second member 22 in the first and second step movement periods is the movement direction of the second member 22 with respect to the X-axis direction.
  • the movement distance of the second member 22 in the first and second step movement periods includes the movement distance of the second member 22 in the X-axis direction.
  • the moving speed of the second member 22 in the first and second step moving periods includes the moving speed of the second member 22 in the X-axis direction.
  • the acceleration of the second member 22 during the first and second step movement periods includes the acceleration of the second member 22 in the X-axis direction.
  • the second member 22 may be movable in at least two directions within the XY plane.
  • the second member 22 may be movable in each of the X axis direction and the Y axis direction.
  • the moving direction of the second member 22 relative to the last optical element 13 in the XY plane may be different, the moving distance may be different, and the moving speed is different.
  • the acceleration (deceleration) may be different.
  • the second member 22 may be movable in six directions of X axis, Y axis, Z axis, ⁇ X, ⁇ Y, and ⁇ Z.
  • the moving direction of the second member 22 relative to the last optical element 13 in the six directions may be different, the moving distance may be different, and the moving speed may be different. It may be different or the acceleration (deceleration) may be different.
  • the second member 22 may continue to move. That is, in the second step movement period, the moving speed of the second member 22 relative to the last optical element 13 (first member 21) may not be zero. In other words, the second member 22 does not have to stop with respect to the last optical element 13 (first member 21) in the second step movement period.
  • the second member 22 may continue to move in both the first step movement period and the second step movement period.
  • the member 22 in the exposure period from the start of exposure of the shot area Sc4 to the end of exposure (exposure period for exposure of the shot area Sc4) and the second step movement period between the shot areas Sc4 and Sd1, The member 22 may continue to move.
  • the exposure period from the start of exposure of the shot area Sc4 to the end of exposure (exposure period for exposure of the shot area Sc4), the second step moving period between the shot areas Sc4 and Sd1, and the exposure start of the shot area Sd1 In the exposure period until the end (exposure period for exposure of the shot region Sd1), the second member 22 may continue to move.
  • the movement of the second member 22 may be stopped during at least part of the first step movement period, and the movement of the second member 22 may be stopped during at least part of the second step movement period.
  • the movement stop time of the second member 22 in the first step movement period may be different from the movement stop time of the second member 22 in the second step movement period.
  • the movement stop time of the second member 22 in the second step movement period may be longer than the movement stop time of the second member 22 in the first step movement period.
  • the movement stop time of the second member 22 in the second step movement period may be shorter than the movement stop time of the second member 22 in the first step movement period.
  • the second member 22 moves in the ⁇ X axis direction during the first step movement period of the substrate P between the shot areas Sc and Sc included in the same row Gc.
  • the second member 22 moves in the + X axis direction.
  • the second member 22 may move in the ⁇ X axis direction, for example, It may move to both sides in the ⁇ X axis direction and the + X axis direction.
  • the second member 22 that is movable below the first member 21 since the second member 22 that is movable below the first member 21 is provided, an object such as the substrate P is in an XY state while the immersion space LS is formed. Even if it moves in the plane, for example, the liquid LQ is prevented from flowing out of the space between the liquid immersion member 5 and the object, or the liquid LQ remaining on the object. In addition, generation of bubbles (gas portion) in the liquid LQ in the immersion space LS is also suppressed.
  • the second member 22 since the second member 22 includes the fluid recovery part 27, the shape change of the second interface LG2 formed between the lower surface of the liquid recovery part 27 and the upper surface of the substrate P (object). Can be suppressed. As a result, the liquid LQ in the immersion space LS is prevented from flowing out of the space between the immersion member 5 and the substrate P (object) or the liquid LQ remaining on the substrate P (object). .
  • the liquid immersion space LS is formed by moving the second member 22 so that the relative movement (relative speed, relative acceleration) with respect to the substrate P (object) becomes small. Even when the object moves at a high speed, it is possible to prevent the liquid LQ from flowing out of the immersion space LS, the liquid LQ remaining on the substrate P (object), or the generation of bubbles in the liquid LQ. .
  • the first member 21 is disposed at least at a part of the periphery of the terminal optical element 13, the object moves or the second member is in a state where the immersion space LS is formed. Even when 22 moves, it is suppressed that a pressure fluctuates between the last optical element 13 and the first member 21 and that the shape of the third interface LG3 of the liquid LQ greatly fluctuates. Therefore, for example, the generation of bubbles in the liquid LQ and the excessive force acting on the last optical element 13 are suppressed. In the present embodiment, since the first member 21 does not substantially move, the pressure varies greatly between the last optical element 13 and the first member 21, or the shape of the first interface LG1 of the liquid LQ is Large fluctuations are suppressed.
  • the first member 21 may be movable.
  • the first member 21 may move with respect to the last optical element 13.
  • the first member 21 may move in at least one of the six directions of X axis, Y axis, Z axis, ⁇ X, ⁇ Y, and ⁇ Z.
  • the first member 21 may be moved in parallel with at least a part of the movement of the substrate P (object).
  • the distance may be shorter than the second member 22 in the XY plane.
  • the first member 21 may move at a lower speed than the second member 22.
  • the first member 21 may move at a lower acceleration than the second member 22.
  • the liquid supply unit 31 that supplies the liquid LQ for forming the immersion space LS is disposed on the first member 21, and the fluid recovery unit that recovers the liquid LQ on the substrate P (object). 27 is arranged on the second member 22 arranged with a gap between the first member 21 and the first member 21.
  • the liquid LQ supplied from the liquid supply unit 31 flows so as to contact the inner side surface 28 and the lower surface 23 of the first member 21.
  • the temperature change of the first member 21 is suppressed by the liquid LQ.
  • the temperature of the first member 21 is adjusted by the liquid LQ.
  • the liquid LQ supplied from the liquid supply unit 31 flows so as to contact the upper surface 25 and the lower surface 26 of the second member 22.
  • the temperature change of the second member 22 is suppressed by the liquid LQ.
  • the temperature of the second member 22 is adjusted by the liquid LQ.
  • the 1st temperature adjustment apparatus which adjusts the temperature of the 1st member 21 may be arrange
  • the first temperature adjusting device may include, for example, a Peltier element disposed on the outer surface of the first member 21.
  • the first temperature adjustment device may include a supply device that supplies a temperature adjustment fluid (one or both of a liquid and a gas) to a flow path formed inside the first member 21.
  • a second temperature adjusting device that adjusts the temperature of the second member 22 may be arranged.
  • the second temperature adjustment device may include a Peltier element disposed on the outer surface of the second member 22, or may include a supply device that supplies a temperature adjustment fluid to a flow path formed inside the second member 22. But you can.
  • the liquid supply amount from the liquid supply unit 31 may be adjusted based on the movement condition of the second member 22. Further, the liquid supply amount from the liquid supply unit 31 may be adjusted based on the position of the second member 22. For example, when the second member 22 is disposed at the center position when the second member 22 is disposed at at least one of the first end position and the second end position, the liquid supply amount from the liquid supply unit 31 is disposed at the center position. The liquid supply amount from the liquid supply unit 31 may be adjusted to be larger. When the second member 22 moves from the second end position to the first end position, the liquid supply amount from the liquid supply section 31 disposed on the + X side with respect to the optical path K is set to the ⁇ X side.
  • the second member 22 is moved in the step direction (X-axis direction) with respect to the step movement operation of the substrate P in order to suppress the liquid LQ remaining or flowing out due to the step movement operation of the substrate P. ) To move. However, in at least one of the scan movement operation and the step movement operation of the substrate P, the second member 22 is moved in the scan direction (Y) so that the relative speed difference with the substrate P (object) in the scan direction (Y-axis direction) becomes small. (Axial direction).
  • FIG. 18 after a shot region S (for example, shot region Se2) in a certain column (for example, column Ge) is exposed, a shot region S (for example, shot region Sf1) in a column (for example, column Gf) different from that column is exposed.
  • a shot region S for example, shot region Se2
  • a shot region Sf1 in a column for example, column Gf
  • the column Gf including the shot region Sf1 is disposed next to the column Ge including the shot region Se2.
  • the column Gf is arranged on the + Y side with respect to the column Ge.
  • the position of the shot area Sf1 and the position of the shot area Se2 are different with respect to the Y-axis direction.
  • the shot area Sf1 is arranged on the + Y side with respect to the shot area Se2.
  • the position of the shot area Sf1 and the position of the shot area Se2 are different.
  • the shot area Sf1 is arranged on the + X side with respect to the shot area Se2.
  • the distance in the X axis direction between the + X side edge of the shot area Se2 and the ⁇ X side edge of the shot area Sf1 is based on the dimension in the X axis direction of the shot area Sf2 (shot areas Se2 and Sf1). Is also big.
  • the shot area Sf2 is arranged next to the shot area Sf1.
  • the shot area Sf3 is arranged next to the shot area Sf2.
  • the shot area Sf4 is arranged next to the shot area Sf3.
  • the shot area Sf2 is arranged on the ⁇ X side with respect to the shot area Sf1.
  • the shot area Sf3 is arranged on the ⁇ X side with respect to the shot area Sf2.
  • the shot area Sf4 is arranged on the ⁇ X side with respect to the shot area Sf3.
  • the control device 6 makes the substrate P relative to the projection region PR of the projection optical system PL along the movement locus indicated by the arrow Src in FIG.
  • the shot regions Se1 and Se2 included in the column Ge are exposed via the liquid LQ while repeating the scan movement operation and the step movement operation so that the shot region Sf1 included in the column Gf is transferred to the liquid. Exposure through LQ. Further, after the shot region Sf1 included in the column Gf is exposed, the plurality of shot regions Sf2, Sf3, Sf4 included in the column Gf are sequentially exposed via the liquid LQ.
  • the substrate P may move relative to the projection region PR of the projection optical system PL along a movement locus indicated by an arrow Src2 in FIG.
  • FIG. 19 is a diagram schematically illustrating an example of the operation (how to move) of the second member 22 when the shot region Sf1 included in the column Gf is exposed after the shot region Se2 included in the column Ge is exposed. It is.
  • FIG. 19A shows a state in which the substrate P is disposed at the exposure end position of the shot area Se2 (scan movement operation end position of the shot area Se2, step movement operation start position between the shot areas Se2 and Sf1).
  • FIG. 19B shows a state where the substrate P is moving from the exposure end position of the shot area Se2 to the exposure start position of the shot area Sf1 (scan movement operation start position of the shot area Sf1).
  • FIG. 19C shows a state in which the substrate P is arranged at the exposure start position of the shot area Sf1 (scan movement operation start position of the shot area Sf1, step movement operation end position between the shot areas Se2 and Sf1).
  • FIG. 19D shows a state in which the substrate P is disposed at the exposure end position of the shot area Sf1 (scan movement operation end position of the shot area Sf1, step movement operation start position between the shot areas Sf1 and Sf2).
  • the exposure of the shot area Se2 will be described.
  • the control device 6 performs a scan movement operation of the substrate P including at least movement in the + Y-axis direction from the start of exposure of the shot area Se2 to the end of exposure of the shot area Se2. .
  • the second member 22 moves from the position Js to the position Jr.
  • the second member 22 is disposed at the position Jr.
  • step movement between the shot areas Se2 and Sf1 will be described.
  • the step movement operation of the substrate P between the shot areas Se2 and Sf1 is performed after the scan movement operation of the substrate P for exposure of the shot area Se2.
  • the step movement period (second step movement period) of the substrate P from the end of exposure of the shot area Se2 in the column Ge to the start of exposure of the shot area Sf1 in the column Gf is a shot region Se (for example, the shot region Se1) included in the same column Ge. ) Is longer than the step movement period (first step movement period) of the substrate P from the exposure end of the next shot area Se (for example, the shot area Se2) to the exposure start.
  • the step movement distance of the substrate P from the exposure end position of the shot region Se2 in the column Ge to the exposure start position of the shot region Sf1 in the column Gf is the exposure of the shot region Se (for example, the shot region Se1) included in the same column Ge. It is longer than the step movement distance of the substrate P from the end position to the exposure start position of the next shot area Se (for example, the shot area Se2).
  • the step movement operation of the substrate P between the shot areas Se2 and Sf1 includes an operation in which the substrate P moves at least in the X-axis direction.
  • the step movement operation of the substrate P between the shot areas Se2 and Sf1 includes an operation in which the substrate P moves in the + Y axis direction while moving in the ⁇ X axis direction, and a ⁇ Y axis direction in which the substrate P moves in the ⁇ X axis direction. To move to.
  • the second member 22 is moved in the movement direction ( ⁇ X axis direction) of the substrate P.
  • the second member 22 is moved so that the relative speed with the substrate P becomes small.
  • the second member 22 moves from the position Jr to the position Js during the step movement period (second step movement period) of the substrate P between the shot areas Se2 and Sf1.
  • the second member 22 starts moving from the position Jr and moves in the ⁇ X axis direction until reaching the position Js.
  • the step movement operation of the substrate P between the shot areas Se2 and Sf1 is performed as shown in FIGS. 19A and 19B in which the substrate P moves mainly in the Y-axis direction.
  • the operation includes a first operation in which the substrate P moves in both the X-axis direction and the Y-axis direction.
  • the second operation includes an operation in which the substrate P moves mainly in the + Y-axis direction.
  • the first operation includes an operation in which the substrate P moves in the ⁇ Y axis direction while moving in the ⁇ X axis direction.
  • the movement distance of the substrate P in the X-axis direction in the first operation is larger than the movement distance of the substrate P in the X-axis direction in the second operation.
  • the second member 22 is disposed at the position Jr during the step movement operation between the shot areas Se2 and Sf1 (end of the second operation).
  • the second member 22 is disposed at the position Js.
  • the step movement operation of the substrate P between the shot regions Se2 and Sf1 includes an operation in which the substrate P moves in one or both of the + Y axis direction and the ⁇ Y axis direction while moving in the ⁇ X axis direction, and the substrate P moves to + X.
  • An operation of moving in one or both of the + Y axis direction and the ⁇ Y axis direction while moving in the axial direction may be included.
  • the second member 22 may move only in the ⁇ X axis direction, or ⁇ X You may move to both the axial direction and the + X-axis direction.
  • the second member 22 has a ⁇ You may move to both the X-axis direction and the + X-axis direction.
  • the second member 22 may continue to move.
  • the movement of the second member 22 may be stopped in at least a part of the step movement period (second step movement period) of the substrate P between the shot areas Se2 and Sf1.
  • the control device 6 performs a scan movement operation of the substrate P including at least movement in the ⁇ Y axis direction from the start of exposure of the shot area Sf1 to the end of exposure of the shot area Sf2. Do.
  • the second member 22 does not move during the scan movement period of the substrate P for exposure of the shot area Sf1.
  • the position of the second member 22 is maintained at the position Js.
  • the second member 22 is disposed at the position Js.
  • the second member 22 is arranged at the position Js even after the exposure of the shot area Sf1 is completed.
  • the second member 22 may move during at least a part of the scan movement period of the substrate P for exposure of the shot region Sf1. Note that the second member 22 may continue to move during the scan movement period of the substrate P for exposure of the shot region Sf1. In the control device 6, the second member 22 is moved in the X-axis direction during the scan movement period of the substrate P for exposure of the shot region Sf1, and the second member 22 is disposed at the position Js after the exposure of the shot region Sf1. As such, the drive device 32 may be controlled.
  • step movement between the shot areas Sf1 and Sf2 will be described.
  • a step movement operation of the substrate P including at least movement in the + X-axis direction is performed between the end of exposure of the shot area Sf1 and the start of exposure of the shot area Sf2. Further, the second member 22 moves from the position Js to the position Jr during the step movement period of the substrate P between the shot areas Sf1 and Sf2.
  • the scan movement operation of the substrate P for exposure of the shot area Sf2 is performed.
  • the scan movement operation of the substrate P including at least movement in the + Y-axis direction is performed.
  • the second member 22 moves from the position Jr to the position Js during the scan movement period of the substrate P for exposure of the shot area Sf2.
  • the last optical element is used for the start of the step movement period (second step movement period) between the shot areas Se2 and Sf1 and the start of the step movement period (first step movement period) between the shot areas Sf1 and Sf2.
  • the position of the second member 22 with respect to the element 13 (first member 21) is different.
  • the second member 22 is disposed at the position Jr at the start of the step movement period (second step movement period) between the shot areas Se2 and Sf1.
  • the second member 22 is arranged at the position Js.
  • the second member 22 is disposed at the position Js at the end of the step movement period (second step movement period) between the shot areas Se2 and Sf1.
  • the second member 22 is disposed at the position Jr.
  • the second member in the first step movement period of the substrate P from the end of exposure of the shot region Sf1 included in a certain row Gf to the start of exposure of the next shot region Sf2 included in the same row Gf as that row.
  • the second member 22 may continue to move during the first step movement period, and the movement of the second member 22 may be stopped during at least a part of the second step movement period.
  • the moving direction of the second member 22 may be different between the first step moving period and the second step moving period.
  • the second member 22 moves from the position Jr to the position Js during the step movement period (second step movement period) between the shot areas Se2 and Sf1. That is, in the second step movement period, the second member 22 moves in the ⁇ X axis direction.
  • the step movement period first step movement period between the shot areas Sf1 and Sf2
  • the second member 22 moves from the position Js to the position Jr. That is, in the first step movement period, the second member 22 moves in the + X axis direction.
  • the moving distance of the second member 22 may be different between the first step moving period and the second step moving period.
  • the moving distance of the second member 22 relative to the terminal optical element 13 in the second step moving period may be longer or shorter than the moving distance of the second member 22 relative to the terminal optical element 13 in the first step moving period.
  • the second member 22 may be moved between the position Jr and the position Js in the second step movement period, and the second member 22 may be moved between the position Jrm and the position Jsm in the first step movement period.
  • the second member 22 may be moved between the position Jrm and the position Jsm in the second step movement period, and the second member 22 may be moved between the position Jr and the position Js in the first step movement period.
  • the moving speed of the second member 22 may be different between the first step moving period and the second step moving period.
  • the moving speed of the second member 22 relative to the terminal optical element 13 during the second step moving period may be higher or lower than the moving speed of the second member 22 relative to the terminal optical element 13 during the first step moving period. .
  • the acceleration (deceleration) of the second member 22 may be different between the first step movement period and the second step movement period.
  • the acceleration of the second member 22 relative to the terminal optical element 13 during the second step movement period may be higher or lower than the acceleration of the second member 22 relative to the terminal optical element 13 during the first step movement period.
  • the second member 22 may continue to move during the first step movement period between the shot areas Se1 and Se2. Further, the second member 22 may continue to move during the second step movement period between the shot areas Se2 and Sf1. Further, the second member 22 may continue to move during the first step movement period between the shot areas Sf1 and Sf2. Further, the second member 22 may continue to move in both the first step movement period and the second step movement period.
  • the second member 22 may continue to move during the exposure period from the exposure start to the end of exposure of the shot area Se2 and the second step movement period between the shot areas Se2 and Sf1.
  • the movement of the second member 22 may be stopped in at least a part of the first step movement period between the shot areas Se1 and Se2. Further, the movement of the second member 22 may be stopped in at least a part of the second step movement period between the shot areas Se2 and Sf1. Further, the movement of the second member 22 may be stopped in at least a part of the first step movement period between the shot areas Sf1 and Sf2.
  • the movement of the second member 22 is stopped in at least a part of the second step movement period between the shot regions Se2 and Sf1, the period during which the substrate P is moved in the Y-axis direction during the second step movement period.
  • the movement of the second member 22 may be stopped in at least a part of.
  • the second member 22 continues to move, and at least part of the second step movement period between the shot areas Se2 and Sf1.
  • the movement of the member 22 may be stopped.
  • the second member 22 continues to move in the exposure period (scan movement period) from the exposure start to the exposure end of the shot area Se2 and in the exposure period (scan movement period) from the exposure start to the exposure end of the shot area Sf1.
  • the movement of the second member 22 may be stopped in at least a part of the second step movement period between the shot areas Se2 and Sf1.
  • the operation (how to move) of the second member 22 during the first step movement period of the substrate P and the operation (how to move) of the second member 22 during the second step movement period of the substrate P. ) Is controlled so that the liquid LQ is prevented from flowing out from the immersion space LS. Therefore, the occurrence of defective exposure and the occurrence of defective devices can be suppressed.
  • a shot region S for example, shot region Se2 in a certain column (for example, column Ge) is exposed
  • a shot region S for example, shot region Sf1 in a column (for example, column Gf) different from that column is exposed.
  • the column Gf including the shot region Sf1 is disposed next to the column Ge including the shot region Se2.
  • the column Gf is arranged on the + Y side with respect to the column Ge.
  • the control device 6 makes the substrate P relative to the projection region PR of the projection optical system PL along the movement locus indicated by the arrow Srd in FIG.
  • the shot regions Se1 and Se2 included in the column Ge are exposed via the liquid LQ while repeating the scan movement operation and the step movement operation so that the shot region Sf1 included in the column Gf is transferred to the liquid. Exposure through LQ. Further, after the shot region Sf1 included in the column Gf is exposed, the plurality of shot regions Sf2, Sf3, Sf4 included in the column Gf are sequentially exposed via the liquid LQ.
  • FIG. 21 is a diagram schematically illustrating an example of the operation (how to move) of the second member 22 when the shot region Sf1 included in the column Gf is exposed after the shot region Se2 included in the column Ge is exposed. It is.
  • FIG. 21A shows a state in which the substrate P is disposed at the exposure end position of the shot area Se2 (scan movement operation end position of the shot area Se2, step movement operation start position between the shot areas Se2 and Sf1).
  • FIG. 21B shows a state in which the substrate P is arranged at the exposure start position of the shot area Sf1 (scan movement operation start position of the shot area Sf1, step movement operation end position between the shot areas Se2 and Sf1).
  • FIG. 21C shows a state in which the substrate P is moving from the exposure end position of the shot area Sf1 to the exposure start position of the shot area Sf2 (scan movement operation start position of the shot area Sf2).
  • FIG. 21 (D) shows a state in which the substrate P is arranged at the exposure start position of the shot area Sf2 (scan movement operation start position of the shot area Sf2, step movement operation end position between the shot areas Sf1 and Sf2).
  • the exposure of the shot area Se2 will be described.
  • the control device 6 performs a scan movement operation of the substrate P including at least movement in the + Y-axis direction from the start of exposure of the shot area Se2 to the end of exposure of the shot area Se2. .
  • the second member 22 moves from the position Js to the position Jr.
  • the second member 22 is disposed at the position Jr.
  • step movement of the substrate P between the shot areas Se2 and Sf1 will be described.
  • the step movement operation of the substrate P between the shot areas Se2 and Sf1 is performed after the scan movement operation of the substrate P for exposure of the shot area Se2.
  • the step movement period (second step movement period) of the substrate P from the end of exposure of the shot area Se2 in the column Ge to the start of exposure of the shot area Sf1 in the column Gf is a shot region Se (for example, the shot region Se1) included in the same column Ge. ) Is longer than the step movement period (first step movement period) of the substrate P from the end of exposure to the start of exposure of the next shot area Se (for example, shot area Se2).
  • the step movement distance of the substrate P from the exposure end position of the shot region Se2 in the column Ge to the exposure start position of the shot region Sf1 in the column Gf is the exposure of the shot region Se (for example, the shot region Se1) included in the same column Ge. It is longer than the step movement distance of the substrate P from the end position to the exposure start position of the next shot area Se (for example, the shot area Se2).
  • the step movement operation of the substrate P between the shot areas Se2 and Sf1 includes an operation in which the substrate P moves at least in the X-axis direction.
  • the step movement operation of the substrate P between the shot areas Se2 and Sf1 includes an operation in which the substrate P moves in the + Y axis direction while moving in the ⁇ X axis direction, and a ⁇ Y axis direction in which the substrate P moves in the ⁇ X axis direction. To move to.
  • the second member 22 is moved in the movement direction ( ⁇ X axis direction) of the substrate P.
  • the second member 22 is moved so that the relative speed with the substrate P becomes small.
  • the second member 22 moves from the position Jr to the position Js during the step movement period (second step movement period) of the substrate P between the shot areas Se2 and Sf1.
  • the second member 22 is arranged at the position Js.
  • the step movement operation of the substrate P between the shot regions Se2 and Sf1 includes an operation in which the substrate P moves in one or both of the + Y axis direction and the ⁇ Y axis direction while moving in the ⁇ X axis direction, and the substrate P moves to + X.
  • An operation of moving in one or both of the + Y axis direction and the ⁇ Y axis direction while moving in the axial direction may be included.
  • the second member 22 may move only in the ⁇ X axis direction, or ⁇ X You may move to both the axial direction and the + X-axis direction.
  • the second member 22 has a ⁇ You may move to both the X-axis direction and the + X-axis direction.
  • the second member 22 may continue to move.
  • the movement of the second member 22 may be stopped in at least a part of the step movement period (second step movement period) of the substrate P between the shot areas Se2 and Sf1.
  • the control device 6 performs a scan movement operation of the substrate P including at least movement in the + Y-axis direction from the start of exposure of the shot area Sf1 to the end of exposure of the shot area Sf1. .
  • the second member 22 does not move during the scan movement period of the substrate P for exposure of the shot region Sf1.
  • the position of the second member 22 is maintained at the position Js. As shown in FIGS. 21B and 21C, the second member 22 is arranged at the position Js both at the start of exposure and at the end of exposure of the shot region Sf1.
  • the second member 22 may move during at least a part of the scan movement period of the substrate P for exposure of the shot region Sf1. Note that the second member 22 may continue to move during the scan movement period of the substrate P for exposure of the shot region Sf1. In the control device 6, the second member 22 is moved in the X-axis direction during the scan movement period of the substrate P for exposure of the shot region Sf1, and the second member 22 is disposed at the position Js after the exposure of the shot region Sf1. As such, the drive device 32 may be controlled.
  • step movement of the substrate P between the shot areas Sf1 and Sf2 will be described.
  • the step movement operation of the substrate P between the shot areas Sf1 and Sf2 is performed after the scan movement operation of the substrate P for exposure of the shot area Sf1 is completed.
  • the control device 6 performs a step movement operation of the substrate P including at least movement in the + X-axis direction.
  • the second member 22 is moved in the movement direction (+ X axis direction) of the substrate P.
  • the second member 22 is moved so that the relative speed with the substrate P becomes small.
  • the second member 22 is Move from position Js to position Jr.
  • the second member 22 is disposed at the position Jr at the start of exposure of the shot area Sf2.
  • the control device 6 performs a scan movement operation of the substrate P including at least movement in the ⁇ Y axis direction.
  • the second member 22 moves from the position Jr to the position Js during the scan movement period of the substrate P for exposure of the shot region Sf2.
  • control device 6 when sequentially exposing each of the plurality of shot regions Sf included in the same row Gf, the control device 6 performs the same operation as described above for the substrate P (substrate stage 2) and the second member 22.
  • the last optical element is used for the start of the step movement period (second step movement period) between the shot areas Se2 and Sf1 and the start of the step movement period (first step movement period) between the shot areas Sf1 and Sf2.
  • the position of the second member 22 with respect to the element 13 (first member 21) is different.
  • the second member 22 is disposed at the position Jr.
  • the second member 22 is disposed at the position Js.
  • the last optical element 13 (first step).
  • the position of the second member 22 relative to the one member 21) is different.
  • the second member 22 is disposed at the position Js at the end of the step movement period (second step movement period) between the shot areas Se2 and Sf1.
  • the second member 22 is disposed at the position Jr at the end of the step movement period (first step movement period) between the shot areas Sf1 and Sf2.
  • the second member in the first step movement period of the substrate P from the end of exposure of the shot region Sf1 included in a certain row Gf to the start of exposure of the next shot region Sf2 included in the same row Gf as that row.
  • the second member 22 may continue to move during the first step movement period, and the movement of the second member 22 may be stopped during at least a part of the second step movement period.
  • the moving direction of the second member 22 may be the same or different between the first step moving period and the second step moving period.
  • the second member 22 moves at least in the ⁇ X axis direction during the second step movement period between the shot areas Se2 and Sf1.
  • the second member 22 moves in the ⁇ X axis direction.
  • the second member 22 moves in the + X axis direction.
  • the moving distance of the second member 22 may be different between the first step moving period and the second step moving period.
  • the moving distance of the second member 22 relative to the terminal optical element 13 in the second step moving period may be longer or shorter than the moving distance of the second member 22 relative to the terminal optical element 13 in the first step moving period. .
  • the moving speed of the second member 22 may be different between the first step moving period and the second step moving period.
  • the moving speed of the second member 22 relative to the terminal optical element 13 during the second step moving period may be higher or lower than the moving speed of the second member 22 relative to the terminal optical element 13 during the first step moving period. .
  • the acceleration (deceleration) of the second member 22 may be different between the first step movement period and the second step movement period.
  • the acceleration of the second member 22 relative to the terminal optical element 13 during the second step movement period may be higher or lower than the acceleration of the second member 22 relative to the terminal optical element 13 during the first step movement period.
  • the second member 22 may continue to move during the first step movement period between the shot areas Se1 and Se2. Further, the second member 22 may continue to move during the second step movement period between the shot areas Se2 and Sf1. Further, the second member 22 may continue to move during the first step movement period between the shot areas Sf1 and Sf2. Further, the second member 22 may continue to move in both the first step movement period and the second step movement period.
  • the second member 22 may continue to move during the exposure period from the exposure start to the end of exposure of the shot area Se2 and the second step movement period between the shot areas Se2 and Sf1.
  • the movement of the second member 22 may be stopped in at least a part of the first step movement period between the shot areas Se1 and Se2. Further, the movement of the second member 22 may be stopped in at least a part of the second step movement period between the shot areas Se2 and Sf1. Further, the movement of the second member 22 may be stopped in at least a part of the first step movement period between the shot areas Sf1 and Sf2.
  • the movement of the second member 22 is stopped in at least a part of the second step movement period between the shot regions Se2 and Sf1, the period during which the substrate P is moved in the Y-axis direction during the second step movement period.
  • the movement of the second member 22 may be stopped in at least a part of.
  • the second member 22 continues to move, and at least part of the second step movement period between the shot areas Se2 and Sf1.
  • the movement of the member 22 may be stopped.
  • the second member 22 continues to move in the exposure period (scan movement period) from the exposure start to the exposure end of the shot area Se2 and in the exposure period (scan movement period) from the exposure start to the exposure end of the shot area Sf1.
  • the movement of the second member 22 may be stopped in at least a part of the second step movement period between the shot areas Se2 and Sf1.
  • the operation (how to move) of the second member 22 during the first step movement period of the substrate P and the operation (how to move) of the second member 22 during the second step movement period of the substrate P. ) Is controlled so that the liquid LQ is prevented from flowing out from the immersion space LS. Therefore, the occurrence of defective exposure and the occurrence of defective devices can be suppressed.
  • the second member 22 in the step movement operation of the substrate P between the shot regions Se2 and Sf1, the second member 22 is moved so that the second member 22 blocks the optical path of the exposure light EL. May be.
  • the movement distance of the substrate P in the ⁇ X-axis direction is long.
  • the second member 22 may be moved so that the + X side end is positioned on the ⁇ X side with respect to the + X side end of the projection region PR.
  • the second member 22 must be moved to a position that does not block the optical path of the exposure light EL by the time exposure of the shot area Sf1 is started.
  • a shot region S for example, shot region Si2 in a certain column (for example, column Gi) is exposed
  • a shot region S for example, shot region Sj1 in a column (for example, column Gj) different from that column is exposed.
  • the column Gj including the shot region Sj1 is arranged next to the column Gi including the shot region Si2.
  • the column Gj is arranged on the + Y side with respect to the column Gi.
  • the position of the shot area Sj1 and the position of the shot area Si2 are different with respect to the Y-axis direction.
  • the shot area Sj1 is arranged on the + Y side with respect to the shot area Si2.
  • the position of the shot area Sj1 and the position of the shot area Si2 are different.
  • the shot area Sj1 is arranged on the + X side with respect to the shot area Si2.
  • the distance in the X-axis direction between the + X side edge of the shot region Si2 and the ⁇ X side edge of the shot region Sj1 is based on the dimension in the X axis direction of the shot region Sj2 (shot regions Si2, Sj1). Is also big.
  • the shot area Sj2 is arranged next to the shot area Sj1.
  • the shot area Sj3 is arranged next to the shot area Sj2.
  • the shot area Sj4 is arranged next to the shot area Sj3.
  • the shot area Sj2 is arranged on the ⁇ X side with respect to the shot area Sj1.
  • the shot area Sj3 is arranged on the ⁇ X side with respect to the shot area Sj2.
  • the shot area Sj4 is arranged on the ⁇ X side with respect to the shot area Sj3.
  • the control device 6 makes the substrate P relative to the projection region PR of the projection optical system PL along the movement locus indicated by the arrow Sre in FIG.
  • the shot regions Si1 and Si2 included in the column Gi are sequentially exposed through the liquid LQ while repeating the scan movement operation and the step movement operation so that the shot region Sj1 included in the column Gj is Exposure is performed via the liquid LQ.
  • the plurality of shot regions Sj2, Sj3, and Sj4 included in the column Gj are sequentially exposed via the liquid LQ.
  • the dimension Wi of the shot region Si (Si1, Si2) in the column Gi in the Y-axis direction is different from the dimension Wj in the shot region Sj (Sj1 to Sj4) in the column Gj in the Y-axis direction.
  • the dimension Wj is smaller than the dimension Wi.
  • control device 6 performs the operation (how to move) of the second member 22 during the step movement period of the substrate P from the end of exposure of the shot area Si1 to the start of exposure of the shot area Si2, and the end of exposure of the shot area Sj1.
  • the driving device 32 is controlled so that the operation (how to move) of the second member 22 in the step movement period of the substrate P from the start of exposure to the shot area Sj2 is different.
  • control device 6 performs the operation (how to move) of the second member 22 during the step movement period of the substrate P from the end of exposure of the shot area Si1 to the start of exposure of the shot area Si2, and the shot area Si2.
  • the driving device 32 is controlled such that the operation (how to move) of the second member 22 in the step movement period of the substrate P from the end of exposure to the start of exposure of the shot region Sj1 is different.
  • control device 6 performs the operation (how to move) of the second member 22 during the step movement period of the substrate P from the end of exposure of the shot area Si2 to the start of exposure of the shot area Sj1, and the shot area Sj1.
  • the driving device 32 is controlled so that the operation (how to move) of the second member 22 during the step movement period of the substrate P from the end of exposure to the start of exposure of the shot region Sj2 is different.
  • FIG. 23 is a schematic diagram illustrating an example of the operation (how to move) of the second member 22 when the shot regions Sj1 to Sj4 included in the column Gj are exposed after the shot regions Si1 and Si2 included in the column Gi are exposed.
  • FIG. 23 is a schematic diagram illustrating an example of the operation (how to move) of the second member 22 when the shot regions Sj1 to Sj4 included in the column Gj are exposed after the shot regions Si1 and Si2 included in the column Gi are exposed.
  • FIG. 23A shows a state where the substrate P is disposed at the exposure end position of the shot area Si2 (scan movement operation end position of the shot area Si2, step movement operation start position between the shot areas Si2 and Sj1).
  • FIG. 23B shows a state in which the substrate P is arranged at the exposure start position of the shot area Sj1 (scan movement operation start position of the shot area Sj1, step movement operation end position between the shot areas Si2 and Sj1).
  • FIG. 23C shows a state in which the substrate P is disposed at the exposure end position of the shot area Sj1 (scan movement operation end position of the shot area Sj1, step movement operation start position between the shot areas Sj1 and Sj2).
  • FIG. 23D shows a state in which the substrate P is arranged at the exposure start position of the shot area Sj2 (the scan movement operation start position of the shot area Sj2, the step movement operation end position between the shot areas Sj1 and Sj2).
  • FIG. 23 (E) shows a state in which the substrate P is disposed at the exposure end position of the shot area Sj2 (scan movement operation end position of the shot area Sj2, step movement operation start position between the shot areas Sj2 and Sj3).
  • FIG. 23 (F) shows a state in which the substrate P is arranged at the exposure start position of the shot area Sj3 (scan movement operation start position of the shot area Sj3, step movement operation end position between the shot areas Sj2 and Sj3).
  • the exposure of the shot area Si1 will be described.
  • the control device 6 performs a scan movement operation of the substrate P including at least movement in the ⁇ Y axis direction from the start of exposure of the shot area Si1 to the end of exposure of the shot area Si1.
  • the second member 22 moves from the position Js to the position Jr.
  • step movement operation between the shot areas Si1 and Si2 will be described.
  • the step movement operation of the substrate P between the shot regions Si1 and Si2 is performed after the scan movement operation of the substrate P for exposure of the shot region Si1 is completed.
  • the step movement operation of the substrate P between the shot regions Si1 and Si2 includes an operation in which the substrate P moves at least in the X-axis direction.
  • the step movement operation of the substrate P between the shot regions Si1 and Si2 includes an operation in which the substrate P moves in the ⁇ Y axis direction while moving in the ⁇ X axis direction, and a + Y axis direction in which the substrate P moves in the ⁇ X axis direction. To move to.
  • the second member 22 In at least part of the step movement period (second step movement period) of the substrate P between the shot regions Si1 and Si2, the second member 22 is moved in the movement direction ( ⁇ X axis direction) of the substrate P. The second member 22 is moved so that the relative speed with the substrate P becomes small. In the step movement period (second step movement period) of the substrate P between the shot regions Si1 and Si2, the second member 22 moves from the position Jr to the position Js.
  • the control device 6 performs a scan movement operation of the substrate P including at least movement in the + Y-axis direction from the start of exposure of the shot area Si2 to the end of exposure of the shot area Si2. .
  • the second member 22 moves from the position Js to the position Jr.
  • the second member 22 is disposed at the position Jr.
  • step movement between the shot areas Si2 and Sj1 will be described. After the scan movement operation of the substrate P for exposure of the shot region Si2, the step movement operation of the substrate P between the shot regions Si2 and Sj1 is performed.
  • the step movement period (second step movement period) of the substrate P from the end of exposure of the shot area Si2 in the row Gi to the start of exposure of the shot area Sj1 in the row Gj is a shot region Si (for example, shot region Si1) included in the same row Gi. ) Is longer than the step movement period (first step movement period) of the substrate P from the exposure end of the next shot area Si (for example, shot area Si2).
  • the step movement period (second step movement period) of the substrate P from the end of exposure of the shot area Si2 in the column Gi to the start of exposure of the shot area Sj1 in the column Gj is a shot region Sj (for example, a shot) included in the same column Gj. It is longer than the step movement period (first step movement period) of the substrate P from the end of exposure of the area Sj1) to the start of exposure of the next shot area Sj (for example, the shot area Sj2).
  • the step movement distance of the substrate P from the exposure end position of the shot region Si2 in the row Gi to the exposure start position of the shot region Sj1 in the row Gj is the exposure of the shot region Si (for example, the shot region Si1) included in the same row Gi. It is longer than the step movement distance of the substrate P from the end position to the exposure start position of the next shot area Si (for example, shot area Si2).
  • the step movement distance of the substrate P from the exposure end position of the shot region Si2 in the column Gi to the exposure start position of the shot region Sj1 in the column Gj is the exposure of the shot region Sj (for example, the shot region Sj1) included in the same column Gj. It is longer than the step moving distance of the substrate P from the end position to the exposure start position of the next shot area Sj (for example, shot area Sj2).
  • the step movement operation of the substrate P between the shot regions Si2 and Sj1 includes an operation in which the substrate P moves at least in the X-axis direction.
  • the step movement operation of the substrate P between the shot regions Si2 and Sj1 includes an operation in which the substrate P moves in the + Y axis direction while moving in the ⁇ X axis direction, and a ⁇ Y axis direction in which the substrate P moves in the ⁇ X axis direction. To move to.
  • the second member 22 In at least part of the step movement period (second step movement period) of the substrate P between the shot regions Si2 and Sj1, the second member 22 is moved in the movement direction ( ⁇ X axis direction) of the substrate P. The second member 22 is moved so that the relative speed with the substrate P becomes small. In the step movement period (second step movement period) of the substrate P between the shot regions Si2 and Sj1, the second member 22 moves from the position Jr to the position Js. As shown in FIG. 23B, at the end of the step movement between the shot areas Si2 and Sj1 (start of exposure of the shot area Sj1), the second member 22 is disposed at the position Js.
  • the step movement operation of the substrate P between the shot regions Si2 and Sj1 includes an operation in which the substrate P moves in one or both of the + Y axis direction and the ⁇ Y axis direction while moving in the ⁇ X axis direction, and An operation of moving in one or both of the + Y axis direction and the ⁇ Y axis direction while moving in the axial direction may be included.
  • the second member 22 may move only in the ⁇ X axis direction, or ⁇ X You may move to both the axial direction and the + X-axis direction.
  • the second member 22 has a ⁇ You may move to both the X-axis direction and the + X-axis direction.
  • the second member 22 may continue to move.
  • the movement of the second member 22 may be stopped in at least a part of the step movement period (second step movement period) of the substrate P between the shot regions Si2 and Sj1.
  • the second member 22 in the step movement operation of the substrate P between the shot areas Si2 and Sj1, the second member 22 may be moved so that the second member 22 blocks the optical path of the exposure light EL.
  • the + X side end of the opening 35 of the second member 22 is The second member 22 may be moved so as to be positioned on the ⁇ X side with respect to the + X side end of the projection region PR. However, by the time the exposure of the shot area Sj1 is started, the second member 22 must be moved to a position where the optical path of the exposure light EL is not blocked.
  • the scan movement operation of the substrate P for exposure of the shot area Sj1 is performed after the step movement operation of the substrate P between the shot areas Si2 and Sj1 is completed.
  • the scan movement period of the substrate P from the start of exposure of the shot area Sj (for example, shot area Sj1) of the column Gj to the end of exposure of the shot area Sj (shot area Sj1) is the shot area Si (for example, shot area) included in the column Gi It is shorter than the scan movement period of the substrate P from the start of exposure of Si1) to the end of exposure of the shot area Si (shot area Si1).
  • the scan movement distance of the substrate P from the exposure start position of the shot area Sj (for example, the shot area Sj1) in the row Gj to the exposure end position of the shot region Sj (shot region Sj1) is the shot area Si included in the row Gi. It is shorter than the scanning movement distance of the substrate P from the exposure start position (for example, the shot area Si1) to the exposure end position of the shot area Si (shot area Si1).
  • the second member 22 does not move during the scan movement period of the substrate P for exposure of the shot region Sj1.
  • the second member 22 stops with respect to the last optical element 13 (first member 21) during the scan movement period of the substrate P for exposure of the shot region Sj1.
  • the relative speed of the second member 22 with respect to the last optical element 13 (first member 21) becomes zero. That is, the second member 22 does not move in the X-axis direction during the scan movement period of the substrate P for exposure of the shot region Sj1 in which the substrate P does not substantially move in the X-axis direction.
  • the position of the second member 22 is maintained at the position Js. As shown in FIGS. 23B and 23C, the second member 22 is disposed at the position Js both at the start of exposure and at the end of exposure of the shot region Sj1.
  • the second member 22 may move in at least a part of the scan movement period of the substrate P for exposure of the shot region Sj1. Note that the second member 22 may continue to move during the scan movement period of the substrate P for exposure of the shot region Sj1.
  • the control device 6 the second member 22 is moved in the X-axis direction during the scan movement period of the substrate P for exposure of the shot region Sj1, and the second member 22 is disposed at the position Js after the exposure of the shot region Sj1.
  • the drive device 32 may be controlled.
  • the control device 6 performs a step movement operation of the substrate P including at least movement in the + X axis direction from the end of exposure of the shot area Sj1 to the start of exposure of the shot area Sj2.
  • the second member 22 is moved in the movement direction (+ X axis direction) of the substrate P. The second member 22 is moved so that the relative speed with the substrate P becomes small.
  • the second member 22 is disposed at the position Js.
  • the second member 22 moves from the position Js to the position Jrm during the step movement period (first step movement period) of the substrate P between the shot areas Sj1 and Sj2.
  • the second member 22 is disposed at the position Jrm.
  • the second member 22 starts moving from the position Js and moves in the + X-axis direction until reaching the position Jrm. .
  • the control device 6 performs a scan movement operation of the substrate P including at least movement in the + Y-axis direction.
  • the second member 22 moves from the position Jrm to the position Jsm during the scan movement period of the substrate P for exposure of the shot region Sj2. As shown in FIG. 23E, the second member 22 is disposed at the position Jsm at the end of the exposure of the shot region Sj2. In the scan movement period of the substrate P for exposure of the shot area Sj2, the second member 22 starts moving from the position Jrm and moves in the ⁇ X axis direction until reaching the position Jsm.
  • the second member 22 may continue to move.
  • the movement of the second member 22 may be stopped in at least a part of the scan movement period of the substrate P for exposure of the shot region Sj2.
  • the control device 6 performs a step movement operation of the substrate P including at least movement in the + X axis direction from the end of exposure of the shot area Sj2 to the start of exposure of the shot area Sj3.
  • the second member 22 is moved in the movement direction (+ X axis direction) of the substrate P. The second member 22 is moved so that the relative speed with the substrate P becomes small.
  • the second member 22 moves from the position Jsm to the position Jrm during the step movement period (first step movement period) of the substrate P between the shot areas Sj2 and Sj3.
  • the second member 22 is arranged at the position Jrm.
  • the second member 22 starts moving from the position Jsm and moves in the + X-axis direction until reaching the position Jrm. .
  • the scan movement operation of the substrate P for exposure of the shot area Sj3 is performed after the step movement operation of the substrate P between the shot areas Sj2 and Sj3 is completed.
  • the control device 6 performs a scan movement operation of the substrate P including at least movement in the ⁇ Y axis direction.
  • the second member 22 moves from the position Jrm to the position Jsm during the scan movement period of the substrate P for exposure of the shot area Sj3. In the scan movement period of the substrate P for exposure of the shot region Sj3, the second member 22 starts moving from the position Jrm and moves in the ⁇ X axis direction until reaching the position Jsm.
  • step movement of the substrate P between the shot areas Sj3 and Sj4 will be described.
  • the second member 22 is disposed at the position Jsm.
  • the second member 22 is disposed at the position Jrm.
  • the control device 6 performs a step movement operation of the substrate P including at least movement in the + X-axis direction.
  • the second member 22 is moved in the movement direction (+ X axis direction) of the substrate P. The second member 22 is moved so that the relative speed with the substrate P becomes small.
  • the second member 22 moves from the position Jsm to the position Jrm.
  • the second member 22 starts moving from the position Jsm and moves in the + X-axis direction until reaching the position Jrm. .
  • control device 6 when sequentially exposing each of the plurality of shot regions Sj included in the same row Gj, the control device 6 causes the substrate P (substrate stage 2) and the second member 22 to perform the same operations as described above.
  • the last optical element The position of the second member 22 with respect to 13 (first member 21) is different.
  • the second member 22 is disposed at the position Jr at the start of the step movement period (first step movement period) between the shot regions Si1 and Si2.
  • the second member 22 is disposed at the position Jsm.
  • the distance between the center position Jm) and the second member 22 is different.
  • the second member 22 is disposed at the position Js at the end of the step movement period (first step movement period) between the shot regions Si1 and Si2.
  • the second member 22 is disposed at the position Jrm.
  • the distance between the center position Jm) and the second member 22 is different.
  • the end of the step movement period (second step movement period) between the shot areas Si2 and Sj1 and the start of the step movement period (first step movement period) between the shot areas Sj2 and Sj3 are terminated.
  • the position of the second member 22 with respect to the optical element 13 (first member 21) is different.
  • the second member 22 is disposed at the position Jr at the start of the step movement period (second step movement period) between the shot areas Si2 and Sj1.
  • the second member 22 is disposed at the position Jsm.
  • the distance between the center position Jm) and the second member 22 is different.
  • the second member 22 is disposed at the position Js at the end of the step movement period (second step movement period) between the shot areas Si2 and Sj1.
  • the second member 22 is disposed at the position Jrm.
  • the distance between the center position Jm) and the second member 22 is different.
  • the operation (how to move) of the second member 22 during the step movement period of the substrate P from the end of exposure of the shot area Si1 having the dimension Wi to the start of exposure of the shot area Si2 having the dimension Wi is described.
  • the operation (how to move) of the second member 22 during the step movement period of the substrate P from the end of exposure of the shot area Sj1 (or Sj2) of the dimension Wj to the start of exposure of the shot area Sj2 (or Sj3) of the dimension Wj is different. .
  • the operation (how to move) of the second member 22 in the step movement period of the substrate P from the end of exposure of the shot area Sj1 (or Sj2) to the start of exposure of the shot area Sj2 (or Sj3) of the dimension Wj is different.
  • the movement distance of the second member 22 during the step movement period of the substrate P from the end of exposure of the shot area Si1 having the dimension Wi to the start of exposure of the shot area Si2 having the dimension Wi, and the shot area Sj1 is different.
  • the second member 22 in the step movement period of the substrate P from the end of exposure in Sj2) to the start of exposure of the shot area Sj2 (or Sj3) having the dimension Wj is different.
  • the second member 22 moves between the position Jr and the position Jm. Moving.
  • the second member 22 moves between the position Jrm and the position Jsm.
  • the moving distance of 22 is shorter than the moving distance of the second member 22 during the step movement period of the substrate P from the end of exposure of the shot area Si1 with the dimension Wi to the start of exposure of the shot area Si2 with the dimension Wi.
  • the moving distance of the second member 22 during the step movement period between the shot areas Sj1 and Sj2 (between Sj2 and Sj3) is longer than the moving distance of the second member 22 during the step movement period between the shot areas Si1 and Si2. Or may be substantially equal.
  • the movement distance of the second member 22 in the step movement period of the substrate P from the end of exposure of Sj1 (or Sj2) to the start of exposure of the shot area Sj2 (or Sj3) of the dimension Wj is different.
  • the second member 22 moves between the position Jr and the position Jm in the step movement period of the substrate P from the end of the exposure of the shot area Si2 of the dimension Wi to the start of exposure of the shot area Sj1 of the dimension Wj. Moving.
  • the second member 22 moves between the position Jrm and the position Jsm.
  • the movement distance of the second member 22 in the step movement period of the substrate P from the end of exposure of the shot area Sj1 (or Sj2) of the dimension Wj to the start of exposure of the shot area Sj2 (or Sj3) of the dimension Wj is The moving distance of the second member 22 during the step movement period of the substrate P from the end of exposure of the shot area Si2 with the dimension Wi to the start of exposure of the shot area Sj1 with the dimension Wj is shorter.
  • the moving distance of the second member 22 during the step movement period between the shot areas Sj1 and Sj2 (between Sj2 and Sj3) is longer than the moving distance of the second member 22 during the step movement period between the shot areas Si2 and Sj1. Or may be substantially equal.
  • the second member 22 may be movable not only in the X-axis direction but also in the X-axis direction and the Y-axis direction.
  • the moving distance of the second member 22 may be a moving distance in the XY plane.
  • the movement distance of the second member 22 is also the movement distance of the six directions. Good.
  • the movement direction of the second member 22 in the step movement period of the substrate P until the exposure start of the region Sj2 (or Sj3) may be different.
  • the movement direction of the second member 22 in the step movement period of the substrate P until the exposure start of the region Sj2 (or Sj3) may be different.
  • the moving speed of the second member 22 in the step moving period of the substrate P until the exposure start of the region Sj2 (or Sj3) may be different.
  • the movement speed of the second member 22 during the step movement period between the shot areas Si1 and Si2 may be lower or higher than the movement speed of the second member 22 during the step movement period between the shot areas Sj2 and Sj3. Also good.
  • the moving speed of the second member 22 in the step moving period of the substrate P until the exposure start of the region Sj2 (or Sj3) may be different.
  • the movement speed of the second member 22 during the step movement period between the shot areas Si2 and Sj1 may be lower or higher than the movement speed of the second member 22 during the step movement period between the shot areas Sj2 and Sj3. Also good.
  • the second member 22 may be movable not only in the X-axis direction but also in the X-axis direction and the Y-axis direction.
  • the moving speed of the second member 22 may be a moving speed in the XY plane.
  • the moving speed of the second member 22 is also the moving speed of the six directions. Good.
  • the acceleration (deceleration) of the second member 22 during the step movement period of the substrate P from the end to the start of exposure of the shot region Sj2 (or Sj3) may be different.
  • the acceleration (deceleration) of the second member 22 during the step movement period between the shot areas Si1 and Si2 is lower than the acceleration (deceleration) of the second member 22 during the step movement period between the shot areas Sj2 and Sj3. It may be high or high.
  • the acceleration (deceleration) of the second member 22 during the step movement period of the substrate P from the end to the start of exposure of the shot region Sj2 (or Sj3) may be different.
  • the acceleration (deceleration) of the second member 22 during the step movement period between the shot areas Si2 and Sj1 is lower than the acceleration (deceleration) of the second member 22 during the step movement period between the shot areas Sj2 and Sj3. It may be high or high.
  • the second member 22 may be movable not only in the X-axis direction but also in the X-axis direction and the Y-axis direction.
  • the acceleration (deceleration) of the second member 22 may be an acceleration (deceleration) in the XY plane.
  • the acceleration (deceleration) of the second member 22 is in the six directions. It may be acceleration (deceleration).
  • the second member 22 continues to move, and at least a part of the other step movement period. In this case, the movement of the second member 22 may be stopped.
  • the second member 22 continues to move, and at least part of the other step movement period. In this case, the movement of the second member 22 may be stopped.
  • the driving device 32 controls so that the operation (how to move) of the second member 22 during the step movement period of the substrate P from the end of exposure of the shot area Sj1 of the dimension Wj to the start of exposure of the shot area Sj2 of the dimension Wj is different.
  • the driving device 32 By controlling the driving device 32 so that the operation (how to move) of the second member 22 during the step movement period of the substrate P from the end of exposure of the shot area Sj1 to the start of exposure of the shot area Sj2 of the dimension Wj is different.
  • the outflow of the liquid LQ from the immersion space LS is suppressed. Therefore, the occurrence of exposure failure and the occurrence of defective devices are suppressed.
  • FIG. 24 schematically shows an example in which the shot areas Sm1 and Sm2 having the dimension Wm in the Y-axis direction are sequentially exposed and the shot areas Sn1 and Sn2 having the dimension Wn in the Y-axis direction are sequentially exposed.
  • the dimension Wn is smaller than the dimension Wm.
  • the shot areas Sm1 and Sm2 are included in the column Gm.
  • the shot areas Sn1 and Sn2 are included in the column Gn.
  • the column Gn is arranged on the + Y side of the column Gm. Note that the column Gn may be arranged on the ⁇ Y side of the column Gm.
  • the shot areas Sn1 and Sn2 in the row Gn are sequentially exposed.
  • the shot areas Sn1 and Sn2 in the column Gn are sequentially exposed, the shot areas Sm1 and Sm2 in the column Gm may be sequentially exposed.
  • the operation (how to move) of the second member 22 during the step movement period of the substrate P from the end of exposure of the shot area Sm1 to the start of exposure of the shot area Sm2, and the shot from the end of exposure of the shot area Sn1 The driving device 32 is controlled such that the operation (how to move) of the second member 22 during the step movement period of the substrate P until the start of exposure of the region Sn2 is different.
  • FIG. 25 schematically shows an example in which the shot areas Sm1 and Sm2 having the dimension Wm in the Y-axis direction are sequentially exposed, and the shot areas Sn1 and Sn2 having the dimension Wn in the Y-axis direction are sequentially exposed.
  • the dimension Wn is smaller than the dimension Wm.
  • the shot areas Sm1 and Sm2 and the shot areas Sn1 and Sn2 are included in the column Gmn. After the shot areas Sm1 and Sm2 are sequentially exposed, the shot areas Sn1 and Sn2 are sequentially exposed. In addition, after the shot areas Sn1 and Sn2 are sequentially exposed, the shot areas Sm1 and Sm2 may be sequentially exposed.
  • the driving device 32 is controlled such that the operation (how to move) of the second member 22 during the step movement period of the substrate P until the start of exposure of the region Sn2 is different.
  • FIG. 26 schematically shows an example in which shot areas Sm1 and Sm2 having a dimension Wm in the Y-axis direction are sequentially exposed, and shot areas Sn1 and Sn2 having a dimension Wn in the Y-axis direction are sequentially exposed.
  • the dimension Wn is smaller than the dimension Wm.
  • the shot area Sm1 is included in the column Gm1.
  • the shot area Sm2 is included in the column Gm2.
  • the column Gm1 and the column Gm2 are different.
  • the column Gm2 is arranged on the + Y side of the column Gm1. Note that the column Gm2 may be arranged on the ⁇ Y side of the column Gm1.
  • the shot region Sn1 is included in the column Gn1.
  • the shot region Sn2 is included in the column Gn2.
  • Column Gn1 and column Gn2 are different.
  • the column Gn2 is arranged on the + Y side of the column Gn1.
  • the column Gn2 may be arranged on the ⁇ Y side of the column Gn1.
  • the scan movement direction is the Y-axis direction.
  • the driving device 32 is controlled such that the operation (how to move) of the second member 22 during the step movement period of the substrate P until the start of exposure of the region Sn2 is different.
  • the movement distance of the second member 22 in the step movement period between the shot areas Sm1 and Sm2 is the second member in the step movement period between the shot areas Sn1 and Sn2. It may be longer than 22 moving distances.
  • the second member 22 moves between the position Jr and the position Js.
  • the second member 22 is You may move between the position Jrm and the position Jsm.
  • FIG. 27 schematically shows an example in which shot areas Sp and Sq having dimensions Wp and Wq are sequentially exposed in the Y-axis direction, and shot areas Sr1 and Sr2 having dimensions Wr are sequentially exposed in the Y-axis direction.
  • the dimension Wq is smaller than the dimension Wp.
  • the dimension Wq may be larger than the dimension Wp.
  • the dimension Wr is substantially equal to the dimension Wp.
  • the dimension Wr may be substantially equal to the dimension Wq.
  • the dimension Wr may be different from the dimensions Wp and Wq.
  • the dimension Wr may be smaller or larger than the dimensions Wp and Wq.
  • the dimension Wr may be larger than one of the dimension Wp and the dimension q and smaller than the other.
  • Shot areas Sp and Sq are included in column Gpq.
  • the shot areas Sr1 and Sr2 are included in the column Gr.
  • the column Gpq is arranged on the + Y side of the column Gr. Note that the column Gpq may be arranged on the ⁇ Y side of the column Gr.
  • the shot regions Sr1 and Sr2 in the row Gr are sequentially exposed. Note that the shot regions Sp and Sq in the column Gpq may be sequentially exposed after the shot regions Sr1 and Sr2 in the column Gr are sequentially exposed.
  • the driving device 32 is controlled so that the operation (how to move) of the second member 22 during the step movement period of the substrate P until the exposure of the area Sr2 starts.
  • FIG. 28 schematically shows an example in which shot areas Sp and Sq having dimensions Wp and Wq are sequentially exposed in the Y-axis direction, and shot areas Sr1 and Sr2 having dimensions Wr are sequentially exposed in the Y-axis direction.
  • the dimension Wq is smaller than the dimension Wp.
  • the dimension Wq may be larger than the dimension Wp.
  • the dimension Wr is substantially equal to the dimension Wp.
  • the dimension Wr may be substantially equal to the dimension Wq.
  • the dimension Wr may be different from the dimensions Wp and Wq.
  • the dimension Wr may be smaller or larger than the dimensions Wp and Wq.
  • the dimension Wr may be larger than one of the dimension Wp and the dimension q and smaller than the other.
  • the shot areas Sp and Sq and the shot areas Sr1 and Sr2 are included in the column Gpqr.
  • the shot areas Sr1 and Sr2 are sequentially exposed. Note that the shot areas Sp and Sq may be sequentially exposed after the shot areas Sr1 and Sr2 are sequentially exposed.
  • the driving device 32 is controlled so that the operation (how to move) of the second member 22 during the step movement period of the substrate P until the exposure of the area Sr2 starts.
  • FIG. 29 schematically shows an example in which shot areas Sp and Sq having dimensions Wp and Wq are sequentially exposed in the Y-axis direction, and shot areas Sr1 and Sr2 having dimensions Wr are sequentially exposed in the Y-axis direction.
  • the dimension Wq is smaller than the dimension Wp.
  • the dimension Wq may be larger than the dimension Wp.
  • the dimension Wr is substantially equal to the dimension Wp.
  • the dimension Wr may be substantially equal to the dimension Wq.
  • the dimension Wr may be different from the dimensions Wp and Wq.
  • the dimension Wr may be smaller or larger than the dimensions Wp and Wq.
  • the dimension Wr may be larger than one of the dimension Wp and the dimension q and smaller than the other.
  • the shot area Sp is included in the column Gp.
  • the shot area Sq is included in the column Gq.
  • Column Gp and column Gq are different.
  • the column Gq is arranged on the + Y side of the column Gp. Note that the column Gq may be arranged on the ⁇ Y side of the column Gp.
  • the shot area Sr1 is included in the column Gr1.
  • the shot area Sr2 is included in the column Gr2.
  • the columns Gr1 and Gr2 are different.
  • the column Gr2 is arranged on the + Y side of the column Gr1.
  • the column Gr2 may be arranged on the ⁇ Y side of the column Gr1.
  • the scan movement direction is the Y-axis direction.
  • the driving device 32 is controlled so that the operation (how to move) of the second member 22 during the step movement period of the substrate P until the exposure of the area Sr2 starts.
  • the movement distance of the second member 22 in the step movement period between the shot areas Sr1 and Sr2 is the second rate in the step movement period between the shot areas Sp and Sq. It may be longer than 22 moving distances.
  • the second member 22 moves between the position Jr and the position Js.
  • the second member 22 is You may move between the position Jrm and the position Jsm.
  • FIG. 30 is a diagram illustrating an example of the relationship between the speed of the substrate P (substrate stage 2) in the X-axis direction, the speed of the second member 22, and time.
  • the horizontal axis represents time
  • the vertical axis represents speed.
  • a line LP indicates the speed of the substrate P (substrate stage 2)
  • a line L22 indicates the speed of the second member 22.
  • a line LR indicates a relative speed between the substrate P (substrate stage 2) and the second member 22.
  • a period Tc is a period during which the scan movement operation is performed.
  • the period Tc1 corresponds to the scan movement period from the position d1 to the position d2 of the substrate P
  • the period Tc2 corresponds to the scan movement period from the position d3 to the position d4 of the substrate P.
  • the period Tc3 corresponds to the scan movement period from the position d5 to the position d6 of the substrate P.
  • the period Ts is a period during which the step moving operation is performed.
  • the period Ts1 corresponds to the step movement period from the position d2 of the substrate P to the position d3
  • the period Ts2 corresponds to the step movement period of the substrate P from the position d4 to the position d5. .
  • the moving speed of the second member 22 in the X-axis direction during the step moving period Ts is lower than the moving speed of the substrate P (substrate stage 2).
  • the moving speed of the second member 22 may be substantially equal to the moving speed of the substrate P (substrate stage 2), or may be higher than the moving speed of the substrate P (substrate stage 2). That is, the substrate P (substrate stage 2) may move at a higher speed than the second member 22, may move at a low speed, or may move at the same speed.
  • the acceleration of the second member 22 in the X-axis direction in the step movement period Ts is lower than the acceleration of the substrate P (substrate stage 2).
  • the acceleration of the second member 22 may be equal to the acceleration of the substrate P (substrate stage 2) or may be higher than the acceleration of the substrate P (substrate stage 2).
  • the control device 6 determines the substrate from the end of exposure of the shot area S (for example, shot area S1) to the start of exposure of the next shot area S (for example, shot area S2).
  • the second member 22 is moved in the + X-axis direction under the first movement condition, and in the exposure period (scan movement period) of the substrate P from the exposure start to the exposure end of the shot region S2, the second member 22 is moved.
  • the drive device 32 is controlled so that it is moved in the X-axis direction under a second movement condition different from the first movement condition.
  • the first and second moving conditions include the moving speed of the second member 22.
  • the first and second movement conditions include the movement speed of the second member 22 in the X-axis direction.
  • first and second movement conditions include acceleration (deceleration) of the second member 22.
  • first and second movement conditions include acceleration (deceleration) of the second member 22 in the X-axis direction.
  • the second member 22 moves at a speed (maximum speed) Va.
  • the second member 22 moves at a speed (maximum speed) Vb.
  • the moving speed Vb of the second member 22 in the scanning movement period (exposure period) Tc is lower than the moving speed Va of the second member 22 in the step movement period Ts.
  • the moving speed of the second member 22 includes the absolute value of the speed (relative speed) with respect to the last optical element 13.
  • the acceleration of the second member 22 in the scan movement period (exposure period) Tc is lower than the acceleration of the second member 22 in the step movement period Ts.
  • the acceleration of the second member 22 includes the absolute value of the acceleration with respect to the last optical element 13.
  • the second member 22 is moved at a constant speed during at least a part of the scan movement period (exposure period) Tc.
  • the second member 22 moves at a constant speed Vb during a part of the scan movement period (exposure period) Tc.
  • the second member 22 may be moved at a constant speed.
  • the time Tcc during which the second member 22 moves at a constant speed during the scan movement period (exposure period) Tc is longer than the time during which the second member 22 moves at a constant speed during the step movement period Ts.
  • the second member 22 may not move at a constant speed.
  • the second member 22 may not move at a constant speed.
  • the movement distance of the second member 22 in the X-axis direction during the step movement period Ts is shorter than the movement distance of the substrate P (substrate stage 2).
  • the movement distance of the second member 22 in the step movement period Ts may be 45 to 65% of the movement distance of the substrate P (substrate stage 2).
  • the moving distance of the second member 22 may be 45%, 50%, 55%, 60%, or 65% of the moving distance of the substrate P (substrate stage 2).
  • the movement distance of the second member 22 in the step movement period Ts is the distance between the position Jr and the position Jm.
  • the movement distance of the second member 22 in the X axis direction during the step movement period Ts is the center of a certain shot area S and the center of the shot area S adjacent to the shot area S in the X axis direction. Shorter than the distance (distance A).
  • the movement distance of the second member 22 during the step movement period Ts may be 45 to 65% of the distance A.
  • the movement distance of the second member 22 in the step movement period Ts may be 45%, 50%, 55%, 60%, or 65% of the distance A.
  • the moving distance of the second member 22 in the X-axis direction during the step movement period Ts is shorter than the dimension (dimension B) of one shot region S in the X-axis direction.
  • the moving distance of the second member 22 in the step moving operation may be 45 to 65% of the dimension B.
  • the movement distance of the second member 22 in the step movement operation may be 45%, 50%, 55%, 60%, or 65% of the dimension B.
  • the moving distance of the second member 22 may be about 14 mm.
  • the moving distance of the second member 22 may be determined based on the surface condition of the substrate P, for example.
  • the surface condition of the substrate P includes a contact angle (such as a receding contact angle) of the liquid LQ on the surface of the photosensitive film forming the surface of the substrate P.
  • the surface condition of the substrate P includes a contact angle (such as a receding contact angle) of the liquid LQ on the surface of the protective film (topcoat film) that forms the surface of the substrate P.
  • the surface of the substrate P may be formed of, for example, an antireflection film.
  • the movement distance of the second member 22 may be obtained by preliminary experiment or simulation so that the outflow (residual) of the liquid LQ from the immersion space LS is suppressed in the step movement operation.
  • the second member 22 moving condition in the step moving period Ts and the second member 22 moving condition in the scan moving period (exposure period) Tc are different. Since the member 22 is moved, the outflow of the liquid LQ from the immersion space LS can be suppressed.
  • the movement of the substrate P (substrate stage 2) in the step movement period Ts is different from the movement of the substrate P (substrate stage 2) in the scan movement period (exposure period) Tc. Therefore, the outflow of the liquid LQ or the like is suppressed by determining the moving condition of the second member 22 based on the movement of the substrate P (substrate stage 2). Therefore, the occurrence of exposure failure and the occurrence of defective devices are suppressed.
  • 31A to 31C are diagrams showing an example of the relationship between the speed of the substrate P (substrate stage 2) in the X-axis direction and the speed and time of the second member 22 in the step movement period Ts.
  • the horizontal axis represents time
  • the vertical axis represents speed.
  • a line LP indicates the speed of the substrate P (substrate stage 2)
  • a line L22 indicates the speed of the second member 22.
  • FIG. 31A shows an example of a state in which the substrate P moves to one side in the X-axis direction (for example, the + X-axis direction) at the speed Vc and a state to move at the speed Vd in the step movement period Ts.
  • the speed Vd is higher than the speed Vc.
  • the second member 22 in a state where the substrate P moves in the + X axis direction at the speed Vc, the second member 22 moves in the + X axis direction with the acceleration Ac.
  • the second member 22 moves in the + X axis direction with an acceleration Ad.
  • the acceleration Ad is higher than the acceleration Ac.
  • FIG. 31A shows an example in which the second member 22 moves at a low acceleration in the low-speed movement region of the substrate P, and the second member 22 moves at a high acceleration in the high-speed movement region of the substrate P.
  • FIG. 31B shows an example of a state in which the substrate P moves to one side in the X axis direction (for example, the + X axis direction) at a speed Ve and a state to move at a speed Vf in the step movement period Ts.
  • the speed Vf is higher than the speed Ve.
  • the second member 22 moves in the + X-axis direction with an acceleration Ae.
  • the second member 22 moves at the acceleration Af in the + X axis direction.
  • the acceleration Af is lower than the acceleration Ae.
  • FIG. 31B shows an example in which the second member 22 moves at a high acceleration in the low-speed movement region of the substrate P, and the second member 22 moves at a low acceleration in the high-speed movement region of the substrate P.
  • FIG. 31C shows an example of a state in which the substrate P moves to one side in the X-axis direction (for example, the + X-axis direction) at the speed Vg and a state to move at the speed Vh in the step movement period Ts.
  • the speed Vh is higher than the speed Vg.
  • the second member 22 moves in the + X-axis direction with an acceleration Ag.
  • the acceleration Ag and the acceleration Ah are substantially equal.
  • the second member 22 moves at substantially constant acceleration until the speed in the X-axis direction changes from one of the zero state and the maximum speed (maximum speed) state to the other.
  • the relationship between the speed of the substrate P (substrate stage 2) and the speed and time of the second member 22 shown in FIGS. 31A to 31C is the step movement described with reference to FIGS. 11, 14, and 15. This applies not only to the period, but also to the step movement period (first and second step movement periods) described with reference to FIGS. 16 to 21 and the step movement period described with reference to FIGS. be able to.
  • the substrate P moves in the + X axis direction so as to change from the speed Vj to the speed Vk higher than the speed Vj.
  • the second member 22 In the state where the substrate P moves in the + X-axis direction at the speed Vj, the second member 22 is moved in the + X-axis direction at the acceleration Aj, and in the state where the substrate P moves in the + X-axis direction at the speed Vk, the second member 22 is moved. May be moved in the + X-axis direction with an acceleration Ak lower than the acceleration Aj.
  • the acceleration Ak may be higher than the acceleration Aj.
  • step movement period between the shot areas Si2 and Sj1 and the step movement period between the shot areas Sj2 and Sj3 described with reference to FIGS. 22 and 23, refer to FIGS. 31A to 31C.
  • the relationship between the speed of the substrate P (substrate stage 2) and the speed of the second member 22 and time can be applied.
  • 32A and 32B are diagrams showing an example of the relationship between the speed and time of the second member 22 in the X-axis direction during the scan movement period Tc.
  • the horizontal axis represents time
  • the vertical axis represents speed.
  • a line L22 indicates the speed of the second member 22.
  • FIG. 32A shows an example in which the second member 22 moves at a constant speed Vm during a part of the scan movement period Tc.
  • the second member 22 moves at a constant speed at a speed Vm.
  • the speed Vm is the maximum speed of the second member 22 in the scan movement period Tc.
  • the second member 22 moves at substantially constant acceleration until the speed in the X-axis direction changes from one of the zero state and the maximum speed value (maximum speed) to the other. Note that, during a part of the scan movement period Tc, the second member 22 may move at a constant speed at a speed lower than the maximum speed in the scan movement period Tc.
  • FIG. 32B shows an example in which the second member 22 moves at a constant speed Vn during a part of the scan movement period Tc.
  • the second member 22 moves at a constant speed at a speed Vn.
  • the speed Vn is the maximum speed of the second member 22 during the scan movement period Tc.
  • the second member 22 changes from a state of moving at a speed Vn1 in the X-axis direction to a state of moving at a speed (maximum speed) Vn through a state of moving at a speed Vn2.
  • the speed Vn1 is lower than the speed Vn2.
  • the acceleration An2 of the second member 22 during the period in which the second member 22 moves at the speed Vn2 is lower than the acceleration An1 of the second member 22 during the period in which the second member 22 moves at the speed Vn1.
  • the second member 22 moves with a high acceleration in the low-speed movement region, and moves with a low acceleration in the high-speed movement region.
  • the first member 21 may face the exit surface 12 of the last optical element 13.
  • the first member 21 has an upper surface 44 disposed around the opening 34.
  • An upper surface 44 is disposed around the upper end of the opening 34.
  • a lower surface 23 is disposed around the lower end of the opening 34.
  • a part of the upper surface 44 faces the emission surface 12.
  • a part of the upper surface 25 of the second member 22 is also opposed to the emission surface 12.
  • the lower surface 23 of the first member may be arranged on the + Z side with respect to the emission surface 12.
  • the position (height) of the lower surface 23 in the Z-axis direction and the position (height) of the exit surface 12 may be substantially equal.
  • the lower surface 23 of the first member may be disposed on the ⁇ Z side with respect to the emission surface 12.
  • the liquid immersion member 5 does not have a flow path that fluidly connects the first space SP1 and the second space SP2 other than the opening 35.
  • an opening (hole) that fluidly connects the first space SP1 and the second space SP2 may be formed outside the opening 35 with respect to the optical path K.
  • the liquid immersion member 5 includes the lower surface 23 facing the ⁇ Z-axis direction ridge, in which the upper surface 25 facing the + Z-axis direction of the second member 22 extends around the opening 34 of the first member 21. It has the structure which opposes through a gap
  • the liquid immersion member 5S may have a configuration other than the above.
  • the liquid immersion member 5S is disposed on at least part of the periphery of the optical member (terminal optical element 13) and the first member 21S disposed on at least part of the periphery of the optical member (terminal optical element 13).
  • a movable second member 22S having a fluid recovery part 27S, and as shown in FIG.
  • the liquid immersion member 5T is disposed on at least a part of the periphery of the optical member (terminal optical element 13), and includes a first member 21T having a fluid recovery unit 27T and the optical member (terminal optical element 13). And a movable second member 22T disposed at least at a part of the periphery, as shown in FIG. 36, around the opening 34T of the first member 21T through which the exposure light EL of the first member 21T can pass.
  • the first member 21S and the second member 22S can be arranged so that the lower surface 23S extending near the opening 34S faces the upper surface 25T of the second member 22T.
  • the liquid LQ from the space between the lower surface 23T of the first member 21T and the liquid LQ from the space between the lower surface 26T of the second member 22T and the object (substrate P) are The fluid is recovered from the fluid recovery part 27T of the one member 21T.
  • the liquid immersion member 5 may have a configuration in which the lower surface 23 and / or the upper surface 25 includes a surface inclined with respect to the Z axis.
  • the first member 21 may be provided with a suction port that sucks at least one of the liquid LQ and the gas from the space between the first member 21 and the last optical element 13.
  • a supply port that supplies the liquid LQ to the first space SP1 may be provided in at least one of the first member 21 and the second member 22.
  • a supply port for supplying the liquid LQ may be provided on the lower surface 23 of the first member 21 between the opening 34 and the liquid recovery unit 24.
  • the control device 6 includes a computer system including a CPU and the like.
  • the control device 6 includes an interface capable of executing communication between the computer system and an external device.
  • the storage device 7 includes, for example, a memory such as a RAM, a recording medium such as a hard disk and a CD-ROM.
  • the storage device 7 is installed with an operating system (OS) that controls the computer system, and stores a program for controlling the exposure apparatus EX.
  • OS operating system
  • an input device capable of inputting an input signal may be connected to the control device 6.
  • the input device includes an input device such as a keyboard and a mouse, or a communication device that can input data from an external device. Further, a display device such as a liquid crystal display may be provided.
  • control device computer system
  • liquid immersion exposure is performed in which the control device 6 exposes the substrate with the exposure light through the liquid filled in the optical path of the exposure light between the exit surface of the optical member from which the exposure light is emitted and the substrate.
  • a program for executing control of the apparatus is recorded.
  • the program recorded in the storage device 7 includes a first member that has a first lower surface and is disposed at least at a part of the periphery of the optical member, a first lower surface, and a gap. And a second member disposed on at least a part of the periphery of the optical path of the exposure light, and having a second upper surface opposite to the substrate and a second lower surface to which the substrate can be opposed.
  • a plurality of shot regions arranged in a direction intersecting the scanning direction included in one row on the substrate with exposure light emitted from the exit surface through the liquid in the immersion space and forming the immersion space Sequentially exposing each of the above, and exposing the shot area in a row different from the one row through the liquid in the immersion space before or after the exposure of the shot region included in the one row.
  • the program recorded in the storage device 7 includes, in the control device 6, a first member that has a first lower surface and is disposed at least at a part around the optical member, and a first lower surface. And a second member disposed on at least a part of the periphery of the optical path of the exposure light, and having a second upper surface opposed to the substrate through a gap and a second lower surface capable of facing the substrate, Forming a liquid immersion space; and sequentially exposing the first and second shot regions of the first dimension in the scanning direction with exposure light emitted from the exit surface via the liquid in the immersion space; The exposure light emitted from the exit surface through the liquid in the immersion space before or after the first and second shot areas are exposed, and the second dimension different from the first dimension in the scanning direction.
  • the second member may be moved relative to the first member in at least part of the exposure of the substrate so that the second operation of the second member in the second movement period is different.
  • the program recorded in the storage device 7 includes, in the control device 6, a first member that has a first lower surface and is disposed at least at a part around the optical member, and a first lower surface. And a second member disposed on at least a part of the periphery of the optical path of the exposure light, and having a second upper surface opposed to the substrate through a gap and a second lower surface capable of facing the substrate, Forming a liquid immersion space, and exposure light emitted from the exit surface through the liquid in the immersion space, the first and second shot areas of the first and second dimensions respectively in the scanning direction are sequentially formed.
  • Sequentially exposing the fourth shot area and the first shot First operation of the second member in the first movement period of the substrate from the end of exposure of the area to the start of exposure of the second shot area, and the first operation of the substrate from the end of exposure of the third shot area to the start of exposure of the fourth shot area
  • the second member may be moved relative to the first member in at least a part of the exposure of the substrate so that the second operation of the second member during the two movement periods is different.
  • the program recorded in the storage device 7 includes, in the control device 6, a first member that has a first lower surface and is disposed at least at a part around the optical member, and a first lower surface. And a second member disposed on at least a part of the periphery of the optical path of the exposure light, and having a second upper surface opposed to the substrate through a gap and a second lower surface capable of facing the substrate, Forming a liquid immersion space, sequentially exposing the first and second shot areas of the substrate with exposure light emitted from the exit surface through the liquid in the immersion space, and the first shot area In the first movement period of the substrate from the end of exposure to the start of exposure of the second shot area, the second member is moved to one side in the direction intersecting the scanning direction under the first movement condition, and from the start of exposure of the second shot area In the second exposure period of the substrate until the end of exposure In at least part of the exposure of the substrate, the second member is moved relative to the first member so that the two members
  • the program recorded in the storage device 7 includes, in the control device 6, a first member that has a first lower surface and is disposed at least at a part around the optical member, and a first lower surface. And a second member disposed on at least a part of the periphery of the optical path of the exposure light, and having a second upper surface opposed to the substrate through a gap and a second lower surface capable of facing the substrate, Forming a liquid immersion space; and exposure light emitted from an emission surface through the liquid in the immersion space, and a plurality of the light beams arranged in a direction intersecting a scanning direction included in one row on the substrate
  • Each of the shot areas is sequentially exposed, and before or after the shot areas included in one row are exposed, a shot region in a row different from the one row is exposed via the liquid in the immersion space. And the exposure of a shot area in a row From then be exposed to the moving period of the substrate to the exposure start of the shot area in another column, and moving the
  • various devices of the exposure apparatus EX such as the substrate stage 2, the measurement stage 3, and the liquid immersion member 5 cooperate to form a liquid immersion space.
  • Various processes such as immersion exposure of the substrate P are performed in a state where the LS is formed.
  • the optical path K on the exit surface 12 side (image surface side) of the terminal optical element 13 of the projection optical system PL is filled with the liquid LQ.
  • the projection optical system PL may be a projection optical system in which the optical path on the incident side (object surface side) of the last optical element 13 is also filled with the liquid LQ, as disclosed in, for example, WO 2004/019128. .
  • the liquid LQ is water, but a liquid other than water may be used.
  • the liquid LQ is transmissive to the exposure light EL, has a high refractive index with respect to the exposure light EL, and forms a film such as a photosensitive material (photoresist) that forms the surface of the projection optical system PL or the substrate P.
  • a stable material is preferred.
  • the liquid LQ may be a fluorinated liquid such as hydrofluoroether (HFE), perfluorinated polyether (PFPE), or fomblin oil.
  • the liquid LQ may be various fluids such as a supercritical fluid.
  • the substrate P includes a semiconductor wafer for manufacturing a semiconductor device.
  • the substrate P may include, for example, a glass substrate for a display device, a ceramic wafer for a thin film magnetic head, or a mask or reticle master (synthetic quartz, silicon wafer) used in an exposure apparatus.
  • the exposure apparatus EX is a step-and-scan type scanning exposure apparatus (scanning stepper) that scans and exposes the pattern of the mask M by moving the mask M and the substrate P synchronously. It was supposed to be.
  • the exposure apparatus EX may be a step-and-repeat projection exposure apparatus (stepper) that, for example, collectively exposes the pattern of the mask M while the mask M and the substrate P are stationary, and sequentially moves the substrate P stepwise. .
  • the exposure apparatus EX transfers a reduced image of the first pattern onto the substrate P using the projection optical system while the first pattern and the substrate P are substantially stationary in the step-and-repeat exposure. Thereafter, with the second pattern and the substrate P substantially stationary, an exposure apparatus (stitch method) that collectively exposes a reduced image of the second pattern on the substrate P by partially overlapping the first pattern using a projection optical system. (Batch exposure apparatus). Further, the stitch type exposure apparatus may be a step-and-stitch type exposure apparatus in which at least two patterns are partially overlapped and transferred on the substrate P, and the substrate P is sequentially moved.
  • the exposure apparatus EX combines two mask patterns as disclosed in, for example, US Pat. No. 6,611,316 on the substrate via the projection optical system, and 1 on the substrate by one scanning exposure. An exposure apparatus that double-exposes two shot areas almost simultaneously may be used. Further, the exposure apparatus EX may be a proximity type exposure apparatus, a mirror projection aligner, or the like.
  • the exposure apparatus EX is a twin stage type having a plurality of substrate stages as disclosed in US Pat. No. 6,341,007, US Pat. No. 6,208,407, US Pat. No. 6,262,796, and the like.
  • the exposure apparatus may be used.
  • an object that can be arranged to face the emission surface 12 is one substrate stage and one substrate stage. At least one of the substrate held by the first holding unit, the other substrate stage, and the substrate held by the first holding unit of the other substrate stage.
  • the exposure apparatus EX may be an exposure apparatus provided with a plurality of substrate stages and measurement stages.
  • the exposure apparatus EX may be an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern on the substrate P, an exposure apparatus for manufacturing a liquid crystal display element or a display, a thin film magnetic head, an image sensor (CCD).
  • An exposure apparatus for manufacturing a micromachine, a MEMS, a DNA chip, or a reticle or mask may be used.
  • a light-transmitting mask in which a predetermined light-shielding pattern (or phase pattern / dimming pattern) is formed on a light-transmitting substrate is used.
  • a variable shaped mask electronic mask that forms a transmission pattern, a reflection pattern, or a light emission pattern based on electronic data of a pattern to be exposed.
  • An active mask, or an image generator a pattern forming apparatus including a self-luminous image display element may be provided instead of the variable molding mask including the non-luminous image display element.
  • the exposure apparatus EX includes the projection optical system PL.
  • the components described in the above embodiments are applied to an exposure apparatus and an exposure method that do not use the projection optical system PL. May be.
  • an exposure apparatus and an exposure method for forming an immersion space between an optical member such as a lens and a substrate and irradiating the substrate with exposure light via the optical member are described in the above embodiments. Elements may be applied.
  • the exposure apparatus EX exposes a line-and-space pattern on the substrate P by forming interference fringes on the substrate P as disclosed in, for example, WO 2001/035168. (Lithography system).
  • the exposure apparatus EX of the above-described embodiment is manufactured by assembling various subsystems including the above-described components so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy.
  • various optical systems are adjusted to achieve optical accuracy
  • various mechanical systems are adjusted to achieve mechanical accuracy
  • various electrical systems are Adjustments are made to achieve electrical accuracy.
  • the assembly process from the various subsystems to the exposure apparatus includes mechanical connection, electrical circuit wiring connection, pneumatic circuit piping connection and the like between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process from the various subsystems to the exposure apparatus. After the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies as the entire exposure apparatus.
  • the exposure apparatus is preferably manufactured in a clean room where the temperature, cleanliness, etc. are controlled.
  • a microdevice such as a semiconductor device includes a step 201 for designing a function / performance of the microdevice, a step 202 for manufacturing a mask (reticle) based on the design step, and a substrate which is a base material of the device.
  • Substrate processing step 204 including substrate processing (exposure processing) including exposing the substrate with exposure light from the pattern of the mask and developing the exposed substrate according to the above-described embodiment, It is manufactured through a device assembly step (including processing processes such as a dicing process, a bonding process, and a packaging process) 205, an inspection step 206, and the like.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Toxicology (AREA)
  • Atmospheric Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

 露光装置は、光学部材の周囲の少なくとも一部に配置される第1部材と、光学部材の周囲の一部に配置される第2部材と、を含み、液体の液浸空間を形成可能な液浸部材と、第1部材に対して第2部材を移動可能な駆動装置と、駆動装置を制御する制御装置と、を備える。制御装置は、同じ列に含まれる第1ショット領域の露光終了から第2ショット領域の露光開始までの基板の第1移動期間における第2部材の第1動作と、ある列の第3ショット領域の露光終了から別の列の第4ショット領域の露光開始までの基板の第2移動期間における第2部材の第2動作とが異なるように、駆動装置を制御する。

Description

露光装置、露光方法、デバイス製造方法、プログラム、及び記録媒体
 本発明は、露光装置、露光方法、デバイス製造方法、プログラム、及び記録媒体に関する。
 本願は、2012年10月12日に出願された日本国特許出願2012-227051号に基づき優先権を主張し、その内容をここに援用する。
 フォトリソグラフィ工程で用いられる露光装置において、例えば下記特許文献1に開示されているような、液体を介して露光光で基板を露光する液浸露光装置が知られている。
米国特許第7864292号
 液浸露光装置において、例えば液体が所定の空間から流出したり基板などの物体の上に残留したりすると、露光不良が発生する可能性がある。その結果、不良デバイスが発生する可能性がある。
  本発明の態様は、露光不良の発生を抑制できる露光装置及び露光方法を提供することを目的とする。また、本発明の態様は、不良デバイスの発生を抑制できるデバイス製造方法、プログラム、及び記録媒体を提供することを目的とする。
 本発明の第1の態様に従えば、光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、射出面と基板との間の液体を介して露光光で基板の複数のショット領域のそれぞれを順次露光する露光装置であって、光学部材の周囲の少なくとも一部に配置される第1部材と、光学部材の周囲の一部に配置される第2部材と、を含み、液体の液浸空間を形成可能な液浸部材と、第1部材に対して第2部材を移動可能な駆動装置と、駆動装置を制御する制御装置と、を備え、基板において一の列に含まれる走査方向と交差する方向に配置される複数のショット領域のそれぞれが順次露光される前又は露光された後に、一の列とは異なる列のショット領域の露光が行われ、制御装置は、同じ列に含まれる第1ショット領域の露光終了から第2ショット領域の露光開始までの基板の第1移動期間における第2部材の第1動作と、ある列の第3ショット領域の露光終了から別の列の第4ショット領域の露光開始までの基板の第2移動期間における第2部材の第2動作とが異なるように、駆動装置を制御する露光装置が提供される。
 本発明の第2の態様に従えば、光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、射出面と基板との間の液体を介して露光光で基板の複数のショット領域のそれぞれを順次露光する露光装置であって、第1下面を有し、光学部材の周囲の少なくとも一部に配置される第1部材と、第1下面と間隙を介して対向する第2上面、及び基板が対向可能な第2下面を有し、露光光の光路の周囲の少なくとも一部に配置される第2部材と、を含み、液体の液浸空間を形成可能な液浸部材と、第1部材に対して第2部材を移動可能な駆動装置と、駆動装置を制御する制御装置と、を備え、基板において一の列に含まれる走査方向と交差する方向に配置される複数のショット領域のそれぞれが順次露光される前又は露光された後に、一の列とは異なる列のショット領域の露光が行われ、制御装置は、同じ列に含まれる第1ショット領域の露光終了から第2ショット領域の露光開始までの基板の第1移動期間における第2部材の第1動作と、ある列の第3ショット領域の露光終了から別の列の第4ショット領域の露光開始までの基板の第2移動期間における第2部材の第2動作とが異なるように、駆動装置を制御する露光装置が提供される。
 本発明の第3の態様に従えば、光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、射出面と基板との間の液体を介して露光光で基板の複数のショット領域のそれぞれを順次露光する露光装置であって、光学部材の周囲の少なくとも一部に配置される第1部材と、光学部材の周囲の一部に配置される第2部材と、を含み、液体の液浸空間を形成可能な液浸部材と、第1部材に対して第2部材を移動可能な駆動装置と、駆動装置を制御する制御装置と、を備え、走査方向に関して第1寸法の第1、第2ショット領域が順次露光される前又は露光された後に、走査方向に関して第1寸法とは異なる第2寸法の第3、第4ショット領域が順次露光され、制御装置は、第1ショット領域の露光終了から第2ショット領域の露光開始までの基板の第1移動期間における第2部材の第1動作と、第3ショット領域の露光終了から第4ショット領域の露光開始までの基板の第2移動期間における第2部材の第2動作とが異なるように、駆動装置を制御する露光装置が提供される。
 本発明の第4の態様に従えば、光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、射出面と基板との間の液体を介して露光光で基板の複数のショット領域のそれぞれを順次露光する露光装置であって、第1下面を有し、光学部材の周囲の少なくとも一部に配置される第1部材と、第1下面と間隙を介して対向する第2上面、及び基板が対向可能な第2下面を有し、露光光の光路の周囲の少なくとも一部に配置される第2部材と、を含み、液体の液浸空間を形成可能な液浸部材と、第1部材に対して第2部材を移動可能な駆動装置と、駆動装置を制御する制御装置と、を備え、走査方向に関して第1寸法の第1、第2ショット領域が順次露光される前又は露光された後に、走査方向に関して第1寸法とは異なる第2寸法の第3、第4ショット領域が順次露光され、制御装置は、第1ショット領域の露光終了から第2ショット領域の露光開始までの基板の第1移動期間における第2部材の第1動作と、第3ショット領域の露光終了から第4ショット領域の露光開始までの基板の第2移動期間における第2部材の第2動作とが異なるように、駆動装置を制御する露光装置が提供される。
 本発明の第5の態様に従えば、光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、射出面と基板との間の液体を介して露光光で基板の複数のショット領域のそれぞれを順次露光する露光装置であって、光学部材の周囲の少なくとも一部に配置される第1部材と、光学部材の周囲の一部に配置される第2部材と、を含み、液体の液浸空間を形成可能な液浸部材と、第1部材に対して第2部材を移動可能な駆動装置と、駆動装置を制御する制御装置と、を備え、走査方向に関してそれぞれ第1、第2寸法の第1、第2ショット領域が順次露光される前又は露光された後に、走査方向に関して第3寸法の第3、第4ショット領域が順次露光され、 制御装置は、第1ショット領域の露光終了から第2ショット領域の露光開始までの基板の第1移動期間における第2部材の第1動作と、第3ショット領域の露光終了から第4ショット領域の露光開始までの基板の第2移動期間における第2部材の第2動作とが異なるように、駆動装置を制御する露光装置が提供される。
 本発明の第6の態様に従えば、光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、射出面と基板との間の液体を介して露光光で基板の複数のショット領域のそれぞれを順次露光する露光装置であって、第1下面を有し、光学部材の周囲の少なくとも一部に配置される第1部材と、第1下面と間隙を介して対向する第2上面、及び基板が対向可能な第2下面を有し、露光光の光路の周囲の少なくとも一部に配置される第2部材と、を含み、液体の液浸空間を形成可能な液浸部材と、第1部材に対して第2部材を移動可能な駆動装置と、駆動装置を制御する制御装置と、を備え、走査方向に関してそれぞれ第1、第2寸法の第1、第2ショット領域が順次露光される前又は露光された後に、走査方向に関して第3寸法の第3、第4ショット領域が順次露光され、制御装置は、第1ショット領域の露光終了から第2ショット領域の露光開始までの基板の第1移動期間における第2部材の第1動作と、第3ショット領域の露光終了から第4ショット領域の露光開始までの基板の第2移動期間における第2部材の第2動作とが異なるように、駆動装置を制御する露光装置が提供される。
 本発明の第7の態様に従えば、光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、射出面と基板との間の液体を介して露光光で基板の複数のショット領域のそれぞれを順次露光する露光装置であって、光学部材の周囲の少なくとも一部に配置される第1部材と、光学部材の周囲の一部に配置される第2部材と、を含み、液体の液浸空間を形成可能な液浸部材と、第1部材に対して第2部材を移動可能な駆動装置と、駆動装置を制御する制御装置と、を備え、制御装置は、第1ショット領域の露光終了から第2ショット領域の露光開始までの基板の第1移動期間において第2部材が走査方向と交差する方向の一側に第1移動条件で移動され、第2ショット領域の露光開始から露光終了までの基板の第2露光期間において第2部材が走査方向と交差する方向の他側に第1移動条件とは異なる第2移動条件で移動されるように、駆動装置を制御する 露光装置が提供される。
 本発明の第8の態様に従えば、光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、射出面と基板との間の液体を介して露光光で基板の複数のショット領域のそれぞれを順次露光する露光装置であって、第1下面を有し、光学部材の周囲の少なくとも一部に配置される第1部材と、第1下面と間隙を介して対向する第2上面、及び基板が対向可能な第2下面を有し、露光光の光路の周囲の少なくとも一部に配置される第2部材と、を含み、液体の液浸空間を形成可能な液浸部材と、第1部材に対して第2部材を移動可能な駆動装置と、駆動装置を制御する制御装置と、を備え、制御装置は、第1ショット領域の露光終了から第2ショット領域の露光開始までの基板の第1移動期間において第2部材が走査方向と交差する方向の一側に第1移動条件で移動され、第2ショット領域の露光開始から露光終了までの基板の第2露光期間において第2部材が走査方向と交差する方向の他側に第1移動条件とは異なる第2移動条件で移動されるように、駆動装置を制御する露光装置が提供される。
 本発明の第9の態様に従えば、光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、射出面と基板との間の液体を介して露光光で基板の複数のショット領域のそれぞれを順次露光する露光装置であって、光学部材の周囲の少なくとも一部に配置される第1部材と、光学部材の周囲の一部に配置される第2部材と、を含み、液体の液浸空間を形成可能な液浸部材と、第1部材に対して第2部材を移動可能な駆動装置と、駆動装置を制御する制御装置と、を備え、基板において一の列に含まれる走査方向と交差する方向に配置される複数のショット領域のそれぞれが順次露光される前又は露光された後に、一の列とは異なる列のショット領域の露光が行われ、制御装置は、駆動装置を制御して、ある列のショット領域の露光終了から、次に露光される、別の列のショット領域の露光開始までの基板の移動期間に第1部材に対して第2部材を移動する露光装置が提供される。
 本発明の第10の態様に従えば、光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、射出面と基板との間の液体を介して露光光で基板の複数のショット領域のそれぞれを順次露光する露光装置であって、第1下面を有し、光学部材の周囲の少なくとも一部に配置される第1部材と、第1下面と間隙を介して対向する第2上面、及び基板が対向可能な第2下面を有し、露光光の光路の周囲の少なくとも一部に配置される第2部材と、を含み、液体の液浸空間を形成可能な液浸部材と、第1部材に対して第2部材を移動可能な駆動装置と、駆動装置を制御する制御装置と、を備え、基板において一の列に含まれる走査方向と交差する方向に配置される複数のショット領域のそれぞれが順次露光される前又は露光された後に、一の列とは異なる列のショット領域の露光が行われ、制御装置は、駆動装置を制御して、ある列のショット領域の露光終了から、次に露光される、別の列のショット領域の露光開始までの基板の移動期間に第1部材に対して第2部材を移動する露光装置が提供される。
 本発明の第11の態様に従えば、第1、第2、第3、第4、第5、第6、第7、第8、第9及び第10のいずれか一つの態様の露光装置を用いて基板を露光することと、露光された基板を現像することと、を含むデバイス製造方法が提供される。
 本発明の第12の態様に従えば、光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、射出面と基板との間の液体を介して露光光で基板の複数のショット領域のそれぞれを順次露光する露光方法であって、光学部材の周囲の少なくとも一部に配置される第1部材と、光学部材の周囲の一部に配置される第2部材と、を含む液浸部材を用いて、液体の液浸空間を形成することと、液浸空間の液体を介して、射出面から射出される露光光で、基板において一の列に含まれる走査方向と交差する方向に配置される複数のショット領域のそれぞれを順次露光することと、一の列に含まれるショット領域を露光する前又は露光した後に、液浸空間の液体を介して、一の列とは異なる列のショット領域を露光することと、同じ列に含まれる第1ショット領域の露光終了から第2ショット領域の露光開始までの基板の第1移動期間における第2部材の第1動作と、ある列の第3ショット領域の露光終了から別の列の第4ショット領域の露光開始までの基板の第2移動期間における第2部材の第2動作とが異なるように、基板の露光の少なくとも一部において、第1部材に対して第2部材を移動することと、を含む露光方法が提供される。
 本発明の第13の態様に従えば、光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、射出面と基板との間の液体を介して露光光で基板の複数のショット領域のそれぞれを順次露光する露光方法であって、第1下面を有し光学部材の周囲の少なくとも一部に配置される第1部材と、第1下面と間隙を介して対向する第2上面及び基板が対向可能な第2下面を有し露光光の光路の周囲の少なくとも一部に配置される第2部材と、を含む液浸部材を用いて、液体の液浸空間を形成することと、液浸空間の液体を介して、射出面から射出される露光光で、基板において一の列に含まれる走査方向と交差する方向に配置される複数のショット領域のそれぞれを順次露光することと、一の列に含まれるショット領域を露光する前又は露光した後に、液浸空間の液体を介して、一の列とは異なる列のショット領域を露光することと、同じ列に含まれる第1ショット領域の露光終了から第2ショット領域の露光開始までの基板の第1移動期間における第2部材の第1動作と、ある列の第3ショット領域の露光終了から別の列の第4ショット領域の露光開始までの基板の第2移動期間における第2部材の第2動作とが異なるように、基板の露光の少なくとも一部において、第1部材に対して第2部材を移動することと、を含む露光方法が提供される。
 本発明の第14の態様に従えば、光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、射出面と基板との間の液体を介して露光光で基板の複数のショット領域のそれぞれを順次露光する露光方法であって、光学部材の周囲の少なくとも一部に配置される第1部材と、光学部材の周囲の一部に配置される第2部材と、を含む液浸部材を用いて、液体の液浸空間を形成することと、液浸空間の液体を介して、射出面から射出される露光光で、走査方向に関して第1寸法の第1、第2ショット領域を順次露光することと、第1、第2ショット領域を露光する前又は露光した後に、液浸空間の液体を介して、射出面から射出される露光光で、走査方向に関して第1寸法とは異なる第2寸法の第3、第4ショット領域を順次露光することと、第1ショット領域の露光終了から第2ショット領域の露光開始までの基板の第1移動期間における第2部材の第1動作と、第3ショット領域の露光終了から第4ショット領域の露光開始までの基板の第2移動期間における第2部材の第2動作とが異なるように、基板の露光の少なくとも一部において、第1部材に対して第2部材を移動することと、を含む露光方法が提供される。
 本発明の第15の態様に従えば、光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、射出面と基板との間の液体を介して露光光で基板の複数のショット領域のそれぞれを順次露光する露光方法であって、第1下面を有し光学部材の周囲の少なくとも一部に配置される第1部材と、第1下面と間隙を介して対向する第2上面及び基板が対向可能な第2下面を有し露光光の光路の周囲の少なくとも一部に配置される第2部材と、を含む液浸部材を用いて、液体の液浸空間を形成することと、液浸空間の液体を介して、射出面から射出される露光光で、走査方向に関して第1寸法の第1、第2ショット領域を順次露光することと、第1、第2ショット領域を露光する前又は露光した後に、液浸空間の液体を介して、射出面から射出される露光光で、走査方向に関して第1寸法とは異なる第2寸法の第3、第4ショット領域を順次露光することと、第1ショット領域の露光終了から第2ショット領域の露光開始までの基板の第1移動期間における第2部材の第1動作と、第3ショット領域の露光終了から第4ショット領域の露光開始までの基板の第2移動期間における第2部材の第2動作とが異なるように、基板の露光の少なくとも一部において、第1部材に対して第2部材を移動することと、を含む露光方法が提供される。
 本発明の第16の態様に従えば、光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、射出面と基板との間の液体を介して露光光で基板の複数のショット領域のそれぞれを順次露光する露光方法であって、光学部材の周囲の少なくとも一部に配置される第1部材と、光学部材の周囲の一部に配置される第2部材と、を含む液浸部材を用いて、液体の液浸空間を形成することと、液浸空間の液体を介して、射出面から射出される露光光で、走査方向に関してそれぞれ第1、第2寸法の第1、第2ショット領域を順次露光することと、第1、第2ショット領域を露光する前又は露光した後に、液浸空間の液体を介して、射出面から射出される露光光で、走査方向に関して第3寸法の第3、第4ショット領域を順次露光することと、第1ショット領域の露光終了から第2ショット領域の露光開始までの基板の第1移動期間における第2部材の第1動作と、第3ショット領域の露光終了から第4ショット領域の露光開始までの基板の第2移動期間における第2部材の第2動作とが異なるように、基板の露光の少なくとも一部において、第1部材に対して第2部材を移動することと、を含む露光方法が提供される。
 本発明の第17の態様に従えば、光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、射出面と基板との間の液体を介して露光光で基板の複数のショット領域のそれぞれを順次露光する露光方法であって、第1下面を有し光学部材の周囲の少なくとも一部に配置される第1部材と、第1下面と間隙を介して対向する第2上面及び基板が対向可能な第2下面を有し露光光の光路の周囲の少なくとも一部に配置される第2部材と、を含む液浸部材を用いて、液体の液浸空間を形成することと、液浸空間の液体を介して、射出面から射出される露光光で、走査方向に関してそれぞれ第1、第2寸法の第1、第2ショット領域を順次露光することと、第1、第2ショット領域を露光する前又は露光した後に、液浸空間の液体を介して、射出面から射出される露光光で、走査方向に関して第3寸法の第3、第4ショット領域を順次露光することと、第1ショット領域の露光終了から第2ショット領域の露光開始までの基板の第1移動期間における第2部材の第1動作と、第3ショット領域の露光終了から第4ショット領域の露光開始までの基板の第2移動期間における第2部材の第2動作とが異なるように、基板の露光の少なくとも一部において、第1部材に対して第2部材を移動することと、を含む露光方法が提供される。
 本発明の第18の態様に従えば、光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、射出面と基板との間の液体を介して露光光で基板の複数のショット領域のそれぞれを順次露光する露光方法であって、光学部材の周囲の少なくとも一部に配置される第1部材と、光学部材の周囲の一部に配置される第2部材と、を含む液浸部材を用いて、液体の液浸空間を形成することと、液浸空間の液体を介して、射出面から射出される露光光で、基板の第1、第2ショット領域を順次露光することと、第1ショット領域の露光終了から第2ショット領域の露光開始までの基板の第1移動期間において第2部材が走査方向と交差する方向の一側に第1移動条件で移動され、第2ショット領域の露光開始から露光終了までの基板の第2露光期間において第2部材が走査方向と交差する方向の他側に第1移動条件とは異なる第2移動条件で移動されるように、基板の露光の少なくとも一部において、第1部材に対して第2部材を移動することと、を含む露光方法が提供される。
 本発明の第19の態様に従えば、光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、射出面と基板との間の液体を介して露光光で基板の複数のショット領域のそれぞれを順次露光する露光方法であって、第1下面を有し光学部材の周囲の少なくとも一部に配置される第1部材と、第1下面と間隙を介して対向する第2上面及び基板が対向可能な第2下面を有し露光光の光路の周囲の少なくとも一部に配置される第2部材と、を含む液浸部材を用いて、液体の液浸空間を形成することと、液浸空間の液体を介して、射出面から射出される露光光で、基板の第1、第2ショット領域を順次露光することと、第1ショット領域の露光終了から第2ショット領域の露光開始までの基板の第1移動期間において第2部材が走査方向と交差する方向の一側に第1移動条件で移動され、第2ショット領域の露光開始から露光終了までの基板の第2露光期間において第2部材が走査方向と交差する方向の他側に第1移動条件とは異なる第2移動条件で移動されるように、基板の露光の少なくとも一部において、第1部材に対して第2部材を移動することと、を含む露光方法が提供される。
 本発明の第20の態様に従えば、光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、射出面と基板との間の液体を介して露光光で基板の複数のショット領域のそれぞれを順次露光する露光方法であって、光学部材の周囲の少なくとも一部に配置される第1部材と、光学部材の周囲の一部に配置される第2部材と、を含む液浸部材を用いて、液体の液浸空間を形成することと、液浸空間の液体を介して、射出面から射出される露光光で、基板において一の列に含まれる走査方向と交差する方向に配置される複数のショット領域のそれぞれを順次露光することと、一の列に含まれるショット領域を露光する前又は露光した後に、液浸空間の液体を介して、一の列とは異なる列のショット領域を露光することと、ある列のショット領域の露光終了から、次に露光される、別の列のショット領域の露光開始までの基板の移動期間に、第1部材に対して第2部材を移動することと、を含む露光方法が提供される。
 本発明の第21の態様に従えば、光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、射出面と基板との間の液体を介して露光光で基板の複数のショット領域のそれぞれを順次露光する露光方法であって、第1下面を有し光学部材の周囲の少なくとも一部に配置される第1部材と、第1下面と間隙を介して対向する第2上面及び基板が対向可能な第2下面を有し露光光の光路の周囲の少なくとも一部に配置される第2部材と、を含む液浸部材を用いて、液体の液浸空間を形成することと、液浸空間の液体を介して、射出面から射出される露光光で、基板において一の列に含まれる走査方向と交差する方向に配置される複数のショット領域のそれぞれを順次露光することと、一の列に含まれるショット領域を露光する前又は露光した後に、液浸空間の液体を介して、一の列とは異なる列のショット領域を露光することと、ある列のショット領域の露光終了から、次に露光される、別の列のショット領域の露光開始までの基板の移動期間に、第1部材に対して第2部材を移動することと、を含む露光方法が提供される。
 本発明の第22の態様に従えば、第12、第13、第14、第15、第16、第17、第18、第19、第20及び第21のいずれか一つの態様の露光方法を用いて基板を露光することと、露光された基板を現像することと、を含むデバイス製造方法が提供される。
 本発明の第23の態様に従えば、コンピュータに、光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、射出面と基板との間の液体を介して露光光で基板の複数のショット領域のそれぞれを順次露光する露光装置の制御を実行させるプログラムであって、第1下面を有し光学部材の周囲の少なくとも一部に配置される第1部材と、第1下面と間隙を介して対向する第2上面及び基板が対向可能な第2下面を有し露光光の光路の周囲の少なくとも一部に配置される第2部材と、を含む液浸部材を用いて、液体の液浸空間を形成することと、液浸空間の液体を介して、射出面から射出される露光光で、基板において一の列に含まれる走査方向と交差する方向に配置される複数のショット領域のそれぞれを順次露光することと、一の列に含まれるショット領域を露光する前又は露光した後に、液浸空間の液体を介して、一の列とは異なる列のショット領域を露光することと、同じ列に含まれる第1ショット領域の露光終了から第2ショット領域の露光開始までの基板の第1移動期間における第2部材の第1動作と、ある列の第3ショット領域の露光終了から別の列の第4ショット領域の露光開始までの基板の第2移動期間における第2部材の第2動作とが異なるように、基板の露光の少なくとも一部において、第1部材に対して第2部材を移動することと、を実行させるプログラムが提供される。
 本発明の第24の態様に従えば、コンピュータに、光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、射出面と基板との間の液体を介して露光光で基板の複数のショット領域のそれぞれを順次露光する露光装置の制御を実行させるプログラムであって、第1下面を有し光学部材の周囲の少なくとも一部に配置される第1部材と、第1下面と間隙を介して対向する第2上面及び基板が対向可能な第2下面を有し露光光の光路の周囲の少なくとも一部に配置される第2部材と、を含む液浸部材を用いて、液体の液浸空間を形成することと、液浸空間の液体を介して、射出面から射出される露光光で、走査方向に関して第1寸法の第1、第2ショット領域を順次露光することと、第1、第2ショット領域を露光する前又は露光した後に、液浸空間の液体を介して、射出面から射出される露光光で、走査方向に関して第1寸法とは異なる第2寸法の第3、第4ショット領域を順次露光することと、第1ショット領域の露光終了から第2ショット領域の露光開始までの基板の第1移動期間における第2部材の第1動作と、第3ショット領域の露光終了から第4ショット領域の露光開始までの基板の第2移動期間における第2部材の第2動作とが異なるように、基板の露光の少なくとも一部において、第1部材に対して第2部材を移動することと、を実行させるプログラムが提供される。
 本発明の第25の態様に従えば、コンピュータに、光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、射出面と基板との間の液体を介して露光光で基板の複数のショット領域のそれぞれを順次露光する露光装置の制御を実行させるプログラムであって、第1下面を有し光学部材の周囲の少なくとも一部に配置される第1部材と、第1下面と間隙を介して対向する第2上面及び基板が対向可能な第2下面を有し露光光の光路の周囲の少なくとも一部に配置される第2部材と、を含む液浸部材を用いて、液体の液浸空間を形成することと、液浸空間の液体を介して、射出面から射出される露光光で、走査方向に関してそれぞれ第1、第2寸法の第1、第2ショット領域を順次露光することと、第1、第2ショット領域を露光する前又は露光した後に、液浸空間の液体を介して、射出面から射出される露光光で、走査方向に関して第3寸法の第3、第4ショット領域を順次露光することと、第1ショット領域の露光終了から第2ショット領域の露光開始までの基板の第1移動期間における第2部材の第1動作と、第3ショット領域の露光終了から第4ショット領域の露光開始までの基板の第2移動期間における第2部材の第2動作とが異なるように、基板の露光の少なくとも一部において、第1部材に対して第2部材を移動することと、を実行させるプログラムが提供される。
 本発明の第26の態様に従えば、コンピュータに、光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、射出面と基板との間の液体を介して露光光で基板の複数のショット領域のそれぞれを順次露光する露光装置の制御を実行させるプログラムであって、第1下面を有し光学部材の周囲の少なくとも一部に配置される第1部材と、第1下面と間隙を介して対向する第2上面及び基板が対向可能な第2下面を有し露光光の光路の周囲の少なくとも一部に配置される第2部材と、を含む液浸部材を用いて、液体の液浸空間を形成することと、液浸空間の液体を介して、射出面から射出される露光光で、基板の第1、第2ショット領域を順次露光することと、第1ショット領域の露光終了から第2ショット領域の露光開始までの基板の第1移動期間において第2部材が走査方向と交差する方向の一側に第1移動条件で移動され、第2ショット領域の露光開始から露光終了までの基板の第2露光期間において第2部材が走査方向と交差する方向の他側に第1移動条件とは異なる第2移動条件で移動されるように、基板の露光の少なくとも一部において、第1部材に対して第2部材を移動することと、を実行させるプログラムが提供される。
 本発明の第27の態様に従えば、コンピュータに、光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、射出面と基板との間の液体を介して露光光で基板の複数のショット領域のそれぞれを順次露光する露光装置の制御を実行させるプログラムであって、第1下面を有し光学部材の周囲の少なくとも一部に配置される第1部材と、第1下面と間隙を介して対向する第2上面及び基板が対向可能な第2下面を有し露光光の光路の周囲の少なくとも一部に配置される第2部材と、を含む液浸部材を用いて、液体の液浸空間を形成することと、液浸空間の液体を介して、射出面から射出される露光光で、基板において一の列に含まれる走査方向と交差する方向に配置される複数のショット領域のそれぞれを順次露光することと、一の列に含まれるショット領域を露光する前又は露光した後に、液浸空間の液体を介して、一の列とは異なる列のショット領域を露光することと、ある列のショット領域の露光終了から、次に露光される、別の列のショット領域の露光開始までの基板の移動期間に、第1部材に対して第2部材を移動することと、を実行させるプログラムが提供される。
 本発明の第28の態様に従えば、第23、第24、第25、第26、及び第27のいずれか一つの態様のプログラムを記録したコンピュータ読み取り可能な記録媒体が提供される。
 本発明の態様によれば、露光不良の発生を抑制できる。また、本発明の態様によれば、不良デバイスの発生を抑制できる。
第1実施形態に係る露光装置の一例を示す図である。 第1実施形態に係る液浸部材の一例を示す側断面図である。 第1実施形態に係る液浸部材の一部を示す側断面図である。 第1実施形態に係る液浸部材の動作の一例を示す図である。 第1実施形態に係る液浸部材を下方から見た図である。 第1実施形態に係る液浸部材の一例を示す分解斜視図である。 第1実施形態に係る液浸部材の一例を示す分解斜視図である。 第1実施形態に係る第1部材の一例を示す図である。 第1実施形態に係る液浸部材の動作の一例を説明するための図である。 第1実施形態に係る露光装置の動作の一例を説明するための図である。 第1実施形態に係る露光装置の動作の一例を説明するための模式図である。 第1実施形態に係る液浸部材の動作の一例を説明するための模式図である。 第1実施形態に係る露光装置の動作の一例を説明するための図である。 第1実施形態に係る露光装置の動作の一例を説明するための図である。 第1実施形態に係る第2部材の動作の一例を説明するための図である。 第1実施形態に係る露光装置の動作の一例を説明するための図である。 第1実施形態に係る第2部材の動作の一例を説明するための図である。 第2実施形態に係る露光装置の動作の一例を説明するための図である。 第2実施形態に係る第2部材の動作の一例を説明するための図である。 第3実施形態に係る露光装置の動作の一例を説明するための図である。 第3実施形態に係る第2部材の動作の一例を説明するための図である。 第4実施形態に係る露光装置の動作の一例を説明するための図である。 第4実施形態に係る第2部材の動作の一例を説明するための図である。 第4実施形態に係る露光装置の動作の一例を説明するための図である。 第4実施形態に係る露光装置の動作の一例を説明するための図である。 第4実施形態に係る露光装置の動作の一例を説明するための図である。 第4実施形態に係る露光装置の動作の一例を説明するための図である。 第4実施形態に係る露光装置の動作の一例を説明するための図である。 第4実施形態に係る露光装置の動作の一例を説明するための図である。 第5実施形態に係る露光装置の動作の一例を説明するための図である。 第5実施形態に係る露光装置の動作の一例を説明するための図である。 第5実施形態に係る露光装置の動作の一例を説明するための図である。 第5実施形態に係る露光装置の動作の一例を説明するための図である。 第5実施形態に係る露光装置の動作の一例を説明するための図である。 第5実施形態に係る露光装置の動作の一例を説明するための図である。 液浸部材の一例を示す図である。 液浸部材の一例を示す図である。 液浸部材の一例を示す図である。 液浸部材の一例を示す図である。 基板ステージの一例を示す図である。 デバイスの製造方法の一例を説明するためのフローチャートである。
 以下、本発明の実施形態について図面を参照しながら説明するが、本発明はこれに限定されない。以下の説明においては、XYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部の位置関係について説明する。水平面内の所定方向をX軸方向、水平面内においてX軸方向と直交する方向をY軸方向、X軸方向及びY軸方向のそれぞれと直交する方向(すなわち鉛直方向)をZ軸方向とする。また、X軸、Y軸、及びZ軸まわりの回転(傾斜)方向をそれぞれ、θX、θY、及びθZ方向とする。
<第1実施形態>
  第1実施形態について説明する。図1は、第1実施形態に係る露光装置EXの一例を示す概略構成図である。本実施形態の露光装置EXは、液体LQを介して露光光ELで基板Pを露光する液浸露光装置である。本実施形態においては、基板Pに照射される露光光ELの光路Kが液体LQで満たされるように液浸空間LSが形成される。液浸空間LSとは、液体で満たされた部分(空間、領域)をいう。基板Pは、液浸空間LSの液体LQを介して露光光ELで露光される。本実施形態においては、液体LQとして、水(純水)を用いる。
  本実施形態の露光装置EXは、例えば米国特許第6897963号、及び欧州特許出願公開第1713113号等に開示されているような、基板ステージと計測ステージとを備えた露光装置である。
  図1において、露光装置EXは、マスクMを保持して移動可能なマスクステージ1と、基板Pを保持して移動可能な基板ステージ2と、基板Pを保持せずに、露光光ELを計測する計測部材(計測器)Cを搭載して移動可能な計測ステージ3と、基板ステージ2及び計測ステージ3の位置を計測する計測システム4と、マスクMを露光光ELで照明する照明系ILと、露光光ELで照明されたマスクMのパターンの像を基板Pに投影する投影光学系PLと、液体LQの液浸空間LSを形成する液浸部材5と、露光装置EX全体の動作を制御する制御装置6と、制御装置6に接続され、露光に関する各種の情報を記憶する記憶装置7とを備えている。
  また、露光装置EXは、投影光学系PL、及び計測システム4を含む各種の計測システムを支持する基準フレーム8Aと、基準フレーム8Aを支持する装置フレーム8Bと、基準フレーム8Aと装置フレーム8Bとの間に配置され、装置フレーム8Bから基準フレーム8Aへの振動の伝達を抑制する防振装置10とを備えている。防振装置10は、ばね装置などを含む。本実施形態において、防振装置10は、気体ばね(例えばエアマウント)を含む。なお、基板Pのアライメントマークを検出する検出システム及び基板Pなどの物体の表面の位置を検出する検出システムの一方又は両方が基準フレーム8Aに支持されてもよい。
 また、露光装置EXは、露光光ELが進行する空間CSの環境(温度、湿度、圧力、及びクリーン度の少なくとも一つ)を調整するチャンバ装置9を備えている。空間CSには、少なくとも投影光学系PL、液浸部材5、基板ステージ2、及び計測ステージ3が配置される。本実施形態においては、マスクステージ1、及び照明系ILの少なくとも一部も空間CSに配置される。
  マスクMは、基板Pに投影されるデバイスパターンが形成されたレチクルを含む。マスクMは、例えばガラス板等の透明板と、その透明板上にクロム等の遮光材料を用いて形成されたパターンとを有する透過型マスクを含む。なお、マスクMとして、反射型マスクを用いることもできる。
  基板Pは、デバイスを製造するための基板である。基板Pは、例えば半導体ウエハ等の基材と、その基材上に形成された感光膜とを含む。感光膜は、感光材(フォトレジスト)の膜である。また、基板Pが、感光膜に加えて別の膜を含んでもよい。例えば、基板Pが、反射防止膜を含んでもよいし、感光膜を保護する保護膜(トップコート膜)を含んでもよい。
  照明系ILは、照明領域IRに露光光ELを照射する。照明領域IRは、照明系ILから射出される露光光ELが照射可能な位置を含む。照明系ILは、照明領域IRに配置されたマスクMの少なくとも一部を均一な照度分布の露光光ELで照明する。照明系ILから射出される露光光ELとして、例えば水銀ランプから射出される輝線(g線、h線、i線)及びKrFエキシマレーザ光(波長248nm)等の遠紫外光(DUV光)、ArFエキシマレーザ光(波長193nm)、及びFレーザ光(波長157nm)等の真空紫外光(VUV光)等が用いられる。本実施形態においては、露光光ELとして、紫外光(真空紫外光)であるArFエキシマレーザ光を用いる。
  マスクステージ1は、マスクMを保持した状態で移動可能である。マスクステージ1は、例えば米国特許第6452292号に開示されているような平面モータを含む駆動システム11の作動により移動する。本実施形態において、マスクステージ1は、駆動システム11の作動により、X軸、Y軸、Z軸、θX、θY、及びθZ方向の6つの方向に移動可能である。なお、駆動システム11は、平面モータを含まなくてもよい。駆動システム11は、リニアモータを含んでもよい。
  投影光学系PLは、投影領域PRに露光光ELを照射する。投影領域PRは、投影光学系PLから射出される露光光ELが照射可能な位置を含む。投影光学系PLは、投影領域PRに配置された基板Pの少なくとも一部に、マスクMのパターンの像を所定の投影倍率で投影する。本実施形態において、投影光学系PLは、縮小系である。投影光学系PLの投影倍率は、1/4である。なお、投影光学系PLの投影倍率は、1/5、又は1/8等でもよい。なお、投影光学系PLは、等倍系及び拡大系のいずれでもよい。本実施形態において、投影光学系PLの光軸は、Z軸と平行である。投影光学系PLは、反射光学素子を含まない屈折系、屈折光学素子を含まない反射系、反射光学素子と屈折光学素子とを含む反射屈折系のいずれでもよい。投影光学系PLは、倒立像及び正立像のいずれを形成してもよい。
  投影光学系PLは、露光光ELが射出される射出面12を有する終端光学素子13を含む。終端光学素子13は、投影光学系PLの一部を構成する光学部材である。射出面12は、投影光学系PLの像面に向けて露光光ELを射出する。終端光学素子13は、投影光学系PLの複数の光学素子のうち、投影光学系PLの像面に最も近い光学素子である。投影領域PRは、射出面12から射出される露光光ELが照射可能な位置を含む。本実施形態において、射出面12は、-Z軸方向を向いている。射出面12から射出される露光光ELは、-Z軸方向に進行する。射出面12は、XY平面と平行である。なお、-Z軸方向を向いている射出面12は、凸面でもよいし、凹面でもよい。なお、射出面12は、XY平面に対して傾斜してもよいし、曲面を含んでもよい。本実施形態において、終端光学素子13の光軸は、Z軸と平行である。
 終端光学素子13の光軸と平行な方向に関して、射出面12側が-Z側であり、入射面側が+Z側である。投影光学系PLの光軸と平行な方向に関して、投影光学系PLの像面側が-Z側であり、投影光学系PLの物体面側が+Z側である。
  基板ステージ2は、基板Pを保持した状態で、射出面12からの露光光ELが照射可能な位置(投影領域PR)を含むXY平面内を移動可能である。計測ステージ3は、計測部材(計測器)Cを搭載した状態で、射出面12からの露光光ELが照射可能な位置(投影領域PR)を含むXY平面内を移動可能である。基板ステージ2及び計測ステージ3のそれぞれは、ベース部材14のガイド面14G上を移動可能である。ガイド面14GとXY平面とは実質的に平行である。
 基板ステージ2は、例えば米国特許出願公開第2007/0177125号、米国特許出願公開第2008/0049209号等に開示されているような、基板Pをリリース可能に保持する第1保持部と、第1保持部の周囲に配置され、カバー部材Tをリリース可能に保持する第2保持部とを有する。第1保持部は、基板Pの表面(上面)とXY平面とが実質的に平行となるように、基板Pを保持する。第1保持部に保持された基板Pの上面と、第2保持部に保持されたカバー部材Tの上面とは、実質的に同一平面内に配置される。
Z軸方向に関して、射出面12と第1保持部に保持された基板Pの上面との距離は、射出面12と第2保持部に保持されたカバー部材Tの上面との距離と実質的に等しい。なお、Z軸方向に関して、射出面12と基板Pの上面との距離が射出面12とカバー部材Tの上面との距離と実質的に等しいとは、射出面12と基板Pの上面との距離と射出面12とカバー部材Tの上面との距離との差が、基板Pの露光時における射出面12と基板Pの上面との距離(所謂、ワーキングディスタンス)の例えば10%以内であることを含む。なお、第1保持部に保持された基板Pの上面と、第2保持部に保持されたカバー部材Tの上面とは、同一平面内に配置されなくてもよい。例えば、Z軸方向に関して、基板Pの上面との位置とカバー部材Tの上面の位置とが異なってもよい。例えば、基板Pの上面とカバー部材Tの上面との間に段差があってよい。なお、基板Pの上面に対してカバー部材Tの上面が傾斜してもよいし、カバー部材Tの上面が曲面を含んでもよい。
 基板ステージ2及び計測ステージ3は、例えば米国特許第6452292号に開示されているような平面モータを含む駆動システム15の作動により移動する。駆動システム15は、基板ステージ2に配置された可動子2Cと、計測ステージ3に配置された可動子3Cと、ベース部材14に配置された固定子14Mとを有する。基板ステージ2及び計測ステージ3のそれぞれは、駆動システム15の作動により、ガイド面14G上において、X軸、Y軸、Z軸、θX、θY、及びθZ方向の6つの方向に移動可能である。なお、駆動システム15は、平面モータを含まなくてもよい。駆動システム15は、リニアモータを含んでもよい。
 計測システム4は、干渉計システムを含む。干渉計システムは、基板ステージ2の計測ミラー及び計測ステージ3の計測ミラーに計測光を照射して、その基板ステージ2及び計測ステージ3の位置を計測するユニットを含む。なお、計測システムが、例えば米国特許出願公開第2007/0288121号に開示されているようなエンコーダシステムを含んでもよい。なお、計測システム4が、干渉計システム及びエンコーダシステムのいずれか一方のみを含んでもよい。
 基板Pの露光処理を実行するとき、あるいは所定の計測処理を実行するとき、制御装置6は、計測システム4の計測結果に基づいて、基板ステージ2(基板P)、及び計測ステージ3(計測部材C)の位置制御を実行する。
 次に、本実施形態に係る液浸部材5について説明する。なお、液浸部材を、ノズル部材、と称してもよい。図2は、XZ平面と平行な液浸部材5の断面図である。図3は、図2の一部を拡大した図である。図4は、液浸部材5の動作の一例を示す図である。図5は、液浸部材5を下側(-Z側)から見た図である。図6及び図7は、液浸部材5の分解斜視図である。
 液浸部材5は、終端光学素子13の下方で移動可能な物体上に液体LQの液浸空間LSを形成する。
 終端光学素子13の下方で移動可能な物体は、射出面12と対向する位置を含むXY平面内を移動可能である。その物体は、射出面12と対向可能であり、投影領域PRに配置可能である。その物体は、液浸部材5の下方で移動可能であり、液浸部材5と対向可能である。本実施形態において、その物体は、基板ステージ2の少なくとも一部(例えば基板ステージ2のカバー部材T)、基板ステージ2(第1保持部)に保持された基板P、及び計測ステージ3の少なくとも一つを含む。基板Pの露光において、終端光学素子13の射出面12と基板Pとの間の露光光ELの光路Kが液体LQで満たされるように液浸空間LSが形成される。基板Pに露光光ELが照射されているとき、投影領域PRを含む基板Pの表面の一部の領域だけが液体LQで覆われるように液浸空間LSが形成される。
  以下の説明においては、物体が基板Pであることとする。なお、上述のように、物体は、基板ステージ2及び計測ステージ3の少なくとも一方でもよいし、基板P、基板ステージ2、及び計測ステージ3とは別の物体でもよい。
 液浸空間LSは、2つの物体を跨ぐように形成される場合がある。例えば、液浸空間LSは、基板ステージ2のカバー部材Tと基板Pとを跨ぐように形成される場合がある。液浸空間LSは、基板ステージ2と計測ステージ3とを跨ぐように形成される場合がある。
 液浸空間LSは、終端光学素子13の射出面12から射出される露光光ELの光路Kが液体LQで満たされるように形成される。液浸空間LSの少なくとも一部は、終端光学素子13と基板P(物体)との間の空間に形成される。液浸空間LSの少なくとも一部は、液浸部材5と基板P(物体)との間の空間に形成される。
 液浸部材5は、終端光学素子13の周囲の少なくとも一部に配置される第1部材21と、第1部材21の下方において光路Kの周囲の少なくとも一部に配置される第2部材22とを備えている。第2部材22は、第1部材21に対して可動である。
 第1部材21は、第2部材22よりも基板P(物体)から離れた位置に配置される。第2部材22の少なくとも一部は、第1部材21と基板P(物体)との間に配置される。第2部材22の少なくとも一部は、終端光学素子13と基板P(物体)との間に配置される。なお、第2部材22は、終端光学素子13と基板P(物体)との間に配置されなくてもよい。
 第1部材21は、-Z軸方向を向く下面23と、下面23の周囲の少なくとも一部に配置され、液体LQを回収可能な液体回収部24とを有する。なお、液体回収部24を、流体(液体LQ及び気体の一方又は両方)を回収可能な流体回収部と呼んでもよい。第2部材22は、+Z軸方向を向く上面25と、-Z軸方向を向く下面26と、下面26の周囲の少なくとも一部に配置された流体回収部27とを有する。液体回収部24は、液浸空間LSの液体LQの少なくとも一部を回収する。流体回収部27は、液浸空間LSの液体LQの少なくとも一部を回収する。なお、下面23を第1下面と呼んでもよい。また、上面25を第2上面と呼んでもよい。また、下面26を第2下面と呼んでもよい。
 第1部材21は、終端光学素子13の側面13Fと対向する内側面28と、光路K(終端光学素子13の光軸)に対して外側を向く外側面29とを有する。第2部材22は、外側面29と間隙を介して対向する内側面30を有する。なお、第1部材21の内側面28を対向面と呼んでもよい。
 第1部材21の内側面28は、終端光学素子13の側面13Fと間隙を介して対向する。
 第2部材22は、下面23に対向可能である。第2部材22は、液体回収部24に対向可能である。第2部材22の上面25の少なくとも一部は、下面23と間隙を介して対向する。上面25の少なくとも一部は、射出面12と間隙を介して対向する。なお、上面25が射出面12と対向しなくてもよい。
 基板P(物体)は、下面26に対向可能である。基板P(物体)は、流体回収部27の少なくとも一部に対向可能である。基板Pの上面の少なくとも一部は、下面26と間隙を介して対向する。基板Pの上面の少なくとも一部は、射出面12と間隙を介して対向する。
 Z軸方向において、基板P(物体)の上面と射出面12との間隙の寸法は、基板Pの上面と下面26との間隙の寸法よりも大きい。なお、基板P(物体)の上面と射出面12との間隙の寸法が、基板Pの上面と下面26との間隙の寸法と実質的に等しくてもよい。なお、基板P(物体)の上面と射出面12との間隙の寸法が、基板Pの上面と下面26との間隙の寸法よりも小さくてもよい。
 下面23と上面25との間に第1空間SP1が形成される。下面26と基板P(物体)の上面との間に第2空間SP2が形成される。側面13Fと内側面28との間に第3空間SP3が形成される。
 上面25は、液体LQに対して撥液性である。本実施形態において、上面25は、フッ素を含む樹脂の膜の表面を含む。上面25は、PFA(Tetra fluoro ethylene-perfluoro alkylvinyl ether copolymer)の膜の表面を含む。なお、上面25が、PTFE(Poly tetra fluoro ethylene)の膜の表面を含んでもよい。液体LQに対する上面25の接触角は、90度よりも大きい。なお、液体LQに対する上面25の接触角が、100度よりも大きくてもよいし、110度よりも大きくてもよいし、120度よりも大きくてもよい。
 上面25が液体LQに対して撥液性であるため、第1空間SP1の液体LQに気体部分が生成されたり、液体LQに気泡が混入したりすることが抑制される。
 なお、液体LQに対する上面25の接触角が、液体LQに対する基板Pの上面の接触角よりも大きくてもよい。なお、液体LQに対する上面25の接触角が、液体LQに対する基板Pの上面の接触角よりも小さくてもよい。なお、液体LQに対する上面25の接触角が、液体LQに対する基板Pの上面の接触角と実質的に等しくてもよい。
 なお、上面25が液体LQに対して親液性でもよい。液体LQに対する上面25の接触角が、90度よりも小さくてもよいし、80度よりも小さくてもよいし、70度よりも小さくてもよい。これにより、第1空間SP1において液体LQが円滑に流れる。
 なお、下面23が液体LQに対して撥液性でもよい。例えば、下面23及び上面25の両方が液体LQに対して撥液性でもよい。液体LQに対する下面23の接触角は、90度よりも大きくてもよいし、100度よりも大きくてもよいし、110度よりも大きくてもよいし、120度よりも大きくてもよい。
 なお、下面23が液体LQに対して撥液性で、上面25が液体LQに対して親液性でもよい。液体LQに対する下面23の接触角が、液体LQに対する上面25の接触角よりも大きくてもよい。
 なお、下面23が液体LQに対して親液性でもよい。例えば、下面23及び上面25の両方が液体LQに対して親液性でもよい。液体LQに対する下面23の接触角は、90度よりも小さくてもよいし、80度よりも小さくてもよいし、70度よりも小さくてもよい。
 なお、下面23が液体LQに対して親液性で、上面25が液体LQに対して撥液性でもよい。液体LQに対する下面23の接触角が、液体LQに対する上面25の接触角よりも小さくてもよい。
 本実施形態において、下面26は、液体LQに対して親液性である。液体LQに対する下面26の接触角が、90度よりも小さくてもよいし、80度よりも小さくてもよいし、70度よりも小さくてもよい。本実施形態において、液体LQに対する下面26の接触角は、液体LQに対する基板Pの上面の接触角よりも小さい。なお、液体LQに対する下面26の接触角は、液体LQに対する基板Pの上面の接触角よりも大きくてもよいし、実質的に等しくてもよい。
 終端光学素子13の側面13Fは、射出面12の周囲に配置される。側面13Fは、露光光ELを射出しない非射出面である。露光光ELは、射出面12を通過し、側面13Fを通過しない。
 第1部材21の下面23は、液体LQを回収しない。下面23は、非回収部であり、液体LQを回収不可能である。第1部材21の下面23は、第2部材22との間で液体LQを保持可能である。
 第2部材22の上面25は、液体LQを回収しない。上面25は、非回収部であり、液体LQを回収不可能である。第2部材22の上面25は、第1部材21との間で液体LQを保持可能である。
 第2部材22の下面26は、液体LQを回収しない。下面26は、非回収部であり、液体LQを回収不可能である。第2部材22の下面26は、基板P(物体)との間で液体LQを保持可能である。
 内側面28、外側面29、及び内側面30は、液体LQを回収しない。内側面28、外側面29、及び内側面30は、非回収部であり、液体LQを回収不可能である。
 本実施形態において、下面23は、XY平面と実質的に平行である。上面25も、XY平面と実質的に平行である。下面26も、XY平面と実質的に平行である。すなわち、下面23と上面25とは、実質的に平行である。上面25と下面26とは、実質的に平行である。
 なお、下面23が、XY平面に対して非平行でもよい。下面23は、XY平面に対して傾斜してもよいし、曲面を含んでもよい。
 なお、上面25が、XY平面に対して非平行でもよい。上面25は、XY平面に対して傾斜してもよいし、曲面を含んでもよい。
 なお、下面26が、XY平面に対して非平行でもよい。下面26は、XY平面に対して傾斜してもよいし、曲面を含んでもよい。
 なお、下面23と上面25とは、平行でもよいし、非平行でもよい。上面25と下面26とは、平行でもよいし、非平行でもよい。下面23と下面26とは、平行でもよいし、非平行でもよい。
 第1部材21は、射出面12から射出された露光光ELが通過可能な開口34を有する。第2部材22は、射出面12から射出された露光光ELが通過可能な開口35を有する。なお、開口34を第1開口、開口35を第2開口と呼んでもよい。開口34の内側に終端光学素子13の少なくとも一部が配置される。開口34の下端の周囲に下面23が配置される。開口35の上端の周囲に上面25が配置される。開口35の下端の周囲に下面26が配置される。
 本実施形態において、第2部材22の内面35Uの少なくとも一部は、光路Kに対する放射方向に関して外側に向かって上方に傾斜する。第2部材22の内面35Uの少なくとも一部は、光路Kに面する開口35を規定する。これにより、第2部材22の内面35Uが液浸空間LSに配置されている状態で、第2部材22は円滑に移動可能である。また、第2部材22の内面35Uが液浸空間LSに配置されている状態で第2部材22が移動しても、液浸空間LSの液体LQの圧力が変動することが抑制される。
 XY平面内における開口34の寸法は、開口35の寸法よりも大きい。X軸方向に関して、開口34の寸法は、開口35の寸法よりも大きい。Y軸方向に関して、開口34の寸法は、開口35の寸法よりも大きい。本実施形態において、射出面12の直下に第1部材21は配置されない。第1部材21の開口34は、射出面12の周囲に配置される。開口34は、射出面12より大きい。終端光学素子13の側面13Fと第1部材21との間に形成された間隙の下端は、第2部材22の上面25に面する。第2部材22の開口35は、射出面12と対向するように配置される。本実施形態において、XY平面内における開口35の形状は、長方形状である。開口35は、X軸方向に長い。なお、開口35の形状は、X軸方向に長い楕円形でもよいし、X軸方向に長い多角形でもよい。
 なお、開口34の寸法が開口35の寸法よりも小さくてもよい。なお、開口34の寸法が開口35の寸法と実質的に等しくてもよい。
 第1部材21は、終端光学素子13の周囲に配置される。第1部材21は、環状の部材である。第1部材21は、終端光学素子13に接触しないように配置される。第1部材21と終端光学素子13との間に間隙が形成される。第1部材21は、射出面12と対向しない。なお、第1部材21の一部が、射出面12と対向してもよい。すなわち、第1部材21の一部が、射出面12と基板P(物体)の上面との間に配置されてもよい。なお、第1部材21は環状でなくてもよい。例えば、第1部材21は、終端光学素子13(光路K)の周囲の一部に配置されてもよい。例えば、第1部材21は、終端光学素子13(光路K)の周囲において複数配置されてもよい。
 第2部材22は、光路Kの周囲に配置される。第2部材22は、環状の部材である。第2部材22は、第1部材21に接触しないように配置される。第2部材22と第1部材21との間に間隙が形成される。
 第1部材21は、支持部材21Sを介して装置フレーム8Bに支持される。なお、第1部材21が支持部材を介して基準フレーム8Aに支持されてもよい。
 第2部材22は、支持部材22Sを介して装置フレーム8Bに支持される。支持部材22Sは、光路Kに対して第1部材21の外側で第2部材22に接続される。なお、第1部材21が支持部材を介して基準フレーム8Aに支持されていてもよい。
 第2部材22は、第1部材21に対して移動可能である。第2部材22は、終端光学素子13に対して移動可能である。第2部材22と第1部材21との相対位置は、変化する。第2部材22と終端光学素子13との相対位置は、変化する。
 第2部材22は、終端光学素子13の光軸と垂直なXY平面内を移動可能である。第2部材22は、XY平面と実質的に平行に移動可能である。図4に示すように、本実施形態において、第2部材22は、少なくともX軸方向に移動可能である。なお、第2部材22が、X軸方向に加えて、Y軸、Z軸、θX、θY、及びθZの少なくとも一つの方向に移動可能でもよい。
 本実施形態において、終端光学素子13は、実質的に移動しない。第1部材21も、実質的に移動しない。
 第2部材22は、第1部材21の少なくとも一部の下方で移動可能である。第2部材22は、第1部材21と基板P(物体)との間において移動可能である。
 第2部材22がXY平面内において移動することにより、第1部材21の外側面29と第2部材22の内側面30との間隙の寸法が変化する。換言すれば、第2部材22がXY平面内において移動することによって、外側面29と内側面30との間の空間の大きさが変化する。例えば、図4に示す例では、第2部材22が-X軸方向に移動することにより、終端光学素子13に対して+X側における外側面29と内側面30との間隙の寸法が小さくなる(外側面29と内側面30との間の空間が小さくなる)。第2部材22が+X軸方向に移動することにより、終端光学素子13に対して+X側における外側面29と内側面30との間隙の寸法が大きくなる(外側面29と内側面30との間の空間が大きくなる)。
 本実施形態においては、第1部材21(外側面29)と第2部材22(内側面30)とが接触しないように、第2部材22の移動可能範囲(可動範囲)が定められる。
 本実施形態において、第2部材22は、駆動装置32によって移動する。駆動装置32は、第1部材21に対して第2部材22を移動可能である。駆動装置32は、制御装置6に制御される。
 本実施形態において、駆動装置32は、支持部材22Sを移動する。支持部材22Sが駆動装置32により移動されることにより、第2部材22が移動する。駆動装置32は、例えばモータを含み、ローレンツ力を使って第2部材22を移動する。
 駆動装置32は、支持部材32Sを介して、装置フレーム8Bに支持される。第2部材22は、支持部材22S、駆動装置32、及び支持部材32Sを介して、装置フレーム8Bに支持される。第2部材22の移動により振動が発生しても、防振装置10によって、その振動が基準フレーム8Aに伝達されることが抑制される。
 第2部材22は、射出面12から露光光ELが射出される期間の少なくとも一部と並行して移動されてもよい。第2部材22は、液浸空間LSが形成されている状態で射出面12から露光光ELが射出される期間の少なくとも一部と並行して移動されてもよい。
 第2部材22は、基板P(物体)が移動する期間の少なくとも一部と並行して移動されてもよい。第2部材22は、液浸空間LSが形成されている状態で基板P(物体)が移動する期間の少なくとも一部と並行して移動されてもよい。
 第2部材22は、基板P(物体)の移動方向に移動されてもよい。例えば、基板Pが移動される期間の少なくとも一部において、第2部材22は、基板Pの移動方向に移動されてもよい。例えば、基板PがXY平面内における一方向(例えば+X軸方向)に移動されるとき、第2部材22は、その基板Pの移動と同期して、XY平面内における一方向(+X軸方向)に移動されてもよい。
 液浸部材5は、液浸空間LSを形成するための液体LQを供給する液体供給部31を有する。液体供給部31は、第1部材21に配置される。
 なお、液体供給部31は、第1部材21及び第2部材22の両方に配置されてもよい。
 なお、液体供給部31は、第1部材21に配置され、第2部材22に配置されなくてもよい。なお、液体供給部31は、第2部材22に配置され、第1部材21に配置されなくてもよい。なお、液体供給部31は、第1部材21及び第2部材22とは異なる部材に配置されてもよい。
 液体供給部31は、光路K(終端光学素子13の光軸)に対する放射方向に関して液体回収部24及び流体回収部27の内側に配置される。本実施形態において、液体供給部31は、第1部材21の内側面28に配置される開口(液体供給口)を含む。液体供給部31は、側面13Fに対向するように配置される。液体供給部31は、側面13Fと内側面28との間の第3空間SP3に液体LQを供給する。本実施形態において、液体供給部31は、光路K(終端光学素子13)に対して+X側及び-X側のそれぞれに配置される。
なお、液体供給部31は、光路K(終端光学素子13)に対してY軸方向に配置されてもよいし、X軸方向及びY軸方向を含む光路K(終端光学素子13)の周囲に複数配置されてもよい。液体供給部31は、一つでもよい。なお、液体供給部31のかわりに、あるいは液体供給部31に加えて、液体LQを供給可能な液体供給部が下面23に設けられてもよい。
 本実施形態において、液体供給部(液体供給口)31は、第1部材21の内部に形成された供給流路31Rを介して、液体供給装置31Sと接続される。液体供給装置31Sは、クリーンで温度調整された液体LQを液体供給部31に供給可能である。液体供給部31は、液浸空間LSを形成するために、液体供給装置31Sからの液体LQを供給する。
 下面23の内側のエッジと上面25との間に、開口40が形成される。射出面12と基板P(物体)との間の光路Kを含む光路空間SPKと、下面23と上面25との間の第1空間SP1とは、開口40を介して結ばれる。光路空間SPKは、射出面12と基板P(物体)との間の空間、及び射出面12と上面25との間の空間を含む。開口40は、光路Kに面するように配置される。側面13Fと内側面28との間の第3空間SP3と、第1空間SP1とは、開口40を介して結ばれる。
 液体供給部31からの液体LQの少なくとも一部は、開口40を介して、下面23と上面25との間の第1空間SP1に供給される。液浸空間LSを形成するために液体供給部31から供給された液体LQの少なくとも一部は、開口34及び開口35を介して、射出面12と対向する基板P(物体)上に供給される。これにより、光路Kが液体LQで満たされる。液体供給部31からの液体LQの少なくとも一部は、下面26と基板P(物体)の上面との間の第2空間SP2に供給される。
 Z軸方向に関して、第1空間SP1の寸法は、第2空間SP2の寸法よりも小さい。なお、Z軸方向に関して、第1空間SP1の寸法が、第2空間SP2の寸法と実質的に等しくてもよいし、第2空間SP2の寸法よりも大きくてもよい。
 液体回収部24は、光路K(終端光学素子13の光軸)に対して下面23の外側に配置される。液体回収部24は、下面23の周囲に配置される。液体回収部24は、露光光ELの光路Kの周囲に配置される。なお、液体回収部24は、下面23の周囲の一部に配置されてもよい。例えば、液体回収部24は、下面23の周囲において複数配置されてもよい。液体回収部24は、第1空間SP1に面するように配置される。液体回収部24は、第1空間SP1の液体LQの少なくとも一部を回収する。
 流体回収部27は、光路K(終端光学素子13の光軸)に対して下面26の外側に配置される。流体回収部27は、下面26の周囲に配置される。流体回収部27は、露光光ELの光路Kの周囲に配置される。なお、流体回収部27は、下面26の周囲の一部に配置されてもよい。例えば、流体回収部27は、下面26の周囲において複数配置されてもよい。流体回収部27は、第2空間SP2に面するように配置される。流体回収部27は、第2空間SP2の液体LQの少なくとも一部を回収する。
 流体回収部27は、光路K(終端光学素子13の光軸)に対して第1部材21の外側に配置される。流体回収部27は、光路K(終端光学素子13の光軸)に対して第1空間SP1の外側に配置される。
 本実施形態においては、上面25側の第1空間SP1及び下面26側の第2空間SP2の一方から他方への液体LQの移動が抑制されている。第1空間SP1と第2空間SP2とは、第2部材22によって仕切られている。第1空間SP1の液体LQは、開口35を介して第2空間SP2に移動できる。第1空間SP1の液体LQは、開口35を介さずに第2空間SP2に移動できない。光路Kに対して開口35よりも外側の第1空間SP1に存在する液体LQは、第2空間SP2に移動できない。第2空間SP2の液体LQは、開口35を介して第1空間SP1に移動できる。第2空間SP2の液体LQは、開口35を介さずに第1空間SP1に移動できない。光路Kに対して開口35よりも外側の第2空間SP2に存在する液体LQは、第1空間SP1に移動できない。すなわち、本実施形態において、液浸部材5は、開口35以外に、第1空間SP1と第2空間SP2とを流体的に接続する流路を有しない。
 本実施形態において、流体回収部27は、第2空間SP2の液体LQの少なくとも一部を回収し、第1空間SP1の液体LQを回収しない。液体回収部24は、第1空間SP1の液体LQの少なくとも一部を回収し、第2空間SP2の液体LQを回収しない。なお、液体回収部24の下に、第2部材22の上面25が存在しない場合に、物体(基板P)上の液体LQを液体回収部24で回収してもよい。
 また、光路Kに対して第1空間SP1の外側(外側面29の外側)に移動した液体LQは、内側面30によって、基板P上(第2空間SP2)に移動することが抑制される。
 液体回収部24は、第1部材21の下面23の周囲の少なくとも一部に配置される開口(流体回収口)を含む。液体回収部24は、上面25に対向するように配置される。液体回収部24は、第1部材21の内部に形成された回収流路(空間)24Rを介して、液体回収装置24Cと接続される。液体回収装置24Cは、液体回収部24と真空システム(不図示)とを接続可能である。液体回収部24は、第1空間SP1の液体LQの少なくとも一部を回収可能である。第1空間SP1の液体LQの少なくとも一部は、液体回収部24を介して回収流路24Rに流入可能である。なお、終端光学素子13の側面13Fと第1部材21の内側面との間の第3空間SP3から、第1部材21の上面を経て、第1部材21の外側面29と第2部材22の内側面30との間の空間を介して、第2部材22の上面25上に流れた液体LQを、液体回収部24で回収してもよい。すなわち、液体回収部24を、開口40を介さずに空間SP3から第2部材22の上面25上に流れた液体LQを回収する回収部として使ってもよい。もちろん、空間SP3からの液体LQを回収する回収部を、第1部材21の上面に設けてもよいし、第2部材22の上面25と内側面30の少なくとも一方に設けてもよい。
 本実施形態において、液体回収部24は、多孔部材36を含み、流体回収口は、多孔部材36の孔を含む。本実施形態において、多孔部材36は、メッシュプレートを含む。多孔部材36は、上面25が対向可能な下面と、回収流路24Rに面する上面と、下面と上面とを結ぶ複数の孔とを有する。液体回収部24は、多孔部材36の孔を介して液体LQを回収する。液体回収部24(多孔部材36の孔)から回収された第1空間SP1の液体LQは、回収流路24Rに流入し、その回収流路24Rを流れて、液体回収装置24Cに回収される。
 本実施形態においては、液体回収部24を介して実質的に液体LQのみが回収され、気体の回収が制限されている。制御装置6は、第1空間SP1の液体LQが多孔部材36の孔を通過して回収流路24Rに流入し、気体は通過しないように、多孔部材36の下面側の圧力(第1空間SP1の圧力)と上面側の圧力(回収流路24Rの圧力)との差を調整する。なお、多孔部材を介して液体のみを回収する技術の一例が、例えば米国特許第7292313号などに開示されている。
 なお、多孔部材36を介して液体LQ及び気体の両方が回収(吸引)されてもよい。すなわち、液体回収部24が、液体LQを気体とともに回収してもよい。また、液体回収24の下に液体LQが存在しないときに、液体回収部24から気体だけを回収してもよい。なお、第1部材21に多孔部材36が設けられなくてもよい。すなわち、多孔部材を介さずに第1空間SP1の流体(液体LQ及び気体の一方又は両方)が回収されてもよい。
 本実施形態において、液体回収部24の下面は、多孔部材36の下面を含む。液体回収部24の下面は、下面23の周囲に配置される。本実施形態において、液体回収部24の下面は、XY平面と実質的に平行である。本実施形態において、液体回収部24の下面と下面23とは、同一平面内に配置される(面一である)。
 なお、液体回収部24の下面が下面23よりも+Z側に配置されてもよいし、-Z側に配置されてもよい。なお、液体回収部24の下面が下面23に対して傾斜してもよいし、曲面を含んでもよい。
 なお、第1空間SP1の流体(液体LQ及び気体の一方又は両方)を回収するための液体回収部24が、第1空間SP1に面するように第2部材22に配置されてもよい。液体回収部24は、第1部材21及び第2部材22の両方に配置されてもよい。液体回収部24は、第1部材21に配置され、第2部材22に配置されなくてもよい。液体回収部24は、第2部材22に配置され、第1部材21に配置されなくてもよい。
 流体回収部27は、第2部材22の下面26の周囲の少なくとも一部に配置される開口(流体回収口)を含む。流体回収部27は、基板P(物体)の上面に対向するように配置される。流体回収部27は、第2部材22の内部に形成された回収流路(空間)27Rを介して、液体回収装置27Cと接続される。液体回収装置27Cは、流体回収部27と真空システム(不図示)とを接続可能である。流体回収部27は、第2空間SP2の液体LQの少なくとも一部を回収可能である。第2空間SP2の液体LQの少なくとも一部は、流体回収部27を介して回収流路27Rに流入可能である。
 本実施形態において、流体回収部27は、多孔部材37を含み、流体回収口は、多孔部材37の孔を含む。本実施形態において、多孔部材37は、メッシュプレートを含む。多孔部材37は、基板P(物体)の上面が対向可能な下面と、回収流路27Rに面する上面と、下面と上面とを結ぶ複数の孔とを有する。液体回収部27は、多孔部材37の孔を介して流体(液体LQ及び気体の一方又は両方)を回収する。流体回収部27(多孔部材37の孔)から回収された第2空間SP2の液体LQは、回収流路27Rに流入し、その回収流路27Rを流れて、液体回収装置27Cに回収される。
 回収流路27Rは、光路K(終端光学素子13の光軸)に対して内側面30の外側に配置される。回収流路27Rは、液体回収部27の上方に配置される。第2部材22が移動することにより、第2部材22の流体回収部27及び回収流路27Rが、第1部材21の外側面29の外側で移動する。
 流体回収部27を介して液体LQとともに気体が回収される。なお、多孔部材37を介して液体LQのみが回収され、多孔部材37を介した気体の回収が制限されてもよい。なお、第2部材22に多孔部材37が設けられなくてもよい。すなわち、多孔部材を介さずに第2空間SP2の流体(液体LQ及び気体の一方又は両方)が回収されてもよい。
 本実施形態において、流体回収部27の下面は、多孔部材37の下面を含む。流体回収部27の下面は、下面26の周囲に配置される。本実施形態において、流体回収部27の下面は、XY平面と実質的に平行である。本実施形態において、流体回収部27の下面は、下面26よりも+Z側に配置される。
 なお、流体回収部27の下面と下面26とが同一平面内に配置されてもよい(面一でもよい)。流体回収部27の下面が下面26よりも-Z側に配置されてもよい。なお、流体回収部27の下面が下面26に対して傾斜してもよいし、曲面を含んでもよい。例えば、流体回収部27(多孔部材37)の下面が、光路Kに対する放射方向に関して外側に向かって上方に傾斜していてもよい。また、流体回収部27(多孔部材37)の下面が、開口35の周囲の全周に渡って、高さ(Z軸方向の位置)が同じでなくてもよい。例えば、開口35のY軸方向両側に位置する流体回収部27(多孔部材37)の下面の一部が、開口35のX軸方向両側に位置する流体回収部27(多孔部材37)の下面の一部より低くてもよい。例えば、第2部材22の流体回収部27(多孔部材37)の下面が基板Pの表面と対向しているときに、露光光の光路Kに対してY軸方向の一側に形成される、流体回収部27(多孔部材37)の下面と基板Pの表面とのギャップの寸法(Z軸方向の距離)が、露光光の光路Kに対してX軸方向の一側に形成される、流体回収部27(多孔部材37)の下面と基板Pの表面とのギャップの寸法(Z軸方向の距離)より小さくなるように、流体回収部27(多孔部材37)の下面の形状を決めてもよい。
 本実施形態においては、液体供給部31からの液体LQの供給動作と並行して、流体回収部27からの液体LQの回収動作が実行されることによって、一方側の終端光学素子13及び液浸部材5と、他方側の基板P(物体)との間に液体LQで液浸空間LSが形成される。
 また、本実施形態においては、液体供給部31からの液体LQの供給動作、及び流体回収部27からの流体の回収動作と並行して、液体回収部24からの流体の回収動作が実行される。
 本実施形態において、液浸空間LSの液体LQの界面LGの一部は、第2部材22と基板P(物体)との間に形成される。
 本実施形態において、液浸空間LSの液体LQの界面LGの一部は、第1部材21と第2部材22との間に形成される。
 本実施形態において、液浸空間LSの液体LQの界面LGの一部は、終端光学素子13と第1部材21との間に形成される。
 以下の説明において、第1部材21と第2部材22との間に形成される液体LQの界面LGを適宜、第1界面LG1、と称する。第2部材22と基板P(物体)との間に形成される界面LGを適宜、第2界面LG2、と称する。終端光学素子13と第1部材21との間に形成される界面LGを適宜、第3界面LG3、と称する。
 本実施形態において、第1界面LG1は、液体回収部24の下面と上面25との間に形成される。第2界面LG2は、液体回収部27の下面と基板P(物体)の上面との間に形成される。
 本実施形態においては、第1界面LG1が液体回収部24の下面と上面25との間に形成され、第1空間SP1の液体LQが液体回収部24の外側の空間(例えば外側面29と内側面30との間の空間)に移動することが抑制されている。外側面29と内側面30との間の空間には液体LQが存在しない。外側面29と内側面30との間の空間は気体空間である。
 外側面29と内側面30との間の空間は、空間CSと接続される。換言すれば、外側面29と内側面30との間の空間は、雰囲気に開放される。空間CSの圧力が大気圧である場合、外側面29と内側面30との間の空間は、大気開放される。そのため、第2部材22は円滑に移動可能である。なお、空間CSの圧力は、大気圧よりも高くてもよいし、低くてもよい。
 図8は、第1部材21を下面23側から見た図である。本実施形態においては、第1部材21の下面23に、液体供給部31からの液体LQの少なくとも一部を誘導する誘導部38が配置される。誘導部38は、下面23に設けられた凸部である。誘導部38は、液体供給部31からの液体LQの少なくとも一部を液体回収部24に誘導する。
 誘導部38の形状は、第2部材22の移動方向に基づいて定められる。誘導部38は、第2部材22の移動方向と平行な方向の液体LQの流れを促進するように設けられる。
 例えば、第2部材22がX軸方向に移動する場合、第1空間SP1において液体LQがX軸方向と平行な方向に流れて液体回収部24に到達されるように、誘導部38の形状が定められる。例えば、第2部材22が+X軸方向に移動する場合、誘導部38によって、第1空間SP1の液体LQの少なくとも一部は、+X軸方向に流れる。第2部材22が-X軸方向に移動する場合、誘導部38によって、第1空間SP1の液体LQの少なくとも一部は、-X軸方向に流れる。
 本実施形態においては、誘導部38は、開口34の周囲の少なくとも一部に配置される壁部38Rと、その壁部38Rの一部に形成されるスリット(開口)38Kとを有する。
 壁部38は、開口34を囲むように配置される。スリット38Kは、X軸方向と平行な方向の液体LQの流れが促進されるように、光路Kに対して+X側及び-X側のそれぞれに形成される。
 誘導部38により、第2部材22の移動方向と平行な方向に関して、第1空間SP1における液体LQの流速が高められる。本実施形態においては、誘導部38により、第1空間SP1におけるX軸方向に関する液体LQの流速が高められる。すなわち、液体回収部24の下面と上面25との間の空間に向かって流れる液体LQの速度が高められる。これにより、第1部材21に対する第1界面LG1の位置が変動したり、第1界面LG1の形状が変化したりすることが抑制される。そのため、第1空間SP1の液体LQが、第1空間SP1の外側に流出することが抑制される。
 なお、スリット38Kが形成される位置は、光路Kに対して+X側及び-X側に限定されない。例えば、第2部材22がY軸と平行にも移動する場合、光路Kに対して+Y側及び-Y側に、スリット38Kが追加されてもよい。第2部材22がY軸と平行に移動しない場合でも、光路Kに対して+Y側及び-Y側に、スリット38Kが追加されてもよい。
 また、第2部材22の移動方向に基づいて、誘導部38の形状(スリット38Kの位置など)が定められなくてもよい。例えば、光路Kの全周囲において、光路Kに対して放射状に液体LQが流れるように、誘導部38の形状が定められてもよい。
 本実施形態において、第2部材22は、下面23の全部と対向可能である。例えば図2に示すように、終端光学素子13の光軸と開口35の中心とが実質的に一致する原点に第2部材22が配置されているときに、下面23の全部と第2部材22の上面25とが対向する。また、第2部材22が原点に配置されているときに、射出面12の一部と第2部材22の上面25とが対向する。また、第2部材22が原点に配置されているときに、液体回収部24の下面と第2部材22の上面25とが対向する。
 また、本実施形態においては、第2部材22が原点に配置されているときに、開口34の中心と開口35の中心とが実質的に一致する。
 次に、第2部材22の動作の一例について説明する。第2部材22は、基板P(物体)の移動と協調して移動可能である。第2部材22は、基板P(物体)と独立して移動可能である。第2部材22は、基板P(物体)の移動の少なくとも一部と並行して移動可能である。第2部材22は、液浸空間LSが形成された状態で移動可能である。第2部材22は、第1空間SP1及び第2空間SP2に液体LQが存在する状態で移動可能である。
 第2部材22は、第2部材22と基板P(物体)とが対向しないときに移動してもよい。例えば、第2部材22は、その第2部材22の下方に物体が存在しないときに移動してもよい。なお、第2部材22は、第2部材22と基板P(物体)との間の空間に液体LQが存在しないときに移動してもよい。例えば、第2部材22は、液浸空間LSが形成されていないときに移動してもよい。
 第2部材22は、例えば基板P(物体)の移動条件に基づいて移動する。制御装置6は、例えば基板P(物体)の移動条件に基づいて、基板P(物体)の移動の少なくとも一部と並行して第2部材22を移動する。制御装置6は、液浸空間LSが形成され続けるように、液体供給部31からの液体LQの供給と流体回収部27及び液体回収部24からの液体LQの回収とを行いながら、第2部材22を移動する。
 本実施形態において、第2部材22は、基板P(物体)との相対移動が小さくなるように移動可能である。また、第2部材22は、基板P(物体)との相対移動が、第1部材21と基板P(物体)との相対移動よりも小さくなるように移動可能である。例えば、第2部材22は、基板P(物体)と同期して移動してもよい。
 相対移動は、相対速度、及び相対加速度の少なくとも一方を含む。例えば、第2部材22は、液浸空間LSが形成されている状態で、すなわち、第2空間SP2に液体LQが存在している状態で、基板P(物体)との相対速度が小さくなるように移動してもよい。また、第2部材22は、液浸空間LSが形成されている状態で、すなわち、第2空間SP2に液体LQが存在している状態で、基板P(物体)との相対加速度が小さくなるように移動してもよい。また、第2部材22は、液浸空間LSが形成されている状態で、すなわち、第2空間SP2に液体LQが存在している状態で、基板P(物体)との相対速度が、第1部材21と基板P(物体)との相対速度よりも小さくなるように移動してもよい。また、第2部材22は、液浸空間LSが形成されている状態で、すなわち、第2空間SP2に液体LQが存在している状態で、基板P(物体)との相対加速度が、第1部材21と基板P(物体)との相対加速度よりも小さくなるように移動してもよい。
 第2部材22は、例えば基板P(物体)の移動方向に移動可能である。例えば、基板P(物体)が+X軸方向(または-X軸方向)に移動するとき、第2部材22は+X軸方向(または-X軸方向)に移動可能である。また、基板P(物体)が+X軸方向に移動しつつ、+Y軸方向(又は-Y軸方向)に移動するとき、第2部材22は+X軸方向に移動可能である。また、基板P(物体)が-X軸方向に移動しつつ、+Y軸方向(又は-Y軸方向)に移動するとき、第2部材22は-X軸方向に移動可能である。すなわち、本実施形態においては、基板P(物体)がX軸方向の成分を含むある方向に移動する場合、第2部材22はX軸方向に移動する。
 例えば、X軸方向の成分を含むある方向への基板P(物体)の移動の少なくとも一部と並行して、第2部材22がX軸方向に移動してもよい。
 なお、第2部材22がY軸方向に移動可能でもよい。基板P(物体)がY軸方向の成分を含むある方向に移動する場合、第2部材22がY軸方向に移動してもよい。例えば、Y軸方向の成分を含むある方向への基板P(物体)の移動の少なくとも一部と並行して、基板P(物体)との相対速度差が小さくなるように、第2部材22がY軸方向に移動してもよい。
 図9は、第2部材22が移動する状態の一例を示す図である。図9は、液浸部材5を下側(-Z側)から見た図である。
 以下の説明においては、第2部材22はX軸方向に移動することとする。なお、上述のように、第2部材22は、Y軸方向に移動してもよいし、X軸方向(又はY軸方向)の成分を含むXY平面内における任意の方向に移動してもよい。
 基板P(物体)がX軸方向(又はX軸方向の成分を含むXY平面内における所定方向)に移動する場合、第2部材22は、図9(A)~図9(C)に示すように、X軸方向に移動する。
 本実施形態において、第2部材22は、X軸方向に関して規定された移動可能範囲(可動範囲)を移動可能である。図9(A)は、移動可能範囲の最も-X側の端に第2部材22が配置された状態を示す。図9(B)は、移動可能範囲の中央に第2部材22が配置された状態を示す。図9(C)は、移動可能範囲の最も+X側の端に第2部材22が配置された状態を示す。
 以下の説明において、図9(A)に示す第2部材22の位置を適宜、第1端部位置、と称し、図9(B)に示す第2部材22の位置を適宜、中央位置、と称し、図9(C)に示す第2部材22の位置を適宜、第2端部位置、と称する。なお、図9(B)に示すように、第2部材22が中央位置に配置される状態は、第2部材22が原点に配置される状態を含む。
 本実施形態においては、射出面12からの露光光ELが開口35を通過するように、第2部材22の移動可能範囲の寸法に基づいて開口35の寸法が定められる。第2部材22の移動可能範囲の寸法は、X軸方向に関する第1端部位置と第2端部位置との距離を含む。第2部材22がX軸方向に移動しても、射出面12からの露光光ELが第2部材22に照射されないように、開口35のX軸方向の寸法が定められる。
 図9において、X軸方向に関する開口35の寸法W35は、露光光EL(投影領域PR)の寸法Wprと、第2部材22の移動可能範囲の寸法(Wa+Wb)との和よりも大きい。寸法W35は、第2部材22が第1端部位置と第2端部位置との間において移動した場合でも、射出面12からの露光光ELを遮らない大きさに定めされる。これにより、第2部材22が移動しても、射出面12からの露光光ELは、第2部材22に遮られずに基板P(物体)に照射可能である。
 次に、上述の構成を有する露光装置EXを用いて基板Pを露光する方法について説明する。
 液浸部材5から離れた基板交換位置において、露光前の基板Pを基板ステージ2(第1保持部)に搬入(ロード)する処理が行われる。基板ステージ2が液浸部材5から離れている期間の少なくとも一部において、計測ステージ3が終端光学素子13及び液浸部材5と対向するように配置される。制御装置6は、液体供給部31からの液体LQの供給と、流体回収部27からの液体LQの回収とを行って、計測ステージ3上に液浸空間LSを形成する。
 露光前の基板Pが基板ステージ2にロードされ、計測ステージ3を用いる計測処理が終了した後、制御装置6は、終端光学素子13及び液浸部材5と基板ステージ2(基板P)とが対向するように、基板ステージ2を移動する。終端光学素子13及び液浸部材5と基板ステージ2(基板P)とが対向する状態で、液体供給部31からの液体LQの供給と並行して流体回収部27からの液体LQの回収が行われることによって、光路Kが液体LQで満たされるように、終端光学素子13及び液浸部材5と基板ステージ2(基板P)との間に液浸空間LSが形成される。
 本実施形態においては、液体供給部31からの液体LQの供給及び流体回収部27からの液体LQの回収と並行して、液体回収部24からの液体LQの回収が行われる。
 制御装置6は、基板Pの露光処理を開始する。制御装置6は、基板P上に液浸空間LSが形成されている状態で、照明系ILから露光光ELを射出する。照明系ILはマスクMを露光光ELで照明する。マスクMからの露光光ELは、投影光学系PL及び射出面12と基板Pとの間の液浸空間LSの液体LQを介して基板Pに照射される。これにより、基板Pは、終端光学素子13の射出面12と基板Pとの間の液浸空間LSの液体LQを介して射出面12から射出された露光光ELで露光され、マスクMのパターンの像が基板Pに投影される。
  本実施形態の露光装置EXは、マスクMと基板Pとを所定の走査方向に同期移動しつつ、マスクMのパターンの像を基板Pに投影する走査型露光装置(所謂スキャニングステッパ)である。本実施形態においては、基板Pの走査方向(同期移動方向)をY軸方向とし、マスクMの走査方向(同期移動方向)もY軸方向とする。制御装置6は、基板Pを投影光学系PLの投影領域PRに対してY軸方向に移動するとともに、その基板PのY軸方向への移動と同期して、照明系ILの照明領域IRに対してマスクMをY軸方向に移動しつつ、投影光学系PLと基板P上の液浸空間LSの液体LQとを介して基板Pに露光光ELを照射する。
 図10は、基板ステージ2に保持された基板Pの一例を示す図である。本実施形態においては、基板Pに露光対象領域であるショット領域Sがマトリクス状に複数配置される。
 制御装置6は、終端光学素子13の射出面12から射出される露光光ELに対して、第1保持部に保持されている基板PをY軸方向(走査方向)に移動しつつ、射出面12と基板Pとの間の液浸空間LSの液体LQを介して、射出面12から射出された露光光ELで、基板Pの複数のショット領域Sのそれぞれを順次露光する。
 例えば基板Pの1つのショット領域Sを露光するために、制御装置6は、液浸空間LSが形成されている状態で、射出面12から射出される露光光EL(投影光学系PLの投影領域PR)に対して基板PをY軸方向に移動するとともに、その基板PのY軸方向への移動と同期して、照明系ILの照明領域IRに対してマスクMをY軸方向に移動しつつ、投影光学系PLと基板P上の液浸空間LSの液体LQとを介してそのショット領域Sに露光光ELを照射する。これにより、マスクMのパターンの像がそのショット領域Sに投影され、そのショット領域Sが射出面12から射出された露光光ELで露光される。
 そのショット領域Sの露光が終了した後、制御装置6は、次のショット領域Sの露光を開始するために、液浸空間LSが形成されている状態で、基板PをXY平面内においてY軸と交差する方向(例えばX軸方向、あるいはXY平面内においてX軸及びY軸方向に対して傾斜する方向等)に移動し、次のショット領域Sを露光開始位置に移動する。その後、制御装置6は、そのショット領域Sの露光を開始する。
  制御装置6は、基板P(基板ステージ2)上に液浸空間LSが形成されている状態で、射出面12からの露光光ELが照射される位置(投影領域PR)に対してショット領域をY軸方向に移動しながらそのショット領域を露光する動作と、そのショット領域の露光後、基板P(基板ステージ2)上に液浸空間LSが形成されている状態で、次のショット領域が露光開始位置に配置されるように、XY平面内においてY軸方向と交差する方向(例えばX軸方向、あるいはXY平面内においてX軸及びY軸方向に対して傾斜する方向等)に基板Pを移動する動作とを繰り返しながら、基板Pの複数のショット領域のそれぞれを順次露光する。
  以下の説明において、ショット領域を露光するために、基板P(基板ステージ2)上に液浸空間LSが形成されている状態で、射出面12からの露光光ELが照射される位置(投影領域PR)に対して基板P(ショット領域)をY軸方向に移動する動作を適宜、スキャン移動動作、と称する。また、あるショット領域の露光終了後、基板P(基板ステージ2)上に液浸空間LSが形成されている状態で、次のショット領域の露光が開始されるまでの間に、XY平面内において基板Pを移動する動作を適宜、ステップ移動動作、と称する。
 本実施形態において、スキャン移動動作は、あるショット領域Sが露光開始位置に配置されている状態から露光終了位置に配置される状態になるまで基板PがY軸方向に移動する動作を含む。ステップ移動動作は、あるショット領域Sが露光終了位置に配置されている状態から次のショット領域Sが露光開始位置に配置される状態になるまで基板PがXY平面内においてY軸方向と交差する方向に移動する動作を含む。
 露光開始位置は、あるショット領域Sの露光のために、そのショット領域SのY軸方向に関する一端部が投影領域PRを通過する時点の基板Pの位置を含む。露光終了位置は、露光光ELが照射されたそのショット領域SのY軸方向に関する他端部が投影領域PRを通過する時点の基板Pの位置を含む。
 ショット領域Sの露光開始位置は、そのショット領域Sを露光するためのスキャン移動動作開始位置を含む。ショット領域Sの露光開始位置は、そのショット領域Sを露光開始位置に配置するためのステップ移動動作終了位置を含む。
 ショット領域Sの露光終了位置は、そのショット領域Sを露光するためのスキャン移動動作終了位置を含む。ショット領域Sの露光終了位置は、そのショット領域Sの露光終了後、次のショット領域Sを露光開始位置に配置するためのステップ移動動作開始位置を含む。
 以下の説明において、あるショット領域Sの露光のためにスキャン移動動作が行われる期間を適宜、スキャン移動期間、と称する。以下の説明において、あるショット領域Sの露光終了から次のショット領域Sの露光開始のためにステップ移動動作が行われる期間を適宜、ステップ移動期間、と称する。
 スキャン移動期間は、あるショット領域Sの露光開始から露光終了までの露光期間を含む。ステップ移動期間は、あるショット領域Sの露光終了から次のショット領域Sの露光開始までの基板Pの移動期間を含む。
 スキャン移動動作において、射出面12から露光光ELが射出される。スキャン移動動作において、基板P(物体)に露光光ELが照射される。ステップ移動動作において、射出面12から露光光ELが射出されない。ステップ移動動作において、基板P(物体)に露光光ELが照射されない。
 制御装置6は、スキャン移動動作とステップ移動動作とを繰り返しながら、基板Pの複数のショット領域Sのそれぞれを順次露光する。なお、スキャン移動動作は、主にY軸方向に関する等速移動である。ステップ移動動作は、加減速度移動を含む。例えば、あるショット領域Sの露光終了から次のショット領域Sの露光開始までの間のステップ移動動作は、Y軸方向に関する加減速移動及びX軸方向に関する加減速移動の一方又は両方を含む。
 なお、スキャン移動動作及びステップ移動動作の少なくとも一部において、液浸空間LSの少なくとも一部が、基板ステージ2(カバー部材T)上に形成される場合がある。スキャン移動動作及びステップ移動動作の少なくとも一部において、液浸空間LSが基板Pと基板ステージ2(カバー部材T)とを跨ぐように形成される場合がある。基板ステージ2と計測ステージ3とが接近又は接触した状態で基板Pの露光が行われる場合、スキャン移動動作及びステップ移動動作の少なくとも一部において、液浸空間LSが基板ステージ2(カバー部材T)と計測ステージ3とを跨ぐように形成される場合がある。
 制御装置6は、基板P上の複数のショット領域Sの露光条件に基づいて、駆動システム15を制御して、基板P(基板ステージ2)を移動する。複数のショット領域Sの露光条件は、例えば露光レシピと呼ばれる露光制御情報によって規定される。露光制御情報は、記憶装置7に記憶されている。
 露光条件(露光制御情報)は、複数のショット領域Sの配列情報(基板Pにおける複数のショット領域Sそれぞれの位置)を含む。また、露光条件(露光制御情報)は、複数のショット領域Sのそれぞれの寸法情報(Y軸方向に関する寸法情報)を含む。
 図10に示すように、基板Pには、ショット領域Sの列が設けられる。本実施形態において、ショット領域Sの列は、基板PにおいてX軸方向に配置される複数のショット領域Sによって形成される。1つの列は、X軸方向に配置される複数のショット領域Sを含む。
 基板Pには、ショット領域Sの列が複数設けられる。ショット領域Sの列は、基板PにおいてY軸方向に複数配置される。図10に示す例では、基板Pにショット領域Sの列Ga~列Gjが設けられる。列Gaは、複数の列Ga~Gjのうち最も-Y側に配置される。Y軸方向に関して、列Gbは、列Gaの隣に配置される。列Gbは、列Gaの+Y側に配置される。Y軸方向に関して、列Gcは、列Gbの隣に配置される。列Gcは、列Gbの+Y側に配置される。同様に、列Gd~GjがY軸方向に配置される。
 図10に示す例では、列Ga、Gjはそれぞれ、基板PにおいてX軸方向に配置される6個のショット領域Sを含む。列Gb、Giはそれぞれ、基板PにおいてX軸方向に配置される10個のショット領域Sを含む。列Gc、Gd、Ge、Gf、Gg、Ghはそれぞれ、基板PにおいてX軸方向に配置される12個のショット領域Sを含む。
 制御装置6は、記憶装置7に記憶されている露光条件(露光制御情報)に基づいて、所定の移動条件で基板Pを移動しながら、複数のショット領域Sのそれぞれを順次露光する。基板P(物体)の移動条件は、移動速度、加速度、移動距離、移動方向、及びXY平面内における移動軌跡の少なくとも一つを含む。
 一例として、本実施形態においては、基板Pの複数のショット領域Sのうち、最初に、列Gaのショット領域Sの露光が行われる。本実施形態においては、最初に、列Gaに含まれる複数のショット領域Sのそれぞれが順次露光される。列Gaに含まれる複数のショット領域Sのそれぞれを順次露光するとき、制御装置6は、投影光学系PLの投影領域PRと基板Pとが、図10中、矢印Srに示す移動軌跡に沿って相対的に移動するように基板ステージ2を移動しつつ投影領域PRに露光光ELを照射して、液体LQを介して列Gaの複数のショット領域Sのそれぞれを露光光ELで順次露光する。制御装置6は、スキャン移動動作とステップ移動動作とを繰り返しながら、列Gaに含まれる複数のショット領域Sのそれぞれを順次露光する。
 本実施形態においては、列Gaに含まれる複数のショット領域Sのそれぞれが順次露光された後に、列Gbのショット領域Sの露光が行われる。制御装置6は、液浸空間LSが形成されている状態で、スキャン移動動作とステップ移動動作とを繰り返しながら、列Gbに含まれる複数のショット領域Sのそれぞれを順次露光する。
 列Gbに含まれる複数のショット領域Sのそれぞれが順次露光された後に、列Gcのショット領域Sのそれぞれの露光が行われる。同様に、列Gd~列Gjのそれぞれに含まれる複数のショット領域Sのそれぞれが順次露光される。
 列Gjに含まれる複数のショット領域Sのそれぞれが順次露光された後、基板ステージ2が基板交換位置に移動され、露光後の基板Pを基板ステージ2(第1保持部)から搬出(アンロード)する処理が行われる。
 以下、上述の処理が繰り返され、複数の基板Pが順次露光される。
 本実施形態において、第2部材22は、基板Pの露光処理の少なくとも一部において移動する。第2部材22は、例えば液浸空間LSが形成されている状態で基板P(基板ステージ2)のステップ移動動作の少なくとも一部と並行して移動する。第2部材22は、例えば液浸空間LSが形成されている状態で基板P(基板ステージ2)のスキャン移動動作の少なくとも一部と並行して移動する。第2部材22の移動と並行して、射出面12から露光光ELが射出される。なお、スキャン移動動作中に第2部材22が移動しなくてもよい。すなわち、射出面12からの露光光ELの射出と並行して第2部材22が移動しなくてもよい。第2部材22は、例えば基板P(基板ステージ2)がステップ移動動作を行うとき、基板P(基板ステージ2)との相対移動(相対速度、相対加速度)が小さくなるように、移動してもよい。また、第2部材22は、基板P(基板ステージ2)がスキャン移動動作を行うとき、基板P(基板ステージ2)との相対移動(相対速度、相対加速度)が小さくなるように、移動してもよい。
 図11は、基板Pを+X軸方向の成分を含むステップ移動を行いながら、ある列Gに含まれるショット領域S1、ショット領域S2、及びショット領域S3のそれぞれを順次露光するときの基板Pの移動軌跡の一例を模式的に示す図である。ショット領域S1、S2、S3は、X軸方向に配置される。
 図11に示すように、ショット領域S1、S2、S3が露光されるとき、基板Pは、終端光学素子13の下において、位置d1からその位置d1に対して+Y側に隣り合う位置d2までの経路Tp1、位置d2からその位置d2に対して+X側に隣り合う位置d3までの経路Tp2、位置d3からその位置d3に対して-Y側に隣り合う位置d4までの経路Tp3、位置d4からその位置d4に対して+X側に隣り合う位置d5までの経路Tp4、及び位置d5からその位置d5に対して+Y側に隣り合う位置d6までの経路Tp5を順次移動する。位置d1、d2、d3、d4、d5、d6は、XY平面内における位置である。
 経路Tp1の少なくとも一部は、Y軸と平行な直線である。経路Tp3の少なくとも一部は、Y軸と平行な直線である。経路Tp5の少なくとも一部は、Y軸と平行な直線を含む。経路Tp2は、位置d2.5を経由する曲線を含む。経路Tp4は、位置d4.5を経由する曲線を含む。位置d1は、経路Tp1の始点を含み、位置d2は、経路Tp1の終点を含む。位置d2は、経路Tp2の始点を含み、位置d3は、経路Tp2の終点を含む。位置d3は、経路Tp3の始点を含み、位置d4は、経路Tp3の終点を含む。位置d4は、経路Tp4の始点を含み、位置d5は、経路Tp4の終点を含む。位置d5は、経路Tp5の始点を含み、位置d6は、経路Tp5の終点を含む。経路Tp1は、基板Pが+Y軸方向に移動する経路である。経路Tp3は、基板Pが-Y軸方向に移動する経路である。経路Tp5は、基板Pが+Y軸方向に移動する経路である。経路Tp2及び経路Tp4は、基板Pが+X軸方向を主成分とする方向に移動する経路である。
 液浸空間LSが形成されている状態で基板Pが経路Tp1を移動するとき、液体LQを介してショット領域S1に露光光ELが照射される。液浸空間LSが形成されている状態で基板Pが経路Tp3を移動するとき、液体LQを介してショット領域S2に露光光ELが照射される。液浸空間LSが形成されている状態で基板Pが経路Tp5を移動するとき、液体LQを介してショット領域S3に露光光ELが照射される。基板Pが経路Tp2及び経路Tp4を移動するとき、露光光ELは照射されない。
 基板Pが経路Tp1を移動する動作、経路Tp3を移動する動作、及び経路Tp5を移動する動作のそれぞれは、スキャン移動動作を含む。また、基板Pが経路Tp2を移動する動作、及び経路Tp4を移動する動作のそれぞれは、ステップ移動動作を含む。
 すなわち、基板Pが経路Tp1を移動する期間、経路Tp3を移動する期間、及び経路Tp5を移動する期間のそれぞれは、スキャン移動期間(露光期間)である。基板Pが経路Tp2を移動する期間、及び経路Tp4を移動する期間のそれぞれは、ステップ移動期間である。
 図12は、第2部材22の動作の一例を示す模式図である。図12は、第2部材22を上面25側から見た図である。基板Pが、図11における位置d1にあるとき、第2部材22は、投影領域PR(露光光ELの光路K)に対して図12(A)に示す位置に配置される。基板Pが位置d2にあるとき、第2部材22は、投影領域PR(露光光ELの光路K)に対して図12(B)に示す位置に配置される。すなわち、基板Pの位置d1から位置d2へのスキャン移動動作中に、第2部材22は、基板Pのステップ移動の方向(+X軸方向)とは逆の-X軸方向に移動する。基板Pが位置d2.5にあるとき、第2部材22は、投影領域PR(露光光ELの光路K)に対して図12(C)に示す位置に配置される。基板Pが位置d3にあるとき、第2部材22は、投影領域PR(露光光ELの光路K)に対して図12(D)に示す位置に配置される。すなわち、基板Pの位置d2から位置d3へのステップ移動動作中に、第2部材22は、基板Pのステップ移動の方向(+X軸方向)と同じ+X軸方向に移動する。基板Pが位置d4にあるとき、第2部材22は、投影領域PR(露光光ELの光路K)に対して図12(E)に示す位置に配置される。すなわち、基板Pの位置d3から位置d4へのスキャン移動動作中に、第2部材22は、基板Pのステップ移動の方向(+X軸方向)とは逆の-X軸方向に移動する。基板Pが位置d4.5にあるとき、第2部材22は、投影領域PR(露光光ELの光路K)に対して図12(F)に示す位置に配置される。基板Pが位置d5にあるとき、第2部材22は、投影領域PR(露光光ELの光路K)に対して図12(G)に示す位置に配置される。すなわち、基板Pの位置d4から位置d5へのステップ移動動作中に、第2部材22は、基板Pのステップ移動の方向(+X軸方向)と同じ+X軸方向に移動する。基板Pが位置d6にあるとき、第2部材22は、投影領域PR(露光光ELの光路K)に対して図12(H)に示す位置に配置される。すなわち、基板Pの位置d5から位置d6へのスキャン動作移動中に、第2部材22は、基板Pのステップ移動の方向(+X軸方向)とは逆の-X軸方向に移動する。
 本実施形態において、図12(A)、図12(D)、図12(G)に示す第2部材22の位置は、第2端部位置を含む。図12(B)、図12(E)、図12(H)に示す第2部材22の位置は、第1端部位置を含む。図12(C)、図12(F)に示す第2部材22の位置は、中央位置を含む。
 以下の説明においては、図12(A)、図12(D)、図12(G)に示す第2部材22の位置が、第2端部位置であることとし、図12(B)、図12(E)、図12(H)に示す第2部材22の位置が、第1端部位置であることとし、図12(C)、図12(F)に示す第2部材22の位置が、中央位置であることとする。
 基板Pが経路Tp1を移動するとき、第2部材22は、図12(A)に示す状態から図12(B)に示す状態に変化するように、-X軸方向に移動する。すなわち、第2部材22は、第2端部位置から中央位置を経て第1端部位置へ移動する。基板Pが経路Tp2を移動するとき、第2部材22は、図12(B)に示す状態から図12(C)に示す状態を経て図12(D)に示す状態に変化するように、+X軸方向に移動する。すなわち、第2部材22は、第1端部位置から中央位置を経て第2端部位置へ移動する。基板Pが経路Tp3を移動するとき、第2部材22は、図12(D)に示す状態から図12(E)に示す状態に変化するように、-X軸方向に移動する。すなわち、第2部材22は、第2端部位置から中央位置を経て第1端部位置へ移動する。基板Pが経路Tp4を移動するとき、第2部材22は、図12(E)に示す状態から図12(F)に示す状態を経て図12(G)に示す状態に変化するように、+X軸方向に移動する。すなわち、第2部材22は、第1端部位置から中央位置を経て第2端部位置へ移動する。基板Pが経路Tp5を移動するとき、第2部材22は、図12(G)に示す状態から図12(H)に示す状態に変化するように、-X軸方向に移動する。すなわち、第2部材22は、第2端部位置から中央位置を経て第1端部位置へ移動する。
 すなわち、本実施形態において、第2部材22は、基板Pが経路Tp2に沿って移動する期間の少なくとも一部において、基板Pとの相対移動が小さくなるように、+X軸方向に移動する。換言すれば、第2部材22は、基板Pが+X軸方向の成分を含むステップ移動動作する期間の少なくとも一部に、X軸方向に関する基板Pとの相対速度が小さくなるように、+X軸方向に移動する。同様に、第2部材22は、基板Pが経路Tp4に沿って移動する期間の少なくとも一部において、X軸方向に関する基板Pとの相対速度が小さくなるように、+X軸方向に移動する。
 また、本実施形態において、第2部材22は、基板Pが経路Tp3に沿って移動する期間の少なくとも一部において、-X軸方向に移動する。これにより、基板Pの経路Tp3の移動後、経路Tp4の移動において、第2部材22が+X軸方向に移動しても露光光ELは開口35を通過可能である。基板Pが経路Tp1、Tp5を移動する場合も同様である。
 すなわち、基板Pがスキャン移動動作と+X軸方向の成分を含むステップ移動動作とを繰り返す場合、ステップ移動動作中に、基板Pとの相対速度が小さくなるように第2部材22が第1端部位置から第2端部位置へ+X軸方向に移動し、スキャン移動動作中に、次のステップ移動動作において第2部材22が再度+X軸方向に移動できるように、第2部材22が第2端部位置から第1端部位置へ戻る。すなわち、基板Pがスキャン移動動作する期間の少なくとも一部において、第2部材22が-X軸方向に移動するので、開口35の寸法が必要最小限に抑えられる。
 また、本実施形態においては、第2部材22が第1端部位置(第2端部位置)に配置されても、流体回収部27の少なくとも一部は、基板P(物体)と対向し続ける。これにより、例えばステップ移動動作において、流体回収部27は、基板P(物体)上の液体LQを回収することができる。
 なお、上述の説明においては、+Y軸方向へ基板Pを移動しながらショット領域(例えばS1)を走査露光した後のステップ移動動作における第2部材22の動きと、-Y軸方向へ基板Pを移動しながらショット領域(例えばS2)を走査露光した後のステップ移動動作における第2部材22の動きとが同じであるが異なっていてもよい。上述の説明においては、例えば、基板Pが経路Tp2を移動するときの第2部材22の動き(図12(B)~図12(C)~図12(D))と、基板Pが経路Tp4を移動するときの第2部材22の動き(図12(E)~図12(F)~図12(G))とは同じであるが、異なっていてもよい。例えば、基板Pが経路Tp2を移動するときの第2部材22の+X軸方向への移動距離と、基板Pが経路Tp4を移動するときの第2部材22の+X軸方向への移動距離とが異なっていてもよい。例えば、+Y軸方向へ基板Pを移動しながらショット領域(例えばS1)を走査露光した後のステップ移動動作においては、第2部材22を+X軸方向へ動かさない、あるいは、+Y軸方向へ基板Pを移動しながらショット領域(例えばS1)を走査露光した後のステップ移動動作における第2部材22の+X軸方向への移動距離を、-Y軸方向へ基板Pを移動しながらショット領域(例えばS2)を走査露光した後のステップ移動動作における第2部材22の+X軸方向への移動を小さくしてもよい。
また、上述の説明においては、+Y軸方向へ基板Pが移動するスキャン移動動作における第2部材22の動きと、-Y軸方向へ基板Pが移動するスキャン移動動作における第2部材22の動きとが同じであるが、異なっていてもよい。例えば、基板Pが経路Tp1を移動するときの第2部材22の動き(図12(A)~図12(B))と、基板Pが経路Tp3を移動するときの第2部材22の動き(図12(G)~図12(H))とは同じであるが、異なっていてもよい。
 図13は、終端光学素子13(投影領域PR)に対する第2部材22の位置の一例を示す図である。図13(A)は、第2部材22が第2端部位置に配置される例を示す。図13(B)は、第2部材22が第2端部位置と中央位置との間の位置に配置される例を示す。図13(C)は、第2部材22が中央位置に配置される例を示す。図13(D)は、第2部材22が第1端部位置と中央位置との間の位置に配置される例を示す。図13(E)は、第2部材22が第1端部位置に配置される例を示す。
 以下の説明において、図13(A)に示す第2部材22の位置を適宜、位置Jr、と称する。図13(B)に示す第2部材22の位置を適宜、位置Jrm、と称する。図13(C)に示す第2部材22の位置を適宜、位置Jm、と称する。図13(D)に示す第2部材22の位置を適宜、位置Jsm、と称する。図13(E)に示す第2部材22の位置を適宜、位置Js、と称する。
 制御装置6は、駆動装置32を制御して、定められた移動条件で第2部材22を移動可能である。第2部材22の移動条件は、移動方向、移動速度、加速度、及び移動距離の少なくとも一つを含む。制御装置6は、第2部材22の移動方向、移動速度、加速度、及び移動距離の少なくとも一つを制御可能である。
 制御装置6は、駆動装置32を制御して、終端光学素子13(投影領域PR)に対する第2部材22の位置を異ならせることができる。制御装置6は、位置Jr、位置Jrm、位置Jm、位置Jsm、及び位置Jsの少なくとも一つにおいて第2部材22を停止可能である。制御装置6は、位置Jr、位置Jrm、位置Jm、位置Jsm、及び位置Jsのうち選択された2つの位置の間において第2部材22を移動可能である。制御装置6は、位置Jr、位置Jrm、位置Jm、位置Jsm、及び位置Jsに限らず、それ以外の任意の位置において、第2部材22を停止可能であってもよい。
 第2部材22は、X軸方向に関して定められた移動可能範囲(可動範囲)を移動する。
 図13(A)に示す第2部材22の位置Jrは、第2部材22の可動範囲において最も+X側の端の位置(第2端部位置)である。図13(E)に示す第2部材22の位置Jsは、第2部材22の可動範囲において最も-X側の端の位置(第1端部位置)である。図13(C)に示す第2部材22の位置Jmは、第2部材22の可動範囲において中央の位置(中央位置)である。図13(B)に示す第2部材22の位置Jrmは、第2部材22の可動範囲において位置Jrと位置Jmとの間の位置である。図13(D)に示す第2部材22の位置Jsmは、第2部材22の可動範囲において位置Jsと位置Jmとの間の位置である。
 位置Jmと位置Jrとの間の第2部材22の移動距離は、位置Jmと位置Jrmとの間の第2部材22の移動距離よりも長い。位置Jmと位置Jsとの間の第2部材22の移動距離は、位置Jmと位置Jsmとの間の第2部材22の移動距離よりも長い。
 なお、図11及び図12を用いて説明した例においては、基板Pが位置d1、d3、d5にあるときに、第2部材22が位置Jr(第2端部位置)に配置されることとした。基板Pが位置d1、d3、d5にあるときに、第2部材22が、位置Jrmに配置されてもよいし、位置Jm(中央位置)に配置されてもよい。
 なお、図11及び図12を用いて説明した例においては、基板Pが位置d2、d4、d6にあるときに、第2部材22が位置Js(第1端部位置)に配置されることとした。基板Pが位置d2、d4、d6にあるときに、第2部材22が、位置Jsmに配置されてもよいし、位置Jm(中央位置)に配置されてもよい。
 また、本実施形態において、基板Pが位置d2.5、d4.5にあるときに、第2部材22が、位置Jm(中央位置)とは異なる位置に配置されてもよい。すなわち、基板Pが位置d2.5、d4.5にあるときに、第2部材22が、例えば位置Jsmに配置されてもよいし、位置Jrmに配置されてもよい。
 上述したように、本実施形態においては、基板Pにおいて一の列(例えば列Gc)に含まれるX軸方向に配置される複数のショット領域Sのそれぞれが順次露光された後に、その列(例えば列Gc)とは異なる列(例えば列Gd)のショット領域Sの露光が行われる。また、基板Pにおいて一の列(例えば列Gc)に含まれるX軸方向に配置される複数のショット領域Sのそれぞれが順次露光される前に、その列(例えば列Gc)とは異なる列(例えば列Gb)のショット領域Sの露光が行われる。
 本実施形態において、制御装置6は、同じ列(例えば列Gc)に含まれるあるショット領域Sの露光終了から、その列(例えば列Gc)に含まれる別のショット領域Sの露光開始までの基板Pのステップ移動期間における第2部材22の動作(動き方)と、ある列(例えば列Gc)のあるショット領域Sの露光終了から、別の列(例えば列Gd)のショット領域Sの露光開始までの基板Pのステップ移動期間における第2部材22の動作(動き方)とが異なるように、駆動装置32を制御する。
 以下の説明において、同じ列(例えば列Ga)に含まれるあるショット領域(例えばショット領域Sa3)の露光終了からその列(列Ga)に含まれる別のショット領域(例えばショット領域Sa4)の露光開始までの基板Pのステップ移動期間を適宜、ショット領域Sa3、Sa4間の第1ステップ移動期間、と称する。また、以下の説明において、ある列(例えば列Ge)のあるショット領域(例えばショット領域Se12)の露光終了から別の列(例えば列Gf)のあるショット領域(例えばショット領域Sf1)の露光開始までの基板Pのステップ移動期間を適宜、ショット領域Se12、Sf1間の第2ステップ移動期間、と称する。
 第1ステップ移動期間は、所謂、Xステップ移動期間を含む。すなわち、第1ステップ移動期間に行われるステップ移動動作は、所謂、Xステップ移動動作を含む。第2ステップ移動期間は、所謂、Yステップ移動期間を含む。すなわち、第2ステップ移動期間に行われるステップ移動動作は、所謂、Yステップ移動動作を含む。Yステップ移動期間におけるXY平面内における基板P(基板ステージ2)の移動距離は、Xステップ移動期間におけるXY平面内における基板P(基板ステージ2)の移動距離よりも長い場合が多い。
 なお、Yステップ移動期間における基板P(基板ステージ2)の移動距離は、Xステップ移動期間における基板P(基板ステージ2)の移動距離よりも短くてもよい。なお、Yステップ移動期間における基板P(基板ステージ2)の移動距離は、Xステップ移動期間における基板P(基板ステージ2)の移動距離と実質的に等しくてもよい。
 図14は、同じ列(例えば列Gc)に含まれる複数のショット領域Sc1~Sc4のそれぞれが順次露光される状態の一例を模式的に示す図である。X軸方向に関して、ショット領域Sc4は、ショット領域Sc3の隣に配置される。X軸方向に関して、ショット領域Sc3は、ショット領域Sc2の隣に配置される。X軸方向に関して、ショット領域Sc2は、ショット領域Sc1の隣に配置される。ショット領域Sc4は、ショット領域Sc3よりも+X側に配置される。ショット領域Sc3は、ショット領域Sc2よりも+X側に配置される。ショット領域Sc2は、ショット領域Sc1よりも+X側に配置される。
 制御装置6は、液体LQの液浸空間LSが形成されている状態で、投影光学系PLの投影領域PRに対して基板Pが、図14中、矢印Sraに示す移動軌跡に沿って相対的に移動するように、スキャン移動動作とステップ移動動作とを繰り返しながら、列Gcに含まれる複数のショット領域Sc1~Sc4のそれぞれを、液体LQを介して順次露光する。
 図15は、ショット領域Sc1~Sc4のそれぞれが順次露光されるときの第2部材22の動作(動き方)の一例を模式的に示す図である。
 図15(A)は、基板Pがショット領域Sc1の露光終了位置(ショット領域Sc1のスキャン移動動作終了位置、ショット領域Sc1、Sc2間のステップ移動動作開始位置)に配置されている状態を示す。
 図15(B)は、基板Pがショット領域Sc2の露光開始位置(ショット領域Sc2のスキャン移動動作開始位置、ショット領域Sc1、Sc2間のステップ移動動作終了位置)に配置されている状態を示す。
 図15(C)は、基板Pがショット領域Sc2の露光終了位置(ショット領域Sc2のスキャン移動動作終了位置、ショット領域Sc2、Sc3間のステップ移動動作開始位置)に配置されている状態を示す。
 図15(D)は、基板Pがショット領域Sc3の露光開始位置(ショット領域Sc3のスキャン移動動作開始位置、ショット領域Sc2、Sc3間のステップ移動動作終了位置)に配置されている状態を示す。
 ショット領域Sc1の露光について説明する。ショット領域Sc1の露光のために、制御装置6は、ショット領域Sc1の露光開始からそのショット領域Sc1の露光終了までの間に、少なくとも-Y軸方向への移動を含む基板Pのスキャン移動動作を行う。ショット領域Sc1の露光のための基板Pのスキャン移動期間において、第2部材22は、位置Jsから位置Jrに移動する。図15(A)に示すように、ショット領域Sc1の露光終了において、第2部材22は、位置Jrに配置される。ショット領域Sc1の露光のための基板Pのスキャン移動期間において、第2部材22は、位置Jsからの移動を開始し、位置Jrに到達するまで、+X軸方向に移動する。
 次に、ショット領域Sc1、Sc2間のステップ移動について説明する。ショット領域Sc1の露光のための基板Pのスキャン移動動作終了後、ショット領域Sc1、Sc2間の基板Pのステップ移動動作が行われる。本実施形態において、ショット領域Sc1の露光終了からショット領域Sc2の露光開始までの間に、制御装置6は、少なくとも-X軸方向への移動を含む基板Pのステップ移動動作を行う。ショット領域Sc1、Sc2間の基板Pのステップ移動期間の少なくとも一部において、第2部材22は、基板Pの移動方向(-X軸方向)に移動される。第2部材22は、基板Pとの相対速度が小さくなるように移動される。本実施形態においては、ショット領域Sc1、Sc2間の基板Pのステップ移動期間(第1ステップ移動期間)において、第2部材22は、位置Jrから位置Jsに移動する。図15(B)に示すように、ショット領域Sc1、Sc2間のステップ移動終了において、第2部材22は、位置Jsに配置される。ショット領域Sc1、Sc2間の基板Pのステップ移動期間(第1ステップ移動期間)において、第2部材22は、位置Jrからの移動を開始し、位置Jsに到達するまで、-X軸方向に移動する。
 次に、ショット領域Sc2の露光について説明する。ショット領域Sc1、Sc2間の基板Pのステップ移動動作終了後、ショット領域Sc2の露光のための基板Pのスキャン移動動作が行われる。ショット領域Sc2の露光のために、制御装置6は、ショット領域Sc2の露光開始からそのショット領域Sc2の露光終了までの間に、少なくとも+Y軸方向への移動を含む基板Pのスキャン移動動作を行う。ショット領域Sc2の露光のための基板Pのスキャン移動期間において、第2部材22は、位置Jsから位置Jrに移動する。図15(C)に示すように、ショット領域Sc2の露光終了において、第2部材22は、位置Jrに配置される。ショット領域Sc2の露光のための基板Pのスキャン移動期間において、第2部材22は、位置Jsからの移動を開始し、位置Jrに到達するまで、+X軸方向に移動する。
 次に、ショット領域Sc2、Sc3間のステップ移動について説明する。ショット領域Sc2の露光のための基板Pのスキャン移動動作終了後、ショット領域Sc2、Sc3間の基板Pのステップ移動動作が行われる。本実施形態において、ショット領域Sc2の露光終了からショット領域Sc3の露光開始までの間に、制御装置6は、少なくとも-X軸方向への移動を含む基板Pのステップ移動動作を行う。ショット領域Sc2、Sc3間の基板Pのステップ移動期間の少なくとも一部において、第2部材22は、基板Pの移動方向(-X軸方向)に移動される。第2部材22は、基板Pとの相対速度が小さくなるように移動される。本実施形態においては、ショット領域Sc2、Sc3間の基板Pのステップ移動期間(第1ステップ移動期間)において、第2部材22は、位置Jrから位置Jsに移動する。図15(D)に示すように、ショット領域Sc2、Sc3間のステップ移動終了において、第2部材22は、位置Jsに配置される。ショット領域Sc2、Sc3間の基板Pのステップ移動期間(第1ステップ移動期間)において、第2部材22は、位置Jrからの移動を開始し、位置Jsに到達するまで、-X軸方向に移動する。
 次に、ショット領域Sc3の露光について説明する。本実施形態において、ショット領域Sc3の露光のための基板Pのステップ移動動作、及び第2部材22の動作(動き方)は、ショット領域Sc1の露光のための基板Pのステップ移動動作、及び第2部材22の動作(動き方)と同様である。すなわち、ショット領域Sc3の露光開始からそのショット領域Sc3の露光終了までの間に、少なくとも-Y軸方向への移動を含む基板Pのスキャン移動動作が行われる。また、ショット領域Sc3の露光のための基板Pのスキャン移動期間において、第2部材22は、位置Jsから位置Jrに移動する。
 次に、ショット領域Sc3、Sc4間のステップ移動について説明する。本実施形態において、ショット領域Sc3、Sc4間のステップ移動動作、及び第2部材22の動作(動き方)は、ショット領域Sc1、Sc2間のステップ移動動作、及び第2部材22の動作(動き方)と同様である。すなわち、ショット領域Sc3の露光終了からショット領域Sc4の露光開始までの間に、少なくとも-X軸方向への移動を含む基板Pのステップ移動動作が行われる。また、ショット領域Sc3、Sc4間の基板Pのステップ移動期間において、第2部材22は、位置Jrから位置Jsに移動する。
 次に、ショット領域Sc4の露光について説明する。本実施形態において、ショット領域Sc4の露光のための基板Pのステップ移動動作、及び第2部材22の動作(動き方)は、ショット領域Sc2の露光のための基板Pのステップ移動動作、及び第2部材22の動作(動き方)と同様である。すなわち、ショット領域Sc4の露光開始からそのショット領域Sc4の露光終了までの間に、少なくとも+Y軸方向への移動を含む基板Pのスキャン移動動作が行われる。また、ショット領域Sc4の露光のための基板Pのスキャン移動期間において、第2部材22は、位置Jsから位置Jrに移動する。
 以下、同じ列Gcに含まれる複数のショット領域Scのそれぞれを順次露光する場合において、基板P(基板ステージ2)及び第2部材22について、制御装置6は、図15(A)~図15(D)を参照して説明した動作と同様の動作を行う。
 上述のように、本実施形態においては、同じ列Gcに含まれるショット領域Sc、Sc間の基板Pの第1ステップ移動期間において、第2部材22は、X軸方向に関して一側(+X側)に移動する。また、第1ステップ移動期間において、基板Pは、少なくともX軸方向に関して一側(+X側)に移動する。
 本実施形態において、同じ列Gcに含まれるショット領域Sc、Sc間の基板Pの第1ステップ移動期間において、第2部材22は、移動し続けてもよい。すなわち、基板Pが列Gcのショット領域Sc(例えばSc1)の露光終了位置から次のショット領域Sc(例えばSc2)の露光開始位置まで移動する期間において、終端光学素子13(第1部材21)に対する第2部材22の移動速度は零にならなくてもよい。換言すれば、第1ステップ移動期間において、終端光学素子13(第1部材21)に対して第2部材22は停止しなくてもよい。
 本実施形態において、ショット領域Sc(例えばSc1)の露光開始からそのショット領域Sc(Sc1)の露光終了までの露光期間(ショット領域Scの露光のためのスキャン移動期間)において、第2部材22は、移動し続けてもよい。
 本実施形態において、ショット領域Sc(例えばSc1)の露光開始からそのショット領域Sc(Sc1)の露光終了までの露光期間(ショット領域Scの露光のためのスキャン移動期間)、ショット領域Sc、Sc間(例えばSc1、Sc2間)の基板Pの第1ステップ移動期間、及び次のショット領域Sc(例えばSc2)の露光開始から露光終了までの露光期間(ショット領域Sc2の露光のためのスキャン移動期間)のそれぞれにおいて、第2部材22は、移動し続けてもよい。
 なお、ショット領域Scの露光期間の少なくとも一部において、終端光学素子13(第1部材21)に対して第2部材22が停止してもよい。
 なお、ある列(例えば列Gc)に含まれるショット領域Sc、Sc間の基板Pの第1ステップ移動期間の少なくとも一部において、終端光学素子13(第1部材21)に対して第2部材22が停止してもよい。
 図16は、ある列(例えば列Gc)のショット領域S(例えばショット領域Sc4)が露光された後に、その列とは別の列(例えば列Gd)のショット領域S(例えばショット領域Sd1)の露光が行われる状態の一例を模式的に示す図である。Y軸方向に関して、ショット領域Sd1を含む列Gdは、ショット領域Sc4を含む列Gcの隣に配置される。列Gdは、列Gcよりも+Y側に配置される。
 Y軸方向に関して、ショット領域Sd1の位置とショット領域Sc4の位置とは異なる。ショット領域Sd1は、ショット領域Sc4よりも、+Y側に配置される。X軸方向に関して、ショット領域Sd1の位置とショット領域Sc4の位置とは異なる。ショット領域Sd1は、ショット領域Sc4よりも、+X側に配置される。なお、X軸方向に関して、ショット領域Sd1の位置とショット領域Sc4の位置とが同じでもよいし、ショット領域Sd1が、ショット領域Sc4よりも、-X側に配置されてもよい。
 X軸方向に関して、ショット領域Sd2は、ショット領域Sd1の隣に配置される。X軸方向に関して、ショット領域Sd3は、ショット領域Sd2の隣に配置される。ショット領域Sd2は、ショット領域Sd1よりも-X側に配置される。ショット領域Sd3は、ショット領域Sd2よりも-X側に配置される。
 制御装置6は、液体LQの液浸空間LSが形成されている状態で、投影光学系PLの投影領域PRに対して基板Pが、図16中、矢印Srbに示す移動軌跡に沿って相対的に移動するように、スキャン移動動作とステップ移動動作とを繰り返しながら、列Gcに含まれるショット領域Sc4を液体LQを介して露光した後、列Gdに含まれるショット領域Sd1を液体LQを介して露光する。また、列Gdに含まれるショット領域Sd1が露光された後、その列Gdに含まれる複数のショット領域Sd2、Sd3が、液体LQを介して順次露光される。
 図17は、列Gcに含まれるショット領域Sc4が露光された後、列Gdに含まれるショット領域Sd1が露光されるときの第2部材22の動作(動き方)の一例を模式的に示す図である。
 図17(A)は、基板Pがショット領域Sc4の露光終了位置(ショット領域Sc4のスキャン移動動作終了位置、ショット領域Sc4、Sd1間のステップ移動動作開始位置)に配置されている状態を示す。
 図17(B)は、基板Pがショット領域Sc4の露光終了位置からショット領域Sd1の露光開始位置(ショット領域Sd1のスキャン移動動作開始位置)に移動する途中の状態を示す。
 図17(C)は、基板Pがショット領域Sd1の露光開始位置(ショット領域Sd1のスキャン移動動作開始位置、ショット領域Sc4、Sd1間のステップ移動動作終了位置)に配置されている状態を示す。
 図17(D)は、基板Pがショット領域Sd1の露光終了位置(ショット領域Sd1のスキャン移動動作終了位置、ショット領域Sd1、Sd2間のステップ移動動作開始位置)に配置されている状態を示す。
 図17(E)は、基板Pがショット領域Sd2の露光開始位置(ショット領域Sd2のスキャン移動動作開始位置、ショット領域Sd1、Sd2間のステップ移動動作終了位置)に配置されている状態を示す。
 ショット領域Sc4の露光について説明する。例えば図15を参照して説明したように、ショット領域Sc4の露光開始からそのショット領域Sc4の露光終了までの間に、少なくとも+Y軸方向への移動を含む基板Pのスキャン移動動作が行われる。ショット領域Sc4の露光のための基板Pのスキャン移動期間において、第2部材22は、位置Jsから位置Jrに移動する。図17(A)に示すように、ショット領域Sc4の露光終了において、第2部材22は、位置Jrに配置される。ショット領域Sc4の露光のためのスキャン移動期間において、第2部材22は、移動し続けてもよい。なお、ショット領域Sc4の露光のためのスキャン移動期間の少なくとも一部において、第2部材22は、停止してもよい。
 次に、ショット領域Sc4、Sd1間のステップ移動について説明する。ショット領域Sc4の露光のための基板Pのスキャン移動動作終了後、ショット領域Sc4、Sd1間の基板Pのステップ移動動作が行われる。
 本実施形態においては、列Gcのショット領域Sc4の露光終了から列Gdのショット領域Sd1の露光開始までの基板Pのステップ移動期間(第2ステップ移動期間)は、同じ列Gcに含まれるショット領域Sc(例えばショット領域Sc2)の露光終了から次のショット領域Sc(例えばショット領域Sc3)の露光開始までの基板Pのステップ移動期間(第1ステップ移動期間)よりも長い。
 また、本実施形態においては、列Gcのショット領域Sc4の露光終了位置から列Gdのショット領域Sd1の露光開始位置までの基板Pのステップ移動距離は、同じ列Gcに含まれるショット領域Sc(例えばショット領域Sc2)の露光終了位置から次のショット領域Sc(例えばショット領域Sc3)の露光開始位置までの基板Pのステップ移動距離よりも長い。
 本実施形態において、ショット領域Sc4の露光終了からショット領域Sd1の露光開始までの間に、制御装置6は、少なくとも-X軸方向及び-Y軸方向への移動を含む基板Pのステップ移動動作を行う。本実施形態において、ショット領域Sc4、Sd1間の基板Pのステップ移動動作は、図17(A)及び図17(B)に示すように、基板Pが少なくともX軸方向に移動する第1動作と、図17(B)及び図17(C)に示すように、基板Pが主にY軸方向に移動する第2動作とを含む。第1動作において、図17(A)に示す状態から図17(B)に示す状態に変化する。第2動作において、図17(B)に示す状態から図17(C)に示す状態に変化する。第1動作は、基板Pが少なくともX軸方向へ移動することを含む。本実施形態において、第1動作は、基板Pが-X軸方向へ移動しつつ、+Y軸方向及び-Y軸方向の一方又は両方に移動することを含む。第2動作は、基板PがY軸方向に移動することを含む。第2動作は、第1動作よりもX軸方向に関する基板Pの動き(移動距離、移動速度、及び加速度の少なくとも一つ)が小さいことを含む。本実施形態において、第2動作は、基板Pが-Y軸方向に移動し、X軸方向には実質的に移動しないことを含む。なお、第2動作において、基板Pは、Y軸方向に移動しつつ、X軸方向に移動してもよい。例えば、第2動作におけるX軸方向に関する基板Pの動きが、第1動作におけるX軸方向に関する基板Pの動きよりも小さくなるように、基板Pを動かしてもよい。
 すなわち、本実施形態においては、ショット領域Sc4の露光終了からショット領域Sd1の露光開始までの基板Pのステップ移動期間(第2ステップ移動期間)において、制御装置6は、基板Pを少なくとも-X軸方向へ移動させる第1動作と、基板Pを主に-Y軸方向に移動させる第2動作とを行う。
 本実施形態においては、ショット領域Sc4、Sd1間の基板Pのステップ移動期間(第2ステップ移動期間)のうち基板Pの第1動作が行われる期間において、第2部材22は、基板Pの移動方向(-X軸方向)に移動される。第2部材22は、基板Pとの相対速度が小さくなるように移動される。本実施形態においては、ショット領域Sc4、Sd1間の基板Pのステップ移動期間(第2ステップ移動期間)のうち基板Pの第1動作が行われる期間において、第2部材22は、位置Jrから位置Jsに移動する。図17(B)に示すように、ショット領域Sc4、Sd1間のステップ移動動作の途中(第1動作の終了)において、第2部材22は、位置Jsに配置される。換言すれば、ショット領域Sc4の露光終了後、ショット領域Sd1の露光開始前において、第2部材22は、位置Jsに配置される。基板Pの第1動作が行われる期間において、第2部材22は、位置Jrからの移動を開始し、位置Jsに到達するまで、-X軸方向に移動する。
 本実施形態においては、ショット領域Sc4、Sd1間の基板Pのステップ移動期間(第2ステップ移動期間)のうち基板Pの第2動作が行われる期間において、第2部材22は、移動しない。換言すれば、基板Pの第2動作が行われる期間において、第2部材22は、終端光学素子13(第1部材21)に対して停止する。基板Pの第2動作が行われる期間において、終端光学素子13(第1部材21)に対する第2部材22の相対速度が零になる。すなわち、基板Pのステップ移動期間(第2ステップ移動期間)のうち、基板PがX軸方向に実質的に移動しない(あるいはX軸方向への動きが小さい)期間においては、第2部材22は、X軸方向に移動しない。第2動作が行われる期間において、第2部材22の位置は、位置Jsに維持される。
 なお、基板Pの第1動作が行われる期間の少なくとも一部において、第2部材22が停止してもよい。なお、基板Pの第2動作が行われる期間の少なくとも一部において、第2部材22が移動してもよい。
 なお、ショット領域Sc4、Sd1間の基板Pのステップ移動期間(第2ステップ移動期間)において、基板Pの第1動作の後、第2動作が行われてもよいし、基板Pの第2動作の後、第1動作が行われてもよい。なお、ショット領域Sc4、Sd1間の基板Pのステップ移動期間(第2ステップ移動期間)において、基板Pの第1動作と第2動作とが交互に行われてもよい。
 また、第2ステップ移動期間において、基板Pの動作を第1動作と第2動作に分けなくてもよい。例えば、第2ステージ移動期間において、基板PをX軸方向とY軸方向とに動かし続け出てもよい。この場合、例えば図17(A)の状態から図17(C)の状態へ変化する期間において、第2部材22を-X軸方向に動かし続けてもよい。
 次に、ショット領域Sd1の露光について説明する。ショット領域Sc4、Sd1間の基板Pのステップ移動動作終了後、ショット領域Sd1の露光のための基板Pのスキャン移動動作が行われる。ショット領域Sd1の露光のために、制御装置6は、ショット領域Sd1の露光開始からそのショット領域Sd1の露光終了までの間に、少なくとも-Y軸方向への移動を含む基板Pのスキャン移動動作を行う。
 本実施形態においては、ショット領域Sd1の露光のための基板Pのスキャン移動期間において、第2部材22は、移動しない。換言すれば、ショット領域Sd1の露光のための基板Pのスキャン移動期間において、第2部材22は、終端光学素子13(第1部材21)に対して停止する。ショット領域Sd1の露光のための基板Pのスキャン移動期間において、終端光学素子13(第1部材21)に対する第2部材22の相対速度が零になる。すなわち、基板PがX軸方向に実質的に移動しないショット領域Sd1の露光のための基板Pのスキャン移動期間においては、第2部材22は、X軸方向に移動しない。図17(C)に示すように、ショット領域Sd1の露光開始において、第2部材22は、位置Jsに配置される。図17(D)に示すように、ショット領域Sd1の露光終了において、第2部材22は、位置Jsに配置される。すなわち、ショット領域Sd1の露光のための基板Pのスキャン移動期間において、第2部材22の位置は、位置Jsに維持される。
 なお、ショット領域Sd1の露光のための基板Pのスキャン移動期間の少なくとも一部において、第2部材22は移動してもよい。
 次に、ショット領域Sd1、Sd2間のステップ移動について説明する。ショット領域Sd1の露光のための基板Pのスキャン移動動作終了後、ショット領域Sd1、Sd2間の基板Pのステップ移動動作が行われる。本実施形態において、ショット領域Sd1の露光終了からショット領域Sd2の露光開始までの間に、制御装置6は、少なくとも+X軸方向への移動を含む基板Pのステップ移動動作を行う。ショット領域Sd1、Sd2間の基板Pのステップ移動期間の少なくとも一部において、第2部材22は、基板Pの移動方向(+X軸方向)に移動される。第2部材22は、基板Pとの相対速度が小さくなるように移動される。本実施形態においては、ショット領域Sd1、Sd2間の基板Pのステップ移動期間(第1ステップ移動期間)において、第2部材22は、位置Jsから位置Jrに移動する。図17(E)に示すように、ショット領域Sd1、Sd2間のステップ移動終了において、第2部材22は、位置Jrに配置される。ショット領域Sd1、Sd2間の基板Pのステップ移動期間(第1ステップ移動期間)において、第2部材22は、位置Jsからの移動を開始し、位置Jrに到達するまで、+X軸方向に移動する。
 次に、ショット領域Sd2の露光について説明する。ショット領域Sd1、Sd2間の基板Pのステップ移動動作終了後、ショット領域Sd2の露光のための基板Pのスキャン移動動作が行われる。ショット領域Sd2の露光開始からそのショット領域Sd2の露光終了までの間に、少なくとも+Y軸方向への移動を含む基板Pのスキャン移動動作が行われる。また、ショット領域Sd2の露光のための基板Pのスキャン移動期間において、第2部材22は、位置Jrから位置Jsに移動する。
 次に、ショット領域Sd2、Sd3間のステップ移動について説明する。ショット領域Sd2の露光終了からショット領域Sd3の露光開始までの間に、少なくとも+X軸方向への移動を含む基板Pのステップ移動動作が行われる。また、ショット領域Sd2、Sd3間の基板Pのステップ移動期間において、第2部材22は、位置Jsから位置Jrに移動する。
 以下、同じ列Gdに含まれる複数のショット領域Sdのそれぞれを順次露光する場合において、基板P(基板ステージ2)及び第2部材22について、制御装置6は、図17(C)~図17(E)を参照して説明した動作と同様の動作を行う。
 図15~図17を参照して説明したように、本実施形態においては、ある列(例えば列Gc)に含まれるショット領域S(例えばショット領域Sc2)の露光終了からその列と同じ列(列Gc)に含まれる次のショット領域S(例えばショット領域Sc3)の露光開始までの基板Pの第1ステップ移動期間における第2部材22の動作(動き方)と、ある列(例えば列Gc)のショット領域S(例えばショット領域Sc4)の露光終了からその列とは別の列(例えば列Gd)のショット領域S(例えばショット領域Sd1)の露光開始までの基板Pの第2ステップ移動期間における第2部材22の動作(動き方)とが異なる。
 本実施形態においては、一例として、第1ステップ移動期間においては、第2部材22は移動し続け、第2ステップ移動期間の一部の期間(第2動作が行われる期間)においては、第2部材22の移動が停止する。
 また、本実施形態においては、ショット領域Sc4、Sd1間のステップ移動期間(第2ステップ移動期間)の開始とショット領域Sd1、Sd2間のステップ移動期間(第1ステップ移動期間)の開始とにおいて、終端光学素子13(第1部材21)に対する第2部材22の位置が異なる。本実施形態においては、図17(A)に示すように、ショット領域Sc4、Sd1間のステップ移動期間(第2ステップ移動期間)の開始において、第2部材22は、位置Jrに配置される。図17(D)に示すように、ショット領域Sd1、Sd2間のステップ移動期間(第1ステップ移動期間)の開始において、第2部材22は、位置Jsに配置される。
 また、本実施形態においては、ショット領域Sc4、Sd1間のステップ移動期間(第2ステップ移動期間)の終了とショット領域Sd1、Sd2間のステップ移動期間(第1ステップ移動期間)の終了とにおいて、終端光学素子13(第1部材21)に対する第2部材22の位置が異なる。本実施形態においては、図17(C)に示すように、ショット領域Sc4、Sd1間のステップ移動期間(第2ステップ移動期間)の終了において、第2部材22は、位置Jsに配置される。図17(E)に示すように、ショット領域Sd1、Sd2間のステップ移動期間(第1ステップ移動期間)の終了において、第2部材22は、位置Jrに配置される。
 また、本実施形態においては、ショット領域Sc4、Sd1間のステップ移動期間(第2ステップ移動期間)とショット領域Sd1、Sd2間のステップ移動期間(第1ステップ移動期間)とにおいて、第2部材22の移動方向が異なる。本実施形態においては、図17(A)、図17(B)、及び図17(C)に示すように、ショット領域Sc4、Sd1間のステップ移動期間(第2ステップ移動期間)において、第2部材22は、位置Jrから位置Jsに移動する。すなわち、第2ステップ移動期間において、第2部材22は、-X軸方向に移動する。図17(D)及び図17(E)に示すように、ショット領域Sd1、Sd2間のステップ移動期間(第1ステップ移動期間)において、第2部材22は、位置Jsから位置Jrに移動する。すなわち、第1ステップ移動期間において、第2部材22は、+X軸方向に移動する。
 本実施形態において、ショット領域Sc4、Sd1間のステップ移動期間(第2ステップ移動期間)とショット領域Sd1、Sd2間のステップ移動期間(第1ステップ移動期間)とにおいて、第2部材22の移動距離が実質的に等しくてもよいし、異なってもよい。第1ステップ移動期間における第2部材22の移動距離が、第2ステップ移動期間における第2部材22の移動距離よりも長くてもよいし、短くてもよい。例えば、第1ステップ移動期間において第2部材22が位置Jsと位置Jrとの間を移動する場合、第2ステップ移動期間において、第2部材22は、位置Jrと位置Jsmとの間を移動してもよいし、位置Jrと位置Jmとの間を移動してもよいし、位置Jrと位置Jrmとの間を移動してもよい。また、第2ステップ移動期間において、第2部材22は、位置Jrmと位置Jsとの間を移動してもよいし、位置Jrmと位置Jsmとの間を移動してもよいし、位置Jrmと位置Jmとの間を移動してもよい。また、例えば、第2ステップ移動期間において第2部材22が位置Jrと位置Jsとの間を移動する場合、第1ステップ移動期間において、第2部材22は、位置Jsと位置Jrmとの間を移動してもよいし、位置Jsと位置Jmとの間を移動してもよいし、位置Jsと位置Jsmに移動してもよい。また、第2ステップ移動期間において、第2部材22は、位置Jsmと位置Jrとの間を移動してもよいし、位置Jsmと位置Jrmとの間を移動してもよいし、位置Jsmと位置Jmとの間を移動してもよい。
 また、本実施形態において、ショット領域Sc4、Sd1間のステップ移動期間(第2ステップ移動期間)とショット領域Sd1、Sd2間のステップ移動期間(第1ステップ移動期間)とにおいて、第2部材22の移動速度が実質的に等しくてもよいし、異なってもよい。第1ステップ移動期間における第2部材22の移動速度が、第2ステップ移動期間における第2部材22の移動速度よりも高くてもよいし、低くてもよい。
 また、本実施形態において、ショット領域Sc4、Sd1間のステップ移動期間(第2ステップ移動期間)とショット領域Sd1、Sd2間のステップ移動期間(第1ステップ移動期間)とにおいて、第2部材22の加速度(減速度)が実質的に等しくてもよいし、異なってもよい。第1ステップ移動期間における第2部材22の加速度が、第2ステップ移動期間における第2部材22の加速度よりも高くてもよいし、低くてもよい。
 本実施形態において、第2部材22は、X軸方向に移動可能であり、第1、第2ステップ移動期間における第2部材22の移動方向は、X軸方向に関する第2部材22の移動方向を含む。同様に、本実施形態において、第1、第2ステップ移動期間における第2部材22の移動距離は、X軸方向に関する第2部材22の移動距離を含む。第1、第2ステップ移動期間における第2部材22の移動速度は、X軸方向に関する第2部材22の移動速度を含む。第1、第2ステップ移動期間における第2部材22の加速度は、X軸方向に関する第2部材22の加速度を含む。
 なお、第2部材22は、XY平面内における少なくとも2つの方向に移動可能でもよい。例えば、第2部材22は、X軸方向及びY軸方向のそれぞれに移動可能でもよい。第1ステップ移動期間と第2ステップ移動期間とにおいて、XY平面内における終端光学素子13に対する第2部材22の移動方向が異なってもよいし、移動距離が異なってもよいし、移動速度が異なってもよいし、加速度(減速度)が異なってもよい。
 なお、第2部材22は、X軸、Y軸、Z軸、θX、θY、及びθZの6つの方向に移動可能でもよい。第1ステップ移動期間と第2ステップ移動期間とにおいて、その6つの方向における終端光学素子13に対する第2部材22の移動方向が異なってもよいし、移動距離が異なってもよいし、移動速度が異なってもよいし、加速度(減速度)が異なってもよい。
 なお、第2ステップ移動期間において、第2部材22は、移動し続けてもよい。すなわち、第2ステップ移動期間において、終端光学素子13(第1部材21)に対する第2部材22の移動速度は零にならなくてもよい。換言すれば、第2ステップ移動期間において、終端光学素子13(第1部材21)に対して第2部材22は停止しなくてもよい。
 また、第1ステップ移動期間及び第2ステップ移動期間の両方において、第2部材22は、移動し続けてもよい。
 また、本実施形態において、ショット領域Sc4の露光開始から露光終了までの露光期間(ショット領域Sc4の露光のための露光期間)、及びショット領域Sc4、Sd1間の第2ステップ移動期間において、第2部材22は、移動し続けてもよい。また、ショット領域Sc4の露光開始から露光終了までの露光期間(ショット領域Sc4の露光のための露光期間)、ショット領域Sc4、Sd1間の第2ステップ移動期間、及びショット領域Sd1の露光開始から露光終了までの露光期間(ショット領域Sd1の露光のための露光期間)において、第2部材22は、移動し続けてもよい。
 なお、第1ステップ移動期間の少なくとも一部において第2部材22の移動が停止され、第2ステップ移動期間の少なくとも一部において第2部材22の移動が停止されてもよい。第1ステップ移動期間における第2部材22の移動停止時間と、第2ステップ移動期間における第2部材22の移動停止時間とが異なってもよい。例えば、第2ステップ移動期間における第2部材22の移動停止時間が、第1ステップ移動期間における第2部材22の移動停止時間よりも長くてもよい。なお、第2ステップ移動期間における第2部材22の移動停止時間が、第1ステップ移動期間における第2部材22の移動停止時間よりも短くてもよい。
 なお、本実施形態において、同じ列Gcに含まれるショット領域Sc、Sc間の基板Pの第1ステップ移動期間においては、第2部材22は、-X軸方向に移動する。また、同じ列Gdに含まれるショット領域Sd、Sd間の基板Pの第1ステップ移動期間においては、第2部材22は、+X軸方向に移動する。列Gcのショット領域Sc4の露光終了から列Gdのショット領域Sd1の露光開始までの基板Pの第2ステップ移動期間において、第2部材22は、例えば-X軸方向に移動してもよいし、-X軸方向及び+X軸方向の両側に移動してもよい。
 以上説明したように、本実施形態によれば、第1部材21の下方において移動可能な第2部材22を設けたので、液浸空間LSが形成されている状態で基板P等の物体がXY平面内において移動しても、例えば液体LQが液浸部材5と物体との間の空間から流出したり、物体上に液体LQが残留したりすることが抑制される。また、液浸空間LSの液体LQに気泡(気体部分)が発生することも抑制される。
 また、本実施形態においては、同じ列に含まれるショット領域Sの露光終了からその列に含まれるショット領域Sの露光開始までの基板Pの第1ステップ移動期間における第2部材22の動作(動き方)と、ある列のショット領域Sの露光終了からその列とは別の列のショット領域Sの露光開始までの基板Pの第2ステップ移動期間における第2部材22の動作(動き方)とが異なるため、液浸空間LSから液体LQが流出すること、基板P(物体)上に液体LQが残留すること、及び液体LQに気泡が発生することの少なくとも一つが抑制される。基板Pの第1ステップ移動動作(第1ステップ移動期間における基板Pの動き方)と、第2ステップ移動動作(第2ステップ移動期間における基板Pの動き方)とが異なる場合、その基板Pの動き方に基づいて、第2部材22の動作(動き方)を定めることによって、液体LQの流出などが抑制される。
 したがって、露光不良の発生、及び不良デバイスの発生を抑制することができる。
 また、本実施形態においては、第2部材22は、流体回収部27を有するため、液体回収部27の下面と基板P(物体)の上面との間に形成される第2界面LG2の形状変化を抑制することができる。これにより、液浸空間LSの液体LQが液浸部材5と基板P(物体)との間の空間から流出したり、基板P(物体)上に液体LQが残留したりすることが抑制される。
 また、本実施形態においては、基板P(物体)との相対移動(相対速度、相対加速度)が小さくなるように第2部材22を移動することにより、液浸空間LSが形成されている状態で物体が高速度で移動しても、液浸空間LSから液体LQが流出したり、基板P(物体)上に液体LQが残留したり、液体LQに気泡が発生したりすることが抑制される。
 また、本実施形態においては、第1部材21は終端光学素子13の周囲の少なくとも一部に配置されているので、液浸空間LSが形成されている状態で物体が移動したり、第2部材22が移動したりした場合においても、終端光学素子13と第1部材21との間において圧力が変動したり、液体LQの第3界面LG3の形状が大きく変動したりすることが抑制される。したがって、例えば液体LQに気泡が発生したり、終端光学素子13に過剰な力が作用したりすることが抑制される。また、本実施形態においては、第1部材21は実質的に移動しないため、終端光学素子13と第1部材21との間において圧力が大きく変動したり、液体LQの第1界面LG1の形状が大きく変動したりすることが抑制される。
 なお、第1部材21が移動可能であってもよい。なお、第1部材21は、終端光学素子13に対して移動してもよい。第1部材21は、X軸、Y軸、Z軸、θX、θY、及びθZの6つの方向のうちの少なくとも一つの方向に移動してもよい。例えば、終端光学素子13と第1部材21との位置関係を調整したり、第1部材21と第2部材22との位置関係を調整したりするために、第1部材21を移動してもよい。また、基板P(物体)の移動の少なくとも一部と並行して、第1部材21を移動してもよい。例えば、XY平面内において第2部材22よりも短い距離だけ移動してもよい。また、第1部材21は、第2部材22よりも低速度で移動してもよい。また、第1部材21は、第2部材22よりも低加速度で移動してもよい。
 また、本実施形態においては、液浸空間LSを形成するための液体LQを供給する液体供給部31が第1部材21に配置され、基板P(物体)上の液体LQを回収する流体回収部27が、第1部材21と間隙を介して配置される第2部材22に配置される。これにより、流体回収部27から流体(液体LQ及び気体の一方又は両方)が回収されることによって、第2部材22の温度が変化しても、第1部材21の温度が変化することが抑制される。したがって、液体供給部31から供給される液体LQの温度が変化することが抑制される。
 また、本実施形態においては、液体供給部31から供給された液体LQは、第1部材21の内側面28及び下面23に接触するように流れる。その液体LQによって、第1部材21の温度変化が抑制される。また、その液体LQによって、第1部材21の温度が調整される。また、液体供給部31から供給された液体LQは、第2部材22の上面25及び下面26に接触するように流れる。その液体LQによって、第2部材22の温度変化が抑制される。また、その液体LQによって、第2部材22の温度が調整される。
 なお、第1部材21の温度を調整する第1温度調整装置が配置されてもよい。第1温度調整装置は、例えば第1部材21の外面に配置されるペルチェ素子を含んでもよい。第1温度調整装置は、第1部材21の内部に形成された流路に温度調整用の流体(液体及び気体の一方又は両方)を供給する供給装置を含んでもよい。なお、第2部材22の温度を調整する第2温度調整装置が配置されてもよい。第2温度調整装置は、第2部材22の外面に配置されるペルチェ素子を含んでもよいし、第2部材22の内部に形成された流路に温度調整用の流体を供給する供給装置を含んでもよい。
 なお、本実施形態において、第2部材22の移動条件に基づいて、液体供給部31からの液体供給量が調整されてもよい。また、第2部材22の位置に基づいて液体供給部31からの液体供給量が調整されてもよい。例えば、第2部材22が第1端部位置及び第2端部位置の少なくとも一方に配置されるときの液体供給部31からの液体供給量が、第2部材22が中央位置に配置されるときの液体供給部31からの液体供給量よりも多くなるように調整されてもよい。また、第2部材22が第2端部位置から第1端部位置へ移動するとき、光路Kに対して+X側に配置されている液体供給部31からの液体供給量を、-X側に配置されている液体供給部31からの液体供給量よりも多くしてもよい。また、第2部材22が第1端部位置から第2端部位置へ移動するとき、光路Kに対して-X側に配置されている液体供給部31からの液体供給量を、+X側に配置されている液体供給部31からの液体供給量よりも多くしてもよい。こうすることにより、液体LQに気泡が発生することが抑制される。
 なお、本実施形態においては、基板Pのステップ移動動作に起因する液体LQの残留、流出などを抑えるために、基板Pのステップ移動動作に対して、第2部材22をステップ方向(X軸方向)に移動するようにしている。しかし、基板Pのスキャン移動動作及びステップ移動動作の少なくとも一方において、スキャン方向(Y軸方向)における基板P(物体)との相対速度差が小さくなるように、第2部材22をスキャン方向(Y軸方向)に移動するようにしてもよい。
 <第2実施形態>
  第2実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略若しくは省略する。
 図18は、ある列(例えば列Ge)のショット領域S(例えばショット領域Se2)が露光された後に、その列とは別の列(例えば列Gf)のショット領域S(例えばショット領域Sf1)の露光が行われる状態の一例を模式的に示す図である。Y軸方向に関して、ショット領域Sf1を含む列Gfは、ショット領域Se2を含む列Geの隣に配置される。列Gfは、列Geよりも+Y側に配置される。
 Y軸方向に関して、ショット領域Sf1の位置とショット領域Se2の位置とは異なる。ショット領域Sf1は、ショット領域Se2よりも、+Y側に配置される。X軸方向に関して、ショット領域Sf1の位置とショット領域Se2の位置とは異なる。ショット領域Sf1は、ショット領域Se2よりも、+X側に配置される。本実施形態においては、ショット領域Se2の+X側のエッジとショット領域Sf1の-X側のエッジとのX軸方向に関する距離は、ショット領域Sf2(ショット領域Se2、Sf1)のX軸方向に関する寸法よりも大きい。
 X軸方向に関して、ショット領域Sf2は、ショット領域Sf1の隣に配置される。X軸方向に関して、ショット領域Sf3は、ショット領域Sf2の隣に配置される。X軸方向に関して、ショット領域Sf4は、ショット領域Sf3の隣に配置される。ショット領域Sf2は、ショット領域Sf1よりも-X側に配置される。ショット領域Sf3は、ショット領域Sf2よりも-X側に配置される。ショット領域Sf4は、ショット領域Sf3よりも-X側に配置される。
 制御装置6は、液体LQの液浸空間LSが形成されている状態で、投影光学系PLの投影領域PRに対して基板Pが、図18中、矢印Srcに示す移動軌跡に沿って相対的に移動するように、スキャン移動動作とステップ移動動作とを繰り返しながら、列Geに含まれるショット領域Se1、Se2を、液体LQを介して露光した後、列Gfに含まれるショット領域Sf1を、液体LQを介して露光する。また、列Gfに含まれるショット領域Sf1が露光された後、その列Gfに含まれる複数のショット領域Sf2、Sf3、Sf4が、液体LQを介して順次露光される。なお、投影光学系PLの投影領域PRに対して基板Pが、図18中、矢印Src2に示す移動軌跡に沿って相対的に移動してもよい。
 図19は、列Geに含まれるショット領域Se2が露光された後、列Gfに含まれるショット領域Sf1が露光されるときの第2部材22の動作(動き方)の一例を模式的に示す図である。
 図19(A)は、基板Pがショット領域Se2の露光終了位置(ショット領域Se2のスキャン移動動作終了位置、ショット領域Se2、Sf1間のステップ移動動作開始位置)に配置されている状態を示す。
 図19(B)は、基板Pがショット領域Se2の露光終了位置からショット領域Sf1の露光開始位置(ショット領域Sf1のスキャン移動動作開始位置)に移動する途中の状態を示す。
 図19(C)は、基板Pがショット領域Sf1の露光開始位置(ショット領域Sf1のスキャン移動動作開始位置、ショット領域Se2、Sf1間のステップ移動動作終了位置)に配置されている状態を示す。
 図19(D)は、基板Pがショット領域Sf1の露光終了位置(ショット領域Sf1のスキャン移動動作終了位置、ショット領域Sf1、Sf2間のステップ移動動作開始位置)に配置されている状態を示す。
 ショット領域Se2の露光について説明する。ショット領域Se2の露光のために、制御装置6は、ショット領域Se2の露光開始からそのショット領域Se2の露光終了までの間に、少なくとも+Y軸方向への移動を含む基板Pのスキャン移動動作を行う。ショット領域Se2の露光のための基板Pのスキャン移動期間において、第2部材22は、位置Jsから位置Jrに移動する。図19(A)に示すように、ショット領域Se2の露光終了において、第2部材22は、位置Jrに配置される。
 次に、ショット領域Se2、Sf1間のステップ移動について説明する。ショット領域Se2、Sf1間の基板Pのステップ移動動作は、ショット領域Se2の露光のための基板Pのスキャン移動動作終了後に行われる。
 列Geのショット領域Se2の露光終了から列Gfのショット領域Sf1の露光開始までの基板Pのステップ移動期間(第2ステップ移動期間)は、同じ列Geに含まれるショット領域Se(例えばショット領域Se1)の露光終了から次のショット領域Se(例えばショット領域Se2)の露光開始までの基板Pのステップ移動期間(第1ステップ移動期間)よりも長い。
 また、列Geのショット領域Se2の露光終了位置から列Gfのショット領域Sf1の露光開始位置までの基板Pのステップ移動距離は、同じ列Geに含まれるショット領域Se(例えばショット領域Se1)の露光終了位置から次のショット領域Se(例えばショット領域Se2)の露光開始位置までの基板Pのステップ移動距離よりも長い。
 ショット領域Se2、Sf1間の基板Pのステップ移動動作は、基板Pが少なくともX軸方向に移動する動作を含む。ショット領域Se2、Sf1間の基板Pのステップ移動動作は、基板Pが-X軸方向へ移動しつつ+Y軸方向へ移動する動作と、基板Pが-X軸方向へ移動しつつ-Y軸方向へ移動する動作とを含む。
 ショット領域Se2、Sf1間の基板Pのステップ移動期間(第2ステップ移動期間)の少なくとも一部において、第2部材22は、基板Pの移動方向(-X軸方向)に移動される。第2部材22は、基板Pとの相対速度が小さくなるように移動される。本実施形態においては、ショット領域Se2、Sf1間の基板Pのステップ移動期間(第2ステップ移動期間)において、第2部材22は、位置Jrから位置Jsに移動する。基板Pのステップ移動期間(第2ステップ移動期間)において、第2部材22は、位置Jrからの移動を開始し、位置Jsに到達するまで、-X軸方向に移動する。
 本実施形態においては、ショット領域Se2、Sf1間の基板Pのステップ移動動作は、図19(A)及び図19(B)に示すように、基板Pが主にY軸方向に移動する第2動作と、図19(B)及び図19(C)に示すように、基板PがX軸方向及びY軸方向の両方に移動する第1動作とを含む。第2動作は、基板Pが主に+Y軸方向へ移動する動作を含む。第1動作は、基板Pが-X軸方向へ移動しつつ-Y軸方向へ移動する動作を含む。第1動作におけるX軸方向に関する基板Pの移動距離は、第2動作におけるX軸方向に関する基板Pの移動距離よりも大きい。図19(B)に示すように、ショット領域Se2、Sf1間のステップ移動動作の途中(第2動作の終了)において、第2部材22は、位置Jrに配置される。図19(C)に示すように、ショット領域Se2、Sf1間のステップ移動動作の終了(ショット領域Sf1の露光開始)において、第2部材22は、位置Jsに配置される。
 なお、ショット領域Se2、Sf1間の基板Pのステップ移動動作が、基板Pが-X軸方向へ移動しつつ+Y軸方向及び-Y軸方向の一方又は両方へ移動する動作と、基板Pが+X軸方向へ移動しつつ+Y軸方向及び-Y軸方向の一方又は両方へ移動する動作とを含んでもよい。
ショット領域Se2、Sf1間の第2ステップ移動期間において基板Pが-X軸方向及び+X軸方向に移動する場合、第2部材22は、-X軸方向のみに移動してもよいし、-X軸方向及び+X軸方向の両方に移動してもよい。例えば、ショット領域Se2、Sf1間の第2ステップ移動期間において基板Pが-X軸方向及び+X軸方向に移動する場合、第2部材22は、基板Pとの相対速度が小さくなるように、-X軸方向及び+X軸方向の両方に移動してもよい。
 ショット領域Se2、Sf1間の基板Pのステップ移動期間(第2ステップ移動期間)において、第2部材22は、移動し続けてもよい。ショット領域Se2、Sf1間の基板Pのステップ移動期間(第2ステップ移動期間)の少なくとも一部において、第2部材22の移動が停止されてもよい。
 次に、ショット領域Sf1の露光について説明する。ショット領域Sf1の露光のために、制御装置6は、ショット領域Sf1の露光開始からそのショット領域Sf2の露光終了までの間に、少なくとも-Y軸方向への移動を含む基板Pのスキャン移動動作を行う。
 本実施形態においては、ショット領域Sf1の露光のための基板Pのスキャン移動期間において、第2部材22は、移動しない。ショット領域Sf1の露光のための基板Pのスキャン移動期間において、第2部材22の位置は、位置Jsに維持される。図19(C)に示すように、ショット領域Sf1の露光開始において、第2部材22は、位置Jsに配置される。図19(D)に示すように、ショット領域Sf1の露光終了においても、第2部材22は、位置Jsに配置される。
 なお、ショット領域Sf1の露光のための基板Pのスキャン移動期間の少なくとも一部において、第2部材22は移動してもよい。なお、ショット領域Sf1の露光のための基板Pのスキャン移動期間において、第2部材22は移動し続けてもよい。制御装置6は、ショット領域Sf1の露光のための基板Pのスキャン移動期間において第2部材22がX軸方向に関して移動され、ショット領域Sf1の露光終了において第2部材22が位置Jsに配置されるように、駆動装置32を制御してもよい。
 次に、ショット領域Sf1、Sf2間のステップ移動について説明する。ショット領域Sf1の露光終了からショット領域Sf2の露光開始までの間に、少なくとも+X軸方向への移動を含む基板Pのステップ移動動作が行われる。また、ショット領域Sf1、Sf2間の基板Pのステップ移動期間において、第2部材22は、位置Jsから位置Jrに移動する。
 次に、ショット領域Sf2の露光について説明する。ショット領域Sf1、Sf2間の基板Pのステップ移動動作終了後、ショット領域Sf2の露光のための基板Pのスキャン移動動作が行われる。ショット領域Sf2の露光開始からそのショット領域Sf2の露光終了までの間に、少なくとも+Y軸方向への移動を含む基板Pのスキャン移動動作が行われる。また、ショット領域Sf2の露光のための基板Pのスキャン移動期間において、第2部材22は、位置Jrから位置Jsに移動する。
 以下、同じ列Gfに含まれる複数のショット領域Sfのそれぞれを順次露光する場合において、基板P(基板ステージ2)及び第2部材22について、上述の動作と同様の動作が行われる。
 本実施形態においても、ショット領域Se2、Sf1間のステップ移動期間(第2ステップ移動期間)の開始とショット領域Sf1、Sf2間のステップ移動期間(第1ステップ移動期間)の開始とにおいて、終端光学素子13(第1部材21)に対する第2部材22の位置が異なる。本実施形態においては、図19(A)に示すように、ショット領域Se2、Sf1間のステップ移動期間(第2ステップ移動期間)の開始において、第2部材22は、位置Jrに配置される。図19(D)に示すように、ショット領域Sf1、Sf2間のステップ移動期間(第1ステップ移動期間)の開始において、第2部材22は、位置Jsに配置される。
 また、本実施形態においては、ショット領域Se2、Sf1間のステップ移動期間(第2ステップ移動期間)の終了とショット領域Sf1、Sf2間のステップ移動期間(第1ステップ移動期間)の終了とにおいて、終端光学素子13(第1部材21)に対する第2部材22の位置が異なる。本実施形態においては、図19(C)に示すように、ショット領域Se2、Sf1間のステップ移動期間(第2ステップ移動期間)の終了において、第2部材22は、位置Jsに配置される。ショット領域Sf1、Sf2間のステップ移動期間(第1ステップ移動期間)の終了において、第2部材22は、位置Jrに配置される。
 本実施形態においても、ある列Gfに含まれるショット領域Sf1の露光終了からその列と同じ列Gfに含まれる次のショット領域Sf2の露光開始までの基板Pの第1ステップ移動期間における第2部材22の動作(動き方)と、ある列Geのショット領域Se2の露光終了からその列とは別の列Gfのショット領域Sf1の露光開始までの基板Pの第2ステップ移動期間における第2部材22の動作(動き方)とが異なる。
 例えば、第1ステップ移動期間において第2部材22は移動し続け、第2ステップ移動期間の少なくとも一部において第2部材22の移動が停止されてもよい。
 また、第1ステップ移動期間と第2ステップ移動期間とにおいて、第2部材22の移動方向が異なってもよい。本実施形態においては、ショット領域Se2、Sf1間のステップ移動期間(第2ステップ移動期間)において、第2部材22は、位置Jrから位置Jsに移動する。すなわち、第2ステップ移動期間において、第2部材22は、-X軸方向に移動する。ショット領域Sf1、Sf2間のステップ移動期間(第1ステップ移動期間)において、第2部材22は、位置Jsから位置Jrに移動する。すなわち、第1ステップ移動期間において、第2部材22は、+X軸方向に移動する。
 また、第1ステップ移動期間と第2ステップ移動期間とにおいて、第2部材22の移動距離が異なってもよい。第2ステップ移動期間における終端光学素子13に対する第2部材22の移動距離が、第1ステップ移動期間における終端光学素子13に対する第2部材22の移動距離よりも長くてもよいし、短くてもよい。例えば、第2ステップ移動期間において第2部材22が位置Jrと位置Jsとの間において移動され、第1ステップ移動期間において第2部材22が位置Jrmと位置Jsmとの間において移動されてもよい。第2ステップ移動期間において第2部材22が位置Jrmと位置Jsmとの間において移動され、第1ステップ移動期間において第2部材22が位置Jrと位置Jsとの間において移動されてもよい。
 また、第1ステップ移動期間と第2ステップ移動期間とにおいて、第2部材22の移動速度が異なってもよい。第2ステップ移動期間における終端光学素子13に対する第2部材22の移動速度が、第1ステップ移動期間における終端光学素子13に対する第2部材22の移動速度よりも高くてもよいし、低くてもよい。
 また、第1ステップ移動期間と第2ステップ移動期間とにおいて、第2部材22の加速度(減速度)が異なってもよい。第2ステップ移動期間における終端光学素子13に対する第2部材22の加速度が、第1ステップ移動期間における終端光学素子13に対する第2部材22の加速度よりも高くてもよいし、低くてもよい。
 また、ショット領域Se1、Se2間の第1ステップ移動期間において、第2部材22は、移動し続けてもよい。また、ショット領域Se2、Sf1間の第2ステップ移動期間において、第2部材22は、移動し続けてもよい。また、ショット領域Sf1、Sf2間の第1ステップ移動期間において、第2部材22は、移動し続けてもよい。また、第1ステップ移動期間及び第2ステップ移動期間の両方において、第2部材22は、移動し続けてもよい。
 また、ショット領域Se2の露光開始から露光終了までの露光期間と、ショット領域Se2、Sf1間の第2ステップ移動期間とにおいて、第2部材22は、移動し続けてもよい。
 また、ショット領域Se2の露光開始から露光終了までの露光期間(スキャン移動動作期間)と、ショット領域Se2、Sf1間の第2ステップ移動期間と、ショット領域Sf1の露光開始から露光終了までの露光期間(スキャン移動動作期間)とにおいて、第2部材22は、移動し続けてもよい。
 また、ショット領域Se1、Se2間の第1ステップ移動期間の少なくとも一部において、第2部材22の移動が停止されてもよい。また、ショット領域Se2、Sf1間の第2ステップ移動期間の少なくとも一部において、第2部材22の移動が停止されてもよい。また、ショット領域Sf1、Sf2間の第1ステップ移動期間の少なくとも一部において、第2部材22の移動が停止されてもよい。
 また、ショット領域Se2、Sf1間の第2ステップ移動期間の少なくとも一部において第2部材22の移動が停止される場合、その第2ステップ移動期間のうち基板PがY軸方向に移動される期間の少なくとも一部において、第2部材22の移動が停止されてもよい。
 また、ショット領域Se2の露光開始から露光終了までの露光期間(スキャン移動期間)において、第2部材22が移動し続け、ショット領域Se2、Sf1間の第2ステップ移動期間の少なくとも一部において第2部材22の移動が停止されてもよい。
 また、ショット領域Se2の露光開始から露光終了までの露光期間(スキャン移動期間)、及びショット領域Sf1の露光開始から露光終了までの露光期間(スキャン移動期間)において、第2部材22が移動し続け、ショット領域Se2、Sf1間の第2ステップ移動期間の少なくとも一部において第2部材22の移動が停止されてもよい。
 以上説明したように、本実施形態においても、基板Pの第1ステップ移動期間における第2部材22の動作(動き方)と基板Pの第2ステップ移動期間における第2部材22の動作(動き方)とが異なるように駆動装置32が制御されることによって、液浸空間LSからの液体LQの流出などが抑制される。したがって、露光不良の発生、及び不良デバイスの発生を抑制することができる。
 <第3実施形態>
 第3実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略若しくは省略する。
 図20は、ある列(例えば列Ge)のショット領域S(例えばショット領域Se2)が露光された後に、その列とは別の列(例えば列Gf)のショット領域S(例えばショット領域Sf1)の露光が行われる状態の一例を模式的に示す図である。Y軸方向に関して、ショット領域Sf1を含む列Gfは、ショット領域Se2を含む列Geの隣に配置される。
列Gfは、列Geよりも+Y側に配置される。
 制御装置6は、液体LQの液浸空間LSが形成されている状態で、投影光学系PLの投影領域PRに対して基板Pが、図20中、矢印Srdに示す移動軌跡に沿って相対的に移動するように、スキャン移動動作とステップ移動動作とを繰り返しながら、列Geに含まれるショット領域Se1、Se2を、液体LQを介して露光した後、列Gfに含まれるショット領域Sf1を、液体LQを介して露光する。また、列Gfに含まれるショット領域Sf1が露光された後、その列Gfに含まれる複数のショット領域Sf2、Sf3、Sf4が、液体LQを介して順次露光される。
 図21は、列Geに含まれるショット領域Se2が露光された後、列Gfに含まれるショット領域Sf1が露光されるときの第2部材22の動作(動き方)の一例を模式的に示す図である。
 図21(A)は、基板Pがショット領域Se2の露光終了位置(ショット領域Se2のスキャン移動動作終了位置、ショット領域Se2、Sf1間のステップ移動動作開始位置)に配置されている状態を示す。
 図21(B)は、基板Pがショット領域Sf1の露光開始位置(ショット領域Sf1のスキャン移動動作開始位置、ショット領域Se2、Sf1間のステップ移動動作終了位置)に配置されている状態を示す。
 図21(C)は、基板Pがショット領域Sf1の露光終了位置からショット領域Sf2の露光開始位置(ショット領域Sf2のスキャン移動動作開始位置)に移動する途中の状態を示す。
 図21(D)は、基板Pがショット領域Sf2の露光開始位置(ショット領域Sf2のスキャン移動動作開始位置、ショット領域Sf1、Sf2間のステップ移動動作終了位置)に配置されている状態を示す。
 ショット領域Se2の露光について説明する。ショット領域Se2の露光のために、制御装置6は、ショット領域Se2の露光開始からそのショット領域Se2の露光終了までの間に、少なくとも+Y軸方向への移動を含む基板Pのスキャン移動動作を行う。ショット領域Se2の露光のための基板Pのスキャン移動期間において、第2部材22は、位置Jsから位置Jrに移動する。図21(A)に示すように、ショット領域Se2の露光終了において、第2部材22は、位置Jrに配置される。
 次に、ショット領域Se2、Sf1間の基板Pのステップ移動について説明する。ショット領域Se2、Sf1間の基板Pのステップ移動動作は、ショット領域Se2の露光のための基板Pのスキャン移動動作終了後に行われる。
 列Geのショット領域Se2の露光終了から列Gfのショット領域Sf1の露光開始までの基板Pのステップ移動期間(第2ステップ移動期間)は、同じ列Geに含まれるショット領域Se(例えばショット領域Se1)の露光終了から次のショット領域Se(例えばショット領域Se2)の露光開始までの基板Pのステップ移動期間(第1ステップ移動期間)よりも長い。
 また、列Geのショット領域Se2の露光終了位置から列Gfのショット領域Sf1の露光開始位置までの基板Pのステップ移動距離は、同じ列Geに含まれるショット領域Se(例えばショット領域Se1)の露光終了位置から次のショット領域Se(例えばショット領域Se2)の露光開始位置までの基板Pのステップ移動距離よりも長い。
 ショット領域Se2、Sf1間の基板Pのステップ移動動作は、基板Pが少なくともX軸方向に移動する動作を含む。ショット領域Se2、Sf1間の基板Pのステップ移動動作は、基板Pが-X軸方向へ移動しつつ+Y軸方向へ移動する動作と、基板Pが-X軸方向へ移動しつつ-Y軸方向へ移動する動作とを含む。
 ショット領域Se2、Sf1間の基板Pのステップ移動期間(第2ステップ移動期間)の少なくとも一部において、第2部材22は、基板Pの移動方向(-X軸方向)に移動される。第2部材22は、基板Pとの相対速度が小さくなるように移動される。本実施形態においては、ショット領域Se2、Sf1間の基板Pのステップ移動期間(第2ステップ移動期間)において、第2部材22は、位置Jrから位置Jsに移動する。図21(B)に示すように、ショット領域Se2、Sf1間のステップ移動終了(ショット領域Sf1の露光開始)において、第2部材22は、位置Jsに配置される。
 なお、ショット領域Se2、Sf1間の基板Pのステップ移動動作が、基板Pが-X軸方向へ移動しつつ+Y軸方向及び-Y軸方向の一方又は両方へ移動する動作と、基板Pが+X軸方向へ移動しつつ+Y軸方向及び-Y軸方向の一方又は両方へ移動する動作とを含んでもよい。
ショット領域Se2、Sf1間の第2ステップ移動期間において基板Pが-X軸方向及び+X軸方向へ移動する場合、第2部材22は、-X軸方向のみに移動してもよいし、-X軸方向及び+X軸方向の両方に移動してもよい。例えば、ショット領域Se2、Sf1間の第2ステップ移動期間において基板Pが-X軸方向及び+X軸方向に移動する場合、第2部材22は、基板Pとの相対速度が小さくなるように、-X軸方向及び+X軸方向の両方に移動してもよい。
 ショット領域Se2、Sf1間の基板Pのステップ移動期間(第2ステップ移動期間)において、第2部材22は、移動し続けてもよい。ショット領域Se2、Sf1間の基板Pのステップ移動期間(第2ステップ移動期間)の少なくとも一部において、第2部材22の移動が停止されてもよい。
 次に、ショット領域Sf1の露光について説明する。ショット領域Sf1の露光のために、制御装置6は、ショット領域Sf1の露光開始からそのショット領域Sf1の露光終了までの間に、少なくとも+Y軸方向への移動を含む基板Pのスキャン移動動作を行う。ショット領域Sf1の露光のための基板Pのスキャン移動期間において、第2部材22は、移動しない。ショット領域Sf1の露光のための基板Pのスキャン移動期間において、第2部材22の位置は、位置Jsに維持される。図21(B)及び図21(C)に示すように、ショット領域Sf1の露光開始及び露光終了の両方において、第2部材22は、位置Jsに配置される。
 なお、ショット領域Sf1の露光のための基板Pのスキャン移動期間の少なくとも一部において、第2部材22は移動してもよい。なお、ショット領域Sf1の露光のための基板Pのスキャン移動期間において、第2部材22は移動し続けてもよい。制御装置6は、ショット領域Sf1の露光のための基板Pのスキャン移動期間において第2部材22がX軸方向に関して移動され、ショット領域Sf1の露光終了において第2部材22が位置Jsに配置されるように、駆動装置32を制御してもよい。
 次に、ショット領域Sf1、Sf2間の基板Pのステップ移動について説明する。ショット領域Sf1、Sf2間の基板Pのステップ移動動作は、ショット領域Sf1の露光のための基板Pのスキャン移動動作終了後に行われる。
 ショット領域Sf1の露光終了からショット領域Sf2の露光開始までの間に、制御装置6は、少なくとも+X軸方向への移動を含む基板Pのステップ移動動作を行う。ショット領域Sf1、Sf2間の基板Pのステップ移動期間の少なくとも一部において、第2部材22は、基板Pの移動方向(+X軸方向)に移動される。第2部材22は、基板Pとの相対速度が小さくなるように移動される。本実施形態においては、図21(C)及び図21(D)に示すように、ショット領域Sf1、Sf2間の基板Pのステップ移動期間(第1ステップ移動期間)において、第2部材22は、位置Jsから位置Jrに移動する。
 次に、ショット領域Sf2の露光について説明する。図21(D)に示すように、ショット領域Sf2の露光開始において、第2部材22は、位置Jrに配置される。ショット領域Sf2の露光開始からそのショット領域Sf2の露光終了までの間に、制御装置6は、少なくとも-Y軸方向への移動を含む基板Pのスキャン移動動作を行う。本実施形態においては、ショット領域Sf2の露光のための基板Pのスキャン移動期間において、第2部材22は、位置Jrから位置Jsに移動する。
 以下、同じ列Gfに含まれる複数のショット領域Sfのそれぞれを順次露光する場合において、制御装置6は、基板P(基板ステージ2)及び第2部材22について、上述と同様の動作を行う。
 本実施形態においても、ショット領域Se2、Sf1間のステップ移動期間(第2ステップ移動期間)の開始とショット領域Sf1、Sf2間のステップ移動期間(第1ステップ移動期間)の開始とにおいて、終端光学素子13(第1部材21)に対する第2部材22の位置が異なる。本実施形態においては、図21(A)に示すように、ショット領域Se2、Sf1間のステップ移動期間(第2ステップ移動期間)の開始において、第2部材22は、位置Jrに配置される。図21(C)に示すように、ショット領域Sf1、Sf2間のステップ移動期間(第1ステップ移動期間)の開始において、第2部材22は、位置Jsに配置される。
 また、ショット領域Se2、Sf1間のステップ移動期間(第2ステップ移動期間)の終了とショット領域Sf1、Sf2間のステップ移動期間(第1ステップ移動期間)の終了とにおいて、終端光学素子13(第1部材21)に対する第2部材22の位置が異なる。本実施形態においては、図21(B)に示すように、ショット領域Se2、Sf1間のステップ移動期間(第2ステップ移動期間)の終了において、第2部材22は、位置Jsに配置される。図21(D)に示すように、ショット領域Sf1、Sf2間のステップ移動期間(第1ステップ移動期間)の終了において、第2部材22は、位置Jrに配置される。
 本実施形態においても、ある列Gfに含まれるショット領域Sf1の露光終了からその列と同じ列Gfに含まれる次のショット領域Sf2の露光開始までの基板Pの第1ステップ移動期間における第2部材22の動作(動き方)と、ある列Geのショット領域Se2の露光終了からその列とは別の列Gfのショット領域Sf1の露光開始までの基板Pの第2ステップ移動期間における第2部材22の動作(動き方)とが異なる。
 なお、第1ステップ移動期間においては第2部材22が移動し続け、第2ステップ移動期間の少なくとも一部においては、第2部材22の移動が停止されてもよい。
 また、第1ステップ移動期間と第2ステップ移動期間とにおいて、第2部材22の移動方向が同じでもよいし、異なってもよい。本実施形態においては、ショット領域Se2、Sf1間の第2ステップ移動期間において、第2部材22は、少なくとも-X軸方向に移動する。ショット領域Se1、Se2間の第1ステップ移動期間において、第2部材22は、-X軸方向に移動する。ショット領域Sf1、Sf2間の第1ステップ移動期間において、第2部材22は、+X軸方向に移動する。
 また、第1ステップ移動期間と第2ステップ移動期間とにおいて、第2部材22の移動距離が異なってもよい。第2ステップ移動期間における終端光学素子13に対する第2部材22の移動距離が、第1ステップ移動期間における終端光学素子13に対する第2部材22の移動距離よりも長くてもよいし、短くてもよい。
 また、第1ステップ移動期間と第2ステップ移動期間とにおいて、第2部材22の移動速度が異なってもよい。第2ステップ移動期間における終端光学素子13に対する第2部材22の移動速度が、第1ステップ移動期間における終端光学素子13に対する第2部材22の移動速度よりも高くてもよいし、低くてもよい。
 また、第1ステップ移動期間と第2ステップ移動期間とにおいて、第2部材22の加速度(減速度)が異なってもよい。第2ステップ移動期間における終端光学素子13に対する第2部材22の加速度が、第1ステップ移動期間における終端光学素子13に対する第2部材22の加速度よりも高くてもよいし、低くてもよい。
 また、ショット領域Se1、Se2間の第1ステップ移動期間において、第2部材22は、移動し続けてもよい。また、ショット領域Se2、Sf1間の第2ステップ移動期間において、第2部材22は、移動し続けてもよい。また、ショット領域Sf1、Sf2間の第1ステップ移動期間において、第2部材22は、移動し続けてもよい。また、第1ステップ移動期間及び第2ステップ移動期間の両方において、第2部材22は、移動し続けてもよい。
 また、ショット領域Se2の露光開始から露光終了までの露光期間と、ショット領域Se2、Sf1間の第2ステップ移動期間とにおいて、第2部材22は、移動し続けてもよい。
 また、ショット領域Se2の露光開始から露光終了までの露光期間(スキャン移動動作期間)と、ショット領域Se2、Sf1間の第2ステップ移動期間と、ショット領域Sf1の露光開始から露光終了までの露光期間(スキャン移動動作期間)とにおいて、第2部材22は、移動し続けてもよい。
 また、ショット領域Se1、Se2間の第1ステップ移動期間の少なくとも一部において、第2部材22の移動が停止されてもよい。また、ショット領域Se2、Sf1間の第2ステップ移動期間の少なくとも一部において、第2部材22の移動が停止されてもよい。また、ショット領域Sf1、Sf2間の第1ステップ移動期間の少なくとも一部において、第2部材22の移動が停止されてもよい。
 また、ショット領域Se2、Sf1間の第2ステップ移動期間の少なくとも一部において第2部材22の移動が停止される場合、その第2ステップ移動期間のうち基板PがY軸方向に移動される期間の少なくとも一部において、第2部材22の移動が停止されてもよい。
 また、ショット領域Se2の露光開始から露光終了までの露光期間(スキャン移動期間)において、第2部材22が移動し続け、ショット領域Se2、Sf1間の第2ステップ移動期間の少なくとも一部において第2部材22の移動が停止されてもよい。
 また、ショット領域Se2の露光開始から露光終了までの露光期間(スキャン移動期間)、及びショット領域Sf1の露光開始から露光終了までの露光期間(スキャン移動期間)において、第2部材22が移動し続け、ショット領域Se2、Sf1間の第2ステップ移動期間の少なくとも一部において第2部材22の移動が停止されてもよい。
 以上説明したように、本実施形態においても、基板Pの第1ステップ移動期間における第2部材22の動作(動き方)と基板Pの第2ステップ移動期間における第2部材22の動作(動き方)とが異なるように駆動装置32が制御されることによって、液浸空間LSからの液体LQの流出などが抑制される。したがって、露光不良の発生、及び不良デバイスの発生を抑制することができる。
なお、上述の第2および第3実施形態においては、ショット領域Se2、Sf1間の基板Pのステップ移動動作において、第2部材22が露光光ELの光路を遮るように、第2部材22を動かしてもよい。上述の第2および第3実施形態においては、ショット領域Se2、Sf1間の基板Pのステップ移動動作において、基板Pの-X軸方向への移動距離が長いので、第2部材22の開口35の+X側端部が、投影領域PRの+X側端部よりも、-X側に位置するように、第2部材22を動かしてもよい。ただし、ショット領域Sf1の露光を開始するときまでに、露光光ELの光路を遮らない位置に第2部材22を移動しなければならない。
 <第4実施形態>
 第4実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略若しくは省略する。
 図22は、ある列(例えば列Gi)のショット領域S(例えばショット領域Si2)が露光された後に、その列とは別の列(例えば列Gj)のショット領域S(例えばショット領域Sj1)の露光が行われる状態の一例を模式的に示す図である。Y軸方向に関して、ショット領域Sj1を含む列Gjは、ショット領域Si2を含む列Giの隣に配置される。列Gjは、列Giよりも+Y側に配置される。
 Y軸方向に関して、ショット領域Sj1の位置とショット領域Si2の位置とは異なる。ショット領域Sj1は、ショット領域Si2よりも、+Y側に配置される。X軸方向に関して、ショット領域Sj1の位置とショット領域Si2の位置とは異なる。ショット領域Sj1は、ショット領域Si2よりも、+X側に配置される。本実施形態においては、ショット領域Si2の+X側のエッジとショット領域Sj1の-X側のエッジとのX軸方向に関する距離は、ショット領域Sj2(ショット領域Si2、Sj1)のX軸方向に関する寸法よりも大きい。
 X軸方向に関して、ショット領域Sj2は、ショット領域Sj1の隣に配置される。X軸方向に関して、ショット領域Sj3は、ショット領域Sj2の隣に配置される。X軸方向に関して、ショット領域Sj4は、ショット領域Sj3の隣に配置される。ショット領域Sj2は、ショット領域Sj1よりも-X側に配置される。ショット領域Sj3は、ショット領域Sj2よりも-X側に配置される。ショット領域Sj4は、ショット領域Sj3よりも-X側に配置される。
 制御装置6は、液体LQの液浸空間LSが形成されている状態で、投影光学系PLの投影領域PRに対して基板Pが、図22中、矢印Sreに示す移動軌跡に沿って相対的に移動するように、スキャン移動動作とステップ移動動作とを繰り返しながら、列Giに含まれるショット領域Si1、Si2を、液体LQを介して順次露光した後、列Gjに含まれるショット領域Sj1を、液体LQを介して露光する。また、列Gjに含まれるショット領域Sj1が露光された後、その列Gjに含まれる複数のショット領域Sj2、Sj3、Sj4が、液体LQを介して順次露光される。
 本実施形態においては、Y軸方向に関する列Giのショット領域Si(Si1、Si2)の寸法Wiは、Y軸方向に関する列Gjのショット領域Sj(Sj1~Sj4)の寸法Wjとは異なる。本実施形態において、寸法Wjは、寸法Wiよりも小さい。寸法Wiのショット領域Si(Si1、Si2)が順次露光された後に、寸法Wjのショット領域Sj(ショット領域Sj1~Sj4)が順次露光される。
 本実施形態において、制御装置6は、ショット領域Si1の露光終了からショット領域Si2の露光開始までの基板Pのステップ移動期間における第2部材22の動作(動き方)と、ショット領域Sj1の露光終了からショット領域Sj2の露光開始までの基板Pのステップ移動期間における第2部材22の動作(動き方)とが異なるように、駆動装置32を制御する。
 また、本実施形態において、制御装置6は、ショット領域Si1の露光終了からショット領域Si2の露光開始までの基板Pのステップ移動期間における第2部材22の動作(動き方)と、ショット領域Si2の露光終了からショット領域Sj1の露光開始までの基板Pのステップ移動期間における第2部材22の動作(動き方)とが異なるように、駆動装置32を制御する。
 また、本実施形態において、制御装置6は、ショット領域Si2の露光終了からショット領域Sj1の露光開始までの基板Pのステップ移動期間における第2部材22の動作(動き方)と、ショット領域Sj1の露光終了からショット領域Sj2の露光開始までの基板Pのステップ移動期間における第2部材22の動作(動き方)とが異なるように、駆動装置32を制御する。
 図23は、列Giに含まれるショット領域Si1、Si2が露光された後、列Gjに含まれるショット領域Sj1~Sj4が露光されるときの第2部材22の動作(動き方)の一例を模式的に示す図である。
 図23(A)は、基板Pがショット領域Si2の露光終了位置(ショット領域Si2のスキャン移動動作終了位置、ショット領域Si2、Sj1間のステップ移動動作開始位置)に配置されている状態を示す。
 図23(B)は、基板Pがショット領域Sj1の露光開始位置(ショット領域Sj1のスキャン移動動作開始位置、ショット領域Si2、Sj1間のステップ移動動作終了位置)に配置されている状態を示す。
 図23(C)は、基板Pがショット領域Sj1の露光終了位置(ショット領域Sj1のスキャン移動動作終了位置、ショット領域Sj1、Sj2間のステップ移動動作開始位置)に配置されている状態を示す。
 図23(D)は、基板Pがショット領域Sj2の露光開始位置(ショット領域Sj2のスキャン移動動作開始位置、ショット領域Sj1、Sj2間のステップ移動動作終了位置)に配置されている状態を示す。
 図23(E)は、基板Pがショット領域Sj2の露光終了位置(ショット領域Sj2のスキャン移動動作終了位置、ショット領域Sj2、Sj3間のステップ移動動作開始位置)に配置されている状態を示す。
 図23(F)は、基板Pがショット領域Sj3の露光開始位置(ショット領域Sj3のスキャン移動動作開始位置、ショット領域Sj2、Sj3間のステップ移動動作終了位置)に配置されている状態を示す。
 ショット領域Si1の露光について説明する。ショット領域Si1の露光のために、制御装置6は、ショット領域Si1の露光開始からそのショット領域Si1の露光終了までの間に、少なくとも-Y軸方向への移動を含む基板Pのスキャン移動動作を行う。ショット領域Si1の露光のための基板Pのスキャン移動期間において、第2部材22は、位置Jsから位置Jrに移動する。
 次に、ショット領域Si1、Si2間のステップ移動動作について説明する。ショット領域Si1、Si2間の基板Pのステップ移動動作は、ショット領域Si1の露光のための基板Pのスキャン移動動作終了後に行われる。
 ショット領域Si1、Si2間の基板Pのステップ移動動作は、基板Pが少なくともX軸方向に移動する動作を含む。ショット領域Si1、Si2間の基板Pのステップ移動動作は、基板Pが-X軸方向へ移動しつつ-Y軸方向へ移動する動作と、基板Pが-X軸方向へ移動しつつ+Y軸方向へ移動する動作とを含む。
 ショット領域Si1、Si2間の基板Pのステップ移動期間(第2ステップ移動期間)の少なくとも一部において、第2部材22は、基板Pの移動方向(-X軸方向)に移動される。第2部材22は、基板Pとの相対速度が小さくなるように移動される。ショット領域Si1、Si2間の基板Pのステップ移動期間(第2ステップ移動期間)において、第2部材22は、位置Jrから位置Jsに移動する。
 次に、ショット領域Si2の露光について説明する。ショット領域Si2の露光のために、制御装置6は、ショット領域Si2の露光開始からそのショット領域Si2の露光終了までの間に、少なくとも+Y軸方向への移動を含む基板Pのスキャン移動動作を行う。ショット領域Si2の露光のための基板Pのスキャン移動期間において、第2部材22は、位置Jsから位置Jrに移動する。図23(A)に示すように、ショット領域Si2の露光終了において、第2部材22は、位置Jrに配置される。
 次に、ショット領域Si2、Sj1間のステップ移動について説明する。ショット領域Si2の露光のための基板Pのスキャン移動動作終了後、ショット領域Si2、Sj1間の基板Pのステップ移動動作が行われる。
 列Giのショット領域Si2の露光終了から列Gjのショット領域Sj1の露光開始までの基板Pのステップ移動期間(第2ステップ移動期間)は、同じ列Giに含まれるショット領域Si(例えばショット領域Si1)の露光終了から次のショット領域Si(例えばショット領域Si2)の露光開始までの基板Pのステップ移動期間(第1ステップ移動期間)よりも長い。
 また、列Giのショット領域Si2の露光終了から列Gjのショット領域Sj1の露光開始までの基板Pのステップ移動期間(第2ステップ移動期間)は、同じ列Gjに含まれるショット領域Sj(例えばショット領域Sj1)の露光終了から次のショット領域Sj(例えばショット領域Sj2)の露光開始までの基板Pのステップ移動期間(第1ステップ移動期間)よりも長い。
 また、列Giのショット領域Si2の露光終了位置から列Gjのショット領域Sj1の露光開始位置までの基板Pのステップ移動距離は、同じ列Giに含まれるショット領域Si(例えばショット領域Si1)の露光終了位置から次のショット領域Si(例えばショット領域Si2)の露光開始位置までの基板Pのステップ移動距離よりも長い。
 また、列Giのショット領域Si2の露光終了位置から列Gjのショット領域Sj1の露光開始位置までの基板Pのステップ移動距離は、同じ列Gjに含まれるショット領域Sj(例えばショット領域Sj1)の露光終了位置から次のショット領域Sj(例えばショット領域Sj2)の露光開始位置までの基板Pのステップ移動距離よりも長い。
 ショット領域Si2、Sj1間の基板Pのステップ移動動作は、基板Pが少なくともX軸方向に移動する動作を含む。ショット領域Si2、Sj1間の基板Pのステップ移動動作は、基板Pが-X軸方向へ移動しつつ+Y軸方向へ移動する動作と、基板Pが-X軸方向へ移動しつつ-Y軸方向へ移動する動作とを含む。
 ショット領域Si2、Sj1間の基板Pのステップ移動期間(第2ステップ移動期間)の少なくとも一部において、第2部材22は、基板Pの移動方向(-X軸方向)に移動される。第2部材22は、基板Pとの相対速度が小さくなるように移動される。ショット領域Si2、Sj1間の基板Pのステップ移動期間(第2ステップ移動期間)において、第2部材22は、位置Jrから位置Jsに移動する。図23(B)に示すように、ショット領域Si2、Sj1間のステップ移動終了(ショット領域Sj1の露光開始)において、第2部材22は、位置Jsに配置される。
 なお、ショット領域Si2、Sj1間の基板Pのステップ移動動作が、基板Pが-X軸方向へ移動しつつ+Y軸方向及び-Y軸方向の一方又は両方へ移動する動作と、基板Pが+X軸方向へ移動しつつ+Y軸方向及び-Y軸方向の一方又は両方へ移動する動作とを含んでもよい。
ショット領域Si2、Sj1間の第2ステップ移動期間において基板Pが-X軸方向及び+X軸方向に移動する場合、第2部材22は、-X軸方向のみに移動してもよいし、-X軸方向及び+X軸方向の両方に移動してもよい。例えば、ショット領域Si2、Sj1間の第2ステップ移動期間において基板Pが-X軸方向及び+X軸方向に移動する場合、第2部材22は、基板Pとの相対速度が小さくなるように、-X軸方向及び+X軸方向の両方に移動してもよい。
 ショット領域Si2、Sj1間の基板Pのステップ移動期間(第2ステップ移動期間)において、第2部材22は、移動し続けてもよい。ショット領域Si2、Sj1間の基板Pのステップ移動期間(第2ステップ移動期間)の少なくとも一部において、第2部材22の移動が停止されてもよい。
なお、本実施形態においては、ショット領域Si2、Sj1間の基板Pのステップ移動動作において、第2部材22が露光光ELの光路を遮るように、第2部材22を動かしてもよい。本実施形態においては、ショット領域Si2、Sj1間の基板Pのステップ移動動作において、基板Pの-X軸方向への移動距離が長いので、第2部材22の開口35の+X側端部が、投影領域PRの+X側端部よりも、-X側に位置するように、第2部材22を動かしてもよい。ただし、ショット領域Sj1の露光を開始するときまでに、露光光ELの光路を遮らない位置に第2部材22を移動しなければならない。
 次に、ショット領域Sj1の露光について説明する。ショット領域Sj1の露光のための基板Pのスキャン移動動作は、ショット領域Si2、Sj1間の基板Pのステップ移動動作終了後に行われる。
 列Gjのショット領域Sj(例えばショット領域Sj1)の露光開始からそのショット領域Sj(ショット領域Sj1)の露光終了までの基板Pのスキャン移動期間は、列Giに含まれるショット領域Si(例えばショット領域Si1)の露光開始からそのショット領域Si(ショット領域Si1)の露光終了までの基板Pのスキャン移動期間よりも短い。
 また、列Gjのショット領域Sj(例えばショット領域Sj1)の露光開始位置からそのショット領域Sj(ショット領域Sj1)の露光終了位置までの基板Pのスキャン移動距離は、列Giに含まれるショット領域Si(例えばショット領域Si1)の露光開始位置からそのショット領域Si(ショット領域Si1)の露光終了位置までの基板Pのスキャン移動距離よりも短い。
 本実施形態においては、ショット領域Sj1の露光のための基板Pのスキャン移動期間において、第2部材22は、移動しない。換言すれば、ショット領域Sj1の露光のための基板Pのスキャン移動期間において、第2部材22は、終端光学素子13(第1部材21)に対して停止する。ショット領域Sj1の露光のための基板Pのスキャン移動期間において、終端光学素子13(第1部材21)に対する第2部材22の相対速度が零になる。すなわち、基板PがX軸方向に実質的に移動しないショット領域Sj1の露光のための基板Pのスキャン移動期間においては、第2部材22は、X軸方向に移動しない。ショット領域Sj1の露光のための基板Pのスキャン移動期間において、第2部材22の位置は、位置Jsに維持される。図23(B)及び図23(C)に示すように、ショット領域Sj1の露光開始及び露光終了の両方において、第2部材22は、位置Jsに配置される。
 なお、ショット領域Sj1の露光のための基板Pのスキャン移動期間の少なくとも一部において、第2部材22は移動してもよい。なお、ショット領域Sj1の露光のための基板Pのスキャン移動期間において、第2部材22は移動し続けてもよい。制御装置6は、ショット領域Sj1の露光のための基板Pのスキャン移動期間において第2部材22がX軸方向に関して移動され、ショット領域Sj1の露光終了において第2部材22が位置Jsに配置されるように、駆動装置32を制御してもよい。
 次に、ショット領域Sj1、Sj2間の基板Pのステップ移動について説明する。本実施形態において、ショット領域Sj1の露光終了からショット領域Sj2の露光開始までの間に、制御装置6は、少なくとも+X軸方向への移動を含む基板Pのステップ移動動作を行う。ショット領域Sj1、Sj2間の基板Pのステップ移動期間の少なくとも一部において、第2部材22は、基板Pの移動方向(+X軸方向)に移動される。第2部材22は、基板Pとの相対速度が小さくなるように移動される。
 図23(C)に示すように、ショット領域Sj1、Sj2間のステップ移動動作開始において、第2部材22は、位置Jsに配置される。本実施形態においては、ショット領域Sj1、Sj2間の基板Pのステップ移動期間(第1ステップ移動期間)において、第2部材22は、位置Jsから位置Jrmに移動する。図23(D)に示すように、ショット領域Sj1、Sj2間のステップ移動動作終了において、第2部材22は、位置Jrmに配置される。ショット領域Sj1、Sj2間の基板Pのステップ移動期間(第1ステップ移動期間)において、第2部材22は、位置Jsからの移動を開始し、位置Jrmに到達するまで、+X軸方向に移動する。
 次に、ショット領域Sj2の露光について説明する。ショット領域Sj1、Sj2間の基板Pのステップ移動動作終了後、ショット領域Sj2の露光のための基板Pのスキャン移動動作が行われる。本実施形態において、ショット領域Sj2の露光開始からそのショット領域Sj2の露光終了までの間に、制御装置6は、少なくとも+Y軸方向への移動を含む基板Pのスキャン移動動作を行う。
 本実施形態においては、ショット領域Sj2の露光のための基板Pのスキャン移動期間において、第2部材22は、位置Jrmから位置Jsmに移動する。図23(E)に示すように、ショット領域Sj2の露光終了において、第2部材22は、位置Jsmに配置される。ショット領域Sj2の露光のための基板Pのスキャン移動期間において、第2部材22は、位置Jrmからの移動を開始し、位置Jsmに到達するまで、-X軸方向に移動する。
 ショット領域Sj2の露光のための基板Pのスキャン移動期間において、第2部材22は、移動し続けてもよい。ショット領域Sj2の露光のための基板Pのスキャン移動期間の少なくとも一部において、第2部材22の移動が停止されてもよい。
 次に、ショット領域Sj2、Sj3間の基板Pのステップ移動について説明する。本実施形態において、ショット領域Sj2の露光終了からショット領域Sj3の露光開始までの間に、制御装置6は、少なくとも+X軸方向への移動を含む基板Pのステップ移動動作を行う。ショット領域Sj2、Sj3間の基板Pのステップ移動期間の少なくとも一部において、第2部材22は、基板Pの移動方向(+X軸方向)に移動される。第2部材22は、基板Pとの相対速度が小さくなるように移動される。
 本実施形態においては、ショット領域Sj2、Sj3間の基板Pのステップ移動期間(第1ステップ移動期間)において、第2部材22は、位置Jsmから位置Jrmに移動する。図23(F)に示すように、ショット領域Sj2、Sj3間のステップ移動終了(ショット領域Sj3の露光開始)において、第2部材22は、位置Jrmに配置される。ショット領域Sj2、Sj3間の基板Pのステップ移動期間(第1ステップ移動期間)において、第2部材22は、位置Jsmからの移動を開始し、位置Jrmに到達するまで、+X軸方向に移動する。
 次に、ショット領域Sj3の露光について説明する。ショット領域Sj3の露光のための基板Pのスキャン移動動作は、ショット領域Sj2、Sj3間の基板Pのステップ移動動作終了後に行われる。本実施形態において、ショット領域Sj3の露光開始からそのショット領域Sj3の露光終了までの間に、制御装置6は、少なくとも-Y軸方向への移動を含む基板Pのスキャン移動動作を行う。
 本実施形態においては、ショット領域Sj3の露光のための基板Pのスキャン移動期間において、第2部材22は、位置Jrmから位置Jsmに移動する。ショット領域Sj3の露光のための基板Pのスキャン移動期間において、第2部材22は、位置Jrmからの移動を開始し、位置Jsmに到達するまで、-X軸方向に移動する。
 次に、ショット領域Sj3、Sj4間の基板Pのステップ移動について説明する。ショット領域Sj3、Sj4間のステップ移動動作開始において、第2部材22は、位置Jsmに配置される。ショット領域Sj3、Sj4間のステップ移動動作終了において、第2部材22は、位置Jrmに配置される。
 ショット領域Sj3の露光終了からショット領域Sj4の露光開始までの間に、制御装置6は、少なくとも+X軸方向への移動を含む基板Pのステップ移動動作を行う。ショット領域Sj3、Sj4間の基板Pのステップ移動期間の少なくとも一部において、第2部材22は、基板Pの移動方向(+X軸方向)に移動される。第2部材22は、基板Pとの相対速度が小さくなるように移動される。
 ショット領域Sj3、Sj4間の基板Pのステップ移動期間(第1ステップ移動期間)において、第2部材22は、位置Jsmから位置Jrmに移動する。ショット領域Sj3、Sj4間の基板Pのステップ移動期間(第1ステップ移動期間)において、第2部材22は、位置Jsmからの移動を開始し、位置Jrmに到達するまで、+X軸方向に移動する。
 以下、同じ列Gjに含まれる複数のショット領域Sjのそれぞれを順次露光する場合において、制御装置6は、基板P(基板ステージ2)及び第2部材22について、上述と同様の動作をさせる。
 本実施形態において、ショット領域Si1、Si2間のステップ移動期間(第1ステップ移動期間)の開始とショット領域Sj2、Sj3間のステップ移動期間(第1ステップ移動期間)の開始とにおいて、終端光学素子13(第1部材21)に対する第2部材22の位置が異なる。本実施形態においては、ショット領域Si1、Si2間のステップ移動期間(第1ステップ移動期間)の開始において、第2部材22は、位置Jrに配置される。ショット領域Sj2、Sj3間のステップ移動期間(第1ステップ移動期間)の開始において、第2部材22は、位置Jsmに配置される。本実施形態においては、ショット領域Si1、Si2間のステップ移動期間(第1ステップ移動期間)の開始とショット領域Sj2、Sj3間のステップ移動期間(第1ステップ移動期間)の開始とにおいて、原点(中心位置Jm)と第2部材22との距離が異なる。
 また、本実施形態において、ショット領域Si1、Si2間のステップ移動期間(第1ステップ移動期間)の終了とショット領域Sj2、Sj3間のステップ移動期間(第1ステップ移動期間)の終了とにおいて、終端光学素子13(第1部材21)に対する第2部材22の位置が異なる。本実施形態においては、ショット領域Si1、Si2間のステップ移動期間(第1ステップ移動期間)の終了において、第2部材22は、位置Jsに配置される。ショット領域Sj2、Sj3間のステップ移動期間(第1ステップ移動期間)の終了において、第2部材22は、位置Jrmに配置される。本実施形態においては、ショット領域Si1、Si2間のステップ移動期間(第1ステップ移動期間)の開始とショット領域Sj2、Sj3間のステップ移動期間(第1ステップ移動期間)の開始とにおいて、原点(中心位置Jm)と第2部材22との距離が異なる。
 また、本実施形態において、ショット領域Si2、Sj1間のステップ移動期間(第2ステップ移動期間)の開始とショット領域Sj2、Sj3間のステップ移動期間(第1ステップ移動期間)の開始とにおいて、終端光学素子13(第1部材21)に対する第2部材22の位置が異なる。本実施形態においては、ショット領域Si2、Sj1間のステップ移動期間(第2ステップ移動期間)の開始において、第2部材22は、位置Jrに配置される。ショット領域Sj2、Sj3間のステップ移動期間(第1ステップ移動期間)の開始において、第2部材22は、位置Jsmに配置される。本実施形態においては、ショット領域Si2、Sj1間のステップ移動期間(第2ステップ移動期間)の開始とショット領域Sj2、Sj3間のステップ移動期間(第1ステップ移動期間)の開始とにおいて、原点(中心位置Jm)と第2部材22との距離が異なる。
 また、本実施形態において、ショット領域Si2、Sj1間のステップ移動期間(第2ステップ移動期間)の終了とショット領域Sj2、Sj3間のステップ移動期間(第1ステップ移動期間)の終了とにおいて、終端光学素子13(第1部材21)に対する第2部材22の位置が異なる。本実施形態においては、ショット領域Si2、Sj1間のステップ移動期間(第2ステップ移動期間)の終了において、第2部材22は、位置Jsに配置される。ショット領域Sj2、Sj3間のステップ移動期間(第1ステップ移動期間)の終了において、第2部材22は、位置Jrmに配置される。本実施形態においては、ショット領域Si2、Sj1間のステップ移動期間(第2ステップ移動期間)の終了とショット領域Sj2、Sj3間のステップ移動期間(第1ステップ移動期間)の終了とにおいて、原点(中心位置Jm)と第2部材22との距離が異なる。
 上述のように、本実施形態においては、寸法Wiのショット領域Si1の露光終了から寸法Wiのショット領域Si2の露光開始までの基板Pのステップ移動期間における第2部材22の動作(動き方)と、寸法Wjのショット領域Sj1(又はSj2)の露光終了から寸法Wjのショット領域Sj2(又はSj3)の露光開始までの基板Pのステップ移動期間における第2部材22の動作(動き方)とが異なる。
 また、本実施形態においては、寸法Wiのショット領域Si2の露光終了から寸法Wjのショット領域Sj1の露光開始までの基板Pのステップ移動期間における第2部材22の動作(動き方)と、寸法Wjのショット領域Sj1(又はSj2)の露光終了から寸法Wjのショット領域Sj2(又はSj3)の露光開始までの基板Pのステップ移動期間における第2部材22の動作(動き方)とが異なる。
 本実施形態においては、寸法Wiのショット領域Si1の露光終了から寸法Wiのショット領域Si2の露光開始までの基板Pのステップ移動期間における第2部材22の移動距離と、寸法Wjのショット領域Sj1(又はSj2)の露光終了から寸法Wjのショット領域Sj2(又はSj3)の露光開始までの基板Pのステップ移動期間における第2部材22の移動距離とが異なる。本実施形態においては、寸法Wiのショット領域Si1の露光終了から寸法Wiのショット領域Si2の露光開始までの基板Pのステップ移動期間において、第2部材22は、位置Jrと位置Jmとの間を移動する。寸法Wjのショット領域Sj2の露光終了から寸法Wjのショット領域Sj3の露光開始までの基板Pのステップ移動期間において、第2部材22は、位置Jrmと位置Jsmとの間を移動する。本実施形態において、本実施形態においては、寸法Wjのショット領域Sj1(又はSj2)の露光終了から寸法Wjのショット領域Sj2(又はSj3)の露光開始までの基板Pのステップ移動期間における第2部材22の移動距離は、寸法Wiのショット領域Si1の露光終了から寸法Wiのショット領域Si2の露光開始までの基板Pのステップ移動期間における第2部材22の移動距離よりも短い。なお、ショット領域Sj1、Sj2間(Sj2、Sj3間)のステップ移動期間における第2部材22の移動距離が、ショット領域Si1、Si2間のステップ移動期間における第2部材22の移動距離よりも長くてもよいし、実質的に等しくてもよい。
 また、本実施形態においては、寸法Wiのショット領域Si2の露光終了から寸法Wjのショット領域Sj1の露光開始までの基板Pのステップ移動期間における第2部材22の移動距離と、寸法Wjのショット領域Sj1(又はSj2)の露光終了から寸法Wjのショット領域Sj2(又はSj3)の露光開始までの基板Pのステップ移動期間における第2部材22の移動距離とが異なる。本実施形態においては、寸法Wiのショット領域Si2の露光終了から寸法Wjのショット領域Sj1の露光開始までの基板Pのステップ移動期間において、第2部材22は、位置Jrと位置Jmとの間を移動する。寸法Wjのショット領域Sj2の露光終了から寸法Wjのショット領域Sj3の露光開始までの基板Pのステップ移動期間において、第2部材22は、位置Jrmと位置Jsmとの間を移動する。本実施形態においては、寸法Wjのショット領域Sj1(又はSj2)の露光終了から寸法Wjのショット領域Sj2(又はSj3)の露光開始までの基板Pのステップ移動期間における第2部材22の移動距離は、寸法Wiのショット領域Si2の露光終了から寸法Wjのショット領域Sj1の露光開始までの基板Pのステップ移動期間における第2部材22の移動距離よりも短い。なお、ショット領域Sj1、Sj2間(Sj2、Sj3間)のステップ移動期間における第2部材22の移動距離が、ショット領域Si2、Sj1間のステップ移動期間における第2部材22の移動距離よりも長くてもよいし、実質的に等しくてもよい。
 なお、第2部材22がX軸方向のみならず、X軸方向及びY軸方向に移動可能でもよい。第2部材22の移動距離は、そのXY平面内における移動距離でもよい。また、第2部材22が、X軸、Y軸、Z軸、θX、θY、及びθZの6つの方向に移動可能な場合、第2部材22の移動距離は、その6つの方向の移動距離でもよい。
 また、本実施形態において、ショット領域Si1の露光終了からショット領域Si2の露光開始までの基板Pのステップ移動期間における第2部材22の移動方向と、ショット領域Sj1(又はSj2)の露光終了からショット領域Sj2(又はSj3)の露光開始までの基板Pのステップ移動期間における第2部材22の移動方向とが異なってもよい。
 また、本実施形態において、ショット領域Si2の露光終了からショット領域Sj1の露光開始までの基板Pのステップ移動期間における第2部材22の移動方向と、ショット領域Sj1(又はSj2)の露光終了からショット領域Sj2(又はSj3)の露光開始までの基板Pのステップ移動期間における第2部材22の移動方向とが異なってもよい。
 また、本実施形態において、ショット領域Si1の露光終了からショット領域Si2の露光開始までの基板Pのステップ移動期間における第2部材22の移動速度と、ショット領域Sj1(又はSj2)の露光終了からショット領域Sj2(又はSj3)の露光開始までの基板Pのステップ移動期間における第2部材22の移動速度とが異なってもよい。
 例えば、ショット領域Si1、Si2間のステップ移動期間における第2部材22の移動速度が、ショット領域Sj2、Sj3間のステップ移動期間における第2部材22の移動速度よりも低くてもよいし、高くてもよい。
 また、本実施形態において、ショット領域Si2の露光終了からショット領域Sj1の露光開始までの基板Pのステップ移動期間における第2部材22の移動速度と、ショット領域Sj1(又はSj2)の露光終了からショット領域Sj2(又はSj3)の露光開始までの基板Pのステップ移動期間における第2部材22の移動速度とが異なってもよい。
 例えば、ショット領域Si2、Sj1間のステップ移動期間における第2部材22の移動速度が、ショット領域Sj2、Sj3間のステップ移動期間における第2部材22の移動速度よりも低くてもよいし、高くてもよい。
 なお、第2部材22がX軸方向のみならず、X軸方向及びY軸方向に移動可能でもよい。第2部材22の移動速度は、そのXY平面内における移動速度でもよい。また、第2部材22が、X軸、Y軸、Z軸、θX、θY、及びθZの6つの方向に移動可能な場合、第2部材22の移動速度は、その6つの方向の移動速度でもよい。
 また、本実施形態において、ショット領域Si1の露光終了からショット領域Si2の露光開始までの基板Pのステップ移動期間における第2部材22の加速度(減速度)と、ショット領域Sj1(又はSj2)の露光終了からショット領域Sj2(又はSj3)の露光開始までの基板Pのステップ移動期間における第2部材22の加速度(減速度)とが異なってもよい。例えば、ショット領域Si1、Si2間のステップ移動期間における第2部材22の加速度(減速度)が、ショット領域Sj2、Sj3間のステップ移動期間における第2部材22の加速度(減速度)よりも低くてもよいし、高くてもよい。
 また、本実施形態において、ショット領域Si2の露光終了からショット領域Sj1の露光開始までの基板Pのステップ移動期間における第2部材22の加速度(減速度)と、ショット領域Sj1(又はSj2)の露光終了からショット領域Sj2(又はSj3)の露光開始までの基板Pのステップ移動期間における第2部材22の加速度(減速度)とが異なってもよい。例えば、ショット領域Si2、Sj1間のステップ移動期間における第2部材22の加速度(減速度)が、ショット領域Sj2、Sj3間のステップ移動期間における第2部材22の加速度(減速度)よりも低くてもよいし、高くてもよい。
 なお、第2部材22がX軸方向のみならず、X軸方向及びY軸方向に移動可能でもよい。第2部材22の加速度(減速度)は、そのXY平面内における加速度(減速度)でもよい。また、第2部材22が、X軸、Y軸、Z軸、θX、θY、及びθZの6つの方向に移動可能な場合、第2部材22の加速度(減速度)は、その6つの方向の加速度(減速度)でもよい。
 なお、ショット領域Si1、Si2間のステップ移動期間、及びショット領域Sj2、Sj3間のステップ移動期間の一方のステップ移動期間において、第2部材22が移動し続け、他方のステップ移動期間の少なくとも一部において、第2部材22の移動が停止されてもよい。
 なお、ショット領域Si2、Sj1間のステップ移動期間、及びショット領域Sj2、Sj3間のステップ移動期間の一方のステップ移動期間において、第2部材22が移動し続け、他方のステップ移動期間の少なくとも一部において、第2部材22の移動が停止されてもよい。
 以上説明したように、本実施形態においては、寸法Wiのショット領域Si1の露光終了から寸法Wiのショット領域Si2の露光開始までの基板Pのステップ移動期間における第2部材22の動作(動き方)と、寸法Wjのショット領域Sj1の露光終了から寸法Wjのショット領域Sj2の露光開始までの基板Pのステップ移動期間における第2部材22の動作(動き方)とが異なるように駆動装置32が制御されることによって、液浸空間LSからの液体LQの流出などが抑制される。したがって、露光不良の発生、及び不良デバイスの発生が抑制される。
 また、本実施形態においては、寸法Wiのショット領域Si2の露光終了から寸法Wjのショット領域Sj1の露光開始までの基板Pのステップ移動期間における第2部材22の動作(動き方)と、寸法Wjのショット領域Sj1の露光終了から寸法Wjのショット領域Sj2の露光開始までの基板Pのステップ移動期間における第2部材22の動作(動き方)とが異なるように駆動装置32が制御されることによって、液浸空間LSからの液体LQの流出などが抑制される。したがって、露光不良の発生、及び不良デバイスの発生が抑制される。
 図24は、Y軸方向に関して寸法Wmのショット領域Sm1、Sm2が順次露光され、Y軸方向に関して寸法Wnのショット領域Sn1、Sn2が順次露光される例を模式的に示す。図24において、寸法Wnは、寸法Wmよりも小さい。ショット領域Sm1、Sm2は、列Gmに含まれる。ショット領域Sn1、Sn2は、列Gnに含まれる。列Gnは、列Gmの+Y側に配置される。なお、列Gnは、列Gmの-Y側に配置されてもよい。
 列Gmのショット領域Sm1、Sm2が順次露光された後、列Gnのショット領域Sn1、Sn2が順次露光される。なお、列Gnのショット領域Sn1、Sn2が順次露光された後、列Gmのショット領域Sm1、Sm2が順次露光されてもよい。
 図24に示す例においては、ショット領域Sm1の露光終了からショット領域Sm2の露光開始までの基板Pのステップ移動期間における第2部材22の動作(動き方)と、ショット領域Sn1の露光終了からショット領域Sn2の露光開始までの基板Pのステップ移動期間における第2部材22の動作(動き方)とが異なるように、駆動装置32が制御される。
 図25は、Y軸方向に関して寸法Wmのショット領域Sm1、Sm2が順次露光され、Y軸方向に関して寸法Wnのショット領域Sn1、Sn2が順次露光される例を模式的に示す。図25において、寸法Wnは、寸法Wmよりも小さい。ショット領域Sm1、Sm2、及びショット領域Sn1、Sn2は、列Gmnに含まれる。ショット領域Sm1、Sm2が順次露光された後、ショット領域Sn1、Sn2が順次露光される。なお、ショット領域Sn1、Sn2が順次露光された後、ショット領域Sm1、Sm2が順次露光されてもよい。
 図25に示す例においては、ショット領域Sm1の露光終了からショット領域Sm2の露光開始までの基板Pのステップ移動期間における第2部材22の動作(動き方)と、ショット領域Sn1の露光終了からショット領域Sn2の露光開始までの基板Pのステップ移動期間における第2部材22の動作(動き方)とが異なるように、駆動装置32が制御される。
 図26は、Y軸方向に関して寸法Wmのショット領域Sm1、Sm2が順次露光され、Y軸方向に関して寸法Wnのショット領域Sn1、Sn2が順次露光される例を模式的に示す。図26において、寸法Wnは、寸法Wmよりも小さい。ショット領域Sm1は、列Gm1に含まれる。ショット領域Sm2は、列Gm2に含まれる。列Gm1と列Gm2とは異なる。列Gm2は、列Gm1の+Y側に配置される。なお、列Gm2は、列Gm1の-Y側に配置されてもよい。ショット領域Sn1は、列Gn1に含まれる。ショット領域Sn2は、列Gn2に含まれる。列Gn1と列Gn2とは異なる。列Gn2は、列Gn1の+Y側に配置される。なお、列Gn2は、列Gn1の-Y側に配置されてもよい。図26に示す例においても、スキャン移動方向は、Y軸方向である。ショット領域Sm1、Sm2が順次露光された後、ショット領域Sn1、Sn2が順次露光される。なお、列Gnのショット領域Sn1、Sn2が順次露光された後、列Gmのショット領域Sm1、Sm2が順次露光されてもよい。
 図26に示す例においては、ショット領域Sm1の露光終了からショット領域Sm2の露光開始までの基板Pのステップ移動期間における第2部材22の動作(動き方)と、ショット領域Sn1の露光終了からショット領域Sn2の露光開始までの基板Pのステップ移動期間における第2部材22の動作(動き方)とが異なるように、駆動装置32が制御される。
 図24、図25、及び図26に示す例において、例えば、ショット領域Sm1、Sm2間のステップ移動期間における第2部材22の移動距離が、ショット領域Sn1、Sn2間のステップ移動期間における第2部材22の移動距離よりも長くてもよい。例えば、ショット領域Sm1、Sm2間のステップ移動期間において、第2部材22は、位置Jrと位置Jsとの間を移動し、ショット領域Sn1、Sn2間のステップ移動期間において、第2部材22は、位置Jrmと位置Jsmとの間を移動してもよい。
 図27は、Y軸方向に関してそれぞれ寸法Wp、Wqのショット領域Sp、Sqが順次露光され、Y軸方向に関して寸法Wrのショット領域Sr1、Sr2が順次露光される例を模式的に示す。図27において、寸法Wqは、寸法Wpよりも小さい。なお、寸法Wqは、寸法Wpよりも大きくてもよい。図27に示す例において、寸法Wrは、寸法Wpと実質的に等しい。なお、寸法Wrは、寸法Wqと実質的に等しくてもよい。なお、寸法Wrは、寸法Wp、Wqと異なってもよい。寸法Wrは、寸法Wp、Wqよりも小さくてもよいし、大きくてもよい。寸法Wrは、寸法Wp及び寸法qの一方よりも大きく、他方よりも小さくてもよい。
 ショット領域Sp、Sqは、列Gpqに含まれる。ショット領域Sr1、Sr2は、列Grに含まれる。列Gpqは、列Grの+Y側に配置される。なお、列Gpqは、列Grの-Y側に配置されてもよい。列Gpqのショット領域Sp、Sqが順次露光された後、列Grのショット領域Sr1、Sr2が順次露光される。なお、列Grのショット領域Sr1、Sr2が順次露光された後、列Gpqのショット領域Sp、Sqが順次露光されてもよい。
 図27に示す例においては、ショット領域Spの露光終了からショット領域Sqの露光開始までの基板Pのステップ移動期間における第2部材22の動作(動き方)と、ショット領域Sr1の露光終了からショット領域Sr2の露光開始までの基板Pのステップ移動期間における第2部材22の動作(動き方)とが異なるように、駆動装置32が制御される。
 図28は、Y軸方向に関してそれぞれ寸法Wp、Wqのショット領域Sp、Sqが順次露光され、Y軸方向に関して寸法Wrのショット領域Sr1、Sr2が順次露光される例を模式的に示す。図28において、寸法Wqは、寸法Wpよりも小さい。なお、寸法Wqは、寸法Wpよりも大きくてもよい。図28に示す例において、寸法Wrは、寸法Wpと実質的に等しい。なお、寸法Wrは、寸法Wqと実質的に等しくてもよい。なお、寸法Wrは、寸法Wp、Wqと異なってもよい。寸法Wrは、寸法Wp、Wqよりも小さくてもよいし、大きくてもよい。寸法Wrは、寸法Wp及び寸法qの一方よりも大きく、他方よりも小さくてもよい。
 ショット領域Sp、Sq、及びショット領域Sr1、Sr2は、列Gpqrに含まれる。列Gpqrは、ショット領域Sp、Sqが順次露光された後、ショット領域Sr1、Sr2が順次露光される。なお、ショット領域Sr1、Sr2が順次露光された後、ショット領域Sp、Sqが順次露光されてもよい。
 図28に示す例においては、ショット領域Spの露光終了からショット領域Sqの露光開始までの基板Pのステップ移動期間における第2部材22の動作(動き方)と、ショット領域Sr1の露光終了からショット領域Sr2の露光開始までの基板Pのステップ移動期間における第2部材22の動作(動き方)とが異なるように、駆動装置32が制御される。
 図29は、Y軸方向に関してそれぞれ寸法Wp、Wqのショット領域Sp、Sqが順次露光され、Y軸方向に関して寸法Wrのショット領域Sr1、Sr2が順次露光される例を模式的に示す。図29において、寸法Wqは、寸法Wpよりも小さい。なお、寸法Wqは、寸法Wpよりも大きくてもよい。図29に示す例において、寸法Wrは、寸法Wpと実質的に等しい。なお、寸法Wrは、寸法Wqと実質的に等しくてもよい。なお、寸法Wrは、寸法Wp、Wqと異なってもよい。寸法Wrは、寸法Wp、Wqよりも小さくてもよいし、大きくてもよい。寸法Wrは、寸法Wp及び寸法qの一方よりも大きく、他方よりも小さくてもよい。
 ショット領域Spは、列Gpに含まれる。ショット領域Sqは、列Gqに含まれる。列Gpと列Gqとは異なる。列Gqは、列Gpの+Y側に配置される。なお、列Gqは、列Gpの-Y側に配置されてもよい。ショット領域Sr1は、列Gr1に含まれる。ショット領域Sr2は、列Gr2に含まれる。列Gr1と列Gr2とは異なる。列Gr2は、列Gr1の+Y側に配置される。なお、列Gr2は、列Gr1の-Y側に配置されてもよい。図29に示す例において、スキャン移動方向は、Y軸方向である。ショット領域Sp、Sqが順次露光された後、ショット領域Sr1、Sr2が順次露光される。なお、ショット領域Sr1、Sr2が順次露光された後、ショット領域Sp、Sqが順次露光されてもよい。
 図29に示す例においては、ショット領域Spの露光終了からショット領域Sqの露光開始までの基板Pのステップ移動期間における第2部材22の動作(動き方)と、ショット領域Sr1の露光終了からショット領域Sr2の露光開始までの基板Pのステップ移動期間における第2部材22の動作(動き方)とが異なるように、駆動装置32が制御される。
 図27、図28、及び図29に示す例において、例えば、ショット領域Sr1、Sr2間のステップ移動期間における第2部材22の移動距離が、ショット領域Sp、Sq間のステップ移動期間における第2歩合22の移動距離よりも長くてもよい。例えば、ショット領域Sr1、Sr2間のステップ移動期間において、第2部材22は、位置Jrと位置Jsとの間を移動し、ショット領域Sp、Sq間のステップ移動期間において、第2部材22は、位置Jrmと位置Jsmとの間を移動してもよい。
<第5実施形態>
 第5実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略若しくは省略する。
 図30は、X軸方向に関する基板P(基板ステージ2)の速度及び第2部材22の速度と時間との関係の一例を示す図である。図30に示すグラフにおいて、横軸は時間、縦軸は速度である。図30において、ラインLPは、基板P(基板ステージ2)の速度を示し、ラインL22は、第2部材22の速度を示す。ラインLRは、基板P(基板ステージ2)と第2部材22との相対速度を示す。
 図30において、期間Tcは、スキャン移動動作が行われている期間である。例えば図11に示した例において、期間Tc1は、基板Pの位置d1から位置d2へのスキャン移動期間に対応し、期間Tc2は、基板Pの位置d3から位置d4へのスキャン移動期間に対応し、期間Tc3は、基板Pの位置d5から位置d6へのスキャン移動期間に対応する。また、期間Tsは、ステップ移動動作が行われている期間である。例えば図11に示した例において、期間Ts1は、基板Pの位置d2から位置d3へのステップ移動期間に対応し、期間Ts2は、基板Pの位置d4から位置d5へのステップ移動期間に対応する。
 図30に示すように、本実施形態においては、ステップ移動期間TsにおけるX軸方向に関する第2部材22の移動速度は、基板P(基板ステージ2)の移動速度よりも低い。
 なお、第2部材22の移動速度が、基板P(基板ステージ2)の移動速度と実質的に等しくてもよいし、基板P(基板ステージ2)の移動速度よりも高くてもよい。すなわち、基板P(基板ステージ2)は、第2部材22よりも高速で移動してもよいし、低速で移動してもよいし、同じ速度で移動してもよい。
 また、図30に示すように、本実施形態においては、ステップ移動期間TsにおけるX軸方向に関する第2部材22の加速度は、基板P(基板ステージ2)の加速度よりも低い。なお、第2部材22の加速度が、基板P(基板ステージ2)の加速度と等しくてもよいし、基板P(基板ステージ2)の加速度よりも高くてもよい。
 また、図30に示すように、本実施形態において、制御装置6は、ショット領域S(例えばショット領域S1)の露光終了から、次のショット領域S(例えばショット領域S2)の露光開始までの基板Pのステップ移動期間において第2部材22が+X軸方向に第1移動条件で移動され、ショット領域S2の露光開始から露光終了までの基板Pの露光期間(スキャン移動期間)において第2部材22が-X軸方向に第1移動条件とは異なる第2移動条件で移動されるように、駆動装置32を制御する。
 第1、第2移動条件は、第2部材22の移動速度を含む。本実施形態において、第1、第2移動条件は、X軸方向に関する第2部材22の移動速度を含む。
 また、第1、第2移動条件は、第2部材22の加速度(減速度)を含む。本実施形態において、第1、第2移動条件は、X軸方向に関する第2部材22の加速度(減速度)を含む。
 例えば、図30に示すように、ステップ移動期間Tsにおいて、第2部材22は、速度(最高速度)Vaで移動する。スキャン移動期間(露光期間)Tcにおいて、第2部材22は、速度(最高速度)Vbで移動する。
 本実施形態において、スキャン移動期間(露光期間)Tcにおける第2部材22の移動速度Vbは、ステップ移動期間Tsにおける第2部材22の移動速度Vaよりも低い。なお、本実施形態において、第2部材22の移動速度は、終端光学素子13に対する速度(相対速度)の絶対値を含む。
 また、本実施形態において、スキャン移動期間(露光期間)Tcにおける第2部材22の加速度は、ステップ移動期間Tsにおける第2部材22の加速度よりも低い。なお、本実施形態において、第2部材22の加速度は、終端光学素子13に対する加速度の絶対値を含む。
 本実施形態においては、スキャン移動期間(露光期間)Tcの少なくとも一部において、第2部材22は、一定速度で移動される。本実施形態においては、第2部材22は、スキャン移動期間(露光期間)Tcの一部において、一定の速度Vbで移動する。ステップ移動期間Tsの少なくとも一部において、第2部材22は、一定速度で移動されてもよい。スキャン移動期間(露光期間)Tcにおいて第2部材22が一定速度で移動する時間Tccは、ステップ移動期間Tsにおいて第2部材22が一定速度で移動する時間よりも長い。
 なお、ステップ移動期間Tsにおいて、第2部材22は一定速度で移動しなくてもよい。なお、スキャン移動期間(露光期間)Tcにおいて、第2部材22は一定速度で移動しなくてもよい。
 また、本実施形態においては、ステップ移動期間TsにおけるX軸方向に関する第2部材22の移動距離は、基板P(基板ステージ2)の移動距離よりも短い。例えば、ステップ移動期間Tsにおける第2部材22の移動距離は、基板P(基板ステージ2)の移動距離の45~65%でもよい。例えば、第2部材22の移動距離は、基板P(基板ステージ2)の移動距離の45%、50%、55%、60%、65%のいずれかでもよい。本実施形態において、ステップ移動期間Tsにおける第2部材22の移動距離は、位置Jrと位置Jmとの距離である。また、本実施形態において、ステップ移動期間TsにおけるX軸方向に関する第2部材22の移動距離は、あるショット領域Sの中心とそのショット領域Sに対してX軸方向に関して隣り合うショット領域Sの中心との距離(距離A)よりも短い。例えば、ステップ移動期間Tsにおける第2部材22の移動距離は、距離Aの45~65%でもよい。例えば、ステップ移動期間Tsにおける第2部材22の移動距離は、距離Aの45%、50%、55%、60%、65%のいずれかでもよい。また、ステップ移動期間TsにおけるX軸方向に関する第2部材22の移動距離は、X軸方向に関する1つのショット領域Sの寸法(寸法B)よりも短い。例えば、ステップ移動動作における第2部材22の移動距離は、寸法Bの45~65%でもよい。例えば、ステップ移動動作における第2部材22の移動距離は、寸法Bの45%、50%、55%、60%、65%のいずれかでもよい。例えば、X軸方向に関するショット領域Sの寸法(寸法B)が26mmである場合、第2部材22の移動距離は、約14mmでもよい。
 第2部材22の移動距離は、例えば基板Pの表面条件に基づいて定めてもよい。基板Pの表面条件は、基板Pの表面を形成する感光膜の表面における液体LQの接触角(後退接触角など)を含む。また、基板Pの表面条件は、基板Pの表面を形成する保護膜(トップコート膜)の表面における液体LQの接触角(後退接触角など)を含む。なお、基板Pの表面が、例えば反射防止膜で形成されてもよい。なお、第2部材22の移動距離は、ステップ移動動作において液浸空間LSからの液体LQの流出(残留)が抑制されるように、予備実験あるいはシミュレーションによって求めてもよい。
 以上説明したように、本実施形態によれば、ステップ移動期間Tsにおける第2部材22の移動条件とスキャン移動期間(露光期間)Tcにおける第2部材22の移動条件とが異なるように、第2部材22が移動されるので、液浸空間LSからの液体LQの流出などを抑制することができる。
 本実施形態においては、ステップ移動期間Tsにおける基板P(基板ステージ2)の動きと、スキャン移動期間(露光期間)Tcにおける基板P(基板ステージ2)の動きとは異なる。そのため、その基板P(基板ステージ2)の動きに基づいて、第2部材22の移動条件を定めることによって、液体LQの流出などが抑制される。したがって、露光不良の発生、及び不良デバイスの発生が抑制される。
 図31A~図31Cは、ステップ移動期間Tsにおける、X軸方向に関する基板P(基板ステージ2)の速度及び第2部材22の速度と時間との関係の一例を示す図である。図31A~図31Cに示すグラフにおいて、横軸は時間、縦軸は速度である。図31A~図31Cにおいて、ラインLPは、基板P(基板ステージ2)の速度を示し、ラインL22は、第2部材22の速度を示す。
 図31Aは、ステップ移動期間Tsにおいて、基板PがX軸方向の一側(例えば+X軸方向)に速度Vcで移動する状態、及び速度Vdで移動する状態の一例を示す。速度Vdは、速度Vcよりも高い。図31Aに示す例では、基板Pが+X軸方向に速度Vcで移動する状態において、第2部材22は、+X軸方向に加速度Acで移動する。基板Pが+X軸方向に速度Vdで移動する状態において、第2部材22は、+X軸方向に加速度Adで移動する。加速度Adは、加速度Acよりも高い。図31Aは、基板Pの低速移動領域においては、第2部材22は低い加速度で移動し、基板Pの高速移動領域においては、第2部材22は高い加速度で移動する例を示す。
 図31Bは、ステップ移動期間Tsにおいて、基板PがX軸方向の一側(例えば+X軸方向)に速度Veで移動する状態、及び速度Vfで移動する状態の一例を示す。速度Vfは、速度Veよりも高い。図31Bに示す例では、基板Pが+X軸方向に速度Veで移動する状態において、第2部材22は、+X軸方向に加速度Aeで移動する。基板Pが+X軸方向に速度Vfで移動する状態において、第2部材22は、+X軸方向に加速度Afで移動する。加速度Afは、加速度Aeよりも低い。図31Bは、基板Pの低速移動領域においては、第2部材22は高い加速度で移動し、基板Pの高速移動領域においては、第2部材22は低い加速度で移動する例を示す。
 図31Cは、ステップ移動期間Tsにおいて、基板PがX軸方向の一側(例えば+X軸方向)に速度Vgで移動する状態、及び速度Vhで移動する状態の一例を示す。速度Vhは、速度Vgよりも高い。図31Cに示す例では、基板Pが+X軸方向に速度Vgで移動する状態において、第2部材22は、+X軸方向に加速度Agで移動する。基板Pが+X軸方向に速度Vhで移動する状態において、第2部材22は、+X軸方向に加速度Ahで移動する。本実施形態において、加速度Agと加速度Ahとは実質的に等しい。本実施形態において、第2部材22は、X軸方向に関する速度が零の状態及び最速値(最高速度)の状態の一方から他方になるまで、実質的に等加速度で移動する。
 なお、図31A~図31Cに示した基板P(基板ステージ2)の速度及び第2部材22の速度と時間との関係は、図11、図14、及び図15を参照して説明したステップ移動期間のみならず、図16~図21を参照して説明したステップ移動期間(第1、第2ステップ移動期間)、及び図22~図29を参照して説明したステップ移動期間のそれぞれについて適用することができる。
 例えば、図16~図21を参照して説明した実施形態の第2ステップ移動期間において、基板Pが例えば+X軸方向に速度Vjからその速度Vjよりも高い速度Vkに変化するように移動する場合、基板Pが+X軸方向に速度Vjで移動する状態において、第2部材22が+X軸方向に加速度Ajで移動され、基板Pが+X軸方向に速度Vkで移動する状態において、第2部材22が+X軸方向に加速度Ajよりも低い加速度Akで移動されてもよい。なお、加速度Akは加速度Ajよりも高くてもよい。また、例えば図22及び図23を参照して説明した、ショット領域Si2,Sj1間のステップ移動期間、及びショット領域Sj2、Sj3間のステップ移動期間の一方又は両方において、図31A~図31Cを参照して説明した基板P(基板ステージ2)の速度及び第2部材22の速度と時間との関係を適用することができる。
 図32A及び図32Bは、スキャン移動期間Tcにおける、X軸方向に関する第2部材22の速度と時間との関係の一例を示す図である。図32A及び図32Bに示すグラフにおいて、横軸は時間、縦軸は速度である。図32A及び図32Bにおいて、ラインL22は、第2部材22の速度を示す。
 図32Aは、スキャン移動期間Tcの一部の期間において、第2部材22が一定速度Vmで移動する例を示す。スキャン移動期間Tcの一部の期間において、第2部材22は、速度Vmで等速移動する。本実施形態において、速度Vmは、スキャン移動期間Tcにおける第2部材22の最高速度である。図32Aに示す例において、第2部材22は、X軸方向に関する速度が零の状態及び最速値(最高速度)の状態の一方から他方になるまで、実質的に等加速度で移動する。なお、スキャン移動期間Tcの一部の期間において、第2部材22は、そのスキャン移動期間Tcにおける最高速度よりも低い速度で等速移動してもよい。
 図32Bは、スキャン移動期間Tcの一部の期間において、第2部材22が一定速度Vnで移動する例を示す。スキャン移動期間Tcの一部の期間において、第2部材22は、速度Vnで等速移動する。本実施形態において、速度Vnは、スキャン移動期間Tcにおける第2部材22の最高速度である。図32Bに示す例において、第2部材22は、X軸方向に関して速度Vn1で移動する状態から速度Vn2で移動する状態を経て、速度(最高速度)Vnで移動する状態に変化する。速度Vn1は、速度Vn2よりも低い。本実施形態においては、第2部材22が速度Vn2で移動する期間における第2部材22の加速度An2は、第2部材22が速度Vn1で移動する期間における第2部材22の加速度An1よりも低い。換言すれば、第2部材22は、低速移動領域においては高い加速度で移動し、高速移動領域においては、低い加速度で移動する。
 なお、上述の第1~第5実施形態において、図33に示すように、第1部材21の少なくとも一部が、終端光学素子13の射出面12と対向してもよい。図33に示す変形例において、第1部材21は、開口34の周囲に配置された上面44を有する。開口34の上端の周囲に上面44が配置される。開口34の下端の周囲に下面23が配置される。上面44の一部が、射出面12と対向する。また、図33に示す例では、第2部材22の上面25の一部も、射出面12と対向する。
 なお、図34に示すように、第1部材の下面23が、射出面12よりも+Z側に配置されてもよい。なお、Z軸方向に関する下面23の位置(高さ)と射出面12の位置(高さ)とが実質的に等しくてもよい。第1部材の下面23が、射出面12よりも-Z側に配置されてもよい。
 なお、上述の各実施形態においては、液浸部材5は開口35以外に第1空間SP1と第2空間SP2とを流体的に接続する流路を有しないこととした。しかし、例えば、光路Kに対して開口35よりも外側に、第1空間SP1と第2空間SP2とを流体的に接続する開口(孔)が形成されてもよい。
 なお、上述の各実施形態において、液浸部材5は、第2部材22の+Z軸方向を向く上面25が、第1部材21の開口34の周囲に拡がる、-Z軸方向 を向く下面23と間隙を介して対向する構成を有する。変形例において、液浸部材5Sは、上記以外の構成を有することができる。一例において、液浸部材5Sは、光学部材(終端光学素子13)の周囲の少なくとも一部に配置される第1部材21Sと、光学部材(終端光学素子13)の周囲の少なくとも一部に配置され、流体回収部27Sを有する可動の第2部材22Sとを含み、図35に示すように、第1部材21Sの露光光ELが通過可能な第1部材21Sの開口34Sの周囲であって、開口34Sの近くに拡がる下面23Sが第2部材22Sと対向しないように、第1部材21Sと第2部材22Sを配置することができる。他の一例において、液浸部材5Tは、光学部材(終端光学素子13)の周囲の少なくとも一部に配置され、流体回収部27Tを有する第1部材21Tと、光学部材(終端光学素子13)の周囲の少なくとも一部に配置された可動の第2部材22Tとを含み、図36に示すように、第1部材21Tの露光光ELが通過可能な第1部材21Tの開口34Tの周囲であって、開口34Sの近くに拡がる下面23Sが第2部材22Tの上面25Tと対向するように、第1部材21Sと第2部材22Sを配置することができる。図36の例においては、第1部材21Tの下面23Tとの間の空間からの液体LQ、および第2部材22Tの下面26Tと物体(基板P)との間の空間からの液体LQを、第1部材21Tの流体回収部27Tから回収する。他の例において、液浸部材5は、下面23及び/又は上面25がZ軸に対して傾斜する面を含む構成を有してもよい。
 なお、上述の各実施形態において、第1部材21と終端光学素子13との間の空間から液体LQと気体の少なくとも一方を吸引する吸引口を第1部材21に設けてもよい。
 なお、上述の各実施形態において、第1空間SP1に液体LQを供給する供給口を第1部材21及び第2部材22の少なくとも一方に設けてもよい。例えば、開口34と液体回収部24との間における第1部材21の下面23に、液体LQを供給する供給口を設けてもよい。
 なお、上述の各実施形態において、制御装置6は、CPU等を含むコンピュータシステムを含む。また、制御装置6は、コンピュータシステムと外部装置との通信を実行可能なインターフェースを含む。記憶装置7は、例えばRAM等のメモリ、ハードディスク、CD-ROM等の記録媒体を含む。記憶装置7には、コンピュータシステムを制御するオペレーティングシステム(OS)がインストールされ、露光装置EXを制御するためのプログラムが記憶されている。
 なお、制御装置6に、入力信号を入力可能な入力装置が接続されていてもよい。入力装置は、キーボード、マウス等の入力機器、あるいは外部装置からのデータを入力可能な通信装置等を含む。また、液晶表示ディスプレイ等の表示装置が設けられていてもよい。
 記憶装置7に記録されているプログラムを含む各種情報は、制御装置(コンピュータシステム)6が読み取り可能である。記憶装置7には、制御装置6に、露光光が射出される光学部材の射出面と基板との間の露光光の光路に満たされた液体を介して露光光で基板を露光する液浸露光装置の制御を実行させるプログラムが記録されている。
 記憶装置7に記録されているプログラムは、上述の実施形態に従って、制御装置6に、第1下面を有し光学部材の周囲の少なくとも一部に配置される第1部材と、第1下面と間隙を介して対向する第2上面及び基板が対向可能な第2下面を有し露光光の光路の周囲の少なくとも一部に配置される第2部材と、を含む液浸部材を用いて、液体の液浸空間を形成することと、液浸空間の液体を介して、射出面から射出される露光光で、基板において一の列に含まれる走査方向と交差する方向に配置される複数のショット領域のそれぞれを順次露光することと、一の列に含まれるショット領域を露光する前又は露光した後に、液浸空間の液体を介して、一の列とは異なる列のショット領域を露光することと、同じ列に含まれる第1ショット領域の露光終了から第2ショット領域の露光開始までの基板の第1移動期間における第2部材の第1動作と、ある列の第3ショット領域の露光終了から別の列の第4ショット領域の露光開始までの基板の第2移動期間における第2部材の第2動作とが異なるように、基板の露光の少なくとも一部において、第1部材に対して第2部材を移動することと、を実行させてもよい。
 また、記憶装置7に記録されているプログラムは、上述の実施形態に従って、制御装置6に、第1下面を有し光学部材の周囲の少なくとも一部に配置される第1部材と、第1下面と間隙を介して対向する第2上面及び基板が対向可能な第2下面を有し露光光の光路の周囲の少なくとも一部に配置される第2部材と、を含む液浸部材を用いて、液体の液浸空間を形成することと、液浸空間の液体を介して、射出面から射出される露光光で、走査方向に関して第1寸法の第1、第2ショット領域を順次露光することと、第1、第2ショット領域を露光する前又は露光した後に、液浸空間の液体を介して、射出面から射出される露光光で、走査方向に関して第1寸法とは異なる第2寸法の第3、第4ショット領域を順次露光することと、第1ショット領域の露光終了から第2ショット領域の露光開始までの基板の第1移動期間における第2部材の第1動作と、第3ショット領域の露光終了から第4ショット領域の露光開始までの基板の第2移動期間における第2部材の第2動作とが異なるように、基板の露光の少なくとも一部において、第1部材に対して第2部材を移動することと、を実行させてもよい。
 また、記憶装置7に記録されているプログラムは、上述の実施形態に従って、制御装置6に、第1下面を有し光学部材の周囲の少なくとも一部に配置される第1部材と、第1下面と間隙を介して対向する第2上面及び基板が対向可能な第2下面を有し露光光の光路の周囲の少なくとも一部に配置される第2部材と、を含む液浸部材を用いて、液体の液浸空間を形成することと、液浸空間の液体を介して、射出面から射出される露光光で、走査方向に関してそれぞれ第1、第2寸法の第1、第2ショット領域を順次露光することと、第1、第2ショット領域を露光する前又は露光した後に、液浸空間の液体を介して、射出面から射出される露光光で、走査方向に関して第3寸法の第3、第4ショット領域を順次露光することと、第1ショット領域の露光終了から第2ショット領域の露光開始までの基板の第1移動期間における第2部材の第1動作と、第3ショット領域の露光終了から第4ショット領域の露光開始までの基板の第2移動期間における第2部材の第2動作とが異なるように、基板の露光の少なくとも一部において、第1部材に対して第2部材を移動することと、を実行させてもよい。
 また、記憶装置7に記録されているプログラムは、上述の実施形態に従って、制御装置6に、第1下面を有し光学部材の周囲の少なくとも一部に配置される第1部材と、第1下面と間隙を介して対向する第2上面及び基板が対向可能な第2下面を有し露光光の光路の周囲の少なくとも一部に配置される第2部材と、を含む液浸部材を用いて、液体の液浸空間を形成することと、液浸空間の液体を介して、射出面から射出される露光光で、基板の第1、第2ショット領域を順次露光することと、第1ショット領域の露光終了から第2ショット領域の露光開始までの基板の第1移動期間において第2部材が走査方向と交差する方向の一側に第1移動条件で移動され、第2ショット領域の露光開始から露光終了までの基板の第2露光期間において第2部材が走査方向と交差する方向の他側に第1移動条件とは異なる第2移動条件で移動されるように、基板の露光の少なくとも一部において、第1部材に対して第2部材を移動することと、を実行させてもよい。
 また、記憶装置7に記録されているプログラムは、上述の実施形態に従って、制御装置6に、第1下面を有し光学部材の周囲の少なくとも一部に配置される第1部材と、第1下面と間隙を介して対向する第2上面及び基板が対向可能な第2下面を有し露光光の光路の周囲の少なくとも一部に配置される第2部材と、を含む液浸部材を用いて、液体の液浸空間を形成することと、液浸空間の液体を介して、射出面から射出される露光光で、基板において一の列に含まれる走査方向と交差する方向に配置される複数のショット領域のそれぞれを順次露光することと、一の列に含まれるショット領域を露光する前又は露光した後に、液浸空間の液体を介して、一の列とは異なる列のショット領域を露光することと、ある列のショット領域の露光終了から、次に露光される、別の列のショット領域の露光開始までの基板の移動期間に、第1部材に対して第2部材を移動することと、を実行させてもよい。
 記憶装置7に記憶されているプログラムが制御装置6に読み込まれることにより、基板ステージ2、計測ステージ3、及び液浸部材5等、露光装置EXの各種の装置が協働して、液浸空間LSが形成された状態で、基板Pの液浸露光等、各種の処理を実行する。
 なお、上述の各実施形態においては、投影光学系PLの終端光学素子13の射出面12側(像面側)の光路Kが液体LQで満たされている。しかし、投影光学系PLが、例えば国際公開第2004/019128号パンフレットに開示されているような、終端光学素子13の入射側(物体面側)の光路も液体LQで満たされる投影光学系でもよい。
 なお、上述の各実施形態においては、液体LQが水であることとしたが、水以外の液体でもよい。液体LQは、露光光ELに対して透過性であり、露光光ELに対して高い屈折率を有し、投影光学系PLあるいは基板Pの表面を形成する感光材(フォトレジスト)等の膜に対して安定なものが好ましい。例えば、液体LQが、ハイドロフロロエーテル(HFE)、過フッ化ポリエーテル(PFPE)、フォンブリンオイル等のフッ素系液体でもよい。また、液体LQが、種々の流体、例えば、超臨界流体でもよい。
 なお、上述の各実施形態においては、基板Pが、半導体デバイス製造用の半導体ウエハを含むこととした。しかし、基板Pは、例えばディスプレイデバイス用のガラス基板、薄膜磁気ヘッド用のセラミックウエハ、あるいは露光装置で用いられるマスクまたはレチクルの原版(合成石英、シリコンウエハ)等を含んでもよい。
 なお、上述の各実施形態においては、露光装置EXが、マスクMと基板Pとを同期移動してマスクMのパターンを走査露光するステップ・アンド・スキャン方式の走査型露光装置(スキャニングステッパ)であることとした。しかし、露光装置EXは、例えばマスクMと基板Pとを静止した状態でマスクMのパターンを一括露光し、基板Pを順次ステップ移動させるステップ・アンド・リピート方式の投影露光装置(ステッパ)でもよい。
 また、露光装置EXが、ステップ・アンド・リピート方式の露光において、第1パターンと基板Pとをほぼ静止した状態で、投影光学系を用いて第1パターンの縮小像を基板P上に転写した後、第2パターンと基板Pとをほぼ静止した状態で、投影光学系を用いて第2パターンの縮小像を第1パターンと部分的に重ねて基板P上に一括露光する露光装置(スティッチ方式の一括露光装置)でもよい。また、スティッチ方式の露光装置が、基板P上で少なくとも2つのパターンを部分的に重ねて転写し、基板Pを順次移動させるステップ・アンド・スティッチ方式の露光装置でもよい。
 また、露光装置EXが、例えば米国特許第6611316号に開示されているような、2つのマスクのパターンを、投影光学系を介して基板上で合成し、1回の走査露光によって基板上の1つのショット領域をほぼ同時に二重露光する露光装置でもよい。また、露光装置EXが、プロキシミティ方式の露光装置、ミラープロジェクション・アライナー等でもよい。
 また、上述の各実施形態において、露光装置EXが、米国特許第6341007号、米国特許第6208407号、米国特許第6262796号等に開示されているような、複数の基板ステージを備えたツインステージ型の露光装置でもよい。例えば、図37に示すように、露光装置EXが2つの基板ステージ2001、2002を備えている場合、射出面12と対向するように配置可能な物体は、一方の基板ステージ、その一方の基板ステージの第1保持部に保持された基板、他方の基板ステージ、及びその他方の基板ステージの第1保持部に保持された基板の少なくとも一つを含む。
 また、露光装置EXが、複数の基板ステージと計測ステージとを備えた露光装置でもよい。
 露光装置EXが、基板Pに半導体素子パターンを露光する半導体素子製造用の露光装置でもよいし、液晶表示素子製造用又はディスプレイ製造用の露光装置でもよいし、薄膜磁気ヘッド、撮像素子(CCD)、マイクロマシン、MEMS、DNAチップ、あるいはレチクル又はマスクなどを製造するための露光装置でもよい。
 なお、上述の実施形態においては、光透過性の基板上に所定の遮光パターン(又は位相パターン・減光パターン)を形成した光透過型マスクを用いた。しかし、このマスクに代えて、例えば米国特許第6778257号に開示されているような、露光すべきパターンの電子データに基づいて透過パターン又は反射パターン、あるいは発光パターンを形成する可変成形マスク(電子マスク、アクティブマスク、あるいはイメージジェネレータとも呼ばれる)を用いてもよい。また、非発光型画像表示素子を備える可変成形マスクに代えて、自発光型画像表示素子を含むパターン形成装置を備えるようにしてもよい。
 上述の各実施形態においては、露光装置EXが投影光学系PLを備えることとしたが、投影光学系PLを用いない露光装置及び露光方法に、上述の各実施形態で説明した構成要素を適用してもよい。例えば、レンズ等の光学部材と基板との間に液浸空間を形成し、その光学部材を介して、基板に露光光を照射する露光装置及び露光方法に、上述の各実施形態で説明した構成要素を適用してもよい。
 また、露光装置EXが、例えば国際公開第2001/035168号パンフレットに開示されているような、干渉縞を基板P上に形成することによって基板P上にライン・アンド・スペースパターンを露光する露光装置(リソグラフィシステム)でもよい。
 上述の実施形態の露光装置EXは、上述の各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了した後、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度及びクリーン度等が管理されたクリーンルームで行うことが望ましい。
 半導体デバイス等のマイクロデバイスは、図38に示すように、マイクロデバイスの機能・性能設計を行うステップ201、この設計ステップに基づいたマスク(レチクル)を製作するステップ202、デバイスの基材である基板を製造するステップ203、上述の実施形態に従って、マスクのパターンからの露光光で基板を露光すること、及び露光された基板を現像することを含む基板処理(露光処理)を含む基板処理ステップ204、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程などの加工プロセスを含む)205、検査ステップ206等を経て製造される。
 なお、上述の各実施形態の要件は、適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。また、法令で許容される限りにおいて、上述の各実施形態及び変形例で引用した露光装置等に関する全ての公開公報及び米国特許の開示を援用して本文の記載の一部とする。
 2…基板ステージ、3…計測ステージ、5…液浸部材、6…制御装置、7…記憶装置、12…射出面、13…終端光学素子、21…第1部材、22…第2部材、22S…支持部材、23…下面、24…液体回収部、25…上面、26…下面、27…流体回収部、29…外側面、30…内側面、31…液体供給部、32…駆動装置、34…開口、35…開口、EL…露光光、EX…露光装置、IL…照明系、K…光路、LQ…液体、LS…液浸空間、P…基板。

Claims (95)

  1.  光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、前記射出面と前記基板との間の液体を介して前記露光光で前記基板の複数のショット領域のそれぞれを順次露光する露光装置であって、 
     前記光学部材の周囲の少なくとも一部に配置される第1部材と、前記光学部材の周囲の一部に配置される第2部材と、を含み、前記液体の液浸空間を形成可能な液浸部材と、 
     前記第1部材に対して前記第2部材を移動可能な駆動装置と、 
     前記駆動装置を制御する制御装置と、を備え、
     前記基板において一の列に含まれる前記走査方向と交差する方向に配置される複数のショット領域のそれぞれが順次露光される前又は露光された後に、前記一の列とは異なる列のショット領域の露光が行われ、 
     前記制御装置は、同じ列に含まれる第1ショット領域の露光終了から第2ショット領域の露光開始までの前記基板の第1移動期間における前記第2部材の第1動作と、ある列の第3ショット領域の露光終了から別の列の第4ショット領域の露光開始までの前記基板の第2移動期間における前記第2部材の第2動作とが異なるように、前記駆動装置を制御する露光装置。
  2.  光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、前記射出面と前記基板との間の液体を介して前記露光光で前記基板の複数のショット領域のそれぞれを順次露光する露光装置であって、 
     第1下面を有し、前記光学部材の周囲の少なくとも一部に配置される第1部材と、前記第1下面と間隙を介して対向する第2上面、及び前記基板が対向可能な第2下面を有し、前記露光光の光路の周囲の少なくとも一部に配置される第2部材と、を含み、前記液体の液浸空間を形成可能な液浸部材と、 
     前記第1部材に対して前記第2部材を移動可能な駆動装置と、 
     前記駆動装置を制御する制御装置と、を備え、
     前記基板において一の列に含まれる前記走査方向と交差する方向に配置される複数のショット領域のそれぞれが順次露光される前又は露光された後に、前記一の列とは異なる列のショット領域の露光が行われ、 
     前記制御装置は、同じ列に含まれる第1ショット領域の露光終了から第2ショット領域の露光開始までの前記基板の第1移動期間における前記第2部材の第1動作と、ある列の第3ショット領域の露光終了から別の列の第4ショット領域の露光開始までの前記基板の第2移動期間における前記第2部材の第2動作とが異なるように、前記駆動装置を制御する露光装置。
  3.  前記第3ショット領域は、前記第1ショット領域と同じ列に含まれる
     請求項1又は請求項2に記載の露光装置。
  4.  前記走査方向と交差する方向に関して、前記第2ショット領域は、前記第1ショット領域の隣に配置される
     請求項1~3に記載の露光装置。
  5.  前記走査方向に関して、前記第4ショット領域を含む列は、前記第3ショット領域を含む列の隣に配置される
     請求項1~4のいずれか一項に記載の露光装置。
  6.  前記第1移動期間と前記第2移動期間とにおいて、前記第2部材の移動方向が異なる
     請求項1~5のいずれか一項に記載の露光装置。
  7.  前記移動方向は、前記走査方向と交差する方向を含む
     請求項6に記載の露光装置。
  8.  前記第1移動期間において、前記第2部材は、前記走査方向と交差する方向に関して一側に移動し、
     前記第2移動期間において、前記第2部材は、前記走査方向と交差する方向に関して一側及び他側に移動する
     請求項6又は7に記載の露光装置。
  9.  前記第1移動期間において、前記基板は、前記走査方向と交差する方向に関して一側に移動し、
     前記第2移動期間において、前記基板は、前記走査方向と交差する方向に関して一側及び他側に移動する
     請求項8に記載の露光装置。
  10.  前記第1移動期間と前記第2移動期間とにおいて、前記第2部材の移動距離が異なる
     請求項1~9のいずれか一項に記載の露光装置。
  11.  前記移動距離は、前記走査方向と交差する方向に関する移動距離を含む
     請求項10に記載の露光装置。
  12.  前記第1移動期間開始と前記第2移動期間開始とにおいて、前記光学部材に対する前記第2部材の位置が異なる
     請求項1~11のいずれか一項に記載の露光装置。
  13.  前記第1移動期間終了と前記第2移動期間終了とにおいて、前記光学部材に対する前記第2部材の位置が異なる
     請求項1~12のいずれか一項に記載の露光装置。
  14.  前記第1移動期間と前記第2移動期間とにおいて、前記第2部材の移動速度が異なる
     請求項1~13のいずれか一項に記載の露光装置。
  15.  前記移動速度は、前記走査方向と交差する方向に関する移動速度を含む
     請求項14に記載の露光装置。
  16.  前記第1移動期間と前記第2移動期間とにおいて、前記第2部材の加速度が異なる
     請求項1~15のいずれか一項に記載の露光装置。
  17.  前記加速度は、前記走査方向と交差する方向に関する加速度を含む
     請求項16に記載の露光装置。
  18.  前記第2部材は、前記走査方向と交差する方向に関して定められた可動範囲を移動する
     請求項1~17のいずれか一項に記載の露光装置。
  19.  前記第1移動期間において、前記第2部材は、移動し続ける
     請求項1~18のいずれか一項に記載の露光装置。
  20.  前記第1ショット領域の露光開始から露光終了までの第1露光期間及び前記第1移動期間において、前記第2部材は、移動し続ける
     請求項19に記載の露光装置。
  21.  前記第1ショット領域の露光開始から露光終了までの第1露光期間、前記第1移動期間、及び前記第2ショット領域の露光開始から露光終了までの第2露光期間において、前記第2部材は、移動し続ける
     請求項19又は20に記載の露光装置。
  22.  前記第2移動期間において、前記第2部材は、移動し続ける
     請求項1~21のいずれか一項に記載の露光装置。
  23.  前記第3ショット領域の露光開始から露光終了までの第3露光期間及び前記第2移動期間において、前記第2部材は、移動し続ける
     請求項22に記載の露光装置。
  24.  前記第3ショット領域の露光開始から露光終了までの第3露光期間、前記第2移動期間、及び前記第4ショット領域の露光開始から露光終了までの第4露光期間において、前記第2部材は、移動し続ける
     請求項22又は23に記載の露光装置。
  25.  前記第2移動期間の少なくとも一部において、前記第2部材は、停止する
     請求項1~21のいずれか一項に記載の露光装置。
  26.  前記第2移動期間の少なくとも一部において、前記基板は、前記走査方向と実質的に平行な方向に移動され、
     前記第2部材は、前記基板が前記走査方向と実質的に平行な方向に移動される期間の少なくとも一部において停止する
     請求項25に記載の露光装置。
  27.  前記第3ショット領域の露光開始から露光終了までの第3露光期間において、前記第2部材は、移動し続ける
     請求項25又は26に記載の露光装置。
  28.  前記第3ショット領域の露光開始から露光終了までの第3露光期間、及び前記第4ショット領域の露光開始から露光終了までの第4露光期間において、前記第2部材は、移動し続ける
     請求項25~27のいずれか一項に記載の露光装置。
  29.  前記第2移動期間は、前記第1移動期間よりも長い
     請求項1~28のいずれか一項に記載の露光装置。
  30.  光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、前記射出面と前記基板との間の液体を介して前記露光光で前記基板の複数のショット領域のそれぞれを順次露光する露光装置であって、 
     前記光学部材の周囲の少なくとも一部に配置される第1部材と、前記光学部材の周囲の一部に配置される第2部材と、を含み、前記液体の液浸空間を形成可能な液浸部材と、 
     前記第1部材に対して前記第2部材を移動可能な駆動装置と、 
     前記駆動装置を制御する制御装置と、を備え、
     前記走査方向に関して第1寸法の第1、第2ショット領域が順次露光される前又は露光された後に、前記走査方向に関して前記第1寸法とは異なる第2寸法の第3、第4ショット領域が順次露光され、 
     前記制御装置は、前記第1ショット領域の露光終了から前記第2ショット領域の露光開始までの前記基板の第1移動期間における前記第2部材の第1動作と、前記第3ショット領域の露光終了から前記第4ショット領域の露光開始までの前記基板の第2移動期間における前記第2部材の第2動作とが異なるように、前記駆動装置を制御する露光装置。
  31.  光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、前記射出面と前記基板との間の液体を介して前記露光光で前記基板の複数のショット領域のそれぞれを順次露光する露光装置であって、 
     第1下面を有し、前記光学部材の周囲の少なくとも一部に配置される第1部材と、前記第1下面と間隙を介して対向する第2上面、及び前記基板が対向可能な第2下面を有し、前記露光光の光路の周囲の少なくとも一部に配置される第2部材と、を含み、前記液体の液浸空間を形成可能な液浸部材と、 
     前記第1部材に対して前記第2部材を移動可能な駆動装置と、 
     前記駆動装置を制御する制御装置と、を備え、
     前記走査方向に関して第1寸法の第1、第2ショット領域が順次露光される前又は露光された後に、前記走査方向に関して前記第1寸法とは異なる第2寸法の第3、第4ショット領域が順次露光され、 
     前記制御装置は、前記第1ショット領域の露光終了から前記第2ショット領域の露光開始までの前記基板の第1移動期間における前記第2部材の第1動作と、前記第3ショット領域の露光終了から前記第4ショット領域の露光開始までの前記基板の第2移動期間における前記第2部材の第2動作とが異なるように、前記駆動装置を制御する露光装置。
  32.  光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、前記射出面と前記基板との間の液体を介して前記露光光で前記基板の複数のショット領域のそれぞれを順次露光する露光装置であって、 
     前記光学部材の周囲の少なくとも一部に配置される第1部材と、前記光学部材の周囲の一部に配置される第2部材と、を含み、前記液体の液浸空間を形成可能な液浸部材と、 
     前記第1部材に対して前記第2部材を移動可能な駆動装置と、 
     前記駆動装置を制御する制御装置と、を備え、
     前記走査方向に関してそれぞれ第1、第2寸法の第1、第2ショット領域が順次露光される前又は露光された後に、前記走査方向に関して第3寸法の第3、第4ショット領域が順次露光され、 
     前記制御装置は、前記第1ショット領域の露光終了から前記第2ショット領域の露光開始までの前記基板の第1移動期間における前記第2部材の第1動作と、前記第3ショット領域の露光終了から前記第4ショット領域の露光開始までの前記基板の第2移動期間における前記第2部材の第2動作とが異なるように、前記駆動装置を制御する露光装置。
  33.  光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、前記射出面と前記基板との間の液体を介して前記露光光で前記基板の複数のショット領域のそれぞれを順次露光する露光装置であって、 
     第1下面を有し、前記光学部材の周囲の少なくとも一部に配置される第1部材と、前記第1下面と間隙を介して対向する第2上面、及び前記基板が対向可能な第2下面を有し、前記露光光の光路の周囲の少なくとも一部に配置される第2部材と、を含み、前記液体の液浸空間を形成可能な液浸部材と、 
     前記第1部材に対して前記第2部材を移動可能な駆動装置と、 
     前記駆動装置を制御する制御装置と、を備え、
     前記走査方向に関してそれぞれ第1、第2寸法の第1、第2ショット領域が順次露光される前又は露光された後に、前記走査方向に関して第3寸法の第3、第4ショット領域が順次露光され、 
     前記制御装置は、前記第1ショット領域の露光終了から前記第2ショット領域の露光開始までの前記基板の第1移動期間における前記第2部材の第1動作と、前記第3ショット領域の露光終了から前記第4ショット領域の露光開始までの前記基板の第2移動期間における前記第2部材の第2動作とが異なるように、前記駆動装置を制御する露光装置。
  34.  前記走査方向に配置される複数のショット領域による列が前記基板に複数配置され、
     前記第1、第2ショット領域は、同じ列に含まれる
     請求項30~33に記載の露光装置。
  35.  前記第3、第4ショット領域は、同じ列に含まれる
     請求項34に記載の露光装置。
  36.  前記第3、第4ショット領域が含まれる列は、前記第1、第2ショット領域が含まれる列と異なる
     請求項35に記載の露光装置。
  37.  前記第1、第2ショット領域と、前記第3、第4ショット領域とは、同じ列に含まれる
     請求項35に記載の露光装置。
  38.  前記走査方向に配置される複数のショット領域による列が前記基板に複数配置され、
     前記第1ショット領域が含まれる列と前記第2ショット領域が含まれる列とは異なり、
     前記第3ショット領域が含まれる列と前記第4ショット領域が含まれる列とは異なる
     請求項30~33に記載の露光装置。
  39.  前記第1移動期間と前記第2移動期間とにおいて、前記第2部材の移動距離が異なる
     請求項30~38のいずれか一項に記載の露光装置。
  40.  前記移動距離は、前記走査方向と交差する方向に関する移動距離を含む
     請求項39に記載の露光装置。
  41.  前記第1移動期間開始と前記第2移動期間開始とにおいて、前記光学部材に対する前記第2部材の位置が異なる
     請求項30~40のいずれか一項に記載の露光装置。
  42.  前記第1移動期間終了と前記第2移動期間終了とにおいて、前記光学部材に対する前記第2部材の位置が異なる
     請求項30~41のいずれか一項に記載の露光装置。
  43.  前記第1移動期間と前記第2移動期間とにおいて、前記第2部材の移動速度が異なる
     請求項30~42のいずれか一項に記載の露光装置。
  44.  前記移動速度は、前記走査方向と交差する方向に関する移動速度を含む
     請求項43に記載の露光装置。
  45.  前記第1移動期間と前記第2移動期間とにおいて、前記第2部材の加速度が異なる
     請求項30~44のいずれか一項に記載の露光装置。
  46.  前記加速度は、前記走査方向と交差する方向に関する加速度を含む
     請求項45に記載の露光装置。
  47.  前記第2部材は、前記走査方向と交差する方向に関して定められた可動範囲を移動する
     請求項30~46のいずれか一項に記載の露光装置。
  48.  前記第1移動期間において、前記基板が前記走査方向と交差する方向の一側に第1速度で移動する第1状態において、前記第2部材が前記走査方向と交差する方向の一側に第1加速度で移動され、
     前記基板が前記走査方向と交差する方向の一側に前記第1速度よりも高い第2速度で移動する第2状態において、前記第2部材が前記走査方向と交差する方向の一側に前記第1加速度よりも低い第2加速度で移動される
     請求項1~47のいずれか一項に記載の露光装置。
  49.  前記第2移動期間において、前記基板が前記走査方向と交差する方向の一側に第3速度で移動する第3状態において、前記第2部材が前記走査方向と交差する方向の一側に第3加速度で移動され、
     前記基板が前記走査方向と交差する方向の一側に前記第3速度よりも高い第4速度で移動する第4状態において、前記第2部材が前記走査方向と交差する方向の一側に前記第3加速度よりも低い第4加速度で移動される
     請求項1~48のいずれか一項に記載の露光装置。
  50.  前記第2ショット領域の露光において前記基板が前記走査方向に移動する第2露光期間において、前記第2部材が前記走査方向と交差する方向の他側に移動される
     請求項48又は49に記載の露光装置。
  51.  前記第2露光期間の少なくとも一部において、前記第2部材は一定速度で前記走査方向と交差する方向の他側に移動される
     請求項50に記載の露光装置。
  52.  光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、前記射出面と前記基板との間の液体を介して前記露光光で前記基板の複数のショット領域のそれぞれを順次露光する露光装置であって、 
     前記光学部材の周囲の少なくとも一部に配置される第1部材と、前記光学部材の周囲の一部に配置される第2部材と、を含み、前記液体の液浸空間を形成可能な液浸部材と、 
     前記第1部材に対して前記第2部材を移動可能な駆動装置と、 
     前記駆動装置を制御する制御装置と、を備え、 
     前記制御装置は、第1ショット領域の露光終了から第2ショット領域の露光開始までの前記基板の第1移動期間において前記第2部材が前記走査方向と交差する方向の一側に第1移動条件で移動され、前記第2ショット領域の露光開始から露光終了までの前記基板の第2露光期間において前記第2部材が前記走査方向と交差する方向の他側に前記第1移動条件とは異なる第2移動条件で移動されるように、前記駆動装置を制御する露光装置。
  53.  光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、前記射出面と前記基板との間の液体を介して前記露光光で前記基板の複数のショット領域のそれぞれを順次露光する露光装置であって、 
     第1下面を有し、前記光学部材の周囲の少なくとも一部に配置される第1部材と、前記第1下面と間隙を介して対向する第2上面、及び前記基板が対向可能な第2下面を有し、前記露光光の光路の周囲の少なくとも一部に配置される第2部材と、を含み、前記液体の液浸空間を形成可能な液浸部材と、 
     前記第1部材に対して前記第2部材を移動可能な駆動装置と、 
     前記駆動装置を制御する制御装置と、を備え、 
     前記制御装置は、第1ショット領域の露光終了から第2ショット領域の露光開始までの前記基板の第1移動期間において前記第2部材が前記走査方向と交差する方向の一側に第1移動条件で移動され、前記第2ショット領域の露光開始から露光終了までの前記基板の第2露光期間において前記第2部材が前記走査方向と交差する方向の他側に前記第1移動条件とは異なる第2移動条件で移動されるように、前記駆動装置を制御する露光装置。
  54.  前記第1、第2移動条件は、前記第2部材の移動速度を含む
     請求項53に記載の露光装置。
  55.  前記第2露光期間における前記第2部材の移動速度は、前記第1移動期間における前記第2部材の移動速度よりも低い
     請求項54に記載の露光装置。
  56.  前記第2部材は、前記第1移動期間及び前記第2露光期間の少なくとも一部において一定速度で移動され、
     前記第2露光期間において前記第2部材が一定速度で移動する時間は、前記第1移動期間において前記第2部材が一定速度で移動する時間よりも長い
     請求項54又は55に記載の露光装置。
  57.  前記第1、第2移動条件は、前記第2部材の加速度を含む
     請求項52~56のいずれか一項に記載の露光装置。
  58.  前記第2露光期間における前記第2部材の加速度は、前記第1移動期間における前記第2部材の加速度よりも低い
     請求項57に記載の露光装置。
  59.  光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、前記射出面と前記基板との間の液体を介して前記露光光で前記基板の複数のショット領域のそれぞれを順次露光する露光装置であって、 
     前記光学部材の周囲の少なくとも一部に配置される第1部材と、前記光学部材の周囲の一部に配置される第2部材と、を含み、前記液体の液浸空間を形成可能な液浸部材と、
     前記第1部材に対して前記第2部材を移動可能な駆動装置と、 
     前記駆動装置を制御する制御装置と、を備え、
     前記基板において一の列に含まれる前記走査方向と交差する方向に配置される複数のショット領域のそれぞれが順次露光される前又は露光された後に、前記一の列とは異なる列のショット領域の露光が行われ、 
     前記制御装置は、前記駆動装置を制御して、ある列のショット領域の露光終了から、次に露光される、別の列のショット領域の露光開始までの前記基板の移動期間に前記第1部材に対して前記第2部材を移動する露光装置。
  60.  光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、前記射出面と前記基板との間の液体を介して前記露光光で前記基板の複数のショット領域のそれぞれを順次露光する露光装置であって、 
     第1下面を有し、前記光学部材の周囲の少なくとも一部に配置される第1部材と、前記第1下面と間隙を介して対向する第2上面、及び前記基板が対向可能な第2下面を有し、前記露光光の光路の周囲の少なくとも一部に配置される第2部材と、を含み、前記液体の液浸空間を形成可能な液浸部材と、 
     前記第1部材に対して前記第2部材を移動可能な駆動装置と、 
     前記駆動装置を制御する制御装置と、を備え、
     前記基板において一の列に含まれる前記走査方向と交差する方向に配置される複数のショット領域のそれぞれが順次露光される前又は露光された後に、前記一の列とは異なる列のショット領域の露光が行われ、 
     前記制御装置は、前記駆動装置を制御して、ある列のショット領域の露光終了から、次に露光される、別の列のショット領域の露光開始までの前記基板の移動期間に前記第1部材に対して前記第2部材を移動する露光装置。
  61.  前記第2部材は、前記光学部材の光軸と実質的に垂直な方向に移動される
     請求項1~60のいずれか一項に記載の露光装置。
  62.  前記基板が移動される期間の少なくとも一部において、前記第2部材は、前記基板の移動方向に移動される
     請求項1~61のいずれか一項に記載の露光装置。
  63.  前記第2部材は、前記基板との相対速度が小さくなるように移動される
     請求項1~62のいずれか一項に記載の露光装置。
  64.  前記第2部材は、前記基板との相対速度が、前記第1部材と前記基板との相対速度よりも小さくなるように移動される
     請求項1~63のいずれか一項に記載の露光装置。
  65.  前記第2部材は、前記走査方向と交差する方向に移動される
     請求項1~64のいずれか一項に記載の露光装置。
  66.  前記第1部材は、実質的に移動しない
     請求項1~65のいずれか一項に記載の露光装置。
  67.  前記液浸空間の液体の少なくとも一部を回収する流体回収部をさらに有する
     請求項1~66のいずれか一項に記載の露光装置。
  68.  前記流体回収部の少なくとも一部は、前記基板が対向可能である
     請求項67に記載の露光装置。
  69.  前記流体回収部は、前記第2部材に配置される
     請求項67又は68に記載の露光装置。
  70.  前記流体回収部は、前記第2下面の周囲の少なくとも一部に配置される
     請求項67~69のいずれか一項に記載の露光装置。
  71.  前記流体回収部は、多孔部材の孔を介して前記液体を回収する
     請求項67~70のいずれか一項に記載の露光装置。
  72.  前記液浸空間を形成するための前記液体を供給する供給部をさらに備える
     請求項1~71のいずか一項に記載の露光装置。
  73.  前記供給部は、前記第1部材に配置される
     請求項72に記載の露光装置。
  74.  前記供給部からの前記液体の少なくとも一部が前記第1下面と前記第2上面との間の第1空間に供給され、 前記第1空間に面し、前記第1空間の前記液体を回収する液体回収部をさらに備える
     請求項72又は73に記載の露光装置。
  75.  前記液体回収部は、前記第1部材に配置される
     請求項74に記載の露光装置。
  76.  前記第1部材は、前記露光光が通過可能な第1開口をさらに有し、
     前記第2部材は、前記露光光が通過可能な第2開口をさらに有する
     請求項1~75のいずれか一項に記載の露光装置。
  77.  前記第1開口は、前記第2開口よりも大きい
     請求項76に記載の露光装置。
  78.  請求項1~77のいずれか一項に記載の露光装置を用いて基板を露光することと、
     露光された前記基板を現像することと、を含む
     デバイス製造方法。
  79.  光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、前記射出面と前記基板との間の液体を介して前記露光光で前記基板の複数のショット領域のそれぞれを順次露光する露光方法であって、 
     前記光学部材の周囲の少なくとも一部に配置される第1部材と、前記光学部材の周囲の一部に配置される第2部材と、を含む液浸部材を用いて、前記液体の液浸空間を形成することと、 
     前記液浸空間の前記液体を介して、前記射出面から射出される前記露光光で、前記基板において一の列に含まれる前記走査方向と交差する方向に配置される複数のショット領域のそれぞれを順次露光することと、 
     前記一の列に含まれる前記ショット領域を露光する前又は露光した後に、前記液浸空間の前記液体を介して、前記一の列とは異なる列のショット領域を露光することと、
     同じ列に含まれる第1ショット領域の露光終了から第2ショット領域の露光開始までの前記基板の第1移動期間における前記第2部材の第1動作と、ある列の第3ショット領域の露光終了から別の列の第4ショット領域の露光開始までの前記基板の第2移動期間における前記第2部材の第2動作とが異なるように、前記基板の露光の少なくとも一部において、前記第1部材に対して前記第2部材を移動することと、を含む露光方法。
  80.  光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、前記射出面と前記基板との間の液体を介して前記露光光で前記基板の複数のショット領域のそれぞれを順次露光する露光方法であって、 
     第1下面を有し前記光学部材の周囲の少なくとも一部に配置される第1部材と、前記第1下面と間隙を介して対向する第2上面及び前記基板が対向可能な第2下面を有し前記露光光の光路の周囲の少なくとも一部に配置される第2部材と、を含む液浸部材を用いて、前記液体の液浸空間を形成することと、 
     前記液浸空間の前記液体を介して、前記射出面から射出される前記露光光で、前記基板において一の列に含まれる前記走査方向と交差する方向に配置される複数のショット領域のそれぞれを順次露光することと、 
     前記一の列に含まれる前記ショット領域を露光する前又は露光した後に、前記液浸空間の前記液体を介して、前記一の列とは異なる列のショット領域を露光することと、
     同じ列に含まれる第1ショット領域の露光終了から第2ショット領域の露光開始までの前記基板の第1移動期間における前記第2部材の第1動作と、ある列の第3ショット領域の露光終了から別の列の第4ショット領域の露光開始までの前記基板の第2移動期間における前記第2部材の第2動作とが異なるように、前記基板の露光の少なくとも一部において、前記第1部材に対して前記第2部材を移動することと、を含む露光方法。
  81.  光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、前記射出面と前記基板との間の液体を介して前記露光光で前記基板の複数のショット領域のそれぞれを順次露光する露光方法であって、 
     前記光学部材の周囲の少なくとも一部に配置される第1部材と、前記光学部材の周囲の一部に配置される第2部材と、を含む液浸部材を用いて、前記液体の液浸空間を形成することと、 
     前記液浸空間の前記液体を介して、前記射出面から射出される前記露光光で、前記走査方向に関して第1寸法の第1、第2ショット領域を順次露光することと、 
     前記第1、第2ショット領域を露光する前又は露光した後に、前記液浸空間の前記液体を介して、前記射出面から射出される前記露光光で、前記走査方向に関して前記第1寸法とは異なる第2寸法の第3、第4ショット領域を順次露光することと、 
     前記第1ショット領域の露光終了から前記第2ショット領域の露光開始までの前記基板の第1移動期間における前記第2部材の第1動作と、前記第3ショット領域の露光終了から前記第4ショット領域の露光開始までの前記基板の第2移動期間における前記第2部材の第2動作とが異なるように、前記基板の露光の少なくとも一部において、前記第1部材に対して前記第2部材を移動することと、を含む露光方法。
  82.  光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、前記射出面と前記基板との間の液体を介して前記露光光で前記基板の複数のショット領域のそれぞれを順次露光する露光方法であって、 
     第1下面を有し前記光学部材の周囲の少なくとも一部に配置される第1部材と、前記第1下面と間隙を介して対向する第2上面及び前記基板が対向可能な第2下面を有し前記露光光の光路の周囲の少なくとも一部に配置される第2部材と、を含む液浸部材を用いて、前記液体の液浸空間を形成することと、 
     前記液浸空間の前記液体を介して、前記射出面から射出される前記露光光で、前記走査方向に関して第1寸法の第1、第2ショット領域を順次露光することと、 
     前記第1、第2ショット領域を露光する前又は露光した後に、前記液浸空間の前記液体を介して、前記射出面から射出される前記露光光で、前記走査方向に関して前記第1寸法とは異なる第2寸法の第3、第4ショット領域を順次露光することと、 
     前記第1ショット領域の露光終了から前記第2ショット領域の露光開始までの前記基板の第1移動期間における前記第2部材の第1動作と、前記第3ショット領域の露光終了から前記第4ショット領域の露光開始までの前記基板の第2移動期間における前記第2部材の第2動作とが異なるように、前記基板の露光の少なくとも一部において、前記第1部材に対して前記第2部材を移動することと、を含む露光方法。
  83.  光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、前記射出面と前記基板との間の液体を介して前記露光光で前記基板の複数のショット領域のそれぞれを順次露光する露光方法であって、 
     前記光学部材の周囲の少なくとも一部に配置される第1部材と、前記光学部材の周囲の一部に配置される第2部材と、を含む液浸部材を用いて、前記液体の液浸空間を形成することと、 
     前記液浸空間の前記液体を介して、前記射出面から射出される前記露光光で、前記走査方向に関してそれぞれ第1、第2寸法の第1、第2ショット領域を順次露光することと、
     前記第1、第2ショット領域を露光する前又は露光した後に、前記液浸空間の前記液体を介して、前記射出面から射出される前記露光光で、前記走査方向に関して第3寸法の第3、第4ショット領域を順次露光することと、 
     前記第1ショット領域の露光終了から前記第2ショット領域の露光開始までの前記基板の第1移動期間における前記第2部材の第1動作と、前記第3ショット領域の露光終了から前記第4ショット領域の露光開始までの前記基板の第2移動期間における前記第2部材の第2動作とが異なるように、前記基板の露光の少なくとも一部において、前記第1部材に対して前記第2部材を移動することと、を含む露光方法。
  84.  光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、前記射出面と前記基板との間の液体を介して前記露光光で前記基板の複数のショット領域のそれぞれを順次露光する露光方法であって、 
     第1下面を有し前記光学部材の周囲の少なくとも一部に配置される第1部材と、前記第1下面と間隙を介して対向する第2上面及び前記基板が対向可能な第2下面を有し前記露光光の光路の周囲の少なくとも一部に配置される第2部材と、を含む液浸部材を用いて、前記液体の液浸空間を形成することと、 
     前記液浸空間の前記液体を介して、前記射出面から射出される前記露光光で、前記走査方向に関してそれぞれ第1、第2寸法の第1、第2ショット領域を順次露光することと、
     前記第1、第2ショット領域を露光する前又は露光した後に、前記液浸空間の前記液体を介して、前記射出面から射出される前記露光光で、前記走査方向に関して第3寸法の第3、第4ショット領域を順次露光することと、 
     前記第1ショット領域の露光終了から前記第2ショット領域の露光開始までの前記基板の第1移動期間における前記第2部材の第1動作と、前記第3ショット領域の露光終了から前記第4ショット領域の露光開始までの前記基板の第2移動期間における前記第2部材の第2動作とが異なるように、前記基板の露光の少なくとも一部において、前記第1部材に対して前記第2部材を移動することと、を含む露光方法。
  85.  光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、前記射出面と前記基板との間の液体を介して前記露光光で前記基板の複数のショット領域のそれぞれを順次露光する露光方法であって、 
     前記光学部材の周囲の少なくとも一部に配置される第1部材と、前記光学部材の周囲の一部に配置される第2部材と、を含む液浸部材を用いて、前記液体の液浸空間を形成することと、 
     前記液浸空間の前記液体を介して、前記射出面から射出される前記露光光で、前記基板の第1、第2ショット領域を順次露光することと、 
     前記第1ショット領域の露光終了から前記第2ショット領域の露光開始までの前記基板の第1移動期間において前記第2部材が前記走査方向と交差する方向の一側に第1移動条件で移動され、前記第2ショット領域の露光開始から露光終了までの前記基板の第2露光期間において前記第2部材が前記走査方向と交差する方向の他側に前記第1移動条件とは異なる第2移動条件で移動されるように、前記基板の露光の少なくとも一部において、前記第1部材に対して前記第2部材を移動することと、を含む露光方法。
  86.  光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、前記射出面と前記基板との間の液体を介して前記露光光で前記基板の複数のショット領域のそれぞれを順次露光する露光方法であって、 
     第1下面を有し前記光学部材の周囲の少なくとも一部に配置される第1部材と、前記第1下面と間隙を介して対向する第2上面及び前記基板が対向可能な第2下面を有し前記露光光の光路の周囲の少なくとも一部に配置される第2部材と、を含む液浸部材を用いて、前記液体の液浸空間を形成することと、 
     前記液浸空間の前記液体を介して、前記射出面から射出される前記露光光で、前記基板の第1、第2ショット領域を順次露光することと、 
     前記第1ショット領域の露光終了から前記第2ショット領域の露光開始までの前記基板の第1移動期間において前記第2部材が前記走査方向と交差する方向の一側に第1移動条件で移動され、前記第2ショット領域の露光開始から露光終了までの前記基板の第2露光期間において前記第2部材が前記走査方向と交差する方向の他側に前記第1移動条件とは異なる第2移動条件で移動されるように、前記基板の露光の少なくとも一部において、前記第1部材に対して前記第2部材を移動することと、を含む露光方法。
  87.  光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、前記射出面と前記基板との間の液体を介して前記露光光で前記基板の複数のショット領域のそれぞれを順次露光する露光方法であって、 
     前記光学部材の周囲の少なくとも一部に配置される第1部材と、前記光学部材の周囲の一部に配置される第2部材と、を含む液浸部材を用いて、前記液体の液浸空間を形成することと、 
     前記液浸空間の前記液体を介して、前記射出面から射出される前記露光光で、前記基板において一の列に含まれる前記走査方向と交差する方向に配置される複数のショット領域のそれぞれを順次露光することと、 
     前記一の列に含まれる前記ショット領域を露光する前又は露光した後に、前記液浸空間の前記液体を介して、前記一の列とは異なる列のショット領域を露光することと、 
     ある列のショット領域の露光終了から、次に露光される、別の列のショット領域の露光開始までの前記基板の移動期間に、前記第1部材に対して前記第2部材を移動することと、を含む露光方法。
  88.  光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、前記射出面と前記基板との間の液体を介して前記露光光で前記基板の複数のショット領域のそれぞれを順次露光する露光方法であって、 
     第1下面を有し前記光学部材の周囲の少なくとも一部に配置される第1部材と、前記第1下面と間隙を介して対向する第2上面及び前記基板が対向可能な第2下面を有し前記露光光の光路の周囲の少なくとも一部に配置される第2部材と、を含む液浸部材を用いて、前記液体の液浸空間を形成することと、 
     前記液浸空間の前記液体を介して、前記射出面から射出される前記露光光で、前記基板において一の列に含まれる前記走査方向と交差する方向に配置される複数のショット領域のそれぞれを順次露光することと、 
     前記一の列に含まれる前記ショット領域を露光する前又は露光した後に、前記液浸空間の前記液体を介して、前記一の列とは異なる列のショット領域を露光することと、 
     ある列のショット領域の露光終了から、次に露光される、別の列のショット領域の露光開始までの前記基板の移動期間に、前記第1部材に対して前記第2部材を移動することと、を含む露光方法。
  89.  請求項79~88のいずれか一項に記載の露光方法を用いて基板を露光することと、 
     露光された前記基板を現像することと、を含む
     デバイス製造方法。
  90.  コンピュータに、光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、前記射出面と前記基板との間の液体を介して前記露光光で前記基板の複数のショット領域のそれぞれを順次露光する露光装置の制御を実行させるプログラムであって、 
     第1下面を有し前記光学部材の周囲の少なくとも一部に配置される第1部材と、前記第1下面と間隙を介して対向する第2上面及び前記基板が対向可能な第2下面を有し前記露光光の光路の周囲の少なくとも一部に配置される第2部材と、を含む液浸部材を用いて、前記液体の液浸空間を形成することと、 
     前記液浸空間の前記液体を介して、前記射出面から射出される前記露光光で、前記基板において一の列に含まれる前記走査方向と交差する方向に配置される複数のショット領域のそれぞれを順次露光することと、 
     前記一の列に含まれる前記ショット領域を露光する前又は露光した後に、前記液浸空間の前記液体を介して、前記一の列とは異なる列のショット領域を露光することと、 
     同じ列に含まれる第1ショット領域の露光終了から第2ショット領域の露光開始までの前記基板の第1移動期間における前記第2部材の第1動作と、ある列の第3ショット領域の露光終了から別の列の第4ショット領域の露光開始までの前記基板の第2移動期間における前記第2部材の第2動作とが異なるように、前記基板の露光の少なくとも一部において、前記第1部材に対して前記第2部材を移動することと、を実行させるプログラム。
  91.  コンピュータに、光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、前記射出面と前記基板との間の液体を介して前記露光光で前記基板の複数のショット領域のそれぞれを順次露光する露光装置の制御を実行させるプログラムであって、 
     第1下面を有し前記光学部材の周囲の少なくとも一部に配置される第1部材と、前記第1下面と間隙を介して対向する第2上面及び前記基板が対向可能な第2下面を有し前記露光光の光路の周囲の少なくとも一部に配置される第2部材と、を含む液浸部材を用いて、前記液体の液浸空間を形成することと、 
     前記液浸空間の前記液体を介して、前記射出面から射出される前記露光光で、前記走査方向に関して第1寸法の第1、第2ショット領域を順次露光することと、 
     前記第1、第2ショット領域を露光する前又は露光した後に、前記液浸空間の前記液体を介して、前記射出面から射出される前記露光光で、前記走査方向に関して前記第1寸法とは異なる第2寸法の第3、第4ショット領域を順次露光することと、 
     前記第1ショット領域の露光終了から前記第2ショット領域の露光開始までの前記基板の第1移動期間における前記第2部材の第1動作と、前記第3ショット領域の露光終了から前記第4ショット領域の露光開始までの前記基板の第2移動期間における前記第2部材の第2動作とが異なるように、前記基板の露光の少なくとも一部において、前記第1部材に対して前記第2部材を移動することと、を実行させるプログラム。
  92.  コンピュータに、光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、前記射出面と前記基板との間の液体を介して前記露光光で前記基板の複数のショット領域のそれぞれを順次露光する露光装置の制御を実行させるプログラムであって、 
     第1下面を有し前記光学部材の周囲の少なくとも一部に配置される第1部材と、前記第1下面と間隙を介して対向する第2上面及び前記基板が対向可能な第2下面を有し前記露光光の光路の周囲の少なくとも一部に配置される第2部材と、を含む液浸部材を用いて、前記液体の液浸空間を形成することと、 
     前記液浸空間の前記液体を介して、前記射出面から射出される前記露光光で、前記走査方向に関してそれぞれ第1、第2寸法の第1、第2ショット領域を順次露光することと、 
     前記第1、第2ショット領域を露光する前又は露光した後に、前記液浸空間の前記液体を介して、前記射出面から射出される前記露光光で、前記走査方向に関して第3寸法の第3、第4ショット領域を順次露光することと、 
     前記第1ショット領域の露光終了から前記第2ショット領域の露光開始までの前記基板の第1移動期間における前記第2部材の第1動作と、前記第3ショット領域の露光終了から前記第4ショット領域の露光開始までの前記基板の第2移動期間における前記第2部材の第2動作とが異なるように、前記基板の露光の少なくとも一部において、前記第1部材に対して前記第2部材を移動することと、を実行させるプログラム。
  93.  コンピュータに、光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、前記射出面と前記基板との間の液体を介して前記露光光で前記基板の複数のショット領域のそれぞれを順次露光する露光装置の制御を実行させるプログラムであって、 
     第1下面を有し前記光学部材の周囲の少なくとも一部に配置される第1部材と、前記第1下面と間隙を介して対向する第2上面及び前記基板が対向可能な第2下面を有し前記露光光の光路の周囲の少なくとも一部に配置される第2部材と、を含む液浸部材を用いて、前記液体の液浸空間を形成することと、 
     前記液浸空間の前記液体を介して、前記射出面から射出される前記露光光で、前記基板の第1、第2ショット領域を順次露光することと、 
     前記第1ショット領域の露光終了から前記第2ショット領域の露光開始までの前記基板の第1移動期間において前記第2部材が前記走査方向と交差する方向の一側に第1移動条件で移動され、前記第2ショット領域の露光開始から露光終了までの前記基板の第2露光期間において前記第2部材が前記走査方向と交差する方向の他側に前記第1移動条件とは異なる第2移動条件で移動されるように、前記基板の露光の少なくとも一部において、前記第1部材に対して前記第2部材を移動することと、を実行させるプログラム。
  94.  コンピュータに、光学部材の射出面から射出される露光光に対して基板を走査方向に移動しつつ、前記射出面と前記基板との間の液体を介して前記露光光で前記基板の複数のショット領域のそれぞれを順次露光する露光装置の制御を実行させるプログラムであって、 
     第1下面を有し前記光学部材の周囲の少なくとも一部に配置される第1部材と、前記第1下面と間隙を介して対向する第2上面及び前記基板が対向可能な第2下面を有し前記露光光の光路の周囲の少なくとも一部に配置される第2部材と、を含む液浸部材を用いて、前記液体の液浸空間を形成することと、 
     前記液浸空間の前記液体を介して、前記射出面から射出される前記露光光で、前記基板において一の列に含まれる前記走査方向と交差する方向に配置される複数のショット領域のそれぞれを順次露光することと、 
     前記一の列に含まれる前記ショット領域を露光する前又は露光した後に、前記液浸空間の前記液体を介して、前記一の列とは異なる列のショット領域を露光することと、 ある列のショット領域の露光終了から、次に露光される、別の列のショット領域の露光開始までの前記基板の移動期間に、前記第1部材に対して前記第2部材を移動することと、を実行させるプログラム。
  95.  請求項90~94のいずれか一項に記載のプログラムを記録したコンピュータ読み取り可能な記録媒体。
PCT/JP2013/077313 2012-10-12 2013-10-08 露光装置、露光方法、デバイス製造方法、プログラム、及び記録媒体 WO2014057926A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CN201380064286.3A CN104838471B (zh) 2012-10-12 2013-10-08 曝光装置、曝光方法、器件制造方法、程序及记录介质
EP13845003.6A EP2908331A4 (en) 2012-10-12 2013-10-08 Exposure device, exposure method, device production method, program, and recording medium
JP2014540846A JP6341090B2 (ja) 2012-10-12 2013-10-08 露光装置、及びデバイス製造方法
KR1020157012052A KR102219386B1 (ko) 2012-10-12 2013-10-08 노광 장치, 노광 방법, 디바이스 제조 방법, 프로그램, 및 기록 매체
US14/681,475 US9507265B2 (en) 2012-10-12 2015-04-08 Exposure apparatus, exposing method, method for manufacturing device, program, and recording medium
HK15111253.2A HK1210545A1 (en) 2012-10-12 2015-11-13 Exposure device, exposure method, device production method, program, and recording medium
HK16100428.4A HK1212512A1 (en) 2012-10-12 2016-01-15 Exposure device, exposure method, device production method, program, and recording medium
US15/361,268 US9857700B2 (en) 2012-10-12 2016-11-25 Exposure apparatus, exposing method, method for manufacturing device, program, and recording medium
US15/784,907 US10444634B2 (en) 2012-10-12 2017-10-16 Exposure apparatus, exposing method, method for manufacturing device, program, and recording medium
US16/599,776 US10678141B2 (en) 2012-10-12 2019-10-11 Exposure apparatus, exposing method, method for manufacturing device, program, and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012227051 2012-10-12
JP2012-227051 2012-10-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/681,475 Continuation US9507265B2 (en) 2012-10-12 2015-04-08 Exposure apparatus, exposing method, method for manufacturing device, program, and recording medium

Publications (1)

Publication Number Publication Date
WO2014057926A1 true WO2014057926A1 (ja) 2014-04-17

Family

ID=50477393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077313 WO2014057926A1 (ja) 2012-10-12 2013-10-08 露光装置、露光方法、デバイス製造方法、プログラム、及び記録媒体

Country Status (8)

Country Link
US (6) US9568828B2 (ja)
EP (1) EP2908331A4 (ja)
JP (3) JP6341090B2 (ja)
KR (1) KR102219386B1 (ja)
CN (2) CN108205243B (ja)
HK (2) HK1210545A1 (ja)
TW (2) TWI625600B (ja)
WO (1) WO2014057926A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018106207A (ja) * 2012-12-27 2018-07-05 株式会社ニコン 液浸部材及び露光装置
US10018925B2 (en) 2008-08-19 2018-07-10 Asml Netherlands B.V. Lithographic apparatus, drying device, metrology apparatus and device manufacturing method
JP2018529994A (ja) * 2015-10-01 2018-10-11 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置及びデバイス製造の方法
US10222707B2 (en) 2011-12-07 2019-03-05 Asml Netherlands B.V. Lithographic apparatus and a device manufacturing method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9323160B2 (en) 2012-04-10 2016-04-26 Nikon Corporation Liquid immersion member, exposure apparatus, exposure method, device fabricating method, program, and recording medium
US9268231B2 (en) 2012-04-10 2016-02-23 Nikon Corporation Liquid immersion member, exposure apparatus, exposing method, method for manufacturing device, program, and recording medium
US9823580B2 (en) 2012-07-20 2017-11-21 Nikon Corporation Liquid immersion member, exposure apparatus, exposing method, method for manufacturing device, program, and recording medium
US9494870B2 (en) 2012-10-12 2016-11-15 Nikon Corporation Exposure apparatus, exposing method, device manufacturing method, program, and recording medium
US9568828B2 (en) 2012-10-12 2017-02-14 Nikon Corporation Exposure apparatus, exposing method, device manufacturing method, program, and recording medium
US9651873B2 (en) 2012-12-27 2017-05-16 Nikon Corporation Liquid immersion member, exposure apparatus, exposing method, method of manufacturing device, program, and recording medium
EP3057122B1 (en) 2013-10-08 2018-11-21 Nikon Corporation Immersion member, exposure apparatus, exposure method, and device manufacturing method
JP6757849B2 (ja) * 2016-09-12 2020-09-23 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置のための流体ハンドリング構造
US11156921B2 (en) 2017-12-15 2021-10-26 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus, and method of using a fluid handling structure
CN113189849B (zh) * 2021-04-22 2023-08-11 中国科学院光电技术研究所 一种近场光刻浸没系统及其浸没单元和接口模组

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6208407B1 (en) 1997-12-22 2001-03-27 Asm Lithography B.V. Method and apparatus for repetitively projecting a mask pattern on a substrate, using a time-saving height measurement
WO2001035168A1 (en) 1999-11-10 2001-05-17 Massachusetts Institute Of Technology Interference lithography utilizing phase-locked scanning beams
US6262796B1 (en) 1997-03-10 2001-07-17 Asm Lithography B.V. Positioning device having two object holders
US6341007B1 (en) 1996-11-28 2002-01-22 Nikon Corporation Exposure apparatus and method
US6452292B1 (en) 2000-06-26 2002-09-17 Nikon Corporation Planar motor with linear coil arrays
US6611316B2 (en) 2001-02-27 2003-08-26 Asml Holding N.V. Method and system for dual reticle image exposure
WO2004019128A2 (en) 2002-08-23 2004-03-04 Nikon Corporation Projection optical system and method for photolithography and exposure apparatus and method using same
US6778257B2 (en) 2001-07-24 2004-08-17 Asml Netherlands B.V. Imaging apparatus
US6897963B1 (en) 1997-12-18 2005-05-24 Nikon Corporation Stage device and exposure apparatus
JP2007142428A (ja) * 2005-11-16 2007-06-07 Asml Netherlands Bv 露光装置及びデバイス製造方法
US20070177125A1 (en) 2004-06-09 2007-08-02 Nikon Corporation Substrate holding unit, exposure apparatus having same, exposure method, method for producing device, and liquid repellent plate
US7292313B2 (en) 2003-09-03 2007-11-06 Nikon Corporation Apparatus and method for providing fluid for immersion lithography
US20070288121A1 (en) 2006-01-19 2007-12-13 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
US20080049209A1 (en) 2005-03-18 2008-02-28 Hiroyuki Nagasaka Plate Member, Substrate Holding Device, Exposure Apparatus and Method, and Device Manufacturing Method
US7864292B2 (en) 2005-11-16 2011-01-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2011029658A (ja) * 2006-06-22 2011-02-10 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法
JP2011258602A (ja) * 2010-06-04 2011-12-22 Nikon Corp 移動制御方法、露光方法、ステージ装置、露光装置、プログラム、記録媒体、及びデバイス製造方法
JP2011258999A (ja) * 2005-01-31 2011-12-22 Nikon Corp 露光装置及びデバイス製造方法
JP2013251311A (ja) * 2012-05-30 2013-12-12 Nikon Corp 露光装置、露光方法、デバイス製造方法、プログラム、及び記録媒体

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025886A (ja) * 2000-07-03 2002-01-25 Canon Inc ステップ&スキャン式投影露光装置、その保守方法並びに同装置を用いた半導体デバイス製造方法および半導体製造工場
CN1245668C (zh) * 2002-10-14 2006-03-15 台湾积体电路制造股份有限公司 曝光系统及其曝光方法
KR101343655B1 (ko) * 2003-08-21 2013-12-20 가부시키가이샤 니콘 노광 장치, 노광 방법 및 디바이스 제조 방법
US7589822B2 (en) 2004-02-02 2009-09-15 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
US7057702B2 (en) * 2004-06-23 2006-06-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101264939B1 (ko) 2004-09-17 2013-05-15 가부시키가이샤 니콘 노광 장치, 노광 방법 및 디바이스 제조 방법
JP2006106832A (ja) * 2004-09-30 2006-04-20 Nohmi Bosai Ltd トンネル防災設備
WO2007005768A1 (en) * 2005-06-30 2007-01-11 Applera Corporation Interface method and system for genetic analysis data
US7656501B2 (en) 2005-11-16 2010-02-02 Asml Netherlands B.V. Lithographic apparatus
US7804577B2 (en) * 2005-11-16 2010-09-28 Asml Netherlands B.V. Lithographic apparatus
JP2007194484A (ja) * 2006-01-20 2007-08-02 Toshiba Corp 液浸露光方法
EP2023378B1 (en) 2006-05-10 2013-03-13 Nikon Corporation Exposure apparatus and device manufacturing method
JP4357514B2 (ja) * 2006-09-29 2009-11-04 株式会社東芝 液浸露光方法
US8004651B2 (en) 2007-01-23 2011-08-23 Nikon Corporation Liquid recovery system, immersion exposure apparatus, immersion exposing method, and device fabricating method
JP2008227007A (ja) * 2007-03-09 2008-09-25 Toshiba Corp 液浸露光方法及び液浸露光装置
US8237911B2 (en) 2007-03-15 2012-08-07 Nikon Corporation Apparatus and methods for keeping immersion fluid adjacent to an optical assembly during wafer exchange in an immersion lithography machine
US8068209B2 (en) 2007-03-23 2011-11-29 Nikon Corporation Nozzle to help reduce the escape of immersion liquid from an immersion lithography tool
US8134685B2 (en) 2007-03-23 2012-03-13 Nikon Corporation Liquid recovery system, immersion exposure apparatus, immersion exposing method, and device fabricating method
US8610873B2 (en) * 2008-03-17 2013-12-17 Nikon Corporation Immersion lithography apparatus and method having movable liquid diverter between immersion liquid confinement member and substrate
US8289497B2 (en) 2008-03-18 2012-10-16 Nikon Corporation Apparatus and methods for recovering fluid in immersion lithography
US9176393B2 (en) * 2008-05-28 2015-11-03 Asml Netherlands B.V. Lithographic apparatus and a method of operating the apparatus
JP2009289896A (ja) * 2008-05-28 2009-12-10 Toshiba Corp 液浸露光方法
US8896806B2 (en) 2008-12-29 2014-11-25 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
EP2221669A3 (en) * 2009-02-19 2011-02-09 ASML Netherlands B.V. A lithographic apparatus, a method of controlling the apparatus and a device manufacturing method
JP5741859B2 (ja) 2010-01-08 2015-07-01 株式会社ニコン 液浸部材、露光装置、露光方法、及びデバイス製造方法
US20120162619A1 (en) * 2010-12-27 2012-06-28 Nikon Corporation Liquid immersion member, immersion exposure apparatus, exposing method, device fabricating method, program, and storage medium
NL2008183A (en) * 2011-02-25 2012-08-28 Asml Netherlands Bv A lithographic apparatus, a method of controlling the apparatus and a device manufacturing method.
US9323160B2 (en) 2012-04-10 2016-04-26 Nikon Corporation Liquid immersion member, exposure apparatus, exposure method, device fabricating method, program, and recording medium
US9268231B2 (en) 2012-04-10 2016-02-23 Nikon Corporation Liquid immersion member, exposure apparatus, exposing method, method for manufacturing device, program, and recording medium
US9823580B2 (en) 2012-07-20 2017-11-21 Nikon Corporation Liquid immersion member, exposure apparatus, exposing method, method for manufacturing device, program, and recording medium
US9568828B2 (en) * 2012-10-12 2017-02-14 Nikon Corporation Exposure apparatus, exposing method, device manufacturing method, program, and recording medium
US9494870B2 (en) 2012-10-12 2016-11-15 Nikon Corporation Exposure apparatus, exposing method, device manufacturing method, program, and recording medium
US9720331B2 (en) 2012-12-27 2017-08-01 Nikon Corporation Liquid immersion member, exposure apparatus, exposing method, method of manufacturing device, program, and recording medium
US9651873B2 (en) 2012-12-27 2017-05-16 Nikon Corporation Liquid immersion member, exposure apparatus, exposing method, method of manufacturing device, program, and recording medium
WO2016020121A1 (en) * 2014-08-07 2016-02-11 Asml Netherlands B.V. Lithography apparatus and method of manufacturing a device

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6341007B1 (en) 1996-11-28 2002-01-22 Nikon Corporation Exposure apparatus and method
US6262796B1 (en) 1997-03-10 2001-07-17 Asm Lithography B.V. Positioning device having two object holders
US6897963B1 (en) 1997-12-18 2005-05-24 Nikon Corporation Stage device and exposure apparatus
US6208407B1 (en) 1997-12-22 2001-03-27 Asm Lithography B.V. Method and apparatus for repetitively projecting a mask pattern on a substrate, using a time-saving height measurement
WO2001035168A1 (en) 1999-11-10 2001-05-17 Massachusetts Institute Of Technology Interference lithography utilizing phase-locked scanning beams
US6452292B1 (en) 2000-06-26 2002-09-17 Nikon Corporation Planar motor with linear coil arrays
US6611316B2 (en) 2001-02-27 2003-08-26 Asml Holding N.V. Method and system for dual reticle image exposure
US6778257B2 (en) 2001-07-24 2004-08-17 Asml Netherlands B.V. Imaging apparatus
WO2004019128A2 (en) 2002-08-23 2004-03-04 Nikon Corporation Projection optical system and method for photolithography and exposure apparatus and method using same
US7292313B2 (en) 2003-09-03 2007-11-06 Nikon Corporation Apparatus and method for providing fluid for immersion lithography
US20070177125A1 (en) 2004-06-09 2007-08-02 Nikon Corporation Substrate holding unit, exposure apparatus having same, exposure method, method for producing device, and liquid repellent plate
JP2011258999A (ja) * 2005-01-31 2011-12-22 Nikon Corp 露光装置及びデバイス製造方法
US20080049209A1 (en) 2005-03-18 2008-02-28 Hiroyuki Nagasaka Plate Member, Substrate Holding Device, Exposure Apparatus and Method, and Device Manufacturing Method
JP2007142428A (ja) * 2005-11-16 2007-06-07 Asml Netherlands Bv 露光装置及びデバイス製造方法
US7864292B2 (en) 2005-11-16 2011-01-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20070288121A1 (en) 2006-01-19 2007-12-13 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
JP2011029658A (ja) * 2006-06-22 2011-02-10 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法
JP2011258602A (ja) * 2010-06-04 2011-12-22 Nikon Corp 移動制御方法、露光方法、ステージ装置、露光装置、プログラム、記録媒体、及びデバイス製造方法
JP2013251311A (ja) * 2012-05-30 2013-12-12 Nikon Corp 露光装置、露光方法、デバイス製造方法、プログラム、及び記録媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2908331A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10018925B2 (en) 2008-08-19 2018-07-10 Asml Netherlands B.V. Lithographic apparatus, drying device, metrology apparatus and device manufacturing method
US10222707B2 (en) 2011-12-07 2019-03-05 Asml Netherlands B.V. Lithographic apparatus and a device manufacturing method
JP2018106207A (ja) * 2012-12-27 2018-07-05 株式会社ニコン 液浸部材及び露光装置
JP2018529994A (ja) * 2015-10-01 2018-10-11 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置及びデバイス製造の方法
US10627721B2 (en) 2015-10-01 2020-04-21 Asml Netherlands B.V. Lithography apparatus, and a method of manufacturing a device

Also Published As

Publication number Publication date
US10444634B2 (en) 2019-10-15
TWI696044B (zh) 2020-06-11
HK1212512A1 (en) 2016-06-10
EP2908331A4 (en) 2017-05-03
US20150286142A1 (en) 2015-10-08
JP2018142015A (ja) 2018-09-13
TWI625600B (zh) 2018-06-01
CN108205243A (zh) 2018-06-26
US20170139331A1 (en) 2017-05-18
US10678141B2 (en) 2020-06-09
US9507265B2 (en) 2016-11-29
JPWO2014057926A1 (ja) 2016-09-05
EP2908331A1 (en) 2015-08-19
US20180052399A1 (en) 2018-02-22
CN108205243B (zh) 2020-06-02
JP6583478B2 (ja) 2019-10-02
CN104838471B (zh) 2018-03-20
US9857700B2 (en) 2018-01-02
CN104838471A (zh) 2015-08-12
US9568828B2 (en) 2017-02-14
KR20150066578A (ko) 2015-06-16
JP6341090B2 (ja) 2018-06-13
JP2019219685A (ja) 2019-12-26
KR102219386B1 (ko) 2021-02-23
US9910365B2 (en) 2018-03-06
TW201418899A (zh) 2014-05-16
TW201820056A (zh) 2018-06-01
HK1210545A1 (en) 2016-04-22
US20170075235A1 (en) 2017-03-16
US20140307235A1 (en) 2014-10-16
US20200041912A1 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
JP6583478B2 (ja) 露光装置、及びデバイス製造方法
JP6406250B2 (ja) 液浸部材、露光装置及びデバイス製造方法
JP6593493B2 (ja) 露光装置、及びデバイス製造方法
KR102158968B1 (ko) 액침 부재 및 노광 장치
JP6369472B2 (ja) 液浸部材、露光装置及び露光方法、並びにデバイス製造方法
JP6212884B2 (ja) 露光装置、露光方法、及びデバイス製造方法
JP6610726B2 (ja) 液浸部材、露光装置及び露光方法、並びにデバイス製造方法
JP2014120691A (ja) 液浸部材、露光装置、露光方法、デバイス製造方法、プログラム、及び記録媒体
JP2014086456A (ja) 液浸部材、露光装置、露光方法、デバイス製造方法、プログラム、及び記録媒体
JP2014086678A (ja) 液浸部材、露光装置、露光方法、デバイス製造方法、プログラム、及び記録媒体
JP2014096481A (ja) 液浸部材、露光装置、露光方法、デバイス製造方法、プログラム、及び記録媒体
JP2013219351A (ja) 液浸部材、露光装置、露光方法、デバイス製造方法、プログラム、及び記録媒体
JP2015173202A (ja) 液浸露光装置、露光方法、及びプログラム
JP2018128689A (ja) 露光装置及び露光方法、並びにデバイス製造方法
JP2016131182A (ja) 露光装置及び露光方法、並びにデバイス製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13845003

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014540846

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157012052

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013845003

Country of ref document: EP