WO2014041793A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2014041793A1
WO2014041793A1 PCT/JP2013/005333 JP2013005333W WO2014041793A1 WO 2014041793 A1 WO2014041793 A1 WO 2014041793A1 JP 2013005333 W JP2013005333 W JP 2013005333W WO 2014041793 A1 WO2014041793 A1 WO 2014041793A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle size
particles
particle
positive electrode
transition metal
Prior art date
Application number
PCT/JP2013/005333
Other languages
English (en)
French (fr)
Inventor
泰史 上坊
啓介 穴見
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to DE112013004425.0T priority Critical patent/DE112013004425T5/de
Priority to US14/427,135 priority patent/US9660262B2/en
Priority to CN201380042963.1A priority patent/CN104584279B/zh
Priority to JP2014535376A priority patent/JP6229657B2/ja
Publication of WO2014041793A1 publication Critical patent/WO2014041793A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery.
  • lithium manganese oxide having a spinel structure (hereinafter referred to as spinel type lithium manganese oxide) has high thermal stability of the crystal structure, and a battery using this as a positive electrode has high safety even during abnormal heating. Adoption is progressing widely because of its characteristics.
  • the theoretical capacity of the spinel type lithium manganese oxide is 148 mAh / g, which is smaller than the lithium transition metal composite oxide having a layered rock salt type structure (hereinafter referred to as layered type lithium transition metal oxide), and the energy of the battery.
  • layered type lithium transition metal oxide the lithium transition metal composite oxide having a layered rock salt type structure
  • Patent Document 1 discloses a lithium secondary battery in which energy density is improved by mixing a layered lithium transition metal oxide containing nickel, cobalt and manganese as a positive electrode active material and a spinel type lithium manganese oxide.
  • Patent Document 2 includes a layered lithium transition metal composite oxide containing manganese and nickel in a positive electrode active material and a spinel type lithium manganese oxide, except for lithium in the layered lithium transition metal composite oxide.
  • a lithium secondary battery has been proposed in which the composition ratio of nickel to the transition metal element is 50% or more in terms of molar ratio, thereby increasing the output and extending the life of the battery.
  • the performance of the non-aqueous electrolyte secondary battery is not sufficient, and it is necessary to improve the life performance of the battery particularly in a high temperature environment.
  • an object of the present invention is to provide a non-aqueous electrolyte secondary battery having excellent life characteristics even in a high temperature environment.
  • the nonaqueous electrolyte secondary battery of the present invention has the following characteristics.
  • the particle size distribution of the positive electrode active material has a peak based on the particle A and a peak based on the particle B within a range of 1 to 50 ⁇ m, and particles having a cumulative degree of 50% of the particle A in the volume standard particle size distribution.
  • the particle size B (D50) of the particle size A (D50) and the particle B having a cumulative degree of 50% satisfies the following formula (1)
  • the particle size A (D95) having a cumulative degree of the particle A of 95% and the cumulative degree of the particle B The 5% particle size B (D5) satisfies the following formula (2).
  • the nonaqueous electrolyte secondary battery of this invention has the following characteristics.
  • the particle size distribution of the positive electrode active material has a peak based on the particle A and a peak based on the particle B within a range of 1 to 50 ⁇ m, and particles having a cumulative degree of 50% of the particle A in the volume standard particle size distribution.
  • the particle diameter B (D50) having a cumulative degree 50% of the diameter A (D50) and the particle B satisfies the following formula (3).
  • the half width of the peak based on the particle A and the half width of the peak based on the particle B are 20 ⁇ m or less. According to this configuration, more excellent life characteristics can be obtained in a high temperature environment.
  • the minimum particle size of the particle B is larger than the maximum particle size of the particle A. According to this configuration, more excellent life characteristics can be obtained in a high temperature environment.
  • the particle size A (D50) of 50% of the accumulation degree of the particle A is less than 5 ⁇ m. According to this configuration, since the gap formed by the particles B and the particles B can easily enter, it is possible to obtain better life characteristics in a high temperature environment.
  • Q is at least one selected from the group consisting of elements of Groups 2 to 15 of the periodic table
  • FIG. 3 is a graph showing particle size distributions of active materials of Example 1 and Comparative Example 1.
  • the positive electrode active material used in the present invention includes layered lithium transition metal oxide particles A and spinel type lithium transition metal oxide particles B.
  • Layered-type lithium transition metal oxide, a lithium ion can be inserted leaving, preferably, consists of the general formula LiNi x Mn y Co z Q a O 2 (Q is an element of the Group 2 to Group 15 of the Periodic Table of the Elements
  • Q is an element of the Group 2 to Group 15 of the Periodic Table of the Elements
  • At least one element selected from the group preferably at least selected from the group consisting of Li, Ti, V, Cr, Fe, Cu, Zn, B, P, Mg, Al, Ca, Zr, Mo and W
  • x + y + z + a 1, x> 0, y> 0, z> 0, 0.1 ⁇ a> 0) can be used.
  • the spinel-type lithium transition metal oxide is not particularly limited as long as it is a lithium transition metal oxide having a spinel crystal structure that can insert and release lithium ions and contains manganese.
  • Li ⁇ Mn 2- ⁇ R ⁇ O 4 (R is selected from the group consisting of Ti, V, Cr, Fe, Cu, Zn, B, P, Mg, Al, Ca, Zr, Mo and W)
  • R is selected from the group consisting of Ti, V, Cr, Fe, Cu, Zn, B, P, Mg, Al, Ca, Zr, Mo and W
  • Preferable specific examples include Li 1.1 Mn 1.8 Al 0.1 O 4 .
  • the positive electrode active material used in the present invention has a particle size distribution having a peak based on the particle A and a peak based on the particle B in the range of 1 to 50 ⁇ m, preferably in the range of 30 ⁇ m or less.
  • having a peak based on particle A and a peak based on particle B means that there are two distinct peaks corresponding to the two particles, and there is little overlap in the particle size distribution of the two particles. (This will be explained later), preferably means no overlap.
  • the particle size is a value measured using a laser diffraction / scattering particle size distribution measuring apparatus, and the particle size is a volume-based particle size.
  • the particles A and the particles B may be formed by a single polycrystal (formed only by primary particles) or may form secondary particles in which a plurality of polycrystals are aggregated. Good.
  • the particle size A (D50) of 50% cumulative particle A and the particle size B (D50) of 50% cumulative particle B are expressed by the following formula (1):
  • the particle size A (D95) of the 95% cumulative degree of the particles A and the particle size B (D5) of the 5% cumulative degree of the particles B satisfy the following formula (2).
  • the above two formulas indicate that there is little overlap in the particle size distribution of the two particles A and B, and the difference between B (D50) and A (D50) is 5 ⁇ m or more, preferably 10 ⁇ m or more.
  • B (D5) is larger than A (D95), preferably B (D5) is larger than A (D95) by 1 ⁇ m or more.
  • a particle size having a cumulative degree of 50% is also referred to as an average particle size.
  • the half width of the peak based on the particle A and the half width of the peak based on the particle B are preferably 20 ⁇ m or less, and more preferably 15 ⁇ m or less.
  • the half-value width is a value defined by the width of the 50% peak height in the particle size distribution. In this case, the fine powder and coarse powder of the particles are reduced, the distribution of the active material can be made more uniform, and the decomposition of the electrolyte solution on the surface of the active material can be suppressed, so that the life characteristics at high temperature can be further improved. Can do.
  • the particle size distributions of the two particles A and B do not overlap, that is, the minimum particle size of the particle B is larger than the maximum particle size of the particle A.
  • the current distribution can be made more uniform and the current collection can be improved more preferably.
  • the method for synthesizing the layered lithium transition metal oxide is not particularly limited, and examples thereof include a solid phase method, a liquid phase method, a sol-gel method, and a hydrothermal method.
  • a solid phase method for example, in the case of a three-component system of Ni—Co—Mn, manganese sulfate hydrate, nickel sulfate hydrate and cobalt sulfate hydrate are mixed at a predetermined molar ratio to dissolve an aqueous solution, and then coprecipitation method is used.
  • a precursor of Ni—Co—Mn is obtained.
  • a layered lithium transition metal oxide containing Ni, Co, and Mn can be obtained by mixing a predetermined amount of lithium hydroxide with this precursor and firing it.
  • the layered lithium transition metal oxide can be pulverized and classified to exclude fine powder and coarse powder, and can be adjusted to have a predetermined particle size distribution. It is also possible to obtain a layered lithium transition metal oxide having a desired average particle size and particle size distribution by adjusting the firing temperature and firing time during firing. For example, a layered lithium transition metal oxide having a large average particle size and a narrow particle size distribution can be obtained by increasing the firing temperature and increasing the firing time. Further, by lowering the firing temperature and shortening the firing time, a layered lithium transition metal oxide having a small average particle size and a wide particle size distribution can be obtained.
  • a method for synthesizing the spinel type lithium transition metal oxide is not particularly limited, and examples thereof include a solid phase method, a liquid phase method, a sol-gel method, and a hydrothermal method.
  • a solution in which lithium hydroxide and MnO2 are mixed at a predetermined molar ratio is dried by a spray drying method to obtain a precursor containing Li and Mn, and then the precursor is pre-fired and fired To obtain a spinel type lithium transition metal oxide.
  • the spinel lithium transition metal oxide can be pulverized and classified to exclude fine powder and coarse powder, and can be adjusted to have a predetermined particle size distribution.
  • a spinel type lithium transition metal oxide having a desired average particle size and particle size distribution by adjusting the firing temperature and firing time during firing. For example, a spinel lithium transition metal oxide having a large average particle size and a narrow particle size distribution can be obtained by increasing the firing temperature and increasing the firing time. Further, by lowering the firing temperature and shortening the firing time, a spinel lithium transition metal oxide having a small average particle size and a wide particle size distribution can be obtained.
  • the positive electrode is produced by applying and drying a positive electrode mixture layer containing a positive electrode active material on the surface of a positive electrode current collector made of an aluminum foil or an aluminum alloy foil.
  • the positive electrode mixture layer can contain a conductive agent, a binder, and the like.
  • a conductive agent acetylene black, carbon black, graphite or the like can be used.
  • the binder polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, styrene-butadiene rubber, polyacrylonitrile and the like can be used alone or in combination.
  • the negative electrode is produced by applying and drying a negative electrode mixture layer containing a negative electrode active material on the surface of a negative electrode current collector made of a copper foil or a copper alloy foil.
  • the negative electrode active material examples include carbon materials, alloy compounds of lithium with Al, Si, Pb, Sn, Zn, Cd, etc., metallic lithium, general formula M4Oz (where M4 is W, Mo, Si, Cu, and Sn). At least one element selected from the group consisting of metal oxides represented by 0 ⁇ z ⁇ 2) can be used. Among these, a carbon material is preferable, and graphite, non-graphitizable carbon, graphitizable carbon, or a mixture thereof can be used as the carbon material.
  • a binder of polyvinylidene fluoride or styrene-butadiene rubber can be added to the negative electrode plate.
  • the negative electrode plate preferably contains carboxymethyl cellulose (CMC).
  • Nonaqueous electrolyte The organic solvent constituting the nonaqueous electrolyte is not particularly limited as long as it is used for a nonaqueous electrolyte secondary battery.
  • Specific examples include cyclic carboxylic acid esters such as propylene carbonate, ethylene carbonate and chloroethylene carbonate, chain carbonates such as dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate, chain carboxylic acid esters such as methyl acetate and methyl butyrate, Tetrahydrofuran or derivatives thereof 1,3-dioxane, dimethoxyethane, diethoxyethane, methoxyethoxyethane, ethers such as methylglyme, nitriles such as acetonitrile and benzonitrile, dioxalane or derivatives thereof alone or in combination The mixture of the above can be mentioned.
  • the electrolyte salt constituting the non-aqueous electrolyte is not particularly limited as long as it is used for a non-aqueous electrolyte secondary battery. Specific examples include LiBF 4 , LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ), (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 or the like may be used alone or in admixture of two or more.
  • a microporous film, a nonwoven fabric, or the like can be used alone or in combination.
  • olefin resins such as polyethylene and polypropylene are preferred from the viewpoints of processability and durability.
  • the heat resistant resin provided with the aramid layer and the inorganic compound on the surface of the polyolefin microporous film can also be used. It is preferable to provide an inorganic compound on the surface of the separator on the positive electrode side because the battery life performance can be further improved. By suppressing the oxidative decomposition of the separator resin portion with the inorganic compound, it is considered that the side reaction at the positive electrode is suppressed, and the possibility that the current distribution in the positive electrode becomes uneven can be reduced.
  • a positive electrode and a negative electrode obtained as described above are laminated and wound via a separator to produce an electrode group, and this electrode group is stored in a battery case, for example, an aluminum square battery case can. .
  • a battery lid provided with a safety valve is attached by laser welding, a negative electrode terminal is connected to the negative electrode via a negative electrode lead, and a positive electrode is connected to the battery lid via a positive electrode lead.
  • the injection port is sealed by laser welding to produce a nonaqueous electrolyte secondary battery.
  • Example 1 (Synthesis of positive electrode active material) (1) Synthesis of layered lithium transition metal oxide Manganese sulfate hydrate, nickel sulfate hydrate and cobalt sulfate hydrate are mixed at a predetermined molar ratio to dissolve the aqueous solution, and then Ni— A precursor of Co—Mn was obtained. LiNi 0.33 Co 0.33 Mn 0.33 O 2 was obtained by mixing a predetermined amount of lithium hydroxide with this precursor and firing in air at 900 ° C. for 10 hours. Subsequently, the layered lithium transition metal oxide was pulverized and classified to obtain particles A.
  • the lithium transition metal oxide composition uses a value calculated from the charged molar ratio of the raw materials.
  • (2) Synthesis of spinel type lithium transition metal oxide A solution in which lithium hydroxide, aluminum hydroxide and MnO2 were mixed at a predetermined molar ratio was dried by a spray drying method to obtain a precursor containing Li and Mn. The precursor was calcined in air at 500 ° C. for 12 hours and then calcined at 750 ° C. for 12 hours to obtain Li 1.1 Mn 1.8 Al 0.1 O 4 . Subsequently, the spinel type lithium transition metal oxide was pulverized and classified to obtain particles B.
  • Particle A and particle B were mixed at a weight ratio of 30:70 to obtain a positive electrode active material.
  • a paste was obtained by mixing 95 parts by weight of natural graphite with an N-methyl-2-pyrrolidone solution of 5 parts by weight of polyvinylidene fluoride. This paste was applied to both sides of a copper foil (thickness 10 ⁇ m) by a doctor blade method to form a negative electrode active material layer. And this negative electrode active material layer was vacuum-dried at 150 degreeC for 14 hours, and the negative electrode was obtained. The thickness of the negative electrode was 105 ⁇ m.
  • Electrode As the electrolytic solution, a mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 30:70 was used. LiPF 6 1 mol / l was used as the electrolyte.
  • the positive electrode and the negative electrode were laminated and wound into a wound electrode plate group through a polyethylene porous separator, and the wound electrode plate group was housed in an aluminum rectangular battery case.
  • the battery case is provided with a battery lid provided with a safety valve by laser welding, a negative electrode terminal connected to the negative electrode via a negative electrode lead, and a positive electrode connected to the battery lid via a positive electrode lead. Then, after injecting said electrolyte solution under reduced pressure, the injection port was sealed by laser welding. Thus, a square nonaqueous electrolyte secondary battery having a design capacity (550) mAh was produced.
  • the particle diameters of the particles A and B were measured by the following procedure using a laser diffraction / scattering particle size distribution analyzer (SALD-2000J, manufactured by Shimadzu Corporation). First, the prepared particle A or particle B and the anionic surfactant were sufficiently kneaded, and then ion-exchanged water (water obtained by removing ions in water using an ion-exchange resin) was added. Then, after irradiating with ultrasonic waves for 20 minutes and dispersing the particles A or B in ion-exchanged water, the measurement was performed using a laser diffraction scattering type particle size distribution measuring apparatus.
  • SALD-2000J laser diffraction / scattering particle size distribution analyzer
  • the measurement result is as a particle size distribution histogram and values of D5, D50 and D95 (D5, D50 and D95 are particle sizes at which the cumulative volume in the particle size distribution of the secondary particles is 5%, 50% and 95%, respectively) To be acquired.
  • the particle size distribution can be measured in the same procedure for the mixture of particles A and particles B.
  • the peak based on particle A and the peak based on particle B overlap, and the values of D5 and D95 of particle A and particle B cannot be obtained individually the particle size distribution curve of each particle is appropriate.
  • Each value of D5, D50, and D95 of each particle was obtained by approximating a simple fitting curve. The obtained results are shown in Table 1.
  • D50 (average particle diameter) of particle A was 4 ⁇ m
  • D50 (average particle diameter) of particle B was 18 ⁇ m.
  • the maximum particle size and the minimum particle size are values obtained by reading the maximum or minimum particle size in which particles exist from the particle size distribution histogram.
  • the nail penetration test was performed on the prismatic battery according to the method described in “Lithium Secondary Battery Safety Evaluation Technical Guidelines (SBA G101)” issued by Japan Storage Battery Industry Association. In this method, a nail having a diameter of 2.5 mm to 5 mm is penetrated in a direction perpendicular to the electrode surface at approximately room temperature in the center of a fully charged battery and left for 6 hours or longer.
  • This test method assumes misuse, such as when a nail or the like is accidentally inserted into the battery packaging (such as when packing in a wooden box). Since it is in an internal short-circuit state in which they directly contact each other, it is also used as a method for evaluating the possibility of ignition or rupture due to heat generated by a rapid reaction inside the battery.
  • the nail penetration test was evaluated according to the following criteria. No abnormality: Safety valve is not activated, no smoke or fire is found Abnormal: smoke or fire is found Leakage: 10% or more of total electrolyte amount
  • Example 2 A positive electrode was produced in the same manner as in Example 1 except that the layered lithium transition metal oxide and spinel type lithium transition metal oxide synthesized in Example 1 were used, and the grinding conditions and classification conditions were changed. Assembled and evaluated. The results are shown in Table 1.
  • Examples 3 to 6 A positive electrode was produced in the same manner as in Example 1 except that the mixing ratio of the particles A and the particles B used in Example 1 was changed, and a battery was assembled and evaluated. The results are shown in Table 1.
  • Example 1 the same method as in Example 1 except that the layered lithium transition metal oxide was synthesized by changing the charged molar ratio of manganese sulfate hydrate, nickel sulfate hydrate, and cobalt sulfate hydrate. Then, a positive electrode was prepared, and a battery was assembled and evaluated. The results are shown in Table 1.
  • Example 8 LiNi 0.33 Co 0 synthesized by using zirconium sulfate hydrate in addition to manganese sulfate hydrate, nickel sulfate hydrate and cobalt sulfate hydrate as the layered lithium transition metal oxide.
  • a positive electrode was produced in the same manner as in Example 1 except that .33 Mn 0.33 Zr 0.01 O 2 was used, and a battery was assembled and evaluated. The results are shown in Table 1.
  • Comparative Examples 1-6 and 9 A positive electrode was produced in the same manner as in Example 1 except that the layered lithium transition metal oxide and spinel type lithium transition metal oxide synthesized in Example 1 were used, and the grinding conditions and classification conditions were changed. Assembled and evaluated. The results are shown in Table 1.
  • Comparative Examples 7 and 8 A positive electrode was produced in the same manner as in Example 1 except that the mixing ratio of the particles A and the particles B used in Example 1 was changed, and a battery was assembled and evaluated. The results are shown in Table 1.
  • Example 1 In FIG. 1, the particle size distribution of Example 1 and Comparative Example 1 is shown.
  • Comparative Example 1 the particle size distribution between particles A and B was large, whereas in Example 1, particle A and particle B had a particle size distribution with no overlap.
  • the capacity retention was 70% or more even after 1000 cycles and had excellent life characteristics.
  • the batteries of Examples 1 to 9 had no abnormal results in the nail penetration test and had good thermal stability.
  • Example 10 showed excellent life characteristics, and the result of the nail penetration test was not abnormal, but a crack or the like entered a part of the battery case, resulting in partial leakage.
  • Comparative Examples 1 and 2 the difference between B (D50) and A (D50) is smaller than 5 ⁇ m, and in Comparative Examples 3 to 5, the full width at half maximum of either particle A or B is larger than 20 ⁇ m.
  • Example 6 the particle size of the particle B is larger than 50 ⁇ m, and Comparative Examples 7 and 8 do not satisfy the requirement of the mixing ratio of the particle A and the particle B, and at least one of the nail penetration test and the capacity retention rate can be satisfied. It was not a thing.
  • the present inventors guess as follows about the reason why the effect of the present invention is obtained.
  • two kinds of positive electrode active materials having a narrow particle size distribution width and a small particle size distribution overlap are used.
  • the distribution of the active material in the positive electrode becomes more uniform, the reaction with the electrolyte becomes more uniform, and the current distribution in the positive electrode becomes more uniform.
  • the distribution of the active material in the positive electrode becomes more uniform, the stress of expansion and contraction of the positive electrode active material at the time of charging / discharging of the battery is equalized, and a decrease in current collection is suppressed.
  • the uniformity of the current distribution in the positive electrode can be ensured even in a high temperature environment and the current collection can be prevented from lowering. Therefore, even in a high temperature environment, it is considered to have high capacity and excellent cycle characteristics. Yes.
  • the present invention it is possible to provide a non-aqueous electrolyte secondary battery having a high energy density and excellent life characteristics in a high temperature environment, and thus the industrial utility value is great.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

本発明の非水電解質二次電池用正極は、正極活物質として、層状型リチウム遷移金属酸化物の粒子Aとスピネル型リチウム遷移金属酸化物の粒子Bとを、A:B=20:80~80:20(重量比)の範囲で含み、該正極活物質の粒度分布が、1~50μmの範囲内に、粒子Aに基づくピークと粒子Bに基づくピークとを有している。粒子径の積算分布曲線における、粒子Aの累積度50%の粒径A(D50)と粒子Bの累積度50%の粒径B(D50)が以下の式(1)を満たし、粒子Aの累積度95%の粒径A(D95)と粒子Bの累積度5%の粒径B(D5)が以下の式(2)を満たす。 B(D50)-A(D50)≧5μm …式(1) B(D5)>A(D95) …式(2)

Description

非水電解質二次電池
本発明は、非水電解質二次電池に関する。
非水電解質二次電池の正極活物質として、層状岩塩型構造をもつリチウムコバルト酸化物(LiCoO)やリチウムニッケル酸化物(LiNiO)、スピネル構造を持つリチウムマンガン酸化物(LiMn)等のリチウム遷移金属複合酸化物が用いられている。中でも、スピネル構造を持つリチウムマンガン酸化物(以下、スピネル型リチウムマンガン酸化物という。)は、結晶構造の熱的安定性が高く、これを正極に用いた電池は異常加熱時においても、高い安全性を示すことから、広く採用が進んでいる。
しかしながら、スピネル型リチウムマンガン酸化物の理論容量は148mAh/gであり、層状岩塩型構造をもつリチウム遷移金属複合酸化物(以下、層状型リチウム遷移金属酸化物という。)よりも小さく、電池のエネルギー密度が小さくなるという問題があった。また、スピネル型リチウムマンガン酸化物を用いた電池の出力は、層状型リチウム遷移金属酸化物を用いた電池よりも低くなるという問題が生じていた。
これに対して、層状型リチウム遷移金属酸化物とスピネル型リチウム遷移金属酸化物とを混合して、正極活物質に用いる方法が提案されている。例えば、特許文献1には、正極活物質がニッケル、コバルトおよびマンガンを含む層状型リチウム遷移金属酸化物とスピネル型リチウムマンガン酸化物を混合することによって、エネルギー密度の向上を図ったリチウム二次電池が提案されている。また、特許文献2には、正極活物質に、マンガン、ニッケルを含有する層状型リチウム遷移金属複合酸化物と、スピネル型リチウムマンガン酸化物とを含み、層状型リチウム遷移金属複合酸化物におけるリチウム以外の遷移金属元素に対するニッケルの組成比をモル比で50%以上とすることにより、電池の高出力化と長寿命化を図ったリチウム二次電池が提案されている。
日本国特表2008-532221号公報 日本国特開2011-54334号公報
しかしながら、前記の非水電解質二次電池の性能は十分とは言えず、特に高温環境下における電池の寿命性能の向上が必要とされている。
そこで、本発明は、高温環境下においても優れた寿命特性を有する非水電解質二次電池を提供することを目的とした。
上記課題を解決するため、本発明の非水電解質二次電池は、次のような特徴を有する。正極活物質として、層状型リチウム遷移金属酸化物の粒子Aとスピネル型リチウム遷移金属酸化物の粒子Bとを、A:B=20:80~80:20(重量比)の範囲で含み、該正極活物質の粒度分布が、1~50μmの範囲内に、粒子Aに基づくピークと粒子Bに基づくピークとを有しており、体積標準の粒度分布における、粒子Aの累積度50%の粒径A(D50)と粒子Bの累積度50%の粒径B(D50)が以下の式(1)を満たし、粒子Aの累積度95%の粒径A(D95)と粒子Bの累積度5%の粒径B(D5)が以下の式(2)を満たすことを特徴とする。
B(D50)-A(D50)≧5μm  …式(1)
B(D5)>A(D95)  …式(2)
また、上記課題を解決するため、本発明の非水電解質二次電池は、次のような特徴を有する。正極活物質として、層状型リチウム遷移金属酸化物の粒子Aとスピネル型リチウム遷移金属酸化物の粒子Bとを、A:B=20:80~80:20(重量比)の範囲で含み、該正極活物質の粒度分布が、1~50μmの範囲内に、粒子Aに基づくピークと粒子Bに基づくピークとを有しており、体積標準の粒度分布における、粒子Aの累積度50%の粒径A(D50)と粒子Bの累積度50%の粒径B(D50)が以下の式(3)を満たすことを特徴とする。
B(D50)/A(D50)>4  …式(3)
さらに、粒子Aに基づくピークの半値幅と粒子Bに基づくピークの半値幅が、20μm以下であるのが好ましい。この構成によれば、高温環境下においてより優れた寿命特性を得ることができる。
また、粒子Bの最小粒径が、粒子Aの最大粒径よりも大きいことが好ましい。この構成によれば、高温環境下においてより優れた寿命特性を得ることができる。
さらに、粒子Aの累積度50%の粒径A(D50)が5μm未満であることが好ましい。この構成によれば、粒子Bと粒子Bとで構成されたすき間に容易に入ることができるので、高温環境下においてより優れた寿命特性を得ることができる。
層状型リチウム遷移金属酸化物の粒子Aが、一般式LiNiMnCo(Qは元素周期表の第2族~第15族の元素からなる群から選ばれた少なくとも1種類の元素、好ましくはLi、Ti、V、Cr、Fe、Cu、Zn、B、P、Mg、Al、Ca、Zr、MoおよびWからなる群より選ばれた少なくとも1種類の元素、x+y+z+a=1、x>0、y>0、z>0、0.1≧a>0)で表されるリチウム遷移金属酸化物であることが好ましい。前記構成によれば、高温環境下において優れた寿命特性を得ることに加え、高い安全性を得ることができる。
本発明によれば、高温環境においても優れた寿命特性を有する非水電解質二次電池を提供することが可能となる。
実施例1と比較例1の活物質の粒径分布を示す図である。
以下に本発明の実施の形態について説明するが、本発明は以下の記載に限定されるものではない。
(正極)
本発明に用いる正極活物質は、層状型リチウム遷移金属酸化物の粒子Aとスピネル型リチウム遷移金属酸化物の粒子Bとを含むものである。層状型リチウム遷移金属酸化物は、リチウムイオンを挿入離脱可能で、好ましくは、一般式LiNiMnCo(Qは元素周期表の第2族~第15族の元素からなる群から選ばれた少なくとも1種類の元素、好ましくはLi、Ti、V、Cr、Fe、Cu、Zn、B、P、Mg、Al、Ca、Zr、MoおよびWからなる群より選ばれた少なくとも1種類の元素、x+y+z+a=1、x>0、y>0、z>0、0.1≧a>0)で表されるリチウム遷移金属酸化物を用いることができる。上記の一般式において、ニッケルの割合が0.5を越えると充放電に伴う粒子Aの膨張収縮の程度が大きくなったり、熱分解温度が下がり、熱的安定性が低下したりするので、xは、0<x≦0.5が好ましい。また、スピネル型リチウム遷移金属酸化物は、リチウムイオンを挿入離脱可能でマンガンを含有するスピネル結晶構造を有するリチウム遷移金属酸化物であれば特に限定されない。好ましくは、一般式LiαMn2-ββ(RはTi、V、Cr、Fe、Cu、Zn、B、P、Mg、Al、Ca、Zr、MoおよびWからなる群より選ばれた少なくとも1種類の元素、0≦α≦1.15、0≦β≦0.2)で表されるリチウム遷移金属酸化物を用いることができる。好ましい具体例としては、Li1.1Mn1.8Al0.1O4を挙げることができる。
層状型リチウム遷移金属酸化物の粒子Aとスピネル型リチウム遷移金属酸化物の粒子Bの混合比は、A:B=20:80~80:20(重量比)、好ましくは20:80~50:50である。粒子Aの割合が20より小さいと、電池のエネルギー密度が低下することとなり、粒子Aの割合が80より大きいと、寿命特性が低下し易くなるので好ましくない。
また、本発明に用いる正極活物質は、その粒度分布において、1~50μmの範囲内に、好ましくは30μm以下の範囲内に粒子Aに基づくピークと粒子Bに基づくピークとを有している。ここで、粒子Aに基づくピークと粒子Bに基づくピークとを有しているとは、2つの粒子に対応する2つの明確なピークが存在し、2つの粒子の粒径分布の重なりが少ないこと(これについては後で説明する)、好ましくは重なりがないことをいう。なお、本発明においては、粒径はレーザー回折散乱式の粒度分布測定装置を用いて測定した値を用いており、その粒径は体積基準粒径である。また、粒子Aおよび粒子Bは、単一の多結晶体によって形成された(一次粒子のみで形成された)ものでもよく、複数の多結晶体が凝集した二次粒子を形成しているものでもよい。
また、本発明においては、粒子径の積算分布における、粒子Aの累積度50%の粒径A(D50)と粒子Bの累積度50%の粒径B(D50)が以下の式(1)を満たし、粒子Aの累積度95%の粒径A(D95)と粒子Bの累積度5%の粒径B(D5)が以下の式(2)を満たす。
B(D50)-A(D50)≧5μm  …式(1)
B(D5)>A(D95)  …式(2)
上記の2つの式は、2つ粒子A、Bの粒径分布の重なりが少ないことを示すものであり、B(D50)とA(D50)の差が5μm以上、好ましくは10μm以上である。また、B(D5)がA(D95)より大きく、好ましくはB(D5)がA(D95)より1μm以上大きいことである。なお、本発明においては、累積度50%の粒径は平均粒径ともいう。
また、本発明においては、粒子Aに基づくピークの半値幅と粒子Bに基づくピークの半値幅が、20μm以下であることが好ましく、さらに15μm以下であることが好ましい。半値幅は、粒径分布における50%ピーク高さの幅で定義される値である。この場合、粒子の微粉および粗粉が減少し、活物質の分布がさらに均一化できることに加えて、活物質表面での電解液の分解が抑制できるため、高温での寿命特性をより向上することができる。
さらに、本発明においては、2つ粒子A、Bの粒径分布の重なりがないこと、すなわち、粒子Bの最小粒径が粒子Aの最大粒径よりも大きいことが好ましい。この場合、正極内における活物質の分布がさらに均一化することができるので、より好ましく電流分布の均一化と集電性の向上が達成できる。
層状型リチウム遷移金属酸化物の合成方法は特に限定されるものではなく、固相法、液相法、ゾル・ゲル法、水熱法等を挙げることができる。例えば、Ni-Co-Mnの3成分系の場合、硫酸マンガン水和物、硫酸ニッケル水和物および硫酸コバルト水和物を所定モル比で混合して水溶液の溶解させた後、共沈法によりNi-Co-Mnの前駆体を得る。この前駆体に所定量の水酸化リチウムを混合し、焼成することによりNi、Co、Mnを含む層状型リチウム遷移金属酸化物を得ることができる。この層状型リチウム遷移金属酸化物について粉砕と分級を行って、微粉と粗粉を除外し、所定の粒径分布を有するように調整することができる。なお、焼成時の焼成温度や焼成時間を調整することによっても、所望の平均粒径および粒径分布を持った層状型リチウム遷移金属酸化物を得ることが可能である。例えば、焼成温度を高くするとともに焼成時間を長くすることにより、平均粒径が大きく、粒径分布が狭い層状型リチウム遷移金属酸化物を得ることができる。また、焼成温度を低くするとともに焼成時間を短くすることによって、平均粒径が小さく、粒径分布が広い層状型リチウム遷移金属酸化物を得ることができる。
スピネル型リチウム遷移金属酸化物の合成方法は特に限定されるものではなく、固相法、液相法、ゾル・ゲル法、水熱法等を挙げることができる。例えば、マンガン系の場合、水酸化リチウムとMnO2を所定モル比で混合した溶液をスプレードライ法で乾燥させて、LiとMnを含む前駆体を得、次いでその前駆体を仮焼成および焼成することによってスピネル型リチウム遷移金属酸化物を得る。このスピネル型リチウム遷移金属酸化物について粉砕と分級を行って、微粉と粗粉を除外し、所定の粒径分布を有するように調整することができる。なお、焼成時の焼成温度や焼成時間を調整することによっても、所望の平均粒径および粒径分布を持ったスピネル型リチウム遷移金属酸化物を得ることが可能である。例えば、焼成温度を高くするとともに焼成時間を長くすることにより、平均粒径が大きく、粒径分布が狭いスピネル型リチウム遷移金属酸化物を得ることができる。また、焼成温度を低くするとともに焼成時間を短くすることによって、平均粒径が小さく、粒径分布が広いスピネル型リチウム遷移金属酸化物を得ることができる。
正極は、アルミニウム箔またはアルミニウム合金の箔からなる正極集電体の表面に正極活物質を含有する正極合材層を塗布および乾燥して、作製する。
正極合材層には上記正極活物質以外に、導電剤、結着剤等を含有させることができる。導電剤としては、アセチレンブラック、カーボンブラック、グラファイトなどを用いることができる。結着剤としては、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、スチレン-ブタジエンゴム、ポリアクリロニトリルなどを単独で、あるいは混合して用いることができる。
(負極)
負極は、銅箔または銅合金の箔からなる負極集電体の表面に負極活物質を含有する負極合材層を塗布および乾燥して、作製する。
負極活物質としては、炭素材料、Al、Si、Pb、Sn、Zn、Cd等とリチウムとの合金系化合物、金属リチウム、一般式M4Oz(ただしM4は、W、Mo、Si、Cu、およびSnから選ばれる少なくとも一種の元素、0≦z≦2)で表される金属酸化物などを使用することができる。その中でも炭素材料が好ましく、炭素材料として黒鉛、難黒鉛化性炭素、易黒鉛化性炭素、またはこれらの混合物を用いることができる。負極板には正極板と同様に、ポリフッ化ビニリデンやスチレン-ブタジエンゴムの結着剤等を加えることができる。負極板は、カルボキシメチルセルロース(CMC)を含有することが好ましい。これにより、負極の劣化を抑制することができ、電池の寿命特性をより向上させることができると考えられる。
(非水電解質)
非水電解質を構成する有機溶媒としては、非水電解質二次電池に使用されるものであれば特に限定されない。具体例としては、プロピレンカーボネート、エチレンカーボネート、クロロエチレンカーボネート、等の環状カルボン酸エステル、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート、酢酸メチル、酪酸メチル等の鎖状カルボン酸エステル、テトラヒドロフランまたはその誘導体、1、3-ジオキサン、ジメトキシエタン、ジエトキシエタン、メトキシエトキシエタン、メチルグライム等のエーテル類、アセトニトリル、ベンゾニトリル等のニトリル類、ジオキサランまたはその誘導体等の単独あるいはそれらの2種以上の混合物を挙げることができる。
非水電解質を構成する電解質塩としては、非水電解質二次電池に使用されるものであれば特に限定されない。具体例としては、LiBF、LiPF、LiClO、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)、(CSO)、LiC(CFSO、LiC(CSO等を単独あるいは2種以上混合して用いてもよい。
(セパレータ)
セパレータとしては、微多孔性膜や不織布等を、単独あるいは併用して用いることができる。なかでも、加工性および耐久性の観点からポリエチレン、ポリプロピレン等のオレフィン系樹脂が好ましい。また、ポリオレフィン系微多孔膜の表面にアラミド層や無機化合物を備えた耐熱性樹脂をもちいることもできる。セパレータの正極側の表面に無機化合物を備えることにより、電池の寿命性能をより向上することができるので、好ましい。無機化合物によりセパレータ樹脂部分の酸化分解を抑制することで、正極での副反応が抑制され、正極内における電流の分布が不均一化するおそれを低減できると考えられる。
(電池の作製)
上記のようにして得られた正極と負極を、セパレータを介して積層および巻回することで、電極群を作製し、この電極群を電池ケース、例えばアルミニウム製の角型電槽缶に収納する。電池ケースは安全弁を設けた電池蓋がレーザー溶接によって取り付けられ、負極端子は負極リードを介して負極と接続され、正極は正極リードを介して電池蓋と接続されているものである。次いで、減圧下で非水電解質を注液した後、注液口をレーザー溶接にて封口して、非水電解質二次電池を作製する。
以下、実施例を用いて本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
 [実施例1]
(正極活物質の合成)
(1)層状型リチウム遷移金属酸化物の合成
硫酸マンガン水和物、硫酸ニッケル水和物および硫酸コバルト水和物を所定モル比で混合して水溶液の溶解させた後、共沈法によりNi-Co-Mnの前駆体を得た。この前駆体に所定量の水酸化リチウムを混合し、空気中、900℃で10時間焼成することによりLiNi0.33Co0.33Mn0.33を得た。次いでこの層状型リチウム遷移金属酸化物の粉砕と分級を行って粒子Aを得た。なお、本明細書においては、特に断らない限り、リチウム遷移金属酸化物の組成は、原料の仕込みモル比から算出した値を用いている。
(2)スピネル型リチウム遷移金属酸化物の合成
水酸化リチウム、水酸化アルミニウムおよびMnO2を所定モル比で混合した溶液をスプレードライ法で乾燥させて、LiとMnを含む前駆体を得た。その前駆体を空気中、500℃で12時間仮焼成し、次いで750℃で12時間焼成することによってLi1.1Mn1.8Al0.1O4を得た。次いでこのスピネル型リチウム遷移金属酸化物の粉砕と分級を行って粒子Bを得た。
粒子Aと粒子Bを重量比で30:70の割合で混合して正極活物質を得た。
(正極の作製)
正極活物質90重量部とアセチレンブラック5重量部とを、ポリフッ化ビニリデン5重量部のN-メチル-2-ピロリドン溶液と混合して、ペーストを得た。このペーストを、アルミニウム箔(厚さ20μm)の両面に、ドクターブレード法によって塗布して、正極活物質層を形成した。そして、この正極活物質層を、150℃で14時間、真空乾燥して、正極を得た。正極の厚さは185μmであった。
(負極の作製)
天然黒鉛95重量部を、ポリフッ化ビニリデン5重量部のN-メチル-2-ピロリドン溶液と混合して、ペーストを得た。このペーストを、銅箔(厚さ10μm)の両面に、ドクターブレード法によって塗布して、負極活物質層を形成した。そして、この負極活物質層を、150℃で14時間、真空乾燥して、負極を得た。負極の厚さは105μmであった。
(電解液)
電解液には、エチレンカーボネートとジエチルカーボネートとを体積比30:70で混合溶媒を用いた。電解質には、LiPF  1mol/lを用いた。
(電池の作製)
ポリエチレン製の多孔質セパレータを介して、上記の正極と負極を積層巻回して巻回極板群とし、その巻回極板群をアルミニウム製の角形電池ケースに収納した。電池ケースは、安全弁を設けた電池蓋がレーザー溶接によって取り付けられ、負極端子は負極リードを介して負極と接続され、正極は正極リードを介して電池蓋と接続されている。その後、減圧下で上記の電解液を注液した後、注液口をレーザー溶接にて封口した。これにより、設計容量(550)mAhの角型非水電解質二次電池を作製した。
(粒径測定)
粒子Aと粒子Bの粒径は、レーザー回折散乱式の粒度分布測定装置(島津製作所製、SALD-2000J)を用いて、次の手順で測定した。まず、作製した粒子Aまたは粒子Bとアニオン性界面活性剤とを十分に混練した後に、イオン交換水(イオン交換樹脂を用いて水中のイオンを除去した水)を加えた。そして、超音波を20分間照射し、粒子Aまたは粒子Bをイオン交換水に分散させた後に、レーザ回折散乱式の粒度分布測定装置を用いて測定した。測定結果は、粒度分布ヒストグラム、並びに、D5、D50及びD95の各値(D5、D50及びD95は、2次粒子の粒度分布における累積体積がそれぞれ5%、50%及び95%となる粒度)として取得される。粒子Aおよび粒子Bの混合物に対しても、粒度分布を同様の手順で測定できる。なお、粒子Aに基づくピークと粒子Bに基づくピークとに重なりが生じ、粒子Aおよび粒子BのそれぞれのD5およびD95の値を個別に得ることができない場合は、各粒子の粒度分布曲線を適切なフィッティング曲線に近似して、各粒子のD5、D50及びD95の各値を求めた。得られた結果を表1に示す。粒子AのD50(平均粒径)は4μm、粒子BのD50(平均粒径)は18μmであった。また、最大粒径および最小粒径は、粒度分布ヒストグラムから、粒子が存在する最大または最小の粒子径を読み取った値である。
(釘刺し試験)
釘刺し試験は、(社)日本蓄電池工業会発行の「リチウム二次電池安全性評価技術ガイドライン(SBA  G101)」に記載されている方法に準じて、上記の角型電池に対して行った。この方法では、完全充電状態の電池のほぼ中央部に、室温で直径2.5mmから5mmの太さの釘を電極面に対して垂直方向に貫通させて、6時間以上放置するものである。この試験方法は、電池の梱包(木箱梱包の時等)に誤って釘等が刺し込まれるような誤用を想定したものであるが、釘を貫通させることにより、電池の内部では正極と負極とが直接接触する内部短絡状態となるため、電池内部での急激な反応による発熱により発火したり、破裂したりする可能性を評価する方法としても利用されている。
釘刺し試験の評価は、以下の基準で行った。
異常なし:安全弁の作動なし、発煙または発火なし
異常あり:発煙または発火あり
漏液:総電解液量の10%以上
(充放電試験)
上記の電池を用い、45℃で充放電試験を行った。1.0mA/cm2の電流で4.1Vまで充電した後、1.0mA/cm2の電流で2.5Vまで放電した時の放電容量を測定し、正極活物質1g当たりの容量(初期容量という)を算出した。同様の条件で、1000サイクル充放電を繰り返し、1000サイクル後の容量の初期容量に対するパーセントを容量保持率として算出した。結果を表1に示す。本実施例1では82%の容量保持率が得られた。
実施例2
実施例1で合成した層状型リチウム遷移金属酸化物とスピネル型リチウム遷移金属酸化物を用い、粉砕条件と分級条件を変化させた以外は、実施例1と同様の方法で正極を作製し、電池を組み立て、評価した。結果を表1に示す。
実施例3~6
実施例1で用いた粒子Aと粒子Bの混合比率を変化させた以外は、実施例1と同様の方法で正極を作製し、電池を組み立て、評価した。結果を表1に示す。
実施例7、9および10
実施例1において、硫酸マンガン水和物、硫酸ニッケル水和物および硫酸コバルト水和物の仕込みモル比を変化させて層状型リチウム遷移金属酸化物を合成した以外は、実施例1と同様の方法で正極を作製し、電池を組み立て、評価した。結果を表1に示す。
実施例8
実施例1において、層状型リチウム遷移金属酸化物として、硫酸マンガン水和物、硫酸ニッケル水和物および硫酸コバルト水和物に加えて硫酸ジルコニウム水和物を用いて合成したLiNi0.33Co0.33Mn0.33Zr0.01を用いた以外は、実施例1と同様の方法で正極を作製し、電池を組み立て、評価した。結果を表1に示す。
比較例1~6、および9
実施例1で合成した層状型リチウム遷移金属酸化物とスピネル型リチウム遷移金属酸化物を用い、粉砕条件と分級条件を変化させた以外は、実施例1と同様の方法で正極を作製し、電池を組み立て、評価した。結果を表1に示す。
比較例7および8
実施例1で用いた粒子Aと粒子Bの混合比率を変化させた以外は、実施例1と同様の方法で正極を作製し、電池を組み立て、評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
(結果)
 図1に、実施例1と比較例1の粒径分布を示す。比較例1では、粒子Aと粒子Bの粒径分布の重なりが大きいのに対し、実施例1では、粒子Aと粒子Bは重なりのない粒径分布を有していた。また、実施例1~9は、1000サイクル後でも容量保持率が70%以上となり、優れた寿命特性を有していた。実施例1~9の電池は、釘刺し試験の結果も異常なく熱安定性は良好であった。実施例10は、優れた寿命特性を示し、釘刺し試験の結果も異常ではなかったものの、電池ケースの一部に亀裂等が入って、部分的に漏液が発生した。一方、比較例1、2は、B(D50)とA(D50)との差が5μmより小さく、比較例3~5は、粒子AおよびB粒子のいずれかの半値幅が20μmより大きく、比較例6は、粒子Bの粒径が50μmより大きく、比較例7、8は、粒子Aと粒子Bの混合割合の要件を満たしておらず、釘刺し試験及び容量保持率の少なくとも一方が満足できるものではなかった。
なお、本発明者らは、本発明の効果が得られる理由について以下の通り、推察している。本発明では、粒径分布の幅が従来に比べて狭く、かつ粒径分布の重なりが少ない2種の正極活物質を用いている。これにより、正極内における活物質の分布がより均一となるため、電解質との反応もより均一になり、正極内における電流の分布もより均一化される。また、正極内における活物質の分布がより均一となるため、電池の充放電時における正極活物質の膨張および収縮の応力が均等化され、集電性の低下が抑制される。本発明においては、高温環境でも、正極内における電流分布の均一性が確保できるとともに、集電性の低下が抑制できるので、高温環境においても、高い容量と優れたサイクル特性を有するものと考えている。
本発明によれば、高いエネルギー密度と高温環境下における優れた寿命特性を有する非水電解質二次電池を提供することが可能であるので、産業上の利用価値が大である。

Claims (9)

  1. 正極活物質として、層状型リチウム遷移金属酸化物の粒子Aとスピネル型リチウム遷移金属酸化物の粒子Bとを、A:B=20:80~80:20(重量比)の範囲で含み、
    該正極活物質の粒度分布が、1~50μmの範囲内に、粒子Aに基づくピークと粒子Bに基づくピークとを有しており、
    体積標準の粒度分布における、粒子Aの累積度50%の粒径A(D50)と粒子Bの累積度50%の粒径B(D50)が以下の式(1)を満たし、粒子Aの累積度95%の粒径A(D95)と粒子Bの累積度5%の粒径B(D5)が以下の式(2)を満たす、非水電解質二次電池。
    B(D50)-A(D50)≧5μm  …式(1)
    B(D5)>A(D95)  …式(2)
  2. 正極活物質として、層状型リチウム遷移金属酸化物の粒子Aとスピネル型リチウム遷移金属酸化物の粒子Bとを、A:B=20:80~80:20(重量比)の範囲で含み、
    該正極活物質の粒度分布が、1~50μmの範囲内に、粒子Aに基づくピークと粒子Bに基づくピークとを有しており、
    体積標準の粒度分布における、粒子Aの累積度50%の粒径A(D50)と粒子Bの累積度50%の粒径B(D50)が以下の式(3)を満たす、非水電解質二次電池。
    B(D50)/A(D50)>4  …式(3)
  3. 粒子Aに基づくピークの半値幅と粒子Bに基づくピークの半値幅が、20μm以下である請求項1または2記載の非水電解質二次電池。
  4. 粒子Bの最小粒径が、粒子Aの最大粒径よりも大きい請求項1から3のいずれかに記載の非水電解質二次電池。
  5. 粒子Aの累積度50%の粒径A(D50)が5μm未満である請求項1から4のいずれかに記載の非水電解質二次電池。
  6. 上記層状型リチウム遷移金属酸化物が、一般式LiNiMnCo(Qは元素周期表の第2族~第15族の元素からなる群から選ばれた少なくとも1種類の元素、x+y+z+a=1、x>0、y>0、z>0、0.1≧a>0)で表されるリチウム遷移金属酸化物である請求項1から5のいずれかに記載の非水電解質二次電池。
  7. 前記一般式のxが0.5≧xの範囲である、請求項6に記載の非水電解質二次電池。
  8. 前記正極活物質として、前記層状型リチウム遷移金属酸化物の粒子Aと前記スピネル型リチウム遷移金属酸化物の粒子Bとを、A:B=20:80~50:50(重量比)の範囲で含む、請求項1から7のいずれかに記載の非水電解質二次電池。
  9. セパレータを含み、前記セパレータは正極側の表面に無機化合物を備える請求項1から8のいずれかに記載の非水電解質二次電池。
PCT/JP2013/005333 2012-09-11 2013-09-09 非水電解質二次電池 WO2014041793A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112013004425.0T DE112013004425T5 (de) 2012-09-11 2013-09-09 Akkumulator mit einem wasserfreien Elektrolyten
US14/427,135 US9660262B2 (en) 2012-09-11 2013-09-09 Nonaqueous electrolyte secondary battery
CN201380042963.1A CN104584279B (zh) 2012-09-11 2013-09-09 非水电解质二次电池
JP2014535376A JP6229657B2 (ja) 2012-09-11 2013-09-09 非水電解質二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012199429 2012-09-11
JP2012-199429 2012-09-11

Publications (1)

Publication Number Publication Date
WO2014041793A1 true WO2014041793A1 (ja) 2014-03-20

Family

ID=50277935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005333 WO2014041793A1 (ja) 2012-09-11 2013-09-09 非水電解質二次電池

Country Status (5)

Country Link
US (1) US9660262B2 (ja)
JP (1) JP6229657B2 (ja)
CN (1) CN104584279B (ja)
DE (1) DE112013004425T5 (ja)
WO (1) WO2014041793A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3098822A1 (en) * 2015-05-29 2016-11-30 GS Yuasa International Ltd. Energy storage device
JP2023516229A (ja) * 2021-06-30 2023-04-18 北京当升材料科技股▲フン▼有限公司 正極材料、その製造方法及び使用、リチウムイオン電池の正極板及びリチウムイオン電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7424368B2 (ja) * 2019-03-29 2024-01-30 株式会社Gsユアサ 蓄電素子

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1059725A (ja) * 1996-08-16 1998-03-03 Sakai Chem Ind Co Ltd 粒子状組成物及びその製造方法並びにリチウムイオン二次電池
JP2000315503A (ja) * 1999-03-01 2000-11-14 Sanyo Electric Co Ltd 非水電解質二次電池
JP2002110253A (ja) * 2000-09-29 2002-04-12 Sanyo Electric Co Ltd 非水電解質二次電池
JP2002251996A (ja) * 2001-02-23 2002-09-06 Sanyo Electric Co Ltd リチウム二次電池
JP2005190786A (ja) * 2003-12-25 2005-07-14 Sanyo Electric Co Ltd 非水電解質二次電池
JP2005259639A (ja) * 2004-03-15 2005-09-22 Matsushita Electric Ind Co Ltd リチウム二次電池およびその製造方法
JP2006278322A (ja) * 2005-03-02 2006-10-12 Hitachi Maxell Ltd 非水電解質二次電池
JP2007080583A (ja) * 2005-09-12 2007-03-29 Nissan Motor Co Ltd 二次電池用電極と二次電池
JP2008532221A (ja) * 2005-02-23 2008-08-14 エルジー・ケム・リミテッド リチウムイオン移動度及び電池容量が改良された二次バッテリー
JP2009004310A (ja) * 2007-06-25 2009-01-08 Mitsubishi Chemicals Corp リチウム二次電池用正極活物質材料、及びそれを用いたリチウム二次電池用正極並びにリチウム二次電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10162826A (ja) * 1996-11-28 1998-06-19 Sanyo Electric Co Ltd 非水電解液二次電池
JP2000082466A (ja) 1998-07-02 2000-03-21 Nippon Chem Ind Co Ltd 正極活物質及び非水電解質二次電池
WO2000077869A1 (fr) * 1999-06-14 2000-12-21 Kabushiki Kaisha Toshiba Materiau actif pour plaque positive dans une cellule secondaire electrolytique et non aqueuse et cellule secondaire electrolytique non aqueuse comprenant ce materiau
WO2004042860A1 (ja) * 2002-11-06 2004-05-21 Kabushiki Kaisha Toshiba 非水電解質二次電池
JP2011054334A (ja) 2009-08-31 2011-03-17 Hitachi Vehicle Energy Ltd リチウム二次電池
JP4894969B1 (ja) * 2011-06-07 2012-03-14 住友金属鉱山株式会社 ニッケルマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに、非水系電解質二次電池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1059725A (ja) * 1996-08-16 1998-03-03 Sakai Chem Ind Co Ltd 粒子状組成物及びその製造方法並びにリチウムイオン二次電池
JP2000315503A (ja) * 1999-03-01 2000-11-14 Sanyo Electric Co Ltd 非水電解質二次電池
JP2002110253A (ja) * 2000-09-29 2002-04-12 Sanyo Electric Co Ltd 非水電解質二次電池
JP2002251996A (ja) * 2001-02-23 2002-09-06 Sanyo Electric Co Ltd リチウム二次電池
JP2005190786A (ja) * 2003-12-25 2005-07-14 Sanyo Electric Co Ltd 非水電解質二次電池
JP2005259639A (ja) * 2004-03-15 2005-09-22 Matsushita Electric Ind Co Ltd リチウム二次電池およびその製造方法
JP2008532221A (ja) * 2005-02-23 2008-08-14 エルジー・ケム・リミテッド リチウムイオン移動度及び電池容量が改良された二次バッテリー
JP2006278322A (ja) * 2005-03-02 2006-10-12 Hitachi Maxell Ltd 非水電解質二次電池
JP2007080583A (ja) * 2005-09-12 2007-03-29 Nissan Motor Co Ltd 二次電池用電極と二次電池
JP2009004310A (ja) * 2007-06-25 2009-01-08 Mitsubishi Chemicals Corp リチウム二次電池用正極活物質材料、及びそれを用いたリチウム二次電池用正極並びにリチウム二次電池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3098822A1 (en) * 2015-05-29 2016-11-30 GS Yuasa International Ltd. Energy storage device
US9991563B2 (en) 2015-05-29 2018-06-05 Gs Yuasa International Ltd. Energy storage device and energy storage apparatus
JP2023516229A (ja) * 2021-06-30 2023-04-18 北京当升材料科技股▲フン▼有限公司 正極材料、その製造方法及び使用、リチウムイオン電池の正極板及びリチウムイオン電池
JP7313578B2 (ja) 2021-06-30 2023-07-24 北京当升材料科技股▲フン▼有限公司 正極材料、その製造方法及び使用、リチウムイオン電池の正極板及びリチウムイオン電池
US12113214B2 (en) 2021-06-30 2024-10-08 Beijing Easpring Material Technology Co., Ltd. Positive electrode material and preparation method and use therefor, lithium-ion battery positive electrode pole piece, and lithium-ion battery

Also Published As

Publication number Publication date
JPWO2014041793A1 (ja) 2016-08-12
DE112013004425T5 (de) 2015-07-02
US20150221944A1 (en) 2015-08-06
JP6229657B2 (ja) 2017-11-15
CN104584279B (zh) 2018-08-07
CN104584279A (zh) 2015-04-29
US9660262B2 (en) 2017-05-23

Similar Documents

Publication Publication Date Title
KR101635294B1 (ko) 리튬 이온 이차 전지
WO2021106324A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池
JP5874430B2 (ja) 非水電解質二次電池及びその製造方法、並びに非水電解質二次電池用のリチウム遷移金属複合酸化物の製造方法
WO2022130982A1 (ja) 非水電解質二次電池用正極、及び非水電解質二次電池
WO2012001844A1 (ja) 非水電解質二次電池用負極およびその製造方法
WO2019163483A1 (ja) 非水電解質二次電池
JP7522109B2 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
JP7171656B2 (ja) 正極活物質およびこれを含むリチウム二次電池
JP7373732B2 (ja) 非水電解質二次電池
EP2626945A1 (en) Lithium titanium oxide, method of preparing the same, negative electrode including the same, and lithium battery including the negative electrode
JP2023138734A (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
JP2024036438A (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
JPWO2003088382A1 (ja) 非水電解質二次電池
WO2019142744A1 (ja) 非水電解質二次電池
JP6229657B2 (ja) 非水電解質二次電池
WO2021241078A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
JP5241766B2 (ja) 非水電解質二次電池及びその充電方法
WO2012124256A1 (ja) 非水電解質二次電池用正極活物質およびそれを用いた正極、並びに正極活物質の製造方法
WO2023032482A1 (ja) 非水電解質二次電池
JP2013137939A (ja) 非水電解質二次電池
JP4530844B2 (ja) 非水電解質二次電池及びその充電方法
WO2022163511A1 (ja) 非水電解質二次電池用活物質、及び非水電解質二次電池
WO2022163455A1 (ja) 非水電解質二次電池用活物質、非水電解質二次電池用活物質の製造方法、及び非水電解質二次電池
WO2022163531A1 (ja) 非水電解質二次電池用活物質、及び非水電解質二次電池
WO2023276479A1 (ja) 非水電解質二次電池用正極および非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13836473

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014535376

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14427135

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130044250

Country of ref document: DE

Ref document number: 112013004425

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13836473

Country of ref document: EP

Kind code of ref document: A1