WO2014056284A1 - 高分子材料沉析方法及聚芳醚腈树脂的工业化生产方法 - Google Patents

高分子材料沉析方法及聚芳醚腈树脂的工业化生产方法 Download PDF

Info

Publication number
WO2014056284A1
WO2014056284A1 PCT/CN2012/086821 CN2012086821W WO2014056284A1 WO 2014056284 A1 WO2014056284 A1 WO 2014056284A1 CN 2012086821 W CN2012086821 W CN 2012086821W WO 2014056284 A1 WO2014056284 A1 WO 2014056284A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
ether nitrile
nitrile resin
reaction
polyaryl ether
Prior art date
Application number
PCT/CN2012/086821
Other languages
English (en)
French (fr)
Inventor
钟家春
余兴江
任伟
赵勇
黄晓蓉
Original Assignee
四川飞亚新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川飞亚新材料有限公司 filed Critical 四川飞亚新材料有限公司
Publication of WO2014056284A1 publication Critical patent/WO2014056284A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/46Post-polymerisation treatment, e.g. recovery, purification, drying

Definitions

  • the present invention relates to a method for depositing a polymer material and an industrial production method for a polyarylene ether nitrile resin, and belongs to the field of polymer materials.
  • Poly(aryl ether nitrile) is a kind of thermoplastic polymer having a nitrile group in a side chain. It is a kind of comprehensive performance structure which has been developed for the defense industry and cutting-edge technology since the 1980s.
  • the polymer material has excellent heat resistance, flame retardancy, mechanical strength, UV resistance and creep resistance, and can be widely used in aerospace, electronic packaging, mechanical manufacturing, automotive parts and other fields.
  • the poly(aryl ether nitrile resin) is prepared by a nucleophilic substitution polycondensation reaction using an aromatic dihydric phenol and 2,6-dichlorobenzonitrile as main raw materials.
  • the main problems in the production of existing specialty polymers are purification and solvent recovery after resin synthesis.
  • the viscous solution after the polymerization is generally injected into a solvent different from the solvent as a precipitating agent (such as water, ethanol, methanol, etc.), and the polymer substance is precipitated after cooling.
  • the solid product is then pulverized to the finer the better, followed by boiling washing.
  • the inventors of the present invention have proposed a new method, a method for spray precipitation, in the preparation of a poly(aryl ether nitrile) resin (Chinese Patent ZL201010185867. 0). Specifically, after the polymerization reaction, the solvent is diluted into a viscous liquid in the reaction vessel, and then sprayed into a precipitation vessel containing a precipitating agent by a pressurized spray to precipitate a flocculent polyaryl. Ether nitrile. Then, the mixture was heated and stirred, and sufficiently refluxed to carry out solid-liquid separation.
  • the method effectively solves the problem of difficulty in washing, and the separated liquid is a mixture of a solvent and a precipitating agent to form a mutual solution body, which requires a refined solvent to be recycled, which is difficult to separate and has high energy consumption, and industrial production practice. There are certain difficulties in it.
  • the inventors of the present invention continue to find a method which can solve the problem of washing clean, and can facilitate solvent recovery and save energy.
  • the technical problem to be solved by the present invention is to overcome the problem that the purity of the polymer product is not high and the energy consumption of the solvent recovery after deposition is high, in the production of the polymer material, the inorganic salt particles encapsulated in the precipitate are not cleaned. , to provide a new method of precipitation - flash deposition.
  • a method for depositing a polymer material which is characterized by the following steps:
  • stirring is increased during the flashing, and the powder is broken by stirring to make the precipitated powder finer. More preferred is two-way stirring.
  • the present invention provides an industrial production method of a poly(arylene ether nitrile resin) characterized by the following steps:
  • the reactor is heated to 180 ⁇ 200 ° C, atmospheric pressure reaction to the phenomenon of polymer climbing, injection of polar solvent dilution solution into the viscous liquid in the reactor;
  • the aromatic dihydric phenol of step a is hydroquinone, resorcinol, phenolphthalein, bisphenol A, biphenol, catechol, 4, 4 '-dihydroxydiphenyl. Sulfone, 4, 4 '-dihydroxybenzophenone, raw aromatic
  • the dihydric phenol may be used in combination of one kind or two kinds in any ratio;
  • the catalyst is anhydrous potassium carbonate or anhydrous sodium carbonate or sodium hydroxide; and the dehydrating agent is toluene or xylene.
  • the pressure in the precipitation vessel is lower than 0.05 MPa, and the temperature of the heating space of the sedimentation tank is higher than the boiling point of the reaction solvent.
  • step c the powdery material after flashing and recovering the solvent is poured into deionized water to form a slurry, which is pulverized by a colloid mill, and then solid-liquid separation, and the liquid is supplied to the fine condensate tower due to the residual solvent. ⁇ Recycling, recycling.
  • the solid after the solid-liquid separation in step d is washed by boiling water countercurrently, and is more clean.
  • the drying temperature of the step d is preferably dried at 120 to 150 °C.
  • the poly(aryl ether nitrile resin) prepared by the method of the invention is a thermoplastic resin, the glass transition temperature is about 175 ° C, and the initial decomposition temperature is above 480 ° C; the resin has high mechanical strength and the tensile strength is 100. ⁇ 10 15 ⁇ ⁇ cm ⁇ Having a flexural strength of 120 to 140 MPa, a flexural modulus of 2. 8 Gpa or more; and an excellent electrical property of the resin, a dielectric strength of 20 KV / mm, a volume resistivity of 1. 0 * 10 15 ⁇ ⁇ cm .
  • the invention overcomes the problem that in the reaction production of the existing polymer materials, the inorganic salt particles encapsulated in the precipitated precipitate are not cleanly cleaned, the purity of the polymer product is not high, and the energy consumption of solvent recovery after sedimentation is high, and the invention provides the polymer field with high energy consumption.
  • a new method of polymer precipitation method-flash evaporation method The method enables the solvent in the material solution to be quickly evaporated and condensed and recovered under the action of high negative pressure and heating two-way stirring, and the material becomes powdery, which is favorable for the next step, which is not destroyed while solving product purification and solvent recovery.
  • FIG. 1 is a schematic view showing the structure of a flash deposition vessel used in the step 2);
  • the figure is marked as: housing 1, reaction chamber 2, agitator 3, solution inlet port 4, vacuum port 5, discharge Port 6, jacket 7, heat transfer medium inlet 8, heat transfer medium outlet 9, forward motor 10, reverse motor 11, stirring blade 12, pulverizing blade 13, and interlayer heating space 14.
  • DETAILED DESCRIPTION OF THE INVENTION The present invention provides a new method for precipitation in the field of polymer materials-flash evaporation method, as follows: 1) adding an organic solvent to the viscous liquid after polymerization (with organic solvent in the reaction liquid) Diluting the reaction solution to increase the fluidity of the reaction solution;
  • reaction liquid is flashed under a negative pressure and a heated state to recover the solvent; the solvent recovered at this time contains no other solvent or precipitant, and can be directly recycled;
  • the flash decanter of the present invention can be used.
  • the flashing and decanting kettle comprises a reaction chamber 2 surrounded by a casing 1, an agitator 3 extending from the outside of the casing 1 into the reaction chamber 2, and a heating device for heating the reaction chamber 2.
  • the main shaft of the agitator 3 is connected to a drive motor, and the casing 1 is provided with a solution inlet port 4, a vacuum port 5 and a discharge outlet 6.
  • the special polymer solution is introduced into the reaction chamber 2 through the solution inlet port 4, and then the reaction chamber 2 is evacuated through the vacuum port 5, and the solution in the reaction chamber 2 is heated, and
  • the drive motor is activated to operate the agitator 3.
  • the solution is heated and flashed in the high-pressure reaction chamber 2 and stirred by the agitator 3, and the solvent can be quickly evaporated and extracted by the vacuum port 5 for direct condensation recovery, because the boiling point of the solution is lowered under the negative pressure state.
  • the entire precipitation reaction time can be greatly shortened, which solves the product purification and solvent recovery without destroying the polymer chain of the polymer, ensuring the purity and performance of the product and reducing the energy consumption.
  • the heating device may adopt various heating methods, such as heating by infrared heating or by using coal, gas combustion or the like to heat the solution in the reaction chamber 2.
  • the heating device is a jacket 7 coated on the outer surface of the casing 1, and an interlayer heating space 14 is formed between the inner surface of the jacket 7 and the outer surface of the casing 1, in the jacket. 7 is provided with a heat transfer medium inlet 8 and a heat transfer medium outlet 9.
  • a heat transfer medium such as heat transfer oil or high temperature steam, is introduced into the interlayer heating space 14 through the heat transfer medium inlet 8 and is output from the heat transfer medium outlet 9 to form a heating circulation system, which can effectively perform the solution in the reaction chamber 2.
  • Heating, at the same time, the heating method also has the advantages of cleaning, low energy consumption and the like.
  • the above-mentioned flashing and decanting kettle may have only one driving motor connected to the main shaft of the agitator 3, but in a preferred manner, the driving motor connected to the main shaft of the agitator 3 has two forward rotations respectively. Motor 10 and reverse motor 11.
  • the forward rotation motor 10 and the reverse rotation motor 11 can be selectively opened, which facilitates the sufficient agitation of the solution in the reaction chamber 2, which is beneficial to the realization of the entire flash process.
  • the agitator 3 has a stirring blade 12 and an pulverizing blade 13, the outer diameter of which is adapted to the inner diameter of the casing 1, and the pulverizing blade 13 has a zigzag structure.
  • the outer diameter of the agitating blade 12 is adapted to the inner diameter of the casing 1, it mainly serves the purpose of sufficiently stirring and mixing the solution; and the pulverizing blade 13 is provided in a zigzag structure, which can be precipitated. The material is thoroughly comminuted to facilitate the next processing.
  • stirring in the above step 2), in the process of flashing under a negative pressure and a heated state, stirring may be increased to form a powder after the material is sufficiently broken. More preferably, the agitation is a two-way agitation.
  • the flashing conditions are related to the nature of the solvent in the reaction liquid, and the flashing decanter jacket after the polymerization is kept heated, the jacket temperature is the boiling point temperature of the solvent; less than 150 rpm; flash tank vacuum pumping system, a negative pressure state, the inner pressure was lower than 0. 05MPa.
  • the above step 3) is carried out by injecting deionized water into the powdery material after the solvent is recovered to form a slurry, which is pulverized by a colloid mill and then separated by solid and liquid.
  • the liquid may be transported to the fine tower due to the residual solvent. Zhongjing is recycled and recycled.
  • the solid after solid-liquid separation is washed by countercurrent washing with boiling water, and may be washed a plurality of times depending on the case.
  • the process of the invention is suitable for the industrial production of poly(arylene ether nitrile resins).
  • the raw materials for industrial production of the polyarylene ether nitrile resin are: 2,6-dichlorobenzonitrile, an aromatic dihydric phenol, a catalyst, N-methylpyrrolidone, and a dehydrating agent.
  • the aromatic dihydric phenol is hydroquinone, resorcinol, phenolphthalein, bisphenol A, biphenyldiol, catechol, 4,4'-dihydroxydiphenyl sulfone, 4 , 4 '-dihydroxybenzophenone, the raw aromatic dihydric phenol may be used in combination of one kind or two kinds in any ratio;
  • the catalyst may be anhydrous potassium carbonate or anhydrous sodium carbonate or sodium hydroxide
  • the dehydrating agent may be toluene or xylene.
  • the raw materials are put into a reaction vessel equipped with a water separator, a stirrer and a heating device, heated to 130-160 ° C, stirred, and reacted for 2-4 hours; .
  • the reactor is heated to 180 to 200 ° C, and the reaction is carried out under normal pressure until a polymer climbing phenomenon occurs, and the polar solvent dilution solution is injected into the reaction vessel to increase the fluidity of the solution, and then the step 2) is carried out.
  • the flashing conditions are as follows:
  • the pressure in the sedimentation tank when the step c is flashed is lower than 0.05 MPa, and the temperature of the jacket of the precipitation vessel is higher than the boiling point of the reaction solvent.
  • the above step 3) is preferably dried at 120 to 150 °C.
  • the polyarylethernitrile resin of the present invention was obtained 4 times and then dried at 150 °C. Its performance is shown in Table 1: Table 1 Properties of poly(aryl ether nitrile) resin
  • Characteristic test method unit polyaryl ether nitrile resin density ISO 1183 gem — 3 1.
  • the diluted solution is sent to a precipitation tank to start a two-way mixer and a vacuum system.
  • the solvent in the solution is flash-condensed and recovered under high negative pressure and heating, and the material is crushed by two-way stirring to form a powder.
  • 025MPa The flashing condition: the temperature of the heating chamber of the sedimentation tank is 210 ° C, the pressure in the sedimentation tank is less than 0. 025MPa.
  • the deionized water is injected into the precipitation tank to form a slurry, and the slurry is pulverized by a colloid mill, and then centrifuged, and the separated liquid is sent to a fine sorghum tower to recover the residual solvent, and the solid is transported to the washing kettle to wash the boiling water countercurrently.
  • the polyarylethernitrile resin of the present invention was obtained 4 times and then dried at 150 °C. Its performance is shown in Table 2:
  • Characteristic test method unit polyaryl ether nitrile resin density ISO 1183 gem — 3 1. 25
  • the diluted solution is sent to the precipitation tank, and the two-way mixer and the vacuum system are started.
  • the solvent in the solution is flash-condensed and recovered under high negative pressure and heating state, and the material is crushed by two-way stirring to form a powder.
  • 0. 03MPa ⁇ The pressure of the temperature of the reactor is less than 0. 03MPa.
  • the deionized water is injected into the precipitation tank to form a slurry, and the slurry is pulverized by a colloid mill, and then centrifuged, and the separated liquid is sent to a fine sorghum tower to recover the residual solvent, and the solid is transported to the washing kettle to wash the boiling water countercurrently.
  • the polyarylethernitrile resin of the present invention was obtained 4 times and then dried at 150 °C. Its performance is shown in Table 3:
  • Characteristic test method unit polyaryl ether nitrile resin density ISO 1183 gem — 3 1. 28
  • the diluted solution is sent to the precipitation tank, and the two-way mixer and the vacuum system are started.
  • the solvent in the solution is flash-condensed and recovered under high negative pressure and heating state, and the material is crushed by two-way stirring to form a powder.
  • 0. 03MPa ⁇ The pressure of the temperature of the reactor is less than 0. 03MPa.
  • the polyarylethernitrile resin of the present invention was obtained 4 times and then dried at 150 °C. Its performance is shown in Table 4: Table 4 Properties of poly(aryl ether nitrile) resin
  • Characteristic test method unit polyaryl ether nitrile resin density ISO 1183 gem — 3 1.
  • the diluted solution is sent to the precipitation tank to start the two-way mixer and the vacuum system, and the solvent in the solution is flash-condensed and recovered under high negative pressure and heating, and the material is stirred by two-way. After the crushing, a powder is formed.
  • 025MPa The temperature of the temperature of the temperature of the reactor is less than 0. 025MPa.
  • the polyarylethernitrile resin of the present invention was obtained 4 times and then dried at 150 °C. Its performance is shown in Table 5: Table 5 Properties of poly(aryl ether nitrile) resin
  • Characteristic test method unit polyaryl ether nitrile resin density ISO 1183 gem — 3 1.
  • the solvent in the solution is flash-condensed and recovered under high vacuum and heating, and the material is crushed by two-way stirring to form a powder. Flashing conditions: The temperature of the heating space of the sedimentation tank is 210 ° C, and the pressure in the sedimentation tank is lower than 0 ⁇ 025 MPa.
  • Characteristic test method unit poly(aryl ether nitrile resin) xf ISO 1183 gem— 3 1. 35
  • the above specific embodiment uses the "synthesis-flash-precipitation-solvent recovery-boiling water countercurrent washing-vacuum drying-modification granulation" complete set of process routes to effectively solve the product
  • the problem of difficult purification and solvent extraction and recovery makes the product high in purity and stable in performance.
  • recycling through solvent recycling not only reduces production costs, but also solves environmental pollution problems.
  • the invention realizes the next feeding reaction under normal pressure conditions, the production conditions are easy to realize, the production process is easy to control, and in addition, the direct nucleophilic substitution reaction and the double action of toluene or xylene dehydrating agent are used in the synthesis to obtain high molecular weight poly
  • the aryl ether nitrile resin effectively overcomes the occurrence of side reactions and by-products during the polymerization.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyethers (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

本发明涉及高分子材料沉析方法及聚芳醚腈树脂的工业化生产方法,属于高分子材料技术领域。本发明的方案:1)在聚合反应后的粘稠液中加入与反应液中相同的有机溶剂稀释反应液;2)然后将稀释后反应液在负压、加热的状态下闪蒸,回收溶剂;3)回收溶剂后的粉状物料水洗、干燥即可。采用本发明方法,物料溶液中的溶剂在高负压和加热双向搅拌的作用下迅速蒸发冷凝回收,析出的物料成为粉状,有利于进行下一步处理。

Description

高分子材料沉析方法及聚芳醚腈树脂的工业化生产方法
技术领域 本发明涉及高分子材料沉析方法及聚芳醚腈树脂的工业化生产方法,属于高分子 材料领域。 背景技术 聚芳醚腈是一类侧链上具有腈基的热塑性聚合物, 它是从二十世纪八十年代以来 首先为国防军工和尖端技术的需求而发展起来的一类综合性能优异的结构型高分子材 料, 具有很高的耐热性、 阻燃性、 机械强度、 防紫外线和抗蠕变性好等优良特性, 可 广泛应用于航空航天、 电子封装、 机械制造、 汽车零件等领域。
聚芳醚腈树脂在国内的研究起于 80 年代, 主要集中在研究合成工艺和配方等方 面。 国内申请关于聚芳醚腈树脂的生产发明专利主要有: 专利申请号为 94113026. 6 的《一种聚芳醚腈及其制造方法》、 200610038381. 8的《聚芳醚腈的工业化生产方法》、 200510038360. 1的《聚芳醚腈高分子无卤阻燃剂的工业化生产方法》、 200610021306. 0 的 《一种含间苯链节的聚芳醚腈共聚物及其制备方法》、 200810305720. 3 的 《一种半 晶型聚芳醚醚腈的工业化生产方法》 等。
通常, 聚芳醚腈树脂以芳香族二元酚和 2, 6-二氯苯甲腈为主要原料, 经亲核取代 缩聚反应制备而成。 现有的特种聚合物生产中主要存在的问题是树脂合成后的纯化与 溶剂回收。 目前特种聚合物合成生产中树脂聚合完成后, 一般是将聚合反应后的粘稠 溶液注入与溶剂不相同的溶剂作为沉淀剂 (如水、 乙醇、 甲醇等) 中, 冷却后高分子 物质沉析, 后再粉碎固体产品至越细越好, 之后进行煮沸洗涤。
但是, 这样的生产工艺存在三点不足: 一是难以自动化操作, 现场污染大; 二是 合成用的催化剂以及副产物仍被包裹在聚合物内部难以纯化, 导致产品纯度不高, 限 制了树脂的应用范围; 三是溶剂与沉淀剂混合后形成互溶液体, 难以分离彻底且能耗 较高。
本发明的发明人在研究聚芳醚腈树脂的制备方法时, 提出了一种新方法一喷雾沉 析的方法 (中国专利 ZL201010185867. 0)。 具体是在聚合反应后向反应釜中的粘稠液 体中注入溶剂稀释后, 以加压喷雾的方式喷入装有沉淀剂的沉淀釜, 析出絮状的聚芳 醚腈。 然后加热搅拌、 充分回流后进行固液分离。 该方法有效解决了洗涤难的问题, 分离出的液体是溶剂与沉淀剂混合后形成互溶液体, 需要进行精熘回收溶剂才能实现 循环使用, 精熘难以分离彻底且能耗较高, 工业化生产实践中有一定困难。
本发明的发明人继续寻找既能解决洗涤干净的问题, 又能方便溶剂回收, 节约能 耗的方法。 发明内容 本发明所要解决的技术问题是克服现有高分子材料生产中, 析出的沉淀中包裹的 无机盐粒子清洗不干净造成高分子产品纯度不高,以及沉析后溶剂回收能耗高的问题, 提供一种新的沉析的方法 -闪蒸沉析。
本发明的技术方案:
高分子材料沉析方法, 其特征在于经以下步骤:
1 ) 在聚合反应后的粘稠液中加入与反应液中相同的有机溶剂稀释反应液;
2 ) 然后将稀释后反应液在负压、 加热的状态下闪蒸, 回收溶剂;
3 ) 回收溶剂后的粉状物料水洗、 干燥即可。
作为本发明优选的方案, 上述步骤 1 ) 闪蒸的过程中增加搅拌, 通过搅拌起到破 碎的作用, 可使析出的粉料更细。 更优选的是双向搅拌。
作为本发明优选的方案, 上述步骤 1 ) 闪蒸沉析釜夹层加热空间的温度 溶剂沸 点温度; 闪蒸釜内压力低于 0. 05MPa。
进一步地, 本发明提供了聚芳醚腈树脂的工业化生产方法, 其特征在于经以下步 骤:
a、 聚芳醚腈树脂的工业化生产原料: 2, 6-二氯苯甲腈、 芳香族二元酚、 催化剂、 N-甲基吡咯烷酮、 脱水剂投入应釜中, 加热至 130-160°C, 搅拌, 反应 2-4小时; 蒸出 脱水剂;
b、 然后将反应釜升温至 180〜200°C, 常压反应至出现高分子爬杆现象, 向反应 釜中粘稠液中注入极性溶剂稀释溶液;
c、 然后将稀释后反应液在负压加热的状态下闪蒸, 回收溶剂;
d、 回收溶剂后的粉状物料沸水洗涤、 干燥即可。
作为优选的方案, 步骤 a所述芳香族二元酚为对苯二酚、 间苯二酚、 酚酞、 双酚 A、 联苯二酚、 邻苯二酚、 4, 4 ' -二羟基二苯砜、 4, 4 ' -二羟基二苯甲酮, 原料芳香族 二元酚可以为一种或两种任意比例混合使用; 所述催化剂为无水碳酸钾或无水碳酸钠 或氢氧化钠; 所述脱水剂为甲苯或二甲苯。
进一步优选的是, 步骤 a所述原料的摩尔配比为: 2, 6-二氯苯甲腈:芳香族二元 酚:催化剂: N-甲基吡咯烷酮:脱水剂 =1 : 1 : 1. 1〜1. 5: 8〜10: 1. 2〜1. 5。
进一步优选的是, 步骤 c闪蒸时,沉析釜内的压力低于 0. 05MPa, 沉析釜夹层加热 空间的温度高于反应溶剂的沸点。
更进一步优选的是, 步骤 c闪蒸回收溶剂后的粉状物料中注入去离子水搅拌形成 浆料, 经胶体磨粉碎后固液分离, 液体中由于含有残留溶剂, 输送至精熘塔中精熘回 收, 循环使用。
上述聚芳醚腈树脂的工业化生产方法中, 步骤 d固液分离后的固体采用沸水逆流 洗涤, 更干净。
上述聚芳醚腈树脂的工业化生产方法中, 步骤 d的干燥温度以 120~150°C干燥为 最佳。
采用本发明方法所制备的聚芳醚腈树脂为热塑性树脂, 其玻璃化转变温度在 175 °C左右, 初始分解温度为 480 °C以上; 树脂具有较高的力学强度, 其拉伸强度在 100〜 120MPa,弯曲强度在 120〜140Mpa,弯曲模量达到 2. 8Gpa以上; 而且树脂电性能优异, 介电强度达到 20KV/mm, 体积电阻率达到 1. 0* 1015 Ω · cm
本发明的有益效果:
本发明克服了现有高分子材料反应生产中, 析出的沉淀中包裹的无机盐粒子清洗 不干净造成高分子产品纯度不高, 以及沉析后溶剂回收能耗高的问题, 为高分子领域 提供了一种新的高分子沉析方法一闪蒸沉析方法。 该方法使得物料溶液中的溶剂在高 负压和加热双向搅拌的作用下迅速蒸发冷凝回收, 同时物料成为粉状, 有利于进行下 一步处理, 这就在解决产品纯化和溶剂回收的同时未破坏聚芳醚腈树脂的高分子链, 保证了产品的纯度与性能, 降低了回收溶剂的能耗。 尤其适于, 聚芳醚腈树脂的工业 化生产。 采用本发明制备方法所制备的聚芳醚腈树脂纯度高、 性能稳定, 可应用于航 空航天、 电子、 机械、 医疗、 化工等领域。 附图说明 图 1为步骤 2 ) 所使用的闪蒸沉析釜的结构示意图;
图中标记为: 壳体 1、 反应腔体 2、 搅拌器 3、 溶液加入口 4、 抽真空口 5、 排放出 口 6、 夹套 7、 导热介质入口 8、 导热介质出口 9、 正转电机 10、 反转电机 11、 搅拌叶 片 12、 粉碎叶片 13、 夹层加热空间 14。 具体实施方式 本发明为高分子材料领域提供了一种新的沉析的方法-闪蒸沉析法, 具体如下: 1 )聚合反应后的粘稠液中加入有机溶剂(与反应液中有机溶剂相同)稀释反应液, 以提高反应液的流动性;
2 )然后将该反应液在负压以及加热的状态下闪蒸, 回收溶剂; 这时回收到的溶剂 不含其它溶剂或沉淀剂, 可以直接循环使用;
具体可以采用本发明闪蒸沉析釜。 所述闪蒸沉析釜, 包括由壳体 1 围成的反应腔 体 2、 从壳体 1外伸入反应腔体 2内的搅拌器 3以及对反应腔体 2进行加热的加热装 置, 所述搅拌器 3的主轴传动连接有驱动电机, 在壳体 1上设置有溶液加入口 4、 抽 真空口 5与排放出口 6。 工作时, 将特种聚合物溶液经溶液加入口 4通入反应腔体 2 内, 然后通过抽真空口 5对反应腔体 2进行抽真空处理, 同时对反应腔体 2内的溶液 进行加热, 并启动驱动电机使搅拌器 3工作。 在该过程中, 溶液在高负压的反应腔体 2中加热闪蒸并通过搅拌器 3搅拌, 可以迅速将溶剂蒸发经抽真空口 5抽出直接进行 冷凝回收, 由于负压状态下溶液沸点降低, 且整个沉析反应时间可大大缩短, 这就在 解决产品纯化和溶剂回收的同时未破坏聚合物的高分子链,保证了产品的纯度与性能, 降低了能耗。
上述闪蒸沉析釜, 加热装置可采用多种加热方式, 如采用红外加热、 或采用煤、 气燃烧等对反应腔体 2内的溶液进行加热。 但作为优选的实施方式, 所述加热装置为 包覆在壳体 1外表面的夹套 7, 在夹套 7的内表面与壳体 1的外表面之间形成夹层加 热空间 14, 在夹套 7上设置有导热介质入口 8与导热介质出口 9。 工作时, 将导热介 质, 如导热油或高温蒸汽经导热介质入口 8加入至夹层加热空间 14中, 并从导热介质 出口 9输出形成加热循环系统, 可有效对对反应腔体 2内的溶液进行加热, 同时, 该 加热方式还具有清洁, 能耗低等优点。
上述闪蒸沉析釜, 与搅拌器 3 的主轴传动连接的驱动电机可仅有一个, 但作为优 选的方式, 所述与搅拌器 3的主轴传动连接的驱动电机具有两个, 分别为正转电机 10 与反转电机 11。 这样, 在反应过程中, 可选择性开启正转电机 10与反转电机 11, 利 于反应腔体 2内溶液的充分搅拌, 利于整个闪蒸过程的实现。 为了能更好提高搅拌效果, 所述搅拌器 3具有搅拌叶片 12与粉碎叶片 13, 所述 搅拌叶片 12的外径与壳体 1的内径相适配,所述粉碎叶片 13为锯齿状结构。工作时, 由于搅拌叶片 12的外径与壳体 1的内径相适配,其主要起到对溶液进行充分搅拌混匀 的目的; 而粉碎叶片 13设置为锯齿状结构, 可以将沉析下来的物料进行充分粉碎, 以 利于进行下一步的加工处理。
3 ) 回收溶剂后的粉状物料水洗、 干燥即可。
作为本发明优选的方案, 上述步骤 2 ) 中, 在负压以及加热的状态下闪蒸的过程 中, 可以增加搅拌, 使得物料充分破碎后形成粉料。 进一步优选的是, 所述搅拌为双 向搅拌。
作为本发明优选的方案, 所述的闪蒸的条件与反应液中的溶剂的性质有关, 聚合 后的闪蒸沉析釜夹套保持加热, 夹套温度^溶剂沸点温度; 双向搅拌器转速不低于 150rpm; 闪蒸釜经真空系统抽气形成负压状态, 釜内压力要低于 0. 05MPa。
作为本发明优选的方案, 上述步骤 3 ) 回收溶剂后的粉状物料中注入去离子水搅 拌形成浆料, 经胶体磨粉碎后固液分离, 液体中由于含有残留溶剂, 可输送至精熘塔 中精熘回收, 循环使用。
进一步地, 上述固液分离后的固体采用沸水逆流洗涤, 根据情况可洗涤多次。 作为本发明优选的方案, 本发明方法适合于聚芳醚腈树脂的工业化生产。
所述聚芳醚腈树脂的工业化生产的原料为: 2, 6-二氯苯甲腈、 芳香族二元酚、 催 化剂、 N-甲基吡咯烷酮、 脱水剂。
进一步优选的是所述芳香族二元酚为对苯二酚、 间苯二酚、 酚酞、 双酚 A、 联苯 二酚、 邻苯二酚、 4, 4 ' -二羟基二苯砜、 4, 4 ' -二羟基二苯甲酮, 原料芳香族二元酚 可以为一种或两种任意比例混合使用;
催化剂可用无水碳酸钾或无水碳酸钠或氢氧化钠;
脱水剂可用甲苯或二甲苯。
进一步地, 所述原料的摩尔配比为: 2, 6-二氯苯甲腈:芳香族二元酚:催化剂:
N-甲基吡咯烷酮:脱水剂 =1 : 1 : 1. 1〜1. 5: 8〜10: 1. 2〜1. 5;
作为上述方案优选的是, 聚合反应时, 原料投入到带有分水器、 搅拌器和加热装 置的反应釜中, 加热至 130-160°C, 搅拌, 反应 2-4小时; 蒸出脱水剂。 然后将反应釜 升温至 180〜200°C, 常压反应至出现高分子爬杆现象, 时向反应釜中注入机极性溶剂 稀释溶液以提高溶液的流动性, 然后进行 2 ) 步骤。 作为本发明优选的方案, 所述的闪蒸条件:
步骤 c闪蒸时的沉析釜内压力低于 0. 05MPa, 沉析釜夹套温度高于反应溶剂的沸 点。
上述步骤 3 ) 在 120~150°C干燥为宜。
下面通过实施例对本发明进行具体描述, 有必要指出的是实施例只用于对本发明 的进一步说明, 不能理解为对本发明保护范围的限制, 该技术领域的技术人员可以根 据本发明作出一些非本质的改进和调整。 实施例 1 在带有分水器、 搅拌器和加热器的反应釜中按以下摩尔配比: 2, 6-二氯苯甲腈: 对苯二酚: 间苯二酚:无水碳酸钾: N-甲基吡咯烷酮: 甲苯 =1: 0. 9: 0. 1: 1. 2: 6: 1. 3称取原料, 开动搅拌, 升温至 140°C脱水反应 2小时, 通过分水器蒸出甲苯, 升高 温度到 203°C, 反应至出现爬杆现象时向反应釜内注入少量的 N-甲基吡咯烷酮溶剂终 止其反应, 同时稀释了反应溶液。 将稀释后的溶液输送至沉析釜中, 启动双向搅拌机 和真空系统, 溶液中的溶剂在高负压以及加热的状态下闪蒸冷凝回收, 物料经双向搅 拌破碎后形成粉料。 闪蒸条件: 沉析釜夹层加热空间的温度 210°C, 沉析釜内压力低 于 0· 02MPa。
然后向沉析釜中注入去离子水搅拌形成浆料, 浆料经胶体磨粉碎后离心分离, 分 离后的液体输送至精熘塔中精熘回收残留溶剂, 固体输送至洗涤釜中沸水逆流洗涤 4 次, 然后在 150°C干燥获得本发明的聚芳醚腈树脂。 其性能见表 1 : 表 1 聚芳醚腈树脂性能
特性 测试方法 单位 聚芳醚腈树脂 密度 ISO 1183 gem— 3 1. 24
玻璃化转变温度 DSC °C 165
热变形温度 GB/T1634. 2 °C 155
限氧指数 ISO 4589 % 02 38
拉伸强度 GB/T1040. 2 Mpa 108
拉伸延伸率 GB/T1040. 2 % 20
弯曲强度 GB/T9341 Mpa 135 弯曲模量 GB/T9341 GPa 3. 2 缺口冲击强度 GB/T1043 KJ/m2 10
熔融指数
GB/T3682-2000 g/10min 10
(350°C, lOKg)
实施例 2 在带有分水器、 搅拌器和加热器的反应釜中按以下摩尔配比: 2, 6-二氯苯甲腈: 联苯二酚:无水碳酸钾: N-甲基吡咯烷酮: 甲苯 =1 : 1 : 1. 3 : 7 : 1. 4称取原料, 开动 搅拌, 升温至 150°C脱水反应 3小时, 通过分水器蒸出甲苯, 升高温度到 200°C, 反应 至出现爬杆现象时向反应釜内注入少量的 N-甲基吡咯烷酮溶剂终止其反应, 同时稀释 了反应溶液。 将稀释后的溶液输送至沉析釜中, 启动双向搅拌机和真空系统, 溶液中 的溶剂在高负压以及加热的状态下闪蒸冷凝回收, 物料经双向搅拌破碎后形成粉料。 闪蒸条件: 沉析釜夹层加热空间的温度 210°C, 沉析釜内压力低于 0. 025MPa。
然后向沉析釜中注入去离子水搅拌形成浆料, 浆料经胶体磨粉碎后离心分离, 分 离后的液体输送至精熘塔中精熘回收残留溶剂, 固体输送至洗涤釜中沸水逆流洗涤 4 次, 然后在 150°C干燥获得本发明的聚芳醚腈树脂。 其性能见表 2:
表 2 聚芳醚腈树脂性能
特性 测试方法 单位 聚芳醚腈树脂 密度 ISO 1183 gem— 3 1. 25
玻璃化转变温度 DSC °C 214
热变形温度 GB/T1634. 2 °C 205
限氧指数 ISO 4589 % 02 38
拉伸强度 GB/T1040. 2 Mpa 105
拉伸延伸率 GB/T1040. 2 % 15
弯曲强度 GB/T9341 Mpa 135
弯曲模量 GB/T9341 GPa 3. 2
缺口冲击强度 GB/T1043 KJ/m2 8. 5
熔融指数
GB/T3682-2000 g/lOmin 16
(350°C, lOKg) 实施例 3 在带有分水器、 搅拌器和加热器的反应釜中按以下摩尔配比: 2, 6-二氯苯甲腈: 双酚 A:无水碳酸钾: N-甲基吡咯烷酮: 甲苯 =1: 1: 1. 2: 6: 1. 3称取原料, 开动搅 拌, 升温至 140°C脱水反应 3小时, 通过分水器蒸出甲苯, 升高温度到 200°C, 反应至 出现爬杆现象时向反应釜内注入少量的 N-甲基吡咯烷酮溶剂终止其反应, 同时稀释了 反应溶液。 将稀释后的溶液输送至沉析釜中, 启动双向搅拌机和真空系统, 溶液中的 溶剂在高负压以及加热的状态下闪蒸冷凝回收, 物料经双向搅拌破碎后形成粉料。 闪 蒸条件: 沉析釜夹层加热空间的温度 210°C, 沉析釜内压力低于 0. 03MPa。
然后向沉析釜中注入去离子水搅拌形成浆料, 浆料经胶体磨粉碎后离心分离, 分 离后的液体输送至精熘塔中精熘回收残留溶剂, 固体输送至洗涤釜中沸水逆流洗涤 4 次, 然后在 150°C干燥获得本发明的聚芳醚腈树脂。 其性能见表 3 :
表 3 聚芳醚腈树脂性能
特性 测试方法 单位 聚芳醚腈树脂 密度 ISO 1183 gem— 3 1. 28
玻璃化转变温度 DSC °C 173
热变形温度 GB/T1634. 2 °C 150
限氧指数 ISO 4589 % 02 38
拉伸强度 GB/T1040. 2 Mpa 95
拉伸延伸率 GB/T1040. 2 % 20
弯曲强度 GB/T9341 Mpa 110
弯曲模量 GB/T9341 GPa 3. 0
缺口冲击强度 GB/T1043 KJ/m2 8. 0
熔融指数
GB/T3682-2000 g/lOmin 18
(310°C, lOKg)
实施例 4 在带有分水器、 搅拌器和加热器的反应釜中按以下摩尔配比: 2, 6-二氯苯甲腈: 间苯二酚:无水碳酸钾: N-甲基吡咯烷酮: 甲苯 =1: 1: 1. 3: 7: 1. 3称取原料, 开动 搅拌, 升温至 150°C脱水反应 3小时, 通过分水器蒸出甲苯, 升高温度到 203°C, 反应 至出现爬杆现象时向反应釜内注入少量的 N-甲基吡咯烷酮溶剂终止其反应, 同时稀释 了反应溶液。 将稀释后的溶液输送至沉析釜中, 启动双向搅拌机和真空系统, 溶液中 的溶剂在高负压以及加热的状态下闪蒸冷凝回收, 物料经双向搅拌破碎后形成粉料。 闪蒸条件: 沉析釜夹层加热空间的温度 210°C, 沉析釜内压力低于 0. 03MPa。
然后向沉析釜中注入去离子水搅拌形成浆料, 浆料经胶体磨粉碎后离心分离, 分 离后的液体输送至精熘塔中精熘回收残留溶剂, 固体输送至洗涤釜中沸水逆流洗涤 4 次, 然后在 150°C干燥获得本发明的聚芳醚腈树脂。 其性能见表 4: 表 4 聚芳醚腈树脂性能
特性 测试方法 单位 聚芳醚腈树脂 密度 ISO 1183 gem— 3 1. 24
玻璃化转变温度 DSC °C 148
热变形温度 GB/T1634. 2 °C 145
限氧指数 ISO 4589 % 02 38
拉伸强度 GB/T1040. 2 Mpa 100
拉伸延伸率 GB/T1040. 2 % 20
弯曲强度 GB/T9341 Mpa 138
弯曲模量 GB/T9341 GPa 3. 3
缺口冲击强度 GB/T1043 KJ/m2 9. 0
熔融指数
GB/T3682-2000 g/lOmin 25
(350°C, lOKg)
实施例 5 在带有分水器、 搅拌器和加热器的反应釜中按以下摩尔配比: 2, 6-二氯苯甲腈: 酚酞:邻苯二酚:无水碳酸钾: N-甲基吡咯烷酮: 甲苯 =1: 0. 8: 0. 2: 1. 2: 6: 1. 3 称取原料, 开动搅拌, 升温至 150°C脱水反应 2小时, 通过分水器蒸出甲苯, 升高温 度到 200°C, 反应至出现爬杆现象时向反应釜内注入少量的 N-甲基吡咯烷酮溶剂终止 其反应, 同时稀释了反应溶液。 将稀释后的溶液输送至沉析釜中, 启动双向搅拌机和 真空系统, 溶液中的溶剂在高负压以及加热的状态下闪蒸冷凝回收, 物料经双向搅拌 破碎后形成粉料。 闪蒸条件: 沉析釜夹层加热空间的温度 210°C, 沉析釜内压力低于 0. 025MPa。
然后向沉析釜中注入去离子水搅拌形成浆料, 浆料经胶体磨粉碎后离心分离, 分 离后的液体输送至精熘塔中精熘回收残留溶剂, 固体输送至洗涤釜中沸水逆流洗涤 4 次, 然后在 150°C干燥获得本发明的聚芳醚腈树脂。 其性能见表 5 : 表 5 聚芳醚腈树脂性能
特性 测试方法 单位 聚芳醚腈树脂 密度 ISO 1183 gem— 3 1. 27
玻璃化转变温度 DSC °C 205
热变形温度 GB/T1634. 2 °C 190
限氧指数 ISO 4589 % 02 38
拉伸强度 GB/T1040. 2 Mpa 98
拉伸延伸率 GB/T1040. 2 % 20
弯曲强度 GB/T9341 Mpa 131
弯曲模量 GB/T9341 GPa 3. 1
缺口冲击强度 GB/T1043 KJ/m2 9. 0
熔融指数
GB/T3682-2000 g/lOmin 25
(350°C, 10Kg)
实施例 6 在带有分水器、 搅拌器和加热器的反应釜中按以下摩尔配比: 2, 6-二氯苯甲腈:
4, 4 ' 二羟基二苯砜:无水碳酸钾: N-甲基吡咯烷酮: 甲苯 =1: 0. 9: 0. 1: 1. 3: 7: 1. 3称取原料, 开动搅拌, 升温至 150°C脱水反应 3小时, 通过分水器蒸出甲苯, 升高 温度到 200°C, 反应至出现爬杆现象时向反应釜内注入少量的 N-甲基吡咯烷酮溶剂终 止其反应, 同时稀释了反应溶液。 将稀释后的溶液输送至沉析釜中, 启动双向搅拌机 和真空系统, 溶液中的溶剂在高负压以及加热的状态下闪蒸冷凝回收, 物料经双向搅 拌破碎后形成粉料。 闪蒸条件: 沉析釜夹层加热空间的温度 210°C, 沉析釜内压力低 于 0· 025MPa。
然后向沉析釜中注入去离子水搅拌形成浆料, 浆料经胶体磨粉碎后离心分离, 分 离后的液体输送至精熘塔中精熘回收残留溶剂, 固体输送至洗涤釜中沸水逆流洗涤 4 次, 然后在 150°C干燥获得本发明的聚芳醚腈树脂。 其性能见表 6: 表 6 聚芳醚腈树脂性能
特性 测试方法 单位 聚芳醚腈树脂 xf ISO 1183 gem— 3 1. 35
玻璃化转变温度 DSC °C 210
热变形温度 GB/T1634. 2 °C 200
限氧指数 ISO 4589 % 02 38
拉伸强度 GB/T1040. 2 Mpa 95
拉伸延伸率 GB/T1040. 2 % 14
弯曲强度 GB/T9341 Mpa 124
弯曲模量 GB/T9341 GPa 3. 1
缺口冲击强度 GB/T1043 KJ/m2 8. 0
熔融指数
GB/T3682-2000 g/lOmin 29
(330°C, lOKg) 综上所述, 上述具体实施例时采用 "合成一闪蒸沉析一溶剂回收一沸水逆流洗涤 一真空干燥一改性造粒" 的成套工艺路线有效的解决了产品难纯化、 溶剂难萃取回收 的问题, 使得产品纯度高, 性能稳定。 同时通过溶剂回收循环使用既降低了生产成本, 又解决了环保污染问题。 且, 本发明实现了常压条件下一步加料反应, 生产条件易于 实现, 生产过程易于控制, 另外, 在合成中采用直接亲核取代反应和甲苯或二甲苯脱 水剂的双重作用获得高分子量的聚芳醚腈树脂, 有效的克服了聚合过程中的副反应和 副产物的发生。

Claims

权利要求书
1、 高分子材料沉析方法, 其特征在于经以下步骤:
1 ) 在聚合反应后的粘稠液中加入与反应液中相同的有机溶剂稀释反应液;
2 ) 然后将稀释后反应液在负压、 加热的状态下闪蒸, 回收溶剂;
3 ) 回收溶剂后的粉状物料水洗、 干燥即可。
2、根据权利要求 1所述的高分子材料沉析方法, 其特征在于: 闪蒸的过程中增加 搅拌, 优选双向搅拌。
3、根据权利要求 1或 2所述的高分子材料沉析方法, 其特征在于: 闪蒸沉析釜夹 套温度 溶剂沸点温度; 闪蒸釜内压力低于 0. 05MPa。
4、 聚芳醚腈树脂的工业化生产方法, 其特征在于经以下步骤:
a、 聚芳醚腈树脂的工业化生产原料: 2, 6-二氯苯甲腈、 芳香族二元酚、 催化剂、 N-甲基吡咯烷酮、 脱水剂投入应釜中, 加热至 130-160°C, 搅拌, 反应 2-4小时; 蒸出 脱水剂;
b、 然后将反应釜升温至 180〜200 °C, 常压反应至出现高分子爬杆现象, 向反应 釜中粘稠液中注入极性溶剂稀释溶液;
c、 然后将稀释后反应液在负压以及加热的状态下闪蒸, 回收溶剂;
d、 回收溶剂后的粉状物料沸水洗涤、 干燥即可。
5、 根据权利要求 4所述的聚芳醚腈树脂的工业化生产方法, 其特征在于: 步骤 a 所述芳香族二元酚为对苯二酚、 间苯二酚、酚酞、双酚 A、 联苯二酚、邻苯二酚、 4,4- 二羟基二苯砜、 4, 4 ' -二羟基二苯甲酮, 原料芳香族二元酚可以为一种或两种任意比 例混合使用; 所述催化剂为无水碳酸钾或无水碳酸钠或氢氧化钠; 所述脱水剂为甲苯 或二甲苯。
6、 根据权利要求 4所述的聚芳醚腈树脂的工业化生产方法, 其特征在于: 步骤 a 中各原料的摩尔配比为: 2, 6-二氯苯甲腈:芳香族二元酚:催化剂: N-甲基吡咯烷酮 :脱水剂 =1 : 1 : 1. 1〜1. 5: 8〜10: 1. 2〜1. 5。
7、 根据权利要求 4所述的聚芳醚腈树脂的工业化生产方法, 其特征在于: 步骤 c 闪蒸时, 沉析釜内压力低于 0. 05MPa, 沉析釜夹层加热空间的温度高于反应溶剂的沸 点 203 °C。
8、根据权利要求 4-7任一项所述的聚芳醚腈树脂的工业化生产方法,其特征在于: 步骤 c闪蒸回收溶剂后的粉状物料中注入去离子水搅拌形成浆料, 经胶体磨粉碎后固 液分离, 液体中由于含有残留溶剂, 输送至精熘塔中精熘回收, 循环使用。
9、 根据权利要求 8所述的聚芳醚腈树脂的工业化生产方法, 其特征在于: 步骤 d 固液分离后的固体采用沸水逆流洗涤。
10、 根据权利要求 8所述的聚芳醚腈树脂的工业化生产方法, 其特征在于: 步骤 d的干燥温度为 120~150°C干燥。
PCT/CN2012/086821 2012-10-10 2012-12-18 高分子材料沉析方法及聚芳醚腈树脂的工业化生产方法 WO2014056284A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210380356.3A CN102888003B (zh) 2012-10-10 2012-10-10 高分子材料沉析方法及聚砜树脂的工业化生产方法
CN201210380356.3 2012-10-10

Publications (1)

Publication Number Publication Date
WO2014056284A1 true WO2014056284A1 (zh) 2014-04-17

Family

ID=47531693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086821 WO2014056284A1 (zh) 2012-10-10 2012-12-18 高分子材料沉析方法及聚芳醚腈树脂的工业化生产方法

Country Status (2)

Country Link
CN (1) CN102888003B (zh)
WO (1) WO2014056284A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103897188B (zh) * 2014-03-06 2019-03-29 威海帕斯砜新材料有限公司 聚砜高分子材料工业化生产工艺
CN104530431A (zh) * 2014-12-17 2015-04-22 江门市优巨新材料有限公司 一种低色泽和高透光率聚砜树脂的工业化合成方法
CN104629055B (zh) * 2015-03-11 2017-03-08 威海帕斯砜新材料有限公司 工业化生产聚砜高分子材料方法
CN105601926B (zh) * 2015-06-08 2018-10-12 四川理工学院 聚苯砜树脂的制备方法
CN105482050B (zh) * 2015-06-08 2017-10-24 四川理工学院 聚醚醚酮树脂的制备方法
CN105254890A (zh) * 2015-09-23 2016-01-20 中橡集团炭黑工业研究设计院 一种聚醚砜树脂的制备方法
CN106621430A (zh) * 2015-11-01 2017-05-10 江苏景泰石油化工装备有限公司 高效夹套式传热闪蒸液储罐
CN105694040B (zh) * 2016-03-14 2019-02-12 四川天一科技股份有限公司 一种制备聚醚砜树脂的带压热分散纯化工艺
CN106397794B (zh) * 2016-08-31 2019-03-26 泸州北方化学工业有限公司 一种高分子树脂脱溶造粒的方法
CN107286345B (zh) * 2017-07-27 2023-08-18 上海帕斯砜材料科技有限公司 高纯度聚砜、聚醚砜、聚芳砜树脂工业化生产方法
CN111621012B (zh) * 2020-06-30 2022-05-20 富海(东营)新材料科技有限公司 聚砜系列树脂聚合脱水工艺
CN112251179B (zh) * 2020-10-27 2022-08-19 烟台德邦科技股份有限公司 一种聚砜树脂改性环氧结构胶的制备方法
CN112239540B (zh) * 2020-12-21 2021-03-19 富海(东营)新材料科技有限公司 聚砜类树脂材料的工业化提纯工艺及其提纯装置
CN113461932B (zh) * 2021-07-29 2022-08-09 浙江大学 一种聚芳醚酮制备方法
CN114028999B (zh) * 2021-11-12 2024-07-02 泸州北方纤维素有限公司 乙基纤维素颗粒的造粒方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04218512A (ja) * 1990-12-19 1992-08-10 Nippon Steel Chem Co Ltd スチレン系樹脂の製造方法
CN1867632A (zh) * 2003-08-26 2006-11-22 通用电气公司 制备聚合物材料的方法
CN101838390A (zh) * 2010-05-28 2010-09-22 电子科技大学 一种聚芳醚腈树脂的制备方法
CN101928235A (zh) * 2009-11-05 2010-12-29 甘肃银达化工有限公司 连续制备1,6-己二异氰酸酯的方法
CN101948568A (zh) * 2010-09-16 2011-01-19 电子科技大学 一种聚芳醚腈树脂粉末的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102492132A (zh) * 2011-12-09 2012-06-13 中橡集团炭黑工业研究设计院 含氰基聚芳醚酮类共聚物及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04218512A (ja) * 1990-12-19 1992-08-10 Nippon Steel Chem Co Ltd スチレン系樹脂の製造方法
CN1867632A (zh) * 2003-08-26 2006-11-22 通用电气公司 制备聚合物材料的方法
CN101928235A (zh) * 2009-11-05 2010-12-29 甘肃银达化工有限公司 连续制备1,6-己二异氰酸酯的方法
CN101838390A (zh) * 2010-05-28 2010-09-22 电子科技大学 一种聚芳醚腈树脂的制备方法
CN101948568A (zh) * 2010-09-16 2011-01-19 电子科技大学 一种聚芳醚腈树脂粉末的制备方法

Also Published As

Publication number Publication date
CN102888003A (zh) 2013-01-23
CN102888003B (zh) 2014-03-05

Similar Documents

Publication Publication Date Title
WO2014056284A1 (zh) 高分子材料沉析方法及聚芳醚腈树脂的工业化生产方法
CN107459816B (zh) 一种耐高温增强型热塑性复合材料及其制备方法
WO2013037097A1 (zh) 一种制备粉末树脂的方法
WO2014101564A1 (zh) 一种纤维级聚苯硫醚树脂的合成方法
CN102002138B (zh) 一种高纯热塑性酚醛树脂的生产方法
CN104530419A (zh) 一种高热稳定性封端聚砜树脂的工业化合成方法
CN105254890A (zh) 一种聚醚砜树脂的制备方法
CN102766255A (zh) 聚芳醚腈树脂及其工业化合成方法
CN105754089B (zh) 一种耐高温聚芳醚腈树脂的合成方法
CN105482050A (zh) 聚醚醚酮树脂的制备方法
CN101479319B (zh) 亚苯基醚低聚物的制造方法
CN102952269B (zh) 聚芳硫醚砜/聚醚砜共聚物及制备方法
CN102558558A (zh) 聚芳醚砜-腈树脂及其工业化合成方法
CN106947076A (zh) 邻苯二甲腈封端聚芳醚酮树脂及其制备方法
CN113698593A (zh) 一种复合材料及其制备方法
CN114149586B (zh) 一种扩链聚硫酸酯及其制备方法
CN102070779A (zh) 一种荧光性聚芳醚腈共聚物及其制备方法
CN106188400A (zh) 一种苯乙烯系多元共聚高分子材料的制备工艺
CN102492132A (zh) 含氰基聚芳醚酮类共聚物及其制备方法
CN103619909A (zh) 聚苯醚醚酮的制造方法
CN105175714A (zh) 一种制备氰基聚芳醚酮树脂的工艺方法
CN102766256B (zh) 一种双酚a型聚芳硫醚醚腈树脂及其制备方法
CN110229325B (zh) 一种双酚a型聚芳醚腈的后处理方法
CN202909718U (zh) 特种聚合物闪蒸沉析釜
CN1240192A (zh) 不溶性硫磺的制备方法及生产装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12886282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12886282

Country of ref document: EP

Kind code of ref document: A1