WO2012043574A1 - 球状窒化アルミニウム粉末の製造方法 - Google Patents

球状窒化アルミニウム粉末の製造方法 Download PDF

Info

Publication number
WO2012043574A1
WO2012043574A1 PCT/JP2011/072098 JP2011072098W WO2012043574A1 WO 2012043574 A1 WO2012043574 A1 WO 2012043574A1 JP 2011072098 W JP2011072098 W JP 2011072098W WO 2012043574 A1 WO2012043574 A1 WO 2012043574A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum nitride
nitride powder
powder
alumina
spherical
Prior art date
Application number
PCT/JP2011/072098
Other languages
English (en)
French (fr)
Inventor
孝俊 宗岡
一孝 渡辺
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to EP11829127.7A priority Critical patent/EP2623458B1/en
Priority to US13/823,017 priority patent/US9090469B2/en
Priority to KR1020137007737A priority patent/KR101859785B1/ko
Priority to CN201180041466.0A priority patent/CN103079996B/zh
Publication of WO2012043574A1 publication Critical patent/WO2012043574A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0726Preparation by carboreductive nitridation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/32Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 oxide or hydroxide being the only anion, e.g. NaCeO2 or MgxCayEuO
    • C01F17/34Aluminates, e.g. YAlO3 or Y3-xGdxAl5O12
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/528Spheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5296Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/725Metal content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/726Sulfur content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/761Unit-cell parameters, e.g. lattice constants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a method for producing a spherical aluminum nitride powder suitable as a filler for a heat radiation material for filling a resin, grease, adhesive, paint or the like to improve heat radiation.
  • aluminum nitride Since aluminum nitride has excellent electrical insulation and high thermal conductivity, its sintered body or powder-filled resin, grease, adhesive, paint, and other materials can be used as heat dissipation materials with high thermal conductivity. Be expected.
  • the aluminum nitride powder is produced by reducing and nitriding an alumina and carbon composition, a direct nitriding method in which aluminum and nitrogen are directly reacted, an alkylaluminum and ammonia are reacted, and then heated.
  • a gas phase method or the like is known.
  • the aluminum nitride powder obtained by the reductive nitriding method and the gas phase method has a shape close to a sphere, but the particle size is only in the submicron order.
  • the aluminum nitride powder obtained by the direct nitriding method is produced by pulverization and classification, the control of the particle size is relatively easy, and the aluminum nitride powder having a particle size of about several ⁇ m to several tens of ⁇ m is used. Although it is possible to obtain, the particles that make up such a powder are non-spherical with an angular shape. Therefore, it is difficult to highly fill the aluminum nitride powder obtained by the above method in the resin.
  • Patent Document 1 discloses that a mixture of alumina powder and carbon powder is fired in an inert atmosphere to produce aluminum carbide, and then grown in a non-oxidizing atmosphere containing nitrogen. Discloses a method of obtaining an aluminum nitride powder having a rounded shape with an average particle diameter of 3 ⁇ m or more. However, in this method, since the firing atmosphere is changed, it is difficult to control the grain growth of alumina, that is, to control the particle size distribution of the obtained aluminum nitride powder.
  • Patent Document 2 discloses that spherical alumina is reduced and nitrided with nitrogen gas or ammonia gas in the presence of carbon, and then surface-oxidized, so that the average particle diameter is 50 ⁇ m or less and the sphericity is 0.8 or more.
  • a method for producing spherical aluminum nitride powder having excellent water resistance is disclosed.
  • Patent Document 3 aluminum nitride is fired in a non-oxidizing atmosphere containing nitrogen using a mixed powder of aluminum oxide powder, carbon powder, alkaline earth metal compound or rare earth element compound as a starting material.
  • a method for producing a powder is disclosed. This method is intended to produce aluminum nitride at a low temperature of 1,500 ° C. or lower by utilizing the action of an alkaline earth metal compound or rare earth compound to accelerate the reaction.
  • the aluminum nitride powder obtained by this method has a particle size of about 1 ⁇ m at most, and a product having a relatively large particle size on the order of several ⁇ m has not been obtained.
  • Patent Document 4 discloses that an amorphous aluminum nitride powder is spheroidized by aging (heat treatment) in a flux composed of a compound such as an alkaline earth element or a rare earth element, and then the flux is dissolved to obtain a single powder.
  • a method for obtaining separated crystalline aluminum nitride powder is disclosed. In this method, a high fluidity and a high filling rate can be obtained, but impurities are easily mixed in the aluminum nitride powder, and it is necessary to strictly control the manufacturing conditions, and there are many steps and the manufacturing cost is high.
  • JP-A-3-23206 Japanese Patent Laid-Open No. 2005-162555 JP-A-5-221618 JP 2002-179413 A
  • an object of the present invention is to provide a production method for obtaining a spherical aluminum nitride powder having a spherical shape optimum for filler use and having an average particle size of 3 ⁇ m to 30 ⁇ m with high productivity. .
  • the present inventors used a mixed powder obtained by mixing alumina or alumina hydrate, carbon powder, and a compound containing a rare earth metal at a specific ratio, By reducing and nitriding under a specific temperature, it was found that aluminum nitride powder having a spherical shape and a desired particle diameter can be obtained with high productivity, and the present invention has been completed.
  • alumina or alumina hydrate 100 parts by mass of alumina or alumina hydrate, a compound containing 0.5 to 30 parts by mass of rare earth metal, and 38 to 46 parts by mass of carbon powder are mixed, Reducing or nitriding alumina or alumina hydrate by maintaining the mixture at a temperature of 1620 to 1900 ° C. for 2 hours or more under a nitrogen-containing atmosphere; A method for producing a spherical aluminum nitride powder is provided.
  • the average particle size is 3 to 30 ⁇ m
  • the rare earth metal content in terms of oxide is in the range of 0.4 wt% to 28 wt%
  • the lattice constant of the C axis of the aluminum nitride crystal is A spherical aluminum nitride powder characterized by being composed of aluminum nitride particles having a size of 4.9800 mm or more is provided. Such spherical aluminum nitride powder can be produced by the method described above.
  • the spherical aluminum nitride powder obtained by the production method of the present invention is a rounded particle having no corners, and the ratio of the major axis to the minor axis (DS / DL) of the particle is 0.75 or more. And high sphericity.
  • the average particle diameter is 3 to 30 ⁇ m, and the oxygen content is small in relation to containing a certain amount of rare earth metal, and accordingly, the lattice constant of the C-axis of the aluminum nitride crystal is 4.98004. That's it.
  • the average particle diameter refers to the particle diameter when the cumulative volume in the particle size distribution measured by the laser diffraction / scattering method is 50%.
  • the C-axis lattice constant of the aluminum nitride crystal is a value measured using an X-ray diffractometer and using Si as an external standard material.
  • the aluminum nitride powder obtained by the present invention has an average particle size of 3 to 30 ⁇ m, an unprecedented large particle size, and the C-axis lattice constant of the aluminum nitride crystal is a large value of 4.9800 mm or more. Show.
  • the lattice constant of the C axis serves as an index for evaluating the solid solution oxygen concentration of the aluminum nitride particles, and the aluminum nitride particles having a larger value have a lower solid solution oxygen concentration and thus a higher thermal conductivity.
  • an aluminum nitride powder having a particle size and shape optimal for filler use can be obtained with high productivity.
  • this spherical aluminum nitride powder has a spherical shape with a high sphericity and a desired particle size, and can be filled into a resin or grease, and also has a high thermal conductivity and high heat dissipation material. Thermal conductivity can be imparted.
  • a liquid phase in which alumina is first dissolved is formed at a specific reductive nitriding temperature condition. Is controlled within a certain range, the amount of alumina dissolved in the formed liquid phase is adjusted, thereby forming an agglomerate having a desired particle size, and at the same time reducing nitriding proceed.
  • this reduction nitridation is performed under a specific temperature condition, the amount of oxygen dissolved in the aluminum nitride crystal is reduced by the compound containing the rare earth metal remaining in the particles. Spherical aluminum nitride powder is considered to be obtained.
  • FIG. 2 is an electron micrograph showing the particle structure of spherical aluminum nitride powder obtained in Example 1.
  • an Al source, carbon powder, and a compound containing a rare earth metal are used, and these are mixed at a specific quantity ratio, and this mixture is subjected to reductive nitriding treatment under specific conditions, and further if necessary.
  • a decarbonization treatment is performed, whereby the intended spherical aluminum nitride powder is produced with good reproducibility.
  • ⁇ Al source> As the Al source, alumina or alumina hydrate is used. Such an Al source is dehydrated and transitioned by heating, such as alumina having a crystal structure such as ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , boehmite, diaspore, gibbsite, bayerite, todite, etc. Alternatively, alumina hydrate partially transferred to ⁇ -alumina may be used, and these may be used alone or in a mixed state. In the present invention, ⁇ -alumina, ⁇ -alumina and boehmite, which have particularly high reaction activity and are easy to control, are preferably used as the Al source.
  • the alumina or alumina hydrate used as the Al source has an average particle size of 2 ⁇ m or less. That is, when particles having a large average particle diameter are used, the progress of reductive nitriding may be delayed.
  • the carbon powder used in the present invention functions as a reducing agent, and carbon black and graphite powder can be used.
  • carbon black furnace black, channel black, and acetylene black are preferably used.
  • the carbon powder used preferably has a BET specific surface area of 0.01 to 500 m 2 / g.
  • ⁇ Rare earth metal compound> In the compound containing a rare earth metal used in the present invention, examples of the rare earth metal include yttrium, lanthanum, praseodymium, terbium, and the like, and representative examples of the compound include oxides, carbides, and halides. In the present invention, among these rare earth metal compounds, those which can be co-melted with alumina at 1200 to 1900 ° C., particularly 1300 to 1800 ° C., are preferably used. For example, when a compound having a temperature capable of co-melting with alumina of less than 1200 ° C. is used, the alumina particles tend to aggregate with each other, and when a compound having a temperature exceeding 1900 ° C. is used, spheroidization is difficult. Tend to be.
  • suitable rare earth metal compounds include oxides such as yttrium oxide, lanthanum oxide, praseodymium oxide, and terbium oxide, and halides such as fluoride, and these may be used alone. Can be used in combination. Among these rare earth metal compounds, yttrium and lanthanum compounds are preferable, and yttrium oxide is most preferable.
  • the compound containing a rare earth metal element may be capable of generating the rare earth metal oxide, carbide or halide exemplified above during the reductive nitriding.
  • rare earth metal carbonates, nitrates, acetates, hydroxides and the like can also be suitably used.
  • the rare earth metal compound to be used is granular, and the particle diameter is not particularly limited, but generally, those having a particle diameter in the range of 0.01 to 100 ⁇ m, particularly 0.1 to 30 ⁇ m are suitable. is there. Further, its specific surface area (BET) is not particularly limited, but generally, those having a specific surface area of 0.01 to 500.0 m 2 / g, particularly 0.1 to 100.0 m 2 / g are preferably used. Is done.
  • a sintering aid for example, 1200 to 1900 ° C., preferably 1300 to 1800 ° C., and alumina is used as long as it has the desired shape and particle diameter but does not impair the effects of the present invention.
  • a meltable alkaline earth metal oxide, carbide or halide typically calcium oxide can be used in combination.
  • ⁇ Raw material mixing> Each raw material mentioned above is mixed and used for a reduction nitriding process.
  • the mixing means is not particularly limited as long as each raw material is uniform. Usually, a blender, a mixer, and a ball mill are used.
  • the mixing 0.5 to 30 parts by mass, preferably 1 to 25 parts by mass, more preferably 2 to 10 parts by mass of the rare earth metal compound in terms of oxide with respect to 100 parts by mass of the Al source such as alumina.
  • the carbon powder is used in an amount of 38 to 46 parts by mass, preferably 39 to 45 parts by mass, more preferably 40 to 44 parts by mass.
  • the amount of rare earth metal compound used when the amount of rare earth metal compound used is small, the grain growth of aluminum nitride particles becomes unsatisfactory, the particle diameter does not exceed 3 microns, and the C-axis lattice constant of the aluminum nitride crystal also decreases. . This is presumed to be due to the fact that a sufficient amount of liquid phase is not generated during reductive nitriding.
  • the amount of rare earth metal compound used is too large, the rare earth metal element compound remains as an impurity in the aluminum nitride powder, resulting in agglomeration of the aluminum nitride particles, and the resulting aluminum nitride powder is more than necessary. A lot of coarse grains are included.
  • the Al source such as alumina will be present in a sparse state in the mixture, resulting in insufficient aluminum nitride particle growth during firing, and an average of 3 microns or more. It becomes impossible to obtain spherical aluminum nitride powder having a particle size.
  • the amount of carbon powder used is too small, the aggregation of Al sources such as alumina is intense, and as with the case where the amount of rare earth metal compound used is too large, the resulting aluminum nitride powder has coarse particles that are larger than necessary. Many will be included.
  • the reductive nitridation is performed at a temperature of 1620 to 1900 ° C., preferably 1650 ° C. or higher, in a nitrogen-containing atmosphere (for example, under a nitrogen gas flow) at least a raw material mixture containing at least the above-mentioned Al source, carbon powder and rare earth metal compound. It is carried out by holding at a temperature of 1800 ° C., most preferably 1680 to 1750 ° C. for 2 to 50 hours, preferably 5 to 20 hours, most preferably 8 to 17 hours.
  • an Al source alumina or alumina hydrate
  • a rare earth metal compound co-melting agent
  • a carbon powder as a reducing agent in the above temperature range and firing.
  • the reduction nitridation of the Al source proceeds.
  • most of the rare earth metal compound to be added is not scattered even during reductive nitriding, so that oxygen dissolved in AlN particles can be efficiently reduced.
  • the rare earth metal content in the resulting aluminum nitride powder is 0.4 to 28% by weight.
  • the firing temperature is less than 1620 ° C.
  • the lattice constant of the C axis of the AlN crystal is small, and the thermal conductivity of the AlN particles themselves is low.
  • the firing temperature exceeds 1900 ° C.
  • AlON oxynitride having a low thermal conductivity is generated or oxygen is liable to be dissolved in AlN particles.
  • the amount of oxygen dissolved in the AlN particles can be estimated from the above-described lattice constant of the C axis of the AlN crystal.
  • the firing time is less than 2 hours, the nitriding reaction is not completed, the spheroidization of AlN particles does not progress, and the lattice constant of the C axis of the AlN crystal becomes small.
  • the firing time exceeds 50 hours, the AlN particles are aggregated and coarse particles tend to be generated.
  • the raw material mixed powder may be a carbon setter or the like.
  • ⁇ Decarbonization treatment> since the aluminum nitride powder obtained by the said reaction contains the excess carbon powder, it is preferable to perform a decarbonization process.
  • This decarbonization treatment is performed by oxidizing and removing carbon, and is performed using an oxidizing gas.
  • an oxidizing gas any gas that can remove carbon, such as air, oxygen, etc., can be used without any limitation, but air is preferable in consideration of economy and the oxygen concentration of the obtained aluminum nitride.
  • the treatment temperature is generally 500 to 900 ° C., preferably 600 to 750 ° C. in consideration of the decarbonization efficiency and excessive oxidation of the aluminum nitride surface.
  • the oxidation temperature is too high, the surface of the aluminum nitride powder is excessively oxidized, and it is difficult to obtain a spherical aluminum nitride powder having a target oxygen concentration. Therefore, it is preferable to select an appropriate oxidation temperature and time.
  • the spherical aluminum nitride powder of the present invention thus obtained has an average particle size of 3 to 30 ⁇ m, preferably 3 to 20 ⁇ m, more preferably 3 to 10 ⁇ m.
  • the rare earth metal compound most preferably yttrium oxide
  • the rare earth metal compound is 0.4 to 28% by weight in terms of oxide, preferably 0.9 to 0.9 with the use of the rare earth metal compound described above. 23 wt%, most preferably 1.8 to 9.0 wt.
  • the C-axis lattice constant of the AlN crystal is 4.9800 ⁇ or more, especially It shows a value of 4.9802 ⁇ or more, and further 4.9804 ⁇ or more. From this, it can be seen that the oxygen solid solution in the aluminum nitride particles is small. That is, this value is a value achieved by a specific manufacturing method using a compound containing the above-mentioned specific rare earth metal element, and the spherical aluminum nitride of the present invention exhibits a high thermal conductivity. When the resin is filled, an improvement effect with high thermal conductivity is obtained.
  • the ratio of the major axis to the minor axis (DS / DL) of the AlN particles constituting the powder is 0.75 or more, preferably 0.80, and more preferably 0.85 or more. If the ratio of the major axis to the minor axis of the aluminum nitride particles is 0.75 or more, the matrix resin can be highly filled. Further, the AlN particles have the above-mentioned DS / DL and have a shape with no corners as shown in the micrograph of FIG. 1, and the individual particles are almost spherical.
  • Such spherical aluminum nitride powder (especially one subjected to decarbonization treatment) is pulverized and classified as necessary to adjust the particle size according to the purpose.
  • the surface of the aluminum nitride particles can be treated by a known method. Specifically, organosilicon compounds such as silicone oil, silylating agent, silane coupling agent, treatment with phosphoric acid or phosphate, fatty acid, coating treatment with polymer such as polyamide resin, inorganic materials such as alumina and silica Examples include film treatment.
  • the spherical aluminum nitride powder obtained by the method of the present invention is widely used as a filler for heat radiating materials such as heat radiating sheets, heat radiating grease, heat radiating adhesives, paints, heat conductive resins, etc., taking advantage of the properties of aluminum nitride. Can be used.
  • the resin and grease used as the matrix of the heat dissipation material are thermosetting resins such as epoxy resin and phenol resin, thermoplastic resins such as polyethylene, polypropylene, polyamide, polycarbonate, polyimide, polyphenylene sulfide, silicone rubber, EPR, Examples thereof include rubbers such as SBR and silicone oil.
  • the matrix of the heat dissipation material for example, an epoxy resin or a silicone resin is preferable, and an addition reaction type liquid silicone rubber is preferable for a highly flexible heat dissipation member.
  • such a heat dissipation material may be filled with one kind or several kinds of fillers such as alumina, boron nitride, zinc oxide, silicon carbide, and graphite.
  • fillers such as alumina, boron nitride, zinc oxide, silicon carbide, and graphite.
  • the shape and particle size of the spherical aluminum nitride powder of the present invention and other fillers may be selected according to the above.
  • these fillers for example, those which have been surface-treated with a silane coupling agent may be used.
  • the mixing ratio of the spherical aluminum nitride powder and the other filler in the heat dissipation material can be adjusted as appropriate within a range of 1:99 to 99: 1.
  • the above resin composition can be manufactured by mixing with a blender or a mixer, and the heat dissipation material is molded by a press molding method, an extrusion molding method or a doctor blade method, and is cured by heating. Can be manufactured.
  • Average particle diameter The average particle diameter (D 50), a sample is dispersed in sodium pyrophosphate aqueous solution with a homogenizer was measured by a laser diffraction particle size distribution analyzer (Nikkiso Co., Ltd. MICROTRAC HRA).
  • Sphericality of particles (ratio of major axis to minor axis) Select 100 arbitrary particles from a photographic image of an electron microscope, measure the major axis (DL) and minor axis (DS) of the particle image using a scale, and calculate the average value of the ratio (DS / DL) as the sphericity As a guideline.
  • the cationic impurity content (metal element concentration) was determined by using an ICP emission analyzer (ICPS-7510 manufactured by Shimadzu Corporation) after the aluminum nitride powder was melted with alkali and neutralized with an acid. Quantified.
  • C-axis lattice constant of AlN crystal was measured using an X-ray diffractometer (RINT-1400 manufactured by Rigaku Corporation) and Si as an external standard substance. .
  • Thermal conductivity of silicone rubber sheet A thermally conductive silicone rubber composition is molded into a size of 10 cm x 6 cm and a thickness of 3 mm and cured by heating in a hot air circulation oven at 150 ° C for 1 hour to conduct heat. The thermal conductivity was measured using a rate meter (QTM-500, manufactured by Kyoto Electronics Industry). In order to prevent electric leakage from the detection part, the measurement was made through a polyvinylidene chloride film having a thickness of 10 ⁇ m.
  • Example 1 As an Al source, an average particle diameter of 1.2 [mu] m, using ⁇ -alumina having a specific surface area of 10.7 m 2 / g, as the carbon powder, the specific surface area of 125m 2 / g are used carbon black, as the rare earth metal compound, the average particle Yttrium oxide having a diameter of 1.0 ⁇ m and a specific surface area of 11.7 m 2 / g was used. After mixing 100 parts by mass of the above ⁇ -alumina, 42 parts by mass of carbon black, and 3.0 parts by mass of yttrium oxide, the mixture was charged into a graphite setter.
  • reduction nitridation is performed by firing under conditions of a firing temperature of 1700 ° C. and a firing time of 15 hours in a nitrogen atmosphere, and then an oxidization treatment (decarbonization treatment) is performed at 700 ° C. for 12 hours in an air atmosphere.
  • Aluminum powder was obtained.
  • the average particle diameter of the obtained aluminum nitride powder, the shape observation, the ratio measurement of the major and minor diameters of the aluminum nitride particles, the measurement of the cation impurity content, and the lattice constant measurement of the C-axis of the aluminum nitride crystal were carried out. The results are shown in Table 1.
  • Example 2 A spherical aluminum nitride powder was produced in the same manner as in Example 1 except that the ⁇ -alumina as the Al source was changed to boehmite having an average particle diameter of 1.0 ⁇ m and a specific surface area of 12.7 m 2 / g.
  • Table 1 shows the average particle diameter and shape of the obtained spherical aluminum nitride powder, the ratio of the major and minor diameters of the aluminum nitride particles, the cationic impurity content, and the lattice constant of the C-axis of the aluminum nitride crystal.
  • a sheet was produced in the same manner as in Example 1, and the thermal conductivity was measured. The results are also shown in Table 1.
  • Example 3 A spherical aluminum nitride powder was produced in the same manner as in Example 1 except that the firing temperature was 1650 ° C.
  • Table 1 shows the average particle diameter and shape of the obtained spherical aluminum nitride powder, the ratio of the major and minor diameters of the aluminum nitride particles, the cationic impurity content, and the lattice constant of the C-axis of the aluminum nitride crystal. Furthermore, using the obtained aluminum nitride powder, a sheet was produced in the same manner as in Example 1, and the thermal conductivity was measured. The results are also shown in Table 1.
  • Example 4 A spherical aluminum nitride powder was produced in the same manner as in Example 1 except that the amount of yttrium oxide, which is a rare earth metal compound, was 1.0 part by mass. Table 1 shows the average particle diameter and shape of the obtained spherical aluminum nitride powder, the ratio of the major and minor diameters of the aluminum nitride particles, the cationic impurity content, and the lattice constant of the C-axis of the aluminum nitride crystal. Furthermore, using the obtained aluminum nitride powder, a sheet was produced in the same manner as in Example 1, and the thermal conductivity was measured. The results are also shown in Table 1.
  • Example 5 A spherical aluminum nitride powder was produced in the same manner as in Example 1 except that the blending amount of yttrium oxide was 5.0 parts by mass.
  • Table 1 shows the average particle diameter and shape of the obtained spherical aluminum nitride powder, the ratio of the major and minor diameters of the aluminum nitride particles, the cationic impurity content, and the lattice constant of the C-axis of the aluminum nitride crystal. Furthermore, using the obtained aluminum nitride powder, a sheet was produced in the same manner as in Example 1, and the thermal conductivity was measured. The results are also shown in Table 1.
  • Example 6> A spherical aluminum nitride powder was produced in the same manner as in Example 1 except that the amount of carbon black was 39 parts by mass.
  • Table 1 shows the average particle diameter and shape of the obtained spherical aluminum nitride powder, the ratio of the major and minor diameters of the aluminum nitride particles, the cationic impurity content, and the lattice constant of the C-axis of the aluminum nitride crystal. Furthermore, using the obtained aluminum nitride powder, a sheet was produced in the same manner as in Example 1, and the thermal conductivity was measured. The results are also shown in Table 1.
  • Example 7 An aluminum nitride powder was produced in the same manner as in Example 1 except that the blending amount of yttrium oxide was 10 parts by mass. Table 1 shows the average particle diameter and shape of the obtained spherical aluminum nitride powder, the ratio of the major and minor diameters of the aluminum nitride particles, the cationic impurity content, and the lattice constant of the C-axis of the aluminum nitride crystal. Furthermore, using the obtained aluminum nitride powder, a sheet was produced in the same manner as in Example 1, and the thermal conductivity was measured. The results are also shown in Table 1.
  • Aluminum nitride powder was produced in the same manner as in Example 1 except that the amount of carbon black was 36 parts by mass.
  • Table 2 shows the average particle diameter and shape of the obtained spherical aluminum nitride powder, the ratio of the major and minor diameters of the aluminum nitride particles, the cationic impurity content, and the lattice constant of the C-axis of the aluminum nitride crystal.
  • Aluminum nitride powder was prepared in the same manner as in Example 1 except that the amount of yttrium oxide was 0.3 parts by mass.
  • Table 2 shows the average particle diameter and shape of the obtained spherical aluminum nitride powder, the ratio of the major and minor diameters of the aluminum nitride particles, the cationic impurity content, and the lattice constant of the C-axis of the aluminum nitride crystal.
  • Example 3 An aluminum nitride powder was produced in the same manner as in Example 1 except that the firing temperature was 1920 ° C.
  • Table 1 shows the average particle diameter and shape of the obtained spherical aluminum nitride powder, the ratio of the major and minor diameters of the aluminum nitride particles, the cationic impurity content, and the lattice constant of the C-axis of the aluminum nitride crystal.
  • a sheet was produced in the same manner as in Example 1, and the thermal conductivity was measured. The results are also shown in Table 2.
  • Example 5 An aluminum nitride powder was produced in the same manner as in Example 1 except that the firing time was 1 hour.
  • Table 2 shows the average particle diameter and shape of the obtained spherical aluminum nitride powder, the ratio of the major and minor diameters of the aluminum nitride particles, the cationic impurity content, and the lattice constant of the C-axis of the aluminum nitride crystal.
  • Example 6 An aluminum nitride powder was produced in the same manner as in Example 1 except that the blending amount of yttrium oxide was 35 parts by mass.
  • Table 2 shows the average particle diameter and shape of the obtained spherical aluminum nitride powder, the ratio of the major and minor diameters of the aluminum nitride particles, the cationic impurity content, and the lattice constant of the C-axis of the aluminum nitride crystal.
  • the spherical aluminum nitride powder obtained by the present invention has a shape and particle size suitable for a filler, it can be highly filled into a matrix such as resin or grease, and has a high heat conductivity. Heat radiation grease, heat radiation adhesive, etc. can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】高熱伝導性及び充填性に優れ、放熱材料用フィラーとして有用な球状窒化アルミニウム粉末の製造方法を提供する。 【解決手段】アルミナまたはアルミナ水和物100質量部、希土類金属化合物0.5~30質量部、及びカーボン粉末38~46質量部の混合物を1620~1900℃の温度で2時間以上還元窒化することにより球状窒化アルミニウム粉末を製造する。

Description

球状窒化アルミニウム粉末の製造方法
 本発明は、樹脂やグリース、接着剤、塗料等に充填して放熱性を向上させるための放熱材料用フィラーとして好適な球状窒化アルミニウム粉末の製造方法に関する。
 窒化アルミニウムは電気絶縁性に優れ、かつ高熱伝導性を有することから、その焼結体、あるいは粉末を充填した樹脂やグリース、接着剤、塗料等の材料は、高い熱伝導性を有する放熱材料として期待される。
 上記放熱材料の熱伝導率を向上させるためには、マトリックスとなる樹脂中に高熱伝導性を有したフィラーを高充填することが重要である。そのため、球状で、粒径が数μm~数十μm程度の窒化アルミニウム粉末が強く要望されている。
 一般に、窒化アルミニウム粉末の製法には、アルミナとカーボンとの組成物を還元窒化するアルミナ還元窒化法、アルミニウムと窒素とを直接反応させる直接窒化法、アルキルアルミニウムとアンモニアを反応させた後、加熱する気相法等が知られている。そのうち、還元窒化法及び気相法で得られる窒化アルミニウム粉末は、形状は球状に近いものの、その粒径はサブミクロンオーダーのものしか得られていないのが現状である。
 一方、直接窒化法により得られる窒化アルミニウム粉末は、粉砕・分級することにより製造されるため、粒径の制御は比較的容易であり、粒径が数μm~数十μm程度の窒化アルミニウム粉末を得ることは可能であるが、かかる粉末を構成する粒子は角張った形をした非球状体である。したがって、上記の方法によって得られる窒化アルミニウム粉末は、樹脂中に高充填することが困難であった。
 そこで、球状で所望の粒径を有した窒化アルミニウム粉末を得るために、様々な方法が検討されている。
 例えば、特許文献1には、アルミナ粉末と、炭素粉末の混合物を不活性雰囲気中で焼成して炭化アルミニウムを生成させることにより粒成長せしめ、次いで、窒素を含む非酸化性雰囲気下で焼成することにより、平均粒子径が3μm以上の、丸味をおびた形状を有する窒化アルミニウム粉末を得る方法が開示されている。しかしながら、この方法では、焼成雰囲気の変換を伴うために、アルミナの粒成長を制御すること、すなわち、得られる窒化アルミニウム粉末の粒度分布を制御するのが困難である。
 また、特許文献2には、球状のアルミナをカーボンの存在下に窒素ガスまたはアンモニアガスによって還元窒化し、その後、表面酸化することにより、平均粒子径が50μm以下、真球度が0.8以上の耐水性の優れた球状窒化アルミニウム粉末を製造する方法が開示されている。しかしながら、上記製造方法は、原料となるアルミナの球状をそのまま最終製品の窒化アルミニウム粉末の形状とするため、目的とする粒径と同等の、大きい粒子径のアルミナを使用することが必要である。このような粒径の大きなアルミナについての還元窒化では、その転化率を向上させるために、長時間の反応が必要となり、この結果、得られる窒化アルミニウムの酸素濃度が高くなり、これに伴って、その熱伝導性も低下する。
 一方、特許文献3には、酸化アルミニウム粉末と、炭素粉末と、アルカリ土類金属化合物や希土類元素化合物との混合粉末を出発原料として、窒素を含む非酸化性雰囲気中にて焼成して窒化アルミニウム粉末を製造する方法が開示されている。この方法は、アルカリ土類金属化合物や希土類化合物が反応を促進させる働きを利用して、1,500℃以下の低温での窒化アルミニウムを生成せしめようとするものである。しかしながら、この方法で得られる窒化アルミニウム粉末は、具体的には、粒子径が高々1μm程度であり、数μmのオーダーの比較的大きい粒子径のものは得られていない。
 さらに、特許文献4には、不定形の窒化アルミニウム粉末を、アルカリ土類元素、希土類元素などの化合物よりなるフラックス中で熟成(熱処理)することにより球状化させた後、フラックスを溶解して単離した結晶質窒化アルミニウム粉体を得る方法が開示されている。この方法では、高い流動性と高充填率が得られるが、窒化アルミニウム粉末中に不純物が混入しやすく、厳密な製造条件の制御を必要とし、工程が多く製造コストは高くなる。
特開平3-23206号公報 特開平2005-162555号公報 特開平5-221618号公報 特開2002-179413号公報
 従って、本発明の目的は、フィラー用途に最適な球状の形状を有し、平均粒子径が3μm~30μmの大きさの球状窒化アルミニウム粉末を生産性良く得るための製造方法を提供することにある。
 本発明者らは、上記課題を解決すべく鋭意研究を行った結果、アルミナまたはアルミナ水和物と、カーボン粉末と、希土類金属を含む化合物とを特定の割合で混合した混合粉末を使用し、特定の温度下に還元窒化することによって、球状で所望の粒径を有した窒化アルミニウム粉末が生産性良く得られることを見出し、本発明を完成するに至った。
 すなわち、本発明によれば、100質量部のアルミナまたはアルミナ水和物と、0.5乃至30質量部の希土類金属を含む化合物と、38乃至46質量部のカーボン粉末とを混合し、
 前記混合物を、含窒素雰囲気下、1620~1900℃の温度に2時間以上保持することにより、アルミナまたはアルミナ水和物を還元窒化すること、
を特徴とする球状窒化アルミニウム粉末の製造方法が提供される。
 本発明によれば、また、平均粒子径が3~30μm、酸化物換算での希土類金属含有量が0.4重量%~28重量%の範囲にあり、窒化アルミニウム結晶のC軸の格子定数が4.9800Å以上である窒化アルミニウム粒子より構成されていることを特徴とする球状窒化アルミニウム粉末が提供される。かかる球状窒化アルミニウム粉末は、上記の方法で製造することができる。
 本発明の製造方法により得られる球状窒化アルミニウム粉末は、角がない、丸み状を帯びた形状の粒子であり、該粒子の長径と短径の比(DS/DL)は0.75以上であって高い真球度を有する。また、その平均粒子径が3~30μmであり、さらに希土類金属を一定量含んでいることに関連して酸素含量が少なく、これに伴って、窒化アルミニウム結晶のC軸の格子定数が4.9800Å以上となっている。
 尚、平均粒子径は、レーザー回折/散乱法により測定した粒度分布における累積体積が50%のときの粒子径をいう。
 また、窒化アルミニウム結晶のC軸の格子定数は、X線回折装置を使用し、Siを外部標準物質として用い、測定した値である。
 即ち、本発明により得られる窒化アルミニウム粉末は、平均粒子径が3~30μmという、従来にない大きい粒子径を有しながら、窒化アルミニウム結晶のC軸の格子定数が4.9800Å以上と大きな値を示す。このC軸の格子定数は、窒化アルミニウム粒子の固溶酸素濃度を評価する指標となるものであり、この値が大きい窒化アルミニウム粒子ほど固溶酸素濃度が低く、従って、その熱伝導率が高い。
 このように、本発明によれば、フィラー用途に最適な粒径、形状を有した窒化アルミニウム粉末を生産性よく得ることができる。例えば、この球状窒化アルミニウム粉末は、真球度が高い球形、所望の粒径を有しており、樹脂やグリースに高充填することができるばかりか、その熱伝導率も高く、放熱材料に高い熱伝導率を付与することができる。
 尚、本発明の製造方法により上記のような特性を有する球状窒化アルミニウム粉末が得られる作用機構として、本発明者らは、以下のように推定している。
 すなわち、本発明の方法においては、アルミナ等と共に希土類金属を含む化合物を使用することにより、特定の還元窒化の温度条件において、先ずアルミナが溶け込んだ液相が形成され、その際、アルミナに対するカーボン粉末の配合量が一定の範囲に制御されていることから、形成された液相に溶け込むアルミナの量が調整され、これにより所望の粒子径を有する凝集物を形成することができ、同時に還元窒化も進行する。また、この還元窒化が特定の温度条件で行われるため、粒子内に残存する希土類金属を含む化合物により、窒化アルミニウム結晶中に固溶した酸素量が低減され、この結果、上記のような特性の球状窒化アルミニウム粉末が得られるものと考えられる。
実施例1において得られた球状窒化アルミニウム粉末の粒子構造を示す電子顕微鏡写真である。
 本発明の製造方法では、Al源と、カーボン粉末と、希土類金属を含む化合物を使用し、これらを特定の量比で混合し、この混合物を、特定の条件で還元窒化処理し、さらに必要により脱炭素処理が行われ、これにより目的とする球状窒化アルミニウム粉末が、再現性良く製造される。
<Al源>
 Al源としては、アルミナ或いはアルミナ水和物が使用される。
 このようなAl源は、α、γ、θ、δ、η、κ、χ等の結晶構造を持つアルミナや、ベーマイト、ダイアスポア、ギブサイト、バイヤライト、トーダイトなど加熱により脱水転移して最終的に全部又は一部がα-アルミナに転移するアルミナ水和物であってよく、これらは単独或いは種類の異なるものが混合された状態で用いることもできる。本発明においては、特に反応活性が高く、制御が容易なα-アルミナ、γ-アルミナ、ベーマイトがAl源として好適に用いられる。
 また、上記Al源として使用されるアルミナ或いはアルミナ水和物は、平均粒径が2μm以下であることが好ましい。即ち、平均粒径が大きい粒子を用いた場合には、還元窒化の進行が遅くなるおそれがあるからである。
<カーボン粉末>
 本発明で用いるカーボン粉末は、還元剤として機能するものであり、カーボンブラック、黒鉛粉末が使用できる。カーボンブラックとしては、ファーネスブラック、チャンネルブラック及びアセチレンブラックが好適に使用される。
 用いるカーボン粉末のBET比表面積は、0.01~500m/gのものを用いるのが好ましい。
<希土類金属化合物>
 本発明で用いる希土類金属を含む化合物において、希土類金属としては、イットリウム、ランタン、プラセオジム、テルビウム等を挙げることができ、その化合物としては、酸化物、炭化物又はハロゲン化物が代表的である。
 本発明においては、このような希土類金属化合物の中で、1200~1900℃、特に1300~1800℃でアルミナと共融解し得るものが好適に使用される。例えば、アルミナと共融解し得る温度が1200℃未満の化合物を用いた場合、アルミナ粒子同士が凝集しやすくなってしまい、また、上記温度が1900℃を超える化合物を用いた場合、球状化が困難となる傾向がある。
 好適な希土類金属化合物の例としては、酸化イットリウム、酸化ランタン、酸化プラセオジム、酸化テルビウム等の酸化物、及び、フッ化物等のハロゲン化物を挙げることができ、これらは1種単独で使用することもできるし、複数種を併用することもできる。これら希土類金属化合物の中でも、イットリウム、ランタン系の化合物が好ましく、酸化イットリウムが最も好適である。
 また、希土類金属元素を含む化合物は、還元窒化中に前記で例示した希土類金属の酸化物、炭化物又はハロゲン化物を生成し得るものであってもよい。例えば、希土類金属の炭酸塩、硝酸塩、酢酸塩、水酸化物なども好適に使用することができる。
 本発明において、用いる希土類金属化合物は粒状であり、その粒子径は特に制限されないが、一般的には、0.01~100μm、特に0.1~30μmの範囲の粒径を有するものが好適である。また、その比表面積(BET)も特に制限されないが、一般的には、0.01~500.0m/g、特に0.1~100.0m/gの範囲にあるものが好適に使用される。
<その他の材料>
 また、本発明においては、目的とする形状、粒子径等を有するが本発明の効果を損なわない範囲で、焼結助剤、例えば1200~1900℃、好ましくは、1300~1800℃でアルミナと共融解し得るアルカリ土類金属の酸化物、炭化物又はハロゲン化物など(代表的には酸化カルシウム)を併用することもできる。
<原料混合>
 上述した各原料は混合されて還元窒化工程に供される。混合手段は、各原料が均一になるような方法であれば特に制限されないが、通常はブレンダー、ミキサー、ボールミルを用いて行われる。
 上記の混合に際しては、アルミナ等のAl源100質量部に対して、希土類金属化合物を酸化物換算で0.5~30質量部、好ましくは1~25質量部、さらに好ましくは、2~10質量部の量で使用し、カーボン粉末を38~46質量部、好ましくは39~45質量部、さらに好ましくは40~44質量部の量で使用する。
 例えば、希土類金属化合物の使用量が少ない場合には、窒化アルミニウム粒子の粒成長が不満足となり、粒子径が3ミクロン以上にならず、また、窒化アルミニウム結晶のC軸の格子定数も小さくなってしまう。これは、還元窒化の際、十分な量の液相が生成しないことによるものと推定される。また、希土類金属化合物の使用量が多すぎると、希土類金属元素化合物が窒化アルミニウム粉末中に不純物として残存してしまい、窒化アルミニウム粒子同士の凝集が生じ、得られる窒化アルミニウム粉末には、必要以上に粗大な粗粒が多く含まれるようになってしまう。
 さらに、カーボン粉末の使用量が多すぎると、上記アルミナ等のAl源が混合物中に疎な状態で存在することとなり、焼成の際、窒化アルミニウムの粒子成長が不十分となり、3ミクロン以上の平均粒径を有する球状窒化アルミニウム粉末を得ることができなくなってしまう。また、カーボン粉末の使用量が少なすぎると、アルミナ等のAl源の凝集が激しく、希土類金属化合物の使用量が多すぎる場合と同様、得られる窒化アルミニウム粉末は、必要以上に粗大な粗粒が多く含まれることとなる。
<還元窒化>
 本発明において、還元窒化は、少なくとも上述したAl源、カーボン粉末及び希土類金属化合物を含む原料混合物を、含窒素雰囲気下(例えば窒素ガス流通下)で、1620~1900℃、好適には1650℃~1800℃、最も好適には1680~1750℃の温度で、2~50時間、好適には5~20時間、最も好適には8~17時間、保持することにより実施される。
 即ち、Al源(アルミナまたはアルミナ水和物)の微細な粒子を希土類金属化合物(共融解剤)と共に、還元剤であるカーボン粉末が共存する条件下で上記温度範囲に保持して焼成することにより、Al源の還元窒化を進行させるわけである。
 本発明において、添加する希土類金属化合物は還元窒化の際にもほとんどが飛散しないため、AlN粒子固溶した酸素を効率よく低減できる。得られる窒化アルミニウム粉末中の希土類金属含有量は0.4~28重量%である。
 焼成温度が1620℃未満では、AlN結晶のC軸の格子定数が小さく、AlN粒子自身の熱伝導率が低くなる。一方、焼成温度が1900℃を超えると希土類金属化合物が短時間で飛散してしまい、熱伝導率の低い酸窒化物(AlON)が生成したり、酸素がAlN粒子に固溶しやすくなり、AlN粒子自体の熱伝導性が低くなったり、また、AlN粒子同士が凝集しやすくなる。
 尚、AlN粒子に固溶した酸素の量は、前述したAlN結晶のC軸の格子定数より推定できる。
 また、焼成時間が2時間未満では、窒化反応が完結しなかったり、AlN粒子の球状化が進まず、また、AlN結晶のC軸の格子定数が小さくなる。一方、焼成時間が50時間を越えると、AlN粒子同士が凝集し、粗粒が発生し易くなる傾向にある。
 上記のような焼成(還元窒化)は、原料混合粉末中に、窒素が十分に拡散するような方法であればいずれの方法を採用することができ、例えば、原料混合粉末をカーボン製のセッター等に充填し窒素を流通させて焼成を行う方法、ロータリーキルンに原料混合粉末を供給して焼成を行う方法、流動層を用いて原料混合粉末の焼成を行う方法などを採用することができ、これらのうち、カーボン製のセッター等に充填し窒素を流通させて焼成を行う方法が特に好適である。
<脱炭素処理>
 本発明において、上記反応により得られた窒化アルミニウム粉末は余剰のカーボン粉末を含んでいるため、脱炭素処理を行うのが好ましい。
 この脱炭素処理は、炭素を酸化して取り除くものであり、酸化性ガスを用いて行われる。この酸化性ガスとしては、空気、酸素、など炭素を除去できるガスならば何等制限無く採用できるが、経済性や得られる窒化アルミニウムの酸素濃度を考慮して、空気が好適である。また、処理温度は一般的に500~900℃がよく、脱炭素の効率と窒化アルミニウム表面の過剰酸化を考慮して、600~750℃が好適である。
 酸化温度が高過ぎると窒化アルミニウム粉末の表面が過剰に酸化され、目的とする酸素濃度を有する球状窒化アルミニウム粉末が得られ難い傾向があるので適当な酸化温度と時間を選択するのが好ましい。
<球状窒化アルミニウム粉末>
 かくして得られる本発明の球状窒化アルミニウム粉末は、平均粒子径が3~30μm、好ましくは3~20μm、さらに好ましくは3~10μmである。
 また、この球状窒化アルミニウム粉末中には、前述した希土類金属化合物の使用に伴い、希土類金属化合物(最も好ましくは酸化イットリウム)が酸化物換算で0.4~28重量%、好ましくは0.9~23重量%、最も好適には1.8~9.0重量の量で含まれており、このような希土類金属量に関連して、AlN結晶のC軸の格子定数が4.9800Å以上、特に、4.9802Å以上、さらには4.9804Å以上の値を示し、これより、窒化アルミニウム粒子への酸素固溶が少ないものであることが判る。即ち、かかる値は、前述した特定の希土類金属元素を含む化合物を使用し、特定の製造方法によって達成される値であり、本発明の球状窒化アルミニウムはこれにより高い熱伝導率を発揮し、これを樹脂に充填した場合、熱伝導性の高い改善効果が得られる。
 また、かかる粉末を構成するAlN粒子の長径と短径の比(DS/DL)は0.75以上、好ましくは0.80、さらに好ましくは0.85以上である。上記窒化アルミニウム粒子の長径と短径の比が0.75以上であると、マトリックスとなる樹脂に高充填可能となる。さらに、このAlN粒子は、上記DS/DLを有すると共に、図1の顕微鏡写真に示されているように、角がない形状を有しており、個々の粒子がほぼ球状である。
<後処理>
 このような球状窒化アルミニウム粉末(特に脱炭素処理がされたもの)は、必要に応じて粉砕、分級を行い、目的に応じた粒度に調整される。
 また、耐水性や樹脂との相溶性を向上させるため、窒化アルミニウム粒子の表面を公知の方法で処理することができる。具体的には、シリコーンオイル、シリル化剤、シランカップリング剤などの有機珪素化合物、リン酸や又はリン酸塩、脂肪酸による処理、ポリアミド樹脂などの高分子による皮膜処理、アルミナ、シリカなどの無機質皮膜処理などが挙げられる。
<用途>
 本発明の方法により得られた球状窒化アルミニウム粉末は、窒化アルミニウムの性質を生かした種々の用途、特に放熱シート、放熱グリース、放熱接着剤、塗料、熱伝導性樹脂などの放熱材料用フィラーとして広く用いることができる。
 ここで放熱材料のマトリックスとなる樹脂、グリースは、エポキシ樹脂、フェノール樹脂等の熱硬化性樹脂や、ポリエチレン、ポリプロピレン、ポリアミド、ポリカーボネート、ポリイミド、ポリフェニレンサルファイド等の熱可塑性樹脂、またシリコーンゴム、EPR、SBR等のゴム類、シリコーンオイルが挙げられる。
 これらのうち、放熱材料のマトリックスとしては、例えばエポキシ系樹脂、シリコーン系樹脂が好適であり、高柔軟性放熱部材とするには付加反応型液状シリコーンゴムが望ましい。
 放熱材料の熱伝導性を向上させるため、樹脂、ゴム又はオイル100質量部あたり、フィラーを150~1000質量部添加するのが良い。このような放熱材料には、本発明の球状窒化アルミニウム粉末以外に、アルミナ、窒化ホウ素、酸化亜鉛、炭化珪素、グラファイトなどのフィラーを一種、あるいは数種類充填しても良く、放熱材料の特性や用途に応じて、本発明の球状窒化アルミニウム粉末とそれ以外のフィラーの形状、粒径を選択すれば良い。これらのフィラーは、例えばシランカップリング剤で表面処理したものを用いても良い。また、放熱材料における球状窒化アルミニウム粉末とそれ以外のフィラーの混合比は、1:99~99:1の範囲で適宜調整できる。また、放熱材料には、可塑剤、加硫剤、硬化促進剤、離形剤等の添加剤をさらに添加しても良い。
 上記の樹脂組成物は、ブレンダーやミキサーで混合することによって製造することができ、また放熱材料は、プレス成形法、押出成形法、ドクターブレード法によって樹脂組成物を成形し、それを加熱硬化することによって製造することができる。
 以下、本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。実施例および比較例における各種物性は、下記の方法により測定した。
(1)平均粒子径
 平均粒子径(D50)は、試料をホモジナイザーにてピロリン酸ソーダ水溶液中に分散させ、レーザー回折粒度分布装置(日機装株式会社製MICROTRAC HRA)にて測定した。
(2)粒子形状
 窒化アルミニウム粉末の形状は、走査型電子顕微鏡(日立製作所製S-2600N)にて観察した。
(3)粒子の球形度(長径と短径の比)
 電子顕微鏡の写真像から、任意の粒子100個を選んで、スケールを用いて粒子像の長径(DL)と短径(DS)を測定し、その比(DS/DL)の平均値を球形度の目安とした。
(4)陽イオン不純物含有量
 陽イオン不純物含有量(金属元素濃度)は、窒化アルミニウム粉末をアルカリ溶融後、酸で中和し、ICP発光分析計(島津製作所製ICPS-7510)を使用して定量した。
(5)AlN結晶のC軸の格子定数
 窒化アルミニウム結晶のC軸の格子定数は、X線回折装置((株)リガク製RINT-1400)を使用し、Siを外部標準物質として用い、測定した。
(6)シリコーンゴムシートの熱伝導率
 熱伝導性シリコーンゴム組成物を10cm×6cm、厚さ3mmの大きさに成形し150℃の熱風循環式オーブン中で1時間加熱して硬化し、熱伝導率計(京都電子工業製QTM-500)を用いて熱伝導率を測定した。なお検出部からの漏電防止のため、厚さ10μmのポリ塩化ビニリデンフイルムを介して測定した。
<実施例1>
 Al源として、平均粒子径1.2μm、比表面積10.7m/gのαアルミナを使用し、カーボン粉末として、比表面積125m/gがカーボンブラックを使用し、希土類金属化合物として、平均粒子径1.0μm、比表面積11.7m/gの酸化イットリウムを使用した。
 上記のαアルミナ100質量部、カーボンブラック42質量部、及び酸化イットリウム3.0質量部を混合した後、混合物をグラファイトのセッターに充填した。
 ついで、窒素雰囲気下において、焼成温度1700℃、焼成時間15時間の条件での焼成により還元窒化を行った後、空気雰囲気下において700℃で12時間、酸化処理(脱炭素処理)を行って窒化アルミニウム粉末を得た。
 得られた窒化アルミニウム粉末の平均粒子径測定、形状観察、窒化アルミニウム粒子の長径と短径の比測定、陽イオン不純物含有量測定、窒化アルミニウム結晶のC軸の格子定数測定を実施した。結果を表1に示す。
 また、シリコーン樹脂として、ミゼラブル型シリコーン(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製TSE201)を用意した。
 得られた窒化アルミニウム粉末900質量部と、上記のシリコーン樹脂100質量部、及び離型剤0.5質量部を加圧ニーダーにて混練した。次いで、混練物を冷却した後にロールを用いて架橋剤0.5部と混合後、180℃で15分間加圧プレスして縦10cm、横6cm、厚さ3mmのシートを得た。
 得られたシートについて、前述の方法にて、熱伝導率を測定した。結果を表1に併せて示す。
<実施例2>
 Al源のαアルミナを、平均粒子径1.0μm、比表面積12.7m/gのベーマイトに変更した以外は、実施例1と同様にして球状窒化アルミニウム粉末を作製した。
 得られた球状窒化アルミニウム粉末の平均粒子径、形状、窒化アルミニウム粒子の長径と短径の比、陽イオン不純物含有量、窒化アルミニウム結晶のC軸の格子定数を表1に示す。さらに得られた窒化アルミニウム粉末を用いて、実施例1と同様にシートを作製し、熱伝導率を測定した。その結果を併せて表1に示す。
<実施例3>
 焼成温度を1650℃とした以外には実施例1と同様にして球状窒化アルミニウム粉末を作製した。
 得られた球状窒化アルミニウム粉末の平均粒子径、形状、窒化アルミニウム粒子の長径と短径の比、陽イオン不純物含有量、窒化アルミニウム結晶のC軸の格子定数を表1に示す。さらに得られた窒化アルミニウム粉末を用いて、実施例1と同様にシートを作製し、熱伝導率を測定した。その結果を併せて表1に示す。
<実施例4>
 希土類金属化合物である酸化イットリウムの配合量を1.0質量部とした以外は実施例1と同様にして球状窒化アルミニウム粉末を作製した。
 得られた球状窒化アルミニウム粉末の平均粒子径、形状、窒化アルミニウム粒子の長径と短径の比、陽イオン不純物含有量、窒化アルミニウム結晶のC軸の格子定数を表1に示す。さらに得られた窒化アルミニウム粉末を用いて、実施例1と同様にシートを作製し、熱伝導率を測定した。その結果を併せて表1に示す。
<実施例5>
 酸化イットリウムの配合量を5.0質量部とした以外は実施例1と同様にして球状窒化アルミニウム粉末を作製した。
 得られた球状窒化アルミニウム粉末の平均粒子径、形状、窒化アルミニウム粒子の長径と短径の比、陽イオン不純物含有量、窒化アルミニウム結晶のC軸の格子定数を表1に示す。さらに得られた窒化アルミニウム粉末を用いて、実施例1と同様にシートを作製し、熱伝導率を測定した。その結果を併せて表1に示す。
<実施例6>
 カーボンブラックの配合量を39質量部とした以外は実施例1と同様にして球状窒化アルミニウム粉末を作製した。
 得られた球状窒化アルミニウム粉末の平均粒子径、形状、窒化アルミニウム粒子の長径と短径の比、陽イオン不純物含有量、窒化アルミニウム結晶のC軸の格子定数を表1に示す。さらに得られた窒化アルミニウム粉末を用いて、実施例1と同様にシートを作製し、熱伝導率を測定した。その結果を併せて表1に示す。
<実施例7>
 酸化イットリウムの配合量を10質量部とした以外は実施例1と同様にして窒化アルミニウム粉末を作製した。
 得られた球状窒化アルミニウム粉末の平均粒子径、形状、窒化アルミニウム粒子の長径と短径の比、陽イオン不純物含有量、窒化アルミニウム結晶のC軸の格子定数を表1に示す。さらに得られた窒化アルミニウム粉末を用いて、実施例1と同様にシートを作製し、熱伝導率を測定した。その結果を併せて表1に示す。
Figure JPOXMLDOC01-appb-T000001
<比較例1>
 カーボンブラックの配合量を36質量部とした以外は実施例1と同様にして窒化アルミニウム粉末を作製した。
 得られた球状窒化アルミニウム粉末の平均粒子径、形状、窒化アルミニウム粒子の長径と短径の比、陽イオン不純物含有量、窒化アルミニウム結晶のC軸の格子定数を表2に示す。
 さらに得られた窒化アルミニウム粉末を用い、実施例1と同様に、該粉末にシリコーン樹脂及び離型剤を混練してシートを作製しようとしたが、混練物の粘度が高く、シートを作製することが出来なかった。
<比較例2>
 酸化イットリウムの配合量を0.3質量部とした以外は実施例1と同様にして窒化アルミニウム粉末を作製した。
 得られた球状窒化アルミニウム粉末の平均粒子径、形状、窒化アルミニウム粒子の長径と短径の比、陽イオン不純物含有量、窒化アルミニウム結晶のC軸の格子定数を表2に示す。
 さらに得られた窒化アルミニウム粉末を用い、実施例1と同様に、該粉末にシリコーン樹脂及び離型剤を混練してシートを作製しようとしたが、比較例1と同様、混練物の粘度が高く、シートを作製することが出来なかった。
<比較例3>
 焼成温度を1920℃とした以外は実施例1と同様にして窒化アルミニウム粉末を作製した。
 得られた球状窒化アルミニウム粉末の平均粒子径、形状、窒化アルミニウム粒子の長径と短径の比、陽イオン不純物含有量、窒化アルミニウム結晶のC軸の格子定数を表1に示す。さらに得られた窒化アルミニウム粉末を用いて、実施例1と同様にシートを作製し、熱伝導率を測定した。その結果を併せて表2に示す。
<比較例4>
 焼成温度を1550℃とした以外は実施例1と同様にして窒化アルミニウム粉末を作製した。
 得られた球状窒化アルミニウム粉末の平均粒子径、形状、窒化アルミニウム粒子の長径と短径の比、陽イオン不純物含有量、窒化アルミニウム結晶のC軸の格子定数を表2に示す。
 さらに得られた窒化アルミニウム粉末を用い、実施例1と同様に、該粉末にシリコーン樹脂及び離型剤を混練してシートを作製しようとしたが、混練物の粘度が高く、シートを作製することが出来なかった。
<比較例5>
 焼成時間を1時間とした以外は実施例1と同様にして、窒化アルミニウム粉末を作製した。
 得られた球状窒化アルミニウム粉末の平均粒子径、形状、窒化アルミニウム粒子の長径と短径の比、陽イオン不純物含有量、窒化アルミニウム結晶のC軸の格子定数を表2に示す。
 さらに得られた窒化アルミニウム粉末を用い、実施例1と同様に、該粉末にシリコーン樹脂及び離型剤を混練してシートを作製しようとしたが、混練物の粘度が高く、シートを作製することが出来なかった。
<比較例6>
 酸化イットリウムの配合量を35質量部とした以外は実施例1と同様にして窒化アルミニウム粉末を作製した。
 得られた球状窒化アルミニウム粉末の平均粒子径、形状、窒化アルミニウム粒子の長径と短径の比、陽イオン不純物含有量、窒化アルミニウム結晶のC軸の格子定数を表2に示す。
 さらに得られた窒化アルミニウム粉末を用い、実施例1と同様に、該粉末にシリコーン樹脂及び離型剤を混練してシートを作製しようとしたが、混練物の粘度が高く、シートを作製することが出来なかった。
Figure JPOXMLDOC01-appb-T000002
 本発明で得られる球状窒化アルミニウム粉末は、フィラーに適した形状、粒径を有していることから、樹脂やグリースなどのマトリックスに対して高充填することができ、熱伝導率の高い放熱シート、放熱グリース、放熱接着剤等を得ることができる。

Claims (2)

  1.  100質量部のアルミナまたはアルミナ水和物と、0.5乃至30質量部の希土類金属を含む化合物と、38乃至46質量部のカーボン粉末とを混合し、
     前記混合物を、含窒素雰囲気下、1620~1900℃の温度に2時間以上保持することにより、アルミナまたはアルミナ水和物を還元窒化すること、
    を特徴とする球状窒化アルミニウム粉末の製造方法。
  2.  平均粒子径が3~30μm、酸化物換算での希土類金属含有量が0.4重量%~28重量%の範囲にあり、窒化アルミニウム結晶のC軸の格子定数が4.9800Å以上である窒化アルミニウム粒子より構成されていることを特徴とする球状窒化アルミニウム粉末。
PCT/JP2011/072098 2010-09-28 2011-09-27 球状窒化アルミニウム粉末の製造方法 WO2012043574A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11829127.7A EP2623458B1 (en) 2010-09-28 2011-09-27 Method for manufacturing spherical aluminum nitride powder
US13/823,017 US9090469B2 (en) 2010-09-28 2011-09-27 Method of producing a spherical aluminum nitride powder
KR1020137007737A KR101859785B1 (ko) 2010-09-28 2011-09-27 구상 질화알루미늄 분말의 제조 방법
CN201180041466.0A CN103079996B (zh) 2010-09-28 2011-09-27 球形氮化铝粉末的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-217804 2010-09-28
JP2010217804A JP5618734B2 (ja) 2010-09-28 2010-09-28 球状窒化アルミニウム粉末

Publications (1)

Publication Number Publication Date
WO2012043574A1 true WO2012043574A1 (ja) 2012-04-05

Family

ID=45893013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072098 WO2012043574A1 (ja) 2010-09-28 2011-09-27 球状窒化アルミニウム粉末の製造方法

Country Status (7)

Country Link
US (1) US9090469B2 (ja)
EP (1) EP2623458B1 (ja)
JP (1) JP5618734B2 (ja)
KR (1) KR101859785B1 (ja)
CN (1) CN103079996B (ja)
TW (1) TWI496736B (ja)
WO (1) WO2012043574A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038676A1 (ja) 2012-09-07 2014-03-13 株式会社トクヤマ 耐水性窒化アルミニウム粉末の製造方法
JP6589021B1 (ja) * 2018-08-06 2019-10-09 株式会社Maruwa 球状窒化アルミニウム粉末、及び、球状窒化アルミニウム粉末の製造方法
WO2020031947A1 (ja) * 2018-08-06 2020-02-13 株式会社Maruwa 球状窒化アルミニウム粉末、及び、球状窒化アルミニウム粉末の製造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5686748B2 (ja) * 2010-01-29 2015-03-18 株式会社トクヤマ 球状窒化アルミニウム粉末の製造方法及び該方法により得られた球状窒化アルミニウム粉末
JP5645559B2 (ja) 2010-09-03 2014-12-24 株式会社トクヤマ 球状窒化アルミニウム粉末
JP5618734B2 (ja) 2010-09-28 2014-11-05 株式会社トクヤマ 球状窒化アルミニウム粉末
US9216906B2 (en) * 2013-12-25 2015-12-22 National Chung Shan Institute Of Science And Technology Method for manufacturing aluminum nitride powder
CN103979507A (zh) * 2014-06-04 2014-08-13 天津纳德科技有限公司 一种利用高气压和氟化物添加剂辅助制备球形氮化铝粉体的方法
WO2016024514A1 (ja) * 2014-08-12 2016-02-18 Tdk株式会社 アルミナ基板
KR20160086648A (ko) * 2015-01-12 2016-07-20 엘티씨 (주) 질화알루미늄 휘스커의 제조방법
WO2017079877A1 (zh) * 2015-11-09 2017-05-18 深圳市博世知识产权运营有限公司 一种高导热陶瓷材料及其制造方法
KR101738332B1 (ko) * 2016-06-15 2017-05-22 영남대학교 산학협력단 알루미나 분말의 제조방법 및 제조장치
US11577957B2 (en) 2016-12-28 2023-02-14 Showa Denko K.K. Hexagonal boron nitride powder, method for producing same, resin composition and resin sheet
WO2018199322A1 (ja) * 2017-04-27 2018-11-01 株式会社トクヤマ 窒化アルミニウム粒子
EP3632843A4 (en) * 2017-05-22 2021-03-03 Toyo Aluminium Kabushiki Kaisha ALUMINUM NITRIDE BASED POWDER AND METHOD FOR MANUFACTURING THEREOF
KR102175711B1 (ko) * 2017-08-11 2020-11-06 주식회사 엘지화학 구형의 질화알루미늄 분말을 제조하기 위한 방법
CN116396081A (zh) * 2023-04-24 2023-07-07 广东工业大学 一种低温烧结制备高强度氮化铝陶瓷的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323206A (ja) 1989-06-20 1991-01-31 Showa Denko Kk 窒化アルミニウム粉末及びその製造方法
JPH05221618A (ja) 1992-02-12 1993-08-31 Katsutoshi Yoneya 窒化アルミニウム粉末の製造方法
JP2002179413A (ja) 2000-12-13 2002-06-26 National Institute Of Advanced Industrial & Technology 球状窒化アルミニウムフィラー及びその製造方法
JP2005132699A (ja) * 2003-10-31 2005-05-26 Ngk Insulators Ltd 窒化アルミニウム単結晶の製造方法
JP2005162555A (ja) 2003-12-04 2005-06-23 Tokuyama Corp 球状窒化アルミニウムおよび、その製法
WO2009066663A1 (ja) * 2007-11-22 2009-05-28 Meijo University 窒化アルミニウム単結晶多角柱状体及びそれを使用した板状の窒化アルミニウム単結晶の製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0176737B1 (en) * 1984-09-28 1989-08-09 Kabushiki Kaisha Toshiba Process for production of readily sinterable aluminum nitride powder
JPS62207703A (ja) 1986-03-06 1987-09-12 Tokuyama Soda Co Ltd 窒化アルミニウム粉末の製造方法
FR2596745B1 (fr) * 1986-04-03 1991-06-07 Atochem Poudres pour ceramiques en carbures et nitrures metalliques par reduction carbothermique et leur procede de fabrication
JPH01119573A (ja) 1986-12-11 1989-05-11 Shin Nippon Kagaku Kogyo Co Ltd 多孔質体およびその製造方法
EP0271353B1 (en) 1986-12-11 1992-03-18 Asahi Kasei Kogyo Kabushiki Kaisha Aluminum nitride products and processes for the production thereof
CA1329461C (en) * 1987-04-14 1994-05-17 Alcan International Limited Process of producing aluminum and titanium nitrides
JPS6456308A (en) 1987-08-28 1989-03-03 Toyo Stauffer Chem Co Production of aluminum nitride powder having high purity
JPH03164476A (ja) * 1989-08-07 1991-07-16 Sumitomo Chem Co Ltd 窒化アルミニウム粉末、その製造方法およびそれを含有する成形用組成物
JPH0459609A (ja) * 1990-06-28 1992-02-26 Matsushita Electric Works Ltd 窒化アルミニウム粉末の製造方法
JPH0474705A (ja) 1990-07-09 1992-03-10 Lion Corp 球状窒化アルミニウム及びその製造方法
JP2516295B2 (ja) 1991-11-20 1996-07-24 株式会社トクヤマ 窒化アルミニウム粉末
JP3706176B2 (ja) 1995-08-09 2005-10-12 株式会社トクヤマ 窒化アルミニウム顆粒及びその製造方法
JPH11269302A (ja) 1998-03-23 1999-10-05 Nishimura Togyo Kk 樹脂製品の熱伝導性向上用充填剤及びその製造方法
JP2002097006A (ja) 2000-09-20 2002-04-02 Fine Ceramics Research Association 窒化アルミニウムの製法
JP3991098B2 (ja) 2000-10-23 2007-10-17 独立行政法人産業技術総合研究所 火炎で合成した窒化アルミニウム製フィラー粉体
WO2003097527A1 (en) 2002-05-22 2003-11-27 Japan Energy Corporation Particulate aluminum nitride and method for production thereof
CN101723684A (zh) * 2009-12-03 2010-06-09 清华大学 一种低氧含量球形氮化铝粉体的制备方法
CN101830448B (zh) * 2010-05-07 2012-01-04 上海理工大学 一种低温制备纳米氮化铝粉末的方法
JP5645559B2 (ja) 2010-09-03 2014-12-24 株式会社トクヤマ 球状窒化アルミニウム粉末
JP5618734B2 (ja) 2010-09-28 2014-11-05 株式会社トクヤマ 球状窒化アルミニウム粉末
KR101816954B1 (ko) 2010-12-06 2018-01-09 가부시끼가이샤 도꾸야마 질화알루미늄 분말 및 그의 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323206A (ja) 1989-06-20 1991-01-31 Showa Denko Kk 窒化アルミニウム粉末及びその製造方法
JPH05221618A (ja) 1992-02-12 1993-08-31 Katsutoshi Yoneya 窒化アルミニウム粉末の製造方法
JP2002179413A (ja) 2000-12-13 2002-06-26 National Institute Of Advanced Industrial & Technology 球状窒化アルミニウムフィラー及びその製造方法
JP2005132699A (ja) * 2003-10-31 2005-05-26 Ngk Insulators Ltd 窒化アルミニウム単結晶の製造方法
JP2005162555A (ja) 2003-12-04 2005-06-23 Tokuyama Corp 球状窒化アルミニウムおよび、その製法
WO2009066663A1 (ja) * 2007-11-22 2009-05-28 Meijo University 窒化アルミニウム単結晶多角柱状体及びそれを使用した板状の窒化アルミニウム単結晶の製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038676A1 (ja) 2012-09-07 2014-03-13 株式会社トクヤマ 耐水性窒化アルミニウム粉末の製造方法
CN104603049A (zh) * 2012-09-07 2015-05-06 株式会社德山 耐水性氮化铝粉末的制造方法
KR20150051939A (ko) 2012-09-07 2015-05-13 가부시끼가이샤 도꾸야마 내수성 질화알루미늄 분말의 제조 방법
US9399577B2 (en) 2012-09-07 2016-07-26 Tokuyama Corporation Method for producing water-resistant aluminum nitride powder
JPWO2014038676A1 (ja) * 2012-09-07 2016-08-12 株式会社トクヤマ 耐水性窒化アルミニウム粉末の製造方法
CN104603049B (zh) * 2012-09-07 2016-12-21 株式会社德山 耐水性氮化铝粉末的制造方法
JP6589021B1 (ja) * 2018-08-06 2019-10-09 株式会社Maruwa 球状窒化アルミニウム粉末、及び、球状窒化アルミニウム粉末の製造方法
WO2020031947A1 (ja) * 2018-08-06 2020-02-13 株式会社Maruwa 球状窒化アルミニウム粉末、及び、球状窒化アルミニウム粉末の製造方法
JP2020023435A (ja) * 2018-08-06 2020-02-13 株式会社Maruwa 球状窒化アルミニウム粉末
US11358865B2 (en) 2018-08-06 2022-06-14 Maruwa Co., Ltd. Spherical aluminum nitride powder and method for producing spherical aluminum nitride powder

Also Published As

Publication number Publication date
EP2623458A1 (en) 2013-08-07
EP2623458B1 (en) 2018-09-12
JP5618734B2 (ja) 2014-11-05
CN103079996A (zh) 2013-05-01
TW201223858A (en) 2012-06-16
TWI496736B (zh) 2015-08-21
EP2623458A4 (en) 2015-06-17
KR101859785B1 (ko) 2018-05-18
US20130171451A1 (en) 2013-07-04
CN103079996B (zh) 2015-04-01
KR20130098351A (ko) 2013-09-04
US9090469B2 (en) 2015-07-28
JP2012072013A (ja) 2012-04-12

Similar Documents

Publication Publication Date Title
WO2012043574A1 (ja) 球状窒化アルミニウム粉末の製造方法
JP5875525B2 (ja) 窒化アルミニウム粉末の製造方法
JP5645559B2 (ja) 球状窒化アルミニウム粉末
JP5686748B2 (ja) 球状窒化アルミニウム粉末の製造方法及び該方法により得られた球状窒化アルミニウム粉末
JP6038886B2 (ja) 窒化アルミニウム粉末の製造方法
JP5877684B2 (ja) 窒化アルミニウム焼結顆粒の製造方法
JP2012121742A (ja) 球状窒化アルミニウム粉末の製造方法
EP2952476B1 (en) Method for producing sintered aluminum nitride granules and use in heat - radiating materials

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180041466.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829127

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13823017

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011829127

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137007737

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE