WO2014042273A1 - シンチレータパネル、及び、放射線検出器 - Google Patents

シンチレータパネル、及び、放射線検出器 Download PDF

Info

Publication number
WO2014042273A1
WO2014042273A1 PCT/JP2013/075034 JP2013075034W WO2014042273A1 WO 2014042273 A1 WO2014042273 A1 WO 2014042273A1 JP 2013075034 W JP2013075034 W JP 2013075034W WO 2014042273 A1 WO2014042273 A1 WO 2014042273A1
Authority
WO
WIPO (PCT)
Prior art keywords
scintillator
prevention film
shielding layer
light shielding
permeation prevention
Prior art date
Application number
PCT/JP2013/075034
Other languages
English (en)
French (fr)
Inventor
真太郎 外山
楠山 泰
雅典 山下
弘武 大澤
鈴木 克彦
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to KR1020157006193A priority Critical patent/KR102028789B1/ko
Priority to US14/427,433 priority patent/US9322932B2/en
Priority to CN201380048062.3A priority patent/CN104769681B/zh
Priority to EP13837530.8A priority patent/EP2897129A4/en
Publication of WO2014042273A1 publication Critical patent/WO2014042273A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2002Optical details, e.g. reflecting or diffusing layers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • G21K2004/04Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens with an intermediate layer
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • G21K2004/06Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens with a phosphor layer
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • G21K2004/10Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens with a protective film
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • G21K2004/12Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens with a support

Definitions

  • One aspect of the present invention relates to a scintillator panel and a radiation detector.
  • Patent Document 1 describes a method of manufacturing a radiation detector.
  • a mask is disposed in front of the photoelectric conversion elements arranged on the element base, and a scintillator element is formed on the photoelectric conversion element by vapor deposition of a scintillator material using the mask.
  • the light reflecting material is applied or vapor-deposited over the entire surface. At this time, the light reflecting material is filled in the groove separating the scintillator elements.
  • a radiation detector is obtained by performing a light shielding treatment with an aluminum foil or the like.
  • the light shielding material is formed by filling the groove separating the scintillator elements with the light reflecting material (or the light absorbing material) as in the above-described method
  • the light reflecting material or the light absorbing material
  • the solvent or the like penetrates between the plurality of columnar crystals constituting the scintillator element. In such a case, the characteristics of the scintillator element having deliquescent properties may be deteriorated.
  • the columnar crystals are thickened (for example, about 500 ⁇ m in thickness), the gaps between the columnar crystals tend to be widened, which is a problem.
  • An aspect of the present invention has been made in view of such circumstances, and an object of the present invention is to provide a scintillator panel and a radiation detector capable of preventing deterioration of characteristics associated with the formation of a light shielding layer.
  • a scintillator panel is a scintillator panel for converting radiation into scintillation light, and a substrate having a front surface and a back surface and a front surface of the substrate so as to be separated from each other.
  • a permeation-preventing film and a light-shielding layer formed on the solvent permeation-preventing film for shielding scintillation light, and the scintillator section is composed of a plurality of columnar crystals of scintillator material, and prevents solvent permeation
  • the film is formed so that the gap between the side surfaces of the adjacent scintillator portions is not filled, and the light shielding layer fills the gap. As it is formed on the solvent penetration stop layer on the side of the scintillator unit.
  • a plurality of scintillator portions are formed on the substrate so as to be separated from each other, and the scintillator portions of the scintillator portions are not filled so as not to fill a gap between the scintillator portions (side surfaces of the scintillator portions).
  • a solvent permeation prevention film is formed on the side surface and the upper surface.
  • a light shielding layer is formed on the solvent permeation prevention film so as to fill a gap between the scintillator portions.
  • the solvent of the predetermined material does not penetrate between the columnar crystals constituting the scintillator portion. Therefore, according to this scintillator panel, it is possible to prevent the deterioration of characteristics due to the formation of the light shielding layer.
  • the light shielding layer may be formed on the solvent permeation prevention film on the side surface of the scintillator portion so as to cover the side surface of the scintillator portion. In this case, scintillation light can be reliably confined in each scintillator section.
  • the light shielding layer may be further formed on the solvent permeation prevention film on the upper surface of the scintillator portion so as to cover the upper surface of the scintillator portion.
  • scintillation light can be reliably confined in each scintillator section.
  • the substrate is formed with a plurality of convex portions protruding from the front surface in the direction from the back surface to the front surface of the substrate, and concave portions defined by the convex portions.
  • Each part may be formed on the upper surface of the convex part. In this case, the scintillator portions can be reliably separated from each other.
  • the solvent permeation prevention film may be further formed on the side surface of the convex portion so as to cover the side surface of the convex portion. In this case, it is possible to reliably prevent the permeation of the solvent between the columnar crystals when forming the light shielding layer.
  • the solvent permeation prevention film may be further formed on the bottom surface of the recess so as to cover the bottom surface of the recess. In this case, the penetration of the solvent between the columnar crystals can be prevented more reliably, and the formation of the solvent penetration preventing film is facilitated.
  • a radiation detector includes the above-described scintillator panel, and the substrate includes a plurality of photoelectric elements arranged so as to be optically coupled to the scintillator unit.
  • a sensor panel having a conversion element Since this radiation detector includes the above-described scintillator panel, it is possible to prevent deterioration of characteristics associated with the formation of the light shielding layer.
  • a scintillator panel and a radiation detector that can prevent deterioration of characteristics associated with the formation of a light shielding layer.
  • FIG. 2 is a partial plan view of the scintillator panel shown in FIG. 1. It is a side view of the scintillator panel which concerns on 2nd Embodiment. It is a side view of the scintillator panel which concerns on 3rd Embodiment. It is a side view of the scintillator panel which concerns on 4th Embodiment. It is a side view of the scintillator panel which concerns on 5th Embodiment. It is a side view of the scintillator panel which concerns on 6th Embodiment.
  • a scintillator panel according to an embodiment is for converting incident radiation R such as X-rays into scintillation light such as visible light.
  • incident radiation R such as X-rays
  • scintillation light such as visible light.
  • a mammography apparatus, a chest examination apparatus, a CT apparatus, and a dental intraoral imaging apparatus And in a radiation camera etc. it can be used as a device for radiation imaging.
  • FIG. 1 is a side view of the scintillator panel according to the first embodiment.
  • FIG. 2 is a partial plan view of the scintillator panel shown in FIG. As shown in FIGS. 1 and 2, the scintillator panel 1 includes a rectangular substrate 10.
  • the substrate 10 has a front surface 10a and a back surface 10b facing each other.
  • the substrate 10 has an uneven pattern Pa formed on the surface 10a.
  • the material of the substrate 10 include metals such as Al and SUS (stainless steel), resin films such as polyimide, polyethylene terephthalate and polyethylene naphthalate, carbon materials such as amorphous carbon and carbon fiber reinforced plastic, and FOP (fiber optic).
  • Plate An optical device in which many optical fibers having a diameter of several microns are bundled (for example, J5734 manufactured by Hamamatsu Photonics Co., Ltd.) can be used.
  • a high aspect resist such as an epoxy resin (KMPR, SU-8, etc.
  • the material of the convex portions constituting the concavo-convex pattern Pa can be a material having transparency to scintillation light generated in the scintillator portion 20 described later.
  • the concavo-convex pattern Pa is formed by a plurality of convex portions 11 and concave portions 12 defined by the convex portions 11. That is, a plurality of convex portions 11 and concave portions 12 are formed on the substrate 10.
  • Each of the protrusions 11 protrudes from the front surface 10a along the direction from the back surface 10b of the substrate 10 toward the front surface 10a (here, the incident direction of the radiation R and the direction orthogonal to the front surface 10a and the back surface 10b of the substrate 10).
  • Each of the convex portions 11 is formed in a rectangular parallelepiped shape.
  • the convex portions 11 are periodically arranged in a two-dimensional array on the surface 10 a of the substrate 10. Therefore, the concave portion 12 defined by the convex portion 11 is a groove having a rectangular lattice shape in plan view.
  • Each dimension of the concavo-convex pattern Pa is such that the width (groove width) W of the concave portion 12 is about 35 ⁇ m when the pitch (formation period of the convex portion 11) P of the convex portion 11 is about 100 ⁇ m.
  • the pitch P of the concave portion 12 is about 127 ⁇ m
  • the width W of the concave portion 12 is about 20 ⁇ m to 40 ⁇ m.
  • the pitch P of the convex portion 11 is about 200 ⁇ m
  • the width W of the concave portion 12 is about 50 ⁇ m to 70 ⁇ m.
  • the height H of the convex portion 11 can be about 2.5 ⁇ m to 50 ⁇ m.
  • the pitch P of the convex portions 11 is about 127 ⁇ m
  • the width W of the concave portions 12 is about 45 ⁇ m
  • the height H of the convex portions 11 is about 15 ⁇ m.
  • the scintillator panel 1 includes a plurality of scintillator units 20.
  • the scintillator section 20 is formed by a plurality of columnar crystals C, and a gap of about several ⁇ m exists between the columnar crystals C.
  • the plurality of scintillator units 20 are separated from each other.
  • the scintillator portions 20 are formed on the upper surface 11a of the convex portion 11, respectively. Therefore, the scintillator panel 1 includes the number of scintillator portions 20 corresponding to the number of the convex portions 11.
  • the scintillator unit 20 has an upper surface 20 a and side surfaces 20 b that extend from the upper surface 20 a toward the surface 10 a of the substrate 10 and reach the upper surface 11 a of the convex portion 11.
  • the scintillator section 20 can be formed of a scintillator material that forms columnar crystals such as CsI (cesium iodide).
  • the scintillator section 20 extends from the upper surface 11a of the protrusion 11 along the incident direction of the radiation R (a direction substantially perpendicular to the substrate 10). More specifically, the scintillator portion 20 is composed of a plurality of columnar crystals C of scintillator material extending from the upper surface 11a of the convex portion 11 along the incident direction of the radiation R.
  • the columnar crystal C constituting the scintillator portion 20 can have a taper shape whose diameter increases as the distance from the upper surface 11a of the convex portion 11 increases.
  • the height (scintillator film thickness) T of the scintillator section 20 can be set to about 100 ⁇ m to 600 ⁇ m, for example.
  • the radiation R can be incident from the back surface 10 b of the substrate 10.
  • a gap 30 is formed between the side surfaces 20b of the scintillator portions 20 adjacent to each other. That is, the scintillator portions 20 are partitioned by the gap 30 and separated from each other.
  • the gap 30 is wider than the gaps between the plurality of columnar crystals C constituting the scintillator unit 20.
  • the gap 30 extends from the upper end including the upper surface 20a of the scintillator portion 20 (the end opposite to the convex portion 11) to the base end portion (on the convex portion 11 side) of the scintillator portion 20 in contact with the upper surface 11a of the convex portion 11.
  • the width of the gap 30 is, for example, about the width W of the recess 12.
  • the gap 30 is filled with a solvent permeation prevention film 40 and a light shielding layer 50.
  • the scintillator panel 1 includes a solvent permeation prevention film 40.
  • the solvent permeation prevention film 40 is formed on the upper surface 20a and the side surface 20b of the scintillator unit 20 so as to cover the upper surface 20a and the side surface 20b of the scintillator unit 20.
  • the solvent permeation prevention film 40 is formed so that the gap 30 between the side surfaces 20b of the scintillator portions 20 adjacent to each other is not filled (that is, the gap 30 is maintained). Therefore, a gap 41 is formed between the solvent permeation prevention films 40 on the side surfaces 20b of the scintillator portions 20 adjacent to each other.
  • the gap 41 extends from the upper end of the scintillator 20 to the base end and is connected to the recess 12.
  • the thickness FT of the solvent permeation preventing film 40 is gradually increased from the base end portion of the scintillator portion 20 toward the upper end portion, the width of the gap 41 is increased from the base end portion of the scintillator portion 20 to the upper end portion. It gradually becomes smaller toward the part.
  • the thickness FT of the solvent permeation prevention film 40 is such that it does not fill the gap 30 as described above, and can be about 1 ⁇ m to 5 ⁇ m, for example, or about 2 ⁇ m to 3 ⁇ m.
  • Such a solvent permeation prevention film 40 includes, for example, (1) parylene (polyparaxylene), (2) polyurea, (3) SiO 2 or SiO, (4) SiN, (5) the above (1) to ( 4) an organic / inorganic hybrid film, and (6) an Al 2 O 3 layer or an MgF 2 layer formed by an ALD (atomic layer deposition) method.
  • the scintillator panel 1 includes a light shielding layer 50.
  • the light shielding layer 50 is a light reflecting layer that reflects scintillation light generated in the scintillator section 20 or a light absorption layer that absorbs scintillation light generated in the scintillator section 20. That is, the light shielding layer 50 is for shielding the scintillation light generated in the predetermined scintillator unit 20 and confining it in the predetermined scintillator unit 20.
  • the light shielding layer 50 is formed on the solvent permeation prevention film 40 on the side surface 20b of the scintillator unit 20 so as to cover the side surface 20b of the scintillator unit 20.
  • the light shielding layer 50 is formed so as to fill the gap 30. More specifically, the light shielding layer 50 is formed so as to fill the gap 41 defined in the gap 30 by the solvent permeation prevention film 40.
  • the light shielding layer 50 is also formed in the recess 12 so as to fill the recess 12. Further, the light shielding layer 50 is not formed on the solvent permeation prevention film 40 on the upper surface 20 a of the scintillator unit 20. That is, the light shielding layer 50 is formed on the solvent permeation preventing film 40 so as to cover the entire scintillator unit 20 except for the upper end of the scintillator unit 20 (in other words, each scintillator unit 20 is The upper end portion is covered with the solvent permeation prevention film 40 and exposed from the light shielding layer 50).
  • Such a light shielding layer 50 includes, for example, inks, paints, or pastes containing organic pigments, inorganic pigments, or metal pigments, metal nanoinks containing metal nanoparticles such as Ag, Pt, or Cu, and various dyes (Hereinafter referred to as “filling material”).
  • the light shielding layer 50 can also be formed by forming a metal film by ALD (atomic layer deposition) or electroless plating. In this way, if the light shielding layer 50 is formed so as to cover the side surface 20b of the scintillator section 20, it becomes possible to confine the scintillation light generated in the predetermined scintillator section 20 in the predetermined scintillator section 20, and thus High luminance and high resolution can be realized.
  • ALD atomic layer deposition
  • the scintillator panel 1 configured as described above can be manufactured, for example, as follows. That is, first, a base material as a base of the substrate 10 is prepared, and the material of the uneven pattern Pa is formed on the base material by coating and drying. Then, the uneven
  • various vapor deposition conditions vacuum degree, vapor deposition rate, substrate heating temperature,
  • the solvent permeation prevention film 40 is formed on the upper surface 20a and the side surface 20b of the scintillator unit 20 with a thickness that does not fill the gap 30 between the side surfaces 20b of the scintillator units 20 adjacent to each other.
  • the thickness FT of the solvent permeation prevention film 40 can be set to 1 ⁇ m to 2 ⁇ m, for example.
  • the light shielding layer 50 is formed on the solvent permeation prevention film 40. More specifically, the light shielding layer 50 is formed by applying the above-described filling material on the solvent permeation prevention film 40 under vacuum (that is, by filling the gap 30 (gap 41) with the filling material). Form.
  • the scintillator panel 1 is manufactured through the above steps.
  • the plurality of scintillator portions 20 are formed on the substrate 10 so as to be separated from each other, and the scintillator portions 20 (the side surface of the scintillator portion 20). 20b), the solvent permeation preventing film 40 is formed on the side surface 20b and the upper surface 20a of each scintillator section 20 so as not to fill the gap 30.
  • the light shielding layer 50 is formed on the solvent permeation prevention film 40. Therefore, when the light shielding layer 50 is formed by filling the gap 30 between the scintillator portions 20 with the filling material, the scintillator portion 20 is covered with the solvent permeation prevention film 40. Do not penetrate between the columnar crystals C constituting the scintillator section 20. Therefore, according to the scintillator panel 1 according to the present embodiment, it is possible to prevent deterioration of characteristics due to the formation of the light shielding layer 50.
  • the filling material is suitable for the gap 30. May not be filled.
  • the scintillator panel 1 according to the present embodiment since the solvent of the filling material is prevented from penetrating between the columnar crystals C, such a problem does not occur, and the filling material is suitably placed in the gap 30. Can be filled.
  • FIG. 3 is a side view of the scintillator panel according to the second embodiment.
  • the scintillator panel 1 ⁇ / b> A according to the present embodiment is different from the scintillator panel 1 according to the first embodiment in that it further includes a light shielding layer 60.
  • the light shielding layer 60 is for shielding the scintillation light, and is a light reflecting layer that reflects the scintillation light or a light absorption layer that absorbs the scintillation light.
  • the light shielding layer 60 covers the solvent permeation prevention film 40 on the upper surface 20a of the scintillator unit 20 exposed from the light shielding layer 50 (that is, covers the upper surface 20a of the scintillator unit 20). And on the light shielding layer 50.
  • the light shielding layer 60 may be formed integrally with the light shielding layer 50, or may be formed separately.
  • the light shielding layer 50 may be formed of the same material as the light shielding layer 50 or may be formed of a material different from that of the light shielding layer 50.
  • the filling material disposed on the solvent permeation prevention film 40 on the upper surface 20a of the scintillator section 20 is removed, and then the solvent permeation prevention film
  • the light shielding layer 60 can be manufactured by applying a predetermined material (for example, the filling material described above) on the light shielding layer 50 and the light shielding layer 50.
  • the scintillator panel 1A according to the present embodiment similarly to the scintillator panel 1 according to the first embodiment, penetration of a solvent or the like between the columnar crystals C when the light shielding layers 50 and 60 are formed is prevented. be able to. Furthermore, according to the scintillator panel 1A according to the present embodiment, by further including the light shielding layer 60, it is possible to reliably confine the scintillation light generated in the predetermined scintillator section 20 in the predetermined scintillator section 20. . [Third Embodiment]
  • FIG. 4 is a side view of the scintillator panel according to the third embodiment.
  • the scintillator panel 1B according to the present embodiment is different from the scintillator panel 1 according to the first embodiment in that a solvent permeation prevention film 40A is provided instead of the solvent permeation prevention film 40. is doing.
  • a radiation (X-ray) transmissive base material as the substrate 10
  • the radiation R can be incident from the back surface 10 b of the substrate 10.
  • the solvent permeation prevention film 40A is formed on the upper surface 20a and the side surface 20b of the scintillator portion 20 and the side surface 11b of the convex portion 11 so as to cover the upper surface 20a and the side surface 20b of the scintillator portion 20 and the side surface 11b of the convex portion 11. Is formed.
  • the solvent permeation prevention film 40A is formed so that the gap 30 between the side surfaces 20b of the adjacent scintillator portions 20 is not filled (that is, the gap 30 is maintained).
  • the solvent permeation prevention film 40A is formed continuously from the upper end of the scintillator portion 20 to the bottom surface 12a of the concave portion 12, and a boundary portion between the base end portion of the scintillator portion 20 and the upper surface 11a of the convex portion 11 Covering.
  • the thickness FT of the solvent permeation prevention film 40A is substantially constant, the width of the gap 41 defined by the solvent permeation prevention film 40A is also substantially constant.
  • the thickness FT of the solvent permeation prevention film 40A can be set to, for example, about 1 ⁇ m to 5 ⁇ m, and can be set to about 2 ⁇ m to 3 ⁇ m.
  • the solvent permeation prevention film 40A as described above can be formed by the same method using the same material as the solvent permeation prevention film 40 in the first embodiment.
  • the solvent permeation prevention film 40A is formed not only on the upper surface 20a and the side surface 20b of the scintillator portion 20, but also on the side surface 11b of the convex portion 11.
  • the solvent permeation prevention film 40 ⁇ / b> A also covers the boundary portion between the base end portion of the scintillator portion 20 and the upper surface 11 a of the convex portion 11. For this reason, according to the scintillator panel 1B according to the present embodiment, it is possible to reliably prevent the penetration of a solvent or the like between the columnar crystals C when the light shielding layer 50 is formed.
  • FIG. 5 is a side view of the scintillator panel according to the fourth embodiment.
  • the scintillator panel 1 ⁇ / b> C according to the present embodiment is different from the scintillator panel 1 ⁇ / b> B according to the third embodiment in that it further includes a light shielding layer 60.
  • FIG. 6 is a side view of the scintillator panel according to the fifth embodiment.
  • the scintillator panel 1D according to the present embodiment is different from the scintillator panel 1B according to the third embodiment in that it includes a solvent permeation prevention film 40D instead of the solvent permeation prevention film 40A. is doing.
  • the radiation R can be incident from the back surface 10 b of the substrate 10.
  • the solvent permeation prevention film 40D is formed on the upper surface 20a and the side surface 20b of the scintillator unit 20 and the upper surface 20a and the side surface 20b of the scintillator unit 20, the side surface 11b of the convex portion 11, and the bottom surface 12a of the concave portion 12.
  • the side surface 11 b and the bottom surface 12 a of the recess 12 are formed.
  • the solvent permeation prevention film 40D is formed so that the gap 30 between the side surfaces 20b of the adjacent scintillator portions 20 is not filled (that is, the gap 30 is maintained).
  • the solvent permeation prevention films 40 and 40A of the above embodiment are formed in a plurality of parts covering each of the scintillator parts 20, whereas the solvent permeation prevention film 40D is integrated as a single part. Is formed. That is, the solvent permeation prevention film 40D is formed such that a portion covering one scintillator portion 20 and the convex portion 11 and a portion covering the other scintillator portion 20 and the convex portion 11 are continuous on the bottom surface 12a of the concave portion 12. Yes.
  • the thickness FT of the solvent permeation prevention film 40D is substantially constant, the width of the gap 41 defined by the solvent permeation prevention film 40D is also substantially constant.
  • the thickness FT of the solvent permeation prevention film 40D can be, for example, about 1 ⁇ m to 5 ⁇ m, and can be about 2 ⁇ m to 3 ⁇ m.
  • the solvent permeation prevention film 40D as described above can be formed by the same method using the same material as the solvent permeation prevention film 40 in the first embodiment.
  • the solvent permeation prevention film 40D is also formed on the bottom surface 12a of the recess 12. For this reason, permeation of the solvent or the like between the columnar crystals C can be more reliably prevented. Further, since the solvent permeation prevention film 40D is integrally formed without being divided into a plurality of portions, the formation thereof is easy. Further, by covering the side surface 11b of the convex portion 11 with the solvent permeation preventing film 40D, it is possible to prevent the convex portion 11 from being deteriorated by the solvent component contained in the filling material. Furthermore, by covering the surface 10a of the substrate 10 (the bottom surface 12a of the recess 12) with the solvent permeation preventing film 40D, the substrate 10 can be protected from the solvent component. [Sixth Embodiment]
  • FIG. 7 is a side view of the scintillator panel according to the sixth embodiment.
  • the scintillator panel 1E according to the present embodiment is different from the scintillator panel 1D according to the fifth embodiment in that it further includes a light shielding layer 60.
  • the scintillator panel 1E according to the present embodiment similarly to the scintillator panel 1D according to the fifth embodiment, it is possible to more reliably prevent the penetration of a solvent or the like between the columnar crystals C. The formation of the solvent permeation prevention film 40D is facilitated. Furthermore, according to the scintillator panel 1E according to the present embodiment, scintillation light can be reliably confined similarly to the scintillator panel 1B according to the second embodiment.
  • one aspect of the present invention is not limited to the scintillator panels 1 to 1E described above.
  • the above-described scintillator panels 1 to 1E can be arbitrarily changed or applied to others without departing from the spirit of the claims.
  • the scintillator panels 1 to 1E according to the above embodiment can further include a moisture-proof film.
  • the moisture-proof film covers the solvent permeation prevention films 40, 40A, 40D, the light shielding layer 50, and the light shielding layer 60 in the scintillator panels 1-1E (that is, covers the entire scintillator section 20).
  • a film can be formed on them using parylene or the like. If the moisture-proof film is further provided in this way, the moisture resistance of the scintillator unit 20 is improved.
  • the scintillator portion 20 is formed on the convex portion 11 of the substrate 10.
  • the form of forming the scintillator portion 20 is not limited to this.
  • It can be formed on the surface of an arbitrary substrate on which no convex portion is formed.
  • one aspect of the present invention can be applied to a radiation detector including the above-described scintillator panel.
  • the radiation detector includes any of the scintillator panels 1 to 1E described above, and a plurality of photoelectric conversion elements arranged so that their substrates 10 are optically coupled to the scintillator unit 20 A sensor panel (TFT panel or COMS image sensor panel).
  • each of the convex portions 11 can be made of a material having transparency to scintillation light generated in the scintillator portion 20.
  • the scintillator panels 1 to 1E described above are provided, it is possible to suppress deterioration of characteristics associated with the formation of the light shielding layer 50.
  • the substrate 10 is a sensor panel including a photoelectric conversion element, if the scintillator unit 20 is provided by forming the convex portion 11 directly on the photoelectric conversion element, a separately prepared scintillator panel and sensor panel are provided. There is no need to stick them together.
  • a scintillator panel and a radiation detector that can prevent deterioration of characteristics associated with the formation of a light shielding layer.
  • scintillator panel 10 ... substrate (sensor panel), 10a ... front surface, 10b ... back surface, 11 ... convex portion, 11a ... upper surface, 11b ... side surface, 12 ... concave portion, 12a ... Bottom surface, 20 ... scintillator section, 20a ... top surface, 20b ... side surface, 30 ... gap, 40, 40A, 40D ... solvent penetration blocking film, 50 ... light shielding layer, 60 ... light shielding layer, C ... columnar crystal, R ... radiation .

Landscapes

  • High Energy & Nuclear Physics (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Radiation (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)

Abstract

 放射線をシンチレーション光に変換するためのシンチレータパネルであって、表面及び裏面を有する基板と、互いに離間するように前記基板の前記表面上に形成され、上面と、前記上面から前記基板の前記表面に向けて延びる側面とを有する複数のシンチレータ部と、前記シンチレータ部の前記上面及び前記側面を覆うように、前記シンチレータ部の前記上面及び前記側面上に形成された溶剤浸透阻止膜と、前記溶剤浸透阻止膜の上に形成され、前記シンチレーション光を遮蔽するための光遮蔽層と、を備え、前記シンチレータ部は、シンチレータ材料の複数の柱状結晶から構成されており、前記溶剤浸透阻止膜は、互いに隣り合う前記シンチレータ部の前記側面同士の間隙が埋まらないように形成されており、前記光遮蔽層は、前記間隙を充填するように、前記シンチレータ部の前記側面上の前記溶剤浸透阻止膜上に形成されている、シンチレータパネル。

Description

シンチレータパネル、及び、放射線検出器
 本発明の一側面は、シンチレータパネル及び放射線検出器に関する。
 特許文献1には、放射線検出器を製造する方法が記載されている。特許文献1に記載の方法では、まず、素子ベース上に配列された光電変換素子の前段にマスクを配置し、そのマスクを用いたシンチレータ材の蒸着により光電変換素子上にシンチレータ素子を形成する。次いで、光反射材を全体に塗布あるいは蒸着する。このとき、シンチレータ素子を分離する溝に光反射材が充填される。そして、アルミ箔等により遮光処理を施して放射線検出器を得る。
特開平9-325185号公報
 しかしながら、上述した方法のように、シンチレータ素子を分離する溝に光反射材(もしくは光吸収材)を充填して光遮蔽層を形成しようとすると、その光反射材(もしくは光吸収材)に含まれる溶剤等が、シンチレータ素子を構成する複数の柱状結晶間に浸透してしまう場合がある。そのような場合には、潮解性を有するシンチレータ素子の特性が劣化してしまうおそれがある。特に、柱状結晶を厚くした(例えば、膜厚500μm程度)場合に、柱状結晶間の隙間が広くなる傾向にあり、問題となっていた。
 本発明の一側面は、そのような事情に鑑みてなされたものであり、光遮蔽層の形成に伴う特性の劣化を防止可能なシンチレータパネル、及び放射線検出器を提供することを課題とする。
 上記課題を解決するために、本発明の一側面に係るシンチレータパネルは、放射線をシンチレーション光に変換するためのシンチレータパネルであって、表面及び裏面を有する基板と、互いに離間するように基板の表面上に形成され、上面と、上面から基板の表面に向けて延びる側面とを有する複数のシンチレータ部と、シンチレータ部の上面及び側面を覆うように、シンチレータ部の上面及び側面上に形成された溶剤浸透阻止膜と、溶剤浸透阻止膜の上に形成され、シンチレーション光を遮蔽するための光遮蔽層と、を備え、シンチレータ部は、シンチレータ材料の複数の柱状結晶から構成されており、溶剤浸透阻止膜は、互いに隣り合うシンチレータ部の側面同士の間隙が埋まらないように形成されており、光遮蔽層は、間隙を充填するように、シンチレータ部の側面上の溶剤浸透阻止膜上に形成されている。
 このシンチレータパネルにおいては、互いに離間するように基板の上に複数のシンチレータ部が形成されており、それらのシンチレータ部同士(シンチレータ部の側面同士)の間隙を埋めないように、それぞれのシンチレータ部の側面及び上面上に溶剤浸透阻止膜が形成されている。そして、このシンチレータパネルにおいては、シンチレータ部同士の間隙を充填するように、溶剤浸透阻止膜の上に光遮蔽層が形成されている。したがって、シンチレータ部同士の間隙に所定の材料を充填して光遮蔽層を形成する際に、その所定の材料の溶剤等がシンチレータ部を構成する柱状結晶間に浸透しない。よって、このシンチレータパネルによれば、光遮蔽層の形成に伴う特性の劣化を防止することができる。
 本発明の一側面に係るシンチレータパネルにおいては、光遮蔽層は、シンチレータ部の側面を覆うように、シンチレータ部の側面上の溶剤浸透阻止膜上に形成されているものとすることができる。この場合、各シンチレータ部において、シンチレーション光を確実に閉じ込めることができる。
 本発明の一側面に係るシンチレータパネルにおいては、光遮蔽層は、シンチレータ部の上面を覆うように、シンチレータ部の上面上の溶剤浸透阻止膜上にさらに形成されているものとすることができる。この場合、各シンチレータ部において、シンチレーション光を確実に閉じ込めることができる。
 本発明の一側面に係るシンチレータパネルにおいては、基板には、基板の裏面から表面に向かう方向に表面から突出する複数の凸部と、凸部によって規定される凹部とが形成されており、シンチレータ部は、それぞれ、凸部の上面上に形成されているものとすることができる。この場合、シンチレータ部同士を確実に離間して形成することができる。
 本発明の一側面に係るシンチレータパネルにおいては、溶剤浸透阻止膜は、凸部の側面を覆うように、凸部の側面上にさらに形成されているものとすることができる。この場合、光遮蔽層を形成する際の柱状結晶間への溶剤の浸透を確実に防止することができる。
 本発明の一側面に係るシンチレータパネルにおいては、溶剤浸透阻止膜は、凹部の底面を覆うように、凹部の底面上にさらに形成されているものとすることができる。この場合、柱状結晶間への溶剤の浸透をより確実に防止することができるうえに、溶剤浸透阻止膜の形成が容易となる。
 ここで、上記課題を解決するために、本発明の一側面に係る放射線検出器は、上述したシンチレータパネルを備え、基板は、シンチレータ部に光学的に結合されるように配列された複数の光電変換素子を有するセンサパネルである。この放射線検出器は、上述したシンチレータパネルを備えるので、光遮蔽層の形成に伴う特性の劣化を防止することができる。
 本発明の一側面によれば、光遮蔽層の形成に伴う特性の劣化を防止可能なシンチレータパネル、及び放射線検出器を提供することができる。
第1実施形態に係るシンチレータパネルの側面図である。 図1に示されたシンチレータパネルの部分的な平面図である。 第2実施形態に係るシンチレータパネルの側面図である。 第3実施形態に係るシンチレータパネルの側面図である。 第4実施形態に係るシンチレータパネルの側面図である。 第5実施形態に係るシンチレータパネルの側面図である。 第6実施形態に係るシンチレータパネルの側面図である。
 以下、一実施形態に係るシンチレータパネルについて、図面を参照して詳細に説明する。なお、各図において、同一又は相当部分には同一の符号を付し、重複する説明を省略する。以下の実施形態に係るシンチレータパネルは、入射したX線等の放射線Rを可視光等のシンチレーション光に変換するためのものであり、例えば、マンモグラフィー装置、胸部検査装置、CT装置、歯科口内撮影装置、及び、放射線カメラ等において、放射線イメージング用のデバイスとして用いることができる。
[第1実施形態]
 まず、第1実施形態に係るシンチレータパネルについて説明する。図1は、第1実施形態に係るシンチレータパネルの側面図である。図2は、図2に示されたシンチレータパネルの部分的な平面図である。図1,2に示されるように、シンチレータパネル1は、矩形状の基板10を備えている。
 基板10は、互いに対向する表面10a及び裏面10bを有する。基板10は、表面10aに形成された凹凸パターンPaを有している。基板10の材料としては、例えば、AlやSUS(ステンレス鋼)等の金属、ポリイミドやポリエチレンテレフタレートやポリエチレンナフタレート等の樹脂フィルム、アモルファスカーボンや炭素繊維強化プラスチック等のカーボン系材料、FOP(ファイバオプティックプレート:直径が数ミクロンの多数の光ファイバを束ねた光学デバイス(例えば、浜松ホトニクス社製J5734))等を用いることができる。凹凸パターンPaの材料としては、例えば、エポキシ樹脂(日本化薬(株)製KMPRやSU-8等)といった高アスペクトレジスト、シリコン、及び、ガラス等を用いることができる。特に、凹凸パターンPaを構成する凸部の材料は、後述するシンチレータ部20で生じるシンチレーション光に対して透過性を有する材料とすることができる。
 凹凸パターンPaは、複数の凸部11と、凸部11によって規定された凹部12とによって形成されている。つまり、基板10には、複数の凸部11と凹部12とが形成されている。凸部11のそれぞれは、基板10の裏面10bから表面10aに向かう方向(ここでは、放射線Rの入射方向、及び、基板10の表面10aや裏面10bに直交する方向)に沿って表面10aから突出している。凸部11のそれぞれは、直方体状に形成されている。凸部11は、基板10の表面10a上に2次元アレイ状に周期的に配列されている。したがって、凸部11によって規定される凹部12は、平面視で矩形の格子状を呈する溝である。
 このような凹凸パターンPaの各寸法は、凸部11のピッチ(凸部11の形成周期)Pを100μm程度とした場合には凹部12の幅(溝幅)Wを35μm程度とし、凸部11のピッチPを127μm程度とした場合には凹部12の幅Wを20μm~40μm程度とし、凸部11のピッチPを200μm程度とした場合には凹部12の幅Wを50μm~70μm程度とすることができる。また、凸部11の高さHは、2.5μm~50μm程度とすることができる。特に、本実施形態においては、凸部11のピッチPを127μm程度とし、凹部12の幅Wを45μm程度とし、凸部11の高さHを15μm程度としている。
 シンチレータパネル1は、複数のシンチレータ部20を備えている。シンチレータ部20は複数の柱状結晶Cが林立して形成されており、柱状結晶Cの間には数μm程度の隙間が存在する。複数のシンチレータ部20は、互いに離間している。シンチレータ部20は、それぞれ、凸部11の上面11a上に形成されている。したがって、シンチレータパネル1は、凸部11の数に対応した数のシンチレータ部20を備えている。シンチレータ部20は、上面20aと、上面20aから基板10の表面10aに向けて延びて凸部11の上面11aに至る側面20bとを有している。シンチレータ部20は、例えばCsI(ヨウ化セシウム)といった柱状結晶を形成するシンチレータ材料により形成することができる。
 シンチレータ部20は、凸部11の上面11aから放射線Rの入射方向(基板10に対して略垂直な方向)に沿って延びている。より具体的には、シンチレータ部20は、凸部11の上面11aから放射線Rの入射方向に沿って延びるシンチレータ材料の複数の柱状結晶Cから構成されている。シンチレータ部20を構成する柱状結晶Cは、凸部11の上面11aから離れるにつれて拡径するテーパ状を呈するものとすることができる。なお、シンチレータ部20の高さ(シンチレータ膜厚)Tは、例えば、100μm~600μm程度とすることができる。尚、基板10として放射線(X線)透過性の基材を選択することで、基板10の裏面10bから放射線Rを入射させることができる。
 ここで、上述したように、シンチレータ部20同士が離間していることから、互いに隣り合うシンチレータ部20の側面20b同士の間には、間隙30が形成されている。つまり、シンチレータ部20同士は、間隙30によって区画され、互いに分離されている。そして、間隙30は、シンチレータ部20を構成する複数の柱状結晶Cの隙間よりも幅が広い。ここでは、間隙30は、シンチレータ部20の上面20aを含む上端部(凸部11と反対側の端部)から、凸部11の上面11aに接するシンチレータ部20の基端部(凸部11側の端部)に至り、凹部12に連結している。したがって、間隙30の幅は、例えば凹部12の幅W程度である。この間隙30は、後述するように、溶剤浸透阻止膜40及び光遮蔽層50によって充填されている。
 シンチレータパネル1は、溶剤浸透阻止膜40を備えている。溶剤浸透阻止膜40は、シンチレータ部20の上面20a及び側面20bを覆うように、シンチレータ部20の上面20a及び側面20b上に形成されている。特に、溶剤浸透阻止膜40は、互いに隣り合うシンチレータ部20の側面20b同士の間隙30が埋まらないように(すなわち、間隙30を維持するように)形成されている。したがって、互いに隣り合うシンチレータ部20の側面20b上の溶剤浸透阻止膜40同士の間には、間隙41が形成されている。
 間隙41は、シンチレータ部20の上端部から基端部に至り、凹部12に連結している。ここでは、溶剤浸透阻止膜40の厚さFTが、シンチレータ部20の基端部から上端部に向かって徐々に厚くなっているので、間隙41の幅は、シンチレータ部20の基端部から上端部に向かって徐々に小さくなっている。溶剤浸透阻止膜40の厚さFTは、上述したように間隙30を埋めない程度であり、例えば、1μm~5μm程度とすることができ、2μm~3μm程度としてもよい。
 このような溶剤浸透阻止膜40は、例えば、(1)パリレン(ポリパラキシレン)、(2)ポリ尿素、(3)SiO又はSiO、(4)SiN、(5)上記(1)~(4)の有機・無機ハイブリッド膜、及び(6)ALD(原子層堆積)法によって形成されるAl層やMgF層等によって形成することができる。
 シンチレータパネル1は、光遮蔽層50を備えている。光遮蔽層50は、シンチレータ部20において発生したシンチレーション光を反射する光反射層、又は、シンチレータ部20において発生したシンチレーション光を吸収する光吸収層である。つまり、光遮蔽層50は、所定のシンチレータ部20で発生したシンチレーション光を遮蔽して、その所定のシンチレータ部20に閉じ込めるためのものである。
 そのために、光遮蔽層50は、シンチレータ部20の側面20bを覆うように、シンチレータ部20の側面20b上の溶剤浸透阻止膜40上に形成されている。特に、光遮蔽層50は、間隙30を充填するように形成されている。より具体的には、光遮蔽層50は、溶剤浸透阻止膜40によって間隙30内に画成された間隙41を充填するように形成されている。
 また、光遮蔽層50は、凹部12を充填するように凹部12内にも形成されている。また、光遮蔽層50は、シンチレータ部20の上面20a上の溶剤浸透阻止膜40上には形成されていない。つまり、光遮蔽層50は、シンチレータ部20の上端部を除いて、各シンチレータ部20の全体を覆うように、溶剤浸透阻止膜40上に形成されている(換言すれば、各シンチレータ部20は、その上端部において、溶剤浸透阻止膜40に覆われると共に光遮蔽層50から露出している)。
 このような光遮蔽層50は、例えば、有機顔料、無機顔料、又は金属顔料を含むインク、塗料、又はペーストや、Ag、Pt、又はCu等の金属ナノ粒子を含む金属ナノインクや、各種染料(以下「充填材料」という)から構成することができる。また、光遮蔽層50は、ALD法(原子層堆積法)や無電解メッキ等により金属膜を形成することで形成することもできる。このように、シンチレータ部20の側面20bを覆うように光遮蔽層50を形成すれば、所定のシンチレータ部20で生じたシンチレーション光を、その所定のシンチレータ部20に閉じ込めることが可能となり、ひいては、高輝度・高解像度を実現することが可能となる。
 以上のように構成されるシンチレータパネル1は、例えば次のように製造することができる。すなわち、まず、基板10の元となる基材を用意し、基材上に凹凸パターンPaの材料を塗布乾燥によって形成する。続いて、フォトリソグラフィによってその基材に凹凸パターンPaを形成して所望の寸法の凹凸パターンPaを有する基板10を作製する。或いは、基材上にスクリーン印刷によって凹凸パターンPaを形成してもよい。続いて、蒸着法及び/又はレーザ加工法等を利用して、基板10の凸部11のそれぞれの上面11a上にシンチレータ部20を形成する。各種蒸着条件(真空度、蒸着レート、基板加熱温度、蒸気流の角度等)を制御することにより、凹凸パターンPa上に上述したようなシンチレータ部20を形成することができる。
 続いて、互いに隣り合うシンチレータ部20の側面20b同士の間隙30を埋めない程度の厚さによって、シンチレータ部20の上面20a及び側面20b上に溶剤浸透阻止膜40を成膜する。溶剤浸透阻止膜40の厚さFTは、例えば1μm~2μmとすることができる。
 そして、溶剤浸透阻止膜40の上に光遮蔽層50を形成する。より具体的には、真空下において、上述した充填材料を溶剤浸透阻止膜40上に塗布することにより、(すなわち間隙30(間隙41)に充填材料を充填することにより)、光遮蔽層50を形成する。以上の工程により、シンチレータパネル1が製造される。
 以上説明したように、本実施形態に係るシンチレータパネル1においては、互いに離間するように基板10の上に複数のシンチレータ部20が形成されており、それらのシンチレータ部20同士(シンチレータ部20の側面20b同士)の間隙30を埋めないように、それぞれのシンチレータ部20の側面20b及び上面20a上に溶剤浸透阻止膜40が形成されている。
 そして、本実施形態に係るシンチレータパネル1においては、その溶剤浸透阻止膜40の上に光遮蔽層50が形成される。したがって、シンチレータ部20同士の間隙30に対して、充填材料を充填して光遮蔽層50を形成する際には、シンチレータ部20が溶剤浸透阻止膜40によって覆われているので、充填材料の溶剤等がシンチレータ部20を構成する柱状結晶Cの間に浸透しない。よって、本実施形態に係るシンチレータパネル1によれば、光遮蔽層50の形成に伴う特性の劣化を防止することができる。
 また、光遮蔽層50を形成する際に、充填材料の溶剤がシンチレータ部20を構成する柱状結晶Cの間に浸透してしまうと、充填材料の粘度が高くなり、充填材料が間隙30に好適に充填されない場合がある。本実施形態に係るシンチレータパネル1によれば、充填材料の溶剤が柱状結晶Cの間に浸透することが防止されるので、そのような問題が生じることがなく、充填材料を好適に間隙30に充填することができる。
[第2実施形態]
 引き続いて、第2実施形態に係るシンチレータパネルについて説明する。図3は、第2実施形態に係るシンチレータパネルの側面図である。図3に示されるように、本実施形態に係るシンチレータパネル1Aは、第1実施形態に係るシンチレータパネル1と比較して、光遮蔽層60をさらに備える点で相違している。光遮蔽層60は、光遮蔽層50と同様に、シンチレーション光を遮蔽するためのものであり、シンチレーション光を反射する光反射層、又は、シンチレーション光を吸収する光吸収層である。
 光遮蔽層60は、光遮蔽層50から露出したシンチレータ部20の上面20a上の溶剤浸透阻止膜40を覆うように(すなわち、シンチレータ部20の上面20aを覆うように)、溶剤浸透阻止膜40及び光遮蔽層50の上に形成されている。なお、光遮蔽層60は、光遮蔽層50と一体に形成されてもよし、別体に形成されてもよい。また、光遮蔽層50は、光遮蔽層50と同様の材料によって形成されてもよいし、光遮蔽層50と異なる材料によって形成されてもよい。
 このようなシンチレータパネル1Aは、上述したようにシンチレータパネル1を製造した後に、シンチレータ部20の上面20a上の溶剤浸透阻止膜40上に配置された充填材料を除去し、その後、溶剤浸透阻止膜40及び光遮蔽層50の上に所定の材料(例えば、上述した充填材料)を塗布して光遮蔽層60を形成することによって製造することができる。
 本実施形態に係るシンチレータパネル1Aによれば、第1実施形態に係るシンチレータパネル1と同様に、光遮蔽層50,60を形成する際の柱状結晶Cの間への溶剤等の浸透を防止することができる。さらに本実施形態に係るシンチレータパネル1Aによれば、光遮蔽層60をさらに備えることにより、所定のシンチレータ部20で生じたシンチレーション光を、その所定のシンチレータ部20に確実に閉じ込めることが可能となる。
[第3実施形態]
 引き続いて、第3実施形態に係るシンチレータパネルについて説明する。図4は、第3実施形態に係るシンチレータパネルの側面図である。図4に示されるように、本実施形態に係るシンチレータパネル1Bは、第1実施形態に係るシンチレータパネル1と比較して、溶剤浸透阻止膜40の代わりに溶剤浸透阻止膜40Aを備える点で相違している。尚、第1実施形態と同様に、基板10として放射線(X線)透過性の基材を選択することで、基板10の裏面10bから放射線Rを入射させることができる。
 溶剤浸透阻止膜40Aは、シンチレータ部20の上面20a及び側面20b、並びに、凸部11の側面11bを覆うように、シンチレータ部20の上面20a及び側面20b、並びに、凸部11の側面11b上に形成されている。特に、溶剤浸透阻止膜40Aは、互いに隣り合うシンチレータ部20の側面20b同士の間隙30が埋まらないように(すなわち間隙30を維持するように)形成されている。また、溶剤浸透阻止膜40Aは、シンチレータ部20の上端部から凹部12の底面12aに至るまで連続して形成されており、シンチレータ部20の基端部と凸部11の上面11aとの境界部分を覆っている。
 本実施形態においては、溶剤浸透阻止膜40Aの厚さFTが略一定であるので、溶剤浸透阻止膜40Aによって画成される間隙41の幅も略一定となる。溶剤浸透阻止膜40Aの厚さFTは、例えば、1μm~5μm程度とすることができ、2μm~3μm程度としてもよい。以上のような溶剤浸透阻止膜40Aは、第1実施形態における溶剤浸透阻止膜40と同様の材料によって、同様の方法により形成することができる。
 本実施形態に係るシンチレータパネル1Bにおいては、溶剤浸透阻止膜40Aが、シンチレータ部20の上面20a及び側面20b上だけでなく、凸部11の側面11b上にも形成されている。特に、溶剤浸透阻止膜40Aは、シンチレータ部20の基端部と凸部11の上面11aとの境界部分をも覆っている。このため、本実施形態に係るシンチレータパネル1Bによれば、光遮蔽層50を形成する際の柱状結晶Cの間への溶剤等の浸透を確実に防止することができる。また、溶剤浸透阻止膜40Aによって凸部11の側面11bも覆うことにより、充填材料に含まれる溶剤成分によって凸部11が劣化することを防ぐことができる。
[第4実施形態]
 引き続いて、第4実施形態に係るシンチレータパネルについて説明する。図5は、第4実施形態に係るシンチレータパネルの側面図である。図5に示されるように、本実施形態に係るシンチレータパネル1Cは、第3実施形態に係るシンチレータパネル1Bと比較して、光遮蔽層60をさらに備える点で相違している。
 このように、本実施形態に係るシンチレータパネル1Cによれば、第3実施形態に係るシンチレータパネル1Bと同様に、柱状結晶Cの間への溶剤等の浸透を確実に防止することができると共に、第2実施形態に係るシンチレータパネル1Bと同様に、シンチレーション光を確実に閉じ込めることが可能となる。
[第5実施形態]
 引き続いて、第5実施形態に係るシンチレータパネルについて説明する。図6は、第5実施形態に係るシンチレータパネルの側面図である。図6に示されるように、本実施形態に係るシンチレータパネル1Dは、第3実施形態に係るシンチレータパネル1Bと比較して、溶剤浸透阻止膜40Aの代わりに溶剤浸透阻止膜40Dを備える点で相違している。尚、第3実施形態と同様に、基板10として放射線(X線)透過性の基材を選択することで、基板10の裏面10bから放射線Rを入射させることができる。
 溶剤浸透阻止膜40Dは、シンチレータ部20の上面20a及び側面20b、凸部11の側面11b、並びに、凹部12の底面12aを覆うように、シンチレータ部20の上面20a及び側面20b、凸部11の側面11b、並びに、凹部12の底面12a上に形成されている。特に、溶剤浸透阻止膜40Dは、互いに隣り合うシンチレータ部20の側面20b同士の間隙30が埋まらないように(すなわち間隙30を維持するように)形成されている。
 また、上記実施形態の溶剤浸透阻止膜40,40Aが、シンチレータ部20のそれぞれを覆う複数の部分に分かれて形成されていたのに対して、溶剤浸透阻止膜40Dは、単一の部分として一体的に形成されている。つまり、溶剤浸透阻止膜40Dは、一のシンチレータ部20及び凸部11を覆う部分と、他のシンチレータ部20及び凸部11を覆う部分とが凹部12の底面12aにおいて連続するように形成されている。
 本実施形態においても、溶剤浸透阻止膜40Dの厚さFTが略一定であるので、溶剤浸透阻止膜40Dによって画成される間隙41の幅も略一定となる。溶剤浸透阻止膜40Dの厚さFTは、例えば、1μm~5μm程度とすることができ、2μm~3μm程度としてもよい。以上のような溶剤浸透阻止膜40Dは、第1実施形態における溶剤浸透阻止膜40と同様の材料によって、同様の方法により形成することができる。
 本実施形態に係るシンチレータパネル1Dによれば、溶剤浸透阻止膜40Dが、凹部12の底面12a上にも形成されている。このため、柱状結晶Cの間への溶剤等の浸透をより確実に防止することができる。また、溶剤浸透阻止膜40Dが、複数の部分に分割されずに一体的に構成されているので、その形成が容易である。また、溶剤浸透阻止膜40Dによって凸部11の側面11bも覆うことにより、充填材料に含まれる溶剤成分によって凸部11が劣化することを防ぐことができる。さらに、溶剤浸透阻止膜40Dによって基板10の表面10a(凹部12の底面12a)も覆うことにより、溶剤成分から基板10を保護することも可能となる。
[第6実施形態]
 引き続いて、第6実施形態に係るシンチレータパネルについて説明する。図7は、第6実施形態に係るシンチレータパネルの側面図である。図7に示されるように、本実施形態に係るシンチレータパネル1Eは、第5実施形態に係るシンチレータパネル1Dと比較して、光遮蔽層60をさらに備える点で相違している。
 このように、本実施形態に係るシンチレータパネル1Eによれば、第5実施形態に係るシンチレータパネル1Dと同様に、柱状結晶Cの間への溶剤等の浸透をより確実に防止することができ、溶剤浸透阻止膜40Dの形成が容易となる。さらに、本実施形態に係るシンチレータパネル1Eによれば、第2実施形態に係るシンチレータパネル1Bと同様にシンチレーション光を確実に閉じ込めることができる。
 以上の実施形態は、本発明の一側面に係るシンチレータパネルの一実施形態を説明したものである。したがって、本発明の一側面は、上述したシンチレータパネル1~1Eに限定されない。本発明の一側面は、各請求項の要旨を変更しない範囲において、上述したシンチレータパネル1~1Eを任意に変更し、又は他のものに適用したものとすることができる。
 例えば、上記実施形態に係るシンチレータパネル1~1Eは、防湿膜をさらに備えることができる。その場合には、防湿膜は、シンチレータパネル1~1Eにおいて、溶剤浸透阻止膜40,40A,40D、光遮蔽層50、及び光遮蔽層60を覆うように(すなわち、シンチレータ部20の全体を覆うように)、それらの上にパリレン等によって成膜して形成することができる。このように防湿膜をさらに設ければ、シンチレータ部20の耐湿性が向上する。
 また、上記実施形態に係るシンチレータパネル1~1Eにおいては、基板10の凸部11の上にシンチレータ部20を形成するものとしたが、シンチレータ部20の形成の態様はこれに限定されず、例えば、凸部が形成されていない任意の基板の表面上に形成することができる。
 さらに、上記実施形態においては、本発明の一側面をシンチレータパネルに適用した場合について説明したが、本発明の一側面は、上述したシンチレータパネル等を備える放射線検出器に適用することができる。その場合には、放射線検出器は、上述したシンチレータパネル1~1Eのいずれかを備えると共に、それらの基板10を、シンチレータ部20に光学的に結合されるように配列された複数の光電変換素子を備えるセンサパネル(TFTパネルやCOMSイメージセンサパネル)とすることができる。
 その場合には、例えば、基板10であるTFTパネルやCMOSイメージセンサの各画素にそれぞれ対応する凸部11を形成し、その上にシンチレータ部20を形成する。凸部11の材料や形成方法は上述したとおりである。その際、凸部11のそれぞれを、シンチレータ部20で生じるシンチレーション光に対して透過性を有する材料により構成することができる。
 このような放射線検出器によれば、上述したシンチレータパネル1~1Eを備えるので、光遮蔽層50の形成に伴う特性の劣化を抑制することができる。また、基板10が、光電変換素子を含むセンサパネルであるので、その光電変換素子の上に直接凸部11を形成してシンチレータ部20を設ければ、別途用意したシンチレータパネルとセンサパネルとを張り合わせる必要がない。
 本発明の一側面によれば、光遮蔽層の形成に伴う特性の劣化を防止可能なシンチレータパネル、及び放射線検出器を提供することができる。
 1,1A,1B,1C,1D,1E…シンチレータパネル、10…基板(センサパネル)、10a…表面、10b…裏面、11…凸部、11a…上面、11b…側面、12…凹部、12a…底面、20…シンチレータ部、20a…上面、20b…側面、30…間隙、40,40A,40D…溶剤浸透阻止膜、50…光遮蔽層、60…光遮蔽層、C…柱状結晶、R…放射線。

Claims (7)

  1.  放射線をシンチレーション光に変換するためのシンチレータパネルであって、
     表面及び裏面を有する基板と、
     互いに離間するように前記基板の前記表面上に形成され、上面と、前記上面から前記基板の前記表面に向けて延びる側面とを有する複数のシンチレータ部と、
     前記シンチレータ部の前記上面及び前記側面を覆うように、前記シンチレータ部の前記上面及び前記側面上に形成された溶剤浸透阻止膜と、
     前記溶剤浸透阻止膜の上に形成され、前記シンチレーション光を遮蔽するための光遮蔽層と、を備え、
     前記シンチレータ部は、シンチレータ材料の複数の柱状結晶から構成されており、
     前記溶剤浸透阻止膜は、互いに隣り合う前記シンチレータ部の前記側面同士の間隙が埋まらないように形成されており、
     前記光遮蔽層は、前記間隙を充填するように、前記シンチレータ部の前記側面上の前記溶剤浸透阻止膜上に形成されている、
     シンチレータパネル。
  2.  前記光遮蔽層は、前記シンチレータ部の前記側面を覆うように、前記シンチレータ部の前記側面上の前記溶剤浸透阻止膜上に形成されている、
     請求項1に記載のシンチレータパネル。
  3.  前記光遮蔽層は、前記シンチレータ部の前記上面を覆うように、前記シンチレータ部の前記上面上の前記溶剤浸透阻止膜上にさらに形成されている、
     請求項1又は2に記載のシンチレータパネル。
  4.  前記基板には、前記基板の前記裏面から前記表面に向かう方向に前記表面から突出する複数の凸部と、前記凸部によって規定される凹部とが形成されており、
     前記シンチレータ部は、それぞれ、前記凸部の上面上に形成されている、
     請求項1~3のいずれか一項に記載のシンチレータパネル。
  5.  前記溶剤浸透阻止膜は、前記凸部の側面を覆うように、前記凸部の前記側面上にさらに形成されている、
     請求項4に記載のシンチレータパネル。
  6.  前記溶剤浸透阻止膜は、前記凹部の底面を覆うように、前記凹部の前記底面上にさらに形成されている、
     請求項4又は5に記載のシンチレータパネル。
  7.  請求項1~6のいずれか一項に記載のシンチレータパネルを備え、
     前記基板は、前記シンチレータ部に光学的に結合されるように配列された複数の光電変換素子を有するセンサパネルである、
     放射線検出器。
PCT/JP2013/075034 2012-09-14 2013-09-17 シンチレータパネル、及び、放射線検出器 WO2014042273A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157006193A KR102028789B1 (ko) 2012-09-14 2013-09-17 신틸레이터 패널, 및 방사선 검출기
US14/427,433 US9322932B2 (en) 2012-09-14 2013-09-17 Scintillator panel and radiation detection device
CN201380048062.3A CN104769681B (zh) 2012-09-14 2013-09-17 闪烁器面板和放射线检测器
EP13837530.8A EP2897129A4 (en) 2012-09-14 2013-09-17 SCINTILLATE PANEL AND RADIATION DETECTOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012203196A JP6041594B2 (ja) 2012-09-14 2012-09-14 シンチレータパネル、及び、放射線検出器
JP2012-203196 2012-09-14

Publications (1)

Publication Number Publication Date
WO2014042273A1 true WO2014042273A1 (ja) 2014-03-20

Family

ID=50278376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075034 WO2014042273A1 (ja) 2012-09-14 2013-09-17 シンチレータパネル、及び、放射線検出器

Country Status (6)

Country Link
US (1) US9322932B2 (ja)
EP (1) EP2897129A4 (ja)
JP (1) JP6041594B2 (ja)
KR (1) KR102028789B1 (ja)
CN (1) CN104769681B (ja)
WO (1) WO2014042273A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6470915B2 (ja) * 2014-05-20 2019-02-13 株式会社アルバック 放射線像変換パネルの製造方法及び放射線像変換パネル
US10559393B2 (en) * 2015-07-21 2020-02-11 Koninklijke Philips N.V. X-ray detector for phase contrast and/or dark-field imaging
CN106686932B (zh) * 2015-11-05 2019-12-13 精能医学股份有限公司 植入式电子装置的防水结构
JP6548565B2 (ja) * 2015-12-14 2019-07-24 浜松ホトニクス株式会社 シンチレータパネル、及び、放射線検出器
US10064140B2 (en) * 2016-10-19 2018-08-28 Realtek Semiconductor Corp. Radio-frequency module and wireless device
JP6898193B2 (ja) * 2017-09-27 2021-07-07 浜松ホトニクス株式会社 シンチレータパネル及び放射線検出器
EP3896705A4 (en) * 2019-04-09 2022-07-20 YMIT Co., Ltd. SCINTILLATOR MODULE, SCINTILLATOR SENSOR UNIT AND MANUFACTURING PROCESS
CN116529634A (zh) * 2020-09-02 2023-08-01 纽约州州立大学研究基金会 渐缩的闪烁体晶体模块及其使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727863A (ja) * 1993-07-07 1995-01-31 Hamamatsu Photonics Kk 放射線検出素子及びその製造方法
JPH09325185A (ja) 1996-06-03 1997-12-16 Toshiba Fa Syst Eng Kk 放射線検出器とその製造方法と透視検査装置とctスキャナ
JP2001283731A (ja) * 2000-03-29 2001-10-12 Hamamatsu Photonics Kk 蛍光体層およびその製造方法
JP2002131438A (ja) * 2000-10-26 2002-05-09 Canon Inc 放射線検出装置およびこれを用いた放射線画像形成装置
JP2004108806A (ja) * 2002-09-13 2004-04-08 Fuji Photo Film Co Ltd 放射線像変換パネル
WO2010092869A1 (ja) * 2009-02-12 2010-08-19 日立金属株式会社 放射線検出器および放射線検出器の製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1684095B1 (en) * 1998-06-18 2013-09-04 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
JP4220017B2 (ja) * 1998-06-23 2009-02-04 浜松ホトニクス株式会社 シンチレータパネル、放射線イメージセンサ及びその製造方法
JP2000288891A (ja) * 1999-04-01 2000-10-17 Seiko Epson Corp 眼鏡用レンズの製造方法及びレンズ加工装置
JP2001128064A (ja) * 1999-10-26 2001-05-11 Canon Inc 放射線検出素子、放射線検出システム、及び放射線検出素子の製造方法
KR100747800B1 (ko) * 2000-01-13 2007-08-08 하마마츠 포토닉스 가부시키가이샤 방사선 이미지 센서 및 신틸레이터 패널
US6298113B1 (en) * 2000-02-07 2001-10-02 General Electric Company Self aligning inter-scintillator reflector x-ray damage shield and method of manufacture
US6835936B2 (en) * 2001-02-07 2004-12-28 Canon Kabushiki Kaisha Scintillator panel, method of manufacturing scintillator panel, radiation detection device, and radiation detection system
JP2003167060A (ja) 2001-11-30 2003-06-13 Toshiba Corp X線平面検出器
US7053381B2 (en) * 2001-12-06 2006-05-30 General Electric Company Dual para-xylylene layers for an X-ray detector
US20030178570A1 (en) * 2002-03-25 2003-09-25 Hitachi Metals, Ltd. Radiation detector, manufacturing method thereof and radiation CT device
JP3863810B2 (ja) * 2002-06-06 2006-12-27 富士フイルムホールディングス株式会社 蛍光体シート及びその製造方法
JP2006052980A (ja) * 2004-08-10 2006-02-23 Canon Inc 放射線検出装置
JP2010025620A (ja) * 2008-07-16 2010-02-04 Konica Minolta Medical & Graphic Inc 放射線画像変換パネルとその製造方法
JP5441798B2 (ja) * 2010-04-07 2014-03-12 キヤノン株式会社 放射線検出素子の製造方法及び放射線検出素子
US8247778B2 (en) * 2010-06-30 2012-08-21 General Electric Company Scintillator arrays and methods of making the same
JP5549657B2 (ja) * 2010-11-25 2014-07-16 日立金属株式会社 銀反射膜およびその形成方法、放射線検出器、並びに太陽電池
JP2012127698A (ja) * 2010-12-13 2012-07-05 Canon Inc 放射線検出装置およびその製造方法
DE102011004918B4 (de) * 2011-03-01 2013-05-02 Siemens Aktiengesellschaft Strahlungsdetektor, insbesondere Röntgenstrahlungsdetektor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727863A (ja) * 1993-07-07 1995-01-31 Hamamatsu Photonics Kk 放射線検出素子及びその製造方法
JPH09325185A (ja) 1996-06-03 1997-12-16 Toshiba Fa Syst Eng Kk 放射線検出器とその製造方法と透視検査装置とctスキャナ
JP2001283731A (ja) * 2000-03-29 2001-10-12 Hamamatsu Photonics Kk 蛍光体層およびその製造方法
JP2002131438A (ja) * 2000-10-26 2002-05-09 Canon Inc 放射線検出装置およびこれを用いた放射線画像形成装置
JP2004108806A (ja) * 2002-09-13 2004-04-08 Fuji Photo Film Co Ltd 放射線像変換パネル
WO2010092869A1 (ja) * 2009-02-12 2010-08-19 日立金属株式会社 放射線検出器および放射線検出器の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2897129A4

Also Published As

Publication number Publication date
EP2897129A1 (en) 2015-07-22
KR102028789B1 (ko) 2019-10-04
US20150247934A1 (en) 2015-09-03
EP2897129A4 (en) 2016-06-15
JP6041594B2 (ja) 2016-12-14
JP2014059172A (ja) 2014-04-03
US9322932B2 (en) 2016-04-26
CN104769681B (zh) 2017-08-29
CN104769681A (zh) 2015-07-08
KR20150054822A (ko) 2015-05-20

Similar Documents

Publication Publication Date Title
JP6041594B2 (ja) シンチレータパネル、及び、放射線検出器
US9310494B2 (en) Scintillator panel and radiation detector
JP5911274B2 (ja) 放射線検出装置及び放射線撮像システム
JP6000680B2 (ja) 放射線検出装置、その製造方法及び撮像システム
CN102354696B (zh) X射线探测器
US20130168559A1 (en) Radiation detection apparatus
TWI607229B (zh) Scintillator plate and radiation detector and radiation detector manufacturing method
WO2013140444A1 (ja) シンチレータ及びその製造方法、並びに放射線検出器及びその製造方法
WO2017169049A1 (ja) 放射線検出器及びシンチレータパネル
TWI708958B (zh) 放射線檢測器之製造方法
KR20180092938A (ko) 신틸레이터 패널 및 방사선 검출기
JP6512830B2 (ja) 放射線撮像装置、その製造方法及び放射線検査装置
CN202217061U (zh) X射线探测器
WO2014109116A1 (ja) シンチレータパネルの製造方法、シンチレータパネル、及び放射線検出器
JP2011128031A (ja) 放射線検出器及びシンチレータパネル
JP5873660B2 (ja) シンチレータパネル
WO2018020555A1 (ja) シンチレータセンサ基板及びシンチレータセンサ基板の製造方法
JPWO2013140444A1 (ja) シンチレータ及びその製造方法、並びに放射線検出器及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13837530

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157006193

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14427433

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013837530

Country of ref document: EP