WO2014038676A1 - 耐水性窒化アルミニウム粉末の製造方法 - Google Patents

耐水性窒化アルミニウム粉末の製造方法 Download PDF

Info

Publication number
WO2014038676A1
WO2014038676A1 PCT/JP2013/074150 JP2013074150W WO2014038676A1 WO 2014038676 A1 WO2014038676 A1 WO 2014038676A1 JP 2013074150 W JP2013074150 W JP 2013074150W WO 2014038676 A1 WO2014038676 A1 WO 2014038676A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum nitride
nitride powder
water
yttria
phosphoric acid
Prior art date
Application number
PCT/JP2013/074150
Other languages
English (en)
French (fr)
Inventor
萌 玉垣
金近 幸博
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to CN201380046086.5A priority Critical patent/CN104603049B/zh
Priority to KR1020147034649A priority patent/KR102051899B1/ko
Priority to US14/423,522 priority patent/US9399577B2/en
Priority to EP13834918.8A priority patent/EP2894126B1/en
Priority to JP2014534426A priority patent/JP6239518B2/ja
Publication of WO2014038676A1 publication Critical patent/WO2014038676A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0728After-treatment, e.g. grinding, purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a novel method for producing water-resistant aluminum nitride powder.
  • Patent Document 1 discloses a mixed powder of alumina or alumina hydrate, carbon powder, and a compound containing a rare earth metal element in a nitrogen-containing atmosphere. A method is disclosed in which reductive nitriding of alumina (or alumina hydrate) proceeds by firing at a temperature.
  • Patent Document 1 it is possible to increase the particle size of the produced aluminum nitride powder by using a rare earth metal compound (co-melting agent), and the size is useful as a filler. Almost spherical aluminum nitride particles having the following are obtained.
  • aluminum nitride also has the property of being easily hydrolyzed.
  • the excellent characteristics of aluminum nitride are lost due to the formation of aluminum hydroxide by hydrolysis, and problems such as handling problems and corrosion occur due to the generation of ammonia.
  • Patent Documents 2 and 3 various treatments such as a phosphoric acid compound treatment (Patent Documents 2 and 3) in which a phosphoric acid compound is brought into contact with the aluminum nitride powder and a silane coupling treatment (Patent Document 4) A method has been proposed.
  • An object of the present invention is to provide a method for producing a water-resistant aluminum nitride powder capable of imparting good water resistance to an aluminum nitride powder having yttria on the particle surface.
  • the present inventors have found that yttria present on the particle surface of the aluminum nitride powder can be effectively removed by an acid solution, and phosphoric acid after sufficiently reducing yttria present on the particle surface. It has been found that by performing a water resistance treatment with a compound, good water resistance can be imparted to the aluminum nitride powder, and the present invention has been completed.
  • the present invention is a method for producing a water-resistant aluminum nitride powder by treating the particle surface of the aluminum nitride powder, (I) contacting the aluminum nitride powder having at least yttria on the particle surface with an acid solution; and (Ii) The step of bringing the aluminum nitride powder and the phosphoric acid compound into contact with each other in the order described above. After the step (i), filtration, washing, and extraction of the dried aluminum nitride powder with 1 mol / L hydrochloric acid.
  • the amount of yttria extracted when the operation is performed is 1000 mg or less with respect to 100 g of the aluminum nitride powder filtered, washed, and dried. is there.
  • the “amount of yttria to be extracted” is determined by sequentially performing the following steps (a) to (e).
  • the ultrasonic tank used in the step (b) Branson Bransonic desktop ultrasonic cleaner (tank dimensions: width 295 ⁇ depth 150 ⁇ height 150 mm, tank capacity: 6.0 L, ultrasonic output) : 120W) can be preferably employed.
  • the depth from which the distance from the bottom outer surface of a sample bottle to the water surface of an ultrasonic tank becomes 40 mm can be employ
  • the sample bottle is made of glass.
  • the “phosphate compound” is a concept including all acidic phosphorus compounds having a group represented by the following general formula (1) and salts thereof.
  • an aluminum nitride powder having an average particle diameter of 1 to 30 ⁇ m, more preferably 3 to 30 ⁇ m can be suitably used.
  • the “average particle diameter” means a sphere equivalent diameter (diameter) corresponding to an intermediate value of the particle size distribution (volume distribution) measured by the laser diffraction scattering method.
  • Measurement of the particle size distribution by the laser diffraction / scattering method can be performed by a commercially available laser diffraction / scattering particle size distribution measuring apparatus (for example, MT3300 manufactured by Nikkiso Co., Ltd.).
  • the solvent of the acid solution in the step (i) is water, and the pH of the acid solution is 4 or less.
  • the pH of the acid solution is more preferably 3 or less.
  • the phosphoric acid compound in the step (ii) is at least one compound selected from inorganic phosphoric acid, a metal salt of inorganic phosphoric acid, and organic phosphoric acid having an organic group.
  • inorganic phosphoric acid or simply “phosphoric acid” means not only orthophosphoric acid H 3 PO 4 but also pyrophosphoric acid H 4 P 2 O 7 and higher condensed phosphoric acid H n + 2 P n O 3n + 1 , In addition, it is a concept including metaphosphoric acid (polyphosphoric acid) (HPO 3 ) n . Further, in the present application, “organophosphoric acid” means a phosphoric acid compound having an organic group, and is a concept including not only incomplete esters of phosphoric acid but also phosphonic acids and incomplete esters thereof.
  • the adhesion amount of the phosphate compound per unit surface area of the aluminum nitride powder is 0.5 to 50 mg / m 2 in terms of orthophosphate ion (PO 4 3 ⁇ ), more preferably. Is 1 to 10 mg / m 2 .
  • the adhesion amount of the phosphate compound to the aluminum nitride powder is determined based on the amount (X) of the phosphate compound used in the step (ii) and the nitridation of the phosphate compound used in the step (ii). Based on the amount (Y) of the phosphoric acid compound that has not adhered to the aluminum powder, it is calculated by the formula (XY).
  • the step (ii) is performed by dispersing aluminum nitride particles in the phosphoric acid compound solution, and the mixture is evaporated after the step (ii) without passing through another solid-liquid separation process (for example, filtration, decantation, etc.).
  • the step (ii) is performed by dispersing aluminum nitride particles in a phosphoric acid compound solution, and the aluminum nitride particles are filtered and dried after the step (ii), a water-resistant aluminum nitride powder is obtained.
  • the amount of the phosphoric acid compound contained in the phosphoric acid compound solution is X
  • the amount of the phosphoric acid compound contained in the filtrate is Y.
  • “Adhesion amount of phosphate compound per unit surface area of aluminum nitride powder” is the specific surface area (S) of the raw aluminum nitride powder by the BET method, and the adhesion amount of phosphate compound converted to the amount of orthophosphate ions ( Based on Z), it is calculated by the formula (Z / S).
  • the method for producing a water-resistant aluminum nitride powder of the present invention it is possible to impart good water resistance to an aluminum nitride powder in which yttrium is present in the form of an oxide on the particle surface.
  • FIG. 1 is a scanning electron microscope (SEM) image of raw material aluminum nitride powder particles prepared in Example 1.
  • FIG. 3 is a result of powder X-ray diffraction of the raw material aluminum nitride powder prepared in Example 1.
  • FIG. 1 is a flowchart for explaining a manufacturing method S1 of water-resistant aluminum nitride powder according to an embodiment of the present invention (hereinafter, simply referred to as “manufacturing method S1”).
  • the manufacturing method S1 includes a pickling step S11, a solid-liquid separation step S12, a phosphoric acid compound treatment step S13, and a post-treatment step S14 in this order.
  • each process is demonstrated in order.
  • the pickling step S1 (hereinafter sometimes abbreviated as “S1”) is a step of bringing an aluminum nitride powder having at least yttria on the particle surface into contact with an acid solution.
  • the contact between the aluminum nitride powder and the acid solution in the pickling step S1 is, for example, a method of dispersing the aluminum nitride powder in the acid solution, a slurry in which the aluminum nitride powder is dispersed in a solvent (for example, water), and an acid. It can be performed by a method of mixing with a solution.
  • the aluminum nitride powder as a raw material is not particularly limited as long as yttria is present on the particle surface.
  • yttria is present on the surface of the particle includes all states in which yttria is present on the surface of the aluminum nitride powder particle. Examples of such a state include a state in which a part or all of the aluminum nitride powder particles are covered with a layer containing yttria; a state in which yttria particles are attached to the surface of the aluminum nitride powder particles; and aluminum nitride powder. These particles are formed by sintering aluminum nitride crystal particles through a grain boundary phase, and the grain boundary phase includes yttria.
  • the aluminum nitride powder having yttria on the surface of the particles may be obtained by any method.
  • it may be obtained by a conventionally known production method such as direct nitridation, reduction nitridation, vapor phase synthesis, or the like, or aluminum nitride powder formed and fired.
  • an aluminum nitride powder suitable for the present invention as described in Patent Document 1, a mixed powder containing alumina or alumina hydrate, carbon powder, and yttria is fired in a nitrogen atmosphere.
  • Examples thereof include aluminum nitride powder obtained by a method of reducing and nitriding alumina (or alumina hydrate).
  • alumina or alumina hydrate 100 parts by mass of alumina or alumina hydrate, 0.5 to 30 parts by mass of yttria, and 38 to 46 parts by mass of carbon powder are mixed, and the resulting mixture is mixed with a nitrogen-containing atmosphere.
  • examples thereof include aluminum nitride powder obtained by reducing and nitriding alumina or alumina hydrate by maintaining at a temperature of 1620 to 1900 ° C. for 2 hours or more.
  • the aluminum nitride powder produced in this way is in a state where part or all of the particle surface is covered with a layer containing yttria.
  • the particle size of the aluminum nitride powder used as a raw material is appropriately determined according to the application and is not particularly limited.
  • the average particle diameter of the aluminum nitride powder used as a raw material (equivalent sphere diameter corresponding to the intermediate value of the volume distribution measured by the laser diffraction scattering method) is usually 0.1 to 500 ⁇ m, preferably 1 to 100 ⁇ m, more preferably 1 to 30 ⁇ m. More preferably, it is 3 to 30 ⁇ m.
  • the shape of the powder is not particularly limited, and may be indefinite or spherical. However, it is preferably spherical.
  • a known acid solution capable of dissolving yttria can be used as the acid solution brought into contact with the aluminum nitride powder, and water is preferably used as the solvent.
  • the acid acids other than the phosphoric acid compounds described later are used, and specifically, strong acids such as hydrogen chloride, nitric acid, sulfuric acid, perchloric acid, hydrogen iodide, hydrogen bromide, permanganic acid, and thiocyanic acid. are preferably used.
  • the concentration of the acid solution is not particularly limited, but is preferably 0.1 mol / L or more, more preferably 1 mol / L or more. If the concentration of the acid solution is too low, yttria is difficult to dissolve.
  • the contact between the aluminum nitride powder and the acid solution is performed by mixing the slurry in which the aluminum nitride powder is dispersed in the solvent and the acid solution, the acid solution is diluted with the solvent contained in the slurry.
  • the later concentration is preferably within the above range.
  • the solvent of the acid solution is water
  • the pH of the acid solution is preferably 4 or less, more preferably 3 or less.
  • the temperature at which the aluminum nitride powder is brought into contact with the acid solution is not particularly limited, but is usually 5 ° C to 100 ° C, preferably 20 ° C to 40 ° C. If the temperature is too low, the solubility of yttria is lowered, so that the efficiency is poor. If the temperature is too high, hydrolysis of aluminum nitride may be promoted.
  • the concentration of the aluminum nitride powder (solid content) when the aluminum nitride powder is brought into contact with the acid solution is not particularly limited, but is preferably 10 to 50% by mass, more preferably based on the total amount of the mixture of the aluminum nitride powder and the acid solution. Is 20 to 40% by mass. If the concentration of the aluminum nitride powder is too high, yttria is difficult to dissolve, and if it is too low, the productivity is lowered.
  • the time for contacting the aluminum nitride powder and the acid solution varies depending on conditions such as temperature and concentration, but is usually 5 minutes to 24 hours, preferably 30 minutes to 2 hours. If the contact time is too short, yttria may not be sufficiently dissolved, and if it is too long, hydrolysis of aluminum nitride may proceed.
  • the amount of yttria on the particle surface of the aluminum nitride powder after the pickling step S1 only needs to be reduced to an amount that does not interfere with the surface treatment with a phosphoric acid compound described later.
  • the amount of yttria extracted when an extraction operation with 1 mol / L hydrochloric acid is performed on the aluminum nitride powder filtered and dried after the pickling step S1 is 1000 mg / 100 g (aluminum nitride powder) or less. More preferably, it is 250 mg / 100 g (aluminum nitride powder) or less.
  • the “amount of yttria extracted” is a value determined by sequentially performing the following steps (a) to (e).
  • the manufacturing method of the aluminum nitride powder of patent document 1 it extracts when performing the said process (a) thru
  • the amount of yttria is 2000 mg / 100 g (aluminum nitride powder) or more.
  • the solid-liquid separation step S12 (hereinafter sometimes abbreviated as “S12”) is a step of separating the acid solution and the aluminum nitride powder after S11. Specific examples of the separation method in S12 include filtration, decantation, centrifugation, and combinations thereof. In S12, it is preferable that the aluminum nitride powder separated from the acid solution is further washed with water or the like to remove the acid from the aluminum nitride powder.
  • the aluminum nitride powder after contact with the acid solution can be subjected to subsequent treatment in a state of being dispersed in water or containing water after filtration, for example. Further, after the aluminum nitride powder is dried, it may be subjected to subsequent processing. However, it is possible to save energy necessary for the drying operation and to disperse the aluminum nitride powder in the phosphoric acid solution by subjecting it to a subsequent treatment (contact treatment with a phosphoric acid compound) in a state containing water. It is preferable because it is good.
  • the phosphoric acid compound treatment step S13 (hereinafter sometimes abbreviated as “S13”) is a step of bringing the aluminum nitride powder that has undergone S12 into contact with the phosphoric acid compound.
  • S13 a known method can be employed without any particular limitation.
  • a method of dispersing aluminum nitride powder in a phosphoric acid compound solution a method of kneading aluminum nitride powder into a phosphoric acid compound solution, and making a paste, and the like can be mentioned.
  • known devices such as a disperser, a homogenizer, and an ultrasonic disperser can be used.
  • phosphoric acid compound in S13 a known phosphoric acid compound used for water resistance of the aluminum nitride powder can be used without particular limitation.
  • examples of phosphoric acid compounds that can be used in S13 include inorganic phosphoric acid such as orthophosphoric acid, pyrophosphoric acid, and metaphosphoric acid; lithium phosphate, potassium phosphate, sodium phosphate, aluminum hydrogen phosphate, aluminum dihydrogen phosphate, etc.
  • inorganic phosphoric acid metal salts inorganic ammonium phosphates such as ammonium phosphate, ammonium hydrogen phosphate, and ammonium dihydrogen phosphate; and organic phosphoric acid having an organic group.
  • Preferable organic phosphoric acid includes organic phosphoric acid represented by the following general formula (2).
  • organic phosphoric acid represented by the general formula (2) examples include methyl phosphoric acid (monomethyl phosphate, dimethyl phosphate, or a mixture thereof), ethyl phosphoric acid (monoethyl phosphate, diethyl phosphate, or a mixture thereof).
  • Propyl phosphate (monopropyl phosphate or dipropyl phosphate or a mixture thereof), butyl phosphate (monobutyl phosphate or dibutyl phosphate or a mixture thereof), pentyl phosphate (monopentyl phosphate or dipentyl phosphate or a mixture thereof) Mixtures), hexyl phosphate (monohexyl phosphate or dihexyl phosphate or mixtures thereof), octyl phosphate (monooctyl phosphate or dioctyl phosphate or mixtures thereof), dodecyl phosphate (monododecyl phosphate or di (dodecyl phosphate) Or phosphoric acid incomplete esters such as methylphosphonic acid, ethylphosphonic acid, propylphosphonic acid, butylphosphonic acid, pentylphosphonic acid, hexylphosphonic acid, octyl
  • the above phosphoric acid compounds may be used singly or in combination of two or more.
  • the phosphoric acid compounds it is preferable to use one or more selected from inorganic phosphoric acid, a metal salt of inorganic phosphoric acid, and organic phosphoric acid.
  • the phosphoric acid compound reacts with aluminum on the surface by contact with the aluminum nitride powder to form an aluminum phosphate bond (Al—O—P bond), and the aluminum nitride powder is coated with an aluminum phosphate layer. It is estimated that water resistance is exhibited.
  • known conditions can be employed without particular limitation as the conditions for contacting the aluminum nitride powder and the phosphate compound.
  • the contact time can usually be 1 to 120 minutes, and the temperature at the time of contact can usually be 0 to 90 ° C.
  • the post-treatment step S14 is a step of taking out the water-resistant aluminum nitride powder from the mixture of the aluminum nitride powder and the phosphoric acid compound solution obtained in S13.
  • S14 for example, (A) an embodiment in which the solvent is evaporated from the mixture to dryness; (B) an aluminum nitride powder is filtered from the mixture, and the filtered aluminum nitride powder is dried. Aspect: (C) An aluminum nitride powder is filtered from the mixture, washed with an appropriate solvent (for example, water), and then dried.
  • the water-resistant aluminum nitride powder obtained above may be further subjected to a heat treatment at 100 to 1000 ° C. Such heat treatment can further improve the water resistance of the water-resistant aluminum nitride powder.
  • manufacturing method S1 of the water resistant aluminum nitride powder of the form which uses the aluminum nitride powder which passed through solid-liquid separation process S12 as it is for phosphate compound processing process S13 was illustrated, this invention is limited to the said form Is not to be done.
  • it is set as the manufacturing method of the water-resistant aluminum nitride powder of the form which performs the process for improving the efficiency of the phosphate compound process in S13 after passing through the solid-liquid separation process S12 and before the phosphate compound process process S13.
  • a method for producing such a form of water resistant aluminum nitride powder will be described below.
  • FIG. 2 is a flowchart for explaining a water-resistant aluminum nitride powder production method S2 (hereinafter also referred to as “production method S2”) according to another embodiment of the present invention.
  • the manufacturing method S2 includes a pickling step S11, a solid-liquid separation step S12, an oxide film forming step S22, a phosphoric acid compound treatment step S13, and a post-treatment step S14 in this order.
  • the steps other than the oxide film forming step S22 are the same as the steps of the same name in the manufacturing method S1.
  • the oxide film forming step S22 (hereinafter sometimes abbreviated as “S22”) is performed on the particle surface of the aluminum nitride powder in which yttria on the particle surface has been reduced through the pickling step S11 and the solid-liquid separation step S12. This is a step of forming a film. Through S22, the reactivity with the phosphate compound can be increased.
  • a known oxide film forming method can be employed as a known oxide film forming method can be employed as a known oxide film forming method can be employed.
  • the amount of the oxide film formed in S22 is preferably such that 0.001 to 0.1 g / m 2 of aluminum oxide exists in terms of oxygen per surface area (BET method) of the raw aluminum nitride powder.
  • the water-resistant aluminum nitride powder produced by the present invention is used as a filler for filling heat-dissipating materials such as heat-dissipating sheets, heat-dissipating greases, heat-dissipating adhesives, paints, and heat-conducting resins, in various applications utilizing the properties of aluminum nitride. Can be widely used.
  • thermosetting resin such as an epoxy resin or a phenol resin
  • thermoplastic resin such as polyethylene, polypropylene, polyamide, polycarbonate, polyimide, or polyphenylene sulfide
  • rubber such as silicone rubber, EPR, or SBR.
  • silicone oil a thermosetting resin such as an epoxy resin or a phenol resin
  • thermoplastic resin such as polyethylene, polypropylene, polyamide, polycarbonate, polyimide, or polyphenylene sulfide
  • rubber such as silicone rubber, EPR, or SBR.
  • silicone oil silicone oil
  • the matrix of the heat dissipation material for example, an epoxy resin or a silicone resin is preferable, and an addition reaction type liquid silicone rubber is preferable for a highly flexible heat dissipation member.
  • the particle size distribution (volume distribution) was measured by a laser diffraction scattering type particle size distribution measuring apparatus (MT3300 manufactured by Nikkiso Co., Ltd.), and the sphere equivalent diameter (diameter) corresponding to the intermediate value was defined as the average particle diameter.
  • the oxygen concentration of the aluminum nitride powder was measured using an oxygen / nitrogen analyzer (trade name: EMGA-620W, manufactured by HORIBA, Ltd.), helium gas as the inert gas, and an inert gas melting-infrared absorption detection method. Quantified. The amount of oxygen film was calculated from the obtained oxygen concentration by the following formula.
  • Amount of oxide film oxygen concentration (wt%) / (specific surface area (m 2 / g) ⁇ 100)
  • Example 1> Preparation of raw material aluminum nitride powder
  • Al source ⁇ -alumina having an average particle diameter of 1.2 ⁇ m and a specific surface area of 10.7 m 2 / g is used, and carbon black having a specific surface area of 125 m 2 / g is used as a carbon powder.
  • agent yttrium oxide having an average particle diameter of 1.0 ⁇ m and a specific surface area of 11.7 m 2 / g was used.
  • FIG. 3 shows a scanning electron microscope (SEM) image (backscattered electron detection, acceleration voltage 1.0 kV, magnification 10,000 times) of the obtained raw material aluminum nitride powder. Moreover, the result of the powder X-ray diffraction of the obtained raw material aluminum nitride powder and the characterization of the peak are shown in FIG. From FIG. 3 and FIG. 4, it was confirmed that yttria was present on the particle surface.
  • SEM scanning electron microscope
  • Example 2 A water-resistant aluminum nitride powder was produced in the same manner as in Example 1 except that the acid solution was changed to 1 mol / L nitric acid.
  • the amount of yttria extracted by hydrochloric acid extraction from the aluminum nitride powder after contact with the acid solution was 200 mg with respect to 100 g of the dry pickled aluminum nitride powder.
  • Example 3> (Pickling process and solid-liquid separation process) 500 g of the raw material aluminum nitride powder prepared in Example 1 and 1200 mL of 1 mol / L hydrochloric acid were placed in a 5 L beaker, stirred at room temperature with a stirrer for 1 hour, and collected by suction filtration and water washing. The amount of yttria extracted by hydrochloric acid extraction from the aluminum nitride powder after contact with the acid solution was 200 mg with respect to 100 g of the dry pickled aluminum nitride powder.
  • Example 4 A water resistant aluminum nitride powder was produced in the same manner as in Example 1 except that the stirring time in the pickling step was changed to 0.5 hour. The amount of yttria extracted by hydrochloric acid extraction from the aluminum nitride powder after contact with the acid solution was 918 mg with respect to 100 g of the dry pickled aluminum nitride powder. Table 2 shows the results of the water resistance test of the resulting water resistant aluminum nitride powder.
  • the water-resistant aluminum nitride powder of Example 4 in which the amount of yttria extracted by hydrochloric acid extraction from the aluminum nitride powder after contact with the acid solution was within the specified range of the present invention was adjusted to pH before heating in the water resistance test. It was found that the pH after heating was 6.5 with respect to 6.5, and hydrolysis of aluminum nitride did not proceed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

 粒子の表面にイットリアが存在する窒化アルミニウム粉末に対して良好な耐水性を付与することが可能な、耐水性窒化アルミニウム粉末の製造方法を提供する。 窒化アルミニウム粉末の粒子表面を処理することによって耐水性窒化アルミニウム粉末を製造する方法であって、(i)少なくとも粒子表面にイットリアが存在する窒化アルミニウム粉末と、酸溶液とを接触させる工程;及び、(ii)窒化アルミニウム粉末とリン酸化合物とを接触させる工程を上記順に有し、工程(i)の後濾別、水洗、及び乾燥された窒化アルミニウム粉末に対して1mol/L塩酸による抽出操作を行った場合に抽出されるイットリアの量が、窒化アルミニウム粉末100gに対して1000mg以下である、耐水性窒化アルミニウム粉末の製造方法とする。

Description

耐水性窒化アルミニウム粉末の製造方法
 本発明は、耐水性窒化アルミニウム粉末の新規な製造方法に関する。
 窒化アルミニウムは熱伝導性、電気絶縁性に優れた特性を持った物質である。放熱フィラーとして好適な窒化アルミニウム粉末の製造方法として、特許文献1には、アルミナまたはアルミナ水和物と、カーボン粉末と、希土類金属元素を含む化合物との混合粉末を、含窒素雰囲気中、所定の温度において焼成することにより、アルミナ(又はアルミナ水和物)の還元窒化を進行させる方法が開示されている。
 特許文献1に記載の製造方法によれば、希土類金属化合物(共融解剤)を使用することにより、製造される窒化アルミニウム粉末の粒径を増大させることが可能であり、フィラーとして有用な大きさを有するほぼ球状の窒化アルミニウム粒子が得られる。
 一方、窒化アルミニウムは容易に加水分解するという性質も有している。加水分解により水酸化アルミニウムが生成することで窒化アルミニウムの優れた特性は失われ、アンモニアの生成により取り扱い上の問題や腐食等の問題が発生する。
 そこで、窒化アルミニウム粉末に耐水性を付与するために、窒化アルミニウム粉末にリン酸化合物を接触させるリン酸化合物処理(特許文献2、3)や、シランカップリング処理(特許文献4)など、種々の方法が提案されている。
国際公開WO2012/043574号パンフレット 特開2002-226207号公報 国際公開WO2012/147999号パンフレット 特開2004-083334号公報
 しかしながら、特許文献1に記載の製造方法において希土類金属化合物(共融解剤)としてイットリアを使用した場合、得られた窒化アルミニウム粉末をリン酸化合物で処理しても、窒化アルミニウム粉末に十分な耐水性を付与できないことが、本発明者らの試験により判明した。本発明者らはさらなる調査の結果、特許文献1に記載の製造方法において共融解剤としてイットリアを使用した場合に得られる窒化アルミニウム粉末の表面には、イットリウムがその酸化物であるイットリアの形で存在することを知見した。
 本発明は、粒子の表面にイットリアが存在する窒化アルミニウム粉末に対して良好な耐水性を付与することが可能な、耐水性窒化アルミニウム粉末の製造方法を提供することを課題とする。
 本発明者らは検討の結果、窒化アルミニウム粉末の粒子表面に存在するイットリアは、酸溶液により効果的に除去可能であること、及び、粒子表面に存在するイットリアを充分に減少させた後にリン酸化合物による耐水化処理を行うことによって、窒化アルミニウム粉末に良好な耐水性を付与できることを見出し、本発明を完成するに至った。
 本発明は、窒化アルミニウム粉末の粒子表面を処理することによって耐水性窒化アルミニウム粉末を製造する方法であって、
(i)少なくとも粒子表面にイットリアが存在する窒化アルミニウム粉末と、酸溶液とを接触させる工程;及び、
(ii)前記窒化アルミニウム粉末とリン酸化合物とを接触させる工程
を上記順に有し、前記工程(i)の後濾別、水洗、及び乾燥された窒化アルミニウム粉末に対して1mol/L塩酸による抽出操作を行った場合に抽出されるイットリアの量が、前記濾別、水洗、及び乾燥された窒化アルミニウム粉末100gに対して1000mg以下であることを特徴とする、耐水性窒化アルミニウム粉末の製造方法である。
 ここで、窒化アルミニウム粉末について「少なくとも粒子表面にイットリアが存在する」ことは、(A)当該窒化アルミニウム粉末の粒子を走査電子顕微鏡(加速電圧1.0kV、反射電子検出モード)で観察した際に、他の部位よりコントラストの高い(白い)部位が粒子表面に観察され、且つ、(B)当該窒化アルミニウム粉末の粉末X線回折においてイットリアの存在が観察されることにより、確認できる。なお粉末X線回折におけるイットリアの存在は2θ=29°の位置にピークが観察されることにより確認できる。
 上記「抽出されるイットリアの量」は、次の工程(a)乃至(e)を順に行うことにより決定するものとする。
(a)上記濾別、水洗、及び乾燥された窒化アルミニウム粉末10gを、50mLサンプル瓶中の1mol/L塩酸25mLに、25℃において加える工程;
(b)サンプル瓶を超音波槽中の水に浸漬した状態で保持し、25℃において43kHzの超音波を30分間印加する工程;
(c)サンプル瓶中の内容物を濾過することにより、濾液を得る工程;
(d)濾液中のイットリウム含有量を、ICP発光分光法により定量する工程;及び
(e)濾液中のイットリウム含有量を、イットリアとしての含有量に換算する工程。
 ここで工程(b)において使用する超音波槽としては、ブランソン製ブランソニック卓上型超音波洗浄器(槽内寸法:幅295×奥行150×高さ150mm、槽容量:6.0L、超音波出力:120W)を好ましく採用できる。またサンプル瓶を超音波槽中に保持する際の深度としては、サンプル瓶の底部外表面から超音波槽の水面までの距離が40mmとなる深度を好ましく採用できる。なおサンプル瓶は本体がガラス製のものを用いるものとする。
 本出願において「リン酸化合物」とは、下記一般式(1)で表される基を有する全ての酸性リン化合物及びそれらの塩を包含する概念である。
Figure JPOXMLDOC01-appb-C000001
 本発明における原料の窒化アルミニウム粉末としては、平均粒径が1~30μm、より好ましくは3~30μmである窒化アルミニウム粉末を好適に用いることができる。
 なお本出願において、「平均粒子径」とは、レーザー回折散乱法により測定した粒度分布(体積分布)の中間値に対応する球相当径(直径)を意味するものとする。レーザー回折散乱法による粒度分布の測定は、市販のレーザー回折散乱式粒度分布測定装置(例えば日機装(株)製MT3300等。)によって行うことができる。
 好ましくは、上記工程(i)における酸溶液の溶媒は水であり、該酸溶液のpHは4以下である。酸溶液のpHはより好ましくは3以下である。
 好ましくは、上記工程(ii)におけるリン酸化合物は、無機リン酸、無機リン酸の金属塩、及び、有機基を有する有機リン酸から選ばれる1種以上の化合物である。
 本出願において「無機リン酸」又は単に「リン酸」とは、オルトリン酸HPOだけでなく、ピロリン酸H及びさらに高次の縮合リン酸Hn+23n+1、並びにメタリン酸(ポリリン酸)(HPOをも包含する概念である。また本出願において「有機リン酸」とは、有機基を有するリン酸化合物を意味し、リン酸の不完全エステルのみならず、ホスホン酸及びその不完全エステルをも包含する概念である。
 好ましくは、上記工程(ii)において、窒化アルミニウム粉末の単位表面積あたりのリン酸化合物の付着量が、オルトリン酸イオン(PO 3-)換算で0.5~50mg/mであり、より好ましくは1~10mg/mである。
 ここで、窒化アルミニウム粉末へのリン酸化合物の付着量は、上記工程(ii)において用いたリン酸化合物の量(X)、及び、上記工程(ii)において用いたリン酸化合物のうち、窒化アルミニウム粉末に付着しなかったリン酸化合物の量(Y)に基づいて、式(X-Y)により算出するものとする。例えば工程(ii)を、リン酸化合物溶液に窒化アルミニウム粒子を分散させることにより行い、工程(ii)の後他の固液分離処理(例えば濾過、デカンテーション等。)を経ることなく混合物を蒸発乾固させることにより耐水性窒化アルミニウム粉末を得た場合には、リン酸化合物溶液に含まれていたリン酸化合物の量がXであり、Y=0である。また例えば工程(ii)を、リン酸化合物溶液に窒化アルミニウム粒子を分散させることにより行い、工程(ii)の後窒化アルミニウム粒子を濾別及び乾燥することにより耐水性窒化アルミニウム粉末を得た場合には、リン酸化合物溶液に含まれていたリン酸化合物の量がXであり、濾液に含まれるリン酸化合物の量がYである。
 リン酸化合物の付着量をオルトリン酸イオン(PO 3-)の量に換算するにあたっては、リン酸化合物のリン原子1molがオルトリン酸イオン(PO 3-)1molに対応するものとする。
 「窒化アルミニウム粉末の単位表面積あたりのリン酸化合物の付着量」は、原料窒化アルミニウム粉末のBET法による比表面積(S)、及び、オルトリン酸イオンの量に換算されたリン酸化合物の付着量(Z)に基づいて、式(Z/S)により算出するものとする。
 本発明の耐水性窒化アルミニウム粉末の製造方法によれば、粒子表面にイットリウムが酸化物の形態で存在する窒化アルミニウム粉末に対して、良好な耐水性を付与することが可能である。
本発明の一の実施形態に係る耐水性窒化アルミニウム粉末の製造方法を説明するフローチャートである。 本発明の他の実施形態に係る耐水性窒化アルミニウム粉末の製造方法を説明するフローチャートである。 実施例1で準備した原料窒化アルミニウム粉末粒子の走査電子顕微鏡(SEM)像である。 実施例1で準備した原料窒化アルミニウム粉末の粉末X線回折の結果である。
 以下、図面を参照しつつ、本発明の実施の形態について説明する。なお、以下に示す形態は本発明の例示であり、本発明がこれらの形態に限定されるものではない。また、特に断らない限り、数値範囲について「A~B」という表記は「A以上B以下」を意味するものとする。かかる表記において数値Bのみに単位を付した場合には、当該単位が数値Aにも適用されるものとする。
 図1は、本発明の一の実施形態に係る耐水性窒化アルミニウム粉末の製造方法S1(以下において単に「製造方法S1」ということがある。)を説明するフローチャートである。図1に示すように、製造方法S1は、酸洗工程S11と、固液分離工程S12と、リン酸化合物処理工程S13と、後処理工程S14とをこの順に有する。以下、各工程について順に説明する。
 <酸洗工程S1>
 酸洗工程S1(以下において「S1」と略記することがある。)は、少なくとも粒子表面にイットリアが存在する窒化アルミニウム粉末と、酸溶液とを接触させる工程である。酸洗工程S1における窒化アルミニウム粉末と酸溶液との接触は、例えば、酸溶液中に窒化アルミニウム粉末を分散させる方法や、窒化アルミニウム粉末が溶媒(例えば水等。)中に分散されたスラリーと酸溶液とを混合する方法等により行うことができる。
 (原料窒化アルミニウム粉末)
 本発明において、原料となる窒化アルミニウム粉末は、粒子表面にイットリアが存在する限りにおいて、特に制限されない。
 ここで、「粒子の表面にイットリアが存在する」とは、窒化アルミニウム粉末の粒子の表面にイットリアが存在する状態を全て含む。そのような状態としては例えば、窒化アルミニウム粉末の粒子の一部または全部がイットリアを含む層により被覆されている状態;窒化アルミニウム粉末の粒子表面にイットリアの粒子が付着している状態;窒化アルミニウム粉末の粒子が、窒化アルミニウム結晶粒子が粒界相を介して焼結することにより形成されており、粒界相にイットリアが含まれる状態、などが挙げられる。
 上記粒子の表面にイットリアが存在する窒化アルミニウム粉末は、いかなる方法で得られたものでも良い。例えば、従来公知の製造方法である、直接窒化法、還元窒化法、気相合成法などによって得られたものや、窒化アルミニウム粉末を成形、焼成したものであっても良い。
 中でも、本発明において好適な窒化アルミニウム粉末としては、特許文献1に記載のように、アルミナまたはアルミナ水和物と、カーボン粉末と、イットリアとを含む混合粉末を、窒素雰囲気中で焼成することによりアルミナ(又はアルミナ水和物)を還元窒化する方法によって得られた窒化アルミニウム粉末が挙げられる。
 具体的には、100質量部のアルミナまたはアルミナ水和物と、0.5乃至30質量部のイットリアと、38乃至46質量部のカーボン粉末とを混合し、得られた混合物を、含窒素雰囲気下、1620~1900℃の温度に2時間以上保持することにより、アルミナまたはアルミナ水和物を還元窒化することによって得られる窒化アルミニウム粉末を例示できる。このようにして製造された窒化アルミニウム粉末は、その製造方法の結果として、粒子表面の一部または全部がイットリアを含む層により被覆されている状態を成す。
 原料となる窒化アルミニウム粉末の粒度は、用途に応じて適宜決定されるものであり、特に制限されるものではない。原料となる窒化アルミニウム粉末の平均粒径(レーザー回折散乱法により測定した体積分布の中間値に対応する球相当径)は通常0.1~500μm、好ましくは1~100μm、より好ましくは1~30μm、更に好ましくは3~30μmである。また粉末の形状も特に制限されるものではなく、不定形、球状等であり得る。ただし好ましくは球状である。
 (酸溶液)
 酸洗工程S1において、窒化アルミニウム粉末と接触させる酸溶液は、イットリアを溶解可能な公知の酸の溶液を使用することができ、溶媒としては水が好ましく使用される。上記酸としては、後述するリン酸化合物以外の酸が用いられ、具体的には、塩化水素、硝酸、硫酸、過塩素酸、ヨウ化水素、臭化水素、過マンガン酸、チオシアン酸などの強酸が好適に使用される。
 酸溶液の濃度は特に限定されないが、好ましくは0.1mol/L以上、より好ましくは1mol/L以上である。酸溶液の濃度が低すぎるとイットリアが溶解し難い。なお、窒化アルミニウム粉末と酸溶液との接触を、窒化アルミニウム粉末が溶媒中に分散されたスラリーと酸溶液とを混合することにより行う場合には、該スラリーが含む溶媒によって酸溶液が希釈された後の濃度が上記範囲内であることが好ましい。酸溶液の溶媒が水である場合、酸溶液のpHは好ましくは4以下であり、より好ましくは3以下である。
 (処理条件)
 窒化アルミニウム粉末と酸溶液とを接触させる温度は特に限定されないが、通常5℃~100℃であり、好ましくは20℃~40℃である。温度が低すぎるとイットリアの溶解度が下がるため効率が悪く、温度が高すぎると窒化アルミニウムの加水分解が促進されるおそれがある。
 窒化アルミニウム粉末を酸溶液と接触させる際の、窒化アルミニウム粉末(固形分)の濃度は特に限定されないが、窒化アルミニウム粉末と酸溶液との混合物全量に対して好ましくは10~50質量%、より好ましくは20~40質量%である。窒化アルミニウム粉末の濃度が高すぎるとイットリアが溶解し難く、低すぎると生産性が低下する。
 窒化アルミニウム粉末と酸溶液とを接触させる時間は温度、濃度等の条件によって異なるが、通常5分~24時間、好ましくは30分~2時間接触させれば良い。接触時間が短すぎるとイットリアが十分溶解しないおそれがあり、長すぎると窒化アルミニウムの加水分解が進行するおそれがある。
 (残存イットリア量)
 酸洗工程S1後における窒化アルミニウム粉末の粒子表面のイットリア量は、後述のリン酸化合物による表面処理を妨害しない量まで低減されていればよい。好ましくは、酸洗工程S1の後濾別及び乾燥された窒化アルミニウム粉末に対して1mol/L塩酸による抽出操作を行った場合に抽出されるイットリアの量が、1000mg/100g(窒化アルミニウム粉末)以下、より好ましくは250mg/100g(窒化アルミニウム粉末)以下である。
 ここで、上記「抽出されるイットリアの量」は、次の工程(a)乃至(e)を順に行うことにより決定される値である。
(a)上記濾別及び乾燥された窒化アルミニウム粉末10gを、50mLサンプル瓶中の1mol/L塩酸25mLに、25℃において加える工程;
(b)サンプル瓶を超音波槽中の水に浸漬した状態で保持し、25℃において43kHzの超音波を30分間印加する工程;
(c)サンプル瓶中の内容物を濾過することにより、濾液を得る工程;
(d)濾液中のイットリウム含有量を、ICP発光分光法により定量する工程;及び
(e)濾液中のイットリウム含有量を、イットリアとしての含有量に換算する工程。
 なお、特許文献1に記載の窒化アルミニウム粉末の製造方法において希土類金属化合物としてイットリアを使用して得られる窒化アルミニウム粉末に対して、上記工程(a)乃至(e)を行った場合に抽出されるイットリアの量は、2000mg/100g(窒化アルミニウム粉末)以上である。
 <固液分離工程S12>
 固液分離工程S12(以下において「S12」と略記することがある。)は、S11の後、酸溶液と窒化アルミニウム粉末とを分離する工程である。S12における分離の具体的な方法としては、濾過、デカンテーション、遠心分離、及びこれらの組み合わせ等を例示できる。S12においては、酸溶液から分離した窒化アルミニウム粉末に対して更に水等による洗浄処理を行い、窒化アルミニウム粉末から酸を除去することが好ましい。
 酸溶液との接触後の窒化アルミニウム粉末は、例えば、水に分散した状態で、或いは、濾過後の水を含んだ状態で、後段の処理に供することができる。また、窒化アルミニウム粉末を乾燥させてから後段の処理に供してもよい。ただし、水を含んだ状態で後段の処理(リン酸化合物との接触処理)に供することが、乾燥操作に必要なエネルギーを節約できること、及び、窒化アルミニウム粉末のリン酸溶液中への分散性が良好であることから好ましい。
 <リン酸化合物処理工程S13>
 リン酸化合物処理工程S13(以下において「S13」と略記することがある。)は、S12を経た窒化アルミニウム粉末とリン酸化合物とを接触させる工程である。S13において窒化アルミニウム粉末とリン酸化合物を接触させる方法としては、公知の方法を特に制限なく採用することができる。例えば、窒化アルミニウム粉末をリン酸化合物溶液中に分散させる方法や、窒化アルミニウム粉末をリン酸化合物溶液に練り込みペースト状にする方法等が挙げられる。窒化アルミニウム粉末をリン酸化合物溶液中に分散させるにあたっては、ディスパーザー、ホモジナイザー、超音波分散機等の公知の装置を用いることができる。
 (リン酸化合物)
 S13におけるリン酸化合物としては、窒化アルミニウム粉末の耐水化に使用する公知のリン酸化合物を特に制限なく使用可能である。S13において使用可能なリン酸化合物の例としては、オルトリン酸、ピロリン酸、メタリン酸等の無機リン酸;リン酸リチウム、リン酸カリウム、リン酸ナトリウム、リン酸水素アルミニウム、リン酸二水素アルミニウム等の無機リン酸金属塩;リン酸アンモニウム、リン酸水素アンモニウム、リン酸二水素アンモニウム等の無機リン酸アンモニウム塩;及び、有機基を有する有機リン酸を挙げることができる。好ましい有機リン酸としては、下記一般式(2)で表される有機リン酸を挙げることができる。
Figure JPOXMLDOC01-appb-C000002
(式(2)中、nは0又は1であり;Rは炭素数1~12の炭化水素基であり;Rは水素又は炭素数1~12の炭化水素基である。)
 上記一般式(2)で表される有機リン酸の好ましい具体例としては、メチルリン酸(リン酸モノメチル若しくはリン酸ジメチル又はそれらの混合物)、エチルリン酸(リン酸モノエチル若しくはリン酸ジエチル又はそれらの混合物)、プロピルリン酸(リン酸モノプロピル若しくはリン酸ジプロピル又はそれらの混合物)、ブチルリン酸(リン酸モノブチル若しくはリン酸ジブチル又はそれらの混合物)、ペンチルリン酸(リン酸モノペンチル若しくはリン酸ジペンチル又はそれらの混合物)、ヘキシルリン酸(リン酸モノヘキシル若しくはリン酸ジヘキシル又はそれらの混合物)、オクチルリン酸(リン酸モノオクチル若しくはリン酸ジオクチル又はそれらの混合物)、ドデシルリン酸(リン酸モノドデシル若しくはリン酸ジ(ドデシル)又はそれらの混合物)等のリン酸不完全エステル;メチルホスホン酸、エチルホスホン酸、プロピルホスホン酸、ブチルホスホン酸、ペンチルホスホン酸、ヘキシルホスホン酸、オクチルホスホン酸、ビニルホスホン酸、フェニルホスホン酸等のホスホン酸を挙げることができる。ホスホン酸は不完全エステル化されていてもよい。
 上記のリン酸化合物は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。上記リン酸化合物の中でも、無機リン酸、無機リン酸の金属塩、及び、有機リン酸から選ばれる1種以上を用いることが好ましい。
 上記リン酸化合物は、窒化アルミニウム粉末との接触により、表面のアルミニウムと反応してリン酸アルミニウム結合(Al-O-P結合)を形成し、窒化アルミニウム粉末をリン酸アルミニウム層で被覆することにより、耐水性を発揮するものと推定される。
 (処理条件)
 S13において、窒化アルミニウム粉末とリン酸化合物とを接触させる際の条件としては、公知の条件を特に制限なく採用可能である。例えば、接触時間は通常1~120分間とすることができ、また、接触時の温度は通常0~90℃とすることができる。
 <後処理工程S14>
 後処理工程S14(以下において「S14」と略記することがある。)は、S13において得られた窒化アルミニウム粉末とリン酸化合物溶液との混合物から耐水性窒化アルミニウム粉末として取り出す工程である。S14の具体的な態様としては例えば、(A)混合物から溶媒を蒸発させることにより混合物を乾固させる態様;(B)混合物から窒化アルミニウム粉末を濾別し、濾別した窒化アルミニウム粉末を乾燥する態様;及び、(C)混合物から窒化アルミニウム粉末を濾別し、適当な溶媒(例えば水等。)で洗浄した後、乾燥する態様、等を挙げることができる。
 後処理工程S14においては、上記得られた耐水性窒化アルミニウム粉末に対して、さらに100~1000℃での加熱処理を行ってもよい。このような加熱処理により、耐水性窒化アルミニウム粉末の耐水性をさらに向上させることが可能である。
 本発明に関する上記説明では、固液分離工程S12を経た窒化アルミニウム粉末をそのままリン酸化合物処理工程S13に供する形態の耐水性窒化アルミニウム粉末の製造方法S1を例示したが、本発明は当該形態に限定されるものではない。例えば、固液分離工程S12を経た後、リン酸化合物処理工程S13の前に、S13でのリン酸化合物処理の効率を高めるための処理を行う形態の耐水性窒化アルミニウム粉末の製造方法とすることも可能である。そのような形態の耐水性窒化アルミニウム粉末の製造方法を以下に説明する。
 図2は、本発明の他の実施形態に係る耐水性窒化アルミニウム粉末の製造方法S2(以下において「製造方法S2」ということがある。)を説明するフローチャートである。図2に示すように、製造方法S2は、酸洗工程S11と、固液分離工程S12と、酸化膜形成工程S22と、リン酸化合物処理工程S13と、後処理工程S14とをこの順に有する。酸化膜形成工程S22以外の工程については製造方法S1における同名の工程と同様である。
 <酸化膜形成工程S22>
 酸化膜形成工程S22(以下において「S22」と略記することがある。)は、酸洗工程S11及び固液分離工程S12を経て粒子表面のイットリアが低減された窒化アルミニウム粉末の粒子表面に、酸化膜を形成する工程である。S22を経ることにより、リン酸化合物との反応性を高めることが可能である。S22において酸化膜を形成する方法としては、公知の酸化膜形成方法を採用することができる。S22において形成する酸化膜の量は、原料窒化アルミニウム粉末の表面積(BET法)当たり酸素換算で0.001~0.1g/mの酸化アルミニウムが存在する程度の量が好ましい。窒化アルミニウム粉末の粒子表面の酸化膜量は、窒化アルミニウム粉末の酸素濃度を、酸素・窒素分析装置(例えば商品名:EMGA-620W、堀場製作所製)を使用し、不活性ガスとしてヘリウムガスを使用して不活性ガス融解-赤外線吸収検出法にて定量することにより、該酸素濃度から以下の式によって決定できる。
 酸化膜量=酸素濃度(wt%)/(BET比表面積(m/g)×100)
 <用途>
 本発明によって製造される耐水性窒化アルミニウム粉末は、窒化アルミニウムの性質を生かした種々の用途、特に放熱シート、放熱グリース、放熱接着剤、塗料、熱伝導性樹脂などの放熱材料に充填するフィラーとして広く用いることができる。
 ここで放熱材料のマトリックスとしては、エポキシ樹脂、フェノール樹脂等の熱硬化性樹脂や、ポリエチレン、ポリプロピレン、ポリアミド、ポリカーボネート、ポリイミド、ポリフェニレンサルファイド等の熱可塑性樹脂、またシリコーンゴム、EPR、SBR等のゴム類、シリコーンオイルが挙げられる。
 これらのうち、放熱材料のマトリックスとしては、例えばエポキシ系樹脂、シリコーン系樹脂が好適であり、高柔軟性放熱部材とするには付加反応型液状シリコーンゴムが望ましい。
 以下、実施例及び比較例に基づき、本発明について更に具体的に説明する。ただし本発明はこれら実施例に限定されるものではない。
 実施例において、各種測定は次のように行った。
 (平均粒子径)
 レーザー回折散乱式粒度分布測定装置(日機装(株)製MT3300)によって粒度分布(体積分布)を測定し、その中間値に対応する球相当径(直径)を平均粒子径とした。
 (比表面積)
 BET一点法にて測定を行った。
 (塩酸抽出により抽出されるイットリア量)
 次の工程(a)乃至(f)を順に行うことにより決定した。
(a)酸溶液との接触後、濾別、水洗、及び乾燥された窒化アルミニウム粉末10gを、50mLサンプル瓶(アズワン製スクリュー管瓶No.7、本体は硼珪酸ガラス製)中の1mol/L塩酸25mLに、25℃において加えた。
(b)サンプル瓶を超音波槽(ブランソン製ブランソニック卓上型超音波洗浄器、槽内寸法:幅295×奥行150×高さ150mm、槽容量:6.0L、超音波出力:43kHz、120W)中の水(5L)に浸漬した状態で保持し、25℃において43kHzの超音波を30分間印加した。なお超音波槽の水面からサンプル瓶の底部外側表面までの深さは40mmとした。
(c)サンプル瓶中の内容物を濾過することにより、濾液を得た。
(d)濾液中のイットリウム含有量を、ICP発光分光法により定量した。
(e)濾液中のイットリウム含有量を、イットリアとしての含有量に換算した。
(f)換算されたイットリア含有量を、上記「酸溶液との接触後、濾別、水洗、及び乾燥された窒化アルミニウム粉末」100g当たりの値に換算した。
 (酸化膜量)
 窒化アルミニウム粉末の酸素濃度を、酸素・窒素分析装置(商品名:EMGA-620W、堀場製作所製)を使用し、不活性ガスとしてヘリウムガスを使用して不活性ガス融解-赤外線吸収検出法にて定量した。得られた酸素濃度から次の式によって酸素膜量を算出した。
 酸化膜量=酸素濃度(wt%)/(比表面積(m/g)×100)
 (耐水性試験)
 リン酸処理工程を経て得られた耐水性窒化アルミニウム粉末2gを室温の純水100g中に分散させ、分散液のpHをpH試験紙にて測定した後、この分散液を圧力容器に充填し120℃まで加熱し、24時間保持した後、水冷によって室温まで冷却し、分散液のpHをpH試験紙にて再度測定し、加熱前と加熱後の2つのpH値を記録した。加熱後のpHが加熱前のpHより上昇していれば、窒化アルミニウムの加水分解が進行したことを意味する。
 <実施例1>
 (原料窒化アルミニウム粉末の準備)
 Al源として、平均粒子径1.2μm、比表面積10.7m/gのα-アルミナを使用し、カーボン粉末として、比表面積125m/gのカーボンブラックを使用し、希土類金属化合物(共融解剤)として、平均粒子径1.0μm、比表面積11.7m/gの酸化イットリウムを使用した。
 上記のα-アルミナ100質量部、カーボンブラック42質量部、及び酸化イットリウム5.2質量部を混合した後、混合物をグラファイトのセッターに充填した。
 ついで、窒素雰囲気下において、焼成温度1700℃、焼成時間15時間の条件での焼成により還元窒化を行った後、空気雰囲気下において700℃で12時間、酸化処理(脱炭素処理)を行って、原料窒化アルミニウム粉末を得た。得られた原料窒化アルミニウム粉末の平均粒径は5μmであった。また得られた原料窒化アルミニウム粉末から塩酸抽出により抽出されるイットリアの量は、原料窒化アルミニウム粉末100gに対して5000mgであった。得られた原料窒化アルミニウム粉末の走査電子顕微鏡(SEM)像(反射電子検出、加速電圧1.0kV、倍率1万倍)を図3に示す。また、得られた原料窒化アルミニウム粉末の粉末X線回折の結果およびピークのキャラクタリゼーションを図4に示す。図3及び図4から、粒子表面にイットリアが存在することが確認できた。
 (酸洗工程)
 上記得られた原料窒化アルミニウム粉末500gと1mol/Lの濃度の塩酸1200mLを5Lビーカーに入れ、室温にてスターラーで1時間撹拌して、酸溶液との接触処理を行った。
 (固液分離工程)
 次いで、吸引ろ過により、窒化アルミニウム粉末を酸溶液から濾別し、水による洗浄を行った後、窒化アルミニウム粉末を回収した。上記酸溶液との接触後の窒化アルミニウム粉末から塩酸抽出により抽出されるイットリアの量は、乾燥した酸洗済み窒化アルミニウム粉末100gに対して200mgであった。
 (リン酸化合物処理工程及び後処理工程)
 上記酸溶液との接触後の窒化アルミニウム粉末を0.5wt%の濃度のオルトリン酸水溶液0.6Lに分散させ、30分間羽根撹拌(撹拌翼を用いて撹拌)した後、分散液を乾固させて耐水性窒化アルミニウム粉末を得た。
 得られた耐水性窒化アルミニウム粉末について、耐水性試験を実施した結果、加熱前のpH=6.5に対し加熱後のpH=6.5であり、窒化アルミニウムの加水分解が進行しなかったことが判明した。
 <実施例2>
 酸溶液を1mol/L硝酸に変更した以外は、実施例1と同様にして耐水性窒化アルミニウム粉末を製造した。
 酸溶液との接触後の窒化アルミニウム粉末から塩酸抽出により抽出されるイットリアの量は、乾燥した酸洗済み窒化アルミニウム粉末100gに対して200mgであった。また、リン酸化合物との接触後の窒化アルミニウム粉末の耐水性試験の結果は、加熱前のpH=6.5に対し加熱後のpH=6.5であり、窒化アルミニウムの加水分解が進行しなかったことが判明した。
 <実施例3>
 (酸洗工程及び固液分離工程)
 5Lビーカーに実施例1で準備した原料窒化アルミニウム粉末500gと1mol/L塩酸1200mLを入れ、室温にてスターラーで1時間撹拌し、吸引ろ過及び水洗により粉末を回収した。酸溶液との接触後の窒化アルミニウム粉末から塩酸抽出により抽出されるイットリアの量は、乾燥した酸洗済み窒化アルミニウム粉末100gに対して200mgであった。
 (酸化膜形成工程)
 上記酸溶液との接触後の窒化アルミニウム粉末を、大気雰囲気中、1000℃で5時間酸化処理を行った。酸化処理後の窒化アルミニウム粉末の粒子表面の酸化膜量は0.02g/mであった。
 (リン酸化合物処理工程及び後処理工程)
 上記酸化処理を経た窒化アルミニウム粉末を4wt%の濃度のオルトリン酸水溶液0.6Lに分散させ、30分間羽根撹拌した後、分散液を乾固させることにより、耐水性窒化アルミニウム粉末を得た。耐水性試験の結果、加熱前のpH=6.5に対して加熱後のpH=6.5であり、窒化アルミニウム粉末の加水分解が進行しなかったことが判明した。
 <比較例1>
 酸洗工程を行わなかった比較例である。5Lビーカーに、実施例1で準備した原料窒化アルミニウム粉末500g及び0.5wt%オルトリン酸水溶液0.6Lを入れ、30分間羽根撹拌した後、分散液を乾固させることにより耐水性窒化アルミニウム粉末の製造を試みた。耐水性試験の結果、加熱前のpH=6.5に対して加熱後のpH=11であり、窒化アルミニウムの加水分解が進行したことが判明した。
 <比較例2>
 オルトリン酸水溶液の濃度を5wt%とした以外は比較例1と同様にして、耐水性窒化アルミニウム粉末の製造を試みた。耐水性試験の結果、加熱前のpH=6.5に対して加熱後のpH=11であり、窒化アルミニウムの加水分解が進行したことが判明した。
 上記実施例1~3及び比較例1~2の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000003
 <実施例4>
 酸洗工程における撹拌時間を0.5時間とした以外は実施例1と同様にして、耐水性窒化アルミニウム粉末を製造した。酸溶液との接触後の窒化アルミニウム粉末から塩酸抽出により抽出されるイットリアの量は、乾燥した酸洗済み窒化アルミニウム粉末100gに対して918mgであった。得られた耐水性窒化アルミニウム粉末の耐水性試験の結果を表2に示す。
 <比較例3~5>
 原料窒化アルミニウム粉末及び酸洗条件を変更することにより、酸洗工程後に塩酸抽出により抽出されるイットリアの量が本発明の範囲外(粉末100gあたり1000mg超)である3種類の窒化アルミニウム粉末を用意した。これら3種類の窒化アルミニウム粉末に対して実施例1と同様にリン酸化合物処理を行い、耐水性窒化アルミニウム粉末の製造を試みた。それぞれについて耐水性試験の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000004
 酸溶液との接触後の窒化アルミニウム粉末から塩酸抽出により抽出されるイットリアの量が本発明の規定範囲内であった実施例4の耐水性窒化アルミニウム粉末は、耐水性試験において加熱前のpH=6.5に対して加熱後のpH=6.5であり、窒化アルミニウムの加水分解が進行しなかったことが判明した。
 一方、塩酸抽出により抽出されるイットリアの量が本発明の規定範囲を超える窒化アルミニウム粉末に対してリン酸化合物処理を施した比較例3~5の耐水性窒化アルミニウム粉末は、耐水性試験において加熱前のpH=6.5に対して加熱後のpH=11であり、窒化アルミニウムの加水分解が進行したことが判明した。

Claims (5)

  1.  窒化アルミニウム粉末の粒子表面を処理することによって耐水性窒化アルミニウム粉末を製造する方法であって、
     (i)少なくとも粒子表面にイットリアが存在する窒化アルミニウム粉末と、酸溶液とを接触させる工程;及び、
     (ii)前記窒化アルミニウム粉末とリン酸化合物とを接触させる工程
    を上記順に有し、
     前記工程(i)の後濾別、水洗、及び乾燥された窒化アルミニウム粉末に対して1mol/L塩酸による抽出操作を行った場合に抽出されるイットリアの量が、該濾別、水洗、及び乾燥された窒化アルミニウム粉末100gに対して1000mg以下であり、
     前記抽出されるイットリアの量は、
    (a)前記濾別及び乾燥された窒化アルミニウム粉末10gを、50mLサンプル瓶中の1mol/L塩酸25mLに、25℃において加える工程;
    (b)前記サンプル瓶を超音波槽中に保持し、25℃において43kHzの超音波を30分間印加する工程;
    (c)前記サンプル瓶中の内容物を濾過することにより、濾液を得る工程;
    (d)前記濾液中のイットリウム含有量を、ICP発光分光法により定量する工程;及び
    (e)前記濾液中のイットリウム含有量を、イットリアとしての含有量に換算する工程
    を上記順に行うことにより決定される
    ことを特徴とする、耐水性窒化アルミニウム粉末の製造方法。
  2.  前記窒化アルミニウム粉末の平均粒子径が1~30μmである、
    請求項1に記載の耐水性窒化アルミニウム粉末の製造方法。
  3.  前記酸溶液の溶媒が水であり、前記酸溶液のpHが4以下である、請求項1又は2に記載の耐水性窒化アルミニウム粉末の製造方法。
  4.  前記リン酸化合物が、無機リン酸、無機リン酸の金属塩、及び、有機基を有する有機リン酸からなる群から選ばれる1種以上の化合物である、
    請求項1~3のいずれか一項に記載の耐水性窒化アルミニウム粉末の製造方法。
  5.  前記工程(ii)において、前記窒化アルミニウム粉末の単位表面積あたりの前記リン酸化合物の付着量が、オルトリン酸イオン(PO 3-)換算で0.5~50mg/mである、
    請求項1~4のいずれか一項に記載の耐水性窒化アルミニウム粉末の製造方法。
PCT/JP2013/074150 2012-09-07 2013-09-06 耐水性窒化アルミニウム粉末の製造方法 WO2014038676A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380046086.5A CN104603049B (zh) 2012-09-07 2013-09-06 耐水性氮化铝粉末的制造方法
KR1020147034649A KR102051899B1 (ko) 2012-09-07 2013-09-06 내수성 질화알루미늄 분말의 제조 방법
US14/423,522 US9399577B2 (en) 2012-09-07 2013-09-06 Method for producing water-resistant aluminum nitride powder
EP13834918.8A EP2894126B1 (en) 2012-09-07 2013-09-06 Method for producing water-resistant aluminum nitride powder
JP2014534426A JP6239518B2 (ja) 2012-09-07 2013-09-06 耐水性窒化アルミニウム粉末の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012197362 2012-09-07
JP2012-197362 2012-09-07

Publications (1)

Publication Number Publication Date
WO2014038676A1 true WO2014038676A1 (ja) 2014-03-13

Family

ID=50237281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074150 WO2014038676A1 (ja) 2012-09-07 2013-09-06 耐水性窒化アルミニウム粉末の製造方法

Country Status (7)

Country Link
US (1) US9399577B2 (ja)
EP (1) EP2894126B1 (ja)
JP (1) JP6239518B2 (ja)
KR (1) KR102051899B1 (ja)
CN (1) CN104603049B (ja)
TW (1) TWI583622B (ja)
WO (1) WO2014038676A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116477585A (zh) * 2023-03-10 2023-07-25 四川大学 一种提高氮化铝粉体耐水性的方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6216265B2 (ja) * 2014-03-04 2017-10-18 日東電工株式会社 窒化アルミニウム粉末、樹脂組成物、熱伝導性成形体、窒化アルミニウム粉末の製造方法、樹脂組成物の製造方法、及び、熱伝導性成形体の製造方法
WO2018164123A1 (ja) * 2017-03-07 2018-09-13 株式会社トクヤマ 粗大粒子を含まない窒化アルミニウム粉末
CN112897481B (zh) * 2020-12-30 2023-01-24 河北利福光电技术有限公司 一种氮化铝粉体及其制备方法
US20220267899A1 (en) * 2021-02-25 2022-08-25 Applied Materials, Inc. Microstructure control of conducting materials through surface coating of powders
CN112919432A (zh) * 2021-03-09 2021-06-08 上海大学 氮化铝粉体及其改性制备方法
CN114437504B (zh) * 2021-12-30 2022-11-08 广东宝士电气有限公司 一种全封闭耐火母线及其制造工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143806A (ja) * 1985-12-18 1987-06-27 Denki Kagaku Kogyo Kk 窒化アルミニウム粉末およびその製造方法
JP2002179413A (ja) * 2000-12-13 2002-06-26 National Institute Of Advanced Industrial & Technology 球状窒化アルミニウムフィラー及びその製造方法
JP2002226207A (ja) 2001-01-25 2002-08-14 Toyota Motor Corp 耐水性に優れた窒化アルミニウム粉末及びその製造方法
JP2004083334A (ja) 2002-08-27 2004-03-18 Toyo Aluminium Kk 窒化アルミニウム系粉末
WO2012043574A1 (ja) 2010-09-28 2012-04-05 株式会社トクヤマ 球状窒化アルミニウム粉末の製造方法
WO2012147999A1 (ja) 2011-04-28 2012-11-01 株式会社トクヤマ 耐水性窒化アルミニウムの製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923689A (en) * 1988-08-01 1990-05-08 Toyo Aluminium Kabushiki Kaisha Aluminum nitride power having improved water-resistance
US5126121A (en) * 1991-05-03 1992-06-30 The Dow Chemical Company Process for preparing aluminum nitride powder via controlled combustion nitridation
FR2722492B1 (fr) * 1994-07-12 1997-03-14 Sumitomo Chemical Co Poudre de nitrure d'aluminium et corps fritte et composition de resine la contenant
JP3100871B2 (ja) * 1995-07-11 2000-10-23 株式会社東芝 窒化アルミニウム焼結体
US5710382A (en) * 1995-09-26 1998-01-20 The Dow Chemical Company Aluminum nitride, aluminum nitride containing solid solutions and aluminum nitride composites prepared by combustion synthesis and sintered bodies prepared therefrom
JP3420901B2 (ja) * 1995-11-06 2003-06-30 三井化学株式会社 耐水性窒化アルミニウム粉末
JP4812144B2 (ja) * 1998-07-22 2011-11-09 住友電気工業株式会社 窒化アルミニウム焼結体及びその製造方法
TW466212B (en) * 2000-02-22 2001-12-01 Nat Science Council Method for synthesis of aluminum nitride
JP2004217441A (ja) * 2003-01-10 2004-08-05 Mitsui Chemicals Inc 球状窒化アルミニウム粉およびその製造方法
JP5159625B2 (ja) * 2006-08-07 2013-03-06 株式会社トクヤマ 窒化アルミニウム焼結体およびその製造方法
CN101723684A (zh) * 2009-12-03 2010-06-09 清华大学 一种低氧含量球形氮化铝粉体的制备方法
JP5686748B2 (ja) * 2010-01-29 2015-03-18 株式会社トクヤマ 球状窒化アルミニウム粉末の製造方法及び該方法により得られた球状窒化アルミニウム粉末
WO2012077551A1 (ja) * 2010-12-06 2012-06-14 株式会社トクヤマ 窒化アルミニウム粉末及びその製造方法
US20140042675A1 (en) * 2012-08-07 2014-02-13 Bureau Of Energy Ministry Of Economic Affairs Method for manufacturing an aluminum nitride particle and application thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143806A (ja) * 1985-12-18 1987-06-27 Denki Kagaku Kogyo Kk 窒化アルミニウム粉末およびその製造方法
JP2002179413A (ja) * 2000-12-13 2002-06-26 National Institute Of Advanced Industrial & Technology 球状窒化アルミニウムフィラー及びその製造方法
JP2002226207A (ja) 2001-01-25 2002-08-14 Toyota Motor Corp 耐水性に優れた窒化アルミニウム粉末及びその製造方法
JP2004083334A (ja) 2002-08-27 2004-03-18 Toyo Aluminium Kk 窒化アルミニウム系粉末
WO2012043574A1 (ja) 2010-09-28 2012-04-05 株式会社トクヤマ 球状窒化アルミニウム粉末の製造方法
WO2012147999A1 (ja) 2011-04-28 2012-11-01 株式会社トクヤマ 耐水性窒化アルミニウムの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116477585A (zh) * 2023-03-10 2023-07-25 四川大学 一种提高氮化铝粉体耐水性的方法
CN116477585B (zh) * 2023-03-10 2024-02-23 四川大学 一种提高氮化铝粉体耐水性的方法

Also Published As

Publication number Publication date
US9399577B2 (en) 2016-07-26
EP2894126B1 (en) 2018-08-01
TW201418149A (zh) 2014-05-16
CN104603049A (zh) 2015-05-06
JPWO2014038676A1 (ja) 2016-08-12
KR102051899B1 (ko) 2019-12-04
US20150225238A1 (en) 2015-08-13
EP2894126A1 (en) 2015-07-15
JP6239518B2 (ja) 2017-11-29
TWI583622B (zh) 2017-05-21
CN104603049B (zh) 2016-12-21
EP2894126A4 (en) 2016-04-13
KR20150051939A (ko) 2015-05-13

Similar Documents

Publication Publication Date Title
JP6239518B2 (ja) 耐水性窒化アルミニウム粉末の製造方法
JP5965899B2 (ja) 耐水性窒化アルミニウムの製造方法
Luo et al. Aryl-modified graphene quantum dots with enhanced photoluminescence and improved pH tolerance
JP5275562B2 (ja) 粉末状のシリカコンポジット粒子及びその製造方法、シリカコンポジット粒子分散液、並びに樹脂組成物
EP3512988A1 (en) Production of graphene
Ramirez-Soria et al. Graphene oxide bifunctionalized with NH2/NH3+ and their outstanding-performance against corrosion
CN105189356B (zh) 耐热氢氧化铝的制造方法
JP6741605B2 (ja) 絶縁性磁性粉体およびその製造方法ならびに粉体処理液
EP4053077A1 (en) Aluminum-containing silica sol dispersed in nitrogen-containing solvent, and resin composition
TW202246174A (zh) 碳量子點之製造方法
JP2018030741A (ja) 表面修飾ナノダイヤモンド、前記表面修飾ナノダイヤモンドを含む分散液及び複合材料
KR20050109567A (ko) 산성 수성 알루미나 졸의 제조방법
CN116144354A (zh) 荧光体颗粒
Pełech et al. Effect of treating method on the physicochemical properties of amine-functionalized carbon nanotubes
Avaliani et al. Condensed phosphates: New inorganic polymers with a variety of applications and improvement of their gravimetric determination methods
JP6509668B2 (ja) ホウ酸アルミニウムウィスカーの製造方法
JP7179148B1 (ja) 酸化ケイ素被覆窒化アルミニウム粉末の製造方法および酸化ケイ素被覆窒化アルミニウム粉末
JP7229328B1 (ja) 窒化ケイ素被覆窒化アルミニウム粉末の製造方法
Thai et al. Synthesis of Lithium-exchange Silica Particles for Corrosion Protection of Aluminum Alloys
Adigun et al. Effect of electric potential on the structure and yield of graphene oxide using electrochemical exfoliation method
PL223499B1 (pl) Sposób wytwarzania przewodzącego kompozytu na bazie ZrO<sub>2</sub>
Zhan et al. Experimental Study on Fluoride-Free Synthesis of Titanium Carbide (Mxene): A Modification in Aqueous Electrolyte System
Sarhan et al. Alternating Current Electrophoretic Deposition of Hydroxyapatite Composite Coating on Mg-0.8 wt.% Ca-3% wt.% Zn alloy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13834918

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014534426

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147034649

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14423522

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE