WO2012077551A1 - 窒化アルミニウム粉末及びその製造方法 - Google Patents

窒化アルミニウム粉末及びその製造方法 Download PDF

Info

Publication number
WO2012077551A1
WO2012077551A1 PCT/JP2011/077656 JP2011077656W WO2012077551A1 WO 2012077551 A1 WO2012077551 A1 WO 2012077551A1 JP 2011077656 W JP2011077656 W JP 2011077656W WO 2012077551 A1 WO2012077551 A1 WO 2012077551A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
particle size
alumina
rare earth
aln
Prior art date
Application number
PCT/JP2011/077656
Other languages
English (en)
French (fr)
Inventor
孝俊 宗岡
一孝 渡辺
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to JP2012547801A priority Critical patent/JP5875525B2/ja
Priority to CN201180047992.8A priority patent/CN103140436B/zh
Priority to KR1020137007480A priority patent/KR101816954B1/ko
Priority to EP11847525.0A priority patent/EP2650259B1/en
Priority to US13/989,902 priority patent/US9056774B2/en
Publication of WO2012077551A1 publication Critical patent/WO2012077551A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0726Preparation by carboreductive nitridation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/528Spheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/726Sulfur content
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to an aluminum nitride powder suitable as a filler for a heat radiation material for filling a resin, grease, adhesive, paint or the like to improve heat radiation and a method for producing the same.
  • aluminum nitride has excellent electrical insulation and high thermal conductivity
  • materials such as resin, grease, adhesives, and paints filled with sintered bodies or powders are expected as heat dissipation materials with high thermal conductivity. Is done.
  • an aluminum nitride powder having a high sphericity, a particle size of about several ⁇ m to several hundred ⁇ m, and a low content of coarse particles is strongly desired.
  • the aluminum nitride powder is produced by an alumina reduction nitriding method in which alumina is nitrided in the presence of carbon, a direct nitriding method in which aluminum and nitrogen are directly reacted, or a vapor phase method in which alkyl aluminum is reacted with ammonia and then heated. Etc. are known.
  • the aluminum nitride particles obtained by the reductive nitriding method and the gas phase method have a shape close to a sphere, but the particle size is only in the submicron order.
  • the aluminum nitride powder obtained by the direct nitriding method is produced by pulverization and classification, it is possible to obtain an aluminum nitride powder having a particle size of about several ⁇ m to several hundred ⁇ m. Are irregular particles with low sphericity. Therefore, it is difficult to highly fill the aluminum nitride powder obtained by the above method in the resin.
  • a mixed powder of alumina powder, alkaline earth metal compound or rare earth compound powder, and carbon powder is non-oxidized containing nitrogen.
  • a method for producing an aluminum nitride powder by firing in a neutral atmosphere (see Patent Document 1). This method is intended to produce aluminum nitride at a low temperature of 1500 ° C. or lower by utilizing the action of an alkaline earth metal compound or a rare earth compound to promote the nitriding reaction.
  • the aluminum nitride particles obtained by the above method have a high sphericity, the particle size is at most about 1 ⁇ m, and particles having a relatively large particle size on the order of several ⁇ m have not been obtained. Further, it is difficult to control the particle diameter of the obtained aluminum nitride powder by the above method. For example, when an alkaline earth metal compound is used, it was confirmed that the obtained aluminum nitride powder contains coarse particles having a larger particle size than necessary. In addition, it is difficult to separate such coarse particles from the above highly adherent aluminum nitride powder of about 1 ⁇ m.
  • an object of the present invention is aluminum nitride having a high sphericity optimum for filler use, relatively large particles having an average particle diameter of several ⁇ m to several hundreds of ⁇ m, and a low content of coarse particles
  • the object is to provide a method for obtaining a powder with high productivity and an aluminum nitride powder obtained by such a method.
  • an Al source powder of alumina or alumina hydrate, a rare earth metal compound (sintering aid) powder, and a carbon (reducing agent) powder When producing the aluminum nitride powder by firing the mixed powder in a nitrogen-containing atmosphere at a constant high temperature region, the Al source powder having a specific primary particle size is used, and the Al metal powder is used as the rare earth metal compound powder.
  • the sphericity is high, the particle size is as expected, and the content of coarse particles is low.
  • the inventors have found that aluminum nitride powder can be obtained with high productivity, and have completed the present invention.
  • Alumina or alumina hydrate powder having a primary particle size of 0.001 to 6 ⁇ m as an Al source and an average particle size (D 50 ) in the range of 2 to 80 ⁇ m and 6 times the primary particle size of the Al source Preparing a rare earth metal compound powder having the above average particle size (D 50 ) and a carbon powder; Mixing the Al source powder, rare earth metal compound powder and carbon powder; Reducing and nitriding the Al source by holding the obtained mixed powder at a temperature of 1620 to 1900 ° C. for 2 hours or more under a nitrogen-containing atmosphere; A method for producing an aluminum nitride powder is provided.
  • the rare earth metal element compound powder it is preferable to use 0.5 to 50 parts by mass of the rare earth metal element compound powder and 35 to 50 parts by mass of the carbon powder per 100 parts by mass of the Al source.
  • the average particle size (D 50 ) is 6 to 280 ⁇ m, and the content of coarse particles having a particle size of 5 times or more the average particle size (D 50 ) is 10% or less in terms of volume.
  • An aluminum nitride powder can be obtained.
  • the primary particle size of the Al source powder is the arithmetic average value when measuring the particle size in a fixed direction for 30 or more particles by means of a transmission electron micrograph for alumina powder or alumina hydrate powder.
  • the average particle diameter (D 50 ) refers to the particle diameter when the cumulative volume in the particle size distribution measured by the laser diffraction scattering method is 50%. That is, the particle diameter in this case is not the primary particle diameter but the secondary particle diameter (the diameter of the aggregated particles).
  • the production method of the present invention has a relatively large average particle size (6 ⁇ m to 280 ⁇ m) that is optimal for filler applications, has a high sphericity, and has a particle size of 5 times or more the average particle size (D 50 ).
  • An aluminum nitride powder having a small amount of coarse particles can be obtained with high productivity.
  • alumina or alumina hydrate powder having a small primary particle size is used as the Al source, and at the same time, a rare earth metal compound having a larger average particle size than the Al source powder is used as a sintering aid.
  • the Al source particles adhere to the surface so as to cover the individual particles of the rare earth compound. Accordingly, in a nitrogen-containing atmosphere in a predetermined high temperature region (1620 to 1900 ° C.), the reductive nitriding reaction proceeds while the Al source particles are sequentially melted from the surface of the rare earth compound particles. As a result, the resulting aluminum nitride Thus, the AlN powder having a relatively large particle size as described above can be obtained.
  • the particle diameter of the obtained AlN can be controlled by adjusting the particle diameter of the rare earth compound. As a result, it is possible to obtain an AlN powder with less coarse particles and having a high sphericity in which the particles are nearly spherical.
  • the AlN powder having the particle structure as described above can be highly filled into various resins and greases, and can exhibit high thermal conductivity as a heat dissipation material.
  • FIG. 2 is an electron micrograph showing the particle structure of the AlN powder obtained in Example 1.
  • the production method of the present invention is to produce aluminum nitride (AlN) powder by a nitriding reduction method, and uses an Al source powder, a sintering aid (rare earth metal compound) powder, and a carbon powder (reducing agent).
  • AlN powder is produced by nitriding reduction by firing these mixed powders in a constant high-temperature nitrogen-containing atmosphere, and if necessary, decarbonization treatment can be performed after nitriding reduction.
  • alumina or alumina hydrate is used as the Al source of AlN.
  • Such an Al source is finally dehydrated and transitioned by heating of alumina having a crystal structure such as ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , boehmite, diaspore, gibbsite, bayerite, and todite.
  • Any hydrated alumina can be used as long as all or part of it is transferred to ⁇ -alumina. These can be used alone or in combination of two or more.
  • ⁇ -alumina, ⁇ -alumina and boehmite which have particularly high reaction activity and are easy to control, are preferably used.
  • the alumina or alumina hydrate used as the Al source is used in the form of a powder, and its primary particle size is 0.001 to 6 ⁇ m, preferably 0.01 to 4 ⁇ m, more preferably 0.1 to 2 ⁇ m. Must be in range. That is, when the primary particle diameter is not in the above range, the reduction nitridation reaction does not proceed uniformly, resulting in a problem that the content of coarse particles of the obtained AlN powder becomes high.
  • the carbon used in the present invention functions as a reducing agent, and carbon black and graphite powder can be used.
  • carbon black furnace black, channel black, and acetylene black are preferably used.
  • the carbon black used preferably has a BET specific surface area in the range of 0.01 to 500 m 2 / g.
  • a rare earth metal compound is used as a sintering aid.
  • examples of the rare earth metal include yttrium, lanthanum, cerium, praseodymium, terbium, and the like, and examples of the compound include oxides, carbides, halides (for example, fluorides), and the like. be able to. These compounds containing rare earth metals can be used alone or in combination of two or more.
  • the rare earth metal compound may be capable of generating the exemplified rare earth metal oxide, carbide, or halide during the reductive nitriding.
  • rare earth metal carbonates, nitrates, acetates, hydroxides, and the like can also be used.
  • rare earth metal compounds described above those that can co-melt with alumina at 1200 to 1900 ° C., more preferably 1300 to 1800 ° C., such as yttrium oxide, are preferably used. That is, when a compound having a co-melting temperature of less than 1200 ° C. is used, the alumina particles tend to aggregate together, and when a compound having a temperature exceeding 1900 ° C. is used, particles having a high sphericity are obtained. It tends to be difficult to obtain.
  • the rare earth metal compound described above can be subjected to a known surface treatment such as a fatty acid treatment, if necessary.
  • the rare earth compound has an average particle size (D 50 ) of 2 to 80 ⁇ m, preferably 3 ⁇ m to 65 ⁇ m, more preferably 4 ⁇ m to 4 ⁇ m in order to adjust the particle size of the resulting AlN powder to a relatively large size. It should be in the range of 50 ⁇ m. As described above, in the present invention, the particle size of the rare earth metal compound correlates with the particle size of the AlN powder obtained.
  • the average particle diameter (D 50 ) of the rare earth compound is 6 times or more the primary particle diameter of the Al source described above, It is necessary to be in the range of preferably 8 times, more preferably 10 times or more. That is, since the particle size of the rare earth metal compound is considerably larger than that of the Al source particles, the Al source particles adhere to the surface of the rare earth metal compound particles so as to cover each of the large particles of the rare earth metal compound. The nitriding reaction proceeds, and as a result, the particle size of the obtained AlN powder is close to that of the rare earth metal compound particles used, and the sphericity is high.
  • the average particle size (D 50 ) of the compound is within the above-mentioned range. On the condition that it is within the range, it is desirable that it is 150 times or less of the primary particle diameter of the Al source.
  • the content of coarse particles having a particle size of 5 times or more the average particle size (D 50 ) is 5% or less, preferably 3% or less, more preferably in terms of volume. Is preferably 1% or less in order to obtain an AlN powder in which the content of coarse particles is suppressed to a smaller amount.
  • sintering aids can be used in combination as long as the amount is small so long as the particle size adjusting action by the relatively large-diameter rare earth metal compound powder is not impaired.
  • examples of such other sintering aids include oxides, carbonates or halides of alkaline earth metals that can co-melt with alumina at 1200 to 1900 ° C., preferably 1300 to 1800 ° C.
  • a typical example is calcium oxide.
  • the above-described raw material powders are subjected to a reductive nitriding step described later in the form of a mixed powder.
  • the preparation of such a mixed powder is not particularly limited, but is generally performed using a blender such as a blender, a mixer, or a ball mill.
  • the Al source powder used as a raw material only needs to have a primary particle diameter in the above-mentioned range, and the reductive nitriding reaction proceeds in units of primary particles, so the secondary particle diameter is not particularly limited, If excessively large aggregated particles are formed, the progress of the reductive nitriding reaction may be non-uniform. Therefore, prior to mixing with other raw material powders, the secondary particle size (ie, aggregated particle size) of the Al source powder is 1/4 times or less, more preferably 1/6 times or less that of the rare earth metal compound added. It is preferable to pulverize as appropriate.
  • each raw material powder is preferably used in the following proportions in order to allow the reductive nitridation reaction to proceed rapidly and uniformly in the form described above. That is, the rare earth metal compound powder is preferably blended in an amount of 0.5 to 50 parts by mass, particularly 1 to 25 parts by mass, and the carbon powder is 35 to 50 parts by mass, preferably 37 to 46 parts by mass, more preferably 38 to 43 parts by mass is preferably blended.
  • the reduction nitriding reaction is carried out by holding the mixed powder in a nitrogen-containing atmosphere at a temperature of 1620 to 1900 ° C. for 2 hours or more.
  • reaction temperature When the reaction temperature is lower than 1620 ° C., the nitriding reaction does not proceed easily, and even when the nitriding reaction is completed, the spheroidization of AlN particles or the growth of the particles may not proceed sufficiently.
  • reaction temperature exceeds 1900 ° C., the rare earth compound is scattered in a short time, and oxynitride (AlON) having low thermal conductivity is generated. In addition, oxygen is easily dissolved in the AlN particles, and the thermal conductivity of the AlN particles themselves is lowered.
  • the reaction temperature is particularly preferably 1620 to 1800 ° C.
  • reaction time is less than 2 hours, the nitriding reaction does not proceed sufficiently, and the sphericity of the AlN particles cannot be sufficiently increased.
  • the reaction time is particularly preferably 8 to 20 hours.
  • the reduction nitriding as described above may be performed so that nitrogen is sufficiently diffused in the mixed powder.
  • a method of filling the mixed powder in a carbon setter or the like and circulating nitrogen a method of using a rotary kiln
  • reduction nitriding can be performed by a method using a fluidized bed or the like.
  • a method of filling the mixed powder in a carbon setter or the like and circulating nitrogen is particularly preferable.
  • the AlN powder obtained by the above reaction contains surplus carbon, it is preferable to perform a decarbonization treatment if necessary.
  • This decarbonization treatment is performed by oxidizing and removing carbon, and is performed using an oxidizing gas.
  • an oxidizing gas any gas capable of removing carbon such as air and oxygen can be used.
  • air is preferable in consideration of economy and the oxygen concentration of the obtained aluminum nitride.
  • the treatment temperature is generally 500 to 900 ° C., preferably 600 to 750 ° C. in consideration of the decarbonization efficiency and excessive oxidation of the aluminum nitride surface.
  • the oxidation temperature is too high, the surface of the aluminum nitride powder is excessively oxidized, and it is difficult to obtain the target powder. Therefore, it is preferable to select an appropriate oxidation temperature and reaction time.
  • the aluminum nitride (AlN) powder obtained by the above-described method of the present invention has a high sphericity and an average particle diameter (D 50 ) in the range of 6 to 280 ⁇ m, preferably 7 to 150 ⁇ m, more preferably 8 to 100 ⁇ m. is there. Further, the content of coarse particles having a particle diameter of 5 times or more of the average particle diameter (D 50 ) is 10% or less, preferably 5% or less, more preferably 3% or less in terms of volume.
  • the lattice constant of the C axis of the AlN crystal is 4.9800 ⁇ or more, particularly 4.9802 ⁇ or more, and further 4.9804 ⁇ or more.
  • the C-axis lattice constant is a value measured using an X-ray diffractometer and using Si as an external standard substance, and serves as an index for evaluating the solid solution oxygen concentration of AlN particles. That is, AlN particles having a larger lattice constant of the C axis have a lower solid solution oxygen concentration and higher thermal conductivity of the AlN particles themselves. Further, when the value of the lattice constant of the C axis is 4.9775 mm or less, the thermal conductivity of the AlN particles themselves may be low.
  • the index of sphericity of the AlN particles constituting the AlN powder can be represented by the ratio of the major axis to the minor axis (DS / DL).
  • the sphericity (DS / DL) of the AlN particles obtained by the present invention is 0.75 or more, particularly 0.80, further 0.85 or more, and has a very high sphericity.
  • the AlN powder of the present invention (especially one subjected to decarbonization treatment) is pulverized and classified as necessary, and adjusted to a particle size according to the purpose.
  • the surface of the AlN particles Prior to use, in order to improve water resistance and compatibility with the resin, the surface of the AlN particles can be treated by a known method. Specifically, organosilicon compounds such as silicone oil, silylating agent, silane coupling agent, treatment with phosphoric acid or phosphate, fatty acid, coating treatment with polymer such as polyamide resin, inorganic materials such as alumina and silica Examples include film treatment.
  • the above-described aluminum nitride powder is used for various applications that make use of the properties of AlN, in particular, as a raw material for an AlN substrate and a filler for a heat dissipation material.
  • a filler for a heat radiation material can be widely used as a filler for a heat radiation material to be blended with a heat radiation sheet, a heat radiation grease, a heat radiation adhesive, a paint, a heat conductive resin, or the like.
  • the resin and grease used as the matrix of the heat dissipation material include epoxy resins, epoxy resins introduced with mesogenic groups, unsaturated polyester resins, polyimide resins, phenol resins, and other thermosetting resins, polyethylene, polypropylene, polyamide, and polycarbonate.
  • thermoplastic resins such as polyamide and polyphenylene sulfide, and rubbers such as silicone rubber, EPR and SBR, and silicone oil.
  • the matrix of the heat dissipation material for example, an epoxy resin or a silicone resin is preferable, and an addition reaction type liquid silicone rubber is preferable for a highly flexible heat dissipation member.
  • Such heat dissipation materials include, in addition to the AlN powder of the present invention, AlN powder obtained by a method other than the method of the present invention, such as crushed alumina, spherical alumina, boron nitride, zinc oxide, silicon carbide, and graphite.
  • fillers There are fillers, and one or several of them may be filled together with the AlN powder, and the shape and particle size of the AlN powder of the present invention and other fillers may be selected according to the characteristics and application of the heat dissipation material.
  • the mixing ratio of the AlN powder of the present invention to other fillers can be adjusted as appropriate in the range of 1:99 to 99: 1.
  • the AlN powder of the present invention an AlN powder obtained by a reductive nitriding method or a direct nitriding method with a particle size of about 0.1 ⁇ m to 500 ⁇ m so as to enable high filling into the resin, A so-called sintered granule obtained by sintering AlN granules obtained by spray-drying can be used in combination.
  • the AlN powder of the present invention In order to increase the filler content in the resin, a method of using the AlN powder of the present invention in combination with several kinds of spherical alumina having an average particle diameter of 10 to 100 ⁇ m is preferably employed. In order to impart anisotropy to the thermal conductivity of the heat dissipation material, the AlN powder of the present invention and several types of boron nitride having an average particle diameter of 1 to 50 ⁇ m can be used in combination. As described above, the filler may be surface-treated with a silane coupling agent or the like. Moreover, you may further add additives, such as a plasticizer, a vulcanizing agent, a hardening accelerator, and a mold release agent, to a thermal radiation material.
  • additives such as a plasticizer, a vulcanizing agent, a hardening accelerator, and a mold release agent, to a thermal radiation material.
  • the resin composition which is the above heat dissipation material, can be produced by mixing with a blender or a mixer, and the heat dissipation material can be prepared by press molding, extrusion molding, doctor blade method, resin impregnation method. It can be produced by molding and heat curing or light effecting it.
  • the average particle size (D 50 ) was measured with a laser diffraction particle size distribution device (MICROTRAC HRA manufactured by Nikkiso Co., Ltd.) by dispersing a sample in a sodium pyrophosphate aqueous solution using a homogenizer.
  • the secondary particle size (aggregated particle size) of the Al source powder is also indicated by this average particle size (D 50 ).
  • the primary particle size in the Al source powder was measured with a transmission electron microscope.
  • C-axis lattice constant of the crystal was measured using an X-ray diffractometer (RINT-1400 manufactured by Rigaku Corporation) and Si as an external standard substance.
  • Ratio of major axis and minor axis of particles Select 100 arbitrary particles from an electron microscope photographic image of AlN powder, and measure the major axis (DL) and minor axis (DS) of the particle image using a scale. The average value of the ratio (DS / DL) was used as a measure of sphericity.
  • the cation impurity content (metal element concentration) of the AlN powder is obtained by alkali-melting the AlN powder and neutralizing it with an acid, and using an ICP emission spectrometer (ICPS-7510 manufactured by Shimadzu Corporation). And quantified.
  • Thermal conductivity of silicone rubber sheet A thermally conductive silicone rubber composition is molded into a size of 10 cm ⁇ 6 cm and a thickness of 3 mm and cured by heating in a hot air circulation oven at 150 ° C. for 1 hour to conduct heat. The thermal conductivity was measured using a rate meter (QTM-500, manufactured by Kyoto Electronics Industry). In order to prevent electric leakage from the detection part, the measurement was made through a polyvinylidene chloride film having a thickness of 10 ⁇ m.
  • Example 1 As an Al source, a primary particle diameter 0.3 [mu] m (secondary particle size 1.1 .mu.m), alpha-alumina having a specific surface area of 9.7 m 2 / g, a specific surface area of 125m 2 / g as the carbon carbon black, the average particle diameter as a rare earth compound 5.0 ⁇ m yttrium oxide was used. After mixing 100 parts by mass of the above-mentioned ⁇ -alumina, 42 parts by mass of carbon black, and 5.0 parts by mass of yttrium oxide, they were filled in a graphite setter.
  • a reductive nitridation reaction was performed in a nitrogen atmosphere under conditions of a firing temperature of 1700 ° C. and a firing time of 15 hours. Thereafter, an oxidation treatment was performed at 700 ° C. for 12 hours in an air atmosphere to obtain an AlN powder.
  • Example 2 An AlN powder was prepared in the same manner as in Example 1 except that ⁇ -alumina having a primary particle size of 0.05 ⁇ m (secondary particle size of 0.9 ⁇ m) and a specific surface area of 230 m 2 / g was used as the Al source. The same measurements as in Example 1 were performed on the various physical properties of the obtained AlN powder, and the results are shown in Table 1. Moreover, the sheet
  • Example 3 An AlN powder was produced in the same manner as in Example 1 except that the firing temperature was 1650 ° C. The same measurements as in Example 1 were performed on the various physical properties of the obtained AlN powder, and the results are shown in Table 1. Moreover, the sheet
  • Example 4 An AlN powder was produced in the same manner as in Example 1 except that the blending amount of yttrium oxide was 3.0 parts by mass. The same measurements as in Example 1 were performed on the various physical properties of the obtained AlN powder, and the results are shown in Table 1. Moreover, the sheet
  • Example 5 An AlN powder was prepared in the same manner as in Example 1 except that the amount of yttrium oxide was 10.0 parts by mass. The same measurements as in Example 1 were performed on the various physical properties of the obtained AlN powder, and the results are shown in Table 1. Moreover, the sheet
  • Example 6 An AlN powder was produced in the same manner as in Example 1 except that the amount of carbon black was 39 parts by mass. The same measurements as in Example 1 were performed on the various physical properties of the obtained AlN powder, and the results are shown in Table 2. Moreover, the sheet
  • Example 7 An AlN powder was produced in the same manner as in Example 1 except that yttrium oxide having an average particle diameter of 35.0 ⁇ m was used as the rare earth compound. The same measurements as in Example 1 were performed on the various physical properties of the obtained AlN powder, and the results are shown in Table 2. Moreover, the sheet
  • Example 8> Implementation was performed except that ⁇ alumina having a primary particle size of 5.1 ⁇ m (secondary particle size of 5.3 ⁇ m) as the Al source, ⁇ -alumina having a specific surface area of 0.67 m 2 / g, and yttrium oxide having an average particle size of 35.0 ⁇ m as the rare earth compound.
  • AlN powder was produced in the same manner as in Example 1. The same measurements as in Example 1 were performed on the various physical properties of the obtained AlN powder, and the results are shown in Table 2. Moreover, the sheet
  • Example 9 ⁇ Example 9> Implementation was performed except that alpha alumina having a primary particle diameter of 1.8 ⁇ m (secondary particle diameter of 1.8 ⁇ m) as an Al source, ⁇ -alumina having a specific surface area of 0.92 m 2 / g, and yttrium oxide having an average particle diameter of 11.8 ⁇ m as a rare earth compound were used.
  • AlN powder was produced in the same manner as in Example 1. The same measurements as in Example 1 were performed on the various physical properties of the obtained AlN powder, and the results are shown in Table 2. Moreover, the sheet
  • Example 1 An AlN powder was produced in the same manner as in Example 1 except that yttrium oxide having an average particle size of 1.0 ⁇ m was used as the rare earth compound. The same measurements as in Example 1 were performed on the various physical properties of the obtained AlN powder, and the results are shown in Table 3. Moreover, the sheet
  • ⁇ Comparative Example 2> Implementation was performed except that ⁇ alumina having a primary particle diameter of 7.1 ⁇ m (secondary particle diameter of 7.3 ⁇ m) as the Al source and a specific surface area of 0.25 m 2 / g and yttrium oxide having an average particle diameter of 50.2 ⁇ m as the rare earth compound were used.
  • AlN powder was produced in the same manner as in Example 1. The same measurements as in Example 1 were performed on the various physical properties of the obtained AlN powder, and the results are shown in Table 3. Moreover, although it tried to produce a sheet
  • ⁇ Comparative Example 3> Implemented except that ⁇ -alumina with a primary particle size of 1.8 ⁇ m (secondary particle size of 1.8 ⁇ m) as the Al source, a specific surface area of 0.92 m 2 / g, and yttrium oxide with an average particle size of 2.5 ⁇ m as the rare earth compound.
  • AlN powder was produced in the same manner as in Example 1. The same measurements as in Example 1 were performed on the various physical properties of the obtained AlN powder, and the results are shown in Table 3. Moreover, although it tried to produce a sheet
  • ⁇ Comparative example 4> Implementation was performed except that ⁇ alumina having a primary particle size of 12.0 ⁇ m (secondary particle size of 13.4 ⁇ m) as the Al source, ⁇ 3 alumina having a specific surface area of 0.13 m 2 / g, and yttrium oxide having an average particle size of 20.0 ⁇ m as the rare earth compound were used.
  • AlN powder was produced in the same manner as in Example 1. The same measurements as in Example 1 were performed on the various physical properties of the obtained AlN powder, and the results are shown in Table 3. Moreover, although it tried to produce a sheet
  • Example 5 An AlN powder was produced in the same manner as in Example 1 except that yttrium oxide having an average particle diameter of 1.6 ⁇ m was used as the rare earth compound. The same measurements as in Example 1 were performed on the various physical properties of the obtained AlN powder, and the results are shown in Table 3. Moreover, the sheet
  • ⁇ Comparative Example 6> Implementation was performed except that ⁇ alumina having a primary particle size of 0.1 ⁇ m (secondary particle size of 0.5 ⁇ m) as the Al source, a specific surface area of 18.4 m 2 / g, and yttrium oxide having an average particle size of 1.5 ⁇ m as the rare earth compound.
  • AlN powder was produced in the same manner as in Example 1. The same measurements as in Example 1 were performed on the various physical properties of the obtained AlN powder, and the results are shown in Table 3. Moreover, the sheet
  • the AlN powder obtained by the present invention has a shape and particle size suitable for a filler, it can be highly filled into a matrix such as resin or grease. Therefore, a heat dissipation sheet, a heat dissipation gel, a heat dissipation grease, a heat dissipation adhesive, a phase change sheet, and an insulating layer of a metal base substrate having high thermal conductivity can be obtained. Specifically, heat from heat-generating electronic components such as MPUs, power transistors, and transformers can be efficiently transferred to heat-radiating components such as heat-dissipating fins and heat-dissipating fans.
  • heat-generating electronic components such as MPUs, power transistors, and transformers can be efficiently transferred to heat-radiating components such as heat-dissipating fins and heat-dissipating fans.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Ceramic Products (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

【課題】高熱伝導性及び充填性に優れ、放熱材料用フィラーとして有用な窒化アルミニウムの製造方法及びかかる製造方法によって得られる窒化アルミニウム粉末を提供する。 【解決手段】一次粒子径0.001μm~6μmのアルミナ粉末またはアルミナ水和物粉末と、平均粒子径が2μm~80μmの範囲にあり、且つ、上記アルミナ粉末またはアルミナ水和物粉末の一次粒子径に対して6倍以上の平均粒子径を有する希土類金属元素を含む化合物の粉末とを、カーボン粉末の存在下に、1620℃~1900℃の温度で2時間以上還元窒化することにより、窒化アルミニウム粉末を製造する。

Description

窒化アルミニウム粉末及びその製造方法
 本発明は、樹脂やグリース、接着剤、塗料等に充填して放熱性を向上させるための放熱材料用フィラーとして好適な窒化アルミニウム粉末及びその製造方法に関するものである。
 窒化アルミニウムは電気絶縁性に優れ、かつ高熱伝導性を有することから、その焼結体或いは粉末を充填した樹脂やグリース、接着剤、塗料等の材料は、高い熱伝導性を有する放熱材料として期待される。
 上記放熱材料の熱伝導率を向上させるためには、マトリックスとなる樹脂中に高熱伝導性を有したフィラーを高充填することが重要である。そのため、真球度が高く、粒径が数μm~数百μm程度であり、かつ粗粒の含有率が低い窒化アルミニウム粉末が強く要望されている。
 一般に、窒化アルミニウム粉末の製法には、アルミナをカーボンの存在下で窒化するアルミナ還元窒化法、アルミニウムと窒素とを直接反応させる直接窒化法、アルキルアルミニウムとアンモニアを反応させた後に加熱する気相法等が知られている。
 そのうち、還元窒化法及び気相法で得られる窒化アルミニウム粒子は、形状は球状に近いものの、その粒径はサブミクロンオーダーのものしか得られていないのが現状である。
 一方、直接窒化法により得られる窒化アルミニウム粉末は、粉砕・分級することにより製造されるため、粒径が数μm~数百μm程度の窒化アルミニウム粉末を得ることは可能であるが、得られる粒子は真球度の低い不定形粒子である。したがって、上記の方法によって得られる窒化アルミニウム粉末は、樹脂中に高充填することが困難であった。
 これに対して、真球度が高い窒化アルミニウム粉末を効率的に得る方法として、アルミナ粉末と、アルカリ土類金属化合物または希土類化合物の粉末と、炭素粉末との混合粉末を、窒素を含む非酸化性雰囲気中にて焼成して窒化アルミニウム粉末を製造する方法が開示されている(特許文献1参照)。
 この方法は、アルカリ土類金属化合物や希土類化合物が窒化反応を促進させる働きを利用して、1500℃以下の低温での窒化アルミニウムを生成せしめようとするものである。
 上記方法によって得られる窒化アルミニウム粒子は、真球度の高いものではあるが、粒径が高々1μm程度であり、数μmのオーダーの比較的大きい粒子径のものは得られていない。また、上記方法では、得られる窒化アルミニウム粉末の粒子径を制御することは困難である。例えば、アルカリ土類金属化合物を使用した場合、得られる窒化アルミニウム粉末中に、必要以上に大きな粒径の粗粒を含有することが確認された。しかも、上記1μm程度の付着性の高い窒化アルミニウム粉末から、かかる粗粒を分離することは困難であった。
特開平5-221618号公報
 従って、本発明の目的は、フィラー用途に最適な高い真球度を有し、平均粒子径が数μm~数百μmの比較的大きい粒子であり、さらに、粗粒の含有率が低い窒化アルミニウム粉末を生産性良く得るための方法及びかかる方法によって得られる窒化アルミニウム粉末を提供することにある。
 本発明者らは、上記課題を解決すべく鋭意研究を行った結果、アルミナ又はアルミナ水和物のAl源粉末と希土類金属化合物(焼結助剤)の粉末とカーボン(還元剤)粉末との混合粉末を一定の高温領域での含窒素雰囲気中で焼成して窒化アルミニウム粉末を製造するに際して、前記Al源粉末として特定の一次粒子径を有するものを使用し、且つ希土類金属化合物粉末として該Al源粉末の一次粒子径に対し特定の倍率以上の大きな粒子径を有するものを選択することによって、真球度が高く且つ上記所期の粒子径を有し、さらに、粗粒の含有率が低い窒化アルミニウム粉末が生産性良く得られることを見出し、本発明を完成するに至った。
 即ち、本発明によれば、
 Al源としての一次粒子径が0.001~6μmのアルミナまたはアルミナ水和物の粉末と、平均粒子径(D50)が2~80μmの範囲にあり且つ該Al源の一次粒子径の6倍以上の平均粒子径(D50)を有する希土類金属化合物粉末と、カーボン粉末とを用意し、
 前記Al源粉末と希土類金属化合物粉末とカーボン粉末とを混合し、
 得られた混合粉末を、含窒素雰囲気下、1620~1900℃の温度で、2時間以上保持することにより、前記Al源を還元窒化すること、
を特徴とする窒化アルミニウム粉末の製造方法が提供される。
 本発明の製造方法においては、前記Al源100質量部当り、前記希土類金属元素化合物粉末を0.5~50質量部、前記カーボン粉末を35~50質量部の量で使用することが好ましい。
 上記の製造方法によれば、平均粒子径(D50)が6~280μmであり、平均粒子径(D50)の5倍以上の粒子径を有する粗粒の含有率が体積換算で10%以下である窒化アルミニウム粉末を得ることができる。
 尚、Al源粉末の一次粒子径とは、アルミナ粉末またはアルミナ水和物の粉末について、透過型電子顕微鏡写真により、30個以上の粒子について定方向の粒子径を測定したときの算術平均値をいう。
 また、平均粒子径(D50)は、レーザー回折散乱法により測定した粒度分布における累積体積が50%のときの粒子径をいう。即ち、この場合の粒子径は、一次粒子径ではなく、二次粒子径(凝集した粒子の径)である。
 本発明の製造方法によれば、フィラー用途に最適な比較的大きな平均粒子径(6μm~280μm)を有し、真球度が高く且つ平均粒子径(D50)の5倍以上の粒子径を有する粗粒分が少ない窒化アルミニウム粉末を生産性よく得ることができる。
 即ち、本発明においては、一次粒子径が小さいアルミナまたはアルミナ水和物の粉末をAl源として使用すると同時に、Al源粉末に比して大きな平均粒子径を有する希土類金属化合物を焼結助剤として使用しているため、希土類化合物の個々の粒子を被覆するようにAl源の粒子がその表面に付着する。従って、所定の高温領域(1620~1900℃)での含窒素雰囲気中において、希土類化合物粒子の表面からAl源粒子が順次融解しながら還元窒化反応が進行することとなり、この結果、得られる窒化アルミニウムの粒径が、希土類化合物の粒径に相関したものとなり、上記のような比較的大きな粒径のAlN粉末を得ることができる。
 このことから理解されるように、本発明においては、希土類化合物の粒子径を調整することによって、得られるAlNの粒子径を制御することができる。その結果、粗粒の発生も少なく、粒子が球状に近い高い真球度を有するAlN粉末を得ることができる。
 上記のような粒子構造を有するAlN粉末は、各種樹脂やグリースに高充填することができ、放熱材料として高い熱伝導率を発揮することができる。
実施例1において得られたAlN粉末の粒子構造を示す電子顕微鏡写真である。
発明が実施しようとする形態
 本発明の製造方法は、窒化還元法により窒化アルミニウム(AlN)粉末を製造するものであり、Al源粉末と焼結助剤(希土類金属化合物)の粉末とカーボン粉末(還元剤)とを使用し、これらの混合粉末を一定の高温の含窒素雰囲気中で焼成することによっての窒化還元によって、AlN粉末を製造するものであり、窒化還元後に必要により脱炭素処理が行うこともできる。
<Al源粉末>
 本発明において、AlNのAl源としては、アルミナ又はアルミナ水和物が用いられる。
 この様なAl源は、α、γ、θ、δ、η、κ、χ等の結晶構造を持つアルミナや、ベーマイト、ダイアスポア、ギブサイト、バイヤライト及びトーダイト等の加熱により脱水転移して最終的に全部又は一部がαアルミナに転移するアルミナ水和物であれば全て利用可能であり、これらは単独で使用することもできるし、2種以上を混合して使用することもできる。
 本発明においては、特に反応活性が高く、制御が容易なαアルミナ、γアルミナ及びベーマイトが好適に用いられる。
 上記Al源として用いられるアルミナやアルミナ水和物は粉末の形態で使用されるが、その一次粒子径は0.001~6μm、好ましくは0.01~4μm、更に好ましくは0.1~2μmの範囲にあることが必要である。即ち、一次粒子径が上記の範囲にない場合、還元窒化反応が均一に進まず、得られるAlN粉末の粗粒の含有率が高くなる問題が生じる。
<カーボン>
 本発明で用いるカーボンは、還元剤として機能するものであり、カーボンブラック、黒鉛粉末が使用できる。カーボンブラックとしては、ファーネスブラック、チャンネルブラック及びアセチレンブラックが好適に使用される。用いるカーボンブラックのBET比表面積は、0.01~500m/gの範囲にあることが好ましい。
<焼結助剤>
 本発明において、焼結助剤として希土類金属化合物が使用される。
 このような希土類金属化合物において、希土類金属としては、イットリウム、ランタン、セリウム、プラセオジム、テルビウム等を挙げることができ、その化合物としては、酸化物、炭化物、ハロゲン化物(例えばフッ化物)などを例示することができる。これらの希土類金属を含む化合物は、単独で使用することもできるし、複数種を併用することもできる。
 また、前記希土類金属化合物は、還元窒化中に前記例示した希土類金属の酸化物、炭化物又はハロゲン化物を生成し得るものであってもよい。例えば、希土類金属の炭酸塩、硝酸塩、酢酸塩、水酸化物なども使用することができる。
 本発明においては、上述した希土類金属化合物の中でも特に、1200~1900℃、さらに好ましくは1300~1800℃で、アルミナと共融解し得るもの、例えば酸化イットリウムなどが好適に使用される。即ち、該共融解温度が1200℃未満の化合物を用いた場合、アルミナ粒子同士が凝集し易くなってしまい、また、上記温度が1900℃を超える化合物を用いた場合、真球度の高い粒子が得られ難い傾向がある。
 また、上述した希土類金属化合物には、必要に応じて、脂肪酸処理等の公知の表面処理を施すこともできる。
 また、上記希土類化合物としては、得られるAlN粉末の粒子径を比較的大きなサイズに調整するために、その平均粒子径(D50)が2~80μm、好ましくは3μm~65μm、より好ましくは4μm~50μmの範囲にあるのがよい。先にも述べたように、本発明では、この希土類金属化合物の粒径が得られるAlN粉末の粒径に相関するからである。
 本発明においては、希土類金属化合物の粒径を得られるAlN粉末の粒径に相関させるため、該希土類化合物の平均粒子径(D50)が、前述したAl源の一次粒子径の6倍以上、好ましくは8倍、更に好ましくは10倍以上の範囲にあることが必要である。即ち、希土類金属化合物の粒径が、Al源粒子よりもかなり大きいため、この希土類金属化合物の大きな粒子のそれぞれを覆うようにAl源粒子が希土類金属化合物粒子の表面に付着し、この状態で還元窒化反応が進行することとなり、この結果、得られるAlN粉末の粒径は、用いた希土類金属化合物の粒子に近い大きさであり且つ真球度も高くなるわけである。
 即ち、前記平均粒子径(D50)が、アルミナの一次粒子径に対して上記倍数の範囲から外れる場合、アルミナの還元窒化反応が均一に進まず、得られる窒化アルミニウム粉末の真球度が低くなる問題が生じるばかりか、得られる窒化アルミニウム粉末の粒径の制御が困難となり、粗粒の含有率が高くなる問題も生じてしまう。
 尚、希土類金属化合物の粒径がAl源粒子に比して過度に大きいと還元窒化反応の進行が不均一となる恐れがあるので、かかる化合物の平均粒子径(D50)は、前述した範囲内にあることを条件として、Al源の一次粒子径の150倍以下にあることが望ましい。
 また、上述した希土類金属化合物の粉末においては、平均粒子径(D50)の5倍以上の粒子径を有する粗粒の含有率が、体積換算で5%以下、好ましくは3%以下、より好ましくは1%以下のものを使用することが、粗粒の含有量がより少量に抑制されたAlN粉末を得るうえで好適である。
 また、本発明においては、上述した比較的大径の希土類金属化合物粉末による粒度調整作用が損なわれない限りの少量であるならば、他の焼結助剤を併用することもできる。このような他の焼結助剤としては、アルミナと1200~1900℃、好ましくは、1300~1800℃で共融解し得るアルカリ土類金属の酸化物、炭酸化物又はハロゲン化物などを挙げることができ、代表的には酸化カルシウムが挙げられる。
<原料混合粉末の調製>
 本発明において、上述した各原料の粉末は、混合粉末の形で後述する還元窒化工程に供せられる。
 このような混合粉末の調製は、特に限定されるものではないが、一般に、ブレンダー、ミキサー、ボールミル等の混合機を用いて行われる。
 尚、原料として使用するAl源粉末は、前述した範囲の一次粒子径を有していればよく、還元窒化反応は一次粒子を単位として進行するため、その二次粒子径は特に制限されないが、過度に大きな凝集粒子を形成していると、還元窒化反応の進行が不均一となるおそれがある。従って、他の原料粉末との混合に先立って、このAl源粉末の二次粒子径(即ち、凝集粒子径)が添加する希土類金属化合物の1/4倍以下、更に好ましくは1/6倍以下となるように適宜粉砕しておくことが好ましい。
 上記混合粉末において、各原料粉末は、以下の割合で使用することが還元窒化反応を、速に且つ均一に、前述した形態で進行させる上で好適である。
 即ち、Al源粉末100質量部に対して、希土類金属化合物合物の粉末は、0.5~50質量部、特に1~25質量部の割合で配合することが好ましく、カーボン粉末は、35~50質量部、好ましくは37~46質量部、より好ましくは38~43質量部の割合で配合することが好ましい。
<還元窒化>
 本発明において、還元窒化反応は、前記混合粉末を、含窒素雰囲気において、1620~1900℃の温度で2時間以上保持することにより実施される。
 上記反応温度が1620℃よりも低いときには、窒化反応が進行し難く、また、窒化反応が完結したとしても、AlN粒子の球状化或いは粒子の成長が十分に進行しない場合がある。一方、上記反応温度が1900℃を超えると希土類化合物が短時間で飛散してしまい、熱伝導率の低い酸窒化物(AlON)が生成する。また、酸素がAlN粒子に固溶しやすくなり、AlN粒子自体の熱伝導性が低くなる。
 上記反応温度は、特に、1620~1800℃が好ましい。
 また、上記反応時間が2時間未満では、窒化反応が十分に進まず、AlN粒子の真球度を十分上げることができない。
 上記反応時間は、特に、8~20時間が好ましい。
 上記のような還元窒化は、上記混合粉末中に窒素が十分に拡散するように行わればよく、例えば、上記混合粉末をカーボン製のセッター等に充填し窒素を流通させる方法、ロータリーキルンを用いる方法、流動層を用いる方法等により還元窒化を行うことができる。これらのうち、カーボン製のセッター等に混合粉末を充填し窒素を流通させる方法が特に好適である。
<後処理>
 本発明において、上記反応により得られたAlN粉末は、余剰のカーボンを含んでいるため、必要により脱炭素処理を行うのが好ましい。
 この脱炭素処理は、炭素を酸化して取り除くものであり、酸化性ガスを用いて行われる。この酸化性ガスとしては、空気、酸素などの炭素を除去できるガスならば採用できるが、経済性や得られる窒化アルミニウムの酸素濃度を考慮して、空気が好適である。また、処理温度は一般的に500~900℃がよく、脱炭素の効率と窒化アルミニウム表面の過剰酸化を考慮して、600~750℃が好適である。
 酸化温度が高すぎると窒化アルミニウム粉末の表面が過剰に酸化され、目的とする粉末が得られ難い傾向があるので適当な酸化温度と反応時間を選択するのが好ましい。
<窒化アルミニウム粉末>
 上述した本発明方法により得られる窒化アルミニウム(AlN)粉末は、真球度が高く、平均粒子径(D50)が6~280μm、好ましくは7~150μm、より好ましくは、8~100μmの範囲にある。また、平均粒子径(D50)の5倍以上の粒子径を有する粗粒の含有率が体積換算で10%以下、好ましくは5%以下、より好ましくは3%以下である。
 また、かかるAlN結晶のC軸の格子定数は、4.9800Å以上、特に4.9802Å以上、さらには4.9804Å以上の値を示す。
 上記C軸の格子定数は、X線回折装置を使用し、Siを外部標準物質として用い測定した値であり、AlN粒子の固溶酸素濃度を評価する指標となるものである。即ち、C軸の格子定数が大きいAlN粒子ほど固溶酸素濃度が低く、AlN粒子自体の熱伝導率が高い。また、C軸の格子定数の値が4.9775Å以下の場合、AlN粒子自体の熱伝導率が低い場合がある。
 尚、本発明において、AlNの粉末を構成するAlN粒子の真球度の指標は、長径と短径の比(DS/DL)によって表すことができる。例えば、本発明により得られるAlN粒子の真球度(DS/DL)は0.75以上、特に、0.80、さらには0.85以上であり、極めて高い真球度を有する。
 本発明のAlN粉末(特に脱炭素処理がされたもの)は、必要に応じて粉砕・分級を行い、目的に応じた粒度に調整される。
 また、使用に先立っては、耐水性や樹脂との相溶性を向上させるため、AlN粒子の表面を公知の方法で処理することができる。具体的には、シリコーンオイル、シリル化剤、シランカップリング剤などの有機珪素化合物、リン酸や又はリン酸塩、脂肪酸による処理、ポリアミド樹脂などの高分子による皮膜処理、アルミナ、シリカなどの無機質皮膜処理などが挙げられる。
<用途>
 上述した窒化アルミニウム粉末は、AlNの性質を生かした種々の用途、特に、AlN基板の原料、放熱材料用フィラーとして用いられる。例えば、放熱シート、放熱グリース、放熱接着剤、塗料、熱伝導性樹脂などに配合する放熱材料用フィラーとして広く使用することができる。
 ここで放熱材料のマトリックスとなる樹脂やグリースとしては、エポキシ樹脂、メソゲン基を導入したエポキシ樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、フェノール樹脂等の熱硬化性樹脂や、ポリエチレン、ポリプロピレン、ポリアミド、ポリカーボネート、ポリアミド、ポリフェニレンサルファイド等の熱可塑性樹脂、またシリコーンゴム、EPR、SBR等のゴム類、シリコーンオイルが挙げられる。
 これらのうち、放熱材料のマトリックスとしては、例えばエポキシ系樹脂、シリコーン系樹脂が好適であり、高柔軟性放熱部材とするには付加反応型液状シリコーンゴムが望ましい。
 放熱材料の熱伝導性を向上させるためには、樹脂、ゴム又はオイル100質量部あたり、フィラーを150~1000質量部添加するのが良い。このような放熱材料には、本発明のAlN粉末以外に、本発明方法以外の方法により得られたAlN粉末を含め、破砕状アルミナ、球状アルミナ、窒化ホウ素、酸化亜鉛、炭化珪素、グラファイトなどのフィラーがあり、これらを一種あるいは数種類をAlN粉末と共に充填しても良く、放熱材料の特性や用途に応じて、本発明のAlN粉末とそれ以外のフィラーの形状、粒径を選択すれば良い。一般に、本発明のAlN粉末とそれ以外のフィラーの混合比は、1:99~99:1の範囲で適宜調整できる。
 例えば、高熱伝導の高い放熱材料を得ようとする場合、他の方法で得られる数種類のAlN粉末と組み合わせて使用することもできる。具体的には、樹脂への高充填化が可能となるように、本発明のAlN粉末と、粒径が0.1μmから500μm程度の還元窒化法や直接窒化法で得られたAlN粉末、それらを噴霧乾燥して得たAlN顆粒を焼結させた、いわゆる焼結顆粒を組み合わせて用いることができる。
 また、樹脂へのフィラー高充填化を図る場合、本発明のAlN粉末と数種類の平均粒子径が10~100μmの球状アルミナとを併用する方法が好適に採用される。
 放熱材料の熱伝導性に異方性を付与したい場合には、本発明のAlN粉末と数種類の平均粒子径が1~50μmの窒化ホウ素を組み合わせて使用することもできる。
 上記のフィラーは、先にも述べたとおり、シランカップリング剤等で表面処理されたものであってもよい。また、放熱材料には、可塑剤、加硫剤、硬化促進剤、離形剤等の添加剤をさらに添加しても良い。
 上記の放熱材料である樹脂組成物は、ブレンダーやミキサーで混合することによって製造することができ、また放熱材料は、プレス成形法、押出成形法、ドクターブレード法、樹脂含浸法によって樹脂組成物を成形し、それを加熱硬化あるいは光効果することによって製造することができる。
 以下、本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。実施例および比較例における各種物性は、下記の方法により測定した。
(1)粒子径
 平均粒子径(D50)は、試料をホモジナイザーにてピロリン酸ソーダ水溶液中に分散させ、レーザー回折粒度分布装置(日機装株式会社製MICROTRAC HRA)にて測定した。尚、Al源粉末の二次粒子径(凝集粒子径)も、この平均粒子径(D50)で示した。
 また、Al源粉末における一次粒子径は透過型電子顕微鏡により測定した。
(2)粗粒の含有率
 AlN粉末の試料をホモジナイザーにてピロリン酸ソーダ水溶液中に分散させ、レーザー回折粒度分布装置(日機装株式会社製MICROTRAC HRA)にて測定し、体積換算での平均粒子径(D50)の5倍以上の粒子径を有する粒子を粗粒として算出した。
(3)粉末の形状
 AlN粉末の形状は、走査型電子顕微鏡(日立製作所製S-2600N)にて観察した。
(4)結晶のC軸の格子定数
 AlN結晶のC軸の格子定数は、X線回折装置((株)リガク製RINT-1400)を使用し、Siを外部標準物質として用い、測定した。
(5)粒子の長径と短径の比
 AlN粉末の電子顕微鏡の写真像から、任意の粒子100個を選んで、スケールを用いて粒子像の長径(DL)と短径(DS)を測定し、その比(DS/DL)の平均値を球形度の目安とした。
(6)陽イオン不純物含有量
 AlN粉末の陽イオン不純物含有量(金属元素濃度)は、AlN粉末をアルカリ溶融後、酸で中和し、ICP発光分析計(島津製作所製ICPS-7510)を使用して定量した。
(7)シリコーンゴムシートの熱伝導率
 熱伝導性シリコーンゴム組成物を10cm×6cm、厚さ3mmの大きさに成形し150℃の熱風循環式オーブン中で1時間加熱して硬化し、熱伝導率計(京都電子工業製QTM-500)を用いて熱伝導率を測定した。なお検出部からの漏電防止のため、厚さ10μmのポリ塩化ビニリデンフイルムを介して測定した。
<実施例1>
 Al源として、一次粒子径0.3μm(二次粒子径1.1μm)、比表面積9.7m/gのαアルミナ、カーボンとして比表面積125m/gのカーボンブラック、希土類化合物として平均粒子径5.0μmの酸化イットリウムを使用した。
 上記のαアルミナ100質量部、カーボンブラック42質量部、酸化イットリウム5.0質量部を混合した後、グラファイトのセッターに充填した。
 ついで、窒素雰囲気下、焼成温度1700℃、焼成時間15時間の条件で還元窒化反応を行った。
 その後、空気雰囲気下において700℃で12時間、酸化処理を行ってAlN粉末を得た。
 得られたAlN粉末を前述の方法にて、平均粒子径(D50)、粗粒の含有率、結晶のC軸の格子定数、粒子の長径と短径の比及び陽イオン不純物含有量の測定及び形状の観察を行った。結果を表1に示す。
次いで、
  AlN粉末   900質量部
  ミゼラブル型シリコーン   100質量部
    (モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会
   社製TSE201)
  離型剤   0.5部
を加圧ニーダーにて混練した。混練物を冷却した後にロールを用いて架橋剤0.5部と混合した後、180℃で15分間加圧プレスし、縦10cm、横6cm、厚さ3mmのシートを得た。
 得られたシートについて、前述の方法にて、熱伝導率を測定した。結果を表1に併せて示す。
<実施例2>
 Al源として一次粒子径0.05μm(二次粒子径0.9μm)、比表面積230m/gのγアルミナを使用した以外は、実施例1と同様にしてAlN粉末を作製した。
 得られたAlN粉末の各種物性に対し、実施例1と同様な測定を行い、結果を表1に示した。
 また、得られたAlN粉末を用いて、実施例1と同様にシートを作製し、熱伝導率を測定した。結果を表1に示す。
<実施例3>
 焼成温度を1650℃とした以外は、実施例1と同様にしてAlN粉末を作製した。
 得られたAlN粉末の各種物性に対し、実施例1と同様な測定を行い、結果を表1に示した。
 また、得られたAlN粉末を用いて、実施例1と同様にシートを作製し、熱伝導率を測定した。結果を表1に示す。
<実施例4>
 酸化イットリウムの配合量を3.0質量部とした以外は、実施例1と同様にしてAlN粉末を作製した。
 得られたAlN粉末の各種物性に対し、実施例1と同様な測定を行い、結果を表1に示した。
 また、得られたAlN粉末を用いて、実施例1と同様にシートを作製し、熱伝導率を測定した。結果を表1に示す。
<実施例5>
 酸化イットリウムの配合量を10.0質量部とした以外には実施例1と同様にしてAlN粉末を作製した。
 得られたAlN粉末の各種物性に対し、実施例1と同様な測定を行い、結果を表1に示した。
 また、得られたAlN粉末を用いて、実施例1と同様にシートを作製し、熱伝導率を測定した。結果を表1に示す。
<実施例6>
 カーボンブラックの配合量を39質量部とした以外は、実施例1と同様にしてAlN粉末を作製した。
 得られたAlN粉末の各種物性に対し、実施例1と同様な測定を行い、結果を表2に示した。
 また、得られたAlN粉末を用いて、実施例1と同様にシートを作製し、熱伝導率を測定した。結果を表2に示す。
<実施例7>
 希土類化合物として平均粒子径35.0μmの酸化イットリウムを使用した以外は、実施例1と同様にしてAlN粉末を作製した。
 得られたAlN粉末の各種物性に対し、実施例1と同様な測定を行い、結果を表2に示した。
 また、得られたAlN粉末を用いて、実施例1と同様にシートを作製し、熱伝導率を測定した。結果を表2に示す。
<実施例8>
 Al源として一次粒子径5.1μm(二次粒子径5.3μm)、比表面積0.67m/gのαアルミナ、希土類化合物として平均粒子径35.0μmの酸化イットリウムを使用した以外は、実施例1と同様にしてAlN粉末を作製した。
 得られたAlN粉末の各種物性に対し、実施例1と同様な測定を行い、結果を表2に示した。
 また、得られたAlN粉末を用いて、実施例1と同様にシートを作製し、熱伝導率を測定した。結果を表2に示す。
<実施例9>
 Al源として一次粒子径1.8μm(二次粒子径1.8μm)、比表面積0.92m/gのαアルミナ、希土類化合物として平均粒子径11.8μmの酸化イットリウムを使用した以外は、実施例1と同様にしてAlN粉末を作製した。
 得られたAlN粉末の各種物性に対し、実施例1と同様な測定を行い、結果を表2に示した。
 また、得られたAlN粉末を用いて、実施例1と同様にシートを作製し、熱伝導率を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
<比較例1>
 希土類化合物として平均粒子径1.0μmの酸化イットリウムを使用した以外は、実施例1と同様にしてAlN粉末を作製した。
 得られたAlN粉末の各種物性に対し、実施例1と同様な測定を行い、結果を表3に示した。
 また、得られたAlN粉末を用いて、実施例1と同様にシートを作製し、熱伝導率を測定した。結果を表3に示す。
<比較例2>
 Al源として一次粒子径7.1μm(二次粒子径7.3μm)、比表面積0.25m/gのαアルミナ、希土類化合物として平均粒子径50.2μmの酸化イットリウムを使用した以外は、実施例1と同様にしてAlN粉末を作製した。
 得られたAlN粉末の各種物性に対し、実施例1と同様な測定を行い、結果を表3に示した。
 また、得られたAlN粉末を用いて、実施例1と同様にシートを作製しようとしたが、粘度が高くてシートを作製することが出来なかった。
<比較例3>
 Al源として一次粒子径1.8μm(二次粒子径1.8μm)、比表面積0.92m/gのαアルミナ、希土類化合物として平均粒子径2.5μmの酸化イットリウムを使用した以外は、実施例1と同様にしてAlN粉末を作製した。
 得られたAlN粉末の各種物性に対し、実施例1と同様な測定を行い、結果を表3に示した。
 また、得られたAlN粉末を用いて、実施例1と同様にシートを作製しようとしたが、粘度が高くてシートを作製することが出来なかった。
<比較例4>
 Al源として一次粒子径12.0μm(二次粒子径13.4μm)、比表面積0.13m/gのαアルミナ、希土類化合物として平均粒子径20.0μmの酸化イットリウムを使用した以外は、実施例1と同様にしてAlN粉末を作製した。
 得られたAlN粉末の各種物性に対し、実施例1と同様な測定を行い、結果を表3に示した。
 また、得られたAlN粉末を用いて、実施例1と同様にシートを作製しようとしたが、粘度が高くてシートを作製することが出来なかった。
<比較例5>
 希土類化合物として平均粒子径1.6μmの酸化イットリウムを使用した以外は、実施例1と同様にしてAlN粉末を作製した。
 得られたAlN粉末の各種物性に対し、実施例1と同様な測定を行い、結果を表3に示した。
 また、得られたAlN粉末を用いて、実施例1と同様にシートを作製し、熱伝導率を測定した。結果を表3に示す。
<比較例6>
 Al源として一次粒子径0.1μm(二次粒子径0.5μm)、比表面積18.4m/gのαアルミナ、希土類化合物として平均粒子径1.5μmの酸化イットリウムを使用した以外は、実施例1と同様にしてAlN粉末を作製した。
 得られたAlN粉末の各種物性に対し、実施例1と同様な測定を行い、結果を表3に示した。
 また、得られたAlN粉末を用いて、実施例1と同様にシートを作製し、熱伝導率を測定した。結果を表3に示す。
<比較例7>
 Al源として一次粒子径1.8μm(二次粒子径1.8μm)、比表面積0.92m/gのαアルミナ、希土類化合物として平均粒子径10.0μmの酸化イットリウムを使用した以外は、実施例1と同様にしてAlN粉末を作製した。
 得られたAlN粉末の各種物性に対し、実施例1と同様な測定を行い、結果を表3に示した。
 また、得られたAlN粉末を用いて、実施例1と同様にシートを作製しようとしたが、粘度が高くてシートを作製することが出来なかった。
Figure JPOXMLDOC01-appb-T000003
 本発明で得られるAlN粉末は、フィラーに適した形状、粒径を有していることから、樹脂やグリースなどのマトリックスに対して高充填することができる。そのため、熱伝導率の高い放熱シート、放熱ゲル、放熱グリース、放熱接着剤、フェーズチェンジシート、メタルベース基板の絶縁層を得ることができる。具体的には、MPUやパワートランジスタ、トランス等の発熱性電子部品からの熱を放熱フィンや放熱ファン等の放熱部品に効率よく伝達することができる。

Claims (3)

  1.  Al源としての一次粒子径が0.001~6μmのアルミナまたはアルミナ水和物の粉末と、平均粒子径(D50)が2~80μmの範囲にあり且つ該Al源の一次粒子径の6倍以上の平均粒子径(D50)を有する希土類金属化合物粉末と、カーボン粉末とを用意し、
     前記Al源粉末と希土類金属化合物粉末とカーボン粉末とを混合し、
     得られた混合粉末を、含窒素雰囲気下、1620~1900℃の温度で、2時間以上保持することにより、前記Al源を還元窒化すること、
    を特徴とする窒化アルミニウム粉末の製造方法。
  2.  前記Al源100質量部当り、前記希土類金属元素化合物粉末を0.5~50質量部、前記カーボン粉末を35~50質量部の量で使用する請求項1に記載の製造方法。
  3.  平均粒子径(D50)が6~280μmであり、平均粒子径(D50)の5倍以上の粒子径を有する粗粒の含有率が体積換算で10%以下であることを特徴とする窒化アルミニウム粉末。
PCT/JP2011/077656 2010-12-06 2011-11-30 窒化アルミニウム粉末及びその製造方法 WO2012077551A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012547801A JP5875525B2 (ja) 2010-12-06 2011-11-30 窒化アルミニウム粉末の製造方法
CN201180047992.8A CN103140436B (zh) 2010-12-06 2011-11-30 氮化铝粉末及其制造方法
KR1020137007480A KR101816954B1 (ko) 2010-12-06 2011-11-30 질화알루미늄 분말 및 그의 제조 방법
EP11847525.0A EP2650259B1 (en) 2010-12-06 2011-11-30 Aluminum nitride powder and process for manufacturing same
US13/989,902 US9056774B2 (en) 2010-12-06 2011-11-30 Aluminum nitride powder and method of producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-271923 2010-12-06
JP2010271923 2010-12-06

Publications (1)

Publication Number Publication Date
WO2012077551A1 true WO2012077551A1 (ja) 2012-06-14

Family

ID=46207042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077656 WO2012077551A1 (ja) 2010-12-06 2011-11-30 窒化アルミニウム粉末及びその製造方法

Country Status (7)

Country Link
US (1) US9056774B2 (ja)
EP (1) EP2650259B1 (ja)
JP (1) JP5875525B2 (ja)
KR (1) KR101816954B1 (ja)
CN (1) CN103140436B (ja)
TW (1) TWI507351B (ja)
WO (1) WO2012077551A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2894126A4 (en) * 2012-09-07 2016-04-13 Tokuyama Corp PROCESS FOR PRODUCING WATER RESISTANT ALUMINUM NITRIDE POWDER
WO2018199322A1 (ja) 2017-04-27 2018-11-01 株式会社トクヤマ 窒化アルミニウム粒子
WO2020031947A1 (ja) * 2018-08-06 2020-02-13 株式会社Maruwa 球状窒化アルミニウム粉末、及び、球状窒化アルミニウム粉末の製造方法
JP2020023435A (ja) * 2018-08-06 2020-02-13 株式会社Maruwa 球状窒化アルミニウム粉末

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102686511B (zh) * 2010-01-29 2014-11-19 株式会社德山 球形氮化铝粉末的制造方法及通过该方法获得的球形氮化铝粉末
JP5645559B2 (ja) 2010-09-03 2014-12-24 株式会社トクヤマ 球状窒化アルミニウム粉末
JP5618734B2 (ja) 2010-09-28 2014-11-05 株式会社トクヤマ 球状窒化アルミニウム粉末
KR102010867B1 (ko) * 2012-03-30 2019-08-14 가부시키가이샤 도쿠야마 질화 알루미늄 분말의 제조 방법
WO2014123247A1 (ja) * 2013-02-08 2014-08-14 株式会社トクヤマ 窒化アルミニウム粉末
KR101511541B1 (ko) 2013-11-15 2015-04-13 현대자동차주식회사 Cda 엔진용 듀얼 배기계 구조
US9216906B2 (en) * 2013-12-25 2015-12-22 National Chung Shan Institute Of Science And Technology Method for manufacturing aluminum nitride powder
KR101734831B1 (ko) 2015-03-12 2017-05-12 한국세라믹기술원 (002) 우선 배향의 판상 질화알루미늄 분말의 제조방법
WO2017079877A1 (zh) * 2015-11-09 2017-05-18 深圳市博世知识产权运营有限公司 一种高导热陶瓷材料及其制造方法
CN106187203B (zh) * 2016-07-19 2019-06-28 华中科技大学 一种基于碳化铝制备氮化铝粉体的方法及其产品
TW201838913A (zh) * 2017-01-18 2018-11-01 德商贏創德固賽有限責任公司 生產氮化鋁的方法與特殊氮化鋁本身
CN110691755B (zh) * 2017-05-22 2023-04-07 东洋铝株式会社 氮化铝系粉末及其制造方法
KR102377938B1 (ko) * 2019-12-20 2022-03-24 한국알루미나 주식회사 다공성 카본도가니를 활용한 질화알루미늄의 제조방법
CN116396081A (zh) * 2023-04-24 2023-07-07 广东工业大学 一种低温烧结制备高强度氮化铝陶瓷的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065768A (ja) * 1983-09-19 1985-04-15 株式会社トクヤマ 窒化アルミニウム組成物およびその製造方法
JPS61155209A (ja) * 1984-12-27 1986-07-14 Toshiba Corp 易焼結性窒化アルミニウム粉の製造方法
JPH0459609A (ja) * 1990-06-28 1992-02-26 Matsushita Electric Works Ltd 窒化アルミニウム粉末の製造方法
JPH05147909A (ja) * 1991-11-27 1993-06-15 Toshiba Ceramics Co Ltd 窒化アルミニウム粉末の製造方法
JPH05221618A (ja) 1992-02-12 1993-08-31 Katsutoshi Yoneya 窒化アルミニウム粉末の製造方法
JPH0952704A (ja) * 1995-08-09 1997-02-25 Tokuyama Corp 窒化アルミニウム顆粒及びその製造方法
WO2003097527A1 (en) * 2002-05-22 2003-11-27 Japan Energy Corporation Particulate aluminum nitride and method for production thereof
JP2006199541A (ja) * 2005-01-21 2006-08-03 Tokuyama Corp 窒化アルミニウム粉末および、その製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3572155D1 (en) * 1984-09-28 1989-09-14 Toshiba Kk Process for production of readily sinterable aluminum nitride powder
CA1329461C (en) * 1987-04-14 1994-05-17 Alcan International Limited Process of producing aluminum and titanium nitrides
JPH03295863A (ja) * 1990-04-10 1991-12-26 Toyo Alum Kk 球状窒化アルミニウム粉末の製造方法
JPH0474705A (ja) * 1990-07-09 1992-03-10 Lion Corp 球状窒化アルミニウム及びその製造方法
JP4280914B2 (ja) * 2002-11-19 2009-06-17 東洋アルミニウム株式会社 高純度窒化アルミニウム粉末及びその製造方法ならびに高純度窒化アルミニウム焼結体
US20050239629A1 (en) * 2004-04-23 2005-10-27 Yeckley Russell L Whisker-reinforced ceramic containing aluminum oxynitride and method of making the same
CN100372639C (zh) * 2004-07-08 2008-03-05 三井化学株式会社 氮化铝粉末及其制造方法和用途

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065768A (ja) * 1983-09-19 1985-04-15 株式会社トクヤマ 窒化アルミニウム組成物およびその製造方法
JPS61155209A (ja) * 1984-12-27 1986-07-14 Toshiba Corp 易焼結性窒化アルミニウム粉の製造方法
JPH0459609A (ja) * 1990-06-28 1992-02-26 Matsushita Electric Works Ltd 窒化アルミニウム粉末の製造方法
JPH05147909A (ja) * 1991-11-27 1993-06-15 Toshiba Ceramics Co Ltd 窒化アルミニウム粉末の製造方法
JPH05221618A (ja) 1992-02-12 1993-08-31 Katsutoshi Yoneya 窒化アルミニウム粉末の製造方法
JPH0952704A (ja) * 1995-08-09 1997-02-25 Tokuyama Corp 窒化アルミニウム顆粒及びその製造方法
WO2003097527A1 (en) * 2002-05-22 2003-11-27 Japan Energy Corporation Particulate aluminum nitride and method for production thereof
JP2006199541A (ja) * 2005-01-21 2006-08-03 Tokuyama Corp 窒化アルミニウム粉末および、その製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2894126A4 (en) * 2012-09-07 2016-04-13 Tokuyama Corp PROCESS FOR PRODUCING WATER RESISTANT ALUMINUM NITRIDE POWDER
US9399577B2 (en) 2012-09-07 2016-07-26 Tokuyama Corporation Method for producing water-resistant aluminum nitride powder
WO2018199322A1 (ja) 2017-04-27 2018-11-01 株式会社トクヤマ 窒化アルミニウム粒子
KR20190139211A (ko) 2017-04-27 2019-12-17 가부시끼가이샤 도꾸야마 질화알루미늄 입자
JPWO2018199322A1 (ja) * 2017-04-27 2020-03-12 株式会社トクヤマ 窒化アルミニウム粒子
US11325830B2 (en) 2017-04-27 2022-05-10 Tokuyama Corporation Aluminum nitride particle
JP7153640B2 (ja) 2017-04-27 2022-10-14 株式会社トクヤマ 窒化アルミニウム粒子
KR102459174B1 (ko) 2017-04-27 2022-10-27 가부시끼가이샤 도꾸야마 질화알루미늄 입자
WO2020031947A1 (ja) * 2018-08-06 2020-02-13 株式会社Maruwa 球状窒化アルミニウム粉末、及び、球状窒化アルミニウム粉末の製造方法
JP2020023435A (ja) * 2018-08-06 2020-02-13 株式会社Maruwa 球状窒化アルミニウム粉末
US11358865B2 (en) 2018-08-06 2022-06-14 Maruwa Co., Ltd. Spherical aluminum nitride powder and method for producing spherical aluminum nitride powder

Also Published As

Publication number Publication date
CN103140436B (zh) 2015-06-10
KR101816954B1 (ko) 2018-01-09
JPWO2012077551A1 (ja) 2014-05-19
JP5875525B2 (ja) 2016-03-02
CN103140436A (zh) 2013-06-05
EP2650259B1 (en) 2018-01-10
EP2650259A1 (en) 2013-10-16
EP2650259A4 (en) 2015-06-17
US9056774B2 (en) 2015-06-16
TW201231384A (en) 2012-08-01
US20130244036A1 (en) 2013-09-19
TWI507351B (zh) 2015-11-11
KR20130138759A (ko) 2013-12-19

Similar Documents

Publication Publication Date Title
JP5875525B2 (ja) 窒化アルミニウム粉末の製造方法
JP5618734B2 (ja) 球状窒化アルミニウム粉末
JP5645559B2 (ja) 球状窒化アルミニウム粉末
KR101742555B1 (ko) 산화마그네슘 입자, 그 제조 방법, 방열성 필러, 수지 조성물, 방열성 그리스 및 방열성 도료 조성물
KR102010867B1 (ko) 질화 알루미늄 분말의 제조 방법
JP5877684B2 (ja) 窒化アルミニウム焼結顆粒の製造方法
JP2012121742A (ja) 球状窒化アルミニウム粉末の製造方法
EP2952476B1 (en) Method for producing sintered aluminum nitride granules and use in heat - radiating materials

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180047992.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847525

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012547801

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137007480

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13989902

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE