WO2014050850A1 - 熱硬化性液晶ポリエステル組成物及びその硬化物 - Google Patents

熱硬化性液晶ポリエステル組成物及びその硬化物 Download PDF

Info

Publication number
WO2014050850A1
WO2014050850A1 PCT/JP2013/075818 JP2013075818W WO2014050850A1 WO 2014050850 A1 WO2014050850 A1 WO 2014050850A1 JP 2013075818 W JP2013075818 W JP 2013075818W WO 2014050850 A1 WO2014050850 A1 WO 2014050850A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
crystal polyester
compound
formula
Prior art date
Application number
PCT/JP2013/075818
Other languages
English (en)
French (fr)
Inventor
中谷晃司
橋爪陽子
坂本勝利
田口吉昭
Original Assignee
株式会社ダイセル
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル, ポリプラスチックス株式会社 filed Critical 株式会社ダイセル
Priority to EP13840670.7A priority Critical patent/EP2902442A4/en
Priority to KR1020157009143A priority patent/KR102032191B1/ko
Priority to US14/427,857 priority patent/US20150247034A1/en
Priority to CN201380050607.4A priority patent/CN104684996A/zh
Publication of WO2014050850A1 publication Critical patent/WO2014050850A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/914Polymers modified by chemical after-treatment derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/916Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/243Two or more independent types of crosslinking for one or more polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3804Polymers with mesogenic groups in the main chain
    • C09K19/3809Polyesters; Polyester derivatives, e.g. polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08J2367/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the hydroxy and the carboxyl groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/06Unsaturated polyesters
    • C08J2367/07Unsaturated polyesters having terminal carbon-to-carbon unsaturated bonds

Definitions

  • thermosetting resin composition containing liquid crystal polyester (thermosetting liquid crystal polyester composition) and a cured product obtained by curing the thermosetting resin composition.
  • Liquid crystal polymers typified by liquid crystal polyester are excellent in various properties such as heat resistance, moldability, chemical resistance, and mechanical strength, and thus are used in various applications such as electric / electronic parts and automobile parts.
  • thermosetting liquid crystal polymer material for example, a material in which a liquid crystal oligomer such as a main chain thermotropic liquid crystal ester is end-capped with a phenylacetylene, phenylmaleimide, or nadiimide reactive end group is known (see Patent Documents 1 to 3). ).
  • a material obtained by reacting a thermosetting liquid crystal oligomer having one or more soluble structural units in the main chain and having a thermosetting group at one or more terminals of the main chain with a specific fluorine compound A material obtained by reacting the thermosetting liquid crystal oligomer with a nano filler whose surface is substituted with an alkoxide metal compound is known (see Patent Document 5).
  • thermosetting liquid crystal polymer material for example, a material in which a crosslinkable group is bonded to a terminal of a liquid crystal polymer via a spacer unit is also known (see Patent Document 6).
  • a material having radically polymerizable groups such as unsubstituted or substituted maleimide, unsubstituted or substituted nadiimide, ethynyl, and benzocyclobutene at both ends of the liquid crystal polyester is also known (see Patent Document 7).
  • Patent Documents 1 to 3 require heating at a high temperature of 350 ° C. or higher for curing, and the manufacturing process of the cured product becomes complicated, and the constituent components are volatilized /
  • the product to be sealed deteriorates in applications such as a sealing material and the like.
  • the materials disclosed in Patent Documents 4 and 5 have a problem in hydrolysis resistance of the resulting cured product because the liquid crystal polymer main chain contains a soluble structural unit containing an amide bond or an amine bond as an essential structural unit. Had.
  • the material disclosed in Patent Document 6 has a spacer unit such as an alkylene group as a linking group between the liquid crystal polymer and the crosslinkable group, the material is susceptible to thermal decomposition, and the resulting cured product is inferior in heat resistance. Had. Furthermore, the material disclosed in Patent Document 7 has a problem that the obtained cured product is brittle.
  • an object of the present invention is to provide a thermosetting composition (thermosetting) that can be cured at a relatively low temperature (for example, 250 ° C. or less) and can obtain a cured product having various physical properties such as heat resistance. It is to provide a liquid crystal polyester composition).
  • the present inventors can cure at a relatively low temperature by melt-mixing a liquid crystal polyester having a specific structure and a compound having a specific functional group in the molecule. It was found that a thermosetting composition capable of obtaining a cured product excellent in various physical properties such as heat resistance was obtained, and the present invention was completed.
  • the present invention relates to a liquid crystal polyester (A) having a hydroxyl group and / or an acyloxy group at the molecular chain terminal, a compound having a functional group that reacts with a hydroxyl group and / or an acyloxy group, and a thermally polymerizable functional group in the molecule (B And a thermosetting liquid crystal polyester composition obtained by melt mixing.
  • thermosetting liquid crystal polyester composition wherein the liquid crystal polyester (A) is a liquid crystal polyester having a structural unit derived from an aromatic compound monomer, an average degree of polymerization of 3 to 30, and a melting point of 250 ° C. or less. Offer things.
  • the functional group that reacts with the hydroxyl group and / or acyloxy group in the compound (B) is selected from the group consisting of an ⁇ , ⁇ -unsaturated carbonyl group, an epoxy group, a maleimide group, an ester group, an acid anhydride group, and a carboxyl group. At least one selected functional group;
  • the thermopolymerizable functional group in the compound (B) is a maleimide group, nadiimide group, phthalimide group, cyanate group, phthalonitrile group, styryl group, ethynyl group, propargyl ether group, benzocyclobutane group, biphenylene group, and substituted products thereof.
  • the said thermosetting liquid-crystal polyester composition which is the at least 1 sort (s) of thermopolymerizable functional group selected from the group which consists of derivatives.
  • the present invention provides a compound represented by the following formula (1), a compound represented by the following formula (2), a compound represented by the following formula (3), a compound represented by the following formula (4), And a thermosetting liquid crystalline polyester composition comprising at least one compound selected from the group consisting of compounds represented by the following formula (5):
  • L 1 represents a liquid crystal polyester skeleton.
  • X 1 and X 2 are the same or different and each represents an organic group.
  • X 1 and X 2 may be bonded to each other to form a ring together with the three carbon atoms shown in the formula.
  • R 1 and R 2 are the same or different and each represents a hydrogen atom or an alkyl group which may have a substituent.
  • Y 1 and Y 2 are the same or different and represent a thermally polymerizable functional group.
  • n1 and n2 are the same or different and represent an integer of 0 or more (provided that n1 + n2 is an integer of 1 or more).
  • L 2 represents a liquid crystal polyester skeleton.
  • X 3 and X 4 are the same or different and each represents an organic group. X 3 and X 4 may combine with each other to form a ring together with the three carbon atoms shown in the formula.
  • Y 3 and Y 4 are the same or different and represent a thermally polymerizable functional group.
  • n3 and n4 are the same or different and represent an integer of 0 or more (provided that n3 + n4 is an integer of 1 or more).
  • L 3 represents a liquid crystal polyester skeleton.
  • X 5 represents an organic group.
  • Y 5 represents a thermally polymerizable functional group.
  • n5 represents an integer of 1 or more.
  • L 4 represents a liquid crystal polyester skeleton.
  • X 6 represents an organic group.
  • R 3 to R 5 are the same or different and each represents a hydrogen atom or an alkyl group which may have a substituent.
  • Y 6 represents a thermally polymerizable functional group.
  • n6 represents an integer of 1 or more.
  • [In the formula (5), L 4 , X 6 , R 3 to R 5 , Y 6 and n6 are the same as above. ]
  • thermosetting liquid crystal polyester composition containing an inorganic filler is provided.
  • the present invention also provides a cured product obtained by curing the thermosetting liquid crystal polyester composition.
  • the cured product having a 5% weight loss temperature measured at a rate of temperature increase of 10 ° C./min (in air) of 350 ° C. or higher and an activation energy of a thermal decomposition reaction in air of 150 kJ / mol or higher. I will provide a.
  • thermosetting liquid crystal polyester composition of the present invention Since the thermosetting liquid crystal polyester composition of the present invention has the above configuration, it can be cured at a relatively low temperature (for example, 250 ° C. or lower), and the cured product obtained by curing is excellent in heat resistance. Further, since the thermosetting liquid crystal polyester composition of the present invention contains liquid crystal polyester as an essential constituent, the obtained cured product has processability, dimensional stability, low linear expansion, high thermal conductivity, low moisture absorption, and dielectric properties. Also excellent.
  • thermosetting liquid crystal polyester composition of the present invention is a thermosetting composition (thermosetting resin composition) obtained by melt-mixing the following component (A) and component (B).
  • Component (B) having a hydroxyl group, an acyloxy group, an aromatic ring, or a functional group that reacts with a conjugated diene structure (particularly, a functional group that reacts with a hydroxyl group and / or an acyloxy group) and a thermally polymerizable functional group in the molecule.
  • Compound (sometimes referred to as “compound (B)”) The above
  • the liquid crystal polyester (A) for constituting the thermosetting liquid crystal polyester composition of the present invention is selected from the group consisting of a hydroxyl group, an acyloxy group, an aromatic ring, and a conjugated diene structure at the molecular chain terminal as described above. And a liquid crystal polyester having at least one group (sometimes referred to as “addition-reactive group (a)”).
  • the liquid crystal polyester (A) is a polymer (polymer or oligomer) having a polyester structure, and its melt (for example, a melt at 450 ° C. or less) exhibits optical anisotropy (thermotropic liquid crystal polymer). ).
  • liquid crystal polyester (A) has a hydroxyl group at the molecular chain end
  • the liquid crystal polyester (A) may have a hydroxyl group only at one end (one end) of the molecular chain, or both ends (both ends) of the molecular chain.
  • the terminal may have a hydroxyl group.
  • liquid crystalline polyester (A) may have a hydroxyl group in parts other than the molecular chain terminal.
  • the hydroxyl group that the liquid crystal polyester (A) has at the molecular chain terminal may be a phenolic hydroxyl group or an alcoholic hydroxyl group. Especially, it is preferable that the hydroxyl group which liquid crystalline polyester (A) has in the molecular chain terminal from a heat resistant viewpoint of hardened
  • cured material is a phenolic hydroxyl group.
  • the “phenolic hydroxyl group” in the present specification includes a hydroxyl group bonded to other aromatic rings (naphthalene ring, anthracene ring, etc.) in addition to a hydroxyl group bonded to a substituted or unsubstituted benzene ring. .
  • liquid crystalline polyester (A) has an acyloxy group at the molecular chain end, it is not particularly limited, but it may have an acyloxy group only at one end (one end) of the molecular chain or both ends of the molecular chain. It may have an acyloxy group at both ends. Moreover, liquid crystalline polyester (A) may have an acyloxy group in parts other than the molecular chain terminal.
  • acyloxy group that the liquid crystal polyester (A) has at the molecular chain end examples include an acetyloxy group (acetoxy group), a propionyloxy group, and a butyryloxy group.
  • the acyloxy group which liquid crystal polyester (A) has in the molecular chain terminal is an acetoxy group from the versatility and the reactive viewpoint of the raw material to be used.
  • liquid crystal polyester (A) When the liquid crystal polyester (A) has an aromatic ring at the molecular chain end, it is not particularly limited, but it may have an aromatic ring only at one end (one end) of the molecular chain or both molecular chains.
  • the terminal (both ends) may have an aromatic ring.
  • liquid crystal polyester (A) may have an aromatic ring in parts other than the molecular chain terminal.
  • the aromatic ring which liquid crystal polyester (A) has in the molecular chain terminal may couple
  • the substituent include publicly known or commonly used substituents, and are not particularly limited. Examples thereof include those exemplified as the substituents that the aromatic hydroxycarboxylic acid described later may have.
  • the liquid crystalline polyester (A) has a phenolic hydroxyl group at the molecular chain end
  • the liquid crystalline polyester (A) is a liquid crystalline polyester having a hydroxyl group at the molecular chain end or a liquid crystalline polyester having an aromatic ring at the molecular chain end. is there.
  • the liquid crystal polyester (A) has a conjugated diene structure at the molecular chain end, it is not particularly limited, but it may have a conjugated diene structure only at one end (one end) of the molecular chain or both molecular chains. May have a conjugated diene structure at both ends (both ends). Further, the liquid crystal polyester (A) may have a conjugated diene structure in a portion other than the molecular chain terminal.
  • Examples of the conjugated diene structure that the liquid crystal polyester (A) has at the molecular chain terminal include a chain conjugated diene structure and a cyclic conjugated diene structure.
  • As the chain conjugated diene structure for example, a structure derived from (corresponding to) 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, etc. Etc.
  • Examples of the cyclic conjugated diene structure include structures derived from (corresponding to) 1,3-cyclopentadiene, 1,3-cyclohexadiene, furan and derivatives thereof, thiophene and derivatives thereof, and the like.
  • the liquid crystal polyester (A) may have two or more selected from the group consisting of a hydroxyl group, an acyloxy group, an aromatic ring, and a conjugated diene structure at the molecular chain terminal.
  • the liquid crystal polyester (A) may have both a hydroxyl group and an acyloxy group at the molecular chain end.
  • the liquid crystal polyester (A) has a hydroxyl group at one end of the molecular chain and an acyloxy group at the other end. It may have a group.
  • the liquid crystalline polyester (A) is preferably a liquid crystalline polyester having at least a structural unit (repeating structural unit) derived from an aromatic compound (aromatic compound monomer) from the viewpoint of optical anisotropy of the melt.
  • the liquid crystal polyester (A) is a liquid crystal polyester containing at least one structural unit derived from at least one aromatic compound selected from the group consisting of an aromatic hydroxycarboxylic acid, an aromatic dicarboxylic acid, and an aromatic diol. It is preferable that
  • aromatic hydroxycarboxylic acid examples include 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 1-hydroxy-2-naphthoic acid, 3-hydroxy-2-naphthoic acid, 6-hydroxy-2-naphthoic acid, Examples thereof include 5-hydroxy-1-naphthoic acid, 4′-hydroxy [1,1′-biphenyl] -4-carboxylic acid, and derivatives thereof.
  • the derivative include compounds in which the aromatic ring (aromatic ring) of the aromatic hydroxycarboxylic acid is substituted with a substituent having 0 to 20 carbon atoms (preferably 0 to 10 carbon atoms).
  • substituents examples include an alkyl group [eg, methyl group, ethyl group, etc.]; alkenyl group [eg, vinyl group, allyl group, etc.]; alkynyl group [eg, ethynyl group, propynyl group, etc.]; halogen atom [ For example, chlorine atom, bromine atom, iodine atom, etc.]; hydroxyl group; alkoxy group [eg, C 1-6 alkoxy group such as methoxy group, ethoxy group, propoxy group, isopropyloxy group, butoxy group, isobutyloxy group (preferably Is a C 1-4 alkoxy group, etc.]; an alkenyloxy group [for example, a C 2-6 alkenyloxy group such as an allyloxy group (preferably a C 2-4 alkenyloxy group), etc.]; an aryloxy group [eg, a phenoxy group , tolyloxy
  • C 6-14 arylthio group which may have a substituent such as an alkoxy group]; aralkylthio group [for example, benzylthio group, C 7-18 aralkyl such as a phenethylthio group Thio group etc.]; carboxyl group; alkoxycarbonyl group [eg C 1-6 alkoxy-carbonyl group such as methoxycarbonyl group, ethoxycarbonyl group, propoxycarbonyl group, butoxycarbonyl group etc.]; aryloxycarbonyl group [eg phenoxy C 6-14 aryloxy-carbonyl group such as carbonyl group, tolyloxycarbonyl group, naphthyloxycarbonyl group, etc.]; Aralkyloxycarbonyl group [for example, C 7-18 aralkyloxy-carbonyl group such as benzyloxycarbonyl group, etc.] Amino group; mono- or dialkylamino group; For example, methyl
  • liquid crystalline polyester (A) may have 1 type of the structural unit derived from aromatic hydroxycarboxylic acid, and may have 2 or more types.
  • aromatic dicarboxylic acid examples include phthalic acid, terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, [1,1′-biphenyl] -4,4′-dicarboxylic acid. And acid, 4,4′-oxybis (benzoic acid), 4,4′-thiobis (benzoic acid), 4- [2- (4-carboxyphenoxy) ethoxy] benzoic acid, and derivatives thereof.
  • the derivatives include compounds in which the aromatic ring of the aromatic dicarboxylic acid is substituted with a substituent having 0 to 20 carbon atoms (preferably 0 to 10 carbon atoms). As said substituent, the thing similar to the substituent in aromatic hydroxycarboxylic acid is illustrated.
  • liquid crystalline polyester (A) may have 1 type of the structural unit derived from aromatic dicarboxylic acid, and may have 2 or more types.
  • aromatic diol examples include 4,4′-dihydroxybiphenyl, hydroquinone, resorcinol, 2,6-naphthalenediol, 1,5-naphthalenediol, [1,1′-biphenyl] -4,4′-diol. 4,4′-dihydroxydiphenyl ether, bis (4-hydroxyphenyl) methanone, bisphenol A, bisphenol F, bisphenol S, (phenylsulfonyl) benzene, [1,1′-biphenyl] -2,5-diol, and these And derivatives thereof.
  • liquid crystalline polyester (A) may have 1 type of the structural unit derived from aromatic diol, and may have 2 or more types.
  • the ratio of the total amount is not particularly limited, but is preferably 60 to 100% by weight, more preferably 80 to 100% by weight, and still more preferably 90 to 100% by weight.
  • the liquid crystal polyester (A) is substantially composed only of structural units derived from the above-described aromatic compound (aromatic hydroxycarboxylic acid, aromatic dicarboxylic acid, aromatic diol).
  • the ratio is less than 60% by weight, depending on the structural unit derived from another monomer to be introduced, the liquid crystal polyester (A) is less likely to exhibit liquid crystallinity in a molten state, Moisture resistance (hydrolysis resistance) may decrease.
  • the liquid crystalline polyester (A) is a structural unit other than the above-mentioned structural units (structural units derived from aromatic hydroxycarboxylic acids, structural units derived from aromatic dicarboxylic acids, structural units derived from aromatic diols) ("other structural units").
  • structural units derived from aromatic hydroxycarboxylic acids, structural units derived from aromatic dicarboxylic acids, structural units derived from aromatic diols ("other structural units”
  • the other structural unit include a structural unit derived from an aromatic diamine, a structural unit derived from an aromatic amine having a phenolic hydroxyl group, and the like.
  • aromatic diamine examples include 1,4-benzenediamine, 1,3-benzenediamine, 4-methyl-1,3-benzenediamine, 4- (4-aminobenzyl) phenylamine, 4- (4- Aminophenoxy) phenylamine, 3- (4-aminophenoxy) phenylamine, 4′-amino-3,3′-dimethyl [1,1′-biphenyl] -4-ylamine, 4′-amino-3,3 ′ -Bis (trifluoromethyl) [1,1'-biphenyl] -4-ylamine, 4-amino-N- (4-aminophenyl) benzamide, 4-[(4-aminophenyl) sulfonyl] phenylamine, bis ( 4-aminophenyl) methanone, and derivatives thereof.
  • liquid crystalline polyester (A) may have 1 type of the structural unit derived from aromatic diamine, and may have 2 or more types.
  • Examples of the aromatic amine having a phenolic hydroxyl group include 4-aminophenol, 4-acetamidophenol, 3-aminophenol, 3-acetamidophenol, 6-amino-2-naphthol, 5-amino-1-naphthol, Examples thereof include 4′-hydroxy- [1,1′-biphenyl] -4-amine, 4-amino-4′-hydroxydiphenylmethane, and derivatives thereof.
  • Examples of the derivatives include compounds in which an aromatic ring of the aromatic amine having a phenolic hydroxyl group is substituted with a substituent having 0 to 20 carbon atoms (preferably 0 to 10 carbon atoms).
  • liquid crystalline polyester (A) may have 1 type of the structural unit derived from the aromatic amine which has a phenolic hydroxyl group, and may have 2 or more types.
  • the ratio of the total amount is not particularly limited, but is preferably 30% by weight or less (for example, 0 to 30% by weight), more preferably 10% by weight or less, and further preferably 5% by weight or less. When the said ratio exceeds 30 weight%, the moisture absorption resistance (hydrolysis resistance) of hardened
  • the liquid crystal polyester (A) can be produced by polymerizing the above aromatic compound (monomer) by a known or conventional method, and the production method is not particularly limited.
  • the above-mentioned aromatic hydroxycarboxylic acid, aromatic diol, aromatic amine having a phenolic hydroxyl group, an aromatic compound having a hydroxyl group or an amino group, such as an aromatic diamine, an excess amount of fatty acid anhydride It can be produced by reacting the acylated product obtained by the reaction with an aromatic compound having a carboxyl group such as aromatic hydroxycarboxylic acid or aromatic dicarboxylic acid (transesterification reaction, amide exchange reaction). More specifically, for example, it can be produced by the method described in JP-A-2007-119610.
  • a liquid crystal polyester (A) it is also possible to use a commercial item.
  • a method for producing the liquid crystalline polyester (A) having a hydroxyl group at the molecular chain terminal for example, a method of controlling the monomer composition so that the hydroxyl group becomes excessive (for example, excessive aromatic diol as the monomer component) Etc.) and the like.
  • the ratio with the group is not particularly limited, but the hydroxyl group is 1.02 mol or more with respect to 1 mol of the functional group that undergoes a condensation reaction with the hydroxyl group.
  • 1.02 to 100 mol is preferable, more preferably 1.05 mol or more, and still more preferably 1.10 mol or more.
  • the ratio of the aromatic diol to the total amount (100 mol%) of the monomer constituting the liquid crystal polyester (A) is not particularly limited, but is preferably 3 to 25 mol%, more preferably 4 to 25 mol%.
  • the hydroxyl group of the liquid crystal polyester (A) having a hydroxyl group at the molecular chain terminal is converted to a known or conventional acylating agent (for example, And a method of acylation using a fatty acid anhydride such as acetic anhydride, an acid halide, etc.).
  • the monomer is substantially an aromatic compound (for example, the above-mentioned aromatic hydroxycarboxylic acid, aromatic dicarboxylic acid, aromatic Using only aromatic diols), or by adding an aromatic compound to the reactive group at the end of the liquid crystal polyester having a reactive group such as a hydroxyl group or a carboxyl group at the end of the molecular chain.
  • aromatic compound for example, the above-mentioned aromatic hydroxycarboxylic acid, aromatic dicarboxylic acid, aromatic Using only aromatic diols
  • an aromatic compound to the reactive group at the end of the liquid crystal polyester having a reactive group such as a hydroxyl group or a carboxyl group at the end of the molecular chain. Examples thereof include a method of forming an aromatic ring at the terminal.
  • Examples of a method for producing a liquid crystal polyester (A) having a conjugated diene structure at the molecular chain terminal include, for example, a conjugated diene with respect to the reactive group of the liquid crystal polyester having a reactive group such as a hydroxyl group or a carboxyl group at the terminal. Examples thereof include a method of reacting a compound having a structure and capable of undergoing addition reaction with the reactive group (for example, (1-methyl-2,4-cyclopentadien-1-yl) methanol).
  • the average degree of polymerization of the liquid crystal polyester (A) is not particularly limited, but is preferably 3 to 30, more preferably 4 to 25, still more preferably 5 to 20. If the average degree of polymerization is less than 3, the curing reactivity may decrease. On the other hand, if the average degree of polymerization exceeds 30, the reaction temperature during curing may increase. In addition, the average degree of polymerization of liquid crystalline polyester (A) can be calculated
  • the glass transition temperature (Tg) of the liquid crystalline polyester (A) is not particularly limited, but is preferably 30 to 150 ° C, more preferably 40 to 120 ° C, and further preferably 50 to 100 ° C. When the glass transition temperature is less than 30 ° C., the heat resistance of the cured product may be inferior. On the other hand, when the glass transition temperature exceeds 150 ° C., it is necessary to carry out melt mixing of the liquid crystal polyester (A) and the compound (B) at a high temperature, and the thermopolymerizable functional group of the compound (B) undergoes a polymerization reaction during the melt mixing. May occur.
  • the glass transition temperature of liquid crystalline polyester (A) can be measured by thermal analysis and dynamic viscoelasticity measurements, such as DSC and TGA, for example.
  • the melting point (Tm) of the liquid crystal polyester (A) is not particularly limited, but is preferably 250 ° C. or lower (for example, 40 to 250 ° C.), more preferably 80 to 220 ° C., and further preferably 120 to 200 ° C.
  • Tm melting point
  • fusing point of liquid crystalline polyester (A) can be measured by thermal analysis and dynamic viscoelasticity measurement, such as DSC and TGA, for example.
  • the compound (B) for constituting the thermosetting liquid crystal polyester composition of the present invention is an addition-reactive group that the liquid crystal polyester (A) has at the molecular chain end in the molecule (in one molecule).
  • A a functional group (sometimes referred to as “addition reactive group (b)”) that reacts with (at least one selected from the group consisting of a hydroxyl group, an acyloxy group, an aromatic ring, and a conjugated diene structure);
  • a compound having at least a thermopolymerizable functional group thermosetting functional group
  • the addition reactive group (b) is not particularly limited as long as it is a functional group capable of reacting with the addition reactive group (a) of the liquid crystal polyester (A), but from the viewpoint of the temperature at which the reaction proceeds.
  • an ⁇ , ⁇ -unsaturated carbonyl group eg, a ketone group having a carbon-carbon unsaturated bond between the ⁇ -position and the ⁇ -position of the carbonyl carbon, and a carbon-carbon unsaturated group between the ⁇ -position and the ⁇ -position of the carbonyl carbon.
  • a compound (B) may have 1 type of the said addition reactive group (b), and may have 2 or more types.
  • the ⁇ , ⁇ -unsaturated carbonyl group, epoxy group, maleimide group, ester group, acid anhydride group, and carboxyl group are addition-reactive groups that react with hydroxyl groups.
  • Group (reactive group for hydroxyl group) the addition-reactive groups (b) exemplified above, the carboxyl group is an addition-reactive group that reacts with the acyloxy group (against the acyloxy group-reactive group).
  • maleimide groups and acid anhydride groups particularly maleic anhydride groups
  • react with aromatic rings cycloaddition reaction
  • cycloaddition reaction cycloaddition reaction
  • the number of addition-reactive groups (b) in the compound (B) may be one or more, and is not particularly limited, but is preferably 1 to 10, more preferably 1 to 5.
  • thermopolymerizable functional group is not particularly limited as long as it is a functional group that can be polymerized by heating, but in terms of the temperature at which the polymerization reaction proceeds, for example, a maleimide group, a nadiimide group, a phthalimide group, a cyanate group, Examples thereof include a nitrile group, a phthalonitrile group, a styryl group, an ethynyl group, a propargyl ether group, a benzocyclobutane group, a biphenylene group, and substituted or derivative thereof.
  • guide_body the thermopolymerizable functional group etc.
  • thermopolymerizable functional group which the substituent (For example, the substituent in the above-mentioned aromatic hydroxycarboxylic acid etc.) couple
  • bonded with the said thermopolymerizable functional group are mentioned.
  • a maleimide group is preferable in that part or all of the structure functions also as the addition-reactive group (b).
  • a compound (B) may have 1 type of the said thermopolymerizable functional group, and may have 2 or more types.
  • the number of the thermally polymerizable functional groups in the compound (B) may be one or more, and is not particularly limited, but is preferably 1 to 10, more preferably 1 to 5.
  • the compound (B) needs to have at least one addition-reactive group (b) and at least one thermopolymerizable functional group.
  • the compound (B) has a maleimide group that functions as both an addition-reactive group (b) and a thermopolymerizable functional group, it is necessary to have two or more maleimide groups.
  • the ⁇ carbon- ⁇ carbon double bond in the maleimide group disappears by reacting with the hydroxyl group, aromatic ring, or conjugated diene structure of the liquid crystal polyester (A), and can no longer function as a thermopolymerizable functional group. It is.
  • Examples of the compound (B) include one or more addition-reactive groups (b) and one or more heat-polymerizable functional groups in the molecule, and a carbon number of 100 or less (preferably 10 to 50).
  • Compounds. Examples of such a compound (B) include a hydrocarbon group, a heterocyclic group, or a group in which two or more of these are bonded via one or more of a linking group (a divalent group having one or more atoms). And the like.
  • Examples of the hydrocarbon group, the heterocyclic group, and a group in which two or more of these are bonded via one or more of the linking groups include, for example, groups exemplified as X 1 and X 2 in the following formula (i) (organic groups) ) And the like.
  • the compound (B) includes a compound represented by the following formula (i) ( ⁇ , ⁇ -unsaturated carbonyl group (when the unsaturated group is a double bond) and a thermally polymerizable functional group. Compound).
  • X 1 and X 2 in the above formula (i) are the same or different and represent an organic group.
  • the organic group is not particularly limited, but includes a substituted or unsubstituted hydrocarbon group, a substituted or unsubstituted heterocyclic group, a group in which two or more of these groups are bonded via one or more linking groups, and the like. Can be mentioned.
  • hydrocarbon group examples include an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, and a group in which two or more of these are bonded.
  • aliphatic hydrocarbon group examples include an alkyl group, an alkenyl group, an alkynyl group, and a divalent or higher valent group corresponding thereto.
  • alkyl group examples include C 1-20 alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, hexyl group, octyl group, isooctyl group, decyl group, and dodecyl group (preferably C 1 -10 alkyl group, more preferably C 1-4 alkyl group).
  • alkenyl group examples include vinyl group, allyl group, methallyl group, 1-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-pentenyl group and 2-pentenyl group.
  • C 2-20 alkenyl groups (preferably C 2-10 alkenyl groups, more preferably C 2-4 alkenyl groups) such as 3-pentenyl group, 4-pentenyl group and 5-hexenyl group.
  • alkynyl group include C 2-20 alkynyl groups such as ethynyl group and propynyl group (preferably C 2-10 alkynyl group, more preferably C 2-4 alkynyl group).
  • Examples of the alicyclic hydrocarbon group include a C 3-12 cycloalkyl group such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cyclododecyl group, and a corresponding divalent or higher group; a cyclohexenyl group.
  • C 3-12 cycloalkenyl groups and corresponding divalent or higher groups; bicycloheptanyl groups, bicycloheptenyl groups, and corresponding divalent or higher divalent groups such as C 4-15 bridged cyclic carbonization A hydrogen group etc. are mentioned.
  • aromatic hydrocarbon group examples include a C 6-14 aryl group (particularly a C 6-10 aryl group) such as a phenyl group and a naphthyl group, and a corresponding divalent or higher group.
  • hydrocarbon group examples include a group in which an aliphatic hydrocarbon group and an alicyclic hydrocarbon group such as a cyclohexylmethyl group, a methylcyclohexyl group, and a corresponding divalent or higher valent group are bonded; C 7-18 aralkyl groups such as benzyl and phenethyl groups (particularly C 7-10 aralkyl groups), C 6-10 aryl-C 2-6 alkenyl groups such as cinnamyl groups, C 1-4 alkyls such as tolyl groups Examples thereof include a C 2-4 alkenyl-substituted aryl group such as a substituted aryl group and a styryl group, and a group in which an aliphatic hydrocarbon group and an aromatic hydrocarbon group such as a corresponding divalent or higher valent group are bonded.
  • a substituent which the said hydrocarbon group may have, the group similar to the substituent in the above-mentioned aromatic hydroxy
  • heterocyclic group examples include a pyridyl group, a furyl group, a thienyl group, and a divalent or higher valent group corresponding thereto.
  • substituent which the said heterocyclic group may have the group similar to the substituent in the above-mentioned aromatic hydroxycarboxylic acid is mentioned, for example.
  • hydrocarbon group examples include two or more hydrocarbon groups having one or more linking groups [a divalent group having one or more atoms; for example, an ester bond, an ether bond, a carbonate bond, an amide bond, a thioether bond, And a group linked by a thioester bond, —NR— (R represents a hydroxyl group or an alkyl group), an imide bond, a group in which two or more of these are bonded, and the like.
  • the heterocyclic group also include a group in which two or more heterocyclic groups are directly bonded.
  • the organic group (X 1 , X 2 ) is a group in which one or more of the hydrocarbon groups and one or more of the heterocyclic groups are bonded directly and / or through one or more linking groups. May be.
  • X 1 and X 2 in the above formula (i) may be bonded to each other to form a ring together with the three carbon atoms shown in the formula.
  • examples of the ring structure formed by X 1 and X 2 and the three carbon atoms shown in the formula include a cycloalkenone ring, a cycloalkenedione ring, a flange-on ring (maleic anhydride ring).
  • a pyrrole dione ring maleimide ring
  • a lactone ring having a carbon-carbon unsaturated bond between the ⁇ -position and the ⁇ -position of the carbonyl carbon, and a carbon-carbon unsaturated bond between the ⁇ -position and the ⁇ -position of the carbonyl carbon.
  • a lactam ring is
  • R 1 and R 2 in the above formula (i) are the same or different and represent a hydrogen atom or an alkyl group which may have a substituent.
  • the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, a t-butyl group, a pentyl group, a hexyl group, an octyl group, and a 2-ethylhexyl group.
  • a linear or branched alkyl group having 1 to 20 carbon atoms.
  • the substituent that the alkyl group may have include the same groups as the substituent in the above-described aromatic hydroxycarboxylic acid (excluding the alkyl group).
  • Y 1 and Y 2 in the above formula (i) are the same or different and represent a thermally polymerizable functional group.
  • the thermally polymerizable functional group include the above-described thermally polymerizable functional groups.
  • n1 and n2 in the above formula (i) are the same or different and represent an integer of 0 or more.
  • the sum of n1 and n2 (n1 + n2) represents an integer of 1 or more (that is, the compound represented by the formula (i) has one or more thermopolymerizable functional groups in the molecule).
  • the total of n1 and n2 is preferably, for example, an integer of 1 to 10 (more preferably an integer of 1 to 5).
  • bonding positions of Y 1 and Y 2 with respect to X 1 and X 2 are not particularly limited.
  • n1 (or n2) is an integer of 2 or more, plural Y 1 (or Y 2) may be the same or different.
  • examples of the compound (B) include compounds represented by the following formula (ii) (a compound having an ⁇ , ⁇ -unsaturated carbonyl group (when the unsaturated group is a triple bond) and a thermally polymerizable functional group). It is done.
  • X 3 and X 4 in the above formula (ii) are the same or different and represent an organic group.
  • Examples of the organic group include the same organic groups as those exemplified as X 1 and X 2 in formula (i).
  • X 3 and X 4 in the above formula (ii) are bonded to each other to form a ring together with the three carbon atoms shown in the formula. It may be.
  • Y 3 and Y 4 in the above formula (ii) are the same or different and represent a thermally polymerizable functional group.
  • the thermally polymerizable functional group include the above-described thermally polymerizable functional groups.
  • n3 and n4 in the above formula (ii) are the same or different and represent an integer of 0 or more.
  • the sum of n3 and n4 (n3 + n4) represents an integer of 1 or more (that is, the compound represented by the above formula (ii) has one or more thermopolymerizable functional groups in the molecule).
  • the total of n3 and n4 is preferably, for example, an integer of 1 to 10 (more preferably an integer of 1 to 5).
  • the bonding positions of Y 3 and Y 4 to X 3 and X 4 are not particularly limited. In the case n3 (or n4) is an integer of 2 or more, plural Y 3 (or Y 4) may be the same or different.
  • examples of the compound (B) include compounds represented by the following formula (iii) (a carboxylic acid having a thermally polymerizable functional group or a derivative thereof).
  • R a in the above formula (iii) represents a hydroxyl group (—OH), an alkoxy group, a halogen atom, or an acyloxy group.
  • alkoxy group include alkoxy groups having 1 to 20 carbon atoms such as a methoxy group, an ethoxy group, and a propoxy group, and derivatives thereof.
  • halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the acyloxy group include an acetyloxy group, a propionyloxy group, a butyryloxy group, and a group represented by the following formula.
  • X 5 , Y 5 and n5 in the following formula are the same as those in the above formula (iii).
  • X 5 in the above formula (iii) represents an organic group.
  • the organic group include the same organic groups as those exemplified as X 1 and X 2 in formula (i).
  • Y 5 in the above formula (iii) represents a thermally polymerizable functional group.
  • the thermally polymerizable functional group include the above-described thermally polymerizable functional groups.
  • n5 in the said formula (iii) shows an integer greater than or equal to 1.
  • n5 is preferably an integer of 1 to 10 (more preferably an integer of 1 to 5).
  • the bonding position of Y 5 to X 5 is not particularly limited. In the case n5 is an integer of 2 or more, the plurality of Y 5, may be the same or may be different.
  • examples of the compound (B) include a compound represented by the following formula (iv) (an epoxy compound having a thermally polymerizable functional group).
  • X 6 in the above formula (iv) represents an organic group.
  • Examples of the organic group include the same organic groups as those exemplified as X 1 and X 2 in formula (i).
  • Y 6 in the above formula (iv) represents a thermally polymerizable functional group.
  • Examples of the thermally polymerizable functional group include the above-described thermally polymerizable functional groups.
  • N6 in the above formula (iv) represents an integer of 1 or more. As n6, for example, an integer of 1 to 10 (more preferably an integer of 1 to 5) is preferable. Further, the bonding position of Y 6 to X 6 is not particularly limited. In the case n6 is an integer of 2 or more, plural Y 6 may be the same or different.
  • R 3 to R 5 in the above formula (iv) are the same or different and each represents a hydrogen atom or an alkyl group which may have a substituent.
  • Examples of the alkyl group that may have a substituent include the same groups as those exemplified as R 1 and R 2 in the above formula (i).
  • the compound (B) is, for example, methylene bismaleimide (4,4′-diphenylmethane bismaleimide), m-phenylene bismaleimide, 2,2′-bis [4- (4-maleimidophenoxy) Phenyl] propane, ethylene bismaleimide, o-phenylene bismaleimide, p-phenylene bismaleimide, m-toluylene bismaleimide, 4,4'-biphenylene bismaleimide, 4,4 '-[3,3'-dimethyl-biphenylene Bismaleimide, 4,4 ′-[3,3′-dimethyldiphenylmethane] bismaleimide, 4,4 ′-[3,3′-diethyldiphenylmethane] bismaleimide, 4,4′-diphenylmethane bismaleimide, 4,4 '-Diphenylpropane bismaleimide, 4,4'-diphenyl ether bismaleimide ,
  • thermosetting liquid crystal polyester composition of the present invention is obtained by melt-mixing the liquid crystal polyester (A) and the compound (B) as described above.
  • the liquid crystal polyester (A) and the compound (B) are melt-mixed, the liquid crystal polyester (A) may be referred to as a component other than the compound (B) (sometimes referred to as “other components”; for example, an inorganic filler described later) Etc.) may be mixed together.
  • the addition-reactive group (a) of the liquid crystal polyester (A) mainly by melt mixing (at least one selected from the group consisting of a hydroxyl group, an acyloxy group, an aromatic ring, and a conjugated diene structure), Reaction (addition reaction) with the addition-reactive group (b) of the compound (B) mainly proceeds to obtain a liquid crystal polyester composition having thermosetting properties.
  • the thermosetting liquid crystal polyester composition of the present invention the liquid crystal polyester (A) can be used singly or in combination of two or more.
  • a compound (B) can be used individually by 1 type, and can also be used in combination of 2 or more type.
  • the ratio (mixing ratio) of the liquid crystal polyester (A) and the compound (B) constituting the thermosetting liquid crystal polyester composition of the present invention varies depending on the types of the liquid crystal polyester (A) and the compound (B) and is not particularly limited.
  • the ratio (blending amount) of the compound (B) to 100 parts by weight of the liquid crystalline polyester (A) is preferably 10 to 300 parts by weight, more preferably 20 to 250 parts by weight, and still more preferably 30 to 200 parts by weight. .
  • the ratio of the compound (B) is less than 10 parts by weight, the curability of the thermosetting liquid crystal polyester composition may be lowered.
  • the content of the compound (B) exceeds 300 parts by weight, a large amount of the compound (B) remains in the thermosetting liquid crystal polyester composition, which may adversely affect the physical properties of the cured product.
  • the temperature of the melt mixing is not particularly limited as long as it is a temperature at which the liquid crystal polyester (A) and the compound (B) can be melted (particularly, not lower than the melting point of the liquid crystal polyester (A)).
  • it is preferably 80 to 200 ° C., more preferably 120 to 180 ° C.
  • the temperature of melt mixing exceeds 200 ° C., the polymerization reaction of the thermally polymerizable functional group derived from the compound (B) may proceed.
  • the temperature of melt mixing can be controlled to be constant during melt mixing, or can be controlled to vary stepwise or continuously.
  • the melt mixing time is not particularly limited, but is preferably 30 to 600 minutes, more preferably 60 to 480 minutes.
  • the melt mixing time is less than 30 minutes, the progress of the reaction between the liquid crystal polyester (A) and the compound (B) becomes insufficient, and the physical properties of the cured product may be lowered.
  • the melt mixing time exceeds 600 minutes, the productivity of the cured product may be reduced.
  • the melting and mixing can be performed under normal pressure, or under reduced pressure or under pressure. Moreover, the said melt mixing can also be performed in one step, and can also be performed by dividing into two or more steps.
  • the melt mixing can be carried out using a known or conventional apparatus (melt mixing apparatus).
  • a known or conventional apparatus Melt mixing apparatus
  • Extruders such as a single screw extruder and a twin screw extruder
  • Mixers such as a paddle mixer, a high-speed fluidity mixer, a ribbon mixer, a Banbury mixer, a Haake mixer, a static mixer
  • thermosetting liquid crystal polyester composition of the present invention is obtained by melt-mixing the liquid crystal polyester (A) and the compound (B).
  • the addition reactive group (a) at the molecular chain end of the liquid crystal polyester (A) and the addition reactive group (b) of the compound (B) react during melt mixing. It is a composition containing the adduct formed by this as an essential component.
  • the adduct is one in which one or more liquid crystal polyesters (A) and one or more compounds (B) are bonded by the above-described addition reaction.
  • the above-mentioned adduct of the liquid crystal polyester (A) and the compound (B) is, for example, a case where the liquid crystal polyester (A) has a hydroxyl group as the addition reactive group (a), and the compound (B)
  • the compound represented by the above formula (i) is used, it is represented by the following formula (1).
  • L 1 in the above formula (1) represents a liquid crystal polyester skeleton.
  • the liquid crystal polyester skeleton include a skeleton obtained by removing one hydroxyl group (hydroxyl group at the molecular chain terminal) from the liquid crystal polyester (A), two or more liquid crystal polyesters (A) having one or more compounds (B) (formula (i And a skeleton obtained by removing one hydroxyl group (hydroxyl group at the end of the molecular chain) from the compound (addition product) formed by adding and linking to the compound represented by ()).
  • X 1 , X 2 , R 1 , R 2 , Y 1 , Y 2 , n1, and n2 in the above formula (1) are the same as those in the above formula (i).
  • the adduct is, for example, a case where the liquid crystal polyester (A) has an aromatic ring as the addition-reactive group (a), and the compound represented by the above formula (i) is used as the compound (B).
  • an adduct formed by cyclization reaction (cycloaddition reaction) between the aromatic ring of the liquid crystal polyester (A) and the carbon-carbon double bond of the compound (B) may be used.
  • the adduct is, for example, a case where the liquid crystal polyester (A) has a conjugated diene structure as the addition reactive group (a), and the compound represented by the above formula (i) is used as the compound (B).
  • an adduct formed by a cyclization reaction (cycloaddition reaction) between the conjugated diene structure of the liquid crystalline polyester (A) and the carbon-carbon double bond of the compound (B) may be used.
  • the above-mentioned adduct of the liquid crystal polyester (A) and the compound (B) is, for example, a case where the liquid crystal polyester (A) has a hydroxyl group as the addition reactive group (a), and the compound (B) has the above formula.
  • the compound represented by (ii) is used, it is represented by the following formula (2).
  • L 2 in the above formula (2) represents a liquid crystal polyester skeleton.
  • the liquid crystal polyester skeleton include a skeleton obtained by removing one hydroxyl group (hydroxyl group at the molecular chain terminal) from the liquid crystal polyester (A), two or more liquid crystal polyesters (A) having one or more compounds (B) (formula (ii) And a skeleton obtained by removing one hydroxyl group (hydroxyl group at the end of the molecular chain) from the compound (addition product) formed by adding and linking to the compound represented by ()).
  • X 3 , X 4 , Y 3 , Y 4 , n3, and n4 in the above formula (2) are the same as those in the above formula (ii).
  • the above-mentioned adduct of the liquid crystal polyester (A) and the compound (B) is, for example, a case where the liquid crystal polyester (A) has a hydroxyl group or an acyloxy group as the addition reactive group (a), and the compound (B)
  • the compound represented by the above formula (iii) is used, it is represented by the following formula (3).
  • L 3 in the above formula (3) represents a liquid crystal polyester skeleton.
  • the liquid crystal polyester skeleton include a skeleton obtained by removing one hydroxyl group (hydroxyl group at the molecular chain terminal) or acyloxy group (acyloxy group at the molecular chain terminal) from the liquid crystal polyester (A), and two or more liquid crystal polyesters (A).
  • X 5 , Y 5 , and n5 in the above formula (3) are the same as those in the above formula (iii).
  • the above-mentioned adduct of the liquid crystal polyester (A) and the compound (B) is, for example, a case where the liquid crystal polyester (A) has a hydroxyl group as an addition reactive group, and the compound (B) has the above formula (iv).
  • the compound represented by this it is represented by the following formula (4) or the following formula (5).
  • L 4 in the above formulas (4) and (5) represents a liquid crystal polyester skeleton.
  • the liquid crystal polyester skeleton include a skeleton obtained by removing one hydroxyl group (hydroxyl group at the molecular chain terminal) from the liquid crystal polyester (A), two or more liquid crystal polyesters (A) having one or more compounds (B) (formula (iv) And a skeleton obtained by removing one hydroxyl group (hydroxyl group at the end of the molecular chain) from the compound (addition product) formed by adding and linking to the compound represented by ()).
  • X 6 , Y 6 , R 3 to R 5 and n6 are the same as those in the above formula (iv).
  • thermosetting liquid crystal polyester composition of the present invention may contain an inorganic filler.
  • an inorganic filler By containing an inorganic filler, the performance of the cured product can be adjusted according to the purpose (use).
  • the inorganic filler known or conventional inorganic fillers can be used, and are not particularly limited.
  • silica for example, natural silica, synthetic silica
  • aluminum oxide for example, ⁇ -alumina
  • oxidation Oxides such as titanium, zirconium oxide, magnesium oxide, cerium oxide, yttrium oxide, calcium oxide, zinc oxide and iron oxide
  • carbonates such as calcium carbonate and magnesium carbonate
  • sulfates such as barium sulfate, aluminum sulfate and calcium sulfate
  • Nitride such as aluminum nitride, silicon nitride, titanium nitride, boron nitride
  • hydroxide such as calcium hydroxide, aluminum hydroxide, magnesium hydroxide
  • the inorganic filler may have any structure such as a solid structure, a hollow structure, and a porous structure. Moreover, the said inorganic filler may be surface-treated with well-known surface treating agents, such as organosilicon compounds, such as organohalosilane, organoalkoxysilane, and organosilazane, for example.
  • organosilicon compounds such as organohalosilane, organoalkoxysilane, and organosilazane, for example.
  • an inorganic filler can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • thermosetting liquid-crystal polyester composition of this invention for semiconductor sealing materials, it is preferable to use a silica (silica filler) etc., and the heat conductivity and heat dissipation characteristic of hardened
  • silica silicon filler
  • alumina alumina fine particles
  • the content of the inorganic filler in the thermosetting liquid crystal polyester composition of the present invention is not particularly limited, but the total amount (total amount) of the liquid crystal polyester (A) and the compound (B) constituting the thermosetting liquid crystal polyester composition is 100.
  • the amount is preferably 0 to 500 parts by weight, more preferably 0 to 300 parts by weight with respect to parts by weight.
  • the liquid crystal polyester (A) and compound (B) present in the thermosetting liquid crystal polyester composition In addition, the amount of the liquid crystal polyester (A) and the compound (B) constituting the adduct is also included, and the same applies to other than this paragraph.
  • the inorganic filler can be blended together when the thermosetting liquid crystal polyester composition of the present invention is prepared (when the liquid crystal polyester (A) and the compound (B) are melt-mixed), or the thermosetting of the present invention.
  • the liquid crystalline polyester composition can be blended after once prepared.
  • thermosetting liquid crystal polyester composition of the present invention may contain an additive for promoting or controlling the curing reaction.
  • the additive is not particularly limited, and examples thereof include diamino compounds [for example, diaminodiphenylmethane], diallyl compounds [for example, diallyl bisphenol A], and triazines [for example, 1,3,5-tri-2-propenyl-1].
  • the content (blending amount) of the additive is not particularly limited, but is 0 to 30 with respect to 100 parts by weight of the total amount of the liquid crystal polyester (A) and the compound (B) constituting the thermosetting liquid crystal polyester composition. Part by weight is preferred, more preferably 1 to 20 parts by weight.
  • thermosetting liquid crystal polyester composition of the present invention when melt-mixing the liquid crystal polyester (A) and the compound (B)), or the thermosetting of the present invention.
  • the liquid crystalline polyester composition can be blended after once prepared.
  • thermosetting liquid crystal polyester composition of the present invention may contain other additives as long as the effects of the present invention are not impaired.
  • additives known or commonly used additives can be used, and are not particularly limited.
  • organic resins such as silicone resins, epoxy resins and fluororesins; solvents; stabilizers (antioxidants, ultraviolet absorptions) Flame retardants (phosphorous flame retardants, halogen flame retardants, inorganic flame retardants, etc.); flame retardant aids; reinforcing materials; nucleating agents; coupling agents; lubricants; Wax; Plasticizer; Release agent; Impact modifier; Color improver; Fluidity improver; Colorant (dye, pigment, etc.); Dispersant; Defoamer; Defoamer; Antibacterial agent; Viscosity adjusting agents; conventional additives such as thickeners are included.
  • the said other additive can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • the content of the other additives is not particularly limited, but is preferably 0 to 5% by weight, more preferably 0 to 2% by weight with respect to the total amount (100% by weight) of the thermosetting liquid crystal polyester composition. is there.
  • the above-mentioned other additives can be blended together when preparing the thermosetting liquid crystal polyester composition of the present invention (when melt-mixing the liquid crystal polyester (A) and the compound (B)). It can also mix
  • thermosetting liquid crystal polyester composition of the present invention is a thermosetting composition obtained by melt-mixing the liquid crystal polyester (A) and the compound (B).
  • the liquid crystal polyester (A) having an addition reactive group (a) at the molecular chain end, the addition reactive group (b), and a thermally polymerizable functional group are contained in the molecule.
  • the reaction of the addition reactive group (a) of the liquid crystal polyester (A) with the addition reactive group (b) of the compound (B) mainly proceeds during the melt mixing of both components.
  • the reaction between the thermally polymerizable functional groups of the compound (B) is to use one that does not substantially proceed.
  • thermosetting composition thermosetting composition
  • the thermosetting composition thus obtained is, for example, 250 It can be cured at a relatively low temperature of °C or less, and forms a cured product excellent in various physical properties including heat resistance.
  • a cured product (sometimes referred to as “cured product of the present invention”) is obtained by curing the thermosetting liquid crystal polyester composition of the present invention by heating (advancing the curing reaction).
  • the reaction (polymerization reaction) between the thermally polymerizable functional groups mainly resulting from the compound (B) proceeds by heating, and a cured product is formed.
  • heating means known or conventional means can be used, and there is no particular limitation.
  • the heating temperature (curing temperature) for curing the thermosetting liquid crystal polyester composition of the present invention is not particularly limited, but is preferably 170 to 250 ° C, more preferably 210 to 250 ° C, and still more preferably 220 to 250 ° C. It is.
  • the curing temperature can be controlled to be constant during curing, or can be controlled to vary stepwise or continuously.
  • the heating time (curing time) for curing the thermosetting liquid crystal polyester composition of the present invention is not particularly limited, but is preferably 3 to 600 minutes, more preferably 5 to 480 minutes, still more preferably 5 to 360 minutes. It is. If the curing time is less than 3 minutes, the progress of the curing reaction may be insufficient, and the physical properties of the cured product may be reduced. On the other hand, when the curing time exceeds 600 minutes, the productivity of the cured product may decrease.
  • thermosetting liquid crystal polyester composition of the present invention can be performed under normal pressure, or can be performed under reduced pressure or under pressure. Moreover, the said hardening can also be performed in one step, and can also be performed by dividing into two or more steps.
  • the 5% weight loss temperature (T d5 ) of the cured product of the present invention measured at a temperature elevation rate of 10 ° C./min (in air) is not particularly limited, but is 350 ° C. or higher (eg, 350 to 500 ° C.). Preferably, it is 380 ° C. or higher, more preferably 400 ° C. or higher. If the 5% weight loss temperature is less than 350 ° C., the heat resistance may be insufficient depending on the application.
  • the 5% weight loss temperature can be measured by, for example, TG / DTA (simultaneous measurement of differential heat and thermogravimetry).
  • the activation energy of the thermal decomposition reaction in the air of the cured product of the present invention is not particularly limited, but is preferably 150 kJ / mol or more (for example, 150 to 350 kJ / mol), more preferably 180 kJ / mol or more, and still more preferably 200 kJ / mol or more. If the activation energy is less than 150 kJ / mol, the heat resistance may be insufficient depending on the application.
  • the activation energy can be calculated by, for example, the Ozawa method.
  • the Ozawa method is a method in which TG measurement (thermogravimetry) is performed at three or more types of temperature increase rates, and the activation energy of the thermal decomposition reaction is calculated from the obtained thermogravimetric reduction data.
  • the cured product of the present invention is a cured product obtained by curing the thermosetting liquid crystal polyester composition of the present invention, it has excellent heat resistance and excellent workability, dimensional stability, low It has linear expansion, high thermal conductivity, low hygroscopicity, and dielectric properties. Furthermore, since the cured product of the present invention is obtained by heating the thermosetting liquid crystal polyester composition of the present invention at a relatively low temperature of 250 ° C. or less, it is excellent in productivity.
  • the cured product of the present invention can be used for various applications such as various members and various structural materials.
  • it since it is excellent in the above-mentioned various properties, it can be preferably used for applications such as films, prepregs, printed wiring boards, and semiconductor encapsulants.
  • the thermosetting liquid crystal polyester composition of the present invention is, in particular, a thermosetting composition for a film, a thermosetting composition for a prepreg, a thermosetting composition for a printed wiring board, and a thermosetting for a semiconductor sealing material. It can be preferably used as a composition.
  • the melting point (Tm) and the glass transition temperature (Tg) of the liquid crystalline polyester obtained in the following production example were 20 ° C./degree with a differential scanning calorimeter (“DSC6200”, manufactured by SII Nanotechnology Co., Ltd.). The measurement was performed under the condition of raising the temperature of the minute (under a nitrogen stream). The results are shown in Table 1.
  • the 5% weight loss temperature (T d5 ) of the cured product obtained in the following examples was increased by 10 ° C./min with TG / DTA (“TG / DTA6300”, SII Nanotechnology Co., Ltd.). It was measured under temperature conditions (in air). The results are shown in Table 2.
  • the same operation as in Production Example 1 was performed to obtain a liquid crystal polyester b having hydroxyl groups at both ends of a molecular chain consisting only of an aromatic unit (a structural unit derived from an aromatic compound).
  • the thermal analysis result of the obtained liquid crystal polyester b was as shown in Table 1.
  • the obtained liquid crystal polyester b is a monomer pentamer as a result of calculation of the number of terminals of liquid crystal polyester b (by the amine decomposition HPLC method described in JP-A-5-271394) and GPC measurement. It was estimated that there was.
  • the thermal analysis result of the obtained liquid crystal polyester c was as shown in Table 1.
  • the obtained liquid crystal polyester c was a 20-mer monomer as a result of calculation of the number of terminals of the liquid crystal polyester c (by amine decomposition HPLC method described in JP-A No. 5-271394) and GPC measurement. It was estimated that there was.
  • HBA 4-hydroxybenzoic acid
  • HNA 6-hydroxy-2-naphthoic acid
  • BP 4,4′-dihydroxybiphenyl
  • Example 1 [Production of thermosetting liquid crystal polyester composition and cured product thereof] As shown in Table 2, 3.27 g of the liquid crystal polyester a obtained in Example 1 and 1.42 g of methylene bismaleimide were melt-mixed at 170 ° C. for 6 hours to obtain a melt (thermosetting liquid crystal polyester composition). Obtained. Thereafter, the obtained melt was sandwiched between glass plates and heated to 240 ° C. with a hot plate, and the curing reaction was allowed to proceed for 6 hours to obtain a uniform cured product. The 5% weight loss temperature (T d5 ) of the cured product was as shown in Table 2.
  • thermosetting liquid crystal polyester composition and a cured product thereof were obtained in the same manner as in Example 1 except that the type and amount of liquid crystal polyester and the amount of bismaleimide compound were changed as shown in Table 2. All of the above cured products were uniform cured products. Table 2 shows the 5% weight loss temperature (T d5 ) of these cured products.
  • thermosetting liquid crystal polyester compositions obtained in the examples can be cured (thermosetting) at a relatively low temperature of 250 ° C. or less, and the obtained cured product is 5% by weight.
  • the decrease temperature was high and it had excellent heat resistance.
  • thermosetting liquid crystal polyester composition of the present invention is used in various applications such as various members and various structural materials, particularly in applications such as films, prepregs, printed wiring boards, and semiconductor encapsulants. It can be preferably used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacturing & Machinery (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Abstract

 本発明の目的は、比較的低温で硬化させることができ、耐熱性に優れた硬化物を得ることができる熱硬化性組成物を提供することにある。 本発明の熱硬化性組成物は、分子鎖末端に水酸基及び/又はアシルオキシ基を有する液晶ポリエステル(A)と、水酸基及び/又はアシルオキシ基と反応する官能基並びに熱重合性官能基を分子内に有する化合物(B)とを溶融混合することにより得られる熱硬化性液晶ポリエステル組成物である。当該熱硬化性液晶ポリエステル組成物において液晶ポリエステル(A)は、芳香族化合物に由来するモノマー単位を有し、平均重合度が3~30、融点が250℃以下の液晶ポリエステルであることが好ましい。

Description

熱硬化性液晶ポリエステル組成物及びその硬化物
 本発明は、液晶ポリエステルを含む熱硬化性樹脂組成物(熱硬化性液晶ポリエステル組成物)及び該熱硬化性樹脂組成物を硬化することにより得られる硬化物に関する。
 液晶ポリエステルに代表される液晶ポリマーは、耐熱性、成型性、耐薬品性、機械強度等の各種特性に優れるため、電気・電子部品、自動車部品等の様々な用途に使用されている。近年、特に、加熱により硬化させることによって非常に高い耐熱性を有する硬化物を形成できる熱硬化性液晶ポリマー材料に注目が集められている。
 熱硬化性液晶ポリマー材料としては、例えば、主鎖サーモトロピック液晶エステル等の液晶オリゴマーをフェニルアセチレン、フェニルマレイミド、ナジイミド反応性末端基でエンドキャップした材料が知られている(特許文献1~3参照)。また、主鎖に一つ以上の可溶性構造単位を有し且つ主鎖の末端の一つ以上に熱硬化性基を有する熱硬化性液晶オリゴマーと特定のフッ素化合物とを反応させて得られる材料(特許文献4参照)、上記熱硬化性液晶オリゴマーとアルコキシド金属化合物で表面を置換したナノ充填剤とを反応させて得られる材料が知られている(特許文献5参照)。
 熱硬化性液晶ポリマー材料としては、例えば、液晶ポリマーの末端にスペーサー単位を介して架橋性基が結合した材料も知られている(特許文献6参照)。また、液晶ポリエステルの両末端に、無置換又は置換マレイミド、無置換又は置換ナジイミド、エチニル、ベンゾシクロブテンなどのラジカル重合性基を有する材料も知られている(特許文献7参照)。
特表2004-509190号公報 米国特許第6939940号明細書 米国特許第7507784号明細書 特開2011-111619号公報 特開2011-084707号公報 特表2002-521354号公報 米国特許第5114612号明細書
 しかしながら、特許文献1~3に開示された材料は、硬化させるために350℃以上という高温の加熱が必要であり、硬化物の製造工程が煩雑となったり、硬化の際に構成成分が揮発・分解したり、また、例えば、封止材等の用途では封止する製品が劣化してしまう等の問題を有していた。また、特許文献4、5に開示された材料は、液晶ポリマー主鎖がアミド結合やアミン結合などを含む可溶性構造単位を必須の構造単位として含むため、得られる硬化物の耐加水分解性に問題を有していた。また、特許文献6に開示された材料は、液晶ポリマーと架橋性基の連結基としてアルキレン基等のスペーサー単位を有するために熱分解を受けやすく、得られる硬化物の耐熱性に劣るという問題を有していた。さらに、特許文献7に開示された材料は、得られる硬化物が脆いという問題を有していた。
 従って、本発明の目的は、比較的低温(例えば、250℃以下)で硬化させることができ、耐熱性等の各種物性に優れた硬化物を得ることができる熱硬化性組成物(熱硬化性液晶ポリエステル組成物)を提供することにある。
 本発明者らは、上記課題を解決するため鋭意検討した結果、特定構造の液晶ポリエステルと、分子内に特定の官能基を有する化合物とを溶融混合することによって、比較的低温で硬化させることができ、耐熱性等の各種物性に優れた硬化物を得ることができる熱硬化性組成物が得られることを見出し、本発明を完成させた。
 すなわち、本発明は、分子鎖末端に水酸基及び/又はアシルオキシ基を有する液晶ポリエステル(A)と、水酸基及び/又はアシルオキシ基と反応する官能基並びに熱重合性官能基を分子内に有する化合物(B)とを溶融混合することにより得られる熱硬化性液晶ポリエステル組成物を提供する。
 さらに、液晶ポリエステル(A)が、芳香族化合物単量体に由来する構成単位を有し、平均重合度が3~30、融点が250℃以下の液晶ポリエステルである前記の熱硬化性液晶ポリエステル組成物を提供する。
 さらに、化合物(B)における水酸基及び/又はアシルオキシ基と反応する官能基が、α,β-不飽和カルボニル基、エポキシ基、マレイミド基、エステル基、酸無水物基、及びカルボキシル基からなる群より選択された少なくとも1種の官能基であり、
 化合物(B)における熱重合性官能基が、マレイミド基、ナジイミド基、フタルイミド基、シアネート基、フタロニトリル基、スチリル基、エチニル基、プロパルギルエーテル基、ベンゾシクロブタン基、ビフェニレン基、及びこれらの置換体又は誘導体からなる群より選択された少なくとも1種の熱重合性官能基である前記の熱硬化性液晶ポリエステル組成物を提供する。
 また、本発明は、下記式(1)で表される化合物、下記式(2)で表される化合物、下記式(3)で表される化合物、下記式(4)で表される化合物、及び下記式(5)で表される化合物からなる群より選択された少なくとも1種の化合物を含むことを特徴とする熱硬化性液晶ポリエステル組成物を提供する。
Figure JPOXMLDOC01-appb-C000006
[式(1)中、L1は液晶ポリエステル骨格を示す。X1、X2は、同一又は異なって、有機基を示す。X1、X2は、互いに結合して式中に示される3つの炭素原子とともに環を形成していてもよい。R1、R2は、同一又は異なって、水素原子又は置換基を有していてもよいアルキル基を示す。Y1、Y2は、同一又は異なって、熱重合性官能基を示す。n1、n2は、同一又は異なって、0以上の整数を示す(但し、n1+n2は1以上の整数である)。]
Figure JPOXMLDOC01-appb-C000007
[式(2)中、L2は液晶ポリエステル骨格を示す。X3、X4は、同一又は異なって、有機基を示す。X3、X4は、互いに結合して式中に示される3つの炭素原子とともに環を形成していてもよい。Y3、Y4は、同一又は異なって、熱重合性官能基を示す。n3、n4は、同一又は異なって、0以上の整数を示す(但し、n3+n4は1以上の整数である)。]
Figure JPOXMLDOC01-appb-C000008
[式(3)中、L3は液晶ポリエステル骨格を示す。X5は有機基を示す。Y5は熱重合性官能基を示す。n5は1以上の整数を示す。]
Figure JPOXMLDOC01-appb-C000009
[式(4)中、L4は液晶ポリエステル骨格を示す。X6は有機基を示す。R3~R5は、同一又は異なって、水素原子又は置換基を有していてもよいアルキル基を示す。Y6は熱重合性官能基を示す。n6は1以上の整数を示す。]
Figure JPOXMLDOC01-appb-C000010
[式(5)中、L4、X6、R3~R5、Y6、n6は、前記に同じ。]
 さらに、無機フィラーを含む前記の熱硬化性液晶ポリエステル組成物を提供する。
 また、本発明は、前記の熱硬化性液晶ポリエステル組成物を硬化させることにより得られる硬化物を提供する。
 さらに、昇温速度10℃/分(空気中)で測定される5%重量減少温度が350℃以上であり、空気中における熱分解反応の活性化エネルギーが150kJ/mol以上である前記の硬化物を提供する。
 本発明の熱硬化性液晶ポリエステル組成物は上記構成を有するため、比較的低温(例えば、250℃以下)で硬化させることができ、硬化させることにより得られる硬化物は耐熱性に優れる。また、本発明の熱硬化性液晶ポリエステル組成物は液晶ポリエステルを必須の構成成分として含むため、得られる硬化物は加工性、寸法安定性、低線膨張、高熱伝導、低吸湿性、及び誘電特性にも優れる。
<熱硬化性液晶ポリエステル組成物>
 本発明の熱硬化性液晶ポリエステル組成物は、以下の成分(A)及び成分(B)を溶融混合することにより得られる熱硬化性組成物(熱硬化性樹脂組成物)である。
 成分(A):分子鎖末端に水酸基、アシルオキシ基、芳香族環、及び共役ジエン構造からなる群より選択された少なくとも1種の基(特に、水酸基及び/又はアシルオキシ基)を有する液晶ポリエステル(「液晶ポリエステル(A)」と称する場合がある)
 成分(B):水酸基、アシルオキシ基、芳香族環、又は共役ジエン構造と反応する官能基(特に、水酸基及び/又はアシルオキシ基と反応する官能基)、並びに熱重合性官能基を分子内に有する化合物(「化合物(B)」と称する場合がある)
 なお、上記「水酸基及び/又はアシルオキシ基」とは、「水酸基及びアシルオキシ基のいずれか一方又は両方」を意味し、他についても同様である。
[液晶ポリエステル(A)]
 本発明の熱硬化性液晶ポリエステル組成物を構成するための液晶ポリエステル(A)は、上述のように、分子鎖末端に水酸基、アシルオキシ基、芳香族環、及び共役ジエン構造からなる群より選択された少なくとも1種の基(「付加反応性基(a)」と称する場合がある)を有する液晶ポリエステルである。液晶ポリエステル(A)は、ポリエステル構造を有する重合体(ポリマー又はオリゴマー)であって、その溶融体(例えば、450℃以下における溶融体)が光学的異方性を示す液晶ポリエステル(サーモトロピック液晶ポリマー)である。
 液晶ポリエステル(A)が分子鎖末端に水酸基を有する場合、特に限定されないが、分子鎖の一方の末端(片末端)のみに水酸基を有していてもよいし、分子鎖の両方の末端(両末端)に水酸基を有していてもよい。また、液晶ポリエステル(A)は、分子鎖末端以外の部分に水酸基を有するものであってもよい。
 液晶ポリエステル(A)が分子鎖末端に有する水酸基は、フェノール性水酸基であってもよいし、アルコール性水酸基であってもよい。中でも、硬化物の耐熱性の観点で、液晶ポリエステル(A)が分子鎖末端に有する水酸基は、フェノール性水酸基であることが好ましい。なお、本明細書における「フェノール性水酸基」には、置換又は無置換ベンゼン環に結合した水酸基に加え、その他の芳香族環(ナフタレン環、アントラセン環など)に結合した水酸基も含まれるものとする。
 液晶ポリエステル(A)が分子鎖末端にアシルオキシ基を有する場合、特に限定されないが、分子鎖の一方の末端(片末端)のみにアシルオキシ基を有していてもよいし、分子鎖の両方の末端(両末端)にアシルオキシ基を有していてもよい。また、液晶ポリエステル(A)は、分子鎖末端以外の部分にアシルオキシ基を有するものであってもよい。
 液晶ポリエステル(A)が分子鎖末端に有するアシルオキシ基としては、例えば、アセチルオキシ基(アセトキシ基)、プロピオニルオキシ基、ブチリルオキシ基などが挙げられる。中でも、使用する原料の汎用性と反応性の観点で、液晶ポリエステル(A)が分子鎖末端に有するアシルオキシ基は、アセトキシ基であることが好ましい。
 液晶ポリエステル(A)が分子鎖末端に芳香族環を有する場合、特に限定されないが、分子鎖の一方の末端(片末端)のみに芳香族環を有していてもよいし、分子鎖の両方の末端(両末端)に芳香族環を有していてもよい。また、液晶ポリエステル(A)は、分子鎖末端以外の部分に芳香族環を有するものであってもよい。なお、液晶ポリエステル(A)が分子鎖末端に有する芳香族環には、環1個あたり1以上の置換基が結合していてもよい。上記置換基としては、公知乃至慣用の置換基が挙げられ、特に限定されないが、例えば、後述の芳香族ヒドロキシカルボン酸が有していてもよい置換基として例示したものなどが挙げられる。
 液晶ポリエステル(A)が分子鎖末端にフェノール性水酸基を有する場合、該液晶ポリエステル(A)は、分子鎖末端に水酸基を有する液晶ポリエステルでもあるし、分子鎖末端に芳香族環を有する液晶ポリエステルでもある。
 液晶ポリエステル(A)が分子鎖末端に共役ジエン構造を有する場合、特に限定されないが、分子鎖の一方の末端(片末端)のみに共役ジエン構造を有していてもよいし、分子鎖の両方の末端(両末端)に共役ジエン構造を有していてもよい。また、液晶ポリエステル(A)は、分子鎖末端以外の部分に共役ジエン構造を有するものであってもよい。
 液晶ポリエステル(A)が分子鎖末端に有する共役ジエン構造としては、例えば、鎖状共役ジエン構造、環状共役ジエン構造などが挙げられる。上記鎖状共役ジエン構造としては、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエンなどに由来(対応)する構造などが挙げられる。上記環状共役ジエン構造としては、例えば、1,3-シクロペンタジエン、1,3-シクロヘキサジエン、フラン及びその誘導体、チオフェン及びその誘導体などに由来(対応)する構造などが挙げられる。
 液晶ポリエステル(A)は、分子鎖末端に、水酸基、アシルオキシ基、芳香族環、及び共役ジエン構造からなる群より選択された2種以上を有するものであってもよい。例えば、液晶ポリエステル(A)は、分子鎖末端に水酸基とアシルオキシ基の両方を有するものであってもよく、具体的には、分子鎖の一方の末端に水酸基を有し、他方の末端にアシルオキシ基を有するものであってもよい。
 液晶ポリエステル(A)としては、溶融体の光学的異方性の観点で、芳香族化合物(芳香族化合物単量体)に由来する構成単位(繰り返し構成単位)を少なくとも有する液晶ポリエステルが好ましい。具体的には、液晶ポリエステル(A)は、芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、及び芳香族ジオールからなる群より選択された少なくとも1種の芳香族化合物由来の構成単位を少なくとも含む液晶ポリエステルであることが好ましい。
 上記芳香族ヒドロキシカルボン酸としては、例えば、4-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸、1-ヒドロキシ-2-ナフトエ酸、3-ヒドロキシ-2-ナフトエ酸、6-ヒドロキシ-2-ナフトエ酸、5-ヒドロキシ-1-ナフトエ酸、4'-ヒドロキシ[1,1'-ビフェニル]-4-カルボン酸、及びこれらの誘導体などが挙げられる。上記誘導体としては、例えば、上記芳香族ヒドロキシカルボン酸の芳香環(芳香族環)に、炭素数0~20(好ましくは炭素数0~10)の置換基が置換した化合物等が挙げられる。上記置換基としては、例えば、アルキル基[例えば、メチル基、エチル基など];アルケニル基[例えば、ビニル基、アリル基など];アルキニル基[例えば、エチニル基、プロピニル基など];ハロゲン原子[例えば、塩素原子、臭素原子、ヨウ素原子など];ヒドロキシル基;アルコキシ基[例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロピルオキシ基、ブトキシ基、イソブチルオキシ基等のC1-6アルコキシ基(好ましくはC1-4アルコキシ基)など];アルケニルオキシ基[例えば、アリルオキシ基等のC2-6アルケニルオキシ基(好ましくはC2-4アルケニルオキシ基)など];アリールオキシ基[例えば、フェノキシ基、トリルオキシ基、ナフチルオキシ基等の、芳香環にC1-4アルキル基、C2-4アルケニル基、ハロゲン原子、C1-4アルコキシ基等の置換基を有していてもよいC6-14アリールオキシ基など];アラルキルオキシ基[例えば、ベンジルオキシ基、フェネチルオキシ基等のC7-18アラルキルオキシ基など];アシルオキシ基[例えば、アセチルオキシ基、プロピオニルオキシ基、(メタ)アクリロイルオキシ基、ベンゾイルオキシ基等のC1-12アシルオキシ基など];メルカプト基;アルキルチオ基[例えば、メチルチオ基、エチルチオ基等のC1-6アルキルチオ基(好ましくはC1-4アルキルチオ基)など];アルケニルチオ基[例えば、アリルチオ基等のC2-6アルケニルチオ基(好ましくはC2-4アルケニルチオ基)など];アリールチオ基[例えば、フェニルチオ基、トリルチオ基、ナフチルチオ基等の、芳香環にC1-4アルキル基、C2-4アルケニル基、ハロゲン原子、C1-4アルコキシ基等の置換基を有していてもよいC6-14アリールチオ基など];アラルキルチオ基[例えば、ベンジルチオ基、フェネチルチオ基等のC7-18アラルキルチオ基など];カルボキシル基;アルコキシカルボニル基[例えば、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、ブトキシカルボニル基等のC1-6アルコキシ-カルボニル基など];アリールオキシカルボニル基[例えば、フェノキシカルボニル基、トリルオキシカルボニル基、ナフチルオキシカルボニル基等のC6-14アリールオキシ-カルボニル基など];アラルキルオキシカルボニル基[例えば、ベンジルオキシカルボニル基などのC7-18アラルキルオキシ-カルボニル基など];アミノ基;モノ又はジアルキルアミノ基[例えば、メチルアミノ基、エチルアミノ基、ジメチルアミノ基、ジエチルアミノ基等のモノ又はジ-C1-6アルキルアミノ基など];モノ又はジフェニルアミノ基[例えば、フェニルアミノ基など];アシルアミノ基[例えば、アセチルアミノ基、プロピオニルアミノ基、ベンゾイルアミノ基等のC1-11アシルアミノ基など];エポキシ基含有基[例えば、グリシジル基、グリシジルオキシ基、3,4-エポキシシクロヘキシル基など];オキセタニル基含有基[例えば、エチルオキセタニルオキシ基など];アシル基[例えば、アセチル基、プロピオニル基、ベンゾイル基など];オキソ基;イソシアネート基;これらの2以上が必要に応じてC1-6アルキレン基を介して結合した基などが挙げられる。なお、液晶ポリエステル(A)は、芳香族ヒドロキシカルボン酸由来の構成単位の1種を有するものであってもよいし、2種以上を有するものであってもよい。
 上記芳香族ジカルボン酸としては、例えば、フタル酸、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、[1,1'-ビフェニル]-4,4'-ジカルボン酸、4,4'-オキシビス(安息香酸)、4,4'-チオビス(安息香酸)、4-[2-(4-カルボキシフェノキシ)エトキシ]安息香酸、及びこれらの誘導体などが挙げられる。上記誘導体としては、例えば、上記芳香族ジカルボン酸の芳香環に、炭素数0~20(好ましくは炭素数0~10)の置換基が置換した化合物などが挙げられる。上記置換基としては、芳香族ヒドロキシカルボン酸における置換基と同様のものが例示される。なお、液晶ポリエステル(A)は、芳香族ジカルボン酸由来の構成単位の1種を有するものであってもよいし、2種以上を有するものであってもよい。
 上記芳香族ジオールとしては、例えば、4,4'-ジヒドロキシビフェニル、ヒドロキノン、レゾルシノール、2,6-ナフタレンジオール、1,5-ナフタレンジオール、[1,1'-ビフェニル]-4,4'-ジオール、4,4'-ジヒドロキシジフェニルエーテル、ビス(4-ヒドロキシフェニル)メタノン、ビスフェノールA、ビスフェノールF、ビスフェノールS、(フェニルスルホニル)ベンゼン、[1,1'-ビフェニル]-2,5-ジオール、及びこれらの誘導体などが挙げられる。上記誘導体としては、例えば、上記芳香族ジオールの芳香環に、炭素数0~20(好ましくは炭素数0~10)の置換基が置換した化合物などが挙げられる。上記置換基としては、芳香族ヒドロキシカルボン酸における置換基と同様のものが例示される。なお、液晶ポリエステル(A)は、芳香族ジオール由来の構成単位の1種を有するものであってもよいし、2種以上を有するものであってもよい。
 上述の芳香族化合物(芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジオール)の、液晶ポリエステル(A)を構成する単量体全量(100重量%)に対する割合(2種以上を含む場合にはこれら総量の割合)は、特に限定されないが、60~100重量%が好ましく、より好ましくは80~100重量%、さらに好ましくは90~100重量%である。特に、液晶ポリエステル(A)が実質的に上述の芳香族化合物(芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジオール)由来の構成単位のみからなることが好ましい。上記割合が60重量%未満であると、導入される他の単量体由来の構成単位によっては、液晶ポリエステル(A)が溶融状態で液晶性を発現しにくくなったり、硬化物の耐熱性や耐湿性(耐加水分解性)が低下する場合がある。
 液晶ポリエステル(A)は、上述の構成単位(芳香族ヒドロキシカルボン酸由来の構成単位、芳香族ジカルボン酸由来の構成単位、芳香族ジオール由来の構成単位)以外の構成単位(「その他の構成単位」と称する場合がある)を有していてもよく、上記その他の構成単位としては、例えば、芳香族ジアミン由来の構成単位、フェノール性水酸基を有する芳香族アミン由来の構成単位などが挙げられる。
 上記芳香族ジアミンとしては、例えば、1,4-ベンゼンジアミン、1,3-ベンゼンジアミン、4-メチル-1,3-ベンゼンジアミン、4-(4-アミノベンジル)フェニルアミン、4-(4-アミノフェノキシ)フェニルアミン、3-(4-アミノフェノキシ)フェニルアミン、4'-アミノ-3,3'-ジメチル[1,1'-ビフェニル]-4-イルアミン、4'-アミノ-3,3'-ビス(トリフルオロメチル)[1,1'-ビフェニル]-4-イルアミン、4-アミノ-N-(4-アミノフェニル)ベンズアミド、4-[(4-アミノフェニル)スルホニル]フェニルアミン、ビス(4-アミノフェニル)メタノン、及びこれらの誘導体などが挙げられる。上記誘導体としては、例えば、上記芳香族ジアミンの芳香環に、炭素数0~20(好ましくは炭素数0~10)の置換基が置換した化合物などが挙げられる。上記置換基としては、芳香族ヒドロキシカルボン酸における置換基と同様のものが例示される。なお、液晶ポリエステル(A)は、芳香族ジアミン由来の構成単位の1種を有するものであってもよいし、2種以上を有するものであってもよい。
 上記フェノール性水酸基を有する芳香族アミンとしては、例えば、4-アミノフェノール、4-アセトアミドフェノール、3-アミノフェノール、3-アセトアミドフェノール、6-アミノ-2-ナフトール、5-アミノ-1-ナフトール、4'-ヒドロキシ-[1,1'-ビフェニル]-4-アミン、4-アミノ-4'-ヒドロキシジフェニルメタン、及びこれらの誘導体などが挙げられる。上記誘導体としては、例えば、上記フェノール性水酸基を有する芳香族アミンの芳香環に、炭素数0~20(好ましくは炭素数0~10)の置換基が置換した化合物などが挙げられる。上記置換基としては、芳香族ヒドロキシカルボン酸における置換基と同様のものが例示される。なお、液晶ポリエステル(A)は、フェノール性水酸基を有する芳香族アミン由来の構成単位の1種を有するものであってもよいし、2種以上を有するものであってもよい。
 上述の芳香族化合物(芳香族ジアミン、フェノール性水酸基を有する芳香族アミン)の、液晶ポリエステル(A)を構成する単量体全量(100重量%)に対する割合(2種以上を含む場合にはこれら総量の割合)は、特に限定されないが、30重量%以下(例えば、0~30重量%)が好ましく、より好ましくは10重量%以下、さらに好ましくは5重量%以下である。上記割合が30重量%を超えると、硬化物の耐吸湿性(耐加水分解性)が低下する場合がある。
 液晶ポリエステル(A)は、上述の芳香族化合物(単量体)を公知乃至慣用の方法により重合することにより製造でき、その製造方法は特に限定されない。具体的には、例えば、上述の芳香族ヒドロキシカルボン酸、芳香族ジオール、フェノール性水酸基を有する芳香族アミン、芳香族ジアミン等のヒドロキシル基やアミノ基を有する芳香族化合物を過剰量の脂肪酸無水物によりアシル化し、得られたアシル化物と、芳香族ヒドロキシカルボン酸や芳香族ジカルボン酸などのカルボキシル基を有する芳香族化合物とを反応(エステル交換反応、アミド交換反応)させることにより製造できる。より具体的には、例えば、特開2007-119610号公報に記載の方法などにより製造できる。また、液晶ポリエステル(A)としては、市販品を使用することも可能である。
 分子鎖末端に水酸基を有する液晶ポリエステル(A)を生成させる方法としては、例えば、水酸基が過剰となるように単量体組成を制御する方法(例えば、単量体成分として芳香族ジオールを過剰に使用する方法など)などが挙げられる。具体的には、液晶ポリエステル(A)を製造する際に使用する液晶ポリエステル(A)を構成する単量体における、水酸基と該水酸基と縮合反応する官能基(カルボキシル基、カルボキシル基より誘導される基(エステル基、酸無水物基、酸ハロゲン化物基など)、アミノ基など)との割合は、特に限定されないが、水酸基と縮合反応する官能基1モルに対して水酸基が1.02モル以上(例えば、1.02~100モル)が好ましく、より好ましくは1.05モル以上、さらに好ましくは1.10モル以上である。水酸基が1.02モル未満であると、分子量が高くなりすぎ、熱硬化反応に時間を要する場合がある。より具体的には、液晶ポリエステル(A)を構成する単量体の全量(100モル%)に対する芳香族ジオールの割合は、特に限定されないが、3~25モル%が好ましく、より好ましくは4~25モル%である。
 また、分子鎖末端にアシルオキシ基を有する液晶ポリエステル(A)を生成させる方法としては、例えば、分子鎖末端に水酸基を有する液晶ポリエステル(A)の当該水酸基を公知乃至慣用のアシル化剤(例えば、無水酢酸等の脂肪酸無水物、酸ハロゲン化物など)を用いてアシル化する方法などが挙げられる。
 分子鎖末端に芳香族環を有する液晶ポリエステル(A)を生成させる方法としては、例えば、単量体として実質的に芳香族化合物(例えば、上述の芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジオールなど)のみを使用する方法や、ヒドロキシル基やカルボキシル基などの反応性基を分子鎖末端に有する液晶ポリエステルの末端の当該反応性基に対して、芳香族化合物を付加反応させて分子鎖末端に芳香族環を形成する方法などが挙げられる。
 分子鎖末端に共役ジエン構造を有する液晶ポリエステル(A)を生成させる方法としては、例えば、ヒドロキシル基やカルボキシル基などの反応性基を末端に有する液晶ポリエステルの当該反応性基に対して、共役ジエン構造を有し、かつ上記反応性基に付加反応させることが可能な化合物(例えば、(1-メチル-2,4-シクロペンタジエン-1-イル)メタノールなど)を反応させる方法などが挙げられる。
 液晶ポリエステル(A)の平均重合度は、特に限定されないが、3~30が好ましく、より好ましくは4~25、さらに好ましくは5~20である。平均重合度が3未満であると、硬化反応性が低下する場合がある。一方、平均重合度が30を超えると、硬化時の反応温度が高くなる場合がある。なお、液晶ポリエステル(A)の平均重合度は、例えば、GPC測定により求めることができる。
 液晶ポリエステル(A)のガラス転移温度(Tg)は、特に限定されないが、30~150℃が好ましく、より好ましくは40~120℃、さらに好ましくは50~100℃である。ガラス転移温度が30℃未満であると、硬化物の耐熱性に劣る場合がある。一方、ガラス転移温度が150℃を超えると、液晶ポリエステル(A)と化合物(B)の溶融混合を高温で実施する必要が生じ、溶融混合時に化合物(B)の熱重合性官能基が重合反応を起こしてしまう場合がある。なお、液晶ポリエステル(A)のガラス転移温度は、例えば、DSC、TGA等の熱分析や動的粘弾性測定により測定できる。
 液晶ポリエステル(A)の融点(Tm)は、特に限定されないが、250℃以下(例えば、40~250℃)が好ましく、より好ましくは80~220℃、さらに好ましくは120~200℃である。融点が250℃を超えると、液晶ポリエステル(A)と化合物(B)の溶融混合を高温で実施する必要が生じ、溶融混合時に化合物(B)の熱重合性官能基が重合反応を起こしてしまう場合がある。なお、液晶ポリエステル(A)の融点は、例えば、DSC、TGA等の熱分析や動的粘弾性測定により測定できる。
[化合物(B)]
 本発明の熱硬化性液晶ポリエステル組成物を構成するための化合物(B)は、上述のように、分子内(一分子中)に、液晶ポリエステル(A)が分子鎖末端に有する付加反応性基(a)(水酸基、アシルオキシ基、芳香族環、及び共役ジエン構造からなる群より選択された少なくとも1種)と反応する官能基(「付加反応性基(b)」と称する場合がある)と、熱重合性官能基(熱硬化性官能基)とを少なくとも有する化合物である。
 上記付加反応性基(b)としては、液晶ポリエステル(A)の付加反応性基(a)と反応し得る官能基であればよく、特に限定されないが、上記反応が進行する温度の観点で、例えば、α,β-不飽和カルボニル基(例えば、カルボニル炭素のα位とβ位の間に炭素-炭素不飽和結合を有するケトン基、カルボニル炭素のα位とβ位の間に炭素-炭素不飽和結合を有するエステル基、カルボニル炭素のα位とβ位の間に炭素-炭素不飽和結合を有するアミド基、カルボニル炭素のα位とβ位の間に炭素-炭素不飽和結合を有するイミド基など);エポキシ基;マレイミド基;エステル基;酸無水物基(例えば、マレイン酸無水物基など);カルボキシル基などが挙げられる。なお、化合物(B)は、上記付加反応性基(b)の1種を有するものであってもよいし、2種以上を有するものであってもよい。
 なお、上記で例示した付加反応性基(b)のうち、α,β-不飽和カルボニル基、エポキシ基、マレイミド基、エステル基、酸無水物基、カルボキシル基は、水酸基と反応する付加反応性基(対水酸基反応性基)である。また、上記で例示した付加反応性基(b)のうち、カルボキシル基は、アシルオキシ基と反応する付加反応性基(対アシルオキシ基反応性基)である。さらに、上記で例示した付加反応性基(b)のうち、マレイミド基、酸無水物基(特に、マレイン酸無水物基)は、芳香族環と反応(環化付加反応)する付加反応性基、及び/又は、共役ジエン構造と反応(環化付加反応)する付加反応性基である。
 化合物(B)における付加反応性基(b)の数は、1個以上であればよく、特に限定されないが、1~10個が好ましく、より好ましくは1~5個である。
 上記熱重合性官能基としては、加熱により重合し得る官能基であればよく、特に限定されないが、重合反応が進行する温度の観点で、例えば、マレイミド基、ナジイミド基、フタルイミド基、シアネート基、ニトリル基、フタロニトリル基、スチリル基、エチニル基、プロパルギルエーテル基、ベンゾシクロブタン基、ビフェニレン基、及びこれらの置換体又は誘導体などが挙げられる。なお、上記置換体又は誘導体としては、上記熱重合性官能基に置換基(例えば、上述の芳香族ヒドロキシカルボン酸における置換基等)が結合した熱重合性官能基などが挙げられる。中でも、構造の一部又は全部が上記付加反応性基(b)としても機能する点で、マレイミド基が好ましい。なお、化合物(B)は、上記熱重合性官能基の1種を有するものであってもよいし、2種以上を有するものであってもよい。
 化合物(B)における熱重合性官能基の数は、1個以上であればよく、特に限定されないが、1~10個が好ましく、より好ましくは1~5個である。
 なお、化合物(B)は、付加反応性基(b)を1個以上と熱重合性官能基を1個以上有する必要がある。例えば、化合物(B)が付加反応性基(b)としても熱重合性官能基としても機能するマレイミド基を有する場合には、マレイミド基を2個以上有する必要がある。当該マレイミド基におけるα炭素-β炭素二重結合は、液晶ポリエステル(A)の水酸基、芳香族環、又は共役ジエン構造と反応することにより消失し、もはや熱重合性官能基としては機能できなくなるためである。
 化合物(B)としては、例えば、分子内に1以上の付加反応性基(b)と1以上の熱重合性官能基とを有し、かつ炭素数が100以下(好ましくは10~50)の化合物が挙げられる。このような化合物(B)としては、例えば、炭化水素基、複素環式基、又はこれらの2以上が連結基(1以上の原子を有する2価の基)の1以上を介して結合した基により形成された化合物等が挙げられる。上記炭化水素基、複素環式基、これらの2以上が連結基の1以上を介して結合した基としては、例えば、下記式(i)中のX1、X2として例示した基(有機基)などが挙げられる。
 具体的には、化合物(B)としては、下記式(i)で表される化合物(α,β-不飽和カルボニル基(不飽和基が二重結合の場合)及び熱重合性官能基を有する化合物)が挙げられる。
Figure JPOXMLDOC01-appb-C000011
 上記式(i)中のX1、X2は、同一又は異なって有機基を示す。上記有機基としては、特に限定されないが、置換又は無置換の炭化水素基、置換又は無置換の複素環式基、これらの基の2以上が1以上の連結基を介して結合した基などが挙げられる。
 上記炭化水素基としては、例えば、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、これらが2以上結合した基が挙げられる。上記脂肪族炭化水素基としては、例えば、アルキル基、アルケニル基、アルキニル基、及びこれらに対応する2価以上の基が挙げられる。上記アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ヘキシル基、オクチル基、イソオクチル基、デシル基、ドデシル基などのC1-20アルキル基(好ましくはC1-10アルキル基、さらに好ましくはC1-4アルキル基)などが挙げられる。上記アルケニル基としては、例えば、ビニル基、アリル基、メタリル基、1-プロペニル基、イソプロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、5-ヘキセニル基などのC2-20アルケニル基(好ましくはC2-10アルケニル基、さらに好ましくはC2-4アルケニル基)などが挙げられる。上記アルキニル基としては、例えば、エチニル基、プロピニル基などのC2-20アルキニル基(好ましくはC2-10アルキニル基、さらに好ましくはC2-4アルキニル基)などが挙げられる。
 上記脂環式炭化水素基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロドデシル基などのC3-12のシクロアルキル基及び対応する2価以上の基;シクロヘキセニル基などのC3-12のシクロアルケニル基及び対応する2価以上の基;ビシクロヘプタニル基、ビシクロヘプテニル基、及びこれらに対応する2価以上の基などのC4-15の架橋環式炭化水素基などが挙げられる。
 上記芳香族炭化水素基としては、例えば、フェニル基、ナフチル基等のC6-14アリール基(特に、C6-10アリール基)及び対応する2価以上の基などが挙げられる。
 また、上記炭化水素基としては、例えば、シクロへキシルメチル基、メチルシクロヘキシル基、及びこれらに対応する2価以上の基などの脂肪族炭化水素基と脂環式炭化水素基とが結合した基;ベンジル基、フェネチル基等のC7-18アラルキル基(特に、C7-10アラルキル基)、シンナミル基等のC6-10アリール-C2-6アルケニル基、トリル基等のC1-4アルキル置換アリール基、スチリル基等のC2-4アルケニル置換アリール基、及びこれらに対応する2価以上の基などの脂肪族炭化水素基と芳香族炭化水素基とが結合した基などが挙げられる。上記炭化水素基が有していてもよい置換基としては、例えば、上述の芳香族ヒドロキシカルボン酸における置換基と同様の基が挙げられる。
 上記複素環式基としては、例えば、ピリジル基、フリル基、チエニル基、及びこれらに対応する2価以上の基などが挙げられる。上記複素環式基が有していてもよい置換基としては、例えば、上述の芳香族ヒドロキシカルボン酸における置換基と同様の基が挙げられる。
 上記炭化水素基としては、例えば、2以上の炭化水素基が1以上の連結基[1以上の原子を有する2価の基;例えば、エステル結合、エーテル結合、カーボネート結合、アミド結合、チオエーテル結合、チオエステル結合、-NR-(Rは水酸基又はアルキル基を示す)、イミド結合、これらの2以上が結合した基など]で連結された基なども挙げられる。また、上記複素環式基としては、2以上の複素環式基が直接結合した基なども挙げられる。また、上記有機基(X1、X2)は、上記炭化水素基の1以上と上記複素環式基の1以上とが、直接及び/又は1以上の連結基を介して結合した基であってもよい。
 上記式(i)中のX1、X2は、互いに結合して式中に示される3つの炭素原子とともに環を形成していてもよい。具体的には、X1及びX2と式中に示される3つの炭素原子とで形成される環構造としては、例えば、シクロアルケノン環、シクロアルケンジオン環、フランジオン環(マレイン酸無水物環)、ピロールジオン環(マレイミド環)、カルボニル炭素のα位とβ位の間に炭素-炭素不飽和結合を有するラクトン環、カルボニル炭素のα位とβ位の間に炭素-炭素不飽和結合を有するラクタム環などが挙げられる。
 上記式(i)中のR1、R2は、同一又は異なって、水素原子又は置換基を有していてもよいアルキル基を示す。上記アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、オクチル基、2-エチルヘキシル基などの炭素数1~20の直鎖又は分岐鎖状のアルキル基などが挙げられる。上記アルキル基が有していてもよい置換基としては、例えば、上述の芳香族ヒドロキシカルボン酸における置換基と同様の基(但し、アルキル基は除く)が挙げられる。
 上記式(i)中のY1、Y2は、同一又は異なって、熱重合性官能基を示す。上記熱重合性官能基としては、上述の熱重合性官能基が例示される。また、上記式(i)中のn1、n2は、同一又は異なって、0以上の整数を示す。但し、n1とn2の合計(n1+n2)は1以上の整数を示す(即ち、上記式(i)で表される化合物は、分子内に1以上の熱重合性官能基を有する)。n1とn2の合計としては、例えば、1~10の整数(より好ましくは1~5の整数)が好ましい。また、Y1、Y2のX1、X2に対する結合位置は、特に限定されない。なお、n1(又はn2)が2以上の整数である場合、複数のY1(又はY2)は、同一であってもよいし、異なっていてもよい。
 また、化合物(B)としては、下記式(ii)で表される化合物(α,β-不飽和カルボニル基(不飽和基が三重結合の場合)及び熱重合性官能基を有する化合物)が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 上記式(ii)中のX3、X4は、同一又は異なって有機基を示す。上記有機基としては、式(i)中のX1、X2として例示したものと同様の有機基が挙げられる。また、上記式(i)中のX1、X2と同様に、上記式(ii)中のX3、X4は、互いに結合して式中に示される3つの炭素原子とともに環を形成していてもよい。
 上記式(ii)中のY3、Y4は、同一又は異なって、熱重合性官能基を示す。上記熱重合性官能基としては、上述の熱重合性官能基が例示される。また、上記式(ii)中のn3、n4は、同一又は異なって、0以上の整数を示す。但し、n3とn4の合計(n3+n4)は1以上の整数を示す(即ち、上記式(ii)で表される化合物は、分子内に1以上の熱重合性官能基を有する)。n3とn4の合計としては、例えば、1~10の整数(より好ましくは1~5の整数)が好ましい。また、Y3、Y4のX3、X4に対する結合位置は、特に限定されない。なお、n3(又はn4)が2以上の整数である場合、複数のY3(又はY4)は、同一であってもよいし、異なっていてもよい。
 また、化合物(B)としては、下記式(iii)で表される化合物(熱重合性官能基を有するカルボン酸又はその誘導体)が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 上記式(iii)中のRaは、水酸基(-OH)、アルコキシ基、ハロゲン原子、又はアシルオキシ基を示す。上記アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基などの炭素数1~20のアルコキシ基、及びその誘導体などが挙げられる。上記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられる。上記アシルオキシ基としては、例えば、アセチルオキシ基、プロピオニルオキシ基、ブチリルオキシ基、下記式で表される基などが挙げられる。なお、下記式におけるX5、Y5、n5は、上記式(iii)におけるものと同じである。
Figure JPOXMLDOC01-appb-C000014
 上記式(iii)中のX5は有機基を示す。上記有機基としては、式(i)中のX1、X2として例示したものと同様の有機基が挙げられる。上記式(iii)中のY5は熱重合性官能基を示す。上記熱重合性官能基としては、上述の熱重合性官能基が例示される。また、上記式(iii)中のn5は1以上の整数を示す。n5としては、例えば、1~10の整数(より好ましくは1~5の整数)が好ましい。また、Y5のX5に対する結合位置は、特に限定されない。なお、n5が2以上の整数である場合、複数のY5は、同一であってもよいし、異なっていてもよい。
 また、化合物(B)としては、下記式(iv)で表される化合物(熱重合性官能基を有するエポキシ化合物)が挙げられる。
 上記式(iv)中のX6は有機基を示す。上記有機基としては、式(i)中のX1、X2として例示したものと同様の有機基が挙げられる。上記式(iv)中のY6は熱重合性官能基を示す。上記熱重合性官能基としては、上述の熱重合性官能基が例示される。また、上記式(iv)中のn6は1以上の整数を示す。n6としては、例えば、1~10の整数(より好ましくは1~5の整数)が好ましい。また、Y6のX6に対する結合位置は、特に限定されない。なお、n6が2以上の整数である場合、複数のY6は、同一であってもよいし、異なっていてもよい。
 上記式(iv)中のR3~R5は、同一又は異なって、水素原子又は置換基を有していてもよいアルキル基を示す。上記置換基を有していてもよいアルキル基としては、上記式(i)中のR1、R2として例示したものと同様の基が挙げられる。
 化合物(B)としては、より具体的には、例えば、メチレンビスマレイミド(4,4'-ジフェニルメタンビスマレイミド)、m-フェニレンビスマレイミド、2,2'-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、エチレンビスマレイミド、o-フェニレンビスマレイミド、p-フェニレンビスマレイミド、m-トルイレンビスマレイミド、4,4'-ビフェニレンビスマレイミド、4,4'-[3,3'-ジメチル-ビフェニレン]ビスマレイミド、4,4'-[3,3'-ジメチルジフェニルメタン]ビスマレイミド、4,4'-[3,3'-ジエチルジフェニルメタン]ビスマレイミド、4,4'-ジフェニルメタンビスマレイミド、4,4'-ジフェニルプロパンビスマレイミド、4,4'-ジフェニルエーテルビスマレイミド、3,3'-ジフェニルスルホンビスマレイミド、4,4'-ジフェニルスルホンビスマレイミドなどのビスマレイミド化合物;4-マレイミド安息香酸;4-マレイミド安息香酸メチル;4-マレイミド安息香酸エチルなどが挙げられる。
[熱硬化性液晶ポリエステル組成物の製造方法]
 本発明の熱硬化性液晶ポリエステル組成物は、上述のように、液晶ポリエステル(A)と化合物(B)とを溶融混合することにより得られる。液晶ポリエステル(A)と化合物(B)とを溶融混合する際には、液晶ポリエステル(A)、化合物(B)以外の成分(「その他の成分」と称する場合がある;例えば、後述の無機フィラーなど)をともに混合してもよい。後述のように、溶融混合によって主に液晶ポリエステル(A)の付加反応性基(a)(水酸基、アシルオキシ基、芳香族環、及び共役ジエン構造からなる群より選択された少なくとも1種)と、化合物(B)の付加反応性基(b)との反応(付加反応)が主に進行し、熱硬化性を有する液晶ポリエステル組成物が得られる。なお、本発明の熱硬化性液晶ポリエステル組成物を製造するにあたり、液晶ポリエステル(A)は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。同様に、化合物(B)は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 本発明の熱硬化性液晶ポリエステル組成物を構成する液晶ポリエステル(A)と化合物(B)の割合(配合割合)は、液晶ポリエステル(A)や化合物(B)の種類等により異なり、特に限定されないが、液晶ポリエステル(A)100重量部に対する化合物(B)の割合(配合量)として、10~300重量部が好ましく、より好ましくは20~250重量部、さらに好ましくは30~200重量部である。化合物(B)の割合が10重量部未満であると、熱硬化性液晶ポリエステル組成物の硬化性が低下する場合がある。一方、化合物(B)の含有量が300重量部を超えると、熱硬化性液晶ポリエステル組成物中に化合物(B)が多量に残存し、硬化物の物性に悪影響が及ぶ場合がある。
 上記溶融混合の温度は、液晶ポリエステル(A)及び化合物(B)を溶融させることができる温度(特に、液晶ポリエステル(A)の融点以上)であればよく、特に限定されないが、200℃以下(例えば、80~200℃)が好ましく、より好ましくは120~180℃である。溶融混合の温度が200℃を超えると、化合物(B)に由来する熱重合性官能基の重合反応が進行してしまう場合がある。なお、溶融混合の温度は、溶融混合する間一定となるように制御することもできるし、段階的又は連続的に変動するように制御することもできる。
 上記溶融混合の時間は、特に限定されないが、30~600分が好ましく、より好ましくは60~480分である。溶融混合の時間が30分未満であると、液晶ポリエステル(A)と化合物(B)の反応進行が不十分となり、硬化物の物性が低下する場合がある。一方、溶融混合の時間が600分を超えると、硬化物の生産性が低下する場合がある。
 上記溶融混合は、常圧下で行うこともできるし、減圧下又は加圧下で行うこともできる。また、上記溶融混合は、一段階で行うこともできるし、二段階以上の多段階に分けて行うこともできる。
 上記溶融混合は、公知乃至慣用の装置(溶融混合装置)を使用して実施することができる。上記溶融混合装置としては、特に限定されないが、一軸押出機、二軸押出機などの押出機;バドルミキサー、高速流動式ミキサー、リボンミキサー、バンバリーミキサー、ハーケミキサー、スタティックミキサーなどのミキサー;ニーダーなどが挙げられる。
 液晶ポリエステル(A)と化合物(B)とを溶融混合することにより、本発明の熱硬化性液晶ポリエステル組成物が得られる。本発明の熱硬化性液晶ポリエステル組成物は、液晶ポリエステル(A)の分子鎖末端の付加反応性基(a)と、化合物(B)の付加反応性基(b)とが溶融混合時に反応することにより形成される付加物を必須成分として含む組成物である。上記付加物は、液晶ポリエステル(A)の1以上と化合物(B)の1以上とが上述の付加反応により結合したものである。
 具体的には、上述の液晶ポリエステル(A)と化合物(B)の付加物は、例えば、液晶ポリエステル(A)が付加反応性基(a)として水酸基を有する場合であって、化合物(B)として上記式(i)で表される化合物を用いた場合には、下記式(1)で表される。
Figure JPOXMLDOC01-appb-C000016
 上記式(1)におけるL1は、液晶ポリエステル骨格を示す。当該液晶ポリエステル骨格としては、例えば、液晶ポリエステル(A)から1つの水酸基(分子鎖末端の水酸基)を除いた骨格、2以上の液晶ポリエステル(A)が1以上の化合物(B)(式(i)で表される化合物)と付加して連結することにより形成されたもの(付加物)から1つの水酸基(分子鎖末端の水酸基)を除いた骨格などが挙げられる。
 上記式(1)におけるX1、X2、R1、R2、Y1、Y2、n1、n2は、上記式(i)におけるものと同じである。
 また、上記付加物は、例えば、液晶ポリエステル(A)が付加反応性基(a)として芳香族環を有する場合であって、化合物(B)として上記式(i)で表される化合物を用いた場合には、液晶ポリエステル(A)の芳香族環と化合物(B)の炭素-炭素二重結合とが環化反応(環化付加反応)して形成される付加物であってもよい。
 また、上記付加物は、例えば、液晶ポリエステル(A)が付加反応性基(a)として共役ジエン構造を有する場合であって、化合物(B)として上記式(i)で表される化合物を用いた場合には、液晶ポリエステル(A)の共役ジエン構造と化合物(B)の炭素-炭素二重結合とが環化反応(環化付加反応)して形成される付加物であってもよい。
 また、上述の液晶ポリエステル(A)と化合物(B)の付加物は、例えば、液晶ポリエステル(A)が付加反応性基(a)として水酸基を有する場合であって、化合物(B)として上記式(ii)で表される化合物を用いた場合には、下記式(2)で表される。
Figure JPOXMLDOC01-appb-C000017
 上記式(2)におけるL2は、液晶ポリエステル骨格を示す。当該液晶ポリエステル骨格としては、例えば、液晶ポリエステル(A)から1つの水酸基(分子鎖末端の水酸基)を除いた骨格、2以上の液晶ポリエステル(A)が1以上の化合物(B)(式(ii)で表される化合物)と付加して連結することにより形成されたもの(付加物)から1つの水酸基(分子鎖末端の水酸基)を除いた骨格などが挙げられる。また、上記式(2)におけるX3、X4、Y3、Y4、n3、n4は、上記式(ii)におけるものと同じである。
 また、上述の液晶ポリエステル(A)と化合物(B)の付加物は、例えば、液晶ポリエステル(A)が付加反応性基(a)として水酸基又はアシルオキシ基を有する場合であって、化合物(B)として上記式(iii)で表される化合物を用いた場合には、下記式(3)で表される。
Figure JPOXMLDOC01-appb-C000018
 上記式(3)におけるL3は、液晶ポリエステル骨格を示す。当該液晶ポリエステル骨格としては、例えば、液晶ポリエステル(A)から1つの水酸基(分子鎖末端の水酸基)又はアシルオキシ基(分子鎖末端のアシルオキシ基)を除いた骨格、2以上の液晶ポリエステル(A)が1以上の化合物(B)(式(iii)で表される化合物)と付加して連結することにより形成されたもの(付加物)から1つの水酸基(分子鎖末端の水酸基)又はアシルオキシ基(分子鎖末端のアシルオキシ基)を除いた骨格などが挙げられる。また、上記式(3)におけるX5、Y5、n5は、上記式(iii)におけるものと同じである。
 また、上述の液晶ポリエステル(A)と化合物(B)の付加物は、例えば、液晶ポリエステル(A)が付加反応性基として水酸基を有する場合であって、化合物(B)として上記式(iv)で表される化合物を用いた場合には、下記式(4)又は下記式(5)で表される。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 上記式(4)及び式(5)におけるL4は、液晶ポリエステル骨格を示す。当該液晶ポリエステル骨格としては、例えば、液晶ポリエステル(A)から1つの水酸基(分子鎖末端の水酸基)を除いた骨格、2以上の液晶ポリエステル(A)が1以上の化合物(B)(式(iv)で表される化合物)と付加して連結することにより形成されたもの(付加物)から1つの水酸基(分子鎖末端の水酸基)を除いた骨格などが挙げられる。また、上記式(4)及び式(5)におけるX6、Y6、R3~R5、n6は、上記式(iv)におけるものと同じである。
 本発明の熱硬化性液晶ポリエステル組成物は、無機フィラーを含有していてもよい。無機フィラーを含有させることにより、硬化物の性能を目的(用途)に応じて調整することが可能となる。上記無機フィラーとしては、公知乃至慣用の無機フィラーを使用することができ、特に限定されないが、例えば、シリカ(例えば、天然シリカ、合成シリカなど)、酸化アルミニウム(例えば、α-アルミナなど)、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化セリウム、酸化イットリウム、酸化カルシウム、酸化亜鉛、酸化鉄などの酸化物;炭酸カルシウム、炭酸マグネシウムなどの炭酸塩;硫酸バリウム、硫酸アルミニウム、硫酸カルシウムなどの硫酸塩;窒化アルミニウム、窒化ケイ素、窒化チタン、窒化ホウ素などの窒化物;水酸化カルシウム、水酸化アルミニウム、水酸化マグネシウムなどの水酸化物;マイカ、タルク、カオリン、カオリンクレー、カオリナイト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、アメサイト、ベントナイト、アスベスト、ウォラストナイト、セピオライト、ゾノライト、ゼオライト、ハイドロタルサイト、フライアッシュ、脱水汚泥、ガラス、ケイ藻土、ケイ砂、カーボンブラック、センダスト、アルニコ磁石、各種フェライト等の磁性粉、水和石膏、ミョウバン、三酸化アンチモン、マグネシウムオキシサルフェイト、シリコンカーバイド、チタン酸カリウム、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ酸アルミニウム、燐酸マグネシウム、銅、鉄などが挙げられる。上記無機フィラーは、中実構造、中空構造、多孔質構造等のいずれの構造を有していてもよい。また、上記無機フィラーは、例えば、オルガノハロシラン、オルガノアルコキシシラン、オルガノシラザン等の有機ケイ素化合物などの周知の表面処理剤により表面処理されたものであってもよい。なお、本発明の熱硬化性液晶ポリエステル組成物において無機フィラーは、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。中でも、特に、本発明の熱硬化性液晶ポリエステル組成物を半導体封止材用に使用する場合には、シリカ(シリカフィラー)等を使用することが好ましく、硬化物の熱伝導性や放熱特性を調整する場合には、アルミナ(アルミナ微粒子)等を使用することが好ましい。
 本発明の熱硬化性液晶ポリエステル組成物における無機フィラーの含有量は、特に限定されないが、熱硬化性液晶ポリエステル組成物を構成する液晶ポリエステル(A)と化合物(B)の合計量(総量)100重量部に対して、0~500重量部が好ましく、より好ましくは0~300重量部である。なお、上記「熱硬化性液晶ポリエステル組成物を構成する液晶ポリエステル(A)と化合物(B)」には、熱硬化性液晶ポリエステル組成物中に存在する液晶ポリエステル(A)と化合物(B)に加え、上記付加物を構成する液晶ポリエステル(A)と化合物(B)の量も含むものとし、当段落以外についても同様である。
 上記無機フィラーは、本発明の熱硬化性液晶ポリエステル組成物を調製する際(液晶ポリエステル(A)及び化合物(B)を溶融混合する際)にともに配合することもできるし、本発明の熱硬化性液晶ポリエステル組成物をいったん調製した後に配合することもできる。
 本発明の熱硬化性液晶ポリエステル組成物は、硬化反応を促進したり制御するための添加剤を含んでいてもよい。上記添加剤としては、特に限定されないが、例えば、ジアミノ化合物[例えば、ジアミノジフェニルメタンなど]、ジアリル化合物[ジアリルビスフェノールAなど]、トリアジン類[例えば、1,3,5-トリ-2-プロペニル-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、1,3,5-トリス(2-メチル-2-プロペニル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、1,3,5-トリス(2,3-エポキシプロピル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオンなど]などが挙げられる。なお、上記添加剤は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 上記添加剤の含有量(配合量)は、特に限定されないが、熱硬化性液晶ポリエステル組成物を構成する液晶ポリエステル(A)と化合物(B)の合計量100重量部に対して、0~30重量部が好ましく、より好ましくは1~20重量部である。
 上記添加剤は、本発明の熱硬化性液晶ポリエステル組成物を調製する際(液晶ポリエステル(A)及び化合物(B)を溶融混合する際)にともに配合することもできるし、本発明の熱硬化性液晶ポリエステル組成物をいったん調製した後に配合することもできる。
 本発明の熱硬化性液晶ポリエステル組成物は、本発明の効果を損なわない範囲で、その他の添加剤を含んでいてもよい。上記その他の添加剤としては、公知乃至慣用の添加剤を使用でき、特に限定されないが、例えば、シリコーン樹脂、エポキシ樹脂、フッ素樹脂等の有機樹脂;溶剤;安定化剤(酸化防止剤、紫外線吸収剤、耐光安定剤、熱安定化剤など);難燃剤(リン系難燃剤、ハロゲン系難燃剤、無機系難燃剤など);難燃助剤;補強材;核剤;カップリング剤;滑剤;ワックス;可塑剤;離型剤;耐衝撃性改良剤;色相改良剤;流動性改良剤;着色剤(染料、顔料など);分散剤;消泡剤;脱泡剤;抗菌剤;防腐剤;粘度調整剤;増粘剤などの慣用の添加剤が挙げられる。上記その他の添加剤は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。上記その他の添加剤の含有量は、特に限定されないが、熱硬化性液晶ポリエステル組成物の全量(100重量%)に対して、0~5重量%が好ましく、より好ましくは0~2重量%である。上記その他の添加剤は、本発明の熱硬化性液晶ポリエステル組成物を調製する際(液晶ポリエステル(A)及び化合物(B)を溶融混合する際)にともに配合することもできるし、本発明の熱硬化性液晶ポリエステル組成物をいったん調製した後に配合することもできる。
 上述のように、本発明の熱硬化性液晶ポリエステル組成物は、液晶ポリエステル(A)と化合物(B)を溶融混合することにより得られる熱硬化性組成物である。本発明の特徴的な設計思想の一つは、分子鎖末端に付加反応性基(a)を有する液晶ポリエステル(A)、付加反応性基(b)及び熱重合性官能基を分子内に有する化合物(B)として、両成分の溶融混合の際には、液晶ポリエステル(A)の付加反応性基(a)と、化合物(B)の付加反応性基(b)との反応が主に進行し、一方で、化合物(B)の熱重合性官能基同士の反応は実質的に進行しないものを用いることにある。これにより、溶融混合という簡便な作業によって、容易に熱硬化性を有する組成物(熱硬化性組成物)を得ることができ、このようにして得られた熱硬化性組成物は、例えば、250℃以下という比較的低温で硬化させることができ、耐熱性をはじめとする各種物性に優れた硬化物を形成する。
<硬化物>
 本発明の熱硬化性液晶ポリエステル組成物を加熱によって硬化させる(硬化反応を進行させる)ことにより、硬化物(「本発明の硬化物」と称する場合がある)が得られる。加熱によって主に化合物(B)に起因する熱重合性官能基同士の反応(重合反応)が進行し、硬化物が形成される。加熱の手段としては、公知乃至慣用の手段を利用することができ、特に限定されない。
 本発明の熱硬化性液晶ポリエステル組成物を硬化させる際の加熱温度(硬化温度)は、特に限定されないが、170~250℃が好ましく、より好ましくは210~250℃、さらに好ましくは220~250℃である。硬化温度が170℃未満であると、硬化反応の進行が不十分となり、硬化物の物性が低下する場合がある。一方、硬化温度が250℃を超えると、硬化物を生成させる工程が煩雑となり、生産性が低下する場合がある。なお、硬化温度は、硬化させる間一定となるように制御することもできるし、段階的又は連続的に変動するように制御することもできる。
 本発明の熱硬化性液晶ポリエステル組成物を硬化させる際の加熱時間(硬化時間)は、特に限定されないが、3~600分が好ましく、より好ましくは5~480分、さらに好ましくは5~360分である。硬化時間が3分未満であると、硬化反応の進行が不十分となり、硬化物の物性が低下する場合がある。一方、硬化時間が600分を超えると、硬化物の生産性が低下する場合がある。
 本発明の熱硬化性液晶ポリエステル組成物の硬化は、常圧下で行うこともできるし、減圧下又は加圧下で行うこともできる。また、上記硬化は、一段階で行うこともできるし、二段階以上の多段階に分けて行うこともできる。
 本発明の硬化物の、昇温速度10℃/分(空気中)で測定される5%重量減少温度(Td5)は、特に限定されないが、350℃以上(例えば、350~500℃)が好ましく、より好ましくは380℃以上、さらに好ましくは400℃以上である。5%重量減少温度が350℃未満であると、用途によっては耐熱性が不十分となる場合がある。上記5%重量減少温度は、例えば、TG/DTA(示差熱・熱重量同時測定)などにより測定できる。
 本発明の硬化物の空気中における熱分解反応の活性化エネルギーは、特に限定されないが、150kJ/mol以上(例えば、150~350kJ/mol)が好ましく、より好ましくは180kJ/mol以上、さらに好ましくは200kJ/mol以上である。上記活性化エネルギーが150kJ/mol未満であると、用途によっては耐熱性が不十分となる場合がある。なお、上記活性化エネルギーは、例えば、小沢法により算出することができる。小沢法とは、3種類以上の昇温速度でTG測定(熱重量測定)を行い、得られた熱重量減少のデータから熱分解反応の活性化エネルギーを算出する方法である。
 本発明の硬化物は、本発明の熱硬化性液晶ポリエステル組成物を硬化させることにより得られる硬化物であるため、優れた耐熱性を有し、また、優れた加工性、寸法安定性、低線膨張、高熱伝導性、低吸湿性、誘電特性を有する。さらに、本発明の硬化物は、本発明の熱硬化性液晶ポリエステル組成物を250℃以下の比較的低温で加熱することによって得られるため、生産性にも優れる。
 本発明の硬化物は、各種部材や各種構造材等の種々の用途に使用することができる。特に、上述の各種特性に優れるため、フィルム、プリプレグ、プリント配線板、半導体封止材などの用途に好ましく使用できる。即ち、本発明の熱硬化性液晶ポリエステル組成物は、特に、フィルム用熱硬化性組成物、プリプレグ用熱硬化性組成物、プリント配線板用熱硬化性組成物、半導体封止材用熱硬化性組成物などとして好ましく使用することができる。
 以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
[融点、ガラス転移温度]
 下記製造例にて得られた液晶ポリエステルの融点(Tm)及びガラス転移温度(Tg)は、示差走査熱量分析装置(「DSC6200」、エスアイアイ・ナノテクノロジー(株)製)にて、20℃/分の昇温条件(窒素気流下)で測定した。結果を表1に示す。
[熱重量減少]
 下記実施例にて得られた硬化物の5%重量減少温度(Td5)は、TG/DTA(「TG/DTA6300」、エスアイアイ・ナノテクノロジー(株))にて、10℃/分の昇温条件(空気中)で測定した。結果を表2に示す。
[溶融異方性]
 下記製造例にて得られた液晶ポリエステルの溶融物が液晶性を有することを、以下の手順で確認した。なお、下記の確認では、直交偏光子間に等方性の溶融物を挿入した場合には光が透過しないが、光学的異方性を有する溶融物(液晶性ポリマー)を挿入した場合には光が透過する現象を利用した。
 偏光顕微鏡(ライカマイクロシステムズ社製)を使用し、ホットステージ(メトラー・トレド社製)に下記製造例にて得られた液晶ポリエステルを載せて溶融させ、250倍の倍率で観察した。その結果、下記製造例にて得られた液晶ポリエステルの溶融物はいずれも、液晶性を有することが確認された。
製造例1
[液晶ポリエステルa(10量体)の製造]
 表1に示すように、コンデンサーと攪拌機を取り付けた500mLのフラスコに、4-ヒドロキシ安息香酸94.3g(0.682mol)、6-ヒドロキシ-2-ナフトエ酸102.7g(0.546mol)、4,4'-ジヒドロキシビフェニル25.4g(0.136mol)、無水酢酸156.3g(1.53mol)、及び酢酸カリウム10.0mg(0.10mol)を入れ、窒素雰囲気下で140℃まで徐々に温度を上げた後、温度を維持しながら3時間反応させてアセチル化反応を完結させた。次いで、0.8℃/分の速度で340℃まで昇温しながら酢酸及び未反応の無水酢酸を留去した。その後、フラスコ内を徐々に1Torrまで減圧して揮発成分を留去することで、芳香族ユニット(芳香族化合物に由来する構成単位)のみからなる分子鎖の両末端に水酸基を有する液晶ポリエステルaを得た。得られた液晶ポリエステルaの熱分析結果[ガラス転移温度(Tg)、融点(Tm)]は、表1に示す通りであった。なお、得られた液晶ポリエステルaは、液晶ポリエステルaの末端数の算出(特開平5-271394号公報に記載のアミン分解HPLC法による)、及びGPC測定の結果、単量体の10量体であると見積もられた。
製造例2
[液晶ポリエステルb(5量体)の製造]
 表1に示すように、4-ヒドロキシ安息香酸の使用量を81.4g(0.589mol)、6-ヒドロキシ-2-ナフトエ酸の使用量を88.9g(0.472mol)、4,4'-ジヒドロキシビフェニルの使用量を49.4g(0.265mol)、無水酢酸の使用量を165.8g(1.62mol)、酢酸カリウムの使用量を10.0mg(0.10mol)としたこと以外は製造例1と同様の操作を行い、芳香族ユニット(芳香族化合物に由来する構成単位)のみからなる分子鎖の両末端に水酸基を有する液晶ポリエステルbを得た。得られた液晶ポリエステルbの熱分析結果は、表1に示す通りであった。なお、得られた液晶ポリエステルbは、液晶ポリエステルbの末端数の算出(特開平5-271394号公報に記載のアミン分解HPLC法による)、及びGPC測定の結果、単量体の5量体であると見積もられた。
製造例3
[液晶ポリエステルc(20量体)の製造]
 表1に示すように、4-ヒドロキシ安息香酸の使用量を100.9g(0.731mol)、6-ヒドロキシ-2-ナフトエ酸の使用量を110.0g(0.585mol)、4,4'-ジヒドロキシビフェニルの使用量を12.9g(0.069mol)、無水酢酸の使用量を151.4g(1.48mol)、酢酸カリウムの使用量を10.0mg(0.10mol)としたこと以外は製造例1と同様の操作を行い、芳香族ユニット(芳香族化合物に由来する構成単位)のみからなる分子鎖の両末端に水酸基を有する液晶ポリエステルcを得た。得られた液晶ポリエステルcの熱分析結果は、表1に示す通りであった。なお、得られた液晶ポリエステルcは、液晶ポリエステルcの末端数の算出(特開平5-271394号公報に記載のアミン分解HPLC法による)、及びGPC測定の結果、単量体の20量体であると見積もられた。
Figure JPOXMLDOC01-appb-T000021
 表1における略語の意味は、以下の通りである。
HBA : 4-ヒドロキシ安息香酸
HNA : 6-ヒドロキシ-2-ナフトエ酸
BP : 4,4'-ジヒドロキシビフェニル
実施例1
[熱硬化性液晶ポリエステル組成物及びその硬化物の製造]
 表2に示すように、実施例1で得られた液晶ポリエステルa3.27gとメチレンビスマレイミド1.42gとを、170℃で6時間溶融混合し、溶融物(熱硬化性液晶ポリエステル組成物)を得た。その後、得られた溶融物をガラス板に挟んでホットプレートで240℃に加熱し、6時間硬化反応を進行させて、均一な硬化物を得た。上記硬化物の5%重量減少温度(Td5)は、表2に示す通りであった。
実施例2~4
 液晶ポリエステルの種類及び量、ビスマレイミド化合物の量を表2に示すように変更したこと以外は実施例1と同様にして、熱硬化性液晶ポリエステル組成物及びその硬化物を得た。上記硬化物は、何れも均一な硬化物であった。これらの硬化物の5%重量減少温度(Td5)は、表2に示す通りであった。
Figure JPOXMLDOC01-appb-T000022
 表2に示すように、実施例で得られた熱硬化性液晶ポリエステル組成物は、250℃以下の比較的低温で硬化(熱硬化)させることができ、なおかつ得られた硬化物は5%重量減少温度が高く、非常に優れた耐熱性を有していた。
 本発明の熱硬化性液晶ポリエステル組成物を硬化させて得られる硬化物は、各種部材や各種構造材等の種々の用途、特に、フィルム、プリプレグ、プリント配線板、半導体封止材などの用途に好ましく使用できる。

Claims (7)

  1.  分子鎖末端に水酸基及び/又はアシルオキシ基を有する液晶ポリエステル(A)と、水酸基及び/又はアシルオキシ基と反応する官能基並びに熱重合性官能基を分子内に有する化合物(B)とを溶融混合することにより得られる熱硬化性液晶ポリエステル組成物。
  2.  液晶ポリエステル(A)が、芳香族化合物単量体に由来する構成単位を有し、平均重合度が3~30、融点が250℃以下の液晶ポリエステルである請求項1に記載の熱硬化性液晶ポリエステル組成物。
  3.  化合物(B)における水酸基及び/又はアシルオキシ基と反応する官能基が、α,β-不飽和カルボニル基、エポキシ基、マレイミド基、エステル基、酸無水物基、及びカルボキシル基からなる群より選択された少なくとも1種の官能基であり、
     化合物(B)における熱重合性官能基が、マレイミド基、ナジイミド基、フタルイミド基、シアネート基、ニトリル基、フタロニトリル基、スチリル基、エチニル基、プロパルギルエーテル基、ベンゾシクロブタン基、ビフェニレン基、及びこれらの置換体又は誘導体からなる群より選択された少なくとも1種の熱重合性官能基である請求項1又は2に記載の熱硬化性液晶ポリエステル組成物。
  4.  下記式(1)で表される化合物、下記式(2)で表される化合物、下記式(3)で表される化合物、下記式(4)で表される化合物、及び下記式(5)で表される化合物からなる群より選択された少なくとも1種の化合物を含むことを特徴とする熱硬化性液晶ポリエステル組成物。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、L1は液晶ポリエステル骨格を示す。X1、X2は、同一又は異なって、有機基を示す。X1、X2は、互いに結合して式中に示される3つの炭素原子とともに環を形成していてもよい。R1、R2は、同一又は異なって、水素原子又は置換基を有していてもよいアルキル基を示す。Y1、Y2は、同一又は異なって、熱重合性官能基を示す。n1、n2は、同一又は異なって、0以上の整数を示す(但し、n1+n2は1以上の整数である)。]
    Figure JPOXMLDOC01-appb-C000002
    [式(2)中、L2は液晶ポリエステル骨格を示す。X3、X4は、同一又は異なって、有機基を示す。X3、X4は、互いに結合して式中に示される3つの炭素原子とともに環を形成していてもよい。Y3、Y4は、同一又は異なって、熱重合性官能基を示す。n3、n4は、同一又は異なって、0以上の整数を示す(但し、n3+n4は1以上の整数である)。]
    Figure JPOXMLDOC01-appb-C000003
    [式(3)中、L3は液晶ポリエステル骨格を示す。X5は有機基を示す。Y5は熱重合性官能基を示す。n5は1以上の整数を示す。]
    Figure JPOXMLDOC01-appb-C000004
    [式(4)中、L4は液晶ポリエステル骨格を示す。X6は有機基を示す。R3~R5は、同一又は異なって、水素原子又は置換基を有していてもよいアルキル基を示す。Y6は熱重合性官能基を示す。n6は1以上の整数を示す。]
    Figure JPOXMLDOC01-appb-C000005
    [式(5)中、L4、X6、R3~R5、Y6、n6は、前記に同じ。]
  5.  無機フィラーを含む請求項1~4のいずれか1項に記載の熱硬化性液晶ポリエステル組成物。
  6.  請求項1~5のいずれか1項に記載の熱硬化性液晶ポリエステル組成物を硬化させることにより得られる硬化物。
  7.  昇温速度10℃/分(空気中)で測定される5%重量減少温度が350℃以上であり、空気中における熱分解反応の活性化エネルギーが150kJ/mol以上である請求項6に記載の硬化物。
PCT/JP2013/075818 2012-09-28 2013-09-25 熱硬化性液晶ポリエステル組成物及びその硬化物 WO2014050850A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13840670.7A EP2902442A4 (en) 2012-09-28 2013-09-25 HEAT-CURABLE LIQUID CRYSTAL POLYESTER COMPOSITION AND CURED PRODUCT THEREOF
KR1020157009143A KR102032191B1 (ko) 2012-09-28 2013-09-25 열 경화성 액정 폴리에스테르 조성물 및 그의 경화물
US14/427,857 US20150247034A1 (en) 2012-09-28 2013-09-25 Thermosetting liquid-crystal polyester composition and cured product thereof
CN201380050607.4A CN104684996A (zh) 2012-09-28 2013-09-25 热固化性液晶聚酯组合物及其固化物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-217635 2012-09-28
JP2012217635 2012-09-28
JP2012-245771 2012-11-07
JP2012245771A JP6128804B2 (ja) 2012-09-28 2012-11-07 熱硬化性液晶ポリエステル組成物及びその硬化物

Publications (1)

Publication Number Publication Date
WO2014050850A1 true WO2014050850A1 (ja) 2014-04-03

Family

ID=50388247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075818 WO2014050850A1 (ja) 2012-09-28 2013-09-25 熱硬化性液晶ポリエステル組成物及びその硬化物

Country Status (7)

Country Link
US (1) US20150247034A1 (ja)
EP (1) EP2902442A4 (ja)
JP (1) JP6128804B2 (ja)
KR (1) KR102032191B1 (ja)
CN (1) CN104684996A (ja)
TW (1) TWI621640B (ja)
WO (1) WO2014050850A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151763A1 (ja) * 2014-04-02 2015-10-08 ポリプラスチックス株式会社 液晶ポリエステルの製造方法、熱硬化性液晶ポリエステル組成物の製造方法、及び硬化物の製造方法
WO2015151815A1 (ja) * 2014-04-02 2015-10-08 株式会社ダイセル 熱硬化性芳香族ポリエステル組成物及びその製造方法
WO2015151816A1 (ja) * 2014-04-02 2015-10-08 株式会社ダイセル 熱硬化性液晶ポリエステル組成物の製造方法及び硬化物の製造方法
US20170267824A1 (en) * 2016-03-21 2017-09-21 Ticona Llc Prepreg composite containing a crosslinked aromatic polyester
JP2017179119A (ja) * 2016-03-30 2017-10-05 株式会社ダイセル 熱硬化性化合物

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI667283B (zh) * 2014-06-30 2019-08-01 日商日鐵化學材料股份有限公司 Method for producing aromatic polyester, aromatic polyester, curable resin composition and application thereof
JP6687445B2 (ja) * 2016-03-30 2020-04-22 株式会社ダイセル 熱硬化性化合物
JP6789374B2 (ja) * 2017-03-13 2020-11-25 リンテック株式会社 樹脂組成物、樹脂シート、積層体、及び半導体素子
CN110776928A (zh) * 2019-10-23 2020-02-11 东华大学 一种高频印刷电路板用液晶树脂基体及其制备方法
CN113527647B (zh) * 2021-08-04 2022-11-01 中国科学院长春应用化学研究所 一种液晶聚合物及其制备方法,以及液晶聚合物薄膜

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5114612A (en) 1990-04-04 1992-05-19 The United States Of America As Represented By The Department Of Energy Liquid crystal polyester thermosets
JPH05271394A (ja) 1992-03-13 1993-10-19 Mitsubishi Kasei Corp 液晶性ポリエステルおよびその製造方法
JP2002521354A (ja) 1998-07-24 2002-07-16 ロリク アーゲー 架橋性液晶化合物
JP2004509190A (ja) 2000-09-13 2004-03-25 アメリカ合衆国 エステル、エステル−イミド及びエステル−アミドオリゴマーからなる液晶熱硬化物
JP2007119610A (ja) 2005-10-28 2007-05-17 Sumitomo Chemical Co Ltd 液晶ポリエステル樹脂組成物及び該樹脂組成物から得られるフィルム
WO2009051186A1 (ja) * 2007-10-19 2009-04-23 Nissan Chemical Industries, Ltd. 熱硬化膜形成用ポリエステル組成物
JP2010121133A (ja) * 2008-11-18 2010-06-03 Samsung Electronics Co Ltd 熱硬化性組成物およびそれを用いたプリント配線板
JP2011084707A (ja) 2009-10-15 2011-04-28 Samsung Electro-Mechanics Co Ltd 表面処理されたナノ充填剤を含む基板用ナノ複合材料の製造方法
JP2011111619A (ja) 2009-11-26 2011-06-09 Samsung Electro-Mechanics Co Ltd 基板形成用組成物とこれを用いたプリプレグおよび基板
JP2011208140A (ja) * 2010-03-26 2011-10-20 Samsung Electronics Co Ltd 液晶熱硬化性オリゴマーまたはポリマー、並びにこれを含む熱硬化性組成物および基板
JP2011231161A (ja) * 2010-04-26 2011-11-17 Kaneka Corp 高熱伝導性硬化性樹脂および硬化性樹脂組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04178352A (ja) * 1989-12-07 1992-06-25 Sumitomo Chem Co Ltd 芳香族オリゴマーおよびその製造方法
US5692940A (en) * 1994-11-15 1997-12-02 Mitsubishi Gas Chemical Company, Ltd. Sheet material for laminate of printed circuit and laminate for printed circuit using the same
DE19749123A1 (de) * 1997-11-06 1999-05-12 Basf Ag Cholesterische Oligomere mit vernetzbaren Endgruppen
KR101706177B1 (ko) * 2009-03-23 2017-02-13 닛산 가가쿠 고교 가부시키 가이샤 열경화막 형성용 폴리에스테르 조성물
KR101642518B1 (ko) * 2010-03-29 2016-07-26 삼성전기주식회사 열경화성 조성물 및 그를 이용하는 인쇄회로기판

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5114612A (en) 1990-04-04 1992-05-19 The United States Of America As Represented By The Department Of Energy Liquid crystal polyester thermosets
JPH05271394A (ja) 1992-03-13 1993-10-19 Mitsubishi Kasei Corp 液晶性ポリエステルおよびその製造方法
JP2002521354A (ja) 1998-07-24 2002-07-16 ロリク アーゲー 架橋性液晶化合物
US7507784B2 (en) 2000-09-13 2009-03-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Liquid crystalline thermosets from ester, ester-imide, and ester-amide oligomers
US6939940B2 (en) 2000-09-13 2005-09-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Liquid crystalline thermosets from ester, ester-imide, and ester-amide oligomers
JP2004509190A (ja) 2000-09-13 2004-03-25 アメリカ合衆国 エステル、エステル−イミド及びエステル−アミドオリゴマーからなる液晶熱硬化物
JP2007119610A (ja) 2005-10-28 2007-05-17 Sumitomo Chemical Co Ltd 液晶ポリエステル樹脂組成物及び該樹脂組成物から得られるフィルム
WO2009051186A1 (ja) * 2007-10-19 2009-04-23 Nissan Chemical Industries, Ltd. 熱硬化膜形成用ポリエステル組成物
JP2010121133A (ja) * 2008-11-18 2010-06-03 Samsung Electronics Co Ltd 熱硬化性組成物およびそれを用いたプリント配線板
JP2011084707A (ja) 2009-10-15 2011-04-28 Samsung Electro-Mechanics Co Ltd 表面処理されたナノ充填剤を含む基板用ナノ複合材料の製造方法
JP2011111619A (ja) 2009-11-26 2011-06-09 Samsung Electro-Mechanics Co Ltd 基板形成用組成物とこれを用いたプリプレグおよび基板
JP2011208140A (ja) * 2010-03-26 2011-10-20 Samsung Electronics Co Ltd 液晶熱硬化性オリゴマーまたはポリマー、並びにこれを含む熱硬化性組成物および基板
JP2011231161A (ja) * 2010-04-26 2011-11-17 Kaneka Corp 高熱伝導性硬化性樹脂および硬化性樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2902442A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151763A1 (ja) * 2014-04-02 2015-10-08 ポリプラスチックス株式会社 液晶ポリエステルの製造方法、熱硬化性液晶ポリエステル組成物の製造方法、及び硬化物の製造方法
WO2015151815A1 (ja) * 2014-04-02 2015-10-08 株式会社ダイセル 熱硬化性芳香族ポリエステル組成物及びその製造方法
WO2015151816A1 (ja) * 2014-04-02 2015-10-08 株式会社ダイセル 熱硬化性液晶ポリエステル組成物の製造方法及び硬化物の製造方法
JP2015196795A (ja) * 2014-04-02 2015-11-09 ポリプラスチックス株式会社 熱硬化性液晶ポリエステル組成物の製造方法及び硬化物の製造方法
US20170267824A1 (en) * 2016-03-21 2017-09-21 Ticona Llc Prepreg composite containing a crosslinked aromatic polyester
JP2017179119A (ja) * 2016-03-30 2017-10-05 株式会社ダイセル 熱硬化性化合物

Also Published As

Publication number Publication date
KR102032191B1 (ko) 2019-10-15
JP2014080557A (ja) 2014-05-08
TW201422667A (zh) 2014-06-16
KR20150063071A (ko) 2015-06-08
JP6128804B2 (ja) 2017-05-17
US20150247034A1 (en) 2015-09-03
CN104684996A (zh) 2015-06-03
EP2902442A4 (en) 2016-05-18
TWI621640B (zh) 2018-04-21
EP2902442A1 (en) 2015-08-05

Similar Documents

Publication Publication Date Title
JP6128804B2 (ja) 熱硬化性液晶ポリエステル組成物及びその硬化物
EP3299355B1 (en) Phthalonitrile compound
WO1995001393A1 (fr) Composition de resine thermoplastique et son procede de moulage
JP2010007067A (ja) ナノ構造中空炭素材料を含む液晶高分子組成物およびその成形体
KR20090045040A (ko) 전방향족 액정 폴리에스테르
US20160053117A1 (en) Polyetherimide Composition
US20160053118A1 (en) Composition Containing a Polyetherimide and Low Naphthenic Liquid Crystalline Polymer
WO2013133181A1 (ja) 熱伝導性樹脂成形体および当該熱伝導性樹脂成形体の製造方法
WO2017082710A1 (ko) 유동성이 향상된 전방향족 폴리에스테르 수지의 제조방법 및 이에 따라 제조된 전방향족 폴리에스테르
JP6342202B2 (ja) 熱硬化性芳香族ポリエステル組成物
CN112088188B (zh) 聚酰亚胺树脂组合物
JP6297892B2 (ja) 熱硬化性液晶ポリエステル組成物及びその硬化物
WO2015151815A1 (ja) 熱硬化性芳香族ポリエステル組成物及びその製造方法
JP6412329B2 (ja) 熱硬化性芳香族エステルの製造方法
JP2011137064A (ja) 液晶ポリエステル樹脂組成物、成形品及び複合部材
JP2017078180A (ja) 熱硬化性液晶ポリエステル組成物の製造方法及び硬化物の製造方法
JP2015196799A (ja) 熱硬化性芳香族ポリエステル組成物の製造方法
US20140088284A1 (en) Crosslinkable Liquid Crystalline Polymer
JP2015196802A (ja) 熱硬化性芳香族エステル、その組成物、その硬化物、及びその硬化物の製造方法
KR100910765B1 (ko) 액정성 폴리에스테르 컴파운드 및 이의 제조방법
EP0171707A2 (de) Verfahren zur Herstellung von Polyimidestern der Trimellitsäure
JP6278799B2 (ja) 熱硬化性液晶ポリエステル組成物の製造方法及び硬化物の製造方法
JP2015196798A (ja) 熱硬化性芳香族ポリエステル組成物の製造方法
JP2015196801A (ja) 熱硬化性芳香族エステル組成物、その硬化物、及びその硬化物の製造方法
KR102056099B1 (ko) 프탈로니트릴 화합물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13840670

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14427857

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157009143

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013840670

Country of ref document: EP