WO2014050112A1 - 固体電解コンデンサ及びその製造方法 - Google Patents

固体電解コンデンサ及びその製造方法 Download PDF

Info

Publication number
WO2014050112A1
WO2014050112A1 PCT/JP2013/005717 JP2013005717W WO2014050112A1 WO 2014050112 A1 WO2014050112 A1 WO 2014050112A1 JP 2013005717 W JP2013005717 W JP 2013005717W WO 2014050112 A1 WO2014050112 A1 WO 2014050112A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
insulating substrate
cathode
hole
connecting member
Prior art date
Application number
PCT/JP2013/005717
Other languages
English (en)
French (fr)
Inventor
藤井 永造
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to CN201380050360.6A priority Critical patent/CN104685590B/zh
Priority to JP2014538189A priority patent/JP6286673B2/ja
Publication of WO2014050112A1 publication Critical patent/WO2014050112A1/ja
Priority to US14/663,293 priority patent/US9741495B2/en
Priority to US15/655,782 priority patent/US10014119B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/04Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the partial melting of at least one layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/18Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0004Cutting, tearing or severing, e.g. bursting; Cutter details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • H01G2/06Mountings specially adapted for mounting on a printed-circuit support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/10Sealing, e.g. of lead-in wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/16Capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • Y10T156/1062Prior to assembly
    • Y10T156/1064Partial cutting [e.g., grooving or incising]

Definitions

  • the present invention relates to a solid electrolytic capacitor in which a capacitor element is disposed on an insulating substrate, and more particularly to a solid electrolytic capacitor characterized by an electrode structure formed on the insulating substrate.
  • FIG. 21 is a cross-sectional view showing an example of a conventional solid electrolytic capacitor (see, for example, Patent Document 1).
  • this solid electrolytic capacitor includes a capacitor element 101 and an insulating substrate 102, and the capacitor element 101 is disposed on the upper surface of the insulating substrate 102.
  • Capacitor element 101 includes anode lead 103 and anode body 113 as anode members, electrolyte layer 114 and cathode layer 104 as cathode members, and dielectric member 115 interposed between the anode member and the cathode member. ing.
  • the insulating substrate 102 On the upper surface of the insulating substrate 102, the anode connecting member 105 and the cathode connecting member 106 are arranged at positions separated from each other. On the lower surface of the insulating substrate 102, the anode terminal 107 and the cathode terminal 108 are arranged at positions separated from each other. Further, the insulating substrate 102 is formed with an anode conductive via 109 and a cathode conductive via 110 which are configured by filling holes penetrating from the upper surface to the lower surface with a conductive material.
  • the anode conductive via 109 electrically connects the anode connecting member 105 and the anode terminal 107 to each other
  • the cathode conductive via 110 electrically connects the cathode connecting member 106 and the cathode terminal 108 to each other.
  • the anode connecting member 105 and the anode lead 103 are electrically connected to each other by interposing a pillow member 111 therebetween.
  • the cathode connecting member 106 and the cathode layer 104 are electrically connected to each other by interposing a conductive paste 112 therebetween.
  • the pillow member 111 shown in FIG. At this time, the pillow member 111 is bonded to the anode connecting member 105 by the conductive adhesive member 116.
  • the position of the pillow member 111 is easily shifted from a predetermined position where the pillow member 111 is to be disposed.
  • the predetermined position is a position where the anode lead 103 reliably contacts the pillow member 111 when the capacitor element 101 is disposed on the insulating substrate 102.
  • the size of the pillow member 111 has been reduced, and such misalignment has become prominent. For this reason, when the capacitor element 101 is disposed on the upper surface of the insulating substrate 102, a poor electrical connection is likely to occur between the anode lead 103 and the pillow member 111.
  • an object of the present invention is to provide a solid electrolytic capacitor in which poor electrical connection is unlikely to occur between the anode member and the pillow member of the capacitor element and a method for manufacturing the same.
  • the solid electrolytic capacitor according to the present invention includes an insulating substrate having an upper surface and a lower surface, a capacitor element disposed on the upper surface of the insulating substrate, an anode lead structure, and a cathode lead structure.
  • the capacitor element has an anode member, a cathode member, and a dielectric member.
  • the anode lead structure has an anode terminal disposed on the lower surface of the insulating substrate and is electrically connected to the anode member of the capacitor element.
  • the cathode lead structure has a cathode terminal disposed on the lower surface of the insulating substrate, and is electrically connected to the cathode member of the capacitor element.
  • the anode lead structure further includes a first anode connecting member, a second anode connecting member, a pillow member, and an anode bonding member.
  • the first anode connecting member has a front surface and a back surface, and the back surface is in contact with the upper surface of the insulating substrate.
  • the 1st anode connection member is formed with the recessed part which dented the surface locally, or the through-hole penetrated from the surface to a back surface.
  • the second anode connecting member electrically connects the first anode connecting member and the anode terminal to each other.
  • the pillow member has a top surface and a bottom surface, and electrically connects the anode member of the capacitor element and the first anode connecting member to each other.
  • the anode bonding member bonds the pillow member to the first anode connecting member.
  • a part of the anode bonding member enters the recess or the through hole of the first anode connecting member, and is in contact with the edge of the bottom surface of the pillow member at a position on or near the recess or the through hole. Yes.
  • a recess or a through hole is provided at a position where the pillow member is to be disposed.
  • the edge part of the bottom face of a pillow member is arrange
  • the shape of the bottom surface of the pillow member is a polygon having a plurality of corners and a plurality of sides
  • the first anode connecting member includes a plurality of corners.
  • a recess or a through hole is formed at a position overlapping with at least two corners.
  • the first anode connecting member is formed with a recess or a through hole at a position overlapping with at least two of the plurality of sides.
  • the second anode connection member is a conductive via that penetrates the insulating substrate from the upper surface to the lower surface, and the recess or the through hole of the first anode connection member is on the conductive via. Is formed.
  • the manufacturing method according to the present invention manufactures a solid electrolytic capacitor including an insulating substrate having an upper surface and a lower surface, a capacitor element disposed on the upper surface of the insulating substrate, an anode lead structure, and a cathode lead structure.
  • the capacitor element has an anode member, a cathode member, and a dielectric member.
  • the anode lead structure has an anode terminal disposed on the lower surface of the insulating substrate and is electrically connected to the anode member of the capacitor element.
  • the cathode lead structure has a cathode terminal disposed on the lower surface of the insulating substrate, and is electrically connected to the cathode member of the capacitor element.
  • the first anode connecting member is formed on the upper surface of the insulating substrate, and the first anode connecting member is formed with a recess that locally dents the surface or a through hole that penetrates from the surface to the back surface.
  • an adhesive material including a conductive material is applied to the surface of the first anode connecting member.
  • a pillow member is disposed on the first anode connecting member. At this time, the bottom surface of the pillow member is brought into contact with the adhesive material, and the edge of the bottom surface of the pillow member is overlapped with the recess or the through hole of the first anode connection member. Thereafter, the conductive material is melted by heating the adhesive material.
  • the predetermined position where the pillow member should be arranged is defined by the position of the recess or the through hole.
  • the position of the pillow member may be deviated from the predetermined position.
  • the conductive material is melted by heating the adhesive material, the molten conductive material flows into the inside of the recess or the through-hole, and thereby the molten conductive material is contained in the adhesive material. A flow will occur. Due to this flow, forces in various directions along the surface of the first anode connecting member act on the pillow member.
  • the anode member and the pillow member of the capacitor element are reliably in contact with each other, and as a result, poor electrical connection is less likely to occur between them.
  • the conductive material included in the adhesive material a material having wettability with respect to the first anode connecting member when in a molten state is used.
  • the molten conductive material wets and spreads along the surface of the first anode connection member, and the recess formed in the first anode connection member or It becomes easy to flow into the inside of the through hole.
  • the molten conductive material tends to flow in the adhesive material.
  • FIG. 2 is a top view of a region II shown in FIG. 1. It is sectional drawing used for description of the 1st process of the electrode formation process performed with the manufacturing method of the solid electrolytic capacitor which concerns on 1st Embodiment. It is (a) sectional drawing and (b) top view used for description of the 2nd process of an electrode formation process. It is sectional drawing used for description of the 3rd process of an electrode formation process. It is (a) sectional drawing and (b) top view used for description of the 4th process of an electrode formation process. It is (a) sectional drawing and (b) top view used for description of the 5th process of an electrode formation process.
  • FIG. 1 is a cross-sectional view showing a solid electrolytic capacitor according to a first embodiment of the present invention.
  • the solid electrolytic capacitor includes a capacitor element 1, an insulating substrate 2, an anode lead structure 3, a cathode lead structure 4, and an exterior body 5.
  • the capacitor element 1 includes an anode body 11, an anode lead 12, a dielectric layer 13, an electrolyte layer 14, and a cathode layer 15.
  • the anode body 11 is composed of a porous sintered body having conductivity.
  • the anode lead 12 is composed of a conductive wire.
  • the anode lead 12 is planted in the anode body 11, and a part of the anode lead 12 (leading portion 12 a) is drawn from the outer peripheral surface of the anode body 11.
  • valve metals such as titanium (Ti), tantalum (Ta), aluminum (Al), and niobium (Nb) are used.
  • titanium (Ti), tantalum (Ta), aluminum (Al), and niobium (Nb) are suitable as materials to be used because their oxides (dielectric layer 13) have a high dielectric constant.
  • the conductive material may be an alloy containing a valve metal as a main component, such as an alloy made of two or more kinds of valve metals, an alloy made of a valve metal and another substance, or the like.
  • the dielectric layer 13 is formed on the surface of the conductive material constituting the anode body 11. Specifically, the dielectric layer 13 is an oxide film formed by oxidizing the surface of the conductive material constituting the anode body 11. Therefore, the dielectric layer 13 is formed on the outermost peripheral surface of the anode body 11 and the inner peripheral surface of fine holes existing in the anode body 11. In FIG. 1, only a portion of the dielectric layer 13 formed on the outermost peripheral surface of the anode body 11 is schematically shown.
  • the electrolyte layer 14 is formed on the surface of the dielectric layer 13. Specifically, the electrolyte layer 14 is formed on the outermost peripheral surface of the dielectric layer 13 and on the inner side of fine holes existing in the anode body 11.
  • a conductive inorganic material such as manganese dioxide, or a conductive organic material such as a TCNQ (Tetracyano-quinodimethane) complex salt or a conductive polymer is used. Note that various materials that are not limited to these conductive inorganic materials and conductive organic materials can be used as the electrolyte material.
  • the cathode layer 15 is formed on the outermost peripheral surface of the electrolyte layer 14.
  • the cathode layer 15 includes a carbon layer (not shown) formed on the outermost peripheral surface of the electrolyte layer 14 and a silver paint layer (not shown) formed on the outer peripheral surface of the carbon layer. It is configured.
  • the cathode layer 15 is not limited to this, and any cathode layer 15 may be used as long as it has a current collecting function.
  • the anode member 11 and the anode lead 12 constitute the anode member of the capacitor element 1
  • the electrolyte layer 14 and the cathode layer 15 constitute the cathode member of the capacitor element
  • the dielectric layer 13 constitutes the dielectric of the capacitor element 1.
  • a body member is configured.
  • the insulating substrate 2 is a flat substrate made of an electrically insulating material such as polyimide or glass epoxy, and has an upper surface 2a and a lower surface 2b.
  • the capacitor element 1 is disposed on the upper surface 2a so that the extending direction of the anode lead 12 is parallel to the upper surface 2a.
  • the anode lead structure 3 is an electrode structure that draws an anode current path leading to the anode lead 12 to the lower surface 2 b of the insulating substrate 2.
  • the anode lead structure 3 includes an anode connection layer 31, an anode terminal 32, an anode plating layer 33, a pillow member 34, and an anode bonding member 35.
  • the anode connection layer 31 is disposed on the upper surface 2a of the insulating substrate 2 and has a back surface 31b in contact with the upper surface 2a.
  • the anode terminal 32 is disposed on the lower surface 2b of the insulating substrate 2 and has a back surface 32b in contact with the lower surface.
  • a metal foil or a metal plate made of a metal material such as copper is used for the anode connection layer 31 and the anode terminal 32.
  • a plating layer may be formed on the surface 32 a of the anode terminal 32.
  • anode connection layer 31 a plurality of anode connection layer through-holes 211 penetrating from the front surface 31a to the back surface 31b are formed.
  • the insulating substrate 2 is formed with a plurality of insulating substrate through holes 221 penetrating from the upper surface 2a to the lower surface 2b.
  • the insulating substrate through hole 221 reaches the back surface 32 b of the anode terminal 32.
  • the anode connection layer through holes 211 are formed one by one on the insulating substrate through holes 221. Accordingly, the anode connection layer through hole 211 and the insulating substrate through hole 221 communicate with each other.
  • the diameters of the anode connection layer through hole 211 and the insulating substrate through hole 221 are preferably 50 to 150 ⁇ m, respectively.
  • the anodic plating layer 33 is formed on the surface 31 a of the anode connection layer 31, the inner surface of the anode connection layer through hole 211, the inner surface of the insulating substrate through hole 221, and the region in contact with the insulating substrate through hole 221 among the back surface 32 b of the anode terminal 32. Is formed.
  • a connecting member 301 is configured.
  • an anode conductive via is formed by the portion formed on the inner surface of each insulating substrate through-hole 221 and the back surface 32b of the anode terminal 32 in the anode plating layer 33, and this anode conductive via is the anode lead structure 3.
  • the second anode connecting member 302 is formed.
  • the first anode connecting member 301 and the anode terminal 32 are electrically connected to each other by the second anode connecting member 302.
  • the first anode connecting member 301 is formed with a plurality of first through holes 21 penetrating from the surface (the surface of the anodic plating layer 33) to the back surface (the back surface 31b of the anode connecting layer 31).
  • Each second anode connecting member 302 has a first recess 22, and the inside of the first recess 22 communicates with the first through hole 21 existing on the first recess 22.
  • a material having high conductivity such as copper is used as a material constituting the anodic plating layer 33.
  • the thickness of the anodic plating layer 33 is preferably 2 to 20 ⁇ m, and the anodic plating layer 33 completely blocks the anode connection layer through hole 211 and the insulating substrate through hole 221. It is formed so that there is no.
  • the pillow member 34 is interposed between the lead portion 12 a of the anode lead 12 and the first anode connecting member 301, and the top surface 34 a electrically connected to the lead portion 12 a and the first anode connecting member 301 An electrically connected bottom surface 34b. Thereby, the pillow member 34 electrically connects the anode lead 12 and the first anode connecting member 301 to each other.
  • FIG. 2 is a top view of a region II shown in FIG.
  • illustration of the exterior body 5 is abbreviate
  • the pillow member 34 has a rectangular parallelepiped shape, and the shape of the bottom surface 34 b of the pillow member 34 is a quadrangle having four corner portions 341 and four side portions 342.
  • the first anode connecting member 301 is provided with six first through holes 21, of which four first through holes 21 are formed at positions overlapping with the four corner portions 341, respectively, and the remaining two The first through hole 21 is formed at a position where it overlaps with each of the two side portions 342.
  • the two side portions 342 are two side portions of the four side portions 342 that extend in parallel to each other in a direction substantially perpendicular to the extending direction of the anode lead 12.
  • the positional relationship between the pillow member 34 and the first through hole 21 is not limited to the above relationship.
  • one or a plurality of first through holes 21 may be formed at a position overlapping at least one of the four corner portions 341 and the four side portions 342. That is, the present invention includes a relationship in which only one first through hole 21 overlaps the corner portion 341 or the side portion 342, a relationship in which two or more first through holes 21 overlap one side portion 342, and the like. included.
  • the corner of the four corners 341 overlaps with at least two corners 341.
  • first through-holes 21 corresponding to the number of the portions 341 overlap each other, or the number of first through-holes corresponding to the side portion 342 at a position overlapping with at least two of the four side portions 342. It is preferable that each 21 overlaps.
  • the shape of the bottom surface 34b of the pillow member 34 is not limited to a quadrangle, and may be various polygons having a plurality of corners and a plurality of sides. Furthermore, the shape of the bottom surface 34b of the pillow member 34 may be a shape having a curved portion such as a rounded polygonal corner, a circle, or an ellipse. In this case, it is preferable that one or a plurality of first through holes 21 be formed at a position overlapping the curved portion.
  • the anode bonding member 35 has the pillow member 34 bonded to the first anode connecting member 301. Specifically, a part of the anode bonding member 35 enters each first through hole 21, and the corner portion 341 or the side portion 342 of the bottom surface 34 b of the pillow member 34 at a position on each first through hole 21. Is in contact with In the present embodiment, part of the anode bonding member 35 also enters the first recess 22 through the first through hole 21.
  • the conductive material constituting the anode bonding member 35 contains solder as a main component. Specifically, a conductive material having wettability with respect to the first anode connecting member 301 in the molten state is used as a constituent material of the anode bonding member 35.
  • the surface of the first anode connecting member 301 is constituted by the anodic plating layer 33. Therefore, the solder is a conductive material having high wettability with respect to the first anode connecting member 301 when in a molten state.
  • the cathode lead structure 4 is an electrode structure that draws a cathode current path leading to the cathode layer 15 to the lower surface 2 b of the insulating substrate 2.
  • the cathode lead structure 4 includes a cathode connection layer 41, a cathode terminal 42, and a cathode plating layer 43.
  • the cathode connection layer 41 is disposed on the upper surface 2a of the insulating substrate 2 at a position separated from the anode connection layer 31, and has a back surface 41b in contact with the upper surface 2a.
  • the cathode terminal 42 is disposed on the lower surface 2b of the insulating substrate 2 at a position separated from the anode terminal 32, and has a back surface 42b in contact with the lower surface 2b.
  • a metal foil or a metal plate made of a metal material such as copper is used for the cathode connection layer 41 and the cathode terminal 42.
  • a plating layer may be formed on the surface 42 a of the cathode terminal 42.
  • the cathode connection layer 41 is formed with a plurality of cathode connection layer through holes 231 penetrating from the front surface 41a to the back surface 41b.
  • the insulating substrate 2 is formed with a plurality of insulating substrate through holes 241 penetrating from the upper surface 2a to the lower surface 2b.
  • the insulating substrate through hole 241 reaches the back surface 42 b of the cathode terminal 42.
  • the cathode connection layer through holes 231 are formed one by one on the insulating substrate through holes 241. Therefore, the cathode connection layer through hole 231 and the insulating substrate through hole 241 communicate with each other.
  • the diameters of the cathode connection layer through-hole 231 and the insulating substrate through-hole 241 are preferably 50 to 150 ⁇ m, respectively.
  • the cathode plating layer 43 is formed on the surface 41 a of the cathode connection layer 41, the inner surface of the cathode connection layer through hole 231, the inner surface of the insulating substrate through hole 241, and the region in contact with the insulating substrate through hole 241 among the back surface 42 b of the cathode terminal 42. Is formed.
  • the cathode connection layer 41 and the portion 431 of the cathode plating layer 43 formed on the surface 41a of the cathode connection layer 41 and the inner surface of the cathode connection layer through-hole 231 constitute the first cathode of the cathode lead structure 4.
  • a connecting member 401 is configured.
  • a cathode conductive via is formed by the portion formed on the inner surface of each insulating substrate through-hole 241 and the back surface 42b of the cathode terminal 42 in the cathode plating layer 43, and this cathode conductive via constitutes the cathode lead structure 4.
  • This is the second cathode connecting member 402.
  • the first cathode connection member 401 and the cathode terminal 42 are electrically connected to each other by the second cathode connection member 402.
  • the first cathode connection member 401 is formed with a plurality of second through holes 23 penetrating from the surface (the surface of the cathode plating layer 43) to the back surface (the back surface 41b of the cathode connection layer 41).
  • Each second cathode connecting member 402 is formed with a second recess 24, and the inside of the second recess 24 communicates with the second through hole 23 existing thereon.
  • a material having high conductivity such as copper is used as the material constituting the cathode plating layer 43.
  • the thickness of the cathode plating layer 43 is preferably 2 to 20 ⁇ m, and the cathode plating layer 43 completely blocks the cathode connection layer through hole 231 and the insulating substrate through hole 241. It is formed so that there is no.
  • the capacitor element 1 is connected to the anode lead structure 3 and the cathode lead structure 4 as follows. That is, the lead portion 12a of the anode lead 12 is welded to the top surface 34a of the pillow member 34, whereby the anode lead 12 and the pillow member 34 are electrically connected to each other. Further, the cathode layer 15 and the first cathode connecting member 401 are electrically connected to each other by interposing the conductive paste 6 therebetween.
  • the outer package 5 covers the capacitor element 1 on the upper surface 2 a of the insulating substrate 2.
  • the exterior body 5 is not formed on the lower surface 2 b of the insulating substrate 2.
  • the surface 32a of the anode terminal 32 and the surface 42a of the cathode terminal 42 constitute the lower surface electrode of the solid electrolytic capacitor.
  • the exterior body 5 is comprised from the electrically insulating material which functions as a sealing material, such as an epoxy resin and a silicone resin.
  • the edge (corner portion 341 or side portion 342) of the bottom surface 34b of the pillow member 34 overlaps the first through hole 21, while the majority of the bottom surface 34b is the first anode connecting member 301.
  • the surface the flat surface of the anodic plating layer 33
  • it overlaps with a region different from the region where the first through hole 21 is formed. Therefore, the pillow member 34 is fixed by the anode bonding member 35 on the base with the first anode connecting member 301 as the base. Therefore, the pillow member 34 is not easily inclined.
  • the electrode forming step is a step of forming the anode lead structure 3 and the cathode lead structure 4 and includes the first to sixth steps.
  • FIG. 3 is a cross-sectional view used for explaining the first step of the electrode forming step.
  • metal foils 51 and 52 made of a metal material such as copper are attached to the upper surface 2a and the lower surface 2b of the insulating substrate 2, respectively.
  • a metal plate may be attached to the upper surface 2a and the lower surface 2b of the insulating substrate 2 instead of the metal foils 51 and 52.
  • FIGS. 4A and 4B are a cross-sectional view and a top view, respectively, used for explaining the second process of the electrode forming process.
  • the metal foil 51 and the insulating substrate 2 are subjected to an etching process, whereby the anode connection layer 31 and the cathode connection layer 41 are formed from the metal foil 51.
  • an anode connection layer through hole 211, an insulating substrate through hole 221, a cathode connection layer through hole 231, and an insulating substrate through hole 241 are formed.
  • the anode terminal 32 and the cathode terminal 42 are formed from the metal foil 52 by performing an etching process on the metal foil 52.
  • the six anode connection layer through holes 211 are formed in the anode connection layer 31.
  • the six anode connection layer through-holes 211 are such that the edge of the bottom surface 34b of the pillow member 34 overlaps the center of all the anode connection layer through-holes 211 when the pillow member 34 is disposed at the predetermined position P. It is formed as follows. Specifically, the six anode connection layer through-holes 211 have four corners 341 of the bottom surface 34b overlapping the centers of the four anode connection layer through-holes 211, and the remaining two anode connection layer through-holes. Two sides 342 of the bottom surface 34b are formed so as to overlap each other at the center of 211.
  • FIG. 5 is a cross-sectional view used for explaining the third step of the electrode forming step.
  • An anodic plating layer 33 is formed by performing a plating process on the regions exposed by the formation of 221.
  • the first anode connecting member 301 and the second anode connecting member 302 are formed, the first through hole 21 is formed in the first anode connecting member 301, and the second anode connecting member 302 is further provided with the second anode connecting member 302. 1 recess 22 is formed.
  • the insulating substrate through hole 241 is formed among the surface 41 a of the cathode connection layer 41, the inner surface of the cathode connection layer through hole 231, the inner surface of the insulating substrate through hole 241, and the back surface 42 b of the cathode terminal 42.
  • the cathode plating layer 43 is formed by performing a plating process on the exposed areas.
  • plating layers may also be formed on the surface 32a of the anode terminal 32 and the surface 42a of the cathode terminal 42.
  • FIGS. 6A and 6B are a cross-sectional view and a top view, respectively, used for explaining the fourth process of the electrode forming process.
  • An adhesive material 53 containing a conductive material is applied to R.
  • a solder paste containing solder powder and flux is used as the adhesive material 53.
  • FIGS. 7A and 7B are a cross-sectional view and a top view, respectively, used for explaining the fifth process of the electrode forming process.
  • the bottom surface 34 b of the pillow member 34 is brought into contact with the adhesive material 53 by disposing the pillow member 34 on the first anode connection member 301.
  • the four corners 341 of the bottom surface 34b of the pillow member 34 are formed in the four first through holes 21 that exist in the upper and lower stages in the paper surface of FIG. Overlapping.
  • the two side portions 342 of the bottom surface 34b of the pillow member 34 are overlapped with the two first through holes 21 existing in the middle in the paper surface of FIG.
  • the pillow member 34 is arranged at the predetermined position P.
  • the position of the pillow member 34 may be shifted from the predetermined position P.
  • the 1st through-hole 21 is arrange
  • FIG. The region is a predetermined position P.
  • FIGS. 9A and 9B are a cross-sectional view and a top view, respectively, used for explaining the sixth process of the electrode forming process.
  • the adhesive material 53 is heated to melt the solder powder and the flux in the adhesive material 53.
  • the molten solder aggregates and wets and spreads on the bottom surface 34 b of the pillow member 34 and the surface of the anodic plating layer 33.
  • the melted solder has high wettability particularly with respect to the anodic plating layer 33. Accordingly, as indicated by solid arrows in FIG. 9A, the melted solder spreads along the surface of the anodic plating layer 33, while the inner sides of the first through holes 21 and the corresponding first recesses 22 corresponding thereto. Flow into.
  • the force acting in the direction deviating from the predetermined position P acts in the direction opposite to the direction as shown by the white arrow in FIG.
  • the power is greater.
  • the pillow member 34 is drawn toward the predetermined position P, and the position of the pillow member 34 substantially coincides with the predetermined position P. That is, the position of the pillow member 34 is prevented from being greatly deviated from the predetermined position P.
  • the solder and flux are solidified.
  • the anode bonding member 35 is formed, and an electrically good connection state is formed between the pillow member 34 and the first anode connecting member 301.
  • the position of the pillow member 34 is fixed at the predetermined position P or a position slightly shifted from the position. Furthermore, an anchor effect is obtained when a part of the anode bonding member 35 enters each first through hole 21 and the corresponding first recess 22, and as a result, the pillow member 34 and the first anode connecting member 301. And the bonding strength is improved.
  • the element placement process will be described with reference to FIG.
  • the conductive paste 6 is applied to the surface of the first cathode connection member 401 (the surface of the cathode plating layer 43).
  • the capacitor element 1 is disposed on the upper surface 2 a of the insulating substrate 2.
  • the posture of the capacitor element 1 is adjusted so that the extending direction of the anode lead 12 is parallel to the upper surface 2a.
  • the lead portion 12 a of the anode lead 12 is brought into contact with the top surface 34 a of the pillow member 34, and the cathode layer 15 is brought into contact with the conductive paste 6 on the first cathode connection member 401.
  • the contact surface between the anode lead 12 and the pillow member 34 is welded.
  • the position of the pillow member 34 is fixed to the predetermined position P or a position slightly shifted from the position. Therefore, when the capacitor element 1 is disposed on the upper surface 2 a of the insulating substrate 2, the anode lead 12 and the pillow member 34 are reliably in contact with each other. Therefore, a good connection state is formed between the anode lead 12 and the pillow member 34 after welding, and as a result, poor electrical connection is less likely to occur.
  • the exterior body forming process will be described with reference to FIG.
  • the exterior body 5 is molded on the upper surface 2a of the insulating substrate 2 using a resin such as an epoxy resin.
  • the exterior body 5 is formed by a transfer molding method using a sealing material including an epoxy resin (main agent), an imidazole compound (curing agent), and silica particles as a filler.
  • a sealing material including an epoxy resin (main agent), an imidazole compound (curing agent), and silica particles as a filler.
  • the capacitor element 1 is covered with the outer package 5.
  • a solid electrolytic capacitor is completed.
  • it may replace with an epoxy resin and may use a silicone resin as a sealing material.
  • FIG. 11 is a cross-sectional view showing a solid electrolytic capacitor according to a second embodiment of the present invention.
  • the anode lead-out structure 3 and the cathode lead-out structure 4 which are different from the structure of 1st Embodiment among the structures of this solid electrolytic capacitor are demonstrated. Since other configurations are the same as those of the first embodiment, the description thereof is omitted.
  • the anode lead-out structure 3 is a first anode connection member having a configuration different from that of the first anode connection member 301 and the second anode connection member 302 of the first embodiment. 303 and a second anode connecting member 304.
  • the second anode connection member 304 is an anode conductive via formed of the conductive material 36 filled in each insulating substrate through hole 221. The surface of the conductive material 36 is recessed with respect to the upper surface 2 a of the insulating substrate 2.
  • the first anode connecting member 303 is a metal layer formed on the upper surface 2 a of the insulating substrate 2 and the surface of the conductive material 36.
  • the metal layer is a plated layer having conductivity, and is recessed at a position on the surface of the conductive material 36.
  • the first anode connecting member 303 is formed with a plurality of recesses 25 whose surface is locally recessed at a position on the second anode connecting member 304 (anode conductive via).
  • the recessed part 25 is formed instead of the 1st through-hole 21 of 1st Embodiment.
  • the positional relationship between the pillow member 34 and the first through hole 21 described in the first embodiment is applied as it is to the positional relationship between the pillow member 34 and the recess 25 (see FIG. 2).
  • a part of the anode bonding member 35 enters each concave portion 25 and is in contact with the corner portion 341 or the side portion 342 of the bottom surface 34b of the pillow member 34 at a position on each concave portion 25 (see FIG. 2).
  • the first anode connecting member 303 may be a metal foil or a metal plate made of a metal material such as copper.
  • the recess 25 is formed by, for example, pressing the metal foil or the metal plate.
  • the cathode lead-out structure 4 is different from the first cathode connection member 401 and the second cathode connection member 402 in the first embodiment in the first cathode connection.
  • a member 403 and a second cathode connecting member 404 are provided.
  • the second cathode connection member 404 is a cathode conductive via formed of a conductive material 37 filled in each insulating substrate through hole 241.
  • the first cathode connecting member 403 is a plating layer formed on the upper surface 2 a of the insulating substrate 2 and the surface of the conductive material 37.
  • FIG. 12 is a cross-sectional view showing another example of the anode lead structure 3.
  • the surface of the conductive material 36 constituting the second anode connection member 304 may be recessed downward from the upper surface 2 a of the insulating substrate 2. According to this structure, the depth of each recessed part 25 becomes large.
  • the electrode forming step is composed of first to seventh steps.
  • FIG. 13 is a cross-sectional view used for explaining the first step of the electrode forming step.
  • a metal foil 52 made of a metal material such as copper is attached to the lower surface 2 b of the insulating substrate 2.
  • a metal plate may be attached to the lower surface 2 b of the insulating substrate 2 instead of the metal foil 52.
  • FIG. 14 is a cross-sectional view used for explaining the second step of the electrode forming step.
  • the insulating substrate through hole 221 and the insulating substrate through hole 241 are formed by etching the insulating substrate 2.
  • the insulating substrate through hole 221 is formed so that the edge of the bottom surface 34b overlaps the center of all the insulating substrate through holes 221 when the pillow member 34 is disposed at the predetermined position P (see FIG. 4 (b)).
  • the anode terminal 32 and the cathode terminal 42 are formed from the metal foil 52 by performing an etching process on the metal foil 52.
  • FIG. 15 is a cross-sectional view used for explaining the third step of the electrode forming step.
  • the insulating substrate through hole 221 is filled with the conductive material 36.
  • the surface of the filled conductive material 36 is recessed with respect to the upper surface 2 a of the insulating substrate 2 or retracted downward from the upper surface 2 a. .
  • the insulating substrate through hole 241 is filled with the conductive material 37. In this way, the second anode connecting member 304 and the second cathode connecting member 404 are formed.
  • FIG. 16 is a cross-sectional view used for explaining the fourth step of the electrode formation step.
  • the upper surface 2 a of the insulating substrate 2 and the surface of the conductive material 36 are plated to form a plated layer that becomes the first anode connecting member 303.
  • the thickness of the plating layer is adjusted so that the surface of the plating layer is recessed on the surface of the conductive material 36. In this way, a plurality of recesses 25 are formed in the first anode connecting member 303.
  • a plating layer to be the first cathode connecting member 403 is formed by plating the upper surface 2 a of the insulating substrate 2 and the surface of the conductive material 37.
  • the first anode connecting member 303 may be formed by applying a metal foil to the surface of the metal foil after the metal foil is attached to the upper surface 2a of the insulating substrate 2 and the surface of the conductive material 36. At this time, the concave portion 25 is formed in the first anode connecting member 303 by placing the metal foil along the depression of the conductive material 36.
  • the first cathode connecting member 403 can be formed similarly.
  • FIG. 17 is a cross-sectional view used for explaining the fifth step of the electrode forming step.
  • an adhesive material 53 containing a conductive material is applied to a region R including the entire formation region of the recess 25 in the surface of the first anode connecting member 303.
  • a solder paste containing solder powder and flux is used as the adhesive material 53.
  • FIGS. 18A and 18B are a cross-sectional view and a top view, respectively, used for explaining the sixth step of the electrode forming step.
  • the bottom surface 34 b of the pillow member 34 is brought into contact with the adhesive material 53 by disposing the pillow member 34 on the first anode connecting member 303.
  • the four corners 341 of the bottom surface 34b of the pillow member 34 are overlapped with the four recesses 25 existing on the upper and lower stages in the paper surface of FIG.
  • the two side portions 342 of the bottom surface 34b of the pillow member 34 are overlapped with the two concave portions 25 existing in the middle in the paper surface of FIG.
  • the pillow member 34 is arranged at the predetermined position P.
  • the area of the region surrounded by the line connecting the centers of the four recesses 25 corresponding to the four corners 341 of the pillow member 34 is the pillow.
  • the concave portion 25 is arranged so as to be equal to the area of the bottom surface 34b of the member 34.
  • the region is a predetermined position P.
  • the adhesive material 53 is heated to melt the solder powder and the flux in the adhesive material 53.
  • the melted solder wets and spreads on the bottom surface 34b of the pillow member 34 and the surface of the first anode connecting member 303, and each recess 25 (See FIG. 9A).
  • a flow of molten solder is generated in the adhesive material 53.
  • force acts on the pillow member 34, and when the position of the pillow member 34 is deviated from the predetermined position P, the pillow member 34 is drawn toward the predetermined position P. That is, the position of the pillow member 34 is prevented from being greatly deviated from the predetermined position P.
  • the solder and flux are solidified. Thereby, the anode bonding member 35 is formed, and an electrically good connection state is formed between the pillow member 34 and the first anode connecting member 303. Further, the position of the pillow member 34 is fixed at the predetermined position P or a position slightly shifted from the position.
  • the manufacturing method according to the second embodiment as in the first embodiment, when the capacitor element 1 is arranged on the upper surface 2a of the insulating substrate 2, the anode lead 12 and the pillow member 34 are reliably in contact with each other. Will do. Therefore, a good connection state is formed between the anode lead 12 and the pillow member 34 after welding, and as a result, poor electrical connection is less likely to occur.
  • the anode terminal 32 may have a through hole 26 communicating with the first through hole 21 through the insulating substrate through hole 221. Good.
  • the first through hole 21 is formed on the anode conductive via which is the second anode connecting member 302.
  • the recess 25 is formed on the anode conductive via which is the second anode connecting member 304.
  • the present invention is not limited to these configurations.
  • the first anode connecting member may have a recess 25 or a through hole at a position different from the position on the anode conductive via.
  • a depression is formed on the upper surface 2 a of the insulating substrate 2 at a position different from the position where the anode conductive via (second anode connecting member 304) is formed.
  • the recessed part 25 is formed by forming the 1st anode connection member 303 along the hollow.
  • the recess 25 may be formed by, for example, pressing the first anode connecting member 303 after forming the first anode connecting member 303.
  • a solder paste containing solder powder and flux is used as the adhesive material 53 used for forming the anode adhesive member 35.
  • the adhesive material 53 may include various conductive materials that are not limited to solder.
  • the conductive material a material having wettability with respect to the first anode connecting member when melted is preferable, and solder is particularly preferable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Primary Cells (AREA)

Abstract

絶縁基板2の上面にコンデンサ素子1が配された固体電解コンデンサにおいて、コンデンサ素子1の陽極部材に電気的に接続された陽極引出し構造体3が、絶縁基板2の上面に配された第1陽極接続部材301と、絶縁基板2の下面に配された陰極端子32と、コンデンサ素子1の陽極部材と第1陽極接続部材301とを互いに電気的に接続する枕部材34と、枕部材34を第1陽極接続部材301に接着させる陽極接着部材35とを有している。第1陽極接続部材301には、その表面を局所的に窪ませた凹部、又は表面から裏面へ貫通する貫通孔21が形成されている。陽極接着部材35は、その一部が凹部又は貫通孔21に入り込むと共に、該凹部又は貫通孔21上の位置又はその近傍の位置にて枕部材34の底面の縁部に接している。

Description

固体電解コンデンサ及びその製造方法
 本発明は、絶縁基板にコンデンサ素子が配された固体電解コンデンサに関し、特に絶縁基板に形成された電極構造に特徴を有する固体電解コンデンサに関する。
 図21は、従来の固体電解コンデンサの一例を示した断面図である(例えば、特許文献1参照)。図21に示す様に、この固体電解コンデンサは、コンデンサ素子101と、絶縁基板102とを備えており、絶縁基板102の上面にコンデンサ素子101が配されている。コンデンサ素子101は、陽極部材である陽極リード103及び陽極体113と、陰極部材である電解質層114及び陰極層104と、陽極部材と陰極部材との間に介在した誘電体部材115とを有している。絶縁基板102の上面には、陽極接続部材105と陰極接続部材106とが互いに離間した位置に配されている。絶縁基板102の下面には、陽極端子107と陰極端子108とが互いに離間した位置に配されている。更に絶縁基板102には、上面から下面へ貫通する孔を導電性材料で充填することにより構成された陽極導電ビア109と陰極導電ビア110とが形成されている。陽極導電ビア109は、陽極接続部材105と陽極端子107とを互いに電気的に接続し、陰極導電ビア110は、陰極接続部材106と陰極端子108とを互いに電気的に接続している。そして、陽極接続部材105と陽極リード103とが、これらの間に枕部材111を介在させることにより、互いに電気的に接続されている。又、陰極接続部材106と陰極層104とが、これらの間に導電性ペースト112を介在させることにより、互いに電気的に接続されている。
 図21に示す枕部材111は、絶縁基板102の上面にコンデンサ素子101を配置する前に、陽極接続部材105の表面に設置される。このとき、枕部材111は、導電性接着部材116により陽極接続部材105に接着される。
特開2010-123728号公報
 しかしながら、従来の技術では、枕部材111と陽極接続部材105とを導電性接着部材116により接続する際に、枕部材111の位置が、枕部材111が配置されるべき所定位置からずれ易かった。ここで、この所定位置は、絶縁基板102上にコンデンサ素子101が配置されたときに、陽極リード103が枕部材111に確実に接触する位置である。近年、固体電解コンデンサの小型化に伴い、枕部材111のサイズが小さくなり、この様な位置ずれが顕著になってきている。このため、絶縁基板102の上面にコンデンサ素子101を配置したときに、陽極リード103と枕部材111との間に電気的な接続不良が生じ易くなっている。
 そこで本発明の目的は、コンデンサ素子の陽極部材と枕部材との間に電気的な接続不良が生じ難い固体電解コンデンサ及びその製造方法を提供することである。
 本発明に係る固体電解コンデンサは、上面及び下面を有する絶縁基板と、該絶縁基板の上面に配されたコンデンサ素子と、陽極引出し構造体と、陰極引出し構造体とを備えている。コンデンサ素子は、陽極部材、陰極部材、及び誘電体部材を有している。陽極引出し構造体は、絶縁基板の下面に配された陽極端子を有し、コンデンサ素子の陽極部材に電気的に接続されている。陰極引出し構造体は、絶縁基板の下面に配された陰極端子を有し、コンデンサ素子の陰極部材に電気的に接続されている。陽極引出し構造体は更に、第1陽極接続部材と、第2陽極接続部材と、枕部材と、陽極接着部材とを有している。第1陽極接続部材は、表面及び裏面を有し、該裏面が絶縁基板の上面に接している。そして、第1陽極接続部材には、その表面を局所的に窪ませた凹部、又は表面から裏面へ貫通する貫通孔が形成されている。第2陽極接続部材は、第1陽極接続部材と陽極端子とを互いに電気的に接続している。枕部材は、頂面及び底面を有し、コンデンサ素子の陽極部材と第1陽極接続部材とを互いに電気的に接続している。陽極接着部材は、枕部材を第1陽極接続部材に接着させている。そして、陽極接着部材は、その一部が第1陽極接続部材の凹部又は貫通孔に入り込むと共に、該凹部又は貫通孔上の位置又はその近傍の位置にて枕部材の底面の縁部に接している。
 上記固体電解コンデンサにおいては、枕部材が配置されるべき位置に凹部又は貫通孔が設けられている。そして、陽極接着部材の一部が凹部又は貫通孔に入り込むことにより、凹部又は貫通孔上の位置又はその近傍の位置に枕部材の底面の縁部が配置されている。この様に、枕部材が配置されるべき位置から枕部材の位置が大きくずれることが抑制されている。よって、上記固体電解コンデンサによれば、コンデンサ素子の陽極部材と枕部材とを確実に接続することが出来るため、これらの間に電気的な接続不良が生じ難い。
 上記固体電解コンデンサの好ましい具体的構成において、枕部材の底面の形状は、複数の角部と複数の辺部とを有する多角形であり、第1陽極接続部材には、複数の角部のうち少なくとも2つの角部と重なる位置に凹部又は貫通孔が形成されている。或いは、又はこれに加えて、第1陽極接続部材には、複数の辺部のうち少なくとも2つの辺部と重なる位置に凹部又は貫通孔が形成されている。
 上記固体電解コンデンサの好ましい他の具体的構成において、第2陽極接続部材は、絶縁基板を上面から下面へ貫通する導電ビアであり、第1陽極接続部材の凹部又は貫通孔は、導電ビア上に形成されている。
 本発明に係る製造方法は、上面及び下面を有する絶縁基板と、該絶縁基板の上面に配されたコンデンサ素子と、陽極引出し構造体と、陰極引出し構造体とを備えた固体電解コンデンサを製造する方法である。ここで、コンデンサ素子は、陽極部材、陰極部材、及び誘電体部材を有している。陽極引出し構造体は、絶縁基板の下面に配された陽極端子を有し、コンデンサ素子の陽極部材に電気的に接続されている。陰極引出し構造体は、絶縁基板の下面に配された陰極端子を有し、コンデンサ素子の陰極部材に電気的に接続されている。この製造方法では、先ず、絶縁基板の上面に第1陽極接続部材を形成すると共に、第1陽極接続部材に、その表面を局所的に窪ませる凹部、又は表面から裏面へ貫通する貫通孔を形成する。次に、第1陽極接続部材の表面に、導電性材料を含む接着材料を塗布する。その後、第1陽極接続部材上に枕部材を配置する。このとき、枕部材の底面を接着材料に接触させると共に、枕部材の底面の縁部を第1陽極接続部材の凹部又は貫通孔に重ね合わせる。更にその後、接着材料を加熱することより、導電性材料を溶融させる。
 上記製造方法においては、凹部又は貫通孔の位置により、枕部材が配置されるべき所定位置が規定されている。但し、第1陽極接続部材上に枕部材を配置するときに、枕部材の位置が所定位置からずれる虞がある。上記製造方法によれば、接着材料の加熱により導電性材料を溶融させたとき、溶融した導電性材料が凹部又は貫通孔の内側へ流れ込み、これにより、接着材料中に、溶融した導電性材料の流れが生じることになる。そして、この流れにより、枕部材には、第1陽極接続部材の表面に沿う様々な方向の力が作用する。枕部材の位置が所定位置に略一致している場合、枕部材に作用する力は互いに打ち消し合い、その結果、枕部材は所定位置に維持される。一方、枕部材の位置が所定位置からずれている場合、所定位置からずれた方向に作用する力より、その方向とは反対方向に作用する力の方が大きくなる。その結果、枕部材が所定位置の方へ引き寄せられ、枕部材の位置が所定位置に略一致することになる。よって、製造される固体電解コンデンサにおいて、コンデンサ素子の陽極部材と枕部材とが確実に接触し、その結果、これらの間に電気的な接続不良が生じ難くなる。
 上記製造方法の好ましい具体的構成において、接着材料に含める導電性材料として、溶融した状態のときに第1陽極接続部材に対して濡れ性を有する材料を用いる。これにより、接着材料の加熱により導電性材料を溶融させたとき、溶融した導電性材料が、第1陽極接続部材の表面に沿って濡れ拡がると共に、第1陽極接続部材に形成されている凹部又は貫通孔の内側へ流れ込み易くなる。その結果、接着材料中には、溶融した導電性材料の流れが生じ易くなる。
 本発明に係る固体電解コンデンサ及びその製造方法によれば、コンデンサ素子の陽極部材と枕部材との間に電気的な接続不良が生じ難い。
本発明の第1実施形態に係る固体電解コンデンサを示した断面図である。 図1に示されるII領域の上面図である。 第1実施形態に係る固体電解コンデンサの製造方法にて実行される電極形成工程の第1過程の説明に用いられる断面図である。 電極形成工程の第2過程の説明に用いられる(a)断面図及び(b)上面図である。 電極形成工程の第3過程の説明に用いられる断面図である。 電極形成工程の第4過程の説明に用いられる(a)断面図及び(b)上面図である。 電極形成工程の第5過程の説明に用いられる(a)断面図及び(b)上面図である。 第5過程において枕部材の位置が所定位置からずれた様子を示した上面図である。 電極形成工程の第6過程の説明に用いられる(a)断面図及び(b)上面図である。 第6過程にて枕部材が所定位置の方へ引き寄せられる様子を示した上面図である。 本発明の第2実施形態に係る固体電解コンデンサを示した断面図である。 第2実施形態に係る固体電解コンデンサが備える陽極引出し構造体の他の例を示した断面図である。 第2実施形態に係る固体電解コンデンサの製造方法にて実行される電極形成工程の第1過程の説明に用いられる断面図である。 電極形成工程の第2過程の説明に用いられる断面図である。 電極形成工程の第3過程の説明に用いられる断面図である。 電極形成工程の第4過程の説明に用いられる断面図である。 電極形成工程の第5過程の説明に用いられる断面図である。 電極形成工程の第6過程の説明に用いられる(a)断面図及び(b)上面図である。 陽極引出し構造体の変形例を示した断面図である。 陽極引出し構造体の他の変形例を示した断面図である。 従来の固体電解コンデンサの一例を示した断面図である。
 <第1実施形態>
 図1は、本発明の第1実施形態に係る固体電解コンデンサを示した断面図である。図1に示す様に、固体電解コンデンサは、コンデンサ素子1と、絶縁基板2と、陽極引出し構造体3と、陰極引出し構造体4と、外装体5とを備えている。
 コンデンサ素子1は、陽極体11と、陽極リード12と、誘電体層13と、電解質層14と、陰極層15とを有している。陽極体11は、導電性を有する多孔質焼結体から構成されている。陽極リード12は、導電性を有するワイヤから構成されている。陽極リード12は、陽極体11に植立されており、陽極リード12の一部(引出し部12a)が陽極体11の外周面から引き出されている。
 陽極体11及び陽極リード12を構成する導電性材料には、同種又は異種の材料が用いられる。導電性材料としては、チタン(Ti)、タンタル(Ta)、アルミニウム(Al)、ニオブ(Nb)等の弁金属が用いられる。特に、チタン(Ti)、タンタル(Ta)、アルミニウム(Al)、及びニオブ(Nb)は、それらの酸化物(誘電体層13)の誘電率が高いので、使用する材料として適している。尚、導電性材料には、2種類以上の弁金属から成る合金や、弁金属と他の物質から成る合金等、弁金属を主成分として含む合金を用いてもよい。
 誘電体層13は、陽極体11を構成する導電性材料の表面に形成されている。具体的には、誘電体層13は、陽極体11を構成する導電性材料の表面を酸化させることにより形成された酸化被膜である。従って、誘電体層13は、陽極体11の最外周面、及び陽極体11に存在する微細な孔の内周面に形成されている。尚、図1では、誘電体層13のうち、陽極体11の最外周面に形成されている部分のみが、模式的に示されている。
 電解質層14は、誘電体層13の表面に形成されている。具体的には、電解質層14は、誘電体層13の最外周面、及び陽極体11に存在する微細な孔の内側に形成されている。電解質層14を構成する電解質材料には、二酸化マンガン等の導電性無機材料、TCNQ(Tetracyano-quinodimethane)錯塩や導電性ポリマー等の導電性有機材料が用いられる。尚、電解質材料には、これらの導電性無機材料や導電性有機材料に限定されない種々の物質を用いることが出来る。
 陰極層15は、電解質層14の最外周面に形成されている。具体的には、陰極層15は、電解質層14の最外周面に形成されたカーボン層(図示せず)と、該カーボン層の外周面に形成された銀ペイント層(図示せず)とから構成されている。尚、陰極層15はこれに限らず、集電機能を有するものであればよい。
 斯くして、陽極体11及び陽極リード12によりコンデンサ素子1の陽極部材が構成され、電解質層14及び陰極層15によりコンデンサ素子1の陰極部材が構成され、誘電体層13によりコンデンサ素子1の誘電体部材が構成されている。尚、陽極部材として、上記弁金属から構成された金属箔や金属板を用いてもよい。
 絶縁基板2は、ポリイミドやガラスエポキシ等の電気絶縁性材料から構成された平坦な基板であり、上面2aと下面2bとを有している。そして、コンデンサ素子1は、陽極リード12の延在方向が上面2aと平行になる様に、上面2a上に配されている。
 陽極引出し構造体3は、陽極リード12に通じる陽極電流路を絶縁基板2の下面2bに引き出す電極構造体である。具体的には、陽極引出し構造体3は、陽極接続層31と、陽極端子32と、陽極メッキ層33と、枕部材34と、陽極接着部材35とを有している。陽極接続層31は、絶縁基板2の上面2aに配されており、その上面2aに接した裏面31bを有している。陽極端子32は、絶縁基板2の下面2bに配されており、その下面に接した裏面32bを有している。尚、陽極接続層31及び陽極端子32には、銅などの金属材料から構成された金属箔や金属板が用いられている。又、陽極端子32の表面32aにはメッキ層が形成されていてもよい。
 陽極接続層31には、その表面31aから裏面31bへ貫通する複数の陽極接続層貫通孔211が形成されている。又、絶縁基板2には、その上面2aから下面2bへ貫通する複数の絶縁基板貫通孔221が形成されている。そして、絶縁基板貫通孔221は、陽極端子32の裏面32bに達している。ここで、陽極接続層貫通孔211は、絶縁基板貫通孔221上に1つずつ形成されている。従って、陽極接続層貫通孔211と絶縁基板貫通孔221とは互いに通じている。尚、本実施形態においては、陽極接続層貫通孔211及び絶縁基板貫通孔221の直径はそれぞれ、50~150μmであることが好ましい。
 陽極メッキ層33は、陽極接続層31の表面31a、陽極接続層貫通孔211の内面、絶縁基板貫通孔221の内面、及び陽極端子32の裏面32bのうち絶縁基板貫通孔221に接した領域に形成されている。斯くして、陽極接続層31と、陽極メッキ層33のうち陽極接続層31の表面31a及び陽極接続層貫通孔211の内面に形成された部分331とにより、陽極引出し構造体3の第1陽極接続部材301が構成されている。又、陽極メッキ層33のうち各絶縁基板貫通孔221の内面及び陽極端子32の裏面32bに形成された部分により、陽極導電ビアが構成されており、この陽極導電ビアが、陽極引出し構造体3の第2陽極接続部材302となっている。そして、第2陽極接続部材302により、第1陽極接続部材301と陽極端子32とが互いに電気的に接続されている。この様にして、第1陽極接続部材301には、その表面(陽極メッキ層33の表面)から裏面(陽極接続層31の裏面31b)へ貫通する複数の第1貫通孔21が形成されている。又、各第2陽極接続部材302には第1凹部22が形成されており、該第1凹部22の内側が、その上に存在する第1貫通孔21に通じている。尚、陽極メッキ層33を構成する材料には、銅などの高い導電性を有する材料が用いられている。又、本実施形態においては、陽極メッキ層33の厚さは2~20μmであることが好ましく、陽極メッキ層33は、陽極接続層貫通孔211及び絶縁基板貫通孔221を完全に塞いでしまうことがない様に形成されている。
 枕部材34は、陽極リード12の引出し部12aと第1陽極接続部材301との間に介在しており、引出し部12aに電気的に接続された頂面34aと、第1陽極接続部材301に電気的に接続された底面34bとを有している。これにより、枕部材34は、陽極リード12と第1陽極接続部材301とを互いに電気的に接続している。
 ここで、枕部材34と第1貫通孔21との位置関係について、図1及び図2を用いて説明する。図2は、図1に示されるII領域の上面図ある。尚、図2では、外装体5の図示を省略している。図1及び図2に示す様に、枕部材34は直方体形状を呈しており、枕部材34の底面34bの形状は、4つの角部341と4つの辺部342とを有する四角形である。又、第1陽極接続部材301には6つの第1貫通孔21が設けられており、そのうち4つの第1貫通孔21は、4つの角部341とそれぞれ重なる位置に形成され、残りの2つの第1貫通孔21は、2つの辺部342とそれぞれ重なる位置に形成されている。尚、この2つの辺部342は、4つの辺部342のうち、陽極リード12の延在方向に対して略垂直な方向へ互いに平行に延びた2つの辺部である。
 尚、本発明において、枕部材34と第1貫通孔21との位置関係は、上記関係に限定されるものではない。例えば、4つの角部341及び4つの辺部342の少なくとも何れか1つと重なる位置に、1又は複数の第1貫通孔21が形成されていてもよい。即ち、本発明には、1つの第1貫通孔21だけが角部341又は辺部342に重なるといった関係や、2つ以上の第1貫通孔21が1つの辺部342に重なるといった関係なども含まれる。但し、後述する電極形成工程の第6過程において枕部材34の位置を所定位置Pに精度良く一致させるためには、4つの角部341のうち少なくとも2つの角部341と重なる位置に、その角部341に対応する数の第1貫通孔21がそれぞれ重なるか、又は、4つの辺部342のうち少なくとも2つの辺部342と重なる位置に、その辺部342に対応する数の第1貫通孔21がそれぞれ重なっていることが好ましい。
 又、枕部材34の底面34bの形状は、四角形に限らず、複数の角部と複数の辺部とを有する種々の多角形であってもよい。更に、枕部材34の底面34bの形状は、多角形の角部が丸められた形や、円形、楕円形等、曲線部を有する形であってもよい。この場合、その曲線部と重なる位置に1又は複数の第1貫通孔21が形成されていることが好ましい。
 陽極接着部材35は、枕部材34を第1陽極接続部材301に接着させている。具体的には、陽極接着部材35は、その一部が各第1貫通孔21に入り込むと共に、各第1貫通孔21上の位置にて枕部材34の底面34bの角部341又は辺部342に接している。尚、本実施形態においては、第1凹部22にも、第1貫通孔21を通じて陽極接着部材35の一部が入り込んでいる。
 陽極接着部材35を構成する導電性材料には、半田が主成分として含まれている。具体的には、陽極接着部材35の構成材料として、溶融した状態のときに第1陽極接続部材301に対して濡れ性を有する導電性材料が用いられている。本実施形態においては、第1陽極接続部材301の表面は、陽極メッキ層33によって構成されている。従って、半田は、溶融した状態のときに第1陽極接続部材301に対して高い濡れ性を有する導電性材料である。
 陰極引出し構造体4は、陰極層15に通じる陰極電流路を絶縁基板2の下面2bに引き出す電極構造体である。具体的には、陰極引出し構造体4は、陰極接続層41と、陰極端子42と、陰極メッキ層43とを有している。陰極接続層41は、陽極接続層31から離間した位置にて絶縁基板2の上面2aに配されており、その上面2aに接した裏面41bを有している。陰極端子42は、陽極端子32から離間した位置にて絶縁基板2の下面2bに配されており、その下面2bに接した裏面42bを有している。尚、陰極接続層41及び陰極端子42には、銅などの金属材料から構成された金属箔や金属板が用いられている。又、陰極端子42の表面42aにはメッキ層が形成されていてもよい。
 陰極接続層41には、その表面41aから裏面41bへ貫通する複数の陰極接続層貫通孔231が形成されている。又、絶縁基板2には、その上面2aから下面2bへ貫通する複数の絶縁基板貫通孔241が形成されている。そして、絶縁基板貫通孔241は、陰極端子42の裏面42bに達している。ここで、陰極接続層貫通孔231は、絶縁基板貫通孔241上に1つずつ形成されている。従って、陰極接続層貫通孔231と絶縁基板貫通孔241とは互いに通じている。尚、本実施形態においては、陰極接続層貫通孔231及び絶縁基板貫通孔241の直径はそれぞれ、50~150μmであることが好ましい。
 陰極メッキ層43は、陰極接続層41の表面41a、陰極接続層貫通孔231の内面、絶縁基板貫通孔241の内面、及び陰極端子42の裏面42bのうち絶縁基板貫通孔241に接した領域に形成されている。斯くして、陰極接続層41と、陰極メッキ層43のうち陰極接続層41の表面41a及び陰極接続層貫通孔231の内面に形成された部分431とにより、陰極引出し構造体4の第1陰極接続部材401が構成されている。又、陰極メッキ層43のうち各絶縁基板貫通孔241の内面及び陰極端子42の裏面42bに形成された部分により、陰極導電ビアが構成されており、この陰極導電ビアが、陰極引出し構造体4の第2陰極接続部材402となっている。そして、第2陰極接続部材402により、第1陰極接続部材401と陰極端子42とが互いに電気的に接続されている。この様にして、第1陰極接続部材401には、その表面(陰極メッキ層43の表面)から裏面(陰極接続層41の裏面41b)へ貫通する複数の第2貫通孔23が形成されている。又、各第2陰極接続部材402には第2凹部24が形成されており、該第2凹部24の内側が、その上に存在する第2貫通孔23に通じている。尚、陰極メッキ層43を構成する材料には、銅などの高い導電性を有する材料が用いられている。又、本実施形態においては、陰極メッキ層43の厚さは2~20μmであることが好ましく、陰極メッキ層43は、陰極接続層貫通孔231及び絶縁基板貫通孔241を完全に塞いでしまうことがない様に形成されている。
 コンデンサ素子1は、陽極引出し構造体3及び陰極引出し構造体4に対して次の様に接続されている。即ち、陽極リード12の引出し部12aが枕部材34の頂面34aに溶接されることにより、陽極リード12と枕部材34とが互いに電気的に接続されている。又、陰極層15と第1陰極接続部材401とが、これらの間に導電性ペースト6を介在させることにより、互いに電気的に接続されている。
 外装体5は、絶縁基板2の上面2a上にてコンデンサ素子1を被覆している。その一方で、外装体5は、絶縁基板2の下面2bには形成されていない。この様にして、陽極端子32の表面32a及び陰極端子42の表面42aにより、固体電解コンデンサの下面電極が構成されている。尚、外装体5は、エポキシ樹脂やシリコーン樹脂等、封止材として機能する電気絶縁性材料から構成されている。
 上記固体電解コンデンサにおいては、枕部材34の底面34bの縁部(角部341又は辺部342)が第1貫通孔21に重なる一方で、底面34bの大部分は、第1陽極接続部材301の表面(陽極メッキ層33の平坦な表面)のうち第1貫通孔21の形成領域とは異なる領域に重なっている。従って、枕部材34は、第1陽極接続部材301を土台として、その土台の上に陽極接着部材35により固定されている。よって、枕部材34には、傾きが生じ難い。
 次に、第1実施形態に係る固体電解コンデンサの製造方法について具体的に説明する。本実施形態においては、電極形成工程と、素子配置工程と、外装体形成工程とが、この順に実行される。電極形成工程は、陽極引出し構造体3及び陰極引出し構造体4を形成する工程であり、第1~第6過程から構成されている。
 図3は、電極形成工程の第1過程の説明に用いられる断面図である。図3に示す様に、第1過程では、絶縁基板2の上面2a及び下面2bにそれぞれ、銅などの金属材料から構成された金属箔51及び52を貼り付ける。尚、絶縁基板2の上面2a及び下面2bには、金属箔51及び52に代えて金属板を貼り付けてもよい。
 図4(a)及び(b)はそれぞれ、電極形成工程の第2過程の説明に用いられる断面図及び上面図である。図4(a)及び(b)に示す様に、第2過程では、金属箔51及び絶縁基板2に対してエッチング処理を施すことにより、金属箔51から陽極接続層31及び陰極接続層41を形成すると共に、陽極接続層貫通孔211、絶縁基板貫通孔221、陰極接続層貫通孔231、及び絶縁基板貫通孔241を形成する。又、金属箔52に対してエッチング処理を施すことにより、金属箔52から陽極端子32及び陰極端子42を形成する。
 本実施形態においては、図4(b)に示す様に(図2も参照)、陽極接続層31に対して6つの陽極接続層貫通孔211を形成する。このとき、6つの陽極接続層貫通孔211は、枕部材34が所定位置Pに配置されたときに枕部材34の底面34bの縁部が全ての陽極接続層貫通孔211の中心と重なることとなる様に形成される。具体的には、6つの陽極接続層貫通孔211は、そのうちの4つの陽極接続層貫通孔211の中心にそれぞれ底面34bの4つの角部341が重なると共に、残りの2つの陽極接続層貫通孔211の中心にそれぞれ底面34bの2つの辺部342が重なる様に形成される。
 図5は、電極形成工程の第3過程の説明に用いられる断面図である。図5に示す様に、第3過程では、陽極接続層31の表面31a、陽極接続層貫通孔211の内面、絶縁基板貫通孔221の内面、及び陽極端子32の裏面32bのうち絶縁基板貫通孔221の形成により露出した領域に、これらに対してメッキ処理を施すことにより、陽極メッキ層33を形成する。この様にして、第1陽極接続部材301及び第2陽極接続部材302を形成すると共に、第1陽極接続部材301には第1貫通孔21を形成し、更に第2陽極接続部材302には第1凹部22を形成する。又、第3過程では、陰極接続層41の表面41a、陰極接続層貫通孔231の内面、及び絶縁基板貫通孔241の内面、及び陰極端子42の裏面42bのうち絶縁基板貫通孔241の形成により露出した領域に、これらに対してメッキ処理を施すことにより、陰極メッキ層43を形成する。この様にして、第1陰極接続部材401及び第2陰極接続部材402を形成すると共に、第1陰極接続部材401には第2貫通孔23を形成し、更に第2陰極接続部材402には第2凹部24を形成する。尚、第3過程では、陽極端子32の表面32a及び陰極端子42の表面42aにもメッキ層を形成してもよい。
 図6(a)及び(b)はそれぞれ、電極形成工程の第4過程の説明に用いられる断面図及び上面図である。図6(a)及び(b)に示す様に、第4過程では、第1陽極接続部材301の表面(陽極メッキ層33の表面)のうち第1貫通孔21の全ての形成領域を含む領域Rに、導電性材料を含む接着材料53を塗布する。本実施形態では、接着材料53として、半田粉末とフラックスとを含む半田ペーストが用いられる。
 図7(a)及び(b)はそれぞれ、電極形成工程の第5過程の説明に用いられる断面図及び上面図である。図7(a)及び(b)に示す様に、第5過程では、第1陽極接続部材301上に枕部材34を配置することにより、枕部材34の底面34bを接着材料53に接触させる。このとき、枕部材34の底面34bの4つの角部341を、6つの第1貫通孔21のうち、図7(b)の紙面において上段と下段とに存在する4つの第1貫通孔21に重ね合わせる。又、枕部材34の底面34bの2つの辺部342を、図7(b)の紙面において中段に存在する2つの第1貫通孔21にそれぞれ重ね合わせる。これにより、枕部材34を所定位置Pに配置する。但し、第5過程においては、図8に示す様に、枕部材34の位置が所定位置Pからずれる虞がある。尚、本実施形態においては、図7(b)に示す様に、枕部材34の4つの角部341に対応する4つの第1貫通孔21の中心を結んだ線で囲まれた領域の面積が、枕部材34の底面34bの面積と等しくなる様に、第1貫通孔21が配置されている。そして、その領域が、所定位置Pとなっている。
 図9(a)及び(b)はそれぞれ、電極形成工程の第6過程の説明に用いられる断面図及び上面図である。この第6過程では、接着材料53を加熱することにより、接着材料53中の半田粉末及びフラックスを溶融させる。溶融した半田は、凝集すると共に、枕部材34の底面34b及び陽極メッキ層33の表面に濡れ拡がる。ここで、溶融した半田は、特に陽極メッキ層33に対して高い濡れ性を有している。従って、図9(a)において実線矢印で示す様に、溶融した半田は、陽極メッキ層33の表面に沿って濡れ拡がりながら、各第1貫通孔21及びこれに対応する第1凹部22の内側へ流れ込む。これにより、接着材料53中に、溶融した半田の流れが生じることになる。そして、この流れにより、枕部材34には、陽極メッキ層33の表面(第1陽極接続部材301の表面)に沿う様々な方向の力が作用する。枕部材34の位置が所定位置Pに略一致している場合、図9(a)及び(b)において白抜き矢印で示す様に、枕部材34に作用する力は互いに打ち消し合い、その結果、枕部材34は所定位置Pに維持される。
 一方、枕部材34の位置が所定位置Pからずれている場合、図10において白抜き矢印で示す様に、所定位置Pからずれた方向に作用する力より、その方向とは反対方向に作用する力の方が大きくなる。その結果、枕部材34が所定位置Pの方へ引き寄せられ、枕部材34の位置が所定位置Pに略一致することになる。即ち、枕部材34の位置が所定位置Pから大きくずれることが抑制される。
 その後、半田及びフラックスを固化させる。これにより、陽極接着部材35が形成され、枕部材34と第1陽極接続部材301との間に電気的に良好な接続状態が形成される。又、枕部材34の位置が、所定位置P又はその位置から僅かにずれた位置に固定される。更に、陽極接着部材35の一部が、各第1貫通孔21及びこれに対応する第1凹部22に入り込むことにより、アンカー効果が得られ、その結果、枕部材34と第1陽極接続部材301との接合強度が向上する。
 図1を参考にして、素子配置工程について説明する。素子配置工程では先ず、第1陰極接続部材401の表面(陰極メッキ層43の表面)に導電性ペースト6を塗布する。その後、絶縁基板2の上面2a上にコンデンサ素子1を配置する。このとき、コンデンサ素子1の姿勢を、陽極リード12の延在方向が上面2aと平行になる様に調整する。この様にして、陽極リード12の引出し部12aを枕部材34の頂面34aに接触させると共に、陰極層15を第1陰極接続部材401上にて導電性ペースト6に接触させる。そして、陽極リード12と枕部材34との接触面に溶接を施す。
 上述した様に、第1実施形態に係る製造方法によれば、枕部材34の位置が、所定位置P又はその位置から僅かにずれた位置に固定される。従って、絶縁基板2の上面2a上にコンデンサ素子1を配置したときに、陽極リード12と枕部材34とが確実に接触することになる。よって、溶接後の陽極リード12と枕部材34との間には、良好な接続状態が形成され、その結果、電気的な接続不良が生じ難くなる。
 図1を参考にして、外装体形成工程について説明する。外装体形成工程では、エポキシ樹脂等の樹脂を用いて絶縁基板2の上面2a上に外装体5をモールドする。具体的には、エポキシ樹脂(主剤)、イミダゾール化合物(硬化剤)、及びフィラーとしてのシリカ粒子を含む封止材を用い、トランスファーモールド法により外装体5を形成する。これにより、外装体5によってコンデンサ素子1を被覆する。この様にして、固体電解コンデンサが完成する。尚、エポキシ樹脂に代えて、シリコーン樹脂を封止材として用いてもよい。
 <第2実施形態>
 図11は、本発明の第2実施形態に係る固体電解コンデンサを示した断面図である。以下では、この固体電解コンデンサの構成のうち、第1実施形態の構成と相違している陽極引出し構造体3及び陰極引出し構造体4について説明する。尚、他の構成については、第1実施形態の構成と同じであるので説明を省略する。
 第2実施形態においては、図11に示す様に、陽極引出し構造体3は、第1実施形態の第1陽極接続部材301及び第2陽極接続部材302とは構成がそれぞれ異なる第1陽極接続部材303及び第2陽極接続部材304を有している。具体的には、第2陽極接続部材304は、各絶縁基板貫通孔221に充填された導電性材料36により構成されている陽極導電ビアである。そして、導電性材料36の表面は、絶縁基板2の上面2aに対して窪んでいる。
 第1陽極接続部材303は、絶縁基板2の上面2a及び導電性材料36の表面に形成された金属層である。本実施形態においては、この金属層は、導電性を有したメッキ層であり、導電性材料36の表面上の位置にて窪んでいる。即ち、第1陽極接続部材303には、その表面を第2陽極接続部材304(陽極導電ビア)上の位置にて局所的に窪ませる複数の凹部25が形成されている。この様に、第2実施形態においては、第1実施形態の第1貫通孔21の代わりに凹部25が形成されている。そして、枕部材34と凹部25と位置関係には、第1実施形態にて説明した枕部材34と第1貫通孔21との位置関係がそのまま適用される(図2参照)。
 陽極接着部材35は、その一部が各凹部25に入り込むと共に、各凹部25上の位置にて枕部材34の底面34bの角部341又は辺部342に接している(図2参照)。
 尚、第1陽極接続部材303は、銅などの金属材料から構成された金属箔又は金属板であってもよい。この場合、凹部25は、この金属箔又は金属板に対して例えばプレス加工を施すことにより形成される。
 第2実施形態においては更に、図11に示す様に、陰極引出し構造体4は、第1実施形態の第1陰極接続部材401及び第2陰極接続部材402とは構成がそれぞれ異なる第1陰極接続部材403及び第2陰極接続部材404を有している。具体的には、第2陰極接続部材404は、各絶縁基板貫通孔241に充填された導電性材料37により構成されている陰極導電ビアである。第1陰極接続部材403は、絶縁基板2の上面2a及び導電性材料37の表面に形成されたメッキ層である。
 図12は、陽極引出し構造体3の他の例を示した断面図である。図12に示す様に、第2陽極接続部材304を構成している導電性材料36の表面は、絶縁基板2の上面2aから下方へ後退していてもよい。この構成によれば、各凹部25の深さが大きくなる。
 次に、第2実施形態に係る固体電解コンデンサの製造方法について具体的に説明する。以下では、この製造方法の構成のうち、第1実施形態の構成と相違している電極形成工程について説明する。尚、他の構成については、第1実施形態の構成と同じであるので説明を省略する。
 第2実施形態においては、電極形成工程は、第1~第7過程から構成されている。
 図13は、電極形成工程の第1過程の説明に用いられる断面図である。図13に示す様に、第1過程では、絶縁基板2の下面2bに、銅などの金属材料から構成された金属箔52を貼り付ける。尚、絶縁基板2の下面2bには、金属箔52に代えて金属板を貼り付けてもよい。
 図14は、電極形成工程の第2過程の説明に用いられる断面図である。図14に示す様に、第2過程では、絶縁基板2に対してエッチング処理を施すことにより、絶縁基板貫通孔221及び絶縁基板貫通孔241を形成する。このとき、絶縁基板貫通孔221は、枕部材34が所定位置Pに配置されたときに底面34bの縁部が全ての絶縁基板貫通孔221の中心と重なることとなる様に形成される(図4(b)参照)。又、金属箔52に対してエッチング処理を施すことにより、金属箔52から陽極端子32及び陰極端子42を形成する。
 図15は、電極形成工程の第3過程の説明に用いられる断面図である。図15に示す様に、第3過程では、絶縁基板貫通孔221を導電性材料36によって充填する。このとき、導電性材料36の充填量を調整することにより、充填された導電性材料36の表面を、絶縁基板2の上面2aに対して窪ませるか、又は上面2aから下方へ後退させておく。又、絶縁基板貫通孔241を導電性材料37によって充填する。この様にして、第2陽極接続部材304及び第2陰極接続部材404を形成する。
 図16は、電極形成工程の第4過程の説明に用いられる断面図である。図16に示す様に、第4過程では、絶縁基板2の上面2a及び導電性材料36の表面にメッキ処理を施すことにより、第1陽極接続部材303となるメッキ層を形成する。このとき、導電性材料36の表面上にてメッキ層の表面が窪む様に、メッキ層の厚さを調整する。この様にして、第1陽極接続部材303に複数の凹部25を形成する。又、絶縁基板2の上面2a及び導電性材料37の表面にメッキ処理を施すことにより、第1陰極接続部材403となるメッキ層を形成する。尚、第1陽極接続部材303は、絶縁基板2の上面2a及び導電性材料36の表面に金属箔を貼り付けた後、金属箔の表面にメッキ処理を施すことにより形成されてもよい。このとき、金属箔を導電性材料36の窪みに沿わせることにより、第1陽極接続部材303には凹部25が形成される。第1陰極接続部材403についても同様に形成することが出来る。
 図17は、電極形成工程の第5過程の説明に用いられる断面図である。図17に示す様に、第5過程では、第1陽極接続部材303の表面のうち凹部25の全ての形成領域を含む領域Rに、導電性材料を含む接着材料53を塗布する。本実施形態では、接着材料53として、半田粉末とフラックスとを含む半田ペーストが用いられる。
 図18(a)及び(b)はそれぞれ、電極形成工程の第6過程の説明に用いられる断面図及び上面図である。図18(a)及び(b)に示す様に、第6過程では、第1陽極接続部材303上に枕部材34を配置することにより、枕部材34の底面34bを接着材料53に接触させる。このとき、枕部材34の底面34bの4つの角部341を、6つの凹部25のうち、図18(b)の紙面において上段と下段とに存在する4つの凹部25に重ね合わせる。又、枕部材34の底面34bの2つの辺部342を、図18(b)の紙面において中段に存在する2つの凹部25にそれぞれ重ね合わせる。これにより、枕部材34を所定位置Pに配置する。尚、本実施形態においては、図18(b)に示す様に、枕部材34の4つの角部341に対応する4つの凹部25の中心を結んだ線で囲まれた領域の面積が、枕部材34の底面34bの面積と等しくなる様に、凹部25が配置されている。そして、その領域が、所定位置Pとなっている。
 次に、電極形成工程の第7過程において、接着材料53を加熱することにより、接着材料53中の半田粉末及びフラックスを溶融させる。この第7過程においては、第1実施形態の電極形成工程の第6過程と同様、溶融した半田が、枕部材34の底面34b及び第1陽極接続部材303の表面に濡れ拡がりながら、各凹部25の内側へ流れ込む(図9(a)参照)。これにより、接着材料53中に、溶融した半田の流れが生じることになる。その結果、枕部材34には力が作用し、枕部材34の位置が所定位置Pからずれている場合には、枕部材34が所定位置Pの方へ引き寄せられる。即ち、枕部材34の位置が所定位置Pから大きくずれることが抑制される。
 その後、半田及びフラックスを固化させる。これにより、陽極接着部材35が形成され、枕部材34と第1陽極接続部材303との間に電気的に良好な接続状態が形成される。又、枕部材34の位置が、所定位置P又はその位置から僅かにずれた位置に固定される。
 従って、第2実施形態に係る製造方法によれば、第1実施形態と同様、絶縁基板2の上面2a上にコンデンサ素子1を配置したときに、陽極リード12と枕部材34とが確実に接触することになる。よって、溶接後の陽極リード12と枕部材34との間には、良好な接続状態が形成され、その結果、電気的な接続不良が生じ難くなる。
 尚、本発明の各部構成は上記実施形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。例えば、図19に示す様に、第1実施形態に係る固体電解コンデンサにおいて、陽極端子32には、絶縁基板貫通孔221を介して第1貫通孔21に通じる貫通孔26が形成されていてもよい。
 第1実施形態においては、第1貫通孔21が、第2陽極接続部材302である陽極導電ビア上に形成されている。又、第2実施形態においては、凹部25が、第2陽極接続部材304である陽極導電ビア上に形成されている。しかし、本発明は、これらの構成に限定されるものではない。例えば、図20に示す様に、第1陽極接続部材には、陽極導電ビア上の位置とは異なる位置に凹部25又は貫通孔が形成されていてもよい。図20に示す例では、絶縁基板2の上面2aにおいて、陽極導電ビア(第2陽極接続部材304)の形成位置とは異なる位置に窪みが形成されている。そして、その窪みに沿って第1陽極接続部材303を形成することにより、凹部25が形成されている。又、この凹部25は、第1陽極接続部材303を形成した後、第1陽極接続部材303に対して例えばプレス加工を施すことにより形成されてもよい。
 上記実施形態においては、陽極接着部材35の形成に用いる接着材料53として、半田粉末とフラックスとを含む半田ペーストが用いられている。しかし、本発明は、この構成に限定されるものではない。接着材料53には、半田に限定されない種々の導電性材料が含まれていてもよい。但し、導電性材料としては、溶融した状態のときに第1陽極接続部材に対して濡れ性を有する材料が好ましく、半田が特に好ましい。
1 コンデンサ素子
2 絶縁基板
2a 上面
2b 下面
3 陽極引出し構造体
4 陰極引出し構造体
5 外装体
6 導電性ペースト
P 所定位置
11 陽極体
12 陽極リード
12a 引出し部
13 誘電体層
14 電解質層
15 陰極層
21 第1貫通孔
22 第1凹部
23 第2貫通孔
24 第2凹部
25 凹部
26 貫通孔
31 陽極接続層
31a 表面
31b 裏面
32 陽極端子
32a 表面
32b 裏面
33 陽極メッキ層
34 枕部材
34a 頂面
34b 底面
35 陽極接着部材
36、37 導電性材料
41 陰極接続層
41a 表面
41b 裏面
42 陰極端子
42a 表面
42b 裏面
43 陰極メッキ層
51、52 金属箔
53 接着材料
301、303 第1陽極接続部材
302、304 第2陽極接続部材
341 角部
342 辺部
401、403 第1陰極接続部材
402、404 第2陰極接続部材

Claims (6)

  1.  上面及び下面を有する絶縁基板と、
     陽極部材、陰極部材、及び誘電体部材を有し、前記絶縁基板の上面に配されたコンデンサ素子と、
     前記絶縁基板の下面に配された陽極端子を有し、前記コンデンサ素子の陽極部材に電気的に接続された陽極引出し構造体と、
     前記絶縁基板の下面に配された陰極端子を有し、前記コンデンサ素子の陰極部材に電気的に接続された陰極引出し構造体とを備える固体電解コンデンサであって、
     前記陽極引出し構造体は、
     表面及び裏面を有し、該裏面が前記絶縁基板の上面に接した第1陽極接続部材と、
     前記第1陽極接続部材と前記陽極端子とを互いに電気的に接続する第2陽極接続部材と、
     頂面及び底面を有し、前記コンデンサ素子の陽極部材と前記第1陽極接続部材とを互いに電気的に接続する枕部材と、
     前記枕部材を前記第1陽極接続部材に接着させる陽極接着部材とを更に有し、
     前記第1陽極接続部材には、前記表面を局所的に窪ませた凹部、又は前記表面から前記裏面へ貫通する貫通孔が形成され、
     前記陽極接着部材は、その一部が前記凹部又は前記貫通孔に入り込むと共に、前記凹部又は前記貫通孔上の位置又はその近傍の位置にて前記枕部材の底面の縁部に接している、固体電解コンデンサ。
  2.  前記枕部材の底面の形状は、複数の角部を有する多角形であり、
     前記第1陽極接続部材には、前記複数の角部のうち少なくとも2つの角部と重なる位置に前記凹部又は前記貫通孔が形成されている、請求項1に記載の固体電解コンデンサ。
  3.  前記枕部材の底面の形状は、複数の辺部を有する多角形であり、
     前記第1陽極接続部材には、前記複数の辺部のうち少なくとも2つの辺部と重なる位置に前記凹部又は前記貫通孔が形成されている、請求項1又は請求項2に記載の固体電解コンデンサ。
  4.  前記第2陽極接続部材は、前記絶縁基板を前記上面から前記下面へ貫通する導電ビアであり、前記凹部又は前記貫通孔は、前記導電ビア上に形成されている、請求項1乃至請求項3の何れか1つに記載の固体電解コンデンサ。
  5.  上面及び下面を有する絶縁基板と、該絶縁基板の上面に配されたコンデンサ素子と、陽極引出し構造体と、陰極引出し構造体とを備え、前記コンデンサ素子は、陽極部材、陰極部材、及び誘電体部材を有し、前記陽極引出し構造体は、前記絶縁基板の下面に配された陽極端子を有すると共に、前記コンデンサ素子の陽極部材に電気的に接続され、前記陰極引出し構造体は、前記絶縁基板の下面に配された陰極端子を有すると共に、前記コンデンサ素子の陰極部材に電気的に接続されている固体電解コンデンサを製造する方法であって、
     前記絶縁基板の上面に第1陽極接続部材を形成すると共に、前記第1陽極接続部材に、その表面を局所的に窪ませる凹部、又は前記表面から裏面へ貫通する貫通孔を形成する工程と、
     前記第1陽極接続部材の表面に、導電性材料を含む接着材料を塗布する工程と、 前記第1陽極接続部材上に枕部材を配置する工程であって、前記枕部材の底面を前記接着材料に接触させると共に、前記枕部材の底面の縁部を前記凹部又は前記貫通孔に重ね合わせる工程と、
     前記接着材料を加熱することより、前記導電性材料を溶融させる工程とを有する、固体電解コンデンサの製造方法。
  6.  前記接着材料を塗布する工程では、前記導電性材料として、溶融した状態のときに前記第1陽極接続部材に対して濡れ性を有する材料を用いる、請求項5に記載の固体電解コンデンサの製造方法。
PCT/JP2013/005717 2012-09-28 2013-09-26 固体電解コンデンサ及びその製造方法 WO2014050112A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380050360.6A CN104685590B (zh) 2012-09-28 2013-09-26 固体电解电容器及其制造方法
JP2014538189A JP6286673B2 (ja) 2012-09-28 2013-09-26 固体電解コンデンサ及びその製造方法
US14/663,293 US9741495B2 (en) 2012-09-28 2015-03-19 Solid electrolytic capacitor including pillow member having edge overlapping recessed portion or through hole, and production method therefor
US15/655,782 US10014119B2 (en) 2012-09-28 2017-07-20 Solid electrolytic capacitor including positive electrode connection member having recessed portion, and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012217238 2012-09-28
JP2012-217238 2012-09-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/663,293 Continuation US9741495B2 (en) 2012-09-28 2015-03-19 Solid electrolytic capacitor including pillow member having edge overlapping recessed portion or through hole, and production method therefor

Publications (1)

Publication Number Publication Date
WO2014050112A1 true WO2014050112A1 (ja) 2014-04-03

Family

ID=50387545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005717 WO2014050112A1 (ja) 2012-09-28 2013-09-26 固体電解コンデンサ及びその製造方法

Country Status (4)

Country Link
US (2) US9741495B2 (ja)
JP (1) JP6286673B2 (ja)
CN (1) CN104685590B (ja)
WO (1) WO2014050112A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024203049A1 (ja) * 2023-03-24 2024-10-03 パナソニックIpマネジメント株式会社 固体電解コンデンサおよびその製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050112A1 (ja) * 2012-09-28 2014-04-03 三洋電機株式会社 固体電解コンデンサ及びその製造方法
JP7008182B2 (ja) * 2016-09-29 2022-01-25 パナソニックIpマネジメント株式会社 固体電解コンデンサ
WO2018150886A1 (ja) * 2017-02-17 2018-08-23 株式会社村田製作所 固体電解コンデンサ及びその製造方法
KR102680001B1 (ko) * 2019-11-27 2024-07-02 삼성전기주식회사 탄탈 커패시터
TWI780668B (zh) * 2020-05-28 2022-10-11 日商村田製作所股份有限公司 用於半導體複合裝置之模組
CN112466676B (zh) * 2020-11-24 2024-06-14 中国振华(集团)新云电子元器件有限责任公司(国营第四三二六厂) 一种贴片式高能混合钽电容器
WO2022116931A1 (zh) * 2020-12-03 2022-06-09 中国振华(集团)新云电子元器件有限责任公司(国营第四三二六厂) 一种表面封装电容器及表面封装电容器的制作方法
CN112435853A (zh) * 2020-12-03 2021-03-02 中国振华(集团)新云电子元器件有限责任公司(国营第四三二六厂) 一种表面封装电容器及表面封装电容器的制作方法
CN113327771B (zh) * 2021-05-11 2022-08-23 东莞顺络电子有限公司 一种片式导电聚合物电容器封装方法及电容器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010287642A (ja) * 2009-06-10 2010-12-24 Nec Tokin Corp チップ型固体電解コンデンサ及びその製造方法
JP2012231120A (ja) * 2011-04-15 2012-11-22 Nec Tokin Corp 固体電解コンデンサ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6437006A (en) * 1987-07-31 1989-02-07 Matsushita Electric Ind Co Ltd Chip-like sold electrolytic capacitor
JP3509733B2 (ja) * 2000-10-23 2004-03-22 日立エーアイシー株式会社 電子部品
US6972943B2 (en) * 2002-12-12 2005-12-06 Sanyo Electric Co., Ltd. Electronic component having lead frame
JP2008098394A (ja) * 2006-10-12 2008-04-24 Nec Tokin Corp 固体電解コンデンサ
CN101286417B (zh) * 2007-03-09 2011-02-02 Nec东金株式会社 固体电解电容器及其制造方法
JP4753380B2 (ja) * 2007-04-17 2011-08-24 Necトーキン株式会社 下面電極型固体電解コンデンサ
JP5201671B2 (ja) * 2008-09-08 2013-06-05 Necトーキン株式会社 下面電極型固体電解コンデンサおよびその製造方法
JP5222677B2 (ja) * 2008-09-22 2013-06-26 三洋電機株式会社 固体電解コンデンサ
JP5131852B2 (ja) 2008-11-19 2013-01-30 Necトーキン株式会社 固体電解コンデンサ
JP5201684B2 (ja) * 2009-03-19 2013-06-05 Necトーキン株式会社 チップ型固体電解コンデンサ
JP2010287588A (ja) * 2009-06-09 2010-12-24 Nec Tokin Corp 固体電解コンデンサ
JP5453174B2 (ja) * 2010-06-01 2014-03-26 Necトーキン株式会社 下面電極型の固体電解積層コンデンサおよびその実装体
JP5721172B2 (ja) * 2011-04-13 2015-05-20 Necトーキン株式会社 チップ型の固体電解コンデンサ及びその製造方法
WO2014050112A1 (ja) * 2012-09-28 2014-04-03 三洋電機株式会社 固体電解コンデンサ及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010287642A (ja) * 2009-06-10 2010-12-24 Nec Tokin Corp チップ型固体電解コンデンサ及びその製造方法
JP2012231120A (ja) * 2011-04-15 2012-11-22 Nec Tokin Corp 固体電解コンデンサ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024203049A1 (ja) * 2023-03-24 2024-10-03 パナソニックIpマネジメント株式会社 固体電解コンデンサおよびその製造方法

Also Published As

Publication number Publication date
JP6286673B2 (ja) 2018-03-07
US20150194269A1 (en) 2015-07-09
JPWO2014050112A1 (ja) 2016-08-22
US20170316885A1 (en) 2017-11-02
US9741495B2 (en) 2017-08-22
CN104685590B (zh) 2018-02-09
US10014119B2 (en) 2018-07-03
CN104685590A (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
JP6286673B2 (ja) 固体電解コンデンサ及びその製造方法
US7206193B2 (en) Surface-mount capacitor and method of producing the same
JP5152946B2 (ja) 固体電解コンデンサ及びその製造方法
US10256046B2 (en) Solid electrolytic capacitor and method for making the same
JP2008283224A (ja) 固体電解コンデンサ
JP5279569B2 (ja) 固体電解コンデンサ及びその製造方法
WO2008041397A1 (fr) Condensateur électrolytique solide et son procédé de fabrication
WO2004084244A1 (ja) 積層コンデンサおよび積層コンデンサの製造方法
JP4653682B2 (ja) チップ状固体電解コンデンサ
US8310817B2 (en) Solid electrolytic capacitor having plural terminals connected to canopy and production method thereof
JP5349112B2 (ja) 固体電解コンデンサ
WO2014068923A1 (ja) 固体電解コンデンサ及びその製造方法
JP2007013043A (ja) 電子素子搭載用電極アセンブリ及びこれを用いた電子部品、並びに固体電解コンデンサ
JP6221071B2 (ja) 固体電解コンデンサ
JP6296274B2 (ja) 固体電解コンデンサ及びその製造方法
US20140111907A1 (en) Electronic component
JP5954404B2 (ja) 固体電解コンデンサ
TWI833661B (zh) 電容器組件封裝結構
JP2005228801A (ja) チップ型固体電解コンデンサ及びそれに用いるリードフレーム
JP5784974B2 (ja) 固体電解コンデンサおよび固体電解コンデンサの製造方法
TWI691982B (zh) 堆疊型固態電解電容器封裝結構及其製作方法
CN111048320B (zh) 堆叠型固态电解电容器封装结构及其制作方法
JP4767273B2 (ja) 固体電解コンデンサの実装体
JP5371865B2 (ja) 3端子型コンデンサ
JP2010098183A (ja) 固体電解コンデンサの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841136

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014538189

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13841136

Country of ref document: EP

Kind code of ref document: A1