WO2014045772A1 - 流体動圧軸受装置及びこれを備えるモータ - Google Patents

流体動圧軸受装置及びこれを備えるモータ Download PDF

Info

Publication number
WO2014045772A1
WO2014045772A1 PCT/JP2013/072048 JP2013072048W WO2014045772A1 WO 2014045772 A1 WO2014045772 A1 WO 2014045772A1 JP 2013072048 W JP2013072048 W JP 2013072048W WO 2014045772 A1 WO2014045772 A1 WO 2014045772A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
radial
gap
housing
shaft member
Prior art date
Application number
PCT/JP2013/072048
Other languages
English (en)
French (fr)
Inventor
慎治 小松原
哲弥 栗村
康裕 山本
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to KR1020157006228A priority Critical patent/KR102068517B1/ko
Priority to US14/425,972 priority patent/US9476449B2/en
Priority to EP13839464.8A priority patent/EP2899417B1/en
Priority to CN201380048035.6A priority patent/CN104641131B/zh
Priority to IN1676DEN2015 priority patent/IN2015DN01676A/en
Publication of WO2014045772A1 publication Critical patent/WO2014045772A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • F16C17/107Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one surface for radial load and at least one surface for axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/103Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/103Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing
    • F16C33/104Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing in a porous body, e.g. oil impregnated sintered sleeve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/02Assembling sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/46Gap sizes or clearances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2370/00Apparatus relating to physics, e.g. instruments
    • F16C2370/12Hard disk drives or the like

Definitions

  • the present invention relates to a fluid dynamic pressure bearing device and a motor including the same.
  • the fluid dynamic bearing device has features such as high speed rotation, high rotation accuracy, and low noise.
  • the fluid dynamic bearing device is a motor installed in various electric devices such as information devices, specifically, a spindle motor incorporated in a disk drive device such as an HDD, a fan incorporated in a PC or the like. It is suitably used as a bearing device for a motor or a polygon scanner motor incorporated in a laser beam printer (LBP).
  • LBP laser beam printer
  • the fluid dynamic pressure bearing device includes a bottomed cylindrical (cup-shaped) housing, a bearing sleeve fixed to the inner periphery of the housing, a shaft member removably inserted into the inner periphery of the bearing sleeve, and a radial A radial bearing portion that supports the shaft member in the radial direction with an oil film of lubricating oil formed in the bearing gap, a thrust bearing portion that supports the shaft member in the thrust direction, a bottom gap that accommodates the thrust bearing portion, and an opening in the housing An annular member (seal member) fixed to the inner periphery of the part.
  • the annular member is fixed to the inner periphery of the opening of the housing in a state where it is engaged with the bearing sleeve in the axial direction (a state where it is engaged with the bearing sleeve in the direction of removal of the bearing sleeve). Therefore, the fixing force of the bearing sleeve with respect to the housing (the pulling force of the bearing sleeve) is increased, and the relative position between the housing and the bearing sleeve in the axial direction, and thus the desired bearing performance is stably maintained.
  • the fluid dynamic bearing device is used in a so-called full-fill state in which the entire inner space of the housing is filled with lubricating oil, and a seal is provided between the inner peripheral surface of the annular member and the outer peripheral surface of the shaft member.
  • a space (a radial gap having a gap width larger than the radial bearing gap) is provided.
  • the seal space has a buffer function that absorbs the volume change accompanying the temperature change of the lubricating oil, so that the oil level of the lubricating oil can always be kept within the range of the seal space within the assumed temperature change range. Designed. Therefore, deterioration of bearing performance and contamination of the surrounding environment due to external leakage of lubricating oil are prevented as much as possible.
  • an object of the present invention is to provide a fluid dynamic bearing device that can be produced at a low cost and can exhibit desired bearing performance.
  • the present invention includes a bottomed cylindrical housing having one end in the axial direction opened and the other end closed, a bearing sleeve fixed to the inner periphery of the housing, and a removal.
  • the shaft member inserted into the inner periphery of the bearing sleeve and an inner peripheral surface that forms a radial clearance between the outer peripheral surface of the shaft member and the housing is engaged with the bearing sleeve in the axial direction.
  • a thrust bearing portion that supports the shaft member in the thrust direction and a fluid dynamic bearing device that houses the thrust bearing portion and is filled with a lubricating oil.
  • Radial bearing clearance The gap width d 1, when the gap width of the radial gap was d 2, and satisfies a relational expression 30d 1 ⁇ d 2 ⁇ 250d 1 .
  • the “thrust bearing portion” here may be a pivot bearing that supports the shaft member in contact, or may be a hydrodynamic bearing that supports the shaft member in a non-contact manner.
  • the internal space of the housing in a situation where the radial bearing gap of the radial bearing portion and the bottom gap containing the thrust bearing portion are filled with lubricating oil.
  • a space is also provided in the space. This means that the amount of lubricating oil filled in the internal space of the housing is made smaller than the volume of the internal space, and a region not filled with the lubricating oil is provided in the internal space.
  • the shaft member can be inserted into and removed from the bearing sleeve.
  • an appropriate oiling tool for example, a micropipette
  • a micropipette for example, a micropipette
  • the required amount of lubricating oil can be interposed in the internal space simply by injecting the lubricating oil into the internal space. This eliminates the need for large-scale equipment for lubrication and highly precise adjustment and management of the oil level, thereby reducing the manufacturing cost of the bearing device.
  • the lubrication operation to the inner space is performed after the bearing sleeve and the annular member are fixed to the inner periphery of the housing, and the shaft to the inner periphery of the bearing sleeve is used. This can be done before the member is inserted. In this case, the lubrication operation can be performed simply and appropriately compared to the case where the shaft member is inserted into the inner periphery of the bearing sleeve and then lubricated into the internal space.
  • the bearing sleeve 108 and the annular member 109 are fixed to the inner periphery of the housing 107 so that a bottom gap 105 is formed between the bottom of the housing 107 and the bearing sleeve 108, and then Lubricating oil 110 is injected into the internal space of the housing 107.
  • the shaft member 102 is inserted into the inner periphery of the annular member 109 and the bearing sleeve 108.
  • the lubricating oil 110 When the shaft member 102 comes into contact with the pre-injected lubricating oil 110, the lubricating oil 110 is minutely formed between the shaft member 102 (the outer peripheral surface thereof) and the bearing sleeve 108 (the inner peripheral surface thereof) by capillary force. It flows toward the opening of the housing 107 through the radial gap (radial bearing gap) of the gap width, and adheres to the outer peripheral surface of the shaft member 102 and further to the inner peripheral surface of the annular member 109. As the shaft member 102 is further inserted, the air existing in the internal space of the housing 107 (between the shaft member 102 and the housing 107) is compressed.
  • the shaft member 102 and the bearing sleeve 108 and The lubricating oil 110 interposed between the annular member 109 is subjected to a biasing force in a direction of pushing it out to the bearing outer side.
  • the lubricating oil 110 leaks out of the bearing through a radial gap (seal space) 103 formed between the outer peripheral surface of the shaft member 102 and the inner peripheral surface of the annular member 109.
  • a sufficient amount of lubricating oil cannot be interposed in both the radial bearing gap and the bottom gap 105, making it difficult to stably secure desired bearing performance.
  • the assembly of the bearing device and the lubrication to the bearing device can be easily performed, and the manufacturing cost of the fluid dynamic pressure bearing device can be reduced.
  • the gap width d 2 of the radial clearance is set too large, the contact area of the bearing sleeve and the annular member is excessively small, it may become difficult to ensure the removal force of the bearing sleeve that is required . Therefore, d 2 ⁇ 250d 1 is preferable.
  • the bearing device having the above-described configuration can further be provided with a communication path that allows the radial gap and the bottom gap to communicate with each other.
  • a communication path that allows the radial gap and the bottom gap to communicate with each other.
  • the communication path is formed between the housing and the bearing sleeve, one end having one end opened in the bottom gap, and formed between the bearing sleeve and the annular member, one end opening in the radial gap and the other end Can be configured with a second passage connected to the other end of the first passage.
  • the bearing sleeve can be fixed to the inner circumference of the housing by, for example, press-fitting (particularly press-fitting with a large fastening allowance, the same applies hereinafter), bonding, press-fitting bonding (combination of press-fitting and bonding).
  • press-fitting particularly press-fitting with a large fastening allowance, the same applies hereinafter
  • bonding press-fitting bonding (combination of press-fitting and bonding).
  • the deformation of the bearing sleeve accompanying the press-fitting extends to the inner peripheral surface of the bearing sleeve, and the width accuracy of the radial bearing gap may be adversely affected.
  • bonding it is necessary to relatively position and hold the housing and the bearing sleeve until the applied adhesive is solidified, and a separate process for solidifying the adhesive may be necessary. It takes time and effort to fix the members.
  • the bearing sleeve is fixed to the inner periphery of the housing by being sandwiched between the annular member and the bottom of the housing from both sides in the axial direction. In this way, the labor required for assembly can be reduced. In addition, adverse effects on the bearing performance of the radial bearing portion can be prevented as much as possible.
  • the radial bearing gap can be provided at two positions in the axial direction.
  • radial dynamic pressure generating portions that generate a dynamic pressure action on the lubricating oil in the radial bearing gap are also provided at two positions in the axial direction. be able to. In this way, it is possible to increase the load capacity (moment rigidity) with respect to the moment load while reducing the loss torque.
  • one radial dynamic pressure generating portion is formed into a shape in which the lubricating oil interposed in one radial bearing gap is pushed into the other radial bearing gap, and the other radial dynamic pressure generating portion is set to the other radial bearing gap.
  • the lubricating oil interposed in the gap is formed into a shape that pushes it toward one of the radial bearing gaps.
  • the lubricating oil interposed in the radial bearing gap is directed toward the radial gap while preventing the deterioration of the bearing performance of the radial bearing portion due to the oil film breakage in each radial bearing gap as much as possible. It is possible to prevent the lubricating oil from leaking to the outside as much as possible.
  • an external force that presses the shaft member against the inner bottom surface of the housing can be applied to the shaft member.
  • the external force can be applied by, for example, a magnetic force.
  • This magnetic force can be applied, for example, by disposing a stator coil provided on a holding member (motor base) that holds the housing on the inner periphery and a rotor magnet provided on the shaft member while being shifted in the axial direction.
  • the bearing sleeve is preferably formed of a porous body in which internal pores are impregnated with the above lubricating oil. In this way, the oozing of the lubricating oil from the surface opening of the bearing sleeve can fill both the radial bearing gap and the bottom gap with abundant lubricating oil, and the bearing performance of the radial bearing portion and the thrust bearing portion This is because it is advantageous in maintaining the stability.
  • the lubricating oil used in the bearing device according to the present invention is an ester or PAO lubricating oil having a kinematic viscosity at 40 ° C. of 20 to 90 mm 2 / s and a surface tension at 20 ° C. of 29 to 31 mN / m. Is preferred.
  • the fluid dynamic pressure bearing device according to the present invention described above has the various characteristics described above, it can be suitably incorporated into various motors such as a fan motor for a PC and a spindle motor for a disk drive device. And can contribute to the cost reduction of various motors.
  • FIG. 1 conceptually shows a configuration example of a fan motor incorporating a fluid dynamic bearing device 1 according to the present invention.
  • the fan motor shown in FIG. 1 includes a fluid dynamic pressure bearing device 1, a motor base 6 as a holding member constituting the stationary side of the motor, a stator coil 5 attached to the motor base 6, and blades (not shown).
  • the rotor 3 is provided as a rotating member, and the rotor magnet 4 is attached to the rotor 3 and faces the stator coil 5 via a radial gap.
  • the housing 7 of the fluid dynamic bearing device 1 is fixed to the inner periphery of the motor base 6, and the rotor 3 is fixed to one end of the shaft member 2 of the fluid dynamic bearing device 1.
  • the rotor magnet 4 is rotated by the electromagnetic force between the stator coil 5 and the rotor magnet 4, and accordingly, the shaft member 2 and the shaft member 2 are rotated.
  • the rotor 3 fixed to Rotates integrally.
  • the magnetic force in the direction to cancel the thrust can be generated, for example, by disposing the stator coil 5 and the rotor magnet 4 while being shifted in the axial direction (detailed illustration is omitted). Further, when the rotor 3 rotates, a radial load acts on the shaft member 2 of the fluid dynamic bearing device 1. This radial load is supported by the radial bearing portions R1 and R2 of the fluid dynamic bearing device 1.
  • FIG. 2 shows a fluid dynamic bearing device 1 according to an embodiment of the present invention.
  • the fluid dynamic bearing device 1 includes a bottomed cylindrical housing 7, a bearing sleeve 8 fixed to the inner periphery of the housing 7, a shaft member 2 inserted into the inner periphery of the bearing sleeve 8, and a bearing sleeve 8. Furthermore, an annular member 9 fixed to the inner periphery of the housing 7 on the opening side of the housing 7 is provided as a main constituent member.
  • the inner space of the housing 7 is filled with a predetermined amount of lubricating oil 11 (shown by dense scattered hatching), and at least the radial bearing gaps Gr of the radial bearing portions R1 and R2 that support the shaft member 2 in the radial direction.
  • the side on which the annular member 9 is disposed is the upper side, and the opposite side in the axial direction is the lower side, but the posture of the fluid dynamic bearing device 1 in use is not limited.
  • the housing 7 has a bottomed cylindrical shape having a cylindrical cylindrical portion 7a and a bottom portion 7b that closes a lower end opening of the cylindrical portion 7a.
  • the cylindrical portion 7a and the bottom portion 7b are integrally formed of metal.
  • a step portion 7c is formed integrally with the tube portion 7a and the bottom portion 7b on the inner periphery of the boundary portion between the tube portion 7a and the bottom portion 7b, and an outer diameter side region of the lower end surface 8b of the bearing sleeve 8 is formed on the upper end surface 7c1 of the step portion 7c. ) Is in contact.
  • a resin-made thrust plate 10 is disposed in a region serving as a thrust bearing surface of the inner bottom surface 7 b 1 of the housing 7.
  • the thrust plate 10 is not necessarily provided and may be omitted.
  • the housing 7 may be a resin injection molded product.
  • the shaft member 2 is formed of a highly rigid metal material typified by stainless steel, and its outer peripheral surface 2a is formed in a smooth cylindrical surface and has a constant diameter over its entire length.
  • the outer diameter of the shaft member 2 is smaller than the inner diameter of the bearing sleeve 8 and the annular member 9. Therefore, the shaft member 2 can be inserted into and removed from the bearing sleeve 8 and the annular member 9.
  • the lower end surface 2b of the shaft member 2 is formed as a convex spherical surface and is in contact with the inner bottom surface 7b1 of the housing 7 (the upper end surface of the thrust plate 10).
  • a rotor 3 having blades is fixed to the upper end of the shaft member 2 (see FIG. 1).
  • the bearing sleeve 8 is formed in a cylindrical shape by a porous body, here, a sintered metal porous body mainly composed of copper powder (including copper-based alloy powder) or iron powder (including iron-based alloy powder).
  • the internal holes are impregnated with the lubricating oil 11 described above.
  • the bearing sleeve 8 can also be formed of a porous body other than a sintered metal, for example, a porous resin.
  • the bearing sleeve 8 is fixed to the inner periphery of the housing 7 with its lower end surface 8 b in contact with the upper end surface 7 c 1 of the step 7 c of the housing 7.
  • the housing 7 and the bearing sleeve 8 are relatively positioned in the axial direction, and a predetermined volume is provided between the lower end surface 8b of the bearing sleeve 8 and the inner bottom surface 7b1 of the housing 7 (upper end surface of the thrust plate 10).
  • a bottom gap Gb is formed.
  • the bearing sleeve 8 can be fixed to the inner periphery of the housing 7 by appropriate means such as press-fitting (press-fitting with a large tightening allowance), adhesion, press-fitting adhesion (combination of press-fitting and adhesion).
  • the bearing sleeve 8 is fixed to the inner periphery of the housing 7 by sandwiching the bearing sleeve 8 from both sides in the axial direction between the member 9 and the bottom portion 7b of the housing 7 (the step portion 7c provided at the outer diameter end thereof). . In this way, since the bearing sleeve 8 can be fixed to the housing 7 at the same time as the annular member 9 is fixed to the housing 7, the labor required for assembling the members can be reduced.
  • the bearing sleeve 8 when the bearing sleeve 8 is press-fitted into the inner periphery of the housing 7 of the present embodiment made of metal with a large allowance, the deformation of the bearing sleeve 8 due to the press-fitting extends to the inner peripheral surface 8a of the bearing sleeve 8 and radial. Although the width accuracy of the bearing gap Gr, and thus the bearing performance of the radial bearing portions R1 and R2, may be adversely affected, the above-described fixing method prevents such an adverse effect as much as possible.
  • Cylindrical radial bearing surfaces that form radial bearing gaps Gr (see FIG. 4) between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a of the opposing shaft member 2 are provided at two locations in the axial direction. It is done. As shown in FIG. 3, dynamic pressure generating portions (radial dynamic pressure generating portions) A1 and A2 for generating a dynamic pressure action on the lubricating oil 11 in the radial bearing gap are formed on each radial bearing surface. Yes.
  • the radial dynamic pressure generating parts A1 and A2 of the present embodiment are each provided with a plurality of upper dynamic pressure grooves Aa1 and lower dynamic pressure grooves Aa2 that are inclined in opposite directions and spaced apart in the axial direction.
  • the hill part of this embodiment is provided between the inclined hill part Ab provided between the dynamic pressure grooves adjacent in the circumferential direction, and the upper and lower dynamic pressure grooves Aa1 and Aa2, and has an annular shape substantially the same diameter as the inclined hill part Ab. It consists of hill part Ac.
  • the axial dimension of the upper dynamic pressure groove Aa1 is larger than the axial dimension of the lower dynamic pressure groove Aa2.
  • the axial dimension of the lower dynamic pressure groove Aa2 is larger than the axial dimension of the upper dynamic pressure groove Aa1.
  • the axial dimension of the upper dynamic pressure groove Aa1 constituting the radial dynamic pressure generating part A1 is equal to the axial dimension of the lower dynamic pressure groove Aa2 constituting the radial dynamic pressure generating part A2, and the radial movement
  • the axial dimension of the lower dynamic pressure groove Aa2 constituting the pressure generating part A1 is equal to the axial dimension of the upper dynamic pressure groove Aa1 constituting the radial dynamic pressure generating part A2.
  • the radial dynamic pressure generating parts A1 and A2 are formed, for example, at the same time when the bearing sleeve 8 is formed (specifically, the finished dimensions are obtained by sizing the bearing material formed by compacting and sintering metal powder.
  • the bearing sleeve 8 can be molded at the same time), and in view of the good workability of the sintered metal, the bearing material is formed into a cylindrical surface with a smooth inner peripheral surface. It can also be formed by processing.
  • the form of radial dynamic pressure generation part A1, A2 (each dynamic pressure groove) is not limited to this.
  • either one or both of the radial dynamic pressure generating portions A1 and A2 may be configured by arranging a plurality of spiral-shaped dynamic pressure grooves in the circumferential direction. Either one or both of the radial dynamic pressure generating portions A1 and A2 may be formed on the outer peripheral surface 2a of the opposing shaft member 2.
  • An annular member 9 formed in an annular shape with metal or resin is fixed to the upper end portion of the inner peripheral surface 7a1 of the housing 7 by appropriate means such as adhesion, press-fitting, and press-fitting adhesion.
  • a radial gap Ga is formed between the inner peripheral surface 9a of the annular member 9 and the outer peripheral surface 2a of the shaft member 2 facing the annular member 9, and the upper side of the bearing sleeve 8 is interposed via the radial gap Ga. Open to the atmosphere.
  • the gap width d 2 of the radial clearance Ga is the radial bearing portion R1, R2 (radial bearing portion R2 in FIG. 4 is not shown) than the gap width d 1 of the radial bearing gap Gr of Is also set wide.
  • the inner diameter dimension of the annular member 9 is adjusted so as to satisfy the relational expression of 30d 1 ⁇ d 2 .
  • the gap width d 1 of the radial bearing gap Gr is set according to the required bearing performance, but is usually set to about several ⁇ m, more specifically 2 to 10 ⁇ m in many cases (FIG. 4). In the drawing, the gap width d 1 of the radial bearing gap Gr is exaggerated. Therefore, for example, when the gap width d 1 of the radial bearing gap Gr is set to 10 ⁇ m, the gap width d 2 of the radial gap Ga is set to 300 ⁇ m (0.30 mm) or more.
  • the annular member 9 since it also functions as a fixing member for fixing the bearing sleeve 8 with respect to the housing 7, when the gap width d 2 of the radial clearance Ga is set too large, the housing 7 causes a reduction in the fixing force of the bearing sleeve 8 with respect to 7. Therefore, the gap width d 2 of the radial gap Ga is set so as to satisfy the relational expression d 2 ⁇ 250d 1 .
  • This fluid dynamic bearing device 1 has a communication passage 12 for communicating the radial gap Ga and the bottom gap Gb.
  • the communication passage 12 is formed between the housing 7 and the bearing sleeve 8, and is formed between the first passage 12 a having one end opened in the bottom gap Gb, the bearing sleeve 8 and the annular member 9, and one end is in the radial direction.
  • the second passage 12b is open to the gap Ga and has the other end connected to the other end of the first passage 12a.
  • the first passage 12a is configured by a radial fluid passage formed by one or a plurality of radial grooves 8b1 formed in the lower end surface 8b and the stepped upper end surface 7c1 of the housing 7.
  • the second passage 12b is configured by a radial fluid passage formed by one or more radial grooves 8c1 formed on the upper end surface 8c of the bearing sleeve 8 and the lower end surface 9b of the annular member 9. Yes.
  • the radial gap between the surface 2a and the inner circumferential surface 8a of the bearing sleeve 8) and the bottom gap Gb containing the thrust bearing portion T are filled with the lubricating oil 11.
  • a radial gap (annular space) formed between the outer peripheral surface 2a is also filled with the lubricating oil 11 (see FIG. 2).
  • a part of the communication path 12 is not filled with the lubricating oil 11.
  • the axial groove 8d1 (a part of the first passage 12a) formed on the outer peripheral surface 8d of the bearing sleeve 8, the annular space formed by the upper end outer chamfer of the bearing sleeve 8, and the upper end surface of the bearing sleeve 8
  • the radial groove 8 c 1 (second passage 12 b) formed in 8 c is not filled with the lubricating oil 11.
  • the amount (volume) of the lubricating oil 11 filled in the internal space of the housing 7 is smaller than the volume of the internal space of the housing 7.
  • a gap portion where no lubricating oil 11 is interposed is provided in the internal space of the pressure bearing device 1 (housing 7).
  • a gap is formed by a part of the communication path 12.
  • an ester-based or PAO-based lubricating oil is preferably used in consideration of a temperature change during use of the fluid dynamic pressure bearing device 1 or transportation.
  • the gap width d 2 of the radial gap Ga provided in the opening of the housing 7 has a conventional fluid dynamic pressure bearing device (for example, the fluid dynamic pressure described in Patent Document 1 above).
  • a conventional fluid dynamic pressure bearing device for example, the fluid dynamic pressure described in Patent Document 1 above.
  • the kinematic viscosity at 40 ° C. is 20 to 90 mm 2 / s
  • An ester-based or PAO-based lubricating oil having a surface tension at 20 ° C. of 29 to 31 mN / m is preferably used.
  • the fluid dynamic bearing device 1 having the above configuration is assembled in the following procedure.
  • the bearing sleeve 8 is lightly press-fitted or fitted into the inner periphery of the housing 7 until the lower end surface 8b of the bearing sleeve 8 abuts on the upper end surface 7c1 of the step 7c of the housing 7.
  • the annular member 9 is fixed to the upper end portion of the inner peripheral surface 7 a 1 of the housing 7 with the lower end surface 9 b abutting against the upper end surface 8 c of the bearing sleeve 8. Accordingly, the bearing sleeve 8 is fixed to the inner periphery of the housing 7 so as to be sandwiched between the annular member 9 and the bottom portion 7b (step portion 7c) of the housing 7 from both sides in the axial direction.
  • the lubricating oil 11 is filled in the internal space of the housing 7 (for example, the inner periphery of the bearing sleeve 8) so that each part of the internal space of the housing 7 is filled with the lubricating oil 11 in the above-described manner (see FIG. 5 above). (See (a)). Then, as shown in FIG. 5B, when the shaft member 2 is inserted into the inner periphery of the annular member 9 and the bearing sleeve 8, the fluid dynamic bearing device 1 shown in FIG. 2 is completed.
  • a thrust bearing portion T that supports the shaft member 2 in one thrust direction is formed on the inner bottom surface 7b1 of the housing 7 (the upper end surface of the thrust plate 10).
  • the shaft member 2 is subjected to a magnetic force as an external force that presses the shaft member 2 downward (on the bottom 7 b side of the housing 7). Therefore, it is possible to prevent the shaft member 2 from floating excessively with the rotation of the shaft member 2 and, as a result, to be removed from the inner periphery of the bearing sleeve 8 as much as possible.
  • the lubricating oil 11 is simply filled into the internal space of the housing 7 using an appropriate oiling tool. A required amount of lubricating oil 11 can be interposed in the internal space of the housing 7. This eliminates the need for large-scale equipment for lubrication and highly precise adjustment and management of the oil level, and through this, the manufacturing cost of the fluid dynamic bearing device 1 can be reduced.
  • the lubrication operation is performed simply and appropriately compared to the case where the shaft member 2 is inserted into the inner periphery of the bearing sleeve 8 and then the interior space of the housing 7 is lubricated. be able to.
  • the lubricating oil 11 is annular when the shaft member 2 is subsequently inserted into the inner periphery of the bearing sleeve 8. It becomes easy to leak out of the apparatus through the radial gap Ga formed on the inner peripheral surface 9a of the member 9.
  • the lubricating oil 11 is injected into the inner space of the housing 7 and then the inner circumference of the bearing sleeve 8 is injected. Even when the shaft member 2 is inserted, the air pushed into the bottom 7b side of the housing 7 with the insertion of the shaft member 2 can be discharged to the atmosphere through the communication path 12. Therefore, the external leakage of the lubricating oil 11 accompanying the insertion of the shaft member 2 can be more effectively prevented.
  • the assembly of the fluid dynamic bearing device 1 and the lubrication operation to the internal space of the housing 7 can be easily performed, and the manufacturing cost of the fluid dynamic bearing device 1 can be reduced through these operations.
  • setting too large a gap width d 2 of the radial clearance Ga since the contact area between the lower end surface 9b of the upper end surface 8c and the annular member 9 of the bearing sleeve 8 is reduced, the bearing sleeve 8 which is required It becomes difficult to secure the removal force. Therefore, as described above, the upper limit value of the gap width d 2 of the radial gap Ga is set so as to satisfy the relational expression of d 2 ⁇ 250d 1 .
  • an external force that presses the shaft member 2 against the bottom 7b side of the housing 7 (supports in the thrust other direction) is applied to the shaft member 2. If it does in this way, since it becomes possible to support the shaft member 2 in both directions of a thrust, the support precision (rotation precision) of a thrust direction can be improved.
  • the external force is applied by a magnetic force, and the magnetic force is applied to the stator coil 5 provided on the motor base 6 holding the housing 7 on the inner periphery and the rotor magnet 4 provided on the rotor 3 as an axis. It was given by shifting it in the direction.
  • Various motors in which this type of fluid dynamic bearing device 1 is incorporated include a rotor magnet 4 and a stator coil 5 as essential constituent members. Therefore, if the said structure is employ
  • a radial bearing gap Gr adjacent to the radial gap Ga in the axial direction and having a gap width smaller than the gap width of the radial gap Ga radial bearing gap Gr of the radial bearing portion R1.
  • Radial bearing gap Gr, and radial dynamic pressure generators A1 and A2 that generate fluid dynamic pressure in radial bearing gap Gr are provided at two locations in the axial direction to generate the upper radial dynamic pressure.
  • the portion A1 is formed in a shape in which the lubricating oil 11 that fills the upper radial bearing gap Gr is pushed toward the lower radial bearing gap Gr, and the lower radial dynamic pressure generating portion A2 is formed as the lower radial bearing gap.
  • the lubricating oil 11 satisfying Gr is formed into a shape to be pushed toward the upper radial bearing gap Gr.
  • a lubricant having a relatively high viscosity is selectively used. Such as by the, it can be effectively prevented.
  • the lubricating oil 11 is drawn into the bearing inside by the capillary force, and according to the configuration (2), the radial bearing gap Gr (particularly the upper radial bearing gap Gr). This is because it is possible to prevent the lubricating oil 11 intervening) from flowing toward the radial gap Ga as much as possible. Therefore, it is possible to prevent the deterioration of the bearing performance due to the external leakage of the lubricating oil 11 as much as possible, and to stably maintain the desired bearing performance.
  • an oil repellent film may be formed on the upper end surface of 9.
  • the fluid dynamic bearing device 1 according to the embodiment of the present invention has been described above, but various changes can be made to each part of the fluid dynamic bearing device 1 without departing from the gist of the present invention. .
  • the thrust bearing portion T that supports the shaft member 2 in the thrust direction (one direction) can be constituted by a so-called dynamic pressure bearing.
  • FIG. 6 shows an example in which the thrust bearing portion T is constituted by a dynamic pressure bearing.
  • the lower end surface 2b of the shaft member 2 is formed as a flat surface extending in a direction perpendicular to the axis.
  • a dynamic pressure generating portion such as a dynamic pressure groove is formed on either the lower end surface 2b of the shaft member 2 or the inner bottom surface 7b1 of the bottom portion 7b of the housing 7 facing the shaft member 2. Is formed.
  • the housing 7 provided separately from the motor base 6 is fixed to the inner periphery of the motor base 6.
  • a portion corresponding to the motor base 6 is integrated with the housing 7. It can also be provided.
  • either one or both of the radial bearing portions R1 and R2 can be configured by other known hydrodynamic bearings such as a so-called multi-arc bearing, a step bearing, and a wave bearing.
  • the thrust bearing portion T is constituted by a dynamic pressure bearing (FIG. 6)
  • this dynamic pressure bearing can also be constituted by other known dynamic pressure bearings such as so-called step bearings and wave type bearings.
  • the rotor magnet 4 and the stator coil 5 are arranged so as to be shifted in the axial direction, whereby an external force for pressing the shaft member 2 against the bottom 7b side of the housing 7 is applied to the shaft member 2.
  • the means for making such an external force act on the shaft member 2 is not restricted to the above.
  • illustration is omitted, for example, the magnetic force can be applied to the rotor 3 by arranging a magnetic member that can attract the rotor magnet 4 so as to face the rotor magnet 4 in the axial direction.
  • the magnetic force magnetic attraction force
  • the present invention can also be preferably applied to a disk hub having a disk mounting surface or a fluid dynamic bearing device 1 in which a polygon mirror is fixed to the shaft member 2. That is, the present invention is not only a fan motor as shown in FIG. 1, but also a fluid dynamic pressure bearing incorporated in other electrical equipment such as a spindle motor for a disk device and a polygon scanner motor for a laser beam printer (LBP).
  • LBP laser beam printer
  • the present invention can also be preferably applied to the device 1.
  • a test body according to an example having the configuration of the present invention and a test body according to a comparative example not having the configuration of the present invention are prepared.
  • the internal space was filled with a predetermined amount (3 mg) of lubricating oil, and then it was confirmed whether or not external leakage of the lubricating oil occurred when the shaft member was inserted.
  • the details of (A) the test body according to the example, (B) the test body according to the comparative example, and (C) the lubricating oil used in this confirmation test are as follows.
  • (B) Specimen According to Comparative Example The specimen is the same as the specimen according to the example except that an annular member that can form a radial gap (Ga) with a gap width of 0.03 mm between the shaft member and the shaft member is used. That is, in the assembly of each of the above members, the gap width of the radial gap (Ga) is set to 6 times the gap width of the radial bearing gap in design.
  • (C) Lubricating oil An ester-based or PAO-based lubricating oil having a kinematic viscosity at 20 ° C., 40 ° C. and 100 ° C. of 120, 45 and 8 mm 2 / s, respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Sliding-Contact Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Power Engineering (AREA)

Abstract

ハウジング7内周に固定された軸受スリーブ8と、軸受スリーブ8の内周に挿脱可能に挿入された軸部材2と、軸部材2の外周面2aとの間に径方向隙間Gaを形成する内周面9aを有する環状部材9と、軸部材2を支持するラジアル軸受部R1,R2およびスラスト軸受部Tとを備え、少なくともラジアル軸受部R1,R2のラジアル軸受隙間Gr及びスラスト軸受部Tを収容した底隙間Gbが潤滑油11で満たされた流体動圧軸受装置1において、ハウジング7の内部空間に空隙部を有し、ラジアル軸受隙間Grの隙間幅をd1、径方向隙間Gaの隙間幅をd2としたとき、30d1≦d2≦250d1の関係式を満たす。

Description

流体動圧軸受装置及びこれを備えるモータ
 本発明は、流体動圧軸受装置及びこれを備えるモータに関する。
 周知のように、流体動圧軸受装置は、高速回転、高回転精度および低騒音等の特長を有する。このため、流体動圧軸受装置は、情報機器をはじめとする種々の電気機器に搭載されるモータ、具体的には、HDD等のディスク駆動装置に組み込まれるスピンドルモータ用、PC等に組み込まれるファンモータ用、あるいはレーザビームプリンタ(LBP)に組み込まれるポリゴンスキャナモータ用の軸受装置などとして好適に使用されている。
 流体動圧軸受装置の一例が下記の特許文献1に記載されている。この流体動圧軸受装置は、有底筒状(コップ状)のハウジングと、ハウジングの内周に固定された軸受スリーブと、挿脱自在に軸受スリーブの内周に挿入された軸部材と、ラジアル軸受隙間に形成される潤滑油の油膜で軸部材をラジアル方向に支持するラジアル軸受部と、軸部材をスラスト方向に支持するスラスト軸受部と、スラスト軸受部を収容した底隙間と、ハウジングの開口部内周に固定された環状部材(シール部材)とを備える。
 この流体動圧軸受装置において、環状部材は、軸受スリーブと軸方向に係合した状態(軸受スリーブの抜け方向で軸受スリーブと係合した状態)でハウジングの開口部内周に固定されている。そのため、ハウジングに対する軸受スリーブの固定力(軸受スリーブの抜去力)が高まり、軸方向におけるハウジングと軸受スリーブの相対位置、ひいては所望の軸受性能が安定的に維持される。また、この流体動圧軸受装置は、ハウジングの内部空間全域を潤滑油で満たした、いわゆるフルフィル状態で使用されるものであり、環状部材の内周面と軸部材の外周面との間にシール空間(ラジアル軸受隙間よりも隙間幅の大きい径方向隙間)が設けられる。シール空間は、潤滑油の温度変化に伴う容積変化量を吸収するバッファ機能を有し、想定される温度変化の範囲内において潤滑油の油面を常にシール空間の範囲内に保持し得るように設計されている。従って、潤滑油の外部漏洩に起因した軸受性能の低下や周辺環境の汚染が可及的に防止される。
特開2003-307212号公報
 しかしながら、上記のように、ハウジングの内部空間全域を潤滑油で満たしたいわゆるフルフィル構造を採用すると、流体動圧軸受装置の組み立て後に、いわゆる真空含浸等の煩雑な手法を用いてハウジングの内部空間を潤滑油で満たし、かつ潤滑油の油面位置を精度良く管理する(潤滑油の充填量を微調整する)必要がある。そのため、流体動圧軸受装置に対する更なる低コスト化の要請に対応することが難しい、という問題が指摘されている。
 そこで、本発明は、低コストに製造可能でありながら、所望の軸受性能を発揮することができる流体動圧軸受装置を提供することを目的とする。
 上記の目的を達成するために創案された本発明は、軸方向の一端が開口すると共に他端が閉塞された有底筒状のハウジングと、ハウジングの内周に固定された軸受スリーブと、抜去可能に軸受スリーブの内周に挿入された軸部材と、軸部材の外周面との間に径方向隙間を形成する内周面を有し、軸受スリーブと軸方向に係合した状態でハウジングの一端内周に固定された環状部材と、軸受スリーブの内周面と軸部材の外周面との間のラジアル軸受隙間に形成される潤滑油の油膜で軸部材をラジアル方向に支持するラジアル軸受部と、軸部材をスラスト方向に支持するスラスト軸受部と、スラスト軸受部を収容し、潤滑油で満たされた底隙間とを備えた流体動圧軸受装置において、ハウジングの内部空間に空隙部が設けられ、ラジアル軸受隙間の隙間幅をd1、径方向隙間の隙間幅をd2としたとき、30d1≦d2≦250d1の関係式を満たすことを特徴とする。なお、ここでいう「スラスト軸受部」は、軸部材を接触支持するピボット軸受であっても良いし、軸部材を非接触支持する動圧軸受であっても良い。
 本発明に係る流体動圧軸受装置は、ラジアル軸受部のラジアル軸受隙間と、スラスト軸受部を収容した底隙間とが潤滑油で満たされた状況下において、ハウジングの内部空間(以下、単に「内部空間」ともいう)に空隙部が設けられる。これはすなわち、ハウジングの内部空間に充填する潤滑油量を、上記内部空間の容積よりも少なくし、上記内部空間に潤滑油で満たされていない領域を設けたことを意味する。本発明に係る流体動圧軸受装置では、軸部材が、軸受スリーブに対して挿脱自在である。これらの構成から、例えば、ハウジングの内周に軸受スリーブ及び環状部材を固定した後であって、軸受スリーブ内周への軸部材の挿入前に、適当な給油具(例えば、マイクロピペット)を用いて内部空間に潤滑油を注入するだけでも、内部空間に必要量の潤滑油を介在させることができる。従って、注油のための大掛かりな設備や高精密な油面の調整・管理作業が不要となり、これを通じて軸受装置の製造コストを低廉化することができる。
 上記のとおり、本発明に係る流体動圧軸受装置の構造上、内部空間への注油作業は、ハウジングの内周に軸受スリーブ及び環状部材を固定した後であって、軸受スリーブ内周への軸部材の挿入前に実行することができる。この場合、軸受スリーブの内周に軸部材を挿入した後に内部空間に注油する場合に比べ、注油作業を簡便にかつ適切に実行することができる。しかし、何ら対策を講じなければ、注油後の軸受スリーブ内周への軸部材の挿入に伴って潤滑油漏れが生じ易くなる。この潤滑油漏れの発生メカニズムを図7A,図7Bを参照しながら説明する。
 まず、図7Aに示すように、軸受スリーブ108及び環状部材109を、ハウジング107の底部と軸受スリーブ108との間に底隙間105が形成されるようにハウジング107の内周に固定し、その後、ハウジング107の内部空間に潤滑油110を注入する。次いで、図7Bに示すように、環状部材109及び軸受スリーブ108の内周に軸部材102を挿入する。軸部材102が予め注入された潤滑油110に接触すると、潤滑油110は、毛細管力により、軸部材102(の外周面)と軸受スリーブ108(の内周面)の間に形成される微小な隙間幅の径方向隙間(ラジアル軸受隙間)を通ってハウジング107の開口部に向けて流動し、軸部材102の外周面、さらには環状部材109の内周面にも付着する。そして、軸部材102の挿入がさらに進行するのに伴って、ハウジング107の内部空間(軸部材102とハウジング107の間)に存在する空気が圧縮され、その結果、軸部材102と軸受スリーブ108および環状部材109との間に介在する潤滑油110には、これを軸受外部側へ押し出す方向の付勢力が作用する。これにより、軸部材102の外周面と環状部材109の内周面との間に形成される径方向隙間(シール空間)103を介して潤滑油110が軸受外部に漏れ出す。この場合、ラジアル軸受隙間および底隙間105の双方に十分量の潤滑油を介在させることができず、所望の軸受性能を安定的に確保することが難しくなる。
 本願発明者らが鋭意研究を重ねた結果、径方向隙間の隙間幅をd2としたとき、このd2の値が所定値を上回ると、軸部材の挿入に伴う環状部材の内周面への潤滑油の付着が可及的に防止され、上記態様での潤滑油漏れが可及的に防止されることを見出した。具体的には、ラジアル軸受隙間の隙間幅をd1、径方向隙間の隙間幅をd2としたとき、30d1≦d2の関係式を満たすように径方向隙間の隙間幅d2を設定することで解消し得ることを見出した。これにより、軸受装置の組立、および軸受装置への注油を簡便に実行可能とし、流体動圧軸受装置の製造コストを低廉化することができる。但し、径方向隙間の隙間幅d2を余りに大きく設定すると、軸受スリーブと環状部材の接触面積が過度に小さくなるため、必要とされる軸受スリーブの抜去力を確保することが難しくなるおそれがある。従って、d2≦250d1とするのが好ましい。
 上記構成の軸受装置には、さらに、径方向隙間と底隙間とを連通させる連通路を設けることができる。このようにすれば、内部空間に潤滑油を注入した後に、軸受スリーブの内周に軸部材を挿入した場合であっても、軸部材の挿入に伴って底隙間の側に押し込まれる空気を、連通路を介して大気に排出することができるので、軸部材の挿入に伴う潤滑油の外部漏洩を一層効果的に防止することができる。なお、この連通路の少なくとも一部は、上記の空隙部として活用される。
 上記の連通路は、ハウジングと軸受スリーブの間に形成され、一端が底隙間に開口した第1通路と、軸受スリーブと環状部材の間に形成され、一端が径方向隙間に開口すると共に他端が第1通路の他端に繋がった第2通路とで構成することができる。
 軸受スリーブは、例えば圧入(特に、大きな締め代をもたせた圧入。以下同様。)、接着、圧入接着(圧入と接着の併用)等によりハウジングの内周に固定することができる。しかしながら、圧入では、圧入に伴う軸受スリーブの変形が軸受スリーブの内周面に及び、ラジアル軸受隙間の幅精度に悪影響が生じるおそれがある。また、接着では、塗布した接着剤が固化するまでの間、ハウジングと軸受スリーブとを相対的に位置決め保持する必要がある他、接着剤を固化させるための別工程が必要な場合があり、両部材の固定に手間と時間を要する。そこで、軸受スリーブを、環状部材とハウジングの底部とで軸方向両側から挟持することでハウジングの内周に固定した。このようにすれば、組み立てに要する手間を軽減することができる。しかも、ラジアル軸受部の軸受性能に悪影響が及ぶのを可及的に防止することができる。
 上記構成において、ラジアル軸受隙間は、軸方向の二箇所に設けることができ、この場合、ラジアル軸受隙間内の潤滑油に動圧作用を発生させるラジアル動圧発生部も軸方向の二箇所に設けることができる。このようにすれば、ロストルクを低減しつつ、モーメント荷重に対する負荷能力(モーメント剛性)を高めることができる。この際、一方のラジアル動圧発生部を、一方のラジアル軸受隙間に介在する潤滑油を他方のラジアル軸受隙間に向けて押し込む形状に形成し、他方のラジアル動圧発生部を、他方のラジアル軸受隙間に介在する潤滑油を一方のラジアル軸受隙間に向けて押し込む形状に形成するのが望ましい。このようにすれば、各ラジアル軸受隙間における油膜切れに起因したラジアル軸受部の軸受性能の低下を可及的に防止しつつ、ラジアル軸受隙間に介在する潤滑油が上記の径方向隙間に向けて流動するのを、ひいては潤滑油が外部に漏れ出すのを可及的に防止することができる。
 上記構成において、軸部材に、軸部材をハウジングの内底面に押し付ける外力を作用させることができる。このようにすれば、軸部材をスラスト両方向に支持することが可能となってスラスト方向の支持精度が向上する他、軸受スリーブに挿脱可能に挿入された軸部材の意図せぬ抜脱を防止する上で有利となる。上記外力は、例えば磁力で与えることができる。この磁力は、例えば、ハウジングを内周に保持する保持部材(モータベース)に設けられるステータコイルと、軸部材に設けられるロータマグネットとを軸方向にずらして配置することによって与えることができる。この種の流体動圧軸受装置が組み込まれる各種モータは、通常、ロータマグネットとステータコイルとを必須の構成部材として備える。従って、上記構成を採用すれば、上記外力を特段のコスト増を招くことなく安価に付与することができる。
 軸受スリーブは、内部空孔に上記の潤滑油を含浸させた多孔質体で形成するのが好ましい。このようにすれば、軸受スリーブの表面開孔からの潤滑油の滲み出しにより、ラジアル軸受隙間および底隙間の双方を潤沢な潤滑油で満たすことができ、ラジアル軸受部およびスラスト軸受部の軸受性能を安定的に維持する上で有利となるからである。
 本発明に係る軸受装置で使用する潤滑油は、40℃における動粘度が20~90mm2/sで、かつ20℃における表面張力が29~31mN/mのエステル系もしくはPAO系潤滑油とするのが好ましい。
 以上で示した本発明に係る流体動圧軸受装置は、以上で示した種々の特徴を有することから、例えばPC用のファンモータや、ディスク駆動装置用のスピンドルモータ等の各種モータに組み込んで好適に使用することができ、しかも各種モータの低コスト化に寄与することができる。
 以上より、本発明によれば、低コストに製造可能でありながら、所望の軸受性能を発揮することができる流体動圧軸受装置を提供することができる。
ファンモータの一構成例を概念的に示す断面図である。 本発明の第1実施形態に係る流体動圧軸受装置を示す断面図である。 図2に示す軸受スリーブの断面図である。 図2に示す流体動圧軸受装置の要部拡大断面図である。 図2に示す流体動圧軸受装置の組み立て工程の初期段階を示す図である。 図2に示す流体動圧軸受装置の組み立て工程の中間段階を示す図である。 本発明の第2実施形態に係る流体動圧軸受装置を示す断面図である。 従来の流体動圧軸受装置の組み立て工程の初期段階を示す図である。 従来の流体動圧軸受装置の組み立て工程の中間段階を示す図である。
 以下、本発明の実施の形態を図面に基づいて説明する。
 図1に、本発明に係る流体動圧軸受装置1が組み込まれたファンモータの一構成例を概念的に示す。同図に示すファンモータは、流体動圧軸受装置1と、モータの静止側を構成する保持部材としてのモータベース6と、モータベース6に取り付けられたステータコイル5と、羽根(図示省略)を有する回転部材としてのロータ3と、ロータ3に取り付けられ、ステータコイル5と半径方向のギャップを介して対向するロータマグネット4とを備える。流体動圧軸受装置1のハウジング7は、モータベース6の内周に固定され、ロータ3は、流体動圧軸受装置1の軸部材2の一端に固定されている。このように構成されたファンモータにおいて、ステータコイル5に通電すると、ステータコイル5とロータマグネット4との間の電磁力でロータマグネット4が回転し、これに伴って軸部材2、および軸部材2に固定されたロータ3が一体に回転する。
 なお、ロータ3が回転すると、ロータ3に設けられた羽根の形態に応じて図中上向き又は下向きに風が送られる。このため、ロータ3の回転中にはこの送風作用の反力として、流体動圧軸受装置1の軸部材2に図中下向き又は上向きの推力が作用する。ステータコイル5とロータマグネット4との間には、この推力を打ち消す方向の磁力(斥力)を作用させており、上記推力と磁力の大きさの差により生じたスラスト荷重が流体動圧軸受装置1のスラスト軸受部Tで支持される。上記推力を打ち消す方向の磁力は、例えば、ステータコイル5とロータマグネット4とを軸方向にずらして配置することにより発生させることができる(詳細な図示は省略)。また、ロータ3の回転時には、流体動圧軸受装置1の軸部材2にラジアル荷重が作用する。このラジアル荷重は、流体動圧軸受装置1のラジアル軸受部R1,R2で支持される。
 図2に、本発明の実施形態に係る流体動圧軸受装置1を示す。この流体動圧軸受装置1は、有底筒状のハウジング7と、ハウジング7の内周に固定された軸受スリーブ8と、軸受スリーブ8の内周に挿入された軸部材2と、軸受スリーブ8よりもハウジング7の開口側でハウジング7の内周に固定された環状部材9とを主要な構成部材として備えている。ハウジング7の内部空間には所定量の潤滑油11(密な散点ハッチングで示す)が充填されており、少なくとも、軸部材2をラジアル方向に支持するラジアル軸受部R1,R2のラジアル軸受隙間Gr(図4を参照)と、軸部材2をスラスト方向に支持するスラスト軸受部Tを収容した底隙間Gbとが潤滑油11で満たされている。なお、以下では、説明の便宜上、環状部材9が配置された側を上側、その軸方向反対側を下側とするが、使用時における流体動圧軸受装置1の姿勢を限定するものではない。
 ハウジング7は、円筒状の筒部7aと、筒部7aの下端開口を閉塞する底部7bとを有する有底筒状をなし、ここでは筒部7aと底部7bが金属で一体に形成されている。筒部7aと底部7bの境界部内周には、筒部7a及び底部7bと一体に段部7cが形成され、段部7cの上端面7c1に軸受スリーブ8の下端面8b(の外径側領域)が当接している。本実施形態では、ハウジング7の内底面7b1のスラスト軸受面となる領域に、例えば樹脂製のスラストプレート10を配置している。但し、このスラストプレート10は必ずしも設ける必要はなく、省略しても構わない。このハウジング7は樹脂の射出成形品とすることもできる。
 軸部材2は、ステンレス鋼に代表される高剛性の金属材料で形成され、その外周面2aは平滑な円筒面に形成されると共に、全長に亘って径一定に形成されている。軸部材2の外径寸法は、軸受スリーブ8および環状部材9の内径寸法よりも小径とされる。従って、軸部材2は、軸受スリーブ8および環状部材9に対して挿脱自在とされる。軸部材2の下端面2bは凸球面に形成され、ハウジング7の内底面7b1(スラストプレート10の上端面)と接触している。軸部材2の上端には、羽根を有するロータ3が固定される(図1参照)。
 軸受スリーブ8は、多孔質体、ここでは銅粉末(銅系合金粉末を含む)あるいは鉄粉末(鉄系合金粉末を含む)を主成分とする焼結金属の多孔質体で円筒状に形成され、その内部空孔には、上記の潤滑油11が含浸されている。軸受スリーブ8は、焼結金属以外の多孔質体、例えば多孔質樹脂で形成することもできる。この軸受スリーブ8は、その下端面8bをハウジング7の段部7cの上端面7c1に当接させた状態でハウジング7の内周に固定されている。これにより、ハウジング7と軸受スリーブ8の軸方向における相対的な位置決めがなされ、かつ軸受スリーブ8の下端面8bとハウジング7の内底面7b1(スラストプレート10の上端面)との間に所定容積の底隙間Gbが形成される。
 軸受スリーブ8は、圧入(大きな締め代をもたせた圧入)、接着、圧入接着(圧入と接着の併用)等の適宜の手段でハウジング7の内周に固定し得るが、本実施形態では、環状部材9とハウジング7の底部7b(の外径端に設けた段部7c)とで軸受スリーブ8をその軸方向両側から挟持することにより、軸受スリーブ8をハウジング7の内周に固定している。このようにすれば、環状部材9をハウジング7に固定するのと同時に、軸受スリーブ8をハウジング7に固定することができるので、部材同士の組み付けに要する手間を軽減することができる。また、軸受スリーブ8を、金属製とされる本実施形態のハウジング7の内周に大きな締め代をもって圧入すると、圧入に伴う軸受スリーブ8の変形が軸受スリーブ8の内周面8aに及び、ラジアル軸受隙間Grの幅精度、ひいてはラジアル軸受部R1,R2の軸受性能に悪影響が及ぶ可能性があるが、上記の固定方法ではこのような弊害が可及的に防止される。
 軸受スリーブ8の内周面8aには、対向する軸部材2の外周面2aとの間にラジアル軸受隙間Gr(図4参照)を形成する円筒状のラジアル軸受面が軸方向の二箇所に設けられる。図3に示すように、各ラジアル軸受面には、ラジアル軸受隙間内の潤滑油11に動圧作用を発生させるための動圧発生部(ラジアル動圧発生部)A1,A2がそれぞれ形成されている。本実施形態のラジアル動圧発生部A1,A2は、それぞれ、互いに反対方向に傾斜し、かつ軸方向に離間して設けられた複数の上側動圧溝Aa1および下側動圧溝Aa2と、両動圧溝Aa1,Aa2を区画する凸状の丘部とを有し、全体としてヘリングボーン形状を呈する。本実施形態の丘部は、周方向で隣り合う動圧溝間に設けられた傾斜丘部Abと、上下の動圧溝Aa1,Aa2間に設けられ、傾斜丘部Abと略同径の環状丘部Acとからなる。
 上側のラジアル動圧発生部A1においては、上側の動圧溝Aa1の軸方向寸法が下側の動圧溝Aa2の軸方向寸法よりも大きくなっている。一方、下側のラジアル動圧発生部A2においては、下側の動圧溝Aa2の軸方向寸法が上側の動圧溝Aa1の軸方向寸法よりも大きくなっている。さらに、ラジアル動圧発生部A1を構成する上側の動圧溝Aa1の軸方向寸法は、ラジアル動圧発生部A2を構成する下側の動圧溝Aa2の軸方向寸法と等しく、また、ラジアル動圧発生部A1を構成する下側の動圧溝Aa2の軸方向寸法は、ラジアル動圧発生部A2を構成する上側の動圧溝Aa1の軸方向寸法と等しくなっている。従って、軸部材2の回転時、上側(ラジアル軸受部R1)および下側(ラジアル軸受部R2)のラジアル軸受隙間Gr内の潤滑油11は、それぞれ、下側および上側のラジアル軸受隙間に向けて押し込まれる。
 なお、ラジアル動圧発生部A1,A2は、例えば、軸受スリーブ8を成形するのと同時に(詳細には、金属粉末を圧粉・焼結してなる軸受素材にサイジング加工を施すことで仕上がり寸法の軸受スリーブ8を成形するのと同時に)型成形することもできるし、焼結金属の良好な加工性に鑑み、内周面が平滑な円筒面に成形された軸受素材に転造等の塑性加工を施すことで形成することもできる。また、ラジアル動圧発生部A1,A2(各動圧溝)の形態はこれに限定されるものではない。例えば、ラジアル動圧発生部A1,A2の何れか一方又は双方は、スパイラル形状の動圧溝を円周方向に複数配列したものとしても良い。ラジアル動圧発生部A1,A2の何れか一方又は双方は、対向する軸部材2の外周面2aに形成しても良い。
 ハウジング7の内周面7a1の上端部には、金属又は樹脂で円環状に形成された環状部材9が接着、圧入、圧入接着等の適宜の手段で固定される。環状部材9の内周面9aと、これに対向する軸部材2の外周面2aとの間には径方向隙間Gaが形成されており、軸受スリーブ8の上側は、この径方向隙間Gaを介して大気に開放されている。
 図4に拡大して示すように、径方向隙間Gaの隙間幅d2は、ラジアル軸受部R1,R2(図4ではラジアル軸受部R2は不図示)のラジアル軸受隙間Grの隙間幅d1よりも幅広に設定される。具体的には、30d1≦d2の関係式を満たすように、環状部材9の内径寸法が調整される。なお、ラジアル軸受隙間Grの隙間幅d1は、必要とされる軸受性能に応じて設定されるが、通常数μm程度、より具体的には2~10μmに設定される場合が多い(図4では、ラジアル軸受隙間Grの隙間幅d1を誇張して描いている)。従って、例えばラジアル軸受隙間Grの隙間幅d1が10μmに設定される場合、径方向隙間Gaの隙間幅d2は、300μm(0.30mm)以上に設定される。
 一方、上述のとおり、環状部材9は、軸受スリーブ8をハウジング7に対して固定するための固定部材としての機能も有することから、径方向隙間Gaの隙間幅d2を余りに大きく設定すると、ハウジング7に対する軸受スリーブ8の固定力低下を招来する。そのため、径方向隙間Gaの隙間幅d2は、d2≦250d1の関係式も満たすように設定する。なお、これを別の観点から見ると、軸受スリーブ8の径方向の厚みをd3としたとき、d2≦d3/2の関係式も満たすように設定する。例えば、軸受スリーブ8として、径方向の厚みd3=0.8mmのものを使用する場合、径方向隙間Gaの隙間幅d2は0.4mm以下に設定する。
 この流体動圧軸受装置1は、上記の径方向隙間Gaと底隙間Gbとを連通させるための連通路12を有する。連通路12は、ハウジング7と軸受スリーブ8との間に形成され、一端が底隙間Gbに開口した第1通路12aと、軸受スリーブ8と環状部材9との間に形成され、一端が径方向隙間Gaに開口すると共に他端が第1通路12aの他端に繋がった第2通路12bとで構成される。ここでは、軸受スリーブ8の外周面8dに形成した一又は複数の軸方向溝8d1とハウジング7(筒部7a)の内周面7a1とで形成される軸方向の流体通路、および軸受スリーブ8の下端面8bに形成した一又は複数の径方向溝8b1とハウジング7の段部上端面7c1とで形成される径方向の流体通路で上記の第1通路12aを構成している。また、軸受スリーブ8の上端面8cに形成した一又は複数の径方向溝8c1と環状部材9の下端面9bとで形成される径方向の流体通路で、上記の第2通路12bを構成している。
 以上の構成を有する流体動圧軸受装置1が図2に示す姿勢で配置された状態では、ハウジング7の内部空間のうち、少なくともラジアル軸受部R1,R2のラジアル軸受隙間Gr(軸部材2の外周面2aと軸受スリーブ8の内周面8aとの間の径方向隙間)及びスラスト軸受部Tを収容した底隙間Gbが潤滑油11で満たされる。本実施形態では、さらに、軸受スリーブ8の下端面8cに形成した径方向溝8c1、軸受スリーブ8の下端外周チャンファで形成される環状空間、および軸受スリーブ8の上端内周チャンファと軸部材2の外周面2aとの間に形成される径方向隙間(環状空間)も潤滑油11で満たされる(図2参照)。一方、連通路12の一部は潤滑油11で満たされていない。具体的には、軸受スリーブ8の外周面8dに形成した軸方向溝8d1(第1通路12aの一部)、軸受スリーブ8の上端外周チャンファで形成される環状空間、および軸受スリーブ8の上端面8cに形成した径方向溝8c1(第2通路12b)が潤滑油11で満たされていない。
 以上から、この流体動圧軸受装置1では、ハウジング7の内部空間に充填される潤滑油11の量(体積)が、ハウジング7の内部空間の容積よりも少なくなっており、従って、この流体動圧軸受装置1(ハウジング7)の内部空間には潤滑油11が介在しない空隙部が設けられている。本実施形態では、連通路12の一部で空隙部が構成される。
 ここで、潤滑油11としては、流体動圧軸受装置1の使用時や輸送時における温度変化等を考慮して、エステル系もしくはPAO系潤滑油が好適に使用される。特に、この流体動圧軸受装置1では、ハウジング7の開口部に設けられた径方向隙間Gaの隙間幅d2が従来の流体動圧軸受装置(例えば、上記特許文献1に記載の流体動圧軸受装置)に比して大きく、径方向隙間Gaを介しての潤滑油漏れが従来品よりも生じ易くなる可能性があることから、40℃における動粘度が20~90mm2/sで、かつ20℃における表面張力が29~31mN/mのエステル系もしくはPAO系潤滑油が好適に使用される。
 以上の構成を具備する流体動圧軸受装置1は、以下のような手順で組み立てられる。
 まず、軸受スリーブ8の下端面8bがハウジング7の段部7cの上端面7c1に当接するまで、軸受スリーブ8をハウジング7の内周に軽圧入もしくは隙間嵌めする。次いで、環状部材9を、その下端面9bを軸受スリーブ8の上端面8cに当接させた状態でハウジング7の内周面7a1の上端部に固定する。これにより、軸受スリーブ8は、環状部材9とハウジング7の底部7b(段部7c)とで軸方向両側から挟持されるようにして、ハウジング7の内周に固定される。次いで、上記の態様でハウジング7の内部空間の各所が潤滑油11で満たされるように、ハウジング7の内部空間(例えば、軸受スリーブ8の内周)に潤滑油11を充填する(以上、図5(a)を参照)。そして、図5(b)に示すように、環状部材9および軸受スリーブ8の内周に軸部材2を挿入すると、図2に示す流体動圧軸受装置1が完成する。
 以上の構成からなる流体動圧軸受装置1において、軸部材2が回転すると、軸受スリーブ8の内周面8aの上下2箇所に設けられたラジアル軸受面と、これに対向する軸部材2の外周面2aとの間にラジアル軸受隙間Gr,Grがそれぞれ形成される。そして軸部材2の回転に伴い、両ラジアル軸受隙間Gr,Grに形成される油膜の圧力がラジアル動圧発生部A1,A2の動圧作用によって高められ、軸部材2をラジアル方向に非接触支持するラジアル軸受部R1,R2が軸方向の二箇所に形成される。これと同時に、ハウジング7の内底面7b1(スラストプレート10の上端面)で軸部材2をスラスト一方向に接触支持するスラスト軸受部Tが形成される。なお、図1を参照しながら説明したように、軸部材2には、これを下方(ハウジング7の底部7b側)に押し付ける外力としての磁力を作用させている。従って、軸部材2が回転するのに伴って軸部材2が過度に浮上するのを、ひいては軸受スリーブ8の内周から抜脱するのを可及的に防止することができる。
 以上で説明したように、本発明に係る流体動圧軸受装置1では、ラジアル軸受隙間Gr及び底隙間Gbが潤滑油11で満たされた状況下(図2)において、ハウジング7の内部空間に空隙部が設けられる。これはすなわち、内部空間に充填する潤滑油11の量を、内部空間の容積よりも少なくしたことを意味する。本発明に係る流体動圧軸受装置1では、軸部材2が、軸受スリーブ8(および環状部材9)に対して挿脱自在であることから、上述したように、ハウジング7の内周に軸受スリーブ8及び環状部材9を固定した後であって、軸受スリーブ8内周への軸部材2の挿入前に、適当な給油具を用いてハウジング7の内部空間に潤滑油11を充填するだけでも、ハウジング7の内部空間に必要量の潤滑油11を介在させることができる。そのため、注油のための大掛かりな設備や高精密な油面の調整・管理作業が不要となり、これを通じて流体動圧軸受装置1の製造コストを低廉化することができる。
 上記の手順でハウジング7の内部空間に注油すれば、軸受スリーブ8の内周に軸部材2を挿入した後にハウジング7の内部空間に注油する場合に比べ、注油作業を簡便にかつ適切に実行することができる。しかしながら、何ら対策を施さない場合には、図7(a)(b)を参照しながら説明したように、その後の軸受スリーブ8内周への軸部材2の挿入時に、潤滑油11が、環状部材9の内周面9aで形成される径方向隙間Gaを介して装置外部に漏れ易くなる。
 このような問題については、ラジアル軸受隙間Grの隙間幅をd1、径方向隙間Gaの隙間幅をd2としたとき、30d1≦d2の関係式を満たすように径方向隙間Gaの隙間幅d2を設定することで解消し得る。すなわち、このようにすれば、図5(a)に示すように、軸受スリーブ8内周への軸部材2の挿入に伴う環状部材9の内周面9aへの潤滑油11の付着が効果的に防止されるので、ハウジング7外部への潤滑油漏れが可及的に防止される。これに加え、本実施形態では、径方向隙間Gaと底隙間Gbとを連通させる連通路12を設けたので、ハウジング7の内部空間に潤滑油11を注入した後に、軸受スリーブ8の内周に軸部材2を挿入した場合であっても、軸部材2の挿入に伴ってハウジング7の底部7b側に押し込まれる空気を、連通路12を介して大気に排出することができる。従って、軸部材2の挿入に伴う潤滑油11の外部漏洩を一層効果的に防止することができる。
 以上から、流体動圧軸受装置1の組み立て、およびハウジング7の内部空間への注油作業を簡便に実行可能とし、これらを通じて流体動圧軸受装置1の製造コストを低廉化することができる。但し、径方向隙間Gaの隙間幅d2を余りに大きく設定すると、軸受スリーブ8の上端面8cと環状部材9の下端面9bとの接触面積が小さくなることから、必要とされる軸受スリーブ8の抜去力を確保することが難しくなる。従って、上述したように、d2≦250d1の関係式も満たすように、径方向隙間Gaの隙間幅d2の上限値を設定する。
 また、軸部材2には、軸部材2をハウジング7の底部7b側に押し付ける(スラスト他方向に支持する)外力を作用させるようにした。このようにすれば、軸部材2をスラスト両方向に支持することが可能となるので、スラスト方向の支持精度(回転精度)を高めることができる。本実施形態では、上記外力を、磁力で与えるようにし、しかもこの磁力を、ハウジング7を内周に保持するモータベース6に設けられるステータコイル5と、ロータ3に設けられるロータマグネット4とを軸方向にずらして配置することによって与えるようにした。この種の流体動圧軸受装置1が組み込まれる各種モータは、ロータマグネット4とステータコイル5とを必須の構成部材として備える。従って、上記構成を採用すれば、上記外力を特段のコスト増を招くことなく安価に付与することができる。
 本発明に係る流体動圧軸受装置1の構造上、例えば当該軸受装置1を図2に示す態様とは上下を反転させた姿勢で使用するような場合には、径方向隙間Gaを介して潤滑油11が外部に漏れ出し、軸受性能の低下を招来するおそれがある。このような問題については、(1)径方向隙間Gaと軸方向に隣接して、径方向隙間Gaの隙間幅よりも隙間幅の小さいラジアル軸受隙間Gr(ラジアル軸受部R1のラジアル軸受隙間Gr)が設けられていること、(2)ラジアル軸受隙間Gr、およびラジアル軸受隙間Grに流体動圧を発生させるラジアル動圧発生部A1,A2を軸方向の二箇所に設け、上側のラジアル動圧発生部A1を、上側のラジアル軸受隙間Grを満たす潤滑油11を下側のラジアル軸受隙間Grに向けて押し込む形状に形成すると共に、下側のラジアル動圧発生部A2を、下側のラジアル軸受隙間Grを満たす潤滑油11を上側のラジアル軸受隙間Grに向けて押し込む形状に形成したこと、(3)潤滑油11として、比較的高粘度のものを選択使用するようにしたことなどにより、効果的に防止することができる。すなわち、特に、上記(1)の構成によれば、毛細管力によって潤滑油11が軸受内部側に引き込まれ、上記(2)の構成によれば、ラジアル軸受隙間Gr(特に上側のラジアル軸受隙間Gr)に介在する潤滑油11が径方向隙間Gaに向けて流動するのを可及的に防止することができるからである。従って、潤滑油11の外部漏洩に起因した軸受性能の低下を可及的に防止し、所望の軸受性能を安定的に維持し得る。
 なお、図示は省略するが、径方向隙間Gaを介しての潤滑油漏れを一層効果的に防止するため、径方向隙間Gaに隣接して大気に接した軸部材2の外周面2aや環状部材9の上端面に撥油膜を形成しても良い。
 以上、本発明の実施形態に係る流体動圧軸受装置1について説明を行ったが、流体動圧軸受装置1の各部には、本発明の要旨を逸脱しない範囲で種々の変更を施すことができる。
 例えば、軸部材2をスラスト方向(一方向)に支持するスラスト軸受部Tは、いわゆる動圧軸受で構成することができる。図6は、スラスト軸受部Tを動圧軸受で構成する場合の一例を示しており、この場合、軸部材2の下端面2bは、軸線と直交する方向に延びる平坦面に形成される。図示は省略するが、軸部材2の下端面2bおよびこれに対向するハウジング7の底部7bの内底面7b1の何れか一方には、動圧溝等の動圧発生部(スラスト動圧発生部)が形成される。
 また、以上で示した実施形態では、モータベース6の内周に、モータベース6と別体に設けたハウジング7を固定するようにしたが、ハウジング7にモータベース6に相当する部位を一体に設けることもできる。
 また、ラジアル軸受部R1,R2の何れか一方又は双方は、いわゆる多円弧軸受、ステップ軸受、および波型軸受等、公知のその他の動圧軸受で構成することもできる。また、スラスト軸受部Tを動圧軸受で構成する場合(図6)、この動圧軸受は、いわゆるステップ軸受や波型軸受等、公知のその他の動圧軸受で構成することもできる。
 また、以上で示した実施形態では、ロータマグネット4とステータコイル5とを軸方向にずらして配置することにより、軸部材2に、軸部材2をハウジング7の底部7b側に押し付けるための外力を作用させるようにしたが、このような外力を軸部材2に作用させるための手段は上記のものに限られない。図示は省略するが、例えば、ロータマグネット4を引き付け得る磁性部材をロータマグネット4と軸方向に対向配置することにより、上記磁力をロータ3に作用させることもできる。また、送風作用の反力としての推力が十分に大きく、この推力のみで軸部材2を下方に押し付けることができる場合、軸部材2を下方に押し付けるための外力としての磁力(磁気吸引力)は省略しても構わない。
 また、以上では、回転部材として、羽根を有するロータ3が軸部材2に固定される流体動圧軸受装置1に本発明を適用した場合について説明を行ったが、本発明は、回転部材として、ディスク搭載面を有するディスクハブ、あるいはポリゴンミラーが軸部材2に固定される流体動圧軸受装置1にも好ましく適用することができる。すなわち、本発明は、図1に示すようなファンモータのみならず、ディスク装置用のスピンドルモータや、レーザビームプリンタ(LBP)用のポリゴンスキャナモータ等、その他の電気機器に組み込まれる流体動圧軸受装置1にも好ましく適用することができる。
 本発明の有用性を実証するため、まず、本発明の構成を具備する実施例に係る試験体と、本発明の構成を具備しない比較例に係る試験体とを準備すると共に、各試験体の内部空間に所定量(3mg)の潤滑油を充填し、その後、軸部材挿入時に潤滑油の外部漏洩が生じるか否かを確認した。この確認試験で用いた(A)実施例に係る試験体、(B)比較例に係る試験体、および(C)潤滑油の詳細は以下のとおりである。
(A)実施例に係る試験体
 内径φ1.5mm×外径φ3.0mmで、かつ軸部材との間に隙間幅5μmのラジアル軸受隙間を形成し得る軸受スリーブ、隙間幅0.3mmの径方向隙間(Ga)を軸部材との間に形成し得る環状部材、および図2に示す態様で上記軸受スリーブと環状部材を固定し得るハウジングの組み付け品である。すなわち、径方向隙間(Ga)の隙間幅が、設計上、ラジアル軸受隙間の隙間幅の60倍に設定された上記各部材のアセンブリである。
(B)比較例に係る試験体
 隙間幅0.03mmの径方向隙間(Ga)を軸部材との間に形成し得る環状部材を用いる以外は、実施例に係る試験体と同様である。すなわち、径方向隙間(Ga)の隙間幅が、設計上、ラジアル軸受隙間の隙間幅の6倍に設定された上記各部材のアセンブリである。
(C)潤滑油
 20℃、40℃及び100℃における動粘度が、それぞれ、120、45及び8mm2/sのエステル系もしくはPAO系潤滑油。
(D)備考
 潤滑油の充填量3mgは、上記の各試験体において、概ね図2に示す状態、すなわち、ラジアル軸受隙間(Gr)及び底隙間(Gb)が潤滑油で満たされた状態を達成し得る量である。
 そして、実施例に係る試験体に軸部材を挿入した場合、挿入開始~挿入完了時に至って環状部材の内周面への潤滑油の付着が一切生じず、従って軸部材の挿入が完了した時点においても径方向隙間(Ga)を介しての潤滑油漏れは生じなかった。一方、比較例に係る試験体に軸部材を挿入すると、軸部材が所定量挿入された時点で環状部材の内周面に潤滑油が付着し、その後軸部材がさらに挿入されると、径方向隙間(Ga)を介して潤滑油が試験体外部に漏れ出した。よって、本発明の構成によれば、軸部材挿入時における潤滑油の外部漏洩を効果的に防止し得る。
 さらに、上記の確認試験に加え、実施例に係る試験体に軸部材を挿入して流体動圧軸受装置を構成し、この軸受装置を倒立姿勢(図2に示す姿勢)で1hr連続運転したときに、潤滑油の外部漏洩が生じるか否かを確認した。結果としては、このような連続運転時にも実施例に係る試験体に軸部材を挿入してなる流体動圧軸受装置では、潤滑油の外部漏洩が生じなかった。よって、本発明の構成によれば、運転中における潤滑油の外部漏洩に起因した軸受性能の低下をも効果的に防止し得る。
1    流体動圧軸受装置
2    軸部材
3    ロータ(回転部材)
4    ロータマグネット
5    ステータコイル
6    モータベース
7    ハウジング
7a   筒部
7b   底部
7c   段部
8    軸受スリーブ
9    環状部材
10   スラストプレート
11   潤滑油
12   連通路
12a  第1通路
12b  第2通路
A1、A2 ラジアル動圧発生部
Ga   径方向隙間
Gb   底隙間
Gr   ラジアル軸受隙間
R1、R2 ラジアル軸受部
T    スラスト軸受部
1   ラジアル軸受隙間の隙間幅
2   径方向隙間の隙間幅

Claims (9)

  1.  軸方向の一端が開口すると共に他端が閉塞された有底筒状のハウジングと、ハウジングの内周に固定された軸受スリーブと、挿脱可能に軸受スリーブの内周に挿入された軸部材と、軸部材の外周面との間に径方向隙間を形成する内周面を有し、軸受スリーブと軸方向に係合した状態でハウジングの一端内周に固定された環状部材と、軸受スリーブの内周面と軸部材の外周面との間のラジアル軸受隙間に形成される潤滑油の油膜で軸部材をラジアル方向に支持するラジアル軸受部と、軸部材をスラスト方向に支持するスラスト軸受部と、スラスト軸受部を収容し、潤滑油で満たされた底隙間とを備えた流体動圧軸受装置において、
     ハウジングの内部空間に空隙部が設けられ、
     ラジアル軸受隙間の隙間幅をd1、前記径方向隙間の隙間幅をd2としたとき、30d1≦d2≦250d1の関係式を満たすことを特徴とする流体動圧軸受装置。
  2.  前記径方向隙間と前記底隙間とを連通させる連通路をさらに有し、該連通路の少なくとも一部で前記空隙部を構成した請求項1に記載の流体動圧軸受装置。
  3.  ハウジングと軸受スリーブの間に形成され、一端が底隙間に開口した第1通路と、軸受スリーブと環状部材の間に形成され、一端が前記径方向隙間に開口すると共に他端が前記第1通路の他端に繋がった第2通路とで前記連通路を構成した請求項2に記載の流体動圧軸受装置。
  4.  軸受スリーブを、環状部材とハウジングの底部とで軸方向両側から挟持して、ハウジングの内周に固定した請求項1に記載の流体動圧軸受装置。
  5.  ラジアル軸受隙間と、ラジアル軸受隙間内の潤滑油に動圧作用を発生させるラジアル動圧発生部とを軸方向の二箇所に設け、
     一方のラジアル動圧発生部を、一方のラジアル軸受隙間に介在する潤滑油を他方のラジアル軸受隙間に向けて押し込む形状に形成し、他方のラジアル動圧発生部を、他方のラジアル軸受隙間に介在する潤滑油を一方のラジアル軸受隙間に向けて押し込む形状に形成した請求項1に記載の流体動圧軸受装置。
  6.  軸部材に、軸部材をハウジングの内底面に押し付ける外力を作用させる請求項1に記載の流体動圧軸受装置。
  7.  軸受スリーブが、内部空孔に前記潤滑油を含浸させた多孔質体からなる請求項1に記載の流体動圧軸受装置。
  8.  前記潤滑油は、40℃における動粘度が20~90mm2/sで、かつ20℃における表面張力が29~31mN/mのエステル系もしくはPAO系潤滑油である請求項1に記載の流体動圧軸受装置。
  9.  請求項1~8の何れか一項に記載の流体動圧軸受装置を備えたモータ。
PCT/JP2013/072048 2012-09-18 2013-08-19 流体動圧軸受装置及びこれを備えるモータ WO2014045772A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020157006228A KR102068517B1 (ko) 2012-09-18 2013-08-19 유체 동압 베어링 장치 및 이것을 구비하는 모터
US14/425,972 US9476449B2 (en) 2012-09-18 2013-08-19 Fluid dynamic bearing device and motor with same
EP13839464.8A EP2899417B1 (en) 2012-09-18 2013-08-19 Fluid dynamic bearing device and motor with same
CN201380048035.6A CN104641131B (zh) 2012-09-18 2013-08-19 流体动压轴承装置以及具备该流体动压轴承装置的电动机
IN1676DEN2015 IN2015DN01676A (ja) 2012-09-18 2013-08-19

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-204096 2012-09-18
JP2012204096A JP6189589B2 (ja) 2012-09-18 2012-09-18 流体動圧軸受装置及びこれを備えるモータ

Publications (1)

Publication Number Publication Date
WO2014045772A1 true WO2014045772A1 (ja) 2014-03-27

Family

ID=50341096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072048 WO2014045772A1 (ja) 2012-09-18 2013-08-19 流体動圧軸受装置及びこれを備えるモータ

Country Status (7)

Country Link
US (1) US9476449B2 (ja)
EP (1) EP2899417B1 (ja)
JP (1) JP6189589B2 (ja)
KR (1) KR102068517B1 (ja)
CN (1) CN104641131B (ja)
IN (1) IN2015DN01676A (ja)
WO (1) WO2014045772A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017166575A (ja) * 2016-03-16 2017-09-21 Ntn株式会社 動圧軸受及びその製造方法
US10718375B2 (en) * 2016-05-16 2020-07-21 Roller Bearing Company Of America, Inc. Bearing system with self-lubrication features, seals, grooves and slots for maintenance-free operation
US11473626B2 (en) 2016-05-16 2022-10-18 Roller Bearing Company Of America, Inc. Bearing system with self-lubrication features, seals, grooves and slots for maintenance-free operation
JP6877185B2 (ja) * 2016-07-14 2021-05-26 Ntn株式会社 流体動圧軸受装置及びこれを備えるモータ
WO2018012186A1 (ja) * 2016-07-14 2018-01-18 Ntn株式会社 流体動圧軸受装置及びこれを備えるモータ
JP7023754B2 (ja) 2017-12-08 2022-02-22 Ntn株式会社 流体動圧軸受装置
JP2019143688A (ja) * 2018-02-19 2019-08-29 Ntn株式会社 流体動圧軸受装置及びこれを備えたモータ
TWI684711B (zh) * 2018-08-03 2020-02-11 東培工業股份有限公司 動壓軸承逃氣結構

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11201142A (ja) * 1998-01-12 1999-07-27 Nippon Seiko Kk 動圧軸受
JP2002106549A (ja) * 2000-10-04 2002-04-10 Canon Inc 動圧軸受装置、回転装置および偏向走査装置
JP2003307212A (ja) 2001-11-13 2003-10-31 Ntn Corp 流体軸受装置
JP2004138215A (ja) * 2002-10-21 2004-05-13 Hitachi Powdered Metals Co Ltd 焼結含油軸受
JP2005337377A (ja) * 2004-05-27 2005-12-08 Matsushita Electric Ind Co Ltd 動圧流体軸受装置及びハードディスク駆動装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH109250A (ja) * 1996-06-20 1998-01-13 Sankyo Seiki Mfg Co Ltd 動圧流体軸受装置
JP4481475B2 (ja) * 2000-11-02 2010-06-16 東北リコー株式会社 動圧型軸受ユニット
CN101469742B (zh) * 2001-11-13 2010-12-15 Ntn株式会社 流体轴承装置
US7296931B2 (en) 2002-11-13 2007-11-20 Ntn Corporation Fluid lubricated bearing device
US20070230843A1 (en) 2006-01-06 2007-10-04 Tetsuya Kurimura Fluid lubricated bearing device
US7048444B2 (en) 2001-11-13 2006-05-23 Ntn Corporation Fluid lubricated bearing device
KR100968163B1 (ko) 2002-04-23 2010-07-06 엔티엔 가부시키가이샤 유체 베어링 장치
WO2004092600A1 (ja) 2003-03-31 2004-10-28 Ntn Corporation 流体軸受装置
JP2007120653A (ja) * 2005-10-28 2007-05-17 Matsushita Electric Ind Co Ltd 流体軸受装置、ならびにそれを用いたスピンドルモータ及び情報装置
CN101765718B (zh) * 2007-07-31 2012-08-08 Ntn株式会社 流体动压轴承装置及其组装方法
JP5674184B2 (ja) * 2009-08-04 2015-02-25 サムスン電機ジャパンアドバンスドテクノロジー株式会社 ディスク駆動装置
WO2011077883A1 (ja) 2009-12-24 2011-06-30 Ntn株式会社 流体動圧軸受装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11201142A (ja) * 1998-01-12 1999-07-27 Nippon Seiko Kk 動圧軸受
JP2002106549A (ja) * 2000-10-04 2002-04-10 Canon Inc 動圧軸受装置、回転装置および偏向走査装置
JP2003307212A (ja) 2001-11-13 2003-10-31 Ntn Corp 流体軸受装置
JP2004138215A (ja) * 2002-10-21 2004-05-13 Hitachi Powdered Metals Co Ltd 焼結含油軸受
JP2005337377A (ja) * 2004-05-27 2005-12-08 Matsushita Electric Ind Co Ltd 動圧流体軸受装置及びハードディスク駆動装置

Also Published As

Publication number Publication date
CN104641131A (zh) 2015-05-20
JP6189589B2 (ja) 2017-08-30
CN104641131B (zh) 2017-04-19
EP2899417A4 (en) 2016-05-18
IN2015DN01676A (ja) 2015-07-03
JP2014059014A (ja) 2014-04-03
US20150233417A1 (en) 2015-08-20
KR102068517B1 (ko) 2020-01-21
EP2899417A1 (en) 2015-07-29
KR20150053922A (ko) 2015-05-19
EP2899417B1 (en) 2019-11-13
US9476449B2 (en) 2016-10-25

Similar Documents

Publication Publication Date Title
JP6189589B2 (ja) 流体動圧軸受装置及びこれを備えるモータ
JP6100046B2 (ja) 流体動圧軸受装置およびこれを備えるモータ
JP5951365B2 (ja) 流体動圧軸受装置及びこれを備えるモータ
KR101244275B1 (ko) 유체 베어링 장치
JP5207657B2 (ja) 動圧軸受装置の製造方法
JP4738868B2 (ja) 動圧軸受装置
JP2007024267A (ja) 流体軸受装置およびこれを備えたモータ
WO2016080137A1 (ja) 流体動圧軸受装置の製造方法
WO2019139007A1 (ja) 流体動圧軸受装置及びこれを備えたモータ
JP2018017393A (ja) 流体動圧軸受装置及びこれを備えるモータ
JP2009228873A (ja) 流体軸受装置
WO2019159787A1 (ja) 流体動圧軸受装置及びこれを備えたモータ
JP4828908B2 (ja) 動圧軸受装置
JP6981900B2 (ja) 流体動圧軸受装置およびこれを備えるモータ
JP5231095B2 (ja) 流体軸受装置
JP7023754B2 (ja) 流体動圧軸受装置
JP5133156B2 (ja) 流体動圧軸受装置
WO2019065719A1 (ja) 流体動圧軸受装置およびこれを備えるモータ
JP2009103179A (ja) 流体軸受装置
WO2019112057A1 (ja) 流体動圧軸受装置
JP2008138846A (ja) 流体軸受装置
JP2020141532A (ja) 流体動圧軸受装置およびこれを備えるモータ
WO2015133563A1 (ja) 流体動圧軸受装置及びこれを備えたモータ
JP2007278326A (ja) 動圧軸受装置
JP2007255648A (ja) 動圧軸受装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13839464

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14425972

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157006228

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013839464

Country of ref document: EP