WO2014050883A1 - 平刃状切断刃およびグリーンシート切断刃 - Google Patents

平刃状切断刃およびグリーンシート切断刃 Download PDF

Info

Publication number
WO2014050883A1
WO2014050883A1 PCT/JP2013/075899 JP2013075899W WO2014050883A1 WO 2014050883 A1 WO2014050883 A1 WO 2014050883A1 JP 2013075899 W JP2013075899 W JP 2013075899W WO 2014050883 A1 WO2014050883 A1 WO 2014050883A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
cutting
flat
tip
edge
Prior art date
Application number
PCT/JP2013/075899
Other languages
English (en)
French (fr)
Inventor
浩則 堀端
貴哉 金山
林 武彦
Original Assignee
株式会社アライドマテリアル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アライドマテリアル filed Critical 株式会社アライドマテリアル
Priority to KR1020157008932A priority Critical patent/KR101773267B1/ko
Priority to CN201380050825.8A priority patent/CN104684699B/zh
Priority to JP2014538526A priority patent/JP6087363B2/ja
Publication of WO2014050883A1 publication Critical patent/WO2014050883A1/ja
Priority to PH12015500706A priority patent/PH12015500706B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D1/00Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
    • B26D1/0006Cutting members therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0014Shaping of the substrate, e.g. by moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D1/00Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
    • B26D1/0006Cutting members therefor
    • B26D2001/0053Cutting members therefor having a special cutting edge section or blade section
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09036Recesses or grooves in insulating substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0228Cutting, sawing, milling or shearing

Definitions

  • the present invention relates to a flat cutting blade and a green sheet cutting blade.
  • a laminate of paste-like sheets containing a mixture of dielectric ceramic powder and binder (called a green sheet) is made into individual product shapes. After cutting, there is a method of firing and attaching electrodes to both ends.
  • the green sheet cutting method includes a method of cutting with a rotating round blade called a dicing method and a guillotine method of cutting with a flat blade-like cutting blade.
  • the cutting accuracy of the dicing method is higher than that of the guillotine method, the material yield is worse than the guillotine method due to the generation of cutting scraps, and the cutting speed is also inferior, so the size of the green sheet after cutting becomes smaller.
  • the guillotine method is useful.
  • the flat blade-shaped cutting blade has a shape having a cutting execution portion that contributes to cutting, that is, a blade tip portion and a base portion (also referred to as a shank) having parallel surfaces for fixing the cutting blade to the cutting device.
  • Flat-blade cutting blades are sharp (low shear resistance during cutting), wear resistant, weld resistant to the workpiece, strong against buckling, and long life ("Life” as used herein refers to the point in time when the cross-sectional shape of the workpiece is damaged by chipping, and in the case of a multilayer capacitor cutting blade, peeling of the multilayer film occurs. And cutting blade life).
  • Patent Document 1 describes a structure in which a vertical cut surface can be formed by providing an arrow-shaped step in the cross-sectional shape of the blade edge (Patent Document 1).
  • the shape of the cutting edge is particularly important, and considering the damage to the object to be cut, it is better to use a thin blade and have a small angle at the tip of the cutting edge.
  • the strength becomes inevitable as the blade becomes thinner. Therefore, the cutting blade currently used is devised such as increasing the cutting edge angle of the cutting edge by providing one or more angles between the cutting edge and the base.
  • Patent Document 2 discloses a structure in which the cutting edge portion is formed of a plurality of concave curved surfaces to reduce shear resistance and increase buckling strength (Patent Document 2).
  • hard materials such as cemented carbide other than stainless steel are used for the flat blade-shaped cutting blade.
  • the material is a hard material, it is hard to cut but has low toughness. Easy to chip.
  • the blade thickness is thin, even if it is a hard material, a shape excellent in workability is required because the blade tends to escape by pressing of a grindstone during processing, especially at the tip of the blade tip.
  • accurate processing is not easy, and there is a problem in terms of practicality.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a cutting blade that satisfies both stable shape accuracy and cutting performance.
  • the present inventor has examined whether it is possible to achieve both the securing of the strength of the tip of the blade and the reduction of the shear resistance during cutting.
  • the first aspect of the present invention has a flat plate-like base portion and a blade edge portion that is a cutting execution portion formed at an end portion of the base portion, and the cross-sectional shape of the blade edge portion in the plate thickness direction is
  • the flat blade-shaped cutting blade is characterized in that the shortest distance between the intersection of two straight lines along the left and right blade surfaces and the tip of the blade edge is 1 ⁇ m or more and 10 ⁇ m or less.
  • a second aspect of the present invention is a green sheet cutting blade having the flat blade-like cutting blade described in the first aspect.
  • FIG. 3 is a cross-sectional view showing the tip shape of the flat blade-shaped cutting blade 1.
  • FIG. 4 is an enlarged view of the vicinity of a connecting portion 15 in FIG. 3.
  • FIG. 3 is a schematic diagram showing a method for processing the tip of the flat blade-shaped cutting blade 1.
  • FIG. 3 is a schematic diagram showing a method for processing the tip of the flat blade-shaped cutting blade 1.
  • the flat blade-shaped cutting blade 1 is provided on a flat plate-like base portion 5 having a rectangular planar shape and one long side (one end portion) of the base portion 5. It has a flat blade-shaped cutting edge portion 7 which is a cutting execution portion for cutting.
  • the base part 5 has a fixed part 5a having parallel straight parts as shown in the figure, and a connecting part 5b for connecting the fixed part 5a and the blade edge part 7 to the fixing part 3 of the cutting device.
  • the length of the long side of the flat blade-shaped cutting blade 1 is L
  • the length of the short side is H
  • the height of the blade edge portion 7 is H1
  • the thickness of the flat blade-shaped cutting blade 1 is shown. Is described as T.
  • the blade edge portion 7 includes a left blade surface 9a, a right blade surface 9b, and a left blade surface 9b that are inclined so as to approach each other (in the plate thickness direction) from the left and right surfaces (both flat surfaces) of the base 5. It has a blade tip 11 formed so as to connect the blade surface 9a and the right blade surface 9b.
  • the cross-sectional shape of the blade edge portion 7 in the plate thickness direction is such that the intersection of the two straight lines 13a and 13b along the left blade surface 9a and the right blade surface 9b and the shortest of the blade edge tip 11 are shown. It is desirable that the distance X is 1 ⁇ m or more and 10 ⁇ m or less.
  • the above value is less than 1 ⁇ m, chipping is likely to occur on the blade edge.
  • it exceeds 10 ⁇ m a large cutting resistance is generated when the cutting edge enters the workpiece 100. Furthermore, it tends to have a short life due to wear. More preferably, it is 1.5 ⁇ m or more and 5 ⁇ m or less.
  • the flat blade-shaped cutting blade 1 has a roundness at the tip end portion 11 in advance.
  • the blade tip portion 11 has a convex curved surface.
  • the convex curved surface means a curved shape that swells outward.
  • the left blade surface 9a and the right blade surface 9b are bilaterally symmetric. Specifically, as shown in FIG. 3, the tip angle of the blade edge portion is two along the left blade surface 9a and the right blade surface 9b.
  • the angle difference is ⁇ 0 It is desirable to be within 3 degrees.
  • the internal angle ⁇ (that is, ⁇ 1 + ⁇ 2 ) of the intersection angle between the two straight lines 13a and 13b along the left blade surface 9a and the right blade surface 9b is 4 degrees or more and 60 degrees or less.
  • exceeds 60 degrees, a large load is generated when the cutting edge enters the workpiece 100 and the buckling resistance and the wear resistance are inferior. Further, in such a case, the amount of plastic deformation of the workpiece 100 is increased, the surface of the workpiece 100 is likely to be scratched, and the cut surface is more likely to be inclined rather than vertical, This is because the cutting resistance increases.
  • angle ⁇ is more preferably 10 degrees or more and 30 degrees or less from the viewpoint of both ensuring the strength of the blade edge and low cutting resistance.
  • the material which comprises the flat blade-shaped cutting blade 1 is suitably selected according to a to-be-cut object, as a specific material, carbon tool steel, a WC-Co type cemented carbide, etc. are mentioned, for example. Is mentioned.
  • the processing method of the blade edge portion 7 of the flat blade-shaped cutting blade 1 is not particularly limited as long as the above-mentioned cutting edge shape can be processed, but the following methods can be exemplified.
  • linear processing is performed on the tip (long side) of the connecting portion 5b of the base portion 5 to form a left blade surface 9a, a right blade surface 9b, and straight lines 13a and 13b.
  • This linear processing is performed, for example, by polishing with a grindstone.
  • the shape of the tip 11 of the cutting edge has a curved shape, so that the cutting edge is too thin in the press working with a grindstone as in the case of forming the left blade surface 9a and the right blade surface 9b.
  • the cutting edge easily escapes from the grindstone during processing, and stable processing is not easy.
  • the cutting edge tip 11 is processed by (1) a method of forming the cutting edge tip 11 in a solution containing abrasive grains (hard material), or (2) abrasive grains or other hard materials, that is, metal powder or ceramic powder. There is a method of forming the blade tip 11 using a mixed solid material.
  • the method (1) is a method in which a suitable container 203 is filled with a solution 201 having a hard material as abrasive grains, and the edge of the flat blade-shaped cutting blade 1 is put into the solution 201.
  • a suitable container 203 is filled with a solution 201 having a hard material as abrasive grains, and the edge of the flat blade-shaped cutting blade 1 is put into the solution 201.
  • this method only the portion 7 is immersed and reciprocated in the blade spanning direction for a predetermined time to perform processing by bringing the hard material in the solution 201 into contact with the blade edge portion 7 to form the blade tip 11.
  • high-hardness diamond grains are preferable because they can be processed in a short time, but other metal powders and ceramic powders may be used.
  • the solvent of the solution 201 is, for example, water.
  • the method of (2) is, as shown in FIG. 6, by cutting the solid material 205 mixed with the hard material powder with the flat blade-shaped cutting blade 1, the hard material in the solid material 205 and the cutting edge portion.
  • 7 is a method of forming a cutting edge tip 11 on the cutting edge portion 7 by performing processing by bringing the cutting edge 7 into contact.
  • examples of the solid 205 include a clay-like material.
  • hard material examples include diamond, W, Mo, WC, Al 2 O 3 , TiO 2 , TiC, TiCN, SiC, Si 3 N 4 , and BN powders.
  • the powder particle size of these hard materials is preferably such that the average particle size of secondary particles is 1 ⁇ m or less in terms of Fsss (Fisher Sub-Sieve® Sizer) particle size. This is because if it exceeds 1 ⁇ m, chipping may occur in the processing of the blade edge surface. Further, the finer the particle, the better the shape accuracy of the flat blade-shaped cutting blade. However, it takes time to process, so in this range, it is initially processed with particles of a size close to 1 ⁇ m, and the finish is smaller than 1 ⁇ m. It is more preferable to process with hard material particles of a size. A uniform cutting edge is possible because the particles are uniformly dispersed.
  • the blade edge portion 7 that is the cutting execution portion of the flat blade-shaped cutting blade 1 includes the left blade surface 9 a and the right blade surface 9 b that are inclined so as to approach each other from the left and right surfaces of the base 5.
  • the blade edge tip 11 is formed so as to connect the left blade surface 9a and the right blade surface 9b, the intersection of the two straight lines 13a and 13b along the left blade surface 9a and the right blade surface 9b, and the blade edge tip 11
  • the shortest distance is 1 ⁇ m or more and 10 ⁇ m or less.
  • the flat blade-shaped cutting blade 1 can satisfy both stable shape accuracy and cutting performance.
  • Example 1 A cutting test using the flat blade-shaped cutting blade 1 manufactured by the method of forming the blade tip 11 in a solution having abrasive grains is performed, and the effect of the shape of the blade tip 11 on the chipping property, wear resistance and cutting surface is examined. evaluated.
  • the specific procedure is as follows.
  • the length L in the blade direction is 100 mm
  • the length H in the short side direction is 20 mm
  • the thickness T is 0.1 mm (see FIGS. 1 and 2)
  • the material is a flat plate made of cemented carbide FM10K manufactured by Allied Material Co., Ltd.
  • a plate material is prepared, and with the existing technique using a grindstone, polishing is performed on one of the long sides so as to be bilaterally symmetric with respect to the cross section in the thickness direction.
  • Blade surfaces 9b and 13b were formed. At this time, the blade surfaces 9a, 13a and 9b, 13b form an angle ⁇ .
  • the flat blade-shaped cutting blade 1 is immersed in the solution 201 having a hard material as an abrasive grain, and only the blade edge portion 7 is slid back and forth in the spanning direction for a certain period of time. Formed.
  • polishing diamond slurry PC-1-W (Fsss particle size 1 ⁇ m) manufactured by Wada Trading Co., Ltd. was used, and PC-N100-W (particle size 0.1 ⁇ m) was used as the finish.
  • the solution 201 (aqueous solution) is slid while stirring so as to have a uniform concentration so as not to affect the cutting edge processing, and the slide time is adjusted.
  • the flat blade-shaped cutting blade 1 is mainly a cutting blade for green sheets, but as an object to be cut, a mixture of metal powder and oil clay is prepared for an accelerated test. did. This is because the green sheets of the product have large differences in properties (mechanical strength such as shear resistance) for each product, and it is difficult to select a green sheet with typical characteristics as an object to be cut. It is also to do.
  • the metal powder was a material corresponding to the ceramic powder in the green sheet
  • the oil clay was regarded as a material corresponding to the binder in the green sheet.
  • W powder having an Fsss particle size of 1 ⁇ m was mixed in an oil mortar made of Chubu Denki Kogyo Co., Ltd. in a mortar so as to have a weight ratio of 100: 20.
  • this mixture was molded to a thickness of 1 mm at a press pressure of 10 kg / cm 2 to obtain a workpiece.
  • the flat blade-shaped cutting blade 1 was incorporated into a cutting device, and the workpiece was continuously cut at a lowering speed of the cutting blade of 10 mm / second.
  • the flat blade-shaped cutting blade 1 can be moved 5 mm in the horizontal direction every time the flat blade-shaped cutting blade 1 is lifted so that the workpiece is not cut twice at the same horizontal position.
  • a schematic diagram is shown in FIG.
  • the lower part of the object to be cut must have a lower hardness than the object to be cut, and qualitative filter paper grade No. 1 made by Toyo Filter Paper Co., Ltd. was laid.
  • the shortest distance X before cutting (the intersection of the two straight lines 13a and 13b along the left blade surface 9a and the right blade surface 9b and the shortest distance between the blade tip 11) and the cutting edge after 1000 times of the above cutting
  • the state is shown in Table 1.
  • the presence / absence of chipping is observed by enlarging the entire surface in the direction of the cutting edge, and when no chipping is observed, or when there is a chip of less than 5 ⁇ m, “ ⁇ ”, and when there is a chip of 5 ⁇ m or more and less than 10 ⁇ m. “C” was judged as “x” when there was a chip of 10 ⁇ m or more. The observation was performed with an Olympus microscope STM6-LM at a magnification of 200 times.
  • the degree of wear of the blade edge is “ ⁇ ” when the distance of H1 in FIG. 2 is shortened by 5 ⁇ m or less compared to before the start of cutting with the microscope, “ ⁇ ”, and when “5 ⁇ m is shortened by 10 ⁇ m or less” The case where it shortened exceeding 10 micrometers was judged as "x”.
  • the state of the cut surface of the cut product was also observed with a microscope, and regarding the scratch on the 1000th cut surface, a case where a scratch having a width of 5 ⁇ m or more was seen was judged as “X”, and the others were judged as “ ⁇ ”.
  • samples in which at least one of the shortest distance X1 to 10 ⁇ m and the blade edge angle 4 to 60 degrees is outside this range are the presence or absence of chipping of the blade edge, the degree of wear of the blade edge, and the cut surface of the workpiece. Any (or all) of the states of was rated as “x”.
  • the cut angle of the object to be cut was less than 87 degrees and was not cut vertically (this is “oblique” in Table 1). Described). This occurs because X is out of the above range and the blade edge angle is large (60 degrees or more), so that the cutting blade is forced to spread when entering the workpiece. It was considered.
  • the angle difference with respect to the center line of the left and right blade surfaces is within ⁇ 0.3 degrees, and the connecting portion 15 in FIG. 4 has a curve. It was.
  • Example 2 As a process for forming the blade tip 11, the blade tip 11 was formed using a method of forming the blade tip 11 using a solid material, and a cutting test was performed. The specific procedure is as follows.
  • Example 1 the same plate material as in Example 1 is polished by a conventional technique using a grindstone so as to be bilaterally symmetric with respect to the cross section in the thickness direction, and the left blade surfaces 9a, 13a and right formed by straight lines are polished. Blade surfaces 9b and 13b were formed. At this time, the left blade surfaces 9a and 13a and the right blade surfaces 9b and 13b form an angle ⁇ .
  • the specific surface area BET (Brunauer, Emmet and Teller) value of titanium oxide is 36 m 2 / g, and scanning electron microscope at 20,000 times using Hitachi High-Technologies Field Emission Scanning Electron Microscope S-420. In observation, the primary particles were less than 0.1 ⁇ m.
  • this solid material was used as an object to be cut, and a flat blade-like cutting blade 1 was incorporated into a cutting device, and the cutting blade was continuously cut at a descending speed of 5 mm / second.
  • the cutting edge number 11 was adjusted to adjust the blade tip 11 to the shape shown in Table 2.
  • the samples having the shortest distance X of 1 to 10 ⁇ m are all “ ⁇ ” in the presence or absence of chipping of the blade edge, the degree of wear of the blade edge, and the state of the cut surface of the workpiece. Or it was evaluation of "(circle)" and the result similar to Example 1 was obtained.
  • the angle difference with respect to the center line of the left and right blade surfaces is within ⁇ 0.3 degrees, and the connecting portion 15 in FIG. 4 has a curve. It was.
  • Cutting device fixing portion 5 Base portion 5a: Fixed portion 5b: Connection portion 7: Blade edge portion 9a: Left blade surface 9b: Right blade surface 11: Cutting edge tip 15: Connection portion 21: Center line 100: object to be cut 201: solution 203: container 205: solid X: the shortest distance alpha 1: angle alpha 2: angle theta: internal angle

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Knives (AREA)
  • Nonmetal Cutting Devices (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

 本発明の課題は、安定した形状精度と加工性を共に満足する切断刃を提供することにある。本発明の平刃状切断刃1は、平板状の基部5と、基部の端部に形成された切断実行部である刃先部7と、を有し、刃先部7の板厚方向の断面形状は、左右刃面に沿った2本の直線9a、9bの交点と刃先先端11の最短距離が1μm以上、10μm以下である。

Description

平刃状切断刃およびグリーンシート切断刃
 本発明は、平刃状切断刃およびグリーンシート切断刃に関する。
 積層セラミックコンデンサ、積層バリスタ、積層コイル、積層圧電アクチュエータ等を製造する方法として、誘電体セラミックス粉末とバインダの混合物を含むペースト状のシートを積層したもの(グリーンシートと呼ぶ)を個々の製品形状に切断した後、焼成し、両端に電極を取り付ける方法がある。
 ここで、コンデンサは近年スマートフォンを代表とする小型機対応のため小サイズ化の要求が増しており、そのため高度な形状精度を要求される。このような小サイズセラミックコンデンサを実現するためには、グリーンシートの切断加工の際に、可能な限り垂直な切断面を形成させることや、切断面に損傷を与えないことに留意する必要がある。
 グリーンシートの切断方法としては、ダイシング法と呼ばれる回転丸刃にて切断する方法と、平刃状切断刃を用いて切断するギロチン法とがある。
 ダイシング法は切断の精度こそギロチン法よりも高いものの、切削屑が出るために材料歩留がギロチン法より悪く、また切断速度も劣るという欠点があるため、切断後のグリーンシートの寸法が小さくなるほど、ギロチン法が有用となる。
 ここで、平刃状切断刃は、切断に寄与する切断実行部、即ち刃先部およびこの切断刃を切断装置に固定するために平行な面を有する基部(シャンクとも呼ぶ)を持つ形状である。
 平刃状切断刃には、切れ味よく(切断の際のせん断抵抗が小さく)、耐摩耗性があり、被切断物に対する耐溶着性があり、座屈に対し強度があり、さらに長寿命であること等が求められている(ここで言う「寿命」とは、チッピングにより被切断物の断面形状に傷が生じるに至った時点を言い、積層コンデンサ用切断刃の場合、積層膜の剥離が生じると切断刃の寿命となる)。
 例えば、特許文献1には刃先の断面形状に矢印形状の段差を設けることにより、垂直な切断面を形成可能とした構造が記載されている(特許文献1)。
 一方、せん断抵抗に関しては、特に刃先の形状が重要とされ、被切断物への損傷をも考慮し、薄刃で且つ刃先先端の角度は小さい方がよい。しかし薄刃になるほど強度が悪化することは避けられない。そのため現在用いられている切断刃は刃先から基部までの間に一段又は複数段の角度を付けることにより、最先端の刃先角度を大きくするなどの工夫がされている。
 例えば、特許文献2には刃先部を複数段の凹湾曲面で形成することにより、せん断抵抗を小さくし、座屈強度を高めた構造が開示されている(特許文献2)。
実開昭63-197089号公報 特開平10-217181号公報
 しかしながら、特許文献2のような刃先を用いた場合でも、刃先先端の強度を確保するのは困難であった。
 また、平刃状切断刃は、例えばステンレスの他、超硬合金などの硬質材料が用いられているが、特に材質が硬質材料である場合剛性はあるものの、難切削材料であり且つ靱性が低く欠け易い。また、刃厚が薄い場合硬質材料であっても特に刃先先端部では加工中に砥石の押圧により刃が逃げようとすることなどから、加工性に優れた形状が求められる。しかしながら、特許文献1、2の構造では、精度の良い加工が容易ではなく、実用性の面では問題があった。
 本発明は上記課題に鑑みてなされたものであり、その目的は、安定した形状精度と切断性能を共に満足する切断刃を提供することである。
 上記した課題を解決するため、本発明者は、刃先先端の強度の確保と、切断時のせん断抵抗の低下を両立できるか否かについて、検討した。
 その結果、刃先先端の形状を工夫することにより、刃先先端の強度を低下させることなく、切断時のせん断抵抗を低下させることが可能であることを見出し、本発明をするに至った。
 即ち、本発明の第1の態様は、平板状の基部と、前記基部の端部に形成された切断実行部である刃先部と、を有し、前記刃先部の板厚方向の断面形状は、左右刃面に沿った2本の直線の交点と刃先先端の最短距離が1μm以上、10μm以下であることを特徴とする平刃状切断刃である。
 本発明の第2の態様は、第1の態様に記載の平刃状切断刃を有することを特徴とするグリーンシート切断刃である。
 本発明によれば、安定した形状精度と切断性能を共に満足する切断刃を提供することができる。
平刃状切断刃1の形状の概略を示す側面図である。 図1の斜視図である。 平刃状切断刃1の先端形状を示す断面図である。 図3の連結部15付近の拡大図である。 平刃状切断刃1の先端の加工方法を示す模式図である。 平刃状切断刃1の先端の加工方法を示す模式図である。
 以下、図面を参照して本発明に好適な実施形態を詳細に説明する。
 まず、図1~図4を参照して本発明の実施形態に係る平刃状切断刃1の形状について、説明する。
 ここでは平刃状切断刃1として、グリーンシート切断刃が例示されている。
 図1および図2に示すように、平刃状切断刃1は、平面形状が長方形の平板状の基部5と、基部5の一方の長辺(一端部)に設けられ、被切断物100を切断する切断実行部である平刃状の刃先部7を有している。
 基部5は、切断装置の固定部3に、図示したように平行な直線部を有する被固定部5aと、被固定部5aと刃先部7を連結する連結部5bを有している。
 なお、図1および図2では、平刃状切断刃1の長辺の長さをL、短辺の長さをH、刃先部7の高さをH1、平刃状切断刃1の厚さをTと記載している。
 また、図3に示すように、刃先部7は、基部5の左右両面(平板の両平面)から互いに(板厚方向に)近づくように傾斜した左刃面9a、右刃面9bと、左刃面9aと右刃面9bを結ぶように形成された刃先先端11を有している。
 ここで、図3に示すように、刃先部7の板厚方向の断面形状は、左刃面9aと右刃面9bに沿った2本の直線13a、13bの交点と、刃先先端11の最短距離Xが1μm以上、10μm以下であるのが望ましい。
 上記値が1μm未満の場合、刃先に欠けが発生し易い。一方、10μmを超える場合、刃先が被切断物100へ入り込む際に大きな切断抵抗が生じる。さらに摩耗による短寿命となり易い。より好ましくは、1.5μm以上、5μm以下である。
 また、図3に示すように、平刃状切断刃1は、刃先先端部11に丸みを予め有している。換言すれば、刃先先端部11は凸湾曲面を有する。凸湾曲面とは、ここでは外側に膨らんだ曲面形状を意味する。このように、刃先先端部11に丸みを有する構造とすることにより、刃先の強度と低切断抵抗を両立させることができる。また、図4に示すように、左刃面9a、右刃面9bと刃先先端11の接続部15の板厚方向の断面形状が曲線を有すると低切断抵抗となりより良いが2つの直線からなる形状でも良い。
 また、左刃面9aと右刃面9bは、左右対称であり、具体的には、図3に示すように、刃先部先端角度が、左刃面9a、右刃面9bに沿った2本の直線13a、13bと板厚方向の中心線21(板厚方向の中心を通り、かつ短辺方向に平行な直線)との角度α、αを測定した場合、その角度差が±0.3度以内であるのが望ましい。
 これは、左右非対称な形状である場合、切断の際に向きを考慮しなければならず、作業性にも影響するためである。
 さらに、左刃面9aと右刃面9bに沿った2本の直線13a、13bの交差角の内角θ(即ちα+α)は、4度以上、60度以下であるのが望ましい。
 これは、θが4度未満の場合、切断抵抗は小さくなるが、刃先のチッピングが発生し易くなり、切断面に悪影響を与えたり、寿命が悪化したりするためである。
 また、θが60度を超える場合、刃先が被切断物100へ入り込む際に大きな負荷が生じ耐座屈性や耐摩耗性に劣ることになる。またこのような場合、被切断物100の塑性変形量は大きくなることになり、被切断物100の表面に傷を生じさせ易くなり、さらには切断面が垂直にならず斜めになり易くなり、且つ切断抵抗が大きくなるためである。
 なお、刃先の強度の確保と低切断抵抗を両立する観点からは、角度θは、10度以上、30度以下であるのがより望ましい。
 以上が平刃状切断刃1の形状の説明である。
 なお、平刃状切断刃1を構成する材料は、被切断物に応じて適宜選択されるものであるが、具体的な材料としては、例えば炭素工具鋼やWC-Co系の超硬合金等が挙げられる。
 次に、平刃状切断刃1の刃先部7の加工方法について説明する。
 平刃状切断刃1の刃先部7の加工方法は、上記した刃先形状の加工が可能なものであれば、特に限定されるものではないが、以下のような方法を例示することができる。
 まず、基部5の連結部5bの先端(長辺)に直線的な加工を行い、左刃面9a、右刃面9bおよび直線13a、13bを形成する。
 この直線的な加工は、例えば砥石による研磨等によりなされる。
 次に、刃先部7に刃先先端11を形成するための加工を行う。
 前述のように、刃先先端11の形状は、曲線形状を有しているため、左刃面9aおよび右刃面9bを形成する場合のように、砥石による加圧加工では、刃先が薄すぎるため、加工時に刃先が砥石から逃げ易く、安定した加工は容易ではない。
 そのため、刃先先端11の加工は、(1)砥粒(硬質材料)を有する溶液中で刃先先端11を形成する方法、あるいは(2)砥粒またはその他の硬質材料、即ち金属粉やセラミックス粉を混合した固形物を用いて刃先先端11を形成する方法等がある。
 以下、具体的な加工方法について説明する。
 まず、(1)の方法とは、図5に示すように、適当な容器203内に、砥粒としての硬質材料を有する溶液201を満たし、溶液201の中へ平刃状切断刃1の刃先部7のみを浸漬させ、刃渡り方向に一定時間往復スライドさせることにより、溶液201中の硬質材料と刃先部7を接触させることにより加工を行い、刃先先端11を形成する方法である。
 ここで硬質材料の具体例としては、高硬度のダイヤモンド粒が短い加工時間で済むことから望ましいが、その他の金属粉やセラミックス粉であっても構わない。
 また、溶液201の溶媒は例えば水である。
 次に、(2)の方法とは、図6に示すように、硬質材料粉を混合した固形物205を平刃状切断刃1で切断することにより、固形物205中の硬質材料と刃先部7を接触させて加工を行い、刃先部7に刃先先端11を形成する方法である。
 ここで、固形物205としては、例えば、粘土質材料が挙げられる。
 また、硬質材料としてはダイヤモンド、W、Mo、WC、Al、TiO、TiC、TiCN、SiC、Si、BN等の粉末が例として挙げられる。
 これらの硬質材料の粉末粒径は、二次粒子の平均粒径がFsss(Fisher Sub-Sieve Sizer)粒度で1μm以下であるのが好ましい。これは、1μmを超えると刃先表面の加工において、欠けが発生する可能性があるためである。また微粒である程、平刃状切断刃の形状精度的に好ましいが、加工に時間を要するため、この範囲内において当初1μmに近いサイズの粒子にて加工し、仕上げとしてより微細な1μm未満のサイズの硬質材料粒子にて加工することがより好ましい。微粒で均一に分散していることにより、均一な刃先の可能が可能となる。
 以上が平刃状切断刃1の刃先部7の加工方法例の説明である。
 このように、本実施形態によれば、平刃状切断刃1の切断実行部である刃先部7は、基部5の左右両面から互いに近づくように傾斜した左刃面9a、右刃面9bと、左刃面9aと右刃面9bを結ぶように形成された刃先先端11を有し、左刃面9aと右刃面9bに沿った2本の直線13a、13bの交点と、刃先先端11の最短距離は1μm以上、10μm以下である。
 そのため、平刃状切断刃1は、安定した形状精度と切断性能を共に満足することができる。
 以下、実施例に基づき、本発明をさらに詳細に説明する。
 (実施例1)
 砥粒を有する溶液中で刃先先端11を形成する方法にて製造した平刃状切断刃1を用いた切断試験を行い、刃先先端11の形状のチッピング性、摩耗性および切断面への影響を評価した。具体的な手順は以下の通りである。
<平刃状切断刃1の加工>
 まず、刃渡り方向長さLが100mm、短辺方向長さHが20mm、厚さTが0.1mm(図1、2参照)で材質が株式会社アライドマテリアル製超硬合金FM10Kからなる平板状の板材を用意し、砥石を用いた既存の技術にて、長辺の一方に、厚さ方向の断面に対し左右対称となるように研磨加工を行い、直線からなる左刃面9a、13aおよび右刃面9b、13bを形成した。このとき刃面9a、13aと9b、13bは角度θを形成する。
 次に、平刃状切断刃1を、図5に示すように砥粒としての硬質材料を有する溶液201中へ刃先部7のみを浸漬させ、刃渡り方向に一定時間往復スライドさせ、刃先先端11を形成した。
 硬質材料を有する溶液としては、ワダトレーディング株式会社製研磨ダイヤモンドスラリーPC-1-W(Fsss粒度1μm)を用い、仕上げとしてPC-N100-W(粒度0.1μm)を用いた。
 なお、図示はしていないが、溶液201(水溶液)は刃先加工に影響を与えないように留意して均一な濃度となるように撹拌を施しながらスライドを行い、スライド時間を調整して、図3に示す刃先先端11を有する平刃状切断刃1を得た。
<平刃状切断刃1の評価>
 次に、平刃状切断刃1の評価を以下の手順で行った。
 まず、切断対象となる材料を用意した。
 ここで、上記のように、平刃状切断刃1は主にグリーンシート用の切断刃であるが、被切断物としては、加速試験を行なうため、油粘土に金属粉末を混合したものを用意した。これは、製品のグリーンシートは製品毎の特性(せん断抵抗等の機械的強度)の差異が大きく、代表的な特性を持つグリーンシートを被切断物として選ぶのが困難であり、簡易的に評価するためでもある。
 なお、金属粉末はグリーンシート中のセラミックス粉末に対応した材料であり、油粘土はグリーンシート中のバインダに対応した材料とみなした。
 具体的な被切断物の製造方法および切断試験の手順は以下の通りである。
 まず、中部電磁器工業株式会社製油粘土ポピーに対し、Fsss粒度1μmのW粉末を重量比で100:20となるようにして乳鉢にて均一となるように混合した。
 次に、この混合物をプレス圧10kg/cmで厚さ1mmに成形し被切断物とした。
 次に、図1に示すように、平刃状切断刃1を切断装置に組み込み、切断刃の降下速度を10mm/秒として、被切断物を連続的に切断した。ここで連続的に切断する際に、被切断物が同じ水平位置で2回切断されないように、平刃状切断刃1が上昇する度に、水平方向に5mm移動できるようにした。図6に略図を示した。
 なお、被切断物を完全に切断するために被切断物の下部には、被切断物より硬度が低いものが必要であり、東洋濾紙株式会社製定性ろ紙グレードNo.1を敷いた。
 切断前の最短距離X(左刃面9aと右刃面9bに沿った2本の直線13a、13bの交点と、刃先先端11の最短距離)と、上記切断を1000回行った後の刃先の状態を表1に示した。
 評価の確認としては、1000回切断後の刃先のチッピングの有無、刃先の摩耗度合、被切断物の切断面の状態の確認を行った。
 具体的には、チッピングの有無は刃渡り方向の全面を拡大し観察し、欠けが見られない、または5μm未満の欠けがある場合を「○」、5μm以上、10μm未満の欠けがある場合を「△」、10μm以上の欠けがある場合を「×」と判断した。観察はオリンパス製顕微鏡STM6-LMにて倍率200倍で観察をした。
 また、刃先の摩耗度合は、前記顕微鏡にて図2のH1の距離が切断開始前に比較し5μm以下短くなった場合を「○」、5μmを超え10μm以下短くなった場合を「△」、10μmを超えて短くなった場合を「×」として判断した。切断物の切断面の状態もまた顕微鏡にて観察し、1000回目の切断面の傷について、幅5μm以上の傷が見られる場合を「×」、その他を「○」と判断した。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、最短距離Xが1~10μmの試料(実施例1~16)は刃先のチッピングの有無、刃先の摩耗度合、被切断物の切断面の状態のいずれも「△」または「○」の評価であった。
 一方で最短距離X1~10μm、刃先角度4~60度の少なくとも一方がこの範囲を外れている試料(比較例1~4)は刃先のチッピングの有無、刃先の摩耗度合、被切断物の切断面の状態のいずれか(あるいは全て)が「×」評価となっていた。
 また、比較例3および4の試料は切断物の切断面の状況はよいものの、被切断物の切断角度は87度未満であり、垂直に切断されていなかった(これを表1では「斜め」と記載した)。これはXが上記範囲を外れているのに加え、刃先角度が大きい(60度以上である)ため、切断刃が被切断物に入った際に強制的に押し広げているために生じたものと考えられた。なお実施例および比較例の評価前の切断刃の断面を観察した結果、左右刃面の中心線に対する角度差は±0.3度以内であり、図4の連結部15は曲線を有していた。
 (実施例2)
 実施例2において、刃先先端11を形成するための加工として、固形物を用いて刃先先端11を形成する方法を用いて刃先先端11を形成し、切断試験を行った。具体的な手順は以下の通りである。
 まず、実施例1と同様の板材を、砥石を用いた既存の技術にて、厚さ方向の断面に対し左右対称となるように研磨加工を行い、直線からなる左刃面9a、13aおよび右刃面9b、13bを形成した。このとき左刃面9a、13aおよび右刃面9b、13bは角度θを形成する。
 次に、刃先の加工に用いる固形物として、中部電磁器工業株式会社製油粘土ポピーに対し、昭和電工株式会社製F3グレードの酸化チタン粉末を重量比で100:50となるようにして乳鉢にて均一となるように混合したものを用意した。この混合物をプレス圧10kg/cmで厚さ1mmに成形した。
 ここで、酸化チタンの比表面積BET(Brunauer,Emmet and Teller)値は36m/gであり、株式会社日立ハイテクノロジーズ 電界放射型走査電子顕微鏡 S-420を用いた2万倍での走査電子顕微鏡観察では1次粒子は0.1μm未満であった。
 この固形物を被切断物として、図1に示すように、平刃状切断刃1を切断装置に組み込み、切断刃の降下速度を5mm/秒として連続的に切断した。ここで連続的に切断する際に、被切断物が同じ水平位置で2回切断されないように、平刃状切断刃1が上昇する度に、水平方向に移動できるようにした(図6参照)。切断回数を調整して、表2に示すような形状に刃先先端11を調整した。
 次に、得られた平刃状切断刃1で、実施例1と同様の材料を切断し、実施例1と同様に、刃先のチッピングの有無、刃先の摩耗度合、被切断物の切断面の状態の確認を行った。
 結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、最短距離Xが1~10μmの試料(実施例17~24)は刃先のチッピングの有無、刃先の摩耗度合、被切断物の切断面の状態のいずれも「△」または「○」の評価であり、実施例1と同様の結果が得られた。なお実施例および比較例の評価前の切断刃の断面を観察した結果、左右刃面の中心線に対する角度差は±0.3度以内であり、図4の連結部15は曲線を有していた。
 以上、本発明を実施形態および実施例に基づき説明したが、本発明は上記した実施形態に限定されることはない。
 当業者であれば、本発明の範囲内で各種変形例や改良例に想到するのは当然のことであり、これらも本発明の範囲に属するものと了解される。
1    :平刃状切断刃
3    :切断装置固定部
5    :基部
5a   :被固定部
5b   :連結部
7    :刃先部
9a   :左刃面
9b   :右刃面
11   :刃先先端
15   :接続部
21   :中心線
100  :被切断物
201  :溶液
203  :容器
205  :固形物
X    :最短距離
α1      :角度
α    :角度
θ    :内角

Claims (6)

  1.  平板状の基部と、
     前記基部の端部に形成された切断実行部である刃先部と、
     を有し、
     前記刃先部の板厚方向の断面形状は、
     左右刃面に沿った2本の直線の交点と刃先先端の最短距離が1μm以上、10μm以下であることを特徴とする平刃状切断刃。
  2.  前記刃先部は、
     前記基部の左右両面から互いに近づくように傾斜した左右刃面と、
     前記左右刃面を結ぶように形成され、凸湾曲面を有する刃先先端と、
     を有し、
     少なくとも刃先先端部の断面形状が曲線を有することを特徴とする、請求項1に記載の平刃状切断刃。
  3.  前記左右刃面に沿った2本の直線の交点と前記刃先先端の最短距離が1.5μm以上、5μm以下であることを特徴とする請求項1~2のいずれか一項に記載の平刃状切断刃。
  4.  前記左右刃面に沿った2本の直線の交差角度の内角が、4度以上、60度以下であることを特徴とする請求項1~3のいずれか一項に記載の平刃状切断刃。
  5.  前記左右刃面に沿った2本の直線の交差角度の内角が、10度以上、30度以下であることを特徴とする請求項1~4のいずれか一項に記載の平刃状切断刃。
  6.  請求項1~5のいずれか一項に記載の平刃状切断刃を有することを特徴とするグリーンシート切断刃。
PCT/JP2013/075899 2012-09-28 2013-09-25 平刃状切断刃およびグリーンシート切断刃 WO2014050883A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157008932A KR101773267B1 (ko) 2012-09-28 2013-09-25 그린 시트 절단날
CN201380050825.8A CN104684699B (zh) 2012-09-28 2013-09-25 具有平刃状切刀的生片切刀
JP2014538526A JP6087363B2 (ja) 2012-09-28 2013-09-25 グリーンシート切断刃
PH12015500706A PH12015500706B1 (en) 2012-09-28 2015-03-27 Flat blade-shaped cutting blade and green sheet cutting blade

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-216720 2012-09-28
JP2012216720 2012-09-28

Publications (1)

Publication Number Publication Date
WO2014050883A1 true WO2014050883A1 (ja) 2014-04-03

Family

ID=50388278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075899 WO2014050883A1 (ja) 2012-09-28 2013-09-25 平刃状切断刃およびグリーンシート切断刃

Country Status (7)

Country Link
JP (2) JP6087363B2 (ja)
KR (1) KR101773267B1 (ja)
CN (1) CN104684699B (ja)
MY (1) MY166204A (ja)
PH (1) PH12015500706B1 (ja)
TW (1) TWI584928B (ja)
WO (1) WO2014050883A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016107392A (ja) * 2014-12-08 2016-06-20 ツジカワ株式会社 押切切断用刃型及び押切切断用刃型の製造方法並びに押切切断用刃型を用いた被加工物の押切切断方法
JP2017065059A (ja) * 2015-09-30 2017-04-06 日本特殊陶業株式会社 セラミック積層体の製造方法及び切断装置
JP2020065873A (ja) * 2018-10-26 2020-04-30 株式会社レーベン 切断器具及びその製造方法
KR20220156647A (ko) 2020-06-19 2022-11-25 가부시끼가이샤 아라이도 마테리아루 초경합금제 절단날
KR20220162784A (ko) 2020-06-19 2022-12-08 가부시끼가이샤 아라이도 마테리아루 초경합금제 절단날

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109015780B (zh) * 2018-08-10 2024-02-02 安徽格林开思茂光电科技股份有限公司 一种触摸屏切割刀具
JP2020064923A (ja) * 2018-10-16 2020-04-23 太陽誘電株式会社 積層セラミック電子部品の製造方法及び積層セラミック電子部品の製造装置
JP2021002592A (ja) * 2019-06-21 2021-01-07 太陽誘電株式会社 積層セラミック電子部品の製造方法及び積層セラミック電子部品の製造装置
CN115884858A (zh) 2020-06-19 2023-03-31 联合材料公司 硬质合金制切刀
CN112643862B (zh) * 2020-12-30 2022-03-04 瓷金科技(河南)有限公司 陶瓷生坯片修整方法、加工方法、及修整辅助装置
WO2022264782A1 (ja) * 2021-06-17 2022-12-22 株式会社ファインテック 刃物および刃物の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59156797U (ja) * 1983-04-06 1984-10-20 日本特殊陶業株式会社 分割用溝の形成刃
JPH01148719A (ja) * 1987-12-03 1989-06-12 Hitachi Metals Ltd ガラス切断用刃物
JPH0817961A (ja) * 1994-06-30 1996-01-19 Nikko Co セラミック製電子回路基板の形成方法及びその形成装置
JPH1058377A (ja) * 1996-06-04 1998-03-03 Karl Marbach Gmbh & Co 圧力切断用ナイフ刃
JP2012071374A (ja) * 2010-09-28 2012-04-12 Tdk Corp 切断刃及び積層セラミック電子部品の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3977287A (en) * 1975-12-22 1976-08-31 General Motors Corporation Fabric cutting blade
DE29616585U1 (de) * 1996-09-24 1998-01-29 Essmann & Schaefer GmbH & Co. KG, 42369 Wuppertal Schneid- und Ritzwerkzeug
DE19902818C2 (de) * 1999-01-25 2003-03-27 Wolfgang Bauer Metallmesser mit speziell angepaßter Materialhärtenverteilung für Zerkleinerungs- und Schneidmaschinen
JP2001158013A (ja) * 1999-12-02 2001-06-12 Sumitomo Metal Electronics Devices Inc セラミック基板の製造方法および製造装置
CN1201342C (zh) * 2000-05-23 2005-05-11 京瓷株式会社 芯片电阻形成用的陶瓷基板及芯片电阻的制造方法
JP4084690B2 (ja) * 2003-03-26 2008-04-30 京セラ株式会社 切断刃
JP4753650B2 (ja) * 2005-07-28 2011-08-24 Uht株式会社 切断装置および切断装置用カッターホルダ
JP2007083332A (ja) * 2005-09-21 2007-04-05 Next I&D株式会社 切断装置および切断装置用カッターホルダ
JP2009196285A (ja) * 2008-02-25 2009-09-03 Sumitomo Metal Electronics Devices Inc 押圧溝形成用スリット刃

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59156797U (ja) * 1983-04-06 1984-10-20 日本特殊陶業株式会社 分割用溝の形成刃
JPH01148719A (ja) * 1987-12-03 1989-06-12 Hitachi Metals Ltd ガラス切断用刃物
JPH0817961A (ja) * 1994-06-30 1996-01-19 Nikko Co セラミック製電子回路基板の形成方法及びその形成装置
JPH1058377A (ja) * 1996-06-04 1998-03-03 Karl Marbach Gmbh & Co 圧力切断用ナイフ刃
JP2012071374A (ja) * 2010-09-28 2012-04-12 Tdk Corp 切断刃及び積層セラミック電子部品の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016107392A (ja) * 2014-12-08 2016-06-20 ツジカワ株式会社 押切切断用刃型及び押切切断用刃型の製造方法並びに押切切断用刃型を用いた被加工物の押切切断方法
JP2017065059A (ja) * 2015-09-30 2017-04-06 日本特殊陶業株式会社 セラミック積層体の製造方法及び切断装置
JP2020065873A (ja) * 2018-10-26 2020-04-30 株式会社レーベン 切断器具及びその製造方法
KR20220156647A (ko) 2020-06-19 2022-11-25 가부시끼가이샤 아라이도 마테리아루 초경합금제 절단날
KR20220162784A (ko) 2020-06-19 2022-12-08 가부시끼가이샤 아라이도 마테리아루 초경합금제 절단날

Also Published As

Publication number Publication date
CN104684699B (zh) 2017-05-17
KR20150052301A (ko) 2015-05-13
TW201434601A (zh) 2014-09-16
JP6087363B2 (ja) 2017-03-01
CN104684699A (zh) 2015-06-03
JP2017042911A (ja) 2017-03-02
KR101773267B1 (ko) 2017-08-31
MY166204A (en) 2018-06-14
TWI584928B (zh) 2017-06-01
JPWO2014050883A1 (ja) 2016-08-22
PH12015500706A1 (en) 2015-05-18
PH12015500706B1 (en) 2015-05-18

Similar Documents

Publication Publication Date Title
JP6087363B2 (ja) グリーンシート切断刃
JP5766886B2 (ja) 平刃状切断刃およびグリーンシート切断刃
US9630853B2 (en) Method of preparing polycrystalline diamond
JP4653744B2 (ja) 高品位・高能率加工用cbn切削工具
WO2021256282A1 (ja) 超硬合金製切断刃
JP4588847B2 (ja) ダイカットロール
TWI810583B (zh) 硬質合金切割刀片
WO2021256279A1 (ja) 超硬合金製切断刃
JP2011062807A (ja) 超硬合金製エンドミル
WO2023176818A1 (ja) 超硬合金製切断刃
WO2023176819A1 (ja) 超硬合金製切断刃
JP7292487B2 (ja) 超硬合金製切断刃
JP2008093800A (ja) 高送り切削用表面被覆超硬合金製エンドミル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13840553

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014538526

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12015500706

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157008932

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13840553

Country of ref document: EP

Kind code of ref document: A1