WO2018012186A1 - 流体動圧軸受装置及びこれを備えるモータ - Google Patents

流体動圧軸受装置及びこれを備えるモータ Download PDF

Info

Publication number
WO2018012186A1
WO2018012186A1 PCT/JP2017/021960 JP2017021960W WO2018012186A1 WO 2018012186 A1 WO2018012186 A1 WO 2018012186A1 JP 2017021960 W JP2017021960 W JP 2017021960W WO 2018012186 A1 WO2018012186 A1 WO 2018012186A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
cylindrical portion
radial
fluid dynamic
housing
Prior art date
Application number
PCT/JP2017/021960
Other languages
English (en)
French (fr)
Inventor
慎治 小松原
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017038309A external-priority patent/JP6877185B2/ja
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to US16/314,771 priority Critical patent/US10819180B2/en
Publication of WO2018012186A1 publication Critical patent/WO2018012186A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/02Rigid support of bearing units; Housings, e.g. caps, covers in the case of sliding-contact bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/167Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using sliding-contact or spherical cap bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings

Definitions

  • the present invention relates to a fluid dynamic pressure bearing device and a motor including the same.
  • the fluid dynamic bearing device has features such as high speed rotation, high rotation accuracy, and low noise.
  • the fluid dynamic bearing device is used in various motors mounted on various electric devices, for example, for spindle motors incorporated in disk drive devices such as HDDs, for fan motors incorporated in PCs, etc., or for laser beam printers. It is suitably used as a bearing device for a polygon scanner motor to be incorporated.
  • a bearing member disposed on the inner periphery of a bottomed cylindrical housing, an outer peripheral surface of a shaft to be supported (a shaft member inserted into the inner periphery of the bearing member), and a bearing member A radial bearing portion that supports the shaft member in the radial direction with an oil film of lubricating oil formed in a radial bearing gap between the inner peripheral surface of the shaft, a thrust bearing portion that supports the shaft member in one thrust direction, and an opening in the housing
  • a fluid dynamic bearing device provided with an annular seal member disposed on the inner periphery of the part.
  • the fluid dynamic bearing device of Patent Document 1 is used in a so-called full-fill state in which the entire interior space of the housing is filled with lubricating oil, and the inner peripheral surface of the seal member and the outer peripheral surface of the shaft member that face each other.
  • a seal space for holding the oil surface of the lubricating oil is provided.
  • the fluid dynamic pressure bearing device adopting such a full-fill structure has an advantage that high bearing performance can be stably exhibited.
  • a complicated method such as so-called vacuum impregnation is used for the internal space of the housing.
  • Patent Document 2 employs a so-called partial fill structure in which lubricating oil is partially interposed in the internal space of the housing (air and lubricating oil are mixed in the internal space of the housing).
  • a fluid dynamic bearing device has been proposed.
  • This partial fill structure has a basic structure in which an amount of lubricating oil that can fill the radial bearing gap of the radial bearing portion and the peripheral region of the thrust bearing portion is interposed in the internal space of the housing during operation of the bearing device. Therefore, it is not necessary to employ a complicated method such as vacuum impregnation when filling the lubricating oil, and there is no need to manage the filling amount of the lubricating oil with high precision. Therefore, the filling operation of the lubricating oil can be simplified, and there is an advantage that the manufacturing cost of the fluid dynamic pressure bearing device can be reduced through this.
  • Patent Document 2 also proposes fixing the bearing member to the inner periphery of the housing by sandwiching the bearing member from both sides in the axial direction between the annular member and the bottom of the housing for the purpose of further reducing the manufacturing cost. Yes.
  • One way to increase the load capacity (bearing rigidity) of radial load is to increase the axial dimension of the bearing member that is directly involved in the formation of the radial bearing gap. Therefore, it is difficult to reduce the thickness of the entire apparatus.
  • an object of the present invention is to provide a low-cost fluid dynamic bearing device that is compact in the axial direction and has excellent radial load capacity (bearing rigidity of the radial bearing portion).
  • the present invention which has been created to achieve the above-described problems, includes a bottomed cylindrical housing in which an end on one axial side is open and an end on the other axial side is closed, and an inner periphery of the housing.
  • a porous bearing member that is arranged and has a chamfered portion on the inner peripheral edge on one axial side, and a radial between the inner peripheral surface of the bearing member and the outer peripheral surface of the shaft member inserted into the inner periphery of the bearing member And a radial bearing portion that supports the shaft member in the radial direction with an oil film of lubricating oil formed in the bearing gap, and the shaft member is supported in the thrust direction on the inner bottom surface of the housing.
  • the cylindrical portion and the large-diameter cylindrical portion, which is disposed on the other side in the axial direction and has a relatively large outer diameter, are integrated, and the end surface on the one axial side of the small-diameter cylindrical portion is exposed to the atmosphere.
  • the large-diameter cylindrical portion is clamped from both sides in the axial direction by the annular member disposed between the small-diameter cylindrical portion and the cylindrical portion of the housing and the bottom portion of the housing, and is fixed to the inner periphery of the housing.
  • the shaft member is supported in the thrust direction on the inner bottom surface of the housing” means that the shaft member is supported in contact with the thrust direction and the shaft member is supported in non-contact manner in the thrust direction. It is a concept that includes both.
  • the “inner space of the housing” includes not only a gap (space) formed between two opposing surfaces of the constituent members (housing, bearing member, annular member and shaft member) of the fluid dynamic pressure bearing device, but also porous The internal pores of the bearing member are also included.
  • the configuration of the present invention described above is disposed on the inner periphery of the end on one side (opening side) in the axial direction of the housing and between the outer peripheral surface of the shaft member.
  • This corresponds to a configuration in which the annular seal member forming the seal space for holding the oil surface of the lubricating oil is omitted.
  • the axial dimension of the housing can be shortened by at least the axial dimension of the seal member without changing the axial dimension of the bearing member, and hence the bearing rigidity of the radial bearing portion. Compact in direction.
  • a small-diameter cylindrical portion and a large-diameter cylindrical portion having different outer diameter dimensions are integrally provided on the bearing member, and a large-diameter cylinder is formed by an annular member disposed between the small-diameter cylindrical portion and the housing tubular portion and the bottom portion of the housing. Since the bearing member is fixed to the inner periphery of the housing by clamping the portion from both sides in the axial direction, the assembly process can be simplified, and the manufacturing cost of the fluid dynamic pressure bearing device can be reduced through this.
  • the fitting of the large-diameter cylindrical portion to the cylindrical portion of the housing and the fitting of the small-diameter cylindrical portion to the annular member are both clearance fits.
  • the gap width of the radial bearing gap caused by the deformation of the inner peripheral surface of the bearing member which is a concern when fitting the large-diameter cylindrical portion and the small-diameter cylindrical portion with respect to the cylindrical portion and the annular member of the housing. It is possible to prevent as much as possible a decrease in accuracy and, in turn, a decrease in bearing performance of the radial bearing portion.
  • the definition of “clearance fit” here is based on Japanese Industrial Standard JIS B 0401-1.
  • the porous bearing member may be a sintered metal porous body.
  • the inner peripheral surface of the bearing member is a molding surface that is molded following the outer peripheral surface of the sizing core, the inner peripheral surface of the bearing member may be finished to a predetermined shape and accuracy at low cost. it can.
  • the bearing member is formed in a stepped cylindrical shape integrally having a small diameter cylindrical portion and a large diameter cylindrical portion, if the radial thickness difference between both cylindrical portions is too large, the sintered body ( When sizing (sintered metal bearing material), a large difference in the radial compression amount and springback amount after releasing the compression force tends to occur between both cylindrical parts.
  • the surface cannot be finished to a predetermined shape and accuracy. For this reason, it is preferable to provide a limit to the radial thickness difference between the two cylindrical portions.
  • the ratio (t1 / t1) of (t1) is preferably less than 2.5, and more preferably 2 or less.
  • said thickness (t1, t2) means a minimum value.
  • a tapered surface that is gradually reduced in diameter from the other side in the axial direction (the bottom side of the housing) to one side in the axial direction (the opening side of the housing) can be provided on the outer peripheral surface of the small-diameter cylindrical portion.
  • the outer peripheral surface of the small diameter cylindrical portion of the bearing member is formed. It is possible to reduce as much as possible the possibility of defects such as scratches and wrinkles.
  • the entire outer peripheral surface of the small-diameter cylindrical portion of the bearing member may be constituted by the tapered surface described above, or may be constituted by the cylindrical surface having a constant diameter and the tapered surface described above. When the latter configuration is adopted, the cylindrical surface can be provided between the tapered surface and the end surface on one axial side of the small diameter cylindrical portion.
  • ⁇ A dynamic pressure generating portion that generates fluid dynamic pressure in the lubricating oil in the radial bearing gap can be provided on the inner peripheral surface of the bearing member.
  • the radial bearing portion can be constituted by a dynamic pressure bearing, the bearing rigidity of the radial bearing portion can be further increased.
  • the shaft member can be inserted into and removed from the bearing member.
  • the shaft member can be inserted into the bearing member at an arbitrary timing, for example, if the shaft member is inserted into the bearing member whose inner circumference is filled with a predetermined amount of lubricating oil, the shaft member is inserted. Accordingly, the lubricating oil can be spread over the radial gap (radial bearing gap) between the inner peripheral surface of the bearing member and the outer peripheral surface of the shaft member or the peripheral region of the thrust bearing portion.
  • the external force can be a magnetic force, for example.
  • This magnetic force can be applied, for example, by disposing a stator coil provided on the stationary side of the motor and a rotor magnet provided on the rotating side of the motor while being shifted in the axial direction.
  • Various motors in which this type of fluid dynamic pressure bearing device is incorporated normally include a rotor magnet and a stator coil as essential constituent members, so that no cost increase occurs when the external force is applied to the shaft member.
  • the fluid dynamic bearing device according to the present invention described above can be suitably used by being incorporated in various motors such as a fan motor for PC and a polygon scanner motor for LBP.
  • the shaft member is provided with a rotor having blades for blowing air.
  • the shaft member is provided with a polygon scanner. It is done.
  • Fig. 1 conceptually shows a configuration example of a fan motor.
  • the fan motor shown in the figure has a fluid dynamic pressure bearing device 1, a motor base 6 constituting the stationary side of the motor, a stator coil 5 attached to the motor base 6, and a blade for air blowing (not shown).
  • the rotor 3 is provided on the rotating side of the motor, and the rotor magnet 4 is attached to the rotor 3 and faces the stator coil 5 via a radial gap.
  • the housing 7 of the fluid dynamic bearing device 1 is fixed to the inner periphery of the motor base 6, and the rotor 3 is attached to one end of the shaft member 2 of the fluid dynamic bearing device 1.
  • the rotor magnet 4 is rotated by the electromagnetic force between the stator coil 5 and the rotor magnet 4, and accordingly, the shaft member 2 and the shaft member 2 are rotated.
  • the rotor 3 attached to is rotated integrally.
  • the magnetic force in the direction to cancel the thrust can be generated, for example, by disposing the stator coil 5 and the rotor magnet 4 while being shifted in the axial direction (detailed illustration is omitted). Further, when the rotor 3 rotates, a radial load acts on the bearing member 8 of the fluid dynamic bearing device 1. This radial load is supported by the radial bearing portions R1 and R2 of the fluid dynamic bearing device 1.
  • FIG. 2 shows a fluid dynamic bearing device 1 according to an embodiment of the present invention.
  • the fluid dynamic pressure bearing device 1 includes a shaft member 2, a bearing member 8, an annular member 9, and a bottomed cylindrical housing 7, and a lubricating oil 11 (shown by dense scattered dot hatching) in the inner space of the housing 7. Is filled.
  • the side on which the annular member 9 is disposed is the upper side, and the opposite side in the axial direction is the lower side, but the usage mode of the fluid dynamic bearing device 1 is not limited.
  • the housing 7 has a bottomed cylindrical shape having a cylindrical cylindrical portion 7a and a bottom portion 7b that closes a lower end opening of the cylindrical portion 7a.
  • the cylindrical portion 7a and the bottom portion 7b are integrally made of a metal material such as brass. Is formed.
  • An annular step 7c is provided integrally with the cylinder 7a and the bottom 7b on the inner periphery of the boundary between the cylinder 7a and the bottom 7b.
  • the resin-made thrust plate 10 is placed on the bottom 7b of the housing 7, and the inner bottom surface 7b1 of the housing 7 is constituted by the upper end surface 10a of the thrust plate 10.
  • the thrust plate 10 is not necessarily provided. It is not necessary to provide it and may be omitted.
  • the shaft member 2 is formed of a high-rigidity metal material typified by stainless steel, and the outer peripheral surface 2a is formed as a cylindrical surface having a constant diameter without any irregularities.
  • the outer diameter of the shaft member 2 is smaller than the inner diameter of the bearing member 8, and therefore the shaft member 2 can be inserted into and removed from the bearing member 8.
  • the lower end surface 2 b of the shaft member 2 is formed as a convex spherical surface and is in contact with the upper end surface 10 a of the thrust plate 10.
  • the bearing member 8 includes a small-diameter cylindrical portion 81 that is disposed on the upper side and has a relatively small-diameter outer peripheral surface 8d1, and a large-diameter cylindrical portion 82 that is disposed on the lower side and has a relatively large-diameter outer peripheral surface 8d2. It has a stepped cylindrical shape.
  • the outer peripheral surface 8d1 of the small-diameter cylindrical portion 81 and the outer peripheral surface 8d2 of the large-diameter cylindrical portion 82 of the present embodiment are both formed as cylindrical surfaces having a constant diameter.
  • Chamfered portions 8f and 8g are provided at the inner peripheral edge at the upper end and the outer peripheral edge at the upper end of the bearing member 8 (small-diameter cylindrical portion 81), respectively.
  • One or more radial grooves 8b1 are formed in the lower end surface 8b of the bearing member 8 (large-diameter cylindrical portion 82) so as to open to chamfered portions provided at the inner peripheral edge at the lower end and the outer peripheral edge at the lower end of the bearing member 8. Is provided.
  • the bearing member 8 having the above configuration is such that the upper end surface (the upper end surface of the small diameter cylindrical portion 81) 8c is exposed to the atmosphere and the lower end surface 8b is in contact with the upper end surface 7c1 of the step 7c of the housing 7. It is fixed to the inner periphery of the housing 7. Therefore, a bottom gap Gb is formed between the lower end surface 8 b of the bearing member 8 and the upper end surface 10 a of the thrust plate 10.
  • the upper radial dynamic pressure generating portion A1 is inclined with respect to the axial direction, and is inclined in the opposite direction to the plurality of upper dynamic pressure grooves Aa1 and the upper dynamic pressure grooves Aa1 that are spaced apart from each other in the circumferential direction.
  • a plurality of lower dynamic pressure grooves Aa2 that are provided apart from each other in the circumferential direction, and convex hill portions that define both dynamic pressure grooves Aa1 and Aa2, and the hill portions have a herringbone shape as a whole Is formed. That is, the convex hill portion is composed of an inclined hill portion Ab provided between the dynamic pressure grooves adjacent in the circumferential direction and an annular hill portion Ac provided between the upper and lower dynamic pressure grooves Aa1 and Aa2.
  • the axial dimensions of the upper dynamic pressure groove Aa1 and the lower dynamic pressure groove Aa2 constituting the radial dynamic pressure generating part A1 are set to be the same, but the axial dimension of the upper dynamic pressure groove Aa1 is set to the lower side. You may set larger than the axial direction dimension of dynamic pressure groove Aa2.
  • the lower radial dynamic pressure generating part A2 has the same basic structure as the upper radial dynamic pressure generating part A1, but in this embodiment, the shafts of the two dynamic pressure grooves Aa1 and Aa2 constituting the radial dynamic pressure generating part A2
  • the directional dimension is shorter than the axial dimension of the two dynamic pressure grooves Aa1 and Aa2 constituting the radial dynamic pressure generating part A1.
  • the axial dimensions of the two dynamic pressure grooves Aa1 and Aa2 constituting the radial dynamic pressure generating part A2 are the same as the axial dimensions of the two dynamic pressure grooves Aa1 and Aa2 constituting the radial dynamic pressure generating part A1. It is good.
  • the lower end portion of the radial dynamic pressure generating portion A1 and the upper end portion of the radial dynamic pressure generating portion A2 are connected. That is, in this embodiment, the two radial dynamic pressure generating parts A1 and A2 are continuously provided in the axial direction.
  • the present invention is not limited to this, and the two radial dynamic pressure generating portions A1 and A2 may be provided apart from each other in the axial direction.
  • the bearing member 8 having the above configuration is formed of a porous body, here, a sintered metal porous body mainly composed of copper or iron, and used in a state where the internal pores are impregnated with the lubricating oil 11. Is done.
  • a porous body here, a sintered metal porous body mainly composed of copper or iron
  • the dynamic pressure generating portions A1 and A2 are sized to a bearing material 8 ′ made of a sintered body as schematically shown in FIG. 5A. Molding is performed simultaneously with the processing (dimension correction processing). Therefore, the inner peripheral surface 8a of the bearing member 8 of the present embodiment is a molding surface formed by a sizing die.
  • the outer peripheral surfaces 8d1 and 8d2 of the bearing member 8 are also formed surfaces formed by a sizing die.
  • the radial groove 8b1 provided in the lower end surface 8b of the bearing member 8 is molded simultaneously with the compression molding of the green compact that is the base material of the bearing material 8 '.
  • the sizing die 30 shown in FIG. 5A has a sizing core 31, a die 32, a lower punch 33, and an upper punch 34 that are coaxially arranged.
  • the sizing core 31, the lower punch 33, and the upper punch 34 are driven by a drive mechanism (not shown). It can be moved up and down.
  • the bearing material 8 ′ provided to the sizing mold 30 corresponds to the small diameter cylindrical portion 81 and the large diameter cylindrical portion 82 that constitute the bearing member 8 (finally becomes the small diameter cylindrical portion 81 and the large diameter cylindrical portion 82).
  • a stepped cylindrical shape having a first cylindrical portion 81 ′ and a second cylindrical portion 82 ′ integrally.
  • the inner peripheral surfaces of both cylindrical portions 81 ′ and 82 ′ are formed as cylindrical surfaces having a constant diameter without any irregularities.
  • the bearing material 8 ′ having the first cylindrical portion 81 ′ disposed on the lower side is placed on the upper end surface of the lower punch 33, and then the sizing core 31 is lowered.
  • the sizing core 31 is inserted into the inner periphery of the bearing material 8 ′.
  • the upper punch 34 is moved downward and the bearing material 8 ′ is sandwiched in the axial direction by both the punches 33, 34, and then the sizing core 31, the upper punch 34 and the lower punch 33 are integrally lowered to move the inside of the die 32.
  • the bearing material 8 ′ is inserted (press-fit) around the circumference.
  • the bearing material 8 ′ After the bearing material 8 ′ is press-fitted into the inner periphery of the die 32, when the upper punch 34 is further lowered, the bearing material 8 ′ expands and deforms in the radial direction, and the inner and outer peripheral surfaces of the bearing material 8 ′ are sized.
  • the core 31 is strongly pressed against the outer peripheral surface of the core 31 and the inner peripheral surface of the die 32. Thereby, the inner peripheral surface of the bearing material 8 ′ is deformed following the outer peripheral surface of the sizing core 31 having the mold portion 35, and the radial dynamic pressure generating portions A1 and A2 are molded on the inner peripheral surface of the bearing material 8 ′.
  • the outer peripheral surface of the bearing material 8 ′ is deformed following the inner peripheral surface of the die 32 (see FIG. 5B above).
  • the sizing core 31, the upper punch 34, and the lower punch 33 are integrally raised to discharge the bearing material 8 'from the die 32, and then the upper punch 34 is further raised.
  • all the compressive force applied to the bearing material 8 ′ is released and a spring back is generated in the bearing material 8 ′, and the concave and convex fitting between the inner peripheral surface of the bearing material 8 ′ and the mold portion 35 of the sizing core 31 is performed.
  • the state is solved.
  • the bearing member 8 having the radial dynamic pressure generating portions A1 and A2 formed on the inner peripheral surface is obtained as shown in FIG. 5B.
  • the radial dynamic pressure generating portions A1 and A2 having a predetermined shape and accuracy may not be molded.
  • both cylindrical parts 81 and 82 are thick in the radial direction of the small-diameter cylindrical part 81 (t1: figure) with respect to the radial thickness of the large-diameter cylindrical part 82 (t2: see FIG. 3).
  • 3) (t2 / t1) is less than 2.5, more preferably 2 or less.
  • the ratio (t2 / t1) is a numerical value derived by the inventor's verification test. That is, the present inventor produced first to third test bodies (sintered bodies) having the same materials and conditions but differing from each other only in the above ratio, and three types according to the shape of each test body. Sizing molds (more specifically, three types of dies according to the outer peripheral shape of each test body, upper and lower punches) were prepared. Next, using a sizing mold prepared for each specimen, each specimen is subjected to sizing at the same pressure, thereby forming a plurality of dynamic pressure grooves on the inner peripheral surface of each specimen, and forming the dynamic pressure grooves. The quality was evaluated based on the accuracy.
  • the bearing member 8 having the above configuration includes an annular member 9 interposed between the small diameter cylindrical portion 81 and the cylindrical portion 7a of the housing 7, and a bottom portion 7b of the housing 7 (a step portion 7c provided at the outer diameter end thereof).
  • the large-diameter cylindrical portion 82 is fixed to the inner periphery of the housing 7 by sandwiching it from both sides in the axial direction.
  • the annular member 9 is formed of a non-porous material such as resin or metal, and is fixed to the cylindrical portion 7a of the housing 7 by means such as press-fitting, adhesion, or press-fitting adhesion (combination of press-fitting and adhesion).
  • the upper end surface 9 c of the annular member 9 is at the same level as the upper end surface 8 c of the bearing member 8 and the upper end surface of the cylindrical portion 7 a of the housing 7.
  • the radial bearing gap caused by the deformation of the inner peripheral surface 8a of the bearing member 8 is a concern when the fitting of the cylindrical portions 81 and 82 with respect to the tubular portion 7a of the annular member 9 and the housing 7 is an interference fit. It is possible to prevent as much as possible a decrease in the accuracy of the gap width of Gr, and a decrease in the bearing performance of the radial bearing portions R1 and R2.
  • the fluid dynamic bearing device 1 having the above configuration is assembled by the following procedure, for example.
  • the shaft member 2 is inserted into the inner periphery of the bearing member 8.
  • an axial groove may be provided on either one or both of the opposing two surfaces forming the radial gaps 12 and 13.
  • the air passage extending in the radial direction can also be configured by providing a radial groove on the upper end surface 7 c 1 of the step 7 c of the housing 7 or the step surface 8 e of the bearing member 8.
  • the amount of the lubricating oil 11 filled in the inner periphery of the bearing member 8 is the state in which the fluid dynamic pressure bearing device 1 is arranged in the posture shown in FIG. , At least the radial gap (the radial bearing gap Gr of the radial bearing portions R1 and R2) and the bottom gap Gb between the outer circumferential surface 2a of the shaft member 2 and the inner circumferential surface 8a of the bearing member 8 are filled with the lubricating oil 11.
  • the oil level of the lubricating oil 11 is at the inner peripheral edge of the upper end of the bearing member 8. Adjustment and setting are performed so as to be positioned below the upper end of the chamfered portion 8f provided (see FIG. 4A) and within the axial range of the radial gap 12 (see FIG. 4B). That is, in the fluid dynamic bearing device 1 of the present embodiment, the full fill structure that fills the entire inner space of the housing 7 with the lubricating oil 11 is not adopted, and the lubricating oil 11 is interposed in a partial region of the inner space of the housing 7. Adopt partial fill structure.
  • the lubricating oil 11 an ester-based, PAO-based, or fluorine-based lubricating oil is preferably used in consideration of a temperature change during use of the fluid dynamic pressure bearing device 1 or transportation.
  • the upper and lower radial bearing surfaces provided on the inner peripheral surface 8a of the bearing member 8 and the outer peripheral surface 2a of the shaft member 2 opposed thereto are provided.
  • the pressure of the oil film formed in the radial bearing gaps Gr and Gr is increased by the dynamic pressure action of the radial dynamic pressure generating portions A1 and A2, and the shaft member 2 is supported in a non-contact manner in the radial direction.
  • Radial bearing portions R1 and R2 are formed at two locations in the axial direction.
  • the axial dimensions of the dynamic pressure grooves Aa1 and Aa2 constituting the radial dynamic pressure generating part A1 are determined from the axial dimensions of the dynamic pressure grooves Aa1 and Aa2 constituting the radial dynamic pressure generating part A2. Since the rigidity of the oil film formed in each of the radial bearing gaps Gr of the radial bearing portions R1 and R2 as the shaft member 2 rotates, that is, the bearing stiffness of the radial bearing portions R1 and R2 is determined by the radial bearing portion. R1 is higher than the radial bearing portion R2.
  • the rotating side (rotating body) of the motor is constituted by the shaft member 2 and the rotor 3 mounted on the upper end thereof, and the center of gravity G of the rotating body is the center in the axial direction of the shaft member 2 as shown in FIG.
  • the bearing member 8 is fixed to the inner periphery of the housing 7 with its upper end surface 8c exposed to the atmosphere.
  • Such a configuration corresponds to a configuration in which the annular seal member disposed in the inner periphery of the end portion on the opening side of the housing is omitted in the fluid dynamic pressure bearing devices disclosed in Patent Documents 1 and 2.
  • the axial dimension of the housing 7 can be shortened by at least the axial dimension of the seal member without changing the axial dimension of the bearing member 8, and consequently the bearing rigidity of the radial bearing portions R1 and R2.
  • the fluid dynamic bearing device 1 as a whole can be made compact in the axial direction.
  • the bearing member 8 is integrally provided with a small-diameter cylindrical portion 81 and a large-diameter cylindrical portion 82 having different outer diameters, and the annular member 9 and the bottom portion 7b of the housing 7 (a step portion 7c provided integrally therewith). Since the bearing member 8 is fixed to the inner periphery of the housing 7 by sandwiching the large-diameter cylindrical portion 82 from both sides in the axial direction, the assembly process can be simplified and the manufacturing cost of the fluid dynamic pressure bearing device 1 can be reduced.
  • a partial fill structure is adopted in which the shaft member 2 can be inserted into and removed from the bearing member 8 and the entire internal space of the housing 7 is not filled with the lubricating oil 11. Therefore, as described above, after the bearing member 8 and the annular member 9 are fixed to the inner periphery of the housing 7 and before the shaft member 2 is inserted into the inner periphery of the bearing member 8, an appropriate oil supply is performed.
  • the required amount of lubricating oil 11 can be interposed in the internal space of the housing 7 simply by filling the internal space of the housing 7 (inner circumference of the bearing member 8) with the tool. This eliminates the need for large-scale equipment for lubrication (for example, a vacuum impregnation device) and highly precise adjustment and management of the oil level, and through this, the manufacturing cost of the fluid dynamic bearing device 1 can be further reduced.
  • the annular space 9 is arranged in the above-described manner, so that the seal space that holds the oil surface of the lubricating oil provided in the fluid dynamic bearing device of Patent Document 1 or the like is provided. Therefore, it is considered that there is an increased possibility that a problem of deterioration in bearing performance due to external leakage of the lubricating oil 11 occurs.
  • the oil surface of the lubricating oil 11 is positioned below the upper end portion of the chamfered portion 8 f provided at the inner peripheral edge of the upper end of the bearing member 8 within the operating temperature range of the fluid dynamic pressure bearing device 1.
  • the amount of the lubricating oil 11 filled in the internal space of the housing 7 is adjusted as shown in FIG.
  • the bearing member 8 is formed of a sintered metal porous body.
  • the lubricating oil 11 is formed by forming the radial bearing gap Gr of the radial bearing portions R1, R2 on the inner peripheral surface 8a of the bearing member 8 adjacent to the chamfered portion 8f of the bearing member 8 in the axial direction. The possibility of external leakage is effectively reduced.
  • the pressure of the lubricating oil 11 interposed in the radial bearing gap Gr of the radial bearing portions R1 and R2 increases with the rotation of the shaft member 2, the pressure is relatively low.
  • the lubricating oil 11 is drawn into the internal pores of the bearing member 8, and the gap width of the radial bearing gap Gr is normally set to a very small width of about several ⁇ m according to the configuration (3) above. Even if the oil level of the lubricating oil 11 rises to such an extent that it is located within the axial range of the chamfered portion 8f, the lubricating oil 11 is drawn toward the bearing inside (radial bearing gap Gr) by the capillary force. is there.
  • the fluid dynamic bearing device 1 according to the embodiment of the present invention has been described above, but various changes can be made to each part of the fluid dynamic bearing device 1 without departing from the gist of the present invention. .
  • the thrust bearing portion T that supports the shaft member 2 can be constituted by a so-called dynamic pressure bearing.
  • FIG. 7 shows an example of a fluid dynamic pressure bearing device 1 in which the thrust bearing portion T is configured by a dynamic pressure bearing.
  • the lower end surface 2b of the shaft member 2 is formed on a flat surface in a direction perpendicular to the axis. Is done.
  • a dynamic pressure generating portion such as a dynamic pressure groove is formed on either the lower end surface 2b of the shaft member 2 or the inner bottom surface 7b1 of the housing 7 facing the shaft member 2.
  • the outer peripheral surfaces 8d1 and 8d2 of the small-diameter cylindrical portion 81 and the large-diameter cylindrical portion 82 constituting the bearing member 8 are formed as cylindrical surfaces having a constant diameter.
  • 8d1 can be provided with a tapered surface 8d11 that gradually decreases in diameter from the bottom 7b side (lower side) of the housing 7 toward the opening side (upper side), as shown in FIGS. 8A and 8B.
  • FIG. 8A shows an example in which the entire outer peripheral surface 8d1 of the small-diameter cylindrical portion 81 is configured by the tapered surface 8d11.
  • FIG. 8B shows the outer peripheral surface 8d1 of the small-diameter cylindrical portion 81 and the tapered surface 8d11.
  • FIG. 8A and 8B a sizing process in which sizing is performed on the material of the bearing member 8 shown in FIG. 8A (the bearing material 8 ′ made of a sintered body) will be described with reference to FIGS. 9A and 9B. Details will be described with reference to FIG.
  • 9A and 9B corresponds to a configuration in which the die 32 in the sizing die 30 shown in FIGS. 5A and 5B is replaced with a die 32A having a different configuration.
  • the punches 33 and 34 those having substantially the same configuration as the sizing mold 30 shown in FIGS. 5A and 5B are employed.
  • the portion facing the outer peripheral surface of the first cylindrical portion 81 ′ of the bearing material 8 ′ corresponds to the tapered surface 8d11.
  • the configuration is different from that of the die 32 shown in FIG. 5A in that the tapered surface 32Aa is formed.
  • the outer peripheral surface of the first cylindrical portion 81 ′ of the bearing material 8 ′ provided to the sizing mold 30A substantially follows the tapered surface 8d11 of the small-diameter cylindrical portion 81.
  • the taper surface 8d11 ′ is formed on the taper surface 8d11 ′, and the taper surface 8d11 ′ is molded when the green compact which is the base material of the bearing material 8 ′ is formed.
  • the sizing process by the sizing mold 30A is performed in the same manner as the sizing process by the sizing mold 30 described with reference to FIGS. 5A and 5B.
  • the tapered surface 32Aa is provided on the inner peripheral surface of the die 32A of the sizing mold 30A, and the first cylindrical portion 81 ′ of the bearing material 8 ′ inserted (press-fitted) into the tapered surface 32Aa.
  • the first cylindrical portion 81 ′ of the bearing material 8 ′ can be smoothly press-fitted into the inner peripheral surface of the die 32A, and the bearing material after sizing is completed. 8 'can be released smoothly.
  • the outer peripheral surface 8d1 of the small-diameter cylindrical portion 81 having the tapered surface 8d11 has a higher accuracy than the case where the entire outer peripheral surface 8d1 of the small-diameter cylindrical portion 81 is configured by a cylindrical surface having a constant diameter.
  • the surface can be finished (molded).
  • the inclination angle of the surface 32Aa is preferably set to 3 ° or more, and more preferably set to 4 ° or more. This is because when the inclination angle ⁇ is less than 3 °, the above-described effects obtained by providing the tapered surface cannot be enjoyed effectively.
  • the upper limit value of the inclination angle ⁇ is preferably set to 10 ° or less.
  • the housing 7 provided separately from the motor base 6 is fixed to the inner periphery of the motor base 6, but a portion corresponding to the motor base 6 is provided integrally with the housing 7. You can also.
  • one or both of the radial bearing portions R1 and R2 can be configured by other known dynamic pressure bearings such as a so-called multi-arc bearing, a step bearing, and a wave bearing, and the radial bearing gap Gr is formed.
  • the radial dynamic pressure generating portion is not provided on any of the two surfaces that are opposed to each other, and both of the two surfaces can be constituted by a circular bearing formed on a cylindrical surface.
  • biasing the shaft member 2 below is made to act on the shaft member 2 by shifting and arrange
  • the means for applying such an external force to the shaft member 2 is not limited to the above.
  • a magnetic force magnetic attractive force
  • a radial gap (radial bearing gap Gr) between the inner peripheral surface 8 a of the bearing member 8 and the outer peripheral surface 2 a of the shaft member 2, the outer peripheral surface 8 d 1 of the bearing member 8, and the inner peripheral surface 9 b of the annular member 9
  • the oil repellent film 15 may be provided on the upper end surface 9c of the shaft 9, the outer peripheral surface 2a of the shaft member 2, and the like.
  • the bearing member 8 is shown in FIG. As shown, a sealing portion 16 that substantially eliminates the porous structure of the surface layer portion including the upper end surface 8c may be formed.
  • the sealing portion 16 may be formed by a so-called crushing process, or may be formed by impregnating and curing a sealing material such as a resin. Only one of the configurations shown in FIGS. 10A and 10B may be employed, or both may be used in combination.
  • the present invention is a disk having a disk mounting surface.
  • the present invention can also be preferably applied to a fluid dynamic bearing device 1 in which a hub or a polygon mirror is provided on the shaft member 2. That is, the present invention is not limited to a fan motor as shown in FIG. 1, but is a fluid motion incorporated in other electrical equipment motors such as a spindle motor for a disk device and a polygon scanner motor for a laser beam printer (LBP).
  • LBP laser beam printer
  • the present invention can also be preferably applied to the pressure bearing device 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

使用温度範囲内で潤滑油11の油面が軸受部材8の上端内周縁部に設けた面取部8fの上端部よりも下側に位置するように、ハウジング7の内部空間への潤滑油11の充填量が調整されており、また、軸受部材8は、外径寸法が相対的に小さい小径円筒部81と、外径寸法が相対的に大きい大径円筒部82とを一体に有する。軸受部材8は、小径円筒部81の上端面8cを大気に露出させた状態で、環状部材9とハウジング7の底部7bとで大径円筒部82を軸方向両側から挟持することにより、ハウジング7の内周に固定されている。

Description

流体動圧軸受装置及びこれを備えるモータ
 本発明は、流体動圧軸受装置及びこれを備えるモータに関する。
 周知のように、流体動圧軸受装置は、高速回転、高回転精度および低騒音等の特長を有する。このため、流体動圧軸受装置は、種々の電気機器に搭載される各種モータ、例えば、HDD等のディスク駆動装置に組み込まれるスピンドルモータ用、PC等に組み込まれるファンモータ用、あるいはレーザビームプリンタに組み込まれるポリゴンスキャナモータ用の軸受装置などとして好適に使用されている。
 例えば、下記の特許文献1には、有底筒状のハウジングの内周に配置された軸受部材と、支持すべき軸(軸受部材の内周に挿入される軸部材)の外周面と軸受部材の内周面との間のラジアル軸受隙間に形成される潤滑油の油膜で軸部材をラジアル方向に支持するラジアル軸受部と、軸部材をスラスト一方向に支持するスラスト軸受部と、ハウジングの開口部内周に配置された環状のシール部材と、を備えた流体動圧軸受装置が開示されている。
 特許文献1の流体動圧軸受装置は、ハウジングの内部空間全域を潤滑油で満たした、いわゆるフルフィル状態で使用されるものであり、互いに対向するシール部材の内周面と軸部材の外周面との間には、潤滑油の外部漏洩等を可及的に防止すべく、潤滑油の油面を保持するシール空間が設けられる。このようなフルフィル構造を採用した流体動圧軸受装置は、高い軸受性能を安定的に発揮し得るという利点がある反面、装置組立後に、いわゆる真空含浸等の煩雑な手法を用いてハウジングの内部空間全域(軸受部材が焼結金属等の多孔質体からなる場合、軸受部材の内部気孔も含む)を潤滑油で満たし、かつ潤滑油の油面位置を微調整する必要がある関係上、製造コストを低廉化することが難しいという問題がある。
 このような問題に対し、例えば下記の特許文献2には、ハウジングの内部空間に部分的に潤滑油を介在させる(ハウジングの内部空間に空気と潤滑油を混在させる)、いわゆるパーシャルフィル構造を採用した流体動圧軸受装置が提案されている。このパーシャルフィル構造は、軸受装置の運転中にラジアル軸受部のラジアル軸受隙間およびスラスト軸受部の周辺領域を満たすことができる程度の量の潤滑油をハウジングの内部空間に介在させることを基本構造としているため、潤滑油の充填に際して真空含浸等の煩雑な手法を採用する必要がなく、また、潤滑油の充填量を高精密に管理する必要性もない。そのため、潤滑油の充填作業を簡略化することができ、これを通じて流体動圧軸受装置の製造コストを低減できるという利点がある。
 また、特許文献2では、製造コストの更なる低減などを目的として、軸受部材を、環状部材とハウジングの底部とで軸方向両側から挟持することによりハウジングの内周に固定することも提案されている。
特開2003-307212号公報 特開2014-59014号公報
 ところで、近年、ULTRABOOK(登録商標)に代表される超薄型で軽量のノート型PCの需要が高まる傾向にある。この種のノート型PCは筐体が薄いため、これに搭載されるファンモータも当然に薄型化する必要がある。その一方、超薄型のノート型PCに搭載されるファンモータであっても、少なくとも従来と同等の冷却能力を維持することが求められており、場合によっては、冷却能力を向上することも求められる。このような要請に対応するためには、軸部材に装着される送風用のファン(羽根)を有するロータを大型化する必要があるが、ロータが大型化するほど、回転体の回転中に軸受装置に作用するラジアル荷重(ラジアル軸受部で支持すべき荷重)が大きくなる。
 ラジアル荷重の負荷能力(軸受剛性)を高めるための手段の一つに、ラジアル軸受隙間の形成に直接関与する軸受部材の軸方向寸法を拡大することが考えられるが、このような対策を講じると、装置全体を薄型化することが困難となる。
 以上の実情に鑑み、本発明の課題は、軸方向にコンパクトでありながら、ラジアル荷重の負荷能力(ラジアル軸受部の軸受剛性)に優れた流体動圧軸受装置を低コストに提供することにある。
 上記の課題を達成するために創案された本発明は、軸方向一方側の端部が開口すると共に軸方向他方側の端部が閉塞された有底筒状のハウジングと、ハウジングの内周に配置され、軸方向一方側の内周縁部に面取部を有する多孔質の軸受部材と、軸受部材の内周面と軸受部材の内周に挿入される軸部材の外周面との間のラジアル軸受隙間に形成される潤滑油の油膜で軸部材をラジアル方向に支持するラジアル軸受部とを備え、ハウジングの内底面で軸部材がスラスト方向に支持され、使用温度範囲内で潤滑油の油面が上記面取部の軸方向一方側の端部よりも軸方向他方側に位置するようにハウジングの内部空間への潤滑油の充填量が調整された流体動圧軸受装置であって、軸受部材は、軸方向一方側に配置され、外径寸法が相対的に小さい小径円筒部と、軸方向他方側に配置され、外径寸法が相対的に大きい大径円筒部とを一体に有し、かつ、小径円筒部の軸方向一方側の端面を大気に露出させた状態で、小径円筒部とハウジングの筒部の間に配置した環状部材とハウジングの底部とで大径円筒部を軸方向両側から挟持することにより、ハウジングの内周に固定されていることを特徴とする。
 なお、本発明でいう「ハウジングの内底面で軸部材がスラスト方向に支持され」とは、軸部材がスラスト方向に接触支持される場合、および軸部材がスラスト方向に非接触支持される場合の双方を含む概念である。また、「ハウジングの内部空間」には、当該流体動圧軸受装置の構成部材(ハウジング、軸受部材、環状部材および軸部材)の対向二面で形成される隙間(空間)のみならず、多孔質の軸受部材が有する内部気孔も含まれる。
 上記の本発明の構成は、特許文献1,2に開示された流体動圧軸受装置において、ハウジングの軸方向一方側(開口側)の端部内周に配置され、軸部材の外周面との間に潤滑油の油面を保持するシール空間を形成していた環状のシール部材を省略した構成に相当する。このため、軸受部材の軸方向寸法、ひいてはラジアル軸受部の軸受剛性を変化させずとも、少なくともシール部材の軸方向寸法分だけハウジングの軸方向寸法を短縮することができ、これを通じて装置全体を軸方向にコンパクト化することができる。また、軸受部材に外径寸法が相互に異なる小径円筒部と大径円筒部とを一体に設け、小径円筒部とハウジングの筒部の間に配置した環状部材とハウジングの底部とで大径円筒部を軸方向両側から挟持することによって軸受部材をハウジングの内周に固定したので、組立工程を簡素化でき、これを通じて流体動圧軸受装置の製造コストを低減することができる。
 ハウジングの筒部に対する大径円筒部のはめあい、および環状部材に対する小径円筒部のはめあいは、何れもすきまばめとするのが好ましい。これにより、ハウジングの筒部および環状部材に対する大径円筒部および小径円筒部のはめあいをしまりばめとする場合に懸念される、軸受部材の内周面の変形に起因したラジアル軸受隙間の隙間幅精度の低下、ひいてはラジアル軸受部の軸受性能の低下を可及的に防止することができる。なお、ここでいう「すきまばめ」の定義は、日本工業規格JIS B 0401-1に準拠する。
 多孔質の軸受部材は、焼結金属の多孔質体とすることができる。この場合、軸受部材の内周面をサイジングコアの外周面に倣って成形された成形面とすれば、軸受部材の内周面を低コストに所定形状・精度に仕上げられたものとすることができる。但し、軸受部材が小径円筒部および大径円筒部を一体に有する段付き円筒状に形成される本発明の構成上、両円筒部の径方向の肉厚差があまりに大きいと、焼結体(焼結金属製の軸受素材)にサイジングを施した際に、両円筒部間で、径方向の圧縮量や圧縮力解放後のスプリングバック量に大きな差が生じ易くなるため、軸受部材の内周面を所定形状・精度に仕上げることができなくなる可能性がある。このため、両円筒部の径方向の肉厚差には制限を設けるのが好ましく、具体的には、大径円筒部の径方向の肉厚(t2)に対する小径円筒部の径方向の肉厚(t1)の比(t2/t1)を2.5未満にするのが好ましく、2以下とするのが一層好ましい。なお、上記の肉厚(t1,t2)は最小値を意味する。
 小径円筒部の外周面には、軸方向他方側(ハウジングの底部側)から軸方向一方側(ハウジングの開口側)に向けて漸次縮径したテーパ面を設けることができる。このようにすれば、軸受部材(軸受素材)をサイジング金型のダイに導入する際(さらには、軸受部材をサイジング金型から離型する際)に、軸受部材の小径円筒部の外周面にキズや毟れ等の欠陥が生じる可能性を可及的に低減することができる。軸受部材の小径円筒部の外周面は、その全域を上記のテーパ面で構成しても良いし、径一定の円筒面と上記のテーパ面とで構成しても良い。後者の構成を採用する場合、円筒面は、テーパ面と小径円筒部の軸方向一方側の端面との間に設けることができる。
 軸受部材の内周面には、ラジアル軸受隙間内の潤滑油に流体動圧を発生させる動圧発生部を設けることができる。このようにすれば、ラジアル軸受部を動圧軸受で構成することができるので、ラジアル軸受部の軸受剛性を一層高めることができる。
 軸部材は、軸受部材に対して挿脱自在とすることができる。この場合、軸部材を任意のタイミングで軸受部材に挿入することができるので、例えば、内周に所定量の潤滑油が充填された軸受部材に対して軸部材を挿入すれば、軸部材の挿入に伴って、潤滑油を軸受部材の内周面と軸部材の外周面との間の径方向隙間(ラジアル軸受隙間)やスラスト軸受部の周辺領域に行き渡らせることができる。
 軸部材には、軸部材を軸方向他方側に付勢する外力を作用させることができる。軸部材が軸受部材に対して挿脱自在である場合に上記構成を採用すれば、軸部材の意図せぬ抜脱を可及的に防止する上で有利となる。上記外力は、例えば磁力とすることができる。この磁力は、例えば、モータの静止側に設けられるステータコイルと、モータの回転側に設けられるロータマグネットとを軸方向にずらして配置することで与えることができる。この種の流体動圧軸受装置が組み込まれる各種モータは、通常、ロータマグネットとステータコイルとを必須の構成部材として備えるため、上記外力を軸部材に作用させる上でのコスト増は生じない。
 以上で示した本発明に係る流体動圧軸受装置は、PC用のファンモータや、LBP用のポリゴンスキャナモータ等の各種モータに組み込んで好適に使用することができる。なお、ファンモータに組み込まれる流体動圧軸受装置においては、軸部材に送風用の羽根を有するロータが設けられ、ポリゴンスキャナモータに組み込まれる流体動圧軸受装置においては、軸部材にポリゴンスキャナが設けられる。
 以上より、本発明によれば、軸方向にコンパクトでありながら、ラジアル軸受部の軸受剛性に優れた流体動圧軸受装置を低コストに提供することができる。
ファンモータの一構成例を概念的に示す断面図である。 本発明の実施形態に係る流体動圧軸受装置を示す断面図である。 軸受部材の縦断面図である。 運転中の流体動圧軸受装置の部分拡大断面図である。 運転中の流体動圧軸受装置の部分拡大断面図である。 軸受素材にサイジング加工を施している状態を模式的に示す図である。 軸受素材に対するサイジング加工の終了段階を模式的に示す図である。 流体動圧軸受装置の組立工程における注油段階を示す図である。 流体動圧軸受装置の組立工程における軸部材の挿入段階を示す図である。 本発明の他の実施形態に係る流体動圧軸受装置を示す断面図である。 変形例に係る軸受部材の縦断面図である。 変形例に係る軸受部材の縦断面図である。 最終的に図8Aに示す軸受部材となる軸受素材にサイジング加工を施している状態を模式的に示す図である。 軸受素材に対するサイジング加工の終了段階を模式的に示す図である。 変形例に係る流体動圧軸受装置の部分拡大図である。 変形例に係る流体動圧軸受装置の部分拡大図である。
 以下、本発明の実施の形態を図面に基づいて説明する。
 図1に、ファンモータの一構成例を概念的に示す。同図に示すファンモータは、流体動圧軸受装置1と、モータの静止側を構成するモータベース6と、モータベース6に取り付けられたステータコイル5と、送風用の羽根(図示省略)を有し、モータの回転側を構成するロータ3と、ロータ3に取り付けられ、ステータコイル5と半径方向のギャップを介して対向するロータマグネット4とを備える。流体動圧軸受装置1のハウジング7は、モータベース6の内周に固定され、ロータ3は、流体動圧軸受装置1の軸部材2の一端に装着されている。このように構成されたファンモータにおいて、ステータコイル5に通電すると、ステータコイル5とロータマグネット4との間の電磁力でロータマグネット4が回転し、これに伴って軸部材2、および軸部材2に装着されたロータ3が一体に回転する。
 なお、ロータ3が回転すると、ロータ3に設けられた羽根の形態に応じて図中上向き又は下向きに風が送られる。このため、ロータ3の回転中にはこの送風作用の反力として、流体動圧軸受装置1の軸部材2に図中下向き又は上向きの推力が作用する。ステータコイル5とロータマグネット4との間には、この推力を打ち消す方向の磁力(斥力)を作用させており、上記推力と磁力の大きさの差により生じたスラスト荷重が流体動圧軸受装置1のスラスト軸受部Tで支持される。上記推力を打ち消す方向の磁力は、例えば、ステータコイル5とロータマグネット4とを軸方向にずらして配置することにより発生させることができる(詳細な図示は省略)。また、ロータ3の回転時には、流体動圧軸受装置1の軸受部材8にラジアル荷重が作用する。このラジアル荷重は、流体動圧軸受装置1のラジアル軸受部R1,R2で支持される。
 図2に、本発明の実施形態に係る流体動圧軸受装置1を示す。この流体動圧軸受装置1は、軸部材2、軸受部材8、環状部材9および有底筒状のハウジング7を備え、ハウジング7の内部空間には潤滑油11(密な散点ハッチングで示す)が充填されている。なお、以下では、説明の便宜上、環状部材9が配置された側を上側、その軸方向反対側を下側とするが、流体動圧軸受装置1の使用態様を限定するものではない。
 ハウジング7は、円筒状の筒部7aと、筒部7aの下端開口を閉塞する底部7bとを有する有底筒状をなし、ここでは筒部7aと底部7bが黄銅等の金属材料で一体に形成されている。筒部7aと底部7bの境界部内周には、筒部7aおよび底部7bと一体に円環状の段部7cが設けられている。本実施形態では、ハウジング7の底部7b上に樹脂製のスラストプレート10を載置し、ハウジング7の内底面7b1をスラストプレート10の上端面10aで構成しているが、このスラストプレート10は必ずしも設ける必要はなく、省略しても構わない。
 軸部材2は、ステンレス鋼に代表される高剛性の金属材料で形成され、その外周面2aは凹凸のない径一定の円筒面に形成されている。軸部材2の外径寸法は、軸受部材8の内径寸法よりも小径であり、従って、軸部材2は軸受部材8に対して挿脱自在である。軸部材2の下端面2bは凸球面に形成され、スラストプレート10の上端面10aと接触している。
 軸受部材8は、上側に配置され、相対的に小径の外周面8d1を有する小径円筒部81と、下側に配置され、相対的に大径の外周面8d2を有する大径円筒部82とを一体に有する段付き円筒状をなす。本実施形態の小径円筒部81の外周面8d1および大径円筒部82の外周面8d2は、何れも径一定の円筒面に形成されている。軸受部材8(小径円筒部81)の上端内周縁部および上端外周縁部には、それぞれ面取部8f,8gが設けられている。軸受部材8(大径円筒部82)の下端面8bには、軸受部材8の下端内周縁部および下端外周縁部に設けられた面取部に開口するように一又は複数の径方向溝8b1が設けられている。以上の構成を有する軸受部材8は、上端面(小径円筒部81の上端面)8cを大気に露出させると共に、下端面8bをハウジング7の段部7cの上端面7c1に当接させた状態でハウジング7の内周に固定されている。従って、軸受部材8の下端面8bとスラストプレート10の上端面10aとの間には底隙間Gbが形成される。
 軸受部材8の内周面8aには、それぞれが対向する軸部材2の外周面2aとの間にラジアル軸受部R1,R2のラジアル軸受隙間Gr(図4A参照)を形成する2つのラジアル軸受面が設けられる。図3に示すように、2つのラジアル軸受面のそれぞれには、ラジアル軸受隙間Gr内の潤滑油11に動圧作用を発生させるための動圧発生部(ラジアル動圧発生部)A1,A2が形成されている。
 上側のラジアル動圧発生部A1は、軸方向に対して傾斜し、周方向に相互に離間して設けられた複数の上側動圧溝Aa1と、上側動圧溝Aa1とは反対方向に傾斜し、周方向に相互に離間して設けられた複数の下側動圧溝Aa2と、両動圧溝Aa1,Aa2を区画する凸状の丘部とで構成され、丘部は全体としてヘリングボーン形状に形成されている。すなわち、凸状の丘部は、周方向で隣り合う動圧溝間に設けられた傾斜丘部Abと、上下の動圧溝Aa1,Aa2間に設けられた環状丘部Acとからなる。図示例では、ラジアル動圧発生部A1を構成する上側動圧溝Aa1と下側動圧溝Aa2の軸方向寸法を同一に設定しているが、上側動圧溝Aa1の軸方向寸法を下側動圧溝Aa2の軸方向寸法より大きく設定しても良い。
 下側のラジアル動圧発生部A2は、上側のラジアル動圧発生部A1と基本構造を同じくするが、本実施形態において、ラジアル動圧発生部A2を構成する両動圧溝Aa1,Aa2の軸方向寸法は、ラジアル動圧発生部A1を構成する両動圧溝Aa1,Aa2の軸方向寸法よりも短寸である。これに限らず、ラジアル動圧発生部A2を構成する両動圧溝Aa1,Aa2の軸方向寸法と、ラジアル動圧発生部A1を構成する両動圧溝Aa1,Aa2の軸方向寸法とを同一としてもよい。
 本実施形態では、ラジアル動圧発生部A1の下側端部と、ラジアル動圧発生部A2の上側端部とが繋がっている。すなわち、本実施形態では、2つのラジアル動圧発生部A1,A2が軸方向に連続して設けられている。これに限らず、2つのラジアル動圧発生部A1,A2を軸方向に離間して設けることも可能である。
 以上の構成を有する軸受部材8は、多孔質体、ここでは、銅又は鉄を主成分とする焼結金属の多孔質体で形成され、その内部気孔に潤滑油11を含浸させた状態で使用される。このように、軸受部材8を焼結金属の多孔質体で形成した場合、動圧発生部A1,A2は、図5Aに模式的に示すように、焼結体からなる軸受素材8’にサイジング加工(寸法矯正加工)を施すのと同時に型成形される。従って、本実施形態の軸受部材8の内周面8aは、サイジング金型により成形された成形面とされる。また、軸受部材8の外周面8d1,8d2もサイジング金型により成形された成形面とされる。なお、軸受部材8の下端面8bに設けられる径方向溝8b1は、軸受素材8’の基材である圧粉体を圧縮成形するのと同時に型成形される。以下、軸受部材8の製造工程のうち、サイジング工程について図5Aおよび図5Bを参照しながら詳細に説明する。
 図5Aに示すサイジング金型30は、同軸配置されたサイジングコア31、ダイ32、下パンチ33および上パンチ34を有し、サイジングコア31、下パンチ33および上パンチ34は、図示しない駆動機構により昇降移動可能とされている。サイジングコア31の外周面には、ラジアル動圧発生部A1,A2(を構成する動圧溝Aa1,Aa2)の形状に対応した凸状の型部35(同図中クロスハッチングで示す)が設けられている。サイジング金型30に供される軸受素材8’は、軸受部材8を構成する小径円筒部81および大径円筒部82にそれぞれ対応する(最終的に小径円筒部81および大径円筒部82になる)第1円筒部81’および第2円筒部82’を一体に有する段付き円筒状をなす。両円筒部81’,82’の内周面は凹凸の無い径一定の円筒面に形成されている。
 以上の構成を有するサイジング金型30において、まず、第1円筒部81’を下側に配置した軸受素材8’を下パンチ33の上端面に載置してから、サイジングコア31を下降させ、軸受素材8’の内周にサイジングコア31を挿入する。次いで、上パンチ34を下降移動させ、両パンチ33,34で軸受素材8’を軸方向に挟持した後、サイジングコア31、上パンチ34および下パンチ33を一体的に下降させてダイ32の内周に軸受素材8’を挿入(圧入)する。ダイ32の内周に軸受素材8’が圧入された後、上パンチ34をさらに下降させると、軸受素材8’が径方向に膨張変形し、軸受素材8’の内周面および外周面がサイジングコア31の外周面およびダイ32の内周面にそれぞれ強く押し付けられる。これにより、軸受素材8’の内周面が型部35を有するサイジングコア31の外周面に倣って変形し、軸受素材8’の内周面にラジアル動圧発生部A1,A2が型成形されると共に、軸受素材8’の外周面がダイ32の内周面に倣って変形する(以上、図5B参照)。
 その後、サイジングコア31、上パンチ34および下パンチ33を一体的に上昇させて軸受素材8’をダイ32から排出してから、上パンチ34をさらに上昇させる。これにより、軸受素材8’に付与されていた圧縮力が全て解放されて軸受素材8’にスプリングバックが生じ、軸受素材8’の内周面とサイジングコア31の型部35との凹凸嵌合状態が解かれる。その後、サイジングコア31を上昇させて離型すると、図5Bに示すように、内周面に型成形されたラジアル動圧発生部A1,A2を有する軸受部材8が得られる。
 ここで、両円筒部81,82(81’,82’)の径方向の肉厚差があまりに大きいと、軸受素材8’に上記態様でサイジング加工を施した際に、両円筒部81’,82’の径方向の変形量(より詳細には、軸受素材8’に対する圧縮力が全て解放されたときのスプリングバック量)に大きな差が生じるため、軸受素材8’の内周面(ラジアル軸受面)を所定形状・精度に仕上げることが、ここでは、所定形状・精度のラジアル動圧発生部A1,A2を型成形できない可能性がある。そのため、両円筒部81,82(81’,82’)は、大径円筒部82の径方向の肉厚(t2:図3参照)に対する小径円筒部81の径方向の肉厚(t1:図3参照)の比(t2/t1)が2.5未満、より好ましくは2以下となるように形成される。
 上記の比(t2/t1)は、本発明者の検証試験により導出された数値である。すなわち、本発明者は、同一の材料および条件で上記の比のみが相互に異なる第1~第3の試験体(焼結体)を作製すると共に、各試験体の形状に応じた3種類のサイジング金型(より詳細には、各試験体の外周形状に応じた3種類のダイ、上下パンチ)を準備した。次いで、試験体毎に準備したサイジング金型を用いて各試験体に同一圧力でサイジング加工を施すことで各試験体の内周面に複数の動圧溝を型成形し、動圧溝の成形精度に基づき良否を評価した。評価基準は以下のとおりであり、また、各試験体の比および試験結果(評価)を下記の表1に示す。
[評価基準]
 合格(○):動圧溝の溝深さのばらつきが2μm以下
 不合格(×):動圧溝の溝深さのばらつきが2μm超
Figure JPOXMLDOC01-appb-T000001
 以上の構成を有する軸受部材8は、小径円筒部81とハウジング7の筒部7aの間に介在させた環状部材9とハウジング7の底部7b(の外径端に設けた段部7c)とで大径円筒部82を軸方向両側から挟持することにより、ハウジング7の内周に固定される。環状部材9は、樹脂や金属等の非多孔質材料で形成され、例えば、圧入、接着あるいは圧入接着(圧入と接着の併用)等の手段でハウジング7の筒部7aに対して固定される。環状部材9の上端面9cは、軸受部材8の上端面8cおよびハウジング7の筒部7aの上端面と同一レベルにある。
 環状部材9に対する軸受部材8の小径円筒部81のはめあい、およびハウジング7の筒部7aに対する大径円筒部82のはめあいは、何れもすきまばめとされる。従って、図2中の拡大図に示すように、軸受部材8がハウジング7の内周に固定された状態において、環状部材9の内周面9bと小径円筒部81の外周面8d1との間、およびハウジング7の筒部7aの内周面7a1と大径円筒部82の外周面8d2との間には、それぞれ、径方向隙間12,13が存在する。これにより、環状部材9およびハウジング7の筒部7aに対する両円筒部81,82のはめあいをしまりばめとする場合に懸念される、軸受部材8の内周面8aの変形に起因したラジアル軸受隙間Grの隙間幅精度の低下、ひいてはラジアル軸受部R1,R2の軸受性能の低下を可及的に防止することができる。
 以上の構成を有する流体動圧軸受装置1は、例えば、以下のような手順で組み立てられる。まず、図6Aに示すように、ハウジング7の内周に軸受部材8(詳細には、内部気孔に潤滑油11を含浸させた軸受部材8)および環状部材9が上記態様で固定されたアセンブリを製作した後、軸受部材8の内周に所定量の潤滑油11を充填する。次いで、図6Bに示すように、軸部材2を軸受部材8の内周に挿入する。このとき、軸部材2を挿入するのに伴って、軸受部材8の内周に予め充填された潤滑油11は、軸部材2の下端面2bによって底隙間Gb側に押し込まれ、また、軸部材2の外周面2aに沿うようにして軸部材2の外周面2aと軸受部材8の内周面8aとの間の径方向隙間(ラジアル軸受隙間Gr)に充填される。
 軸部材2の挿入に伴い、ハウジング7の内部空間に介在する空気が圧縮されるが、この圧縮空気は、軸受部材8の下端面8bに設けた径方向溝8b1で形成される径方向の通気路、ハウジング7の筒部7aの内周面7a1と大径円筒部82の外周面8d2との間に形成された径方向隙間13(図2参照)、環状部材9の下端面9aに設けた径方向溝9a1で形成される径方向の通気路、および環状部材9の内周面9bと小径円筒部81の外周面8d1との間に形成された径方向隙間12(図2参照)を介して大気に開放される。そのため、軸部材2の挿入に伴ってハウジング7の内部気圧が高まり、これによって潤滑油11が装置外部側に押し出されるような事態は可及的に防止される。
 図示は省略するが、排気性を高めるため、径方向隙間12,13を形成する対向二面の何れか一方又は双方に軸方向溝を設けても良い。また、上記の径方向に延びる通気路は、ハウジング7の段部7cの上端面7c1や軸受部材8の段差面8eに径方向溝を設けることで構成することもできる。
 ここで、上記の手順で流体動圧軸受装置1を組み立てる際に軸受部材8の内周に充填する潤滑油11の量は、流体動圧軸受装置1が図2に示す姿勢で配置された状態において、少なくとも、軸部材2の外周面2aと軸受部材8の内周面8aとの間の径方向隙間(ラジアル軸受部R1,R2のラジアル軸受隙間Gr)および底隙間Gbが潤滑油11で満たされる程度とし、さらに、流体動圧軸受装置1の運転時等、温度上昇に伴う潤滑油11の体積膨張が生じた場合でも、潤滑油11の油面が、軸受部材8の上端内周縁部に設けた面取部8fの上端部よりも下方側(図4A参照)、および径方向隙間12の軸方向範囲内(図4B参照)に位置するように調整・設定する。すなわち、本実施形態の流体動圧軸受装置1においては、ハウジング7の内部空間全域を潤滑油11で満たすフルフィル構造は採用せず、ハウジング7の内部空間の一部領域に潤滑油11を介在させるパーシャルフィル構造を採用する。潤滑油11としては、流体動圧軸受装置1の使用時や輸送時における温度変化等を考慮して、エステル系、PAO系、もしくはフッ素系潤滑油が好適に使用される。
 以上の構成からなる流体動圧軸受装置1において、軸部材2が回転すると、軸受部材8の内周面8aに設けた上下2つのラジアル軸受面とこれに対向する軸部材2の外周面2aとの間にラジアル軸受隙間Gr,Grがそれぞれ形成される。そして軸部材2の回転に伴い、両ラジアル軸受隙間Gr,Grに形成される油膜の圧力がラジアル動圧発生部A1,A2の動圧作用によって高められ、軸部材2をラジアル方向に非接触支持するラジアル軸受部R1,R2が軸方向の二箇所に形成される。
 本実施形態では、前述のとおり、ラジアル動圧発生部A1を構成する動圧溝Aa1,Aa2の軸方向寸法を、ラジアル動圧発生部A2を構成する動圧溝Aa1,Aa2の軸方向寸法よりも大きく設定したことにより、軸部材2の回転に伴ってラジアル軸受部R1,R2のラジアル軸受隙間Grにそれぞれ形成される油膜の剛性、すなわちラジアル軸受部R1,R2の軸受剛性は、ラジアル軸受部R1の方がラジアル軸受部R2よりも高くなる。これは、軸部材2およびその上端に装着されるロータ3などでモータの回転側(回転体)が構成され、回転体の重心Gが、図2に示すように、軸部材2の軸方向中央部よりも上側にシフトした位置に存在する関係上、上側のラジアル軸受部R1の軸受剛性を相対的に高めることが、回転体の振れ回りを可及的に防止する上で有利であるからである。
 また、軸部材2が回転すると、ラジアル軸受部R1,R2が形成されるのと同時に、ハウジング7の内底面7b1(スラストプレート10の上端面10a)で軸部材2をスラスト方向に接触支持するスラスト軸受部Tが形成される。なお、図1を参照しながら説明したように、軸部材2には、軸部材2を下方側に付勢する外力としての磁力を作用させている。従って、軸部材2の回転時に軸部材2が過度に浮上し、軸受部材8の内周から抜脱するのを可及的に防止することができる。
 以上で説明したように、本発明に係る流体動圧軸受装置1では、軸受部材8がその上端面8cを大気に露出させた状態でハウジング7の内周に固定されている。かかる構成は、特許文献1,2に開示された流体動圧軸受装置において、ハウジングの開口側の端部内周に配置されていた環状のシール部材を省略した構成に相当する。このため、軸受部材8の軸方向寸法、ひいてはラジアル軸受部R1,R2の軸受剛性を変化させずとも、少なくともシール部材の軸方向寸法分だけハウジング7の軸方向寸法を短縮することができ、これを通じて流体動圧軸受装置1全体を軸方向にコンパクト化することができる。
 また、軸受部材8に外径寸法が相互に異なる小径円筒部81と大径円筒部82とを一体に設け、環状部材9とハウジング7の底部7b(に一体に設けた段部7c)とで大径円筒部82を軸方向両側から挟持することによって軸受部材8をハウジング7の内周に固定したので、組立工程を簡素化し、流体動圧軸受装置1の製造コストを低減することができる。
 また、本発明に係る流体動圧軸受装置1では、軸部材2が軸受部材8に対して挿脱自在であり、また、ハウジング7の内部空間全域を潤滑油11で満たさないパーシャルフィル構造を採用していることから、上述したように、ハウジング7の内周に軸受部材8および環状部材9を固定した後であって、軸受部材8内周への軸部材2の挿入前に、適当な給油具を用いてハウジング7の内部空間(軸受部材8の内周)に潤滑油11を充填するだけでも、ハウジング7の内部空間に必要量の潤滑油11を介在させることができる。そのため、注油のための大掛かりな設備(例えば、真空含浸装置)や高精密な油面の調整・管理作業が不要となり、これを通じて流体動圧軸受装置1の製造コストを一層低減することができる。
 本発明に係る流体動圧軸受装置1においては、上記態様で環状部材9を配置したことにより、特許文献1等の流体動圧軸受装置に設けられていた潤滑油の油面を保持したシール空間が省略されるため、潤滑油11の外部漏洩に起因した軸受性能の低下問題が生じる可能性が増すとも考えられる。しかしながら、(1)潤滑油11の油面が、流体動圧軸受装置1の使用温度範囲内で軸受部材8の上端内周縁部に設けた面取部8fの上端部よりも下方側に位置するようにハウジング7の内部空間への潤滑油11の充填量が調整されていること[図4(a)参照]、(2)軸受部材8が焼結金属の多孔質体で形成されていること、(3)軸受部材8の面取部8fと軸方向に隣接した軸受部材8の内周面8aでラジアル軸受部R1,R2のラジアル軸受隙間Grが形成されること、などにより、潤滑油11の外部漏洩の可能性は効果的に低減される。
 すなわち、特に上記(2)の構成によれば、軸部材2の回転に伴ってラジアル軸受部R1,R2のラジアル軸受隙間Grに介在する潤滑油11の圧力が高まった場合、相対的に低圧となる軸受部材8の内部気孔に潤滑油11が引き込まれ、また、上記(3)の構成によれば、ラジアル軸受隙間Grの隙間幅は、通常数μm程度の微小幅に設定されるため、仮に潤滑油11の油面が面取部8fの軸方向範囲内に位置する程度にまで上昇したとしても、潤滑油11は毛細管力によって軸受内部側(ラジアル軸受隙間Gr)に向けて引き込まれるからである。
 以上、本発明の実施形態に係る流体動圧軸受装置1について説明を行ったが、流体動圧軸受装置1の各部には、本発明の要旨を逸脱しない範囲で種々の変更を施すことができる。
 例えば、軸部材2を支持するスラスト軸受部Tは、いわゆる動圧軸受で構成することができる。図7は、スラスト軸受部Tを動圧軸受で構成した流体動圧軸受装置1の一例を示しており、この場合、軸部材2の下端面2bは、軸線と直交する方向の平坦面に形成される。図示は省略するが、軸部材2の下端面2bおよびこれに対向するハウジング7の内底面7b1の何れか一方には、動圧溝等の動圧発生部(スラスト動圧発生部)が形成される。
 また、以上で説明した実施形態では、軸受部材8を構成する小径円筒部81および大径円筒部82の外周面8d1,8d2を径一定の円筒面に形成したが、小径円筒部81の外周面8d1には、図8Aおよび図8Bに示すように、ハウジング7の底部7b側(下側)から開口側(上側)に向けて漸次縮径したテーパ面8d11を設けることができる。図8Aは、小径円筒部81の外周面8d1全域を上記のテーパ面8d11で構成した場合の一例であり、図8Bは、小径円筒部81の外周面8d1を、上記のテーパ面8d11と、テーパ面8d11よりも上側に設けられた径一定の円筒面8d12とで構成した場合の一例である。図8Bに示す構成において、円筒面8d12の下端は、テーパ面8d11の上端と繋がり、円筒面8d12の上端は、面取部8gを介して上端面8cと繋がっている。
 以下、図8Aおよび図8Bに示す軸受部材8のうち、図8Aに示す軸受部材8の素材(焼結体からなる軸受素材8’)にサイジング加工を施すサイジング工程について、図9Aおよび図9Bを参照しながら詳細に説明する。
 図9Aおよび図9Bに示すサイジング金型30Aは、図5Aおよび図5Bに示すサイジング金型30のうち、ダイ32を、異なる構成を有するダイ32Aに置換した構成に相当し、サイジングコア31および上下パンチ33,34については、図5Aおよび図5Bに示すサイジング金型30と実質的に同一の構成を有するものを採用している。ダイ32Aは、その内壁面のうち、軸受素材8’の第1円筒部81’の外周面に対向する部分(第1円筒部81’の外周面を成形する部分)が、テーパ面8d11に対応するテーパ面32Aaに形成されている点において、図5Aに示すダイ32と構成を異にしている。また、詳細な図示は省略しているが、サイジング金型30Aに供される軸受素材8’のうち、第1円筒部81’の外周面は、小径円筒部81のテーパ面8d11に概ね倣ったテーパ面8d11’に形成されており、このようなテーパ面8d11’は軸受素材8’の基材である圧粉体の成形時に型成形される。
 図9Aおよび図9Bに示すように、サイジング金型30Aによるサイジング加工は、図5Aおよび図5Bを参照しながら説明したサイジング金型30によるサイジング加工と同様にして行われる。このとき、サイジング金型30Aのダイ32Aの内周面に上記のテーパ面32Aaが設けられていること、およびテーパ面32Aaに挿入(圧入)される軸受素材8’の第1円筒部81’の外周面にテーパ面8d11’が設けられていることにより、軸受素材8’の第1円筒部81’を滑らかにダイ32Aの内周面に圧入することができることに加え、サイジング完了後の軸受素材8’を滑らかに離型することができる。そのため、軸受素材8’にサイジング加工を施すにあたり、第1円筒部81’の外周面(テーパ面8d11’)に毟れやキズ等の欠陥が生じる可能性を効果的に低減することができる。従って、テーパ面8d11を有する(テーパ面8d11で構成される)小径円筒部81の外周面8d1は、小径円筒部81の外周面8d1全域を径一定の円筒面で構成する場合に比べ、高精度に仕上げられた(成形された)面とすることができる。
 なお、軸受部材8の外周面8d1に設けられるテーパ面8d11の傾斜角(テーパ面8d11と軸方向に延びる直線とがなす角度)α、さらに言えば、サイジング金型30Aのダイ32Aに設けられるテーパ面32Aaの傾斜角は、3°以上に設定するのが好ましく、4°以上に設定するのが一層好ましい。これは、上記の傾斜角αが3°未満であると、テーパ面を設けることにより奏される上記の作用効果を有効に享受できないからである。一方、上記の傾斜角αがあまりに大きいと、軸受素材8’のうち、テーパ面8d11’の上端部におけるサイジング代とテーパ面8d11’の下端部におけるサイジング代との間に大きな差が生じ、軸受部材8の内周面8a(ラジアル動圧発生部A1)の成形精度等に悪影響が及ぶ可能性がある。そのため、上記の傾斜角αの上限値は10°以下に設定するのが好ましい。
 以上で説明した実施形態では、モータベース6の内周に、モータベース6と別体に設けたハウジング7を固定するようにしたが、ハウジング7にモータベース6に相当する部位を一体に設けることもできる。
 また、ラジアル軸受部R1,R2の何れか一方又は双方は、いわゆる多円弧軸受、ステップ軸受、および波型軸受等、公知のその他の動圧軸受で構成することができる他、ラジアル軸受隙間Grを介して対向する二面の何れにもラジアル動圧発生部を設けず、上記二面の双方を円筒面に形成した真円軸受で構成することもできる。
 また、以上で示した実施形態では、ロータマグネット4とステータコイル5とを軸方向にずらして配置することにより、軸部材2に、軸部材2を下方側に付勢するための外力を作用させるようにしたが、このような外力を軸部材2に作用させるための手段は上記のものに限られない。図示は省略するが、例えば、ロータマグネット4を引き付け得る磁性部材をロータマグネット4と軸方向に対向配置することにより、上記磁力をロータ3、ひいては軸部材2に作用させることもできる。また、送風作用の反力としての推力が十分に大きく、この推力のみで軸部材2を下方側に付勢することができる場合、外力としての磁力(磁気吸引力)を軸部材2に作用させる必要はない。
 また、軸受部材8の内周面8aと軸部材2の外周面2aとの間の径方向隙間(ラジアル軸受隙間Gr)や、軸受部材8の外周面8d1と環状部材9の内周面9bとの間の径方向隙間12(図2および図4B参照)に介在する潤滑油11の外部漏洩を防止するため、図10Aに示すように、大気に露出した軸受部材8の上端面8c、環状部材9の上端面9cおよび軸部材2の外周面2a等に撥油膜15を設けても良い。また、軸受部材8の内部気孔に含浸させた潤滑油11が軸受部材8の上端面8cの表面開孔を介して装置外部に滲み出すのを防止するため、軸受部材8には、図10Bに示すように、その上端面8cを含む表層部の多孔質組織を実質的に消滅させる封孔部16を形成しても良い。封孔部16は、いわゆる目潰し処理によって形成しても良いし、樹脂等の封孔材を含浸・硬化させることによって形成しても良い。図10Aおよび図10Bに示す構成は、何れか一方のみを採用しても良いし、両者を併用しても良い。
 また、以上では、送風用の羽根を有するロータ3が軸部材2に設けられる流体動圧軸受装置1に本発明を適用した場合について説明を行ったが、本発明は、ディスク搭載面を有するディスクハブ、あるいはポリゴンミラーが軸部材2に設けられる流体動圧軸受装置1にも好ましく適用することができる。すなわち、本発明は、図1に示すようなファンモータのみならず、ディスク装置用のスピンドルモータや、レーザビームプリンタ(LBP)用のポリゴンスキャナモータ等、その他の電気機器用モータに組み込まれる流体動圧軸受装置1にも好ましく適用することができる。
1    流体動圧軸受装置
2    軸部材
3    ロータ
7    ハウジング
7a   筒部
7b   底部
8    軸受部材
8d11 テーパ面
8d12 円筒面
8f   面取部
9    環状部材
11   潤滑油
12   径方向隙間
13   径方向隙間
81   小径円筒部
82   大径円筒部
A1、A2 ラジアル動圧発生部
Gb   底隙間
Gr   ラジアル軸受隙間
R1、R2 ラジアル軸受部
T    スラスト軸受部
t1   小径円筒部の径方向の肉厚
t2   大径円筒部の径方向の肉厚

Claims (11)

  1.  軸方向一方側の端部が開口すると共に軸方向他方側の端部が閉塞された有底筒状のハウジングと、ハウジングの内周に配置され、軸方向一方側の内周縁部に面取部を有する多孔質の軸受部材と、軸受部材の内周面と軸受部材の内周に挿入される軸部材の外周面との間のラジアル軸受隙間に形成される潤滑油の油膜で前記軸部材をラジアル方向に支持するラジアル軸受部とを備え、ハウジングの内底面で前記軸部材がスラスト方向に支持され、使用温度範囲内で潤滑油の油面が前記面取部の軸方向一方側の端部よりも軸方向他方側に位置するようにハウジングの内部空間への潤滑油の充填量が調整された流体動圧軸受装置であって、
     軸受部材は、軸方向一方側に配置され、外径寸法が相対的に小さい小径円筒部と、軸方向他方側に配置され、外径寸法が相対的に大きい大径円筒部とを一体に有し、かつ、前記小径円筒部の軸方向一方側の端面を大気に露出させた状態で、前記小径円筒部とハウジングの筒部の間に配置した環状部材とハウジングの底部とで前記大径円筒部を軸方向両側から挟持することにより、ハウジングの内周に固定されていることを特徴とする流体動圧軸受装置。
  2.  ハウジングの筒部に対する前記大径円筒部のはめあい、および環状部材に対する前記小径円筒部のはめあいが、何れもすきまばめである請求項1に記載の流体動圧軸受装置。
  3.  軸受部材が焼結金属の多孔質体からなり、軸受部材の内周面がサイジングコアの外周面に倣って成形された成形面である請求項1又は2に記載の流体動圧軸受装置。
  4.  前記大径円筒部の径方向の肉厚(t2)に対する前記小径円筒部の径方向の肉厚(t1)の比(t2/t1)が2.5未満である請求項3に記載の流体動圧軸受装置。
  5.  前記小径円筒部の外周面に、軸方向他方側から軸方向一方側に向けて漸次縮径したテーパ面が設けられている請求項3又は4に記載の流体動圧軸受装置。
  6.  前記小径円筒部の外周面に径一定の円筒面が設けられ、この円筒面が、前記テーパ面と前記小径円筒部の軸方向一方側の端面との間に設けられている請求項5に記載の流体動圧軸受装置。
  7.  軸受部材の内周面に、ラジアル軸受隙間内の潤滑油に流体動圧を発生させる動圧発生部が設けられた請求項1~6の何れか一項に記載の流体動圧軸受装置。
  8.  前記軸部材が、軸受部材に対して挿脱自在である請求項1~7の何れか一項に記載の流体動圧軸受装置。
  9.  前記軸部材に、前記軸部材を軸方向他方側に付勢する外力が作用する請求項1~8の何れか一項に記載の流体動圧軸受装置。
  10.  前記軸部材に、送風用の羽根を有するロータが設けられる請求項1~9の何れか一項に記載の流体動圧軸受装置。
  11.  請求項1~10の何れか一項に記載の流体動圧軸受装置を備えたモータ。
PCT/JP2017/021960 2016-07-14 2017-06-14 流体動圧軸受装置及びこれを備えるモータ WO2018012186A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/314,771 US10819180B2 (en) 2016-07-14 2017-06-14 Fluid dynamic bearing device and motor with same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016139305 2016-07-14
JP2016-139305 2016-07-14
JP2017-038309 2017-03-01
JP2017038309A JP6877185B2 (ja) 2016-07-14 2017-03-01 流体動圧軸受装置及びこれを備えるモータ

Publications (1)

Publication Number Publication Date
WO2018012186A1 true WO2018012186A1 (ja) 2018-01-18

Family

ID=60952054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021960 WO2018012186A1 (ja) 2016-07-14 2017-06-14 流体動圧軸受装置及びこれを備えるモータ

Country Status (1)

Country Link
WO (1) WO2018012186A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11252859A (ja) * 1998-02-27 1999-09-17 Matsushita Electric Ind Co Ltd 電動機及びそれを用いたヒートシンク装置
JP2003307227A (ja) * 2002-04-16 2003-10-31 Citizen Watch Co Ltd 輔受け装置およびこの軸受装置を用いたモータ
JP2007064240A (ja) * 2005-08-29 2007-03-15 Matsushita Electric Ind Co Ltd 軸受けスリーブ固定機構、それの製造方法及びそれを備えたファン装置
JP2014059014A (ja) * 2012-09-18 2014-04-03 Ntn Corp 流体動圧軸受装置及びこれを備えるモータ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11252859A (ja) * 1998-02-27 1999-09-17 Matsushita Electric Ind Co Ltd 電動機及びそれを用いたヒートシンク装置
JP2003307227A (ja) * 2002-04-16 2003-10-31 Citizen Watch Co Ltd 輔受け装置およびこの軸受装置を用いたモータ
JP2007064240A (ja) * 2005-08-29 2007-03-15 Matsushita Electric Ind Co Ltd 軸受けスリーブ固定機構、それの製造方法及びそれを備えたファン装置
JP2014059014A (ja) * 2012-09-18 2014-04-03 Ntn Corp 流体動圧軸受装置及びこれを備えるモータ

Similar Documents

Publication Publication Date Title
JP6189589B2 (ja) 流体動圧軸受装置及びこれを備えるモータ
EP2541084B1 (en) Fluid dynamic bearing device
US8756816B2 (en) Method for producing a housing for a fluid bearing apparatus
KR20160058765A (ko) 소결 금속 베어링, 및 이 베어링을 구비한 유체 동압 베어링 장치
JP2007263228A (ja) 動圧軸受装置
JP6877185B2 (ja) 流体動圧軸受装置及びこれを備えるモータ
JP2007263311A (ja) 動圧軸受装置
WO2018012186A1 (ja) 流体動圧軸受装置及びこれを備えるモータ
WO2019139007A1 (ja) 流体動圧軸受装置及びこれを備えたモータ
JP2008039104A (ja) 流体軸受装置
JP6981900B2 (ja) 流体動圧軸受装置およびこれを備えるモータ
WO2019159787A1 (ja) 流体動圧軸受装置及びこれを備えたモータ
JP2005180707A (ja) 動圧型焼結含油軸受ユニット
WO2023047938A1 (ja) 動圧軸受及びこれを備えた流体動圧軸受装置
JP2009085232A (ja) 滑り軸受の固定方法
WO2019065719A1 (ja) 流体動圧軸受装置およびこれを備えるモータ
JP2007100803A (ja) 含油焼結軸受の製造方法およびこの方法に使用されるサイジングピン
JP2004316924A (ja) 動圧型焼結含油軸受ユニット
JP2022055700A (ja) 流体動圧軸受装置の製造方法
JP4451409B2 (ja) 動圧型焼結含油軸受ユニットの製造方法
JP6502036B2 (ja) 流体動圧軸受装置及びこれを備えるモータ
JP2004301338A (ja) 動圧型焼結含油軸受ユニット
JP5172213B2 (ja) 流体軸受装置、およびその軸部材の製造方法
JP4675880B2 (ja) 流体動圧軸受装置の製造方法
JP2004360921A (ja) 動圧型焼結含油軸受ユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17827318

Country of ref document: EP

Kind code of ref document: A1