WO2014034755A1 - 受発光素子およびこれを用いたセンサ装置 - Google Patents

受発光素子およびこれを用いたセンサ装置 Download PDF

Info

Publication number
WO2014034755A1
WO2014034755A1 PCT/JP2013/073085 JP2013073085W WO2014034755A1 WO 2014034755 A1 WO2014034755 A1 WO 2014034755A1 JP 2013073085 W JP2013073085 W JP 2013073085W WO 2014034755 A1 WO2014034755 A1 WO 2014034755A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
receiving element
light emitting
emitting element
substrate
Prior art date
Application number
PCT/JP2013/073085
Other languages
English (en)
French (fr)
Inventor
直樹 藤本
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to EP13833502.1A priority Critical patent/EP2892081B1/en
Priority to US14/425,282 priority patent/US9231127B2/en
Priority to CN201380043214.0A priority patent/CN104584238B/zh
Priority to JP2014533064A priority patent/JP6030656B2/ja
Publication of WO2014034755A1 publication Critical patent/WO2014034755A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • H01L31/02164Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors for shielding light, e.g. light blocking layers, cold shields for infrared detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02325Optical elements or arrangements associated with the device the optical elements not being integrated nor being directly associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/125Composite devices with photosensitive elements and electroluminescent elements within one single body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/14Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the light source or sources being controlled by the semiconductor device sensitive to radiation, e.g. image converters, image amplifiers or image storage devices
    • H01L31/145Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the light source or sources being controlled by the semiconductor device sensitive to radiation, e.g. image converters, image amplifiers or image storage devices the semiconductor device sensitive to radiation being characterised by at least one potential-jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/14Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the light source or sources being controlled by the semiconductor device sensitive to radiation, e.g. image converters, image amplifiers or image storage devices
    • H01L31/147Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the light source or sources being controlled by the semiconductor device sensitive to radiation, e.g. image converters, image amplifiers or image storage devices the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers
    • H01L31/153Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the light source or sources being controlled by the semiconductor device sensitive to radiation, e.g. image converters, image amplifiers or image storage devices the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers formed in, or on, a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/16Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/16Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources
    • H01L31/167Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers
    • H01L31/173Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers formed in, or on, a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present invention relates to a light receiving / emitting element in which a light receiving element and a light emitting element are arranged on the same substrate, and a sensor device using the same.
  • This sensor device detects the characteristics of an irradiated object by irradiating the irradiated object with light from the light emitting element and receiving the regular reflection light and diffuse reflection light with respect to the light incident on the irradiated object by the light receiving element.
  • This sensor device is used in a wide range of fields, such as photo interrupters, photocouplers, remote control units, IrDA (Infrared Data Association) communication devices, optical fiber communication devices, and document size sensors. It has been.
  • a sensor device in which a light-emitting element and a light-receiving element are arranged on the same substrate and a light-shielding wall that separates the light-receiving area and the light-emitting area is used is used. Has been.
  • such a sensor device has a problem that it is difficult to improve the sensing performance of the sensor device because light emitted from the light emitting element is directly irradiated onto the light receiving element.
  • An object of the present invention is to provide a light emitting / receiving element having high sensing performance and a sensor device using the same.
  • a light emitting / receiving element includes a substrate made of a one-conductivity-type semiconductor, and a light-emitting element formed by laminating a plurality of semiconductor layers including a one-conductivity-type semiconductor layer and a reverse-conductivity-type semiconductor layer on the upper surface of the substrate, A light receiving element having a reverse conductivity type semiconductor region doped with an impurity of reverse conductivity type on the upper surface side of the substrate, the substrate, the one conductivity type semiconductor layer, the reverse conductivity type semiconductor layer, and the reverse conductivity type semiconductor At least one electrode pad connected to each of at least one of the regions, and a metal mass bonded to the upper surface of the electrode pad.
  • the electrode pad is connected to the substrate so that at least one of the electrode pads blocks the light emitted from the light emitting element toward the light receiving element, the light emitting element
  • the electrode pad is connected to the one-conductivity-type semiconductor layer, the reverse-conductivity-type semiconductor layer, or the reverse-conductivity-type semiconductor region on the upper surface of the substrate between the light-receiving element and the light-receiving element, an insulating layer is provided. Via the upper surface of the substrate.
  • the sensor device of the present invention is a sensor device using the above-described light receiving and emitting element, and irradiates an object to be irradiated with light from the light emitting element, and outputs the light received in response to reflected light from the object to be irradiated. At least one of position information, distance information, and concentration information of the irradiated object is detected according to an output current from the element.
  • FIG. 2B is a schematic cross-sectional view taken along line 1I-1I in FIG. (A) is sectional drawing of the light emitting element which comprises the light emitting / receiving element shown in FIG. (B) is sectional drawing of the light receiving element which comprises the light receiving and emitting element shown in FIG. It is a schematic sectional drawing which shows an example of embodiment of the sensor apparatus using the light emitting / receiving element shown in FIG. It is a principal part top view which shows the 1st modification of the light emitting / receiving element shown in FIG. It is a principal part top view which shows the 2nd modification of the light emitting / receiving element shown in FIG.
  • FIG. 1 is a principal part top view which shows the 3rd modification of the light emitting / receiving element shown in FIG.
  • FIG. 2 is a principal part top view which shows the 4th modification of the light emitting / receiving element shown in FIG. It is a principal part top view which shows the 5th modification of the light emitting / receiving element shown in FIG.
  • a light emitting / receiving element 1 shown in FIGS. 1A and 1B is incorporated in an image forming apparatus such as a copying machine or a printer, and stores position information, distance information or density information of an irradiated object such as toner or media. It functions as a sensor device to detect.
  • the light emitting / receiving element 1 includes a substrate 2, and a light emitting element 3 a and a light receiving element 3 b disposed on the upper surface of the substrate 2.
  • the substrate 2 is made of one conductivity type semiconductor material.
  • impurity concentration of one conductivity type there is no particular limitation on the impurity concentration of one conductivity type.
  • an n-type silicon (Si) substrate containing phosphorus (P) at a concentration of 1 ⁇ 10 17 to 2 ⁇ 10 17 atoms / cm 3 as one conductivity type impurity is used for the silicon (Si) substrate.
  • n-type impurities include, in addition to phosphorus (P), nitrogen (N), arsenic (As), antimony (Sb), bismuth (Bi), and the like, and the doping concentration is 1 ⁇ 10 16 to 1 ⁇ . 10 20 atoms / cm 3 .
  • n-type is a single conductivity type and p-type is a reverse conductivity type.
  • the light emitting element 3a is arranged on the upper surface of the substrate 2, and the light receiving element 3b is arranged corresponding to the light emitting element 3a.
  • the light emitting element 3a functions as a light source for light irradiated to the irradiated object, and the light emitted from the light emitting element 3a is reflected by the irradiated object and enters the light receiving element 3b.
  • the light receiving element 3b functions as a light detection unit that detects the incidence of light.
  • the light emitting element 3a is formed by laminating a plurality of semiconductor layers on the upper surface of the substrate 2, as shown in FIG.
  • a buffer layer 30a for buffering the difference in lattice constant between the substrate 2 and a semiconductor layer stacked on the upper surface of the substrate 2 (in this example, an n-type contact layer 30b described later). Is formed.
  • the buffer layer 30a reduces lattice defects such as lattice distortion generated between the substrate 2 and the semiconductor layer by buffering the difference in lattice constant between the substrate 2 and the semiconductor layer formed on the upper surface of the substrate 2, As a result, it has a function of reducing lattice defects or crystal defects in the entire semiconductor layer formed on the upper surface of the substrate 2.
  • the buffer layer 30a of this example is made of gallium arsenide (GaAs) containing no impurities and has a thickness of about 2 to 3 ⁇ m. If the difference in lattice constant between the substrate 2 and the semiconductor layer stacked on the upper surface of the substrate 2 is not large, the buffer layer 30a can be omitted.
  • GaAs gallium arsenide
  • n-type contact layer 30b is formed on the upper surface of the buffer layer 30a.
  • gallium arsenide (GaAs) is doped with n-type impurities such as silicon (Si) or selenium (Se), and the doping concentration is 1 ⁇ 10 16 to 1 ⁇ 10 20 atoms / cm 3.
  • the thickness is about 0.8 to 1 ⁇ m.
  • silicon (Si) is doped as an n-type impurity at a doping concentration of 1 ⁇ 10 18 to 2 ⁇ 10 18 atoms / cm 3 .
  • a part of the upper surface of the n-type contact layer 30b is exposed, and the light-emitting element side first electrode pad 31A (first electrode) is interposed in the exposed part via the light-emitting element side first electrode 31a (first electrode 31a). 1 electrode pad 31A).
  • the first electrode pad 31 ⁇ / b> A is electrically connected to an external power source via the metal block 34.
  • the first electrode pad 31A and the external power source are connected by wire bonding using a gold (Au) wire
  • the metal lump 34 in this example is a gold (Au) bump bonded to the first electrode pad 31A. That is.
  • the metal lump 34 that is a gold (Au) bump for wire bonding is shown, and the wire is omitted for the sake of convenience (the same applies to other figures described later).
  • a wire such as an aluminum (Al) wire or a copper (Cu) wire instead of the gold (Au) wire.
  • the electric wiring may be joined to the first electrode pad 31A by solder or the like, or a gold stud bump is formed on the upper surface of the first electrode pad 31A to solder the electric wiring.
  • the gold (Au) stud bump may be joined by, for example.
  • the metal lump 34 in this case corresponds to a solder, a gold (Au) stud bump, and a solder bonding material.
  • the n-type contact layer 30b has a function of reducing contact resistance with the first electrode 31a connected to the n-type contact layer 30b.
  • the thickness of the metal block 34 in the normal direction of the substrate 2 is preferably set to be larger than the thickness of the light emitting element 3a.
  • the thickness of the metal block 34 is preferably set to be larger than the thickness of the light emitting element 3a.
  • the first electrode 31a and the first electrode pad 31A are made of, for example, a gold (Au) antimony (Sb) alloy, a gold (Au) germanium (Ge) alloy, or a Ni-based alloy, and have a thickness of 0.5 to 5 ⁇ m. Formed in degree.
  • a gold (Au) antimony (Sb) alloy a gold (Au) germanium (Ge) alloy, or a Ni-based alloy
  • it since it is disposed on the insulating layer 8 formed so as to cover the upper surface of the n-type contact layer 30b from the upper surface of the substrate 2, it is electrically connected to the semiconductor layers other than the substrate 2 and the n-type contact layer 30b. Is insulated.
  • the insulating layer 8 is formed of, for example, an inorganic insulating film such as silicon nitride (SiN x ) or silicon oxide (SiO 2 ), an organic insulating film such as polyimide, and the like, and has a thickness of about 0.1 to 1 ⁇ m. Yes.
  • n-type cladding layer 30c is formed on the upper surface of the n-type contact layer 30b, and has a function of confining holes in an active layer 30d described later.
  • the n-type cladding layer 30c is formed by doping aluminum gallium arsenide (AlGaAs) with silicon (Si) or selenium (Se) as an n-type impurity, and the doping concentration is 1 ⁇ 10 16 to 1 ⁇ 10 20 atoms / cm.
  • the thickness is about 3 , and the thickness is about 0.2 to 0.5 ⁇ m.
  • silicon (Si) is doped as an n-type impurity at a doping concentration of 1 ⁇ 10 17 to 5 ⁇ 10 17 atoms / cm 3 .
  • An active layer 30d is formed on the upper surface of the n-type cladding layer 30c, and functions as a light emitting layer that emits light when carriers such as electrons and holes are concentrated and recombined.
  • the active layer 30d is made of aluminum gallium arsenide (AlGaAs) containing no impurities and has a thickness of about 0.1 to 0.5 ⁇ m.
  • AlGaAs aluminum gallium arsenide
  • the active layer 30d in this example is a layer that does not contain impurities, but may be a p-type active layer that contains p-type impurities or an n-type active layer that contains n-type impurities.
  • the band gap of the active layer 30d needs to be smaller than the band gap of the n-type cladding layer 30c and the p-type cladding layer 30e described later.
  • a p-type cladding layer 30e is formed on the upper surface of the active layer 30d, and has a function of confining electrons in the active layer 30d.
  • AlGaAs aluminum gallium arsenide
  • p-type impurities such as zinc (Zn), magnesium (Mg), or carbon (C)
  • the doping concentration is 1 ⁇ 10 16 to 1 ⁇ .
  • the thickness is about 10 20 atoms / cm 3 and the thickness is about 0.2 to 0.5 ⁇ m.
  • magnesium (Mg) is doped as a p-type impurity at a doping concentration of 1 ⁇ 10 19 to 5 ⁇ 10 20 atoms / cm 3 .
  • a p-type contact layer 30f is formed on the upper surface of the p-type cladding layer 30e.
  • the p-type contact layer 30f is formed by doping aluminum gallium arsenide (AlGaAs) with p-type impurities such as zinc (Zn), magnesium (Mg), or carbon (C), and the doping concentration is 1 ⁇ 10 16 to 1 ⁇ .
  • AlGaAs aluminum gallium arsenide
  • p-type impurities such as zinc (Zn), magnesium (Mg), or carbon (C)
  • the thickness is about 10 20 atoms / cm 3 and the thickness is about 0.2 to 0.5 ⁇ m.
  • the p-type contact layer 30f is connected to the light emitting element side second electrode pad 31B (second electrode pad 31B) through the light emitting element side second electrode 31b (second electrode 31b).
  • the second electrode pad 31B is electrically connected to an external power source through the metal block 34, like the light emitting element first side electrode pad 31A. Variations in the connection method and bonding form are the same as in the case of the first electrode pad 31A.
  • the p-type contact layer 30f has a function of reducing the contact resistance with the light emitting element side second electrode wiring 31b connected to the p-type contact layer 30f.
  • a cap layer having a function of suppressing oxidation of the p-type contact layer 30f may be formed on the upper surface of the p-type contact layer 30f.
  • the cap layer may be formed of, for example, gallium arsenide (GaAs) that does not contain impurities, and the thickness thereof may be about 0.01 to 0.03 ⁇ m.
  • the second electrode 31b and the second electrode pad 31B include, for example, AuNi, AuCr, which is a combination of gold (Au) or aluminum (Al) and nickel (Ni), chromium (Cr), or titanium (Ti) as an adhesion layer. It is made of AuTi or AlCr alloy and has a thickness of about 0.5 to 5 ⁇ m. Since the semiconductor layer is disposed on the insulating layer 8 formed so as to cover the upper surface of the p-type contact layer 30f from the upper surface of the substrate 2, it is electrically connected to the semiconductor layers other than the substrate 2 and the p-type contact layer 30f. Insulated.
  • the active layer 30d when a bias is applied between the first electrode pad 31A and the second electrode pad 31B, the active layer 30d emits light and functions as a light source.
  • the light receiving element 3 b is configured by forming a pn junction with the n-type substrate 2 by providing a p-type semiconductor region 32 on the upper surface of the substrate 2.
  • the p-type semiconductor region 32 is formed by diffusing p-type impurities in the substrate 2 at a high concentration.
  • the p-type impurity include zinc (Zn), magnesium (Mg), carbon (C), boron (B), indium (In), and selenium (Se).
  • the doping concentration is 1 ⁇ 10 16 to 1 X10 20 atoms / cm 3 .
  • boron (B) is diffused as a p-type impurity so that the thickness of the p-type semiconductor region 32 is about 0.5 to 3 ⁇ m.
  • the p-type semiconductor region 32 is electrically connected to the light receiving element side first electrode pad 33A (third electrode pad 33A) via the light receiving element side first electrode 33a (third electrode 33a), and is an n type semiconductor.
  • the light receiving element side second electrode pad 33B (fourth electrode pad 33B) is electrically connected to the substrate 2 that is.
  • the third electrode 33a and the third electrode pad 33A are electrically insulated from the substrate 2 because they are disposed on the upper surface of the substrate 2 with the insulating layer 8 interposed therebetween.
  • the fourth electrode pad 33 ⁇ / b> B is disposed on the upper surface of the substrate 2.
  • the third electrode 33a, the third electrode pad 33A, and the fourth electrode pad 33B are formed using, for example, a gold (Au) antimony (Sb) alloy, a gold (Au) germanium (Ge) alloy, or a Ni-based alloy. Is formed with a thickness of about 0.5 to 5 ⁇ m.
  • the light receiving element 3b configured as described above, when light is incident on the p-type semiconductor region 32, a photocurrent is generated by the photoelectric effect, and the photocurrent is extracted through the third electrode pad 33A. It functions as a part. Note that it is preferable to apply a reverse bias between the third electrode pad 33A and the fourth electrode pad 33B because the light detection sensitivity of the light receiving element 3b is increased.
  • first electrode pad 31A the second electrode pad 31B, the third electrode pad 33A, and the fourth electrode pad 33B will be described.
  • the second electrode pad 31B is disposed on the upper surface of the substrate 2 between the light emitting element 3a and the light receiving element 3b via the insulating layer 8.
  • the first electrode pad 31A sandwiches the light emitting element 3a with the second electrode pad 31B
  • the third electrode pad 33A and the fourth electrode pad 33B sandwich the light receiving element 3b with the second electrode pad 31B. Is arranged.
  • the first electrode pad 31 ⁇ / b> A and the third electrode pad 33 ⁇ / b> A are disposed on the upper surface of the substrate 2 via the insulating layer 8
  • the fourth electrode pad 33 ⁇ / b> B is disposed on the upper surface of the substrate 2.
  • the second electrode pad 31B By disposing the second electrode pad 31B on the upper surface of the substrate 2 between the light emitting element 3a and the light receiving element 3b via the insulating layer 8, light emitted from the light emitting element 3a toward the light receiving element 3b is It is blocked by a metal lump 34 bonded to the upper surface of the electrode pad 31B. Therefore, it can suppress that the light which the light emitting element 3a emits is irradiated to the light receiving element 3b directly, and can implement
  • the second electrode pad 31B is arranged on the upper surface of the substrate 2 between the light emitting element 3a and the light receiving element 3b via the insulating layer 8, but the first electrode 31a, the third electrode pad 33A or the fourth electrode Any of the electrode pads 33B may be disposed. Note that when the fourth electrode pad 33B is disposed, it is disposed on the upper surface of the substrate 2 without the insulating layer 8 interposed therebetween.
  • the light emitting element 3a and the light receiving element 3b located on the substrate may be one or plural.
  • a substrate 2 in which silicon (Si) is doped with n-type impurities is prepared.
  • a diffusion element film S (not shown) made of silicon oxide (SiO 2 ) is formed on the substrate 2 using a thermal oxidation method.
  • an opening Sa (not shown) for forming the p-type semiconductor region 32 by wet etching is used. Are formed in the diffusion barrier film S.
  • the opening Sa does not necessarily have to penetrate the diffusion blocking film S.
  • a polyboron film (PBF) is applied on the diffusion barrier film S.
  • boron (B) contained in the polyboron film (PBF) is diffused into the substrate 2 through the opening Sa of the diffusion blocking film S using a thermal diffusion method, and the p-type semiconductor region 32 is formed.
  • the thickness of the polyboron film (PBF) is set to 0.1 to 1 ⁇ m, and thermal diffusion is performed at a temperature of 700 to 1200 ° C. in an atmosphere containing nitrogen (N 2 ) and oxygen (O 2 ). Thereafter, the diffusion blocking film S is removed.
  • the natural oxide film formed on the surface of the substrate 2 is removed by heat-treating the substrate 2 in a reaction furnace of a MOCVD (Metal-organic Chemical Vapor Deposition) apparatus.
  • This heat treatment is performed, for example, at a temperature of 1000 ° C. for about 10 minutes.
  • each semiconductor layer (buffer layer 30a, n-type contact layer 30b, n-type cladding layer 30c, active layer 30d, p-type cladding layer 30e, p-type contact layer 30f constituting the light emitting element 3a is used.
  • the light emitting element 3a is formed by the wet etching method. Note that etching is performed a plurality of times so that a part of the upper surface of the n-type contact layer 30b is exposed. Thereafter, the photoresist is removed.
  • the insulating layer 8 is formed so as to cover the exposed surface of the light emitting element 3a and the upper surface of the substrate 2 (including the p-type semiconductor region 32) using a thermal oxidation method, a sputtering method, a plasma CVD method, or the like. Subsequently, after applying a photoresist on the insulating layer 8, exposing and developing a desired pattern by a photolithography method, a first electrode 31a, a second electrode 31b, and a third electrode 33a described later are formed by a wet etching method. Are formed in the insulating layer 8 for connection to the n-type contact layer 30b, the p-type contact layer 30f, and the p-type semiconductor region 32, respectively. Thereafter, the photoresist is removed.
  • the first electrode 31a, the first electrode pad 31A, An alloy film for forming the third electrode 33a, the third electrode pad 33A, and the fourth electrode pad 33B is formed. Then, using the lift-off method, the photoresist is removed, and the first electrode 31a, the first electrode pad 31A, the third electrode 33a, the third electrode pad 33A, and the fourth electrode pad 33B are formed in desired shapes. Similarly, the second electrode 31b and the second electrode pad 33B are formed by the same process.
  • the sensor device 100 including the light emitting / receiving element 1 will be described.
  • the light emitting / receiving element 1 is applied to a sensor device that detects the position of the toner T (object to be irradiated) attached on the intermediate transfer belt V in the image forming apparatus will be described as an example.
  • the sensor device 100 of this example is arranged so that the surface on which the light emitting element 3a and the light receiving element 3b of the light emitting / receiving element 1 are formed faces the intermediate transfer belt V. Then, light is emitted from the light emitting element 3 a to the intermediate transfer belt V or the toner T on the intermediate transfer belt V.
  • the prism P1 is disposed above the light emitting element 3a and the prism P2 is disposed above the light receiving element 3b, and the light emitted from the light emitting element 3a is refracted by the prism P1 and is transferred to the intermediate transfer belt V or the intermediate transfer belt V. It enters the toner T on the transfer belt V.
  • the regular reflected light L2 with respect to the incident light L1 is refracted by the prism P2 and received by the light receiving element 3b.
  • a photocurrent is generated in the light receiving element 3b according to the intensity of the received light, and this photocurrent is detected by an external device through the third electrode 33a and the like.
  • the photocurrent corresponding to the intensity of the regular reflection light from the intermediate transfer belt V or the toner T can be detected as described above. Therefore, for example, the position of the toner T can be detected according to the photocurrent value detected by the light receiving element 3b.
  • the intensity of the specularly reflected light also corresponds to the density of the toner T. Therefore, the density of the toner T can be detected according to the magnitude of the generated photocurrent.
  • the intensity of the specularly reflected light also corresponds to the distance from the light receiving / emitting element array 3 to the toner T. Therefore, the distance between the light receiving / emitting element array 3 and the toner T is set according to the magnitude of the generated photocurrent. It is also possible to detect.
  • the above-described effects of the light emitting / receiving element 1 can be achieved.
  • the second electrode pad 31B has one end of a side facing the light receiving element 3b of the light emitting element 3a and a side facing the light emitting element 3a of the light receiving element 3b.
  • a plurality of metal masses 34 may be joined to each other by crossing the line segment 50a connecting the two ends and the line segment 50b connecting the other ends.
  • the light emitting element 3a and the light receiving element 3b when viewed from the light receiving element 3b and the light emitting element 3a side, respectively, one end and the other end of the light emitting element 3a and the light receiving element 3b located at both ends What is necessary is just to make the line segment 50a and the line segment 50b. That is, the light emitting element 3a and the light receiving element 3b must be arranged between straight lines including the line segment 50a and the line segment 50b.
  • a plurality of second electrode pads 31B are arranged between the light emitting element 3a and the light receiving element 3b, and the plurality of second electrode pads 31B are When the light receiving element 3b side is viewed from the light emitting element 3a side, a part of adjacent ones overlaps, and each of the second electrode pads 31B located at both ends is a side facing the light receiving element 3b of the light emitting element 3a. And a line segment 50a connecting one end of the light receiving element 3b and the side facing the light emitting element 3a and a line segment 50b connecting the other ends of the light receiving element 3b are arranged at least on each of the plurality of second electrode pads 31B.
  • One metal lump 34 may be joined. Note that when the light receiving element 3b side is viewed from the light emitting element 3a side, it is when viewed from the light emitting element 3a toward the light receiving element 3b in a side view.
  • the plurality of electrode pads are configured only by the second electrode pad 31B, but may be the first electrode pad 31A, the third electrode pad 33A, and the fourth electrode pad 33B, or these Any combination of electrode pads may be used, and the number of electrode pads may be set as appropriate.
  • the plurality of metal blocks 34 are adjacent to each other when the light receiving element 3b side is viewed from the light emitting element 3a side. Part of things may overlap.
  • the metal masses 34 are arranged without a gap, so that the light emitted from the light emitting element 3a is directly received by the light receiving element 3b. Can be further suppressed, and a light emitting / receiving element with high sensing performance can be realized.
  • the light receiving and emitting element 1 is disposed on the upper surface of the wiring board 40 so as to surround the substrate 2 and the substrate 2 including the light emitting element 3 a and the light receiving element 3 b.
  • the light receiving element side lens 6a and the light emitting element side lens 6b corresponding to the light emitting element 3a and the light receiving element 3b, respectively, may be provided.
  • the light shielding wall 5 has a lower surface 5c facing the substrate 2, and the distance between the substrate 2 and the lower surface 5c of the light shielding wall 5 is determined by the thickness in the normal direction of the light emitting element side first electrode pad 31B of the metal block 34. May be made smaller.
  • the wiring substrate 40 is electrically connected to the substrate 2 and the external device, respectively, and applies a bias to the light emitting element 3a and the light receiving element 3b formed on the substrate 2, or an electric signal between the substrate 2 and the external device. It functions as a wiring board for sending and receiving.
  • the outer wall 4 is connected to the upper surface of the wiring substrate 40 via an adhesive 9 (not shown) so as to surround the substrate 2. Then, the light emitted from the light emitting element 3a is prevented from being scattered outside the direction toward the irradiated object, the light other than the light reflected by the irradiated object is prevented from entering the light receiving element 3b, and the wiring It has a function of protecting the substrate 40 and the substrate 2 from the external environment.
  • Outer wall 4 is a general purpose plastic such as polypropylene resin (PP), polystyrene resin (PS), vinyl chloride resin (PVC), polyethylene terephthalate resin (PET), acrylonitrile / butadiene / styrene resin (ABS), polyamide resin (PA) polycarbonate It is formed of engineering plastics such as resin (PC), super engineering plastics such as liquid crystal polymer, and metal materials such as aluminum (Al) and titanium (Ti).
  • PP polypropylene resin
  • PS polystyrene resin
  • PVC vinyl chloride resin
  • PET polyethylene terephthalate resin
  • ABS acrylonitrile / butadiene / styrene resin
  • PA polyamide resin
  • PC resin
  • PC super engineering plastics
  • metal materials such as aluminum (Al) and titanium (Ti).
  • depth and width dimensions of the outer wall 4 may be the same as or different from the depth and width dimensions of the substrate 2.
  • the dimensions of the depth and width of the outer wall 4 may be any dimensions that at least cover the light emitting element 3a and the light receiving element 3b.
  • the light shielding wall 5 is arranged inside the outer wall 4 so as to partition the inner space 4a of the outer wall 4 into spaces corresponding to the light emitting element 3a and the light receiving element 3b.
  • Arranging the inner space 4a of the outer wall 4 into a space corresponding to the light emitting element 3a and the light receiving element 3b means that when the light receiving / emitting element 1 is viewed from the light receiving / emitting element 1 side, the light shielding wall 5 and In other words, the light emitting element 3a is present in one space formed by the outer wall 4 and the light receiving element 3b is present in the other space.
  • the light shielding wall 5 has a function of suppressing the light emitted from the light emitting element 3a from entering the light receiving element 3b without being reflected by the irradiated object.
  • the light shielding wall 5 is disposed so as not to contact the wiring substrate 40 and the substrate 2.
  • the light shielding wall 5 includes a light emitting element side light shielding surface 5a (first surface 5a) located on the light emitting element 3a side, a light receiving element side light shielding surface 5b (second surface 5b) located on the light receiving element 3b side, and the light emitting element side. It has a light shielding surface 5a and a lower surface 5c connected to the light receiving element side light shielding surface 5b.
  • the first surface 5a and the second surface 5b of the fifth modification may have any shape as long as the inner space 4a of the outer wall 4 can be partitioned into spaces corresponding to the light emitting element 3a side and the light receiving element 3b side.
  • the substrate 2 is disposed along the normal direction of the upper surface of the substrate 2 and between the light emitting element 3a and the light receiving element 3b, and is in contact with the outer wall 4.
  • the length between the light emitting element 3a and the light receiving element 3b needs to be at least the length of the light emitting element 3a. Otherwise, the light emitted from the light emitting element 3a is directly applied to the space on the light receiving element 3b side.
  • the same material as that of the outer wall 4 can be used for the light shielding wall 5.
  • the upper wall 7 is disposed so as to cover the wiring substrate 40 and the substrate 2.
  • the upper wall 7 of the fifth modification is disposed in contact with the upper end of the outer wall 4. And it has through-holes 7a and 7b at positions corresponding to the light emitting element 3a and the light receiving element 3b.
  • the upper wall 7 functions as a function of protecting the substrate 2 and the light emitting / receiving element array 3 from the external environment and a support for lenses 6a and 6b described later.
  • the upper wall 7 can be made of the same material as the outer wall 4 and the light shielding wall 5.
  • outer wall 4, the light shielding wall 5, and the upper wall 7 of the fifth modification are integrally formed of polycarbonate resin (PC) by injection molding.
  • the light emitting element side lens 6a and the light receiving element side lens 6b are arranged corresponding to the through holes 7a and 7b of the upper wall 7, respectively, and have a function of condensing light emitted from the light emitting element 3a and reflected by the irradiated object. It has a function to collect the light.
  • the light emitting element side lens 6a and the light receiving element side lens 6b may be simply referred to as lenses 6a and 6b. By having these lenses 6a and 6b, the sensing performance can be enhanced even when the distance between the light emitting / receiving element 1 and the object to be irradiated becomes long.
  • the materials of the lenses 6a and 6b include plastics such as thermosetting resins such as silicone resin, urethane resin and epoxy resin, or thermoplastic resins such as polycarbonate resin and acrylic resin, or sapphire and inorganic glass.
  • plastics such as thermosetting resins such as silicone resin, urethane resin and epoxy resin, or thermoplastic resins such as polycarbonate resin and acrylic resin, or sapphire and inorganic glass.
  • the lenses 6a and 6b of the fifth modified example are cylindrical lenses formed of silicone resin.
  • the longitudinal directions of the through holes 7a and the through holes 7b that is, the columns of the light receiving elements 3a formed in the light receiving and emitting element array 3 and the light emission. It has a curvature in a direction perpendicular to the direction along the row of elements 3b.
  • the lenses 6a and 6b may be attached to the upper wall 7 with an organic adhesive such as silicone resin.
  • the straight line connecting the center of the light emitting part of the light emitting element 3a and the straight line connecting the center of the light receiving part of the light receiving element 3b substantially match the optical axes of the lenses 6a and 6b, and the optical axis is It substantially coincides with the normal line direction upward from the upper surface of the light emitting / receiving element array 3.
  • the center of the light receiving portion is the center of the p-type semiconductor region 32a when the substrate 2 is viewed in plan from the p-type semiconductor region 32a side.
  • the center of the light emitting portion is the center of the active layer 30d when the substrate 2 is viewed in plan from the p-type contact layer 30f side. Since the p-type cladding layer 30e and the p-type contact layer 30f are stacked on the upper surface of the active layer 30d, the center of the active layer 30d cannot be directly observed. Therefore, there is no problem even if the center of the p-type contact layer 30f is regarded as the center of the active layer 30d.
  • each layer of the semiconductor layer is very thin, so that the etching for forming the light emitting element array 3a and the etching for exposing a part of the upper surface of the n-type contact layer 30b are separately performed.
  • the center of the p-type contact layer 30f and the center of the active layer 30d substantially coincide with each other when seen in a plan view from the p-type contact layer 30f side.
  • the lenses 6a and 6b are cylindrical lenses, but may be planoconvex lenses corresponding to the light receiving element 3a and the light emitting element 3b, respectively.
  • the upper wall 7 and the lenses 6a and 6b are provided.
  • the upper wall 7 and the lenses 6a and 6b are provided. May not be provided.
  • the wiring board 40 of the fifth modified example is made of ceramics and is manufactured through the following processes. First, a ceramic green sheet is prepared.
  • the first electrode 31a, the first electrode pad 31A, the second electrode 31b, the second electrode pad 31B, the third electrode 33a, the third electrode pad 33A, the fourth electrode pad 33B, and these electrodes are respectively connected.
  • a metal paste to be an electric wiring for connecting to an external device is printed on the ceramic green sheet.
  • the metal paste to be used for electrical wiring include those containing metals such as tungsten (W), molybdenum (Mo), manganese (Mn), and copper (Cu).
  • the wiring board 40 may be made of resin.
  • the following method can be considered as a method of manufacturing the wiring board 40 in this case.
  • a precursor sheet of a thermosetting resin is prepared.
  • the first electrode 31a, the first electrode pad 31A, the second electrode 31b, the second electrode pad 31B, the third electrode 33a, the third electrode pad 33A, the fourth electrode pad 33B, and these electrodes are respectively connected.
  • Laminate a plurality of precursor sheets so that lead terminals made of metal materials are placed between the precursor sheets and become electrical wiring for connecting to external devices, and the lead terminals are embedded in the precursor sheets To do.
  • Examples of the material for forming the lead terminal include copper (Cu), silver (Ag), aluminum (Al), iron (Fe) -nickel (Ni) -cobalt (Co) alloy, and iron (Fe) -nickel (Ni). Examples include metal materials such as alloys. And the wiring board 40 is completed by thermosetting this.
  • the substrate 2 is arranged on the upper surface of the wiring substrate 40 thus prepared.
  • the wiring board 40 and the board 2 may be joined by an adhesive such as epoxy resin or silver paste, and are connected by flip chip bonding.
  • an adhesive such as epoxy resin or silver paste
  • solder a brazing material such as silver brazing and copper brazing, a combination of a gold stud bump and solder, or an anisotropic conductive film may be used for electrical connection.
  • lenses 6a and 6b are previously bonded to a member in which the outer wall 4, the light-shielding wall 5 and the upper wall 7 are integrally formed with a silicone resin or the like, and this is attached to the upper surface of the substrate 2 with an epoxy resin or a silicone resin or the like.
  • Acrylic, rubber, or silicone adhesives are applied to resin adhesives or substrates such as polyester, non-woven fabric, acrylic foam, polyimide, polyvinyl chloride (PVC), or aluminum foil. Adhere using a double-sided tape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Led Device Packages (AREA)

Abstract

 本発明の受発光素子(1)は、基板(2)と、基板(2)の上面に形成される発光素子(3a)と、基板(2)の上面側に形成される受光素子(3b)と、発光素子側第1電極パッド(31B)と、これに接合された金属塊(34)とを備え、金属塊(34)が発光素子(3a)から発せられて受光素子(3b)に向かう光を遮るように、発光素子側第1電極パッド(31B)が絶縁層を介して基板(2)の上面に配置されている。

Description

受発光素子およびこれを用いたセンサ装置
 本発明は、受光素子と発光素子とが同一基板上に配置された受発光素子およびこれを用いたセンサ装置に関する。
 従来より、発光素子から被照射物へ光を照射し、被照射物へ入射する光に対する正反射光と拡散反射光とを受光素子によって受光することで被照射物の特性を検出するセンサ装置が種々提案されている。このセンサ装置は広い分野で利用されており、例えば、フォトインタラプタ、フォトカプラ、リモートコントロールユニット、IrDA(Infrared Data Association)通信デバイス、光ファイバ通信用装置、さらには原稿サイズセンサなど多岐にわたるアプリケーションで用いられている。
 例えば、特開2007-201360号公報に記載されているように、同一の基板上に発光素子および受光素子をそれぞれ配置し、受光領域と発光領域とを隔てる遮光壁が設けられたセンサ装置が使用されている。
 ところが、このようなセンサ装置では、発光素子の発した光が直接受光素子に照射されることから、センサ装置のセンシング性能を高めることが難しいという問題点があった。
 本発明は、センシング性能の高い受発光素子およびこれを用いたセンサ装置を提供することを目的とする。
 本発明の受発光素子は、一導電型半導体からなる基板と、該基板の上面に一導電型半導体層と逆導電型半導体層とを含む複数の半導体層が積層されてなる発光素子と、前記基板の上面側に逆導電型の不純物がドーピングされた逆導電型半導体領域を有してなる受光素子と、前記基板、前記一導電型半導体層、前記逆導電型半導体層および前記逆導電型半導体領域の少なくとも1つのそれぞれに接続された少なくとも1つの電極パッドと、該電極パッドの上面に接合された金属塊とを備えている。この前記電極パッドの少なくとも1つは、前記金属塊が前記発光素子から発せられて前記受光素子に向かう光を遮るように、前記電極パッドが前記基板に接続されたものである場合は前記発光素子と前記受光素子との間における前記基板の上面に、前記電極パッドが前記一導電型半導体層、前記逆導電型半導体層または前記逆導電型半導体領域に接続されたものである場合は絶縁層を介して前記基板の上面に配置されている。
 本発明のセンサ装置は、上述した受発光素子を用いたセンサ装置であって、前記発光素子から被照射物に光を照射し、該被照射物からの反射光に応じて出力される前記受光素子からの出力電流に応じて前記被照射物の位置情報、距離情報および濃度情報のうち少なくとも1つを検出する。
(a)は、本発明の受発光素子の実施の形態の一例を示す平面図である。(b)は、図1(a)の1I-1I線に沿った概略断面図である。 (a)は、図1に示した受発光素子を構成する発光素子の断面図である。(b)は、図1に示した受発光素子を構成する受光素子の断面図である。 図1に示した受発光素子を用いたセンサ装置の実施の形態の一例を示す概略断面図である。 図1に示した受発光素子の第1変形例を示す要部平面図である。 図1に示した受発光素子の第2変形例を示す要部平面図である。 (a)は、図1に示した受発光素子の第3変形例を示す要部平面図である。(b)は、図1に示した受発光素子の第4変形例を示す要部平面図である。 図1に示した受発光素子の第5変形例を示す要部平面図である。
 以下、本発明の受発光素子およびこれを用いたセンサ装置の実施の形態の例について、図面を参照しつつ説明する。なお、以下の例は本発明の実施の形態を例示するものであって、本発明はこれらの実施の形態に限定されるものではない。
 (受発光素子モジュール)
 図1(a)および(b)に示す受発光素子1は、コピー機やプリンタなどの画像形成装置に組み込まれて、トナーやメディアなどの被照射物の位置情報、距離情報または濃度情報などを検出するセンサ装置として機能する。
 受発光素子1は、基板2と、基板2の上面に配置された発光素子3aおよび受光素子3bとを有している。
 基板2は、一導電型の半導体材料からなる。一導電型の不純物濃度に特に限定はない。本例では、シリコン(Si)基板に一導電型の不純物としてリン(P)を1×1017~2×1017atoms/cmの濃度で含むn型のシリコン(Si)基板を用いている。n型の不純物としては、リン(P)の他に、例えば窒素(N)、砒素(As)、アンチモン(Sb)およびビスマス(Bi)などが挙げられ、ドーピング濃度は1×1016~1×1020atoms/cmとされる。以下、n型を一導電型、p型を逆導電型とする。
 基板2の上面に、発光素子3aが配置されており、発光素子3aに対応して受光素子3bが配置されている。発光素子3aは被照射物に照射する光の光源として機能し、発光素子3aから発せられた光が、被照射物で反射されて受光素子3bに入射する。受光素子3bは、光の入射を検出する光検出部として機能する。
 発光素子3aは、図2(a)に示すように、基板2の上面に複数の半導体層が積層されて形成されている。
 まず、基板2の上面には、基板2と基板2の上面に積層される半導体層(本例の場合は後に説明するn型コンタクト層30b)との格子定数の差を緩衝するバッファ層30aが形成されている。バッファ層30aは、基板2と基板2の上面に形成される半導体層との格子定数の差を緩衝することによって、基板2と半導体層の間に発生する格子歪などの格子欠陥を少なくし、ひいては基板2の上面に形成される半導体層全体の格子欠陥または結晶欠陥を少なくする機能を有する。
 本例のバッファ層30aは、不純物を含まないガリウム砒素(GaAs)からなり、その厚さが2~3μm程度とされている。なお、基板2と基板2の上面に積層される半導体層との格子定数の差が大きくない場合には、バッファ層30aは省略することができる。
 バッファ層30aの上面には、n型コンタクト層30bが形成されている。n型コンタクト層30bは、ガリウム砒素(GaAs)にn型不純物であるシリコン(Si)またはセレン(Se)などがドーピングされており、ドーピング濃度は1×1016~1×1020atoms/cm程度とされるとともに、その厚さが0.8~1μm程度とされている。
 本例では、n型不純物としてシリコン(Si)が1×1018~2×1018atoms/cmのドーピング濃度でドーピングされている。n型コンタクト層30bの上面の一部は露出しており、この露出している部分に発光素子側第1電極31a(第1電極31a)を介して、発光素子側第1電極パッド31A(第1電極パッド31A)に接続されている。第1電極パッド31Aは金属塊34を介して外部電源と電気的に接続されている。本例では、金(Au)線によるワイヤボンディングによって第1電極パッド31Aと外部電源が接続されており、本例の金属塊34とは、第1電極パッド31Aに接合された金(Au)バンプのことである。図にはワイヤボンディングの金(Au)バンプである金属塊34のみを記載し、ワイヤは簡便のために省略している(後に説明するその他の図においても同じ)。金(Au)線の代わりにアルミニウム(Al)線、銅(Cu)線などのワイヤを選択することも可能である。また、本例ではワイヤボンディングの代わりに、電気配線をはんだなどによって第1電極パッド31Aと接合してもよいし、第1電極パッド31Aの上面に金スタッドバンプを形成して、電気配線をはんだなどによってこの金(Au)スタッドバンプと接合してもよい。この場合の金属塊34とは、それぞれはんだと、金(Au)スタッドバンプおよびはんだの接合材が相当する。n型コンタクト層30bは、n型コンタクト層30bに接続される第1電極31aとの接触抵抗を下げる機能を有している。
 なお、金属塊34の基板2の法線方向の厚みは、発光素子3aの厚みよりも厚く設定するのが好ましい。金属塊34の厚みを、発光素子3aの厚みよりも厚く設定することによって、金属塊34の上方を発光素子3aの発した光が通過されて受光素子3bに照射される可能性が少なくなる。
 第1電極31aおよび第1電極パッド31Aは、例えば金(Au)アンチモン(Sb)合金、金(Au)ゲルマニウム(Ge)合金またはNi系合金などを用いて、その厚さが0.5~5μm程度で形成される。それとともに、基板2の上面からn型コンタクト層30bの上面を覆うように形成される絶縁層8の上に配置されているため、基板2およびn型コンタクト層30b以外の半導体層とは電気的に絶縁されている。
 絶縁層8は、例えば窒化シリコン(SiN)または酸化シリコン(SiO)などの無機絶縁膜や、ポリイミドなどの有機絶縁膜などで形成され、その厚さが0.1~1μm程度とされている。
 n型コンタクト層30bの上面には、n型クラッド層30cが形成されており、後に説明する活性層30dに正孔を閉じ込める機能を有している。n型クラッド層30cは、アルミニウムガリウム砒素(AlGaAs)にn型不純物であるシリコン(Si)またはセレン(Se)などがドーピングされており、ドーピング濃度は1×1016~1×1020atoms/cm程度とされるとともに、その厚さが0.2~0.5μm程度とされている。本例では、n型不純物としてシリコン(Si)が1×1017~5×1017atoms/cmのドーピング濃度でドーピングされている。
 n型クラッド層30cの上面には、活性層30dが形成されており、電子や正孔などのキャリアが集中して、再結合することによって光を発する発光層として機能する。活性層30dは、不純物を含まないアルミニウムガリウム砒素(AlGaAs)であるとともに、その厚さが0.1~0.5μm程度とされている。なお、本例の活性層30dは、不純物を含まない層であるが、p型不純物を含むp型活性層であっても、n型不純物を含むn型活性層であってもよい。ただし、活性層30dのバンドギャップがn型クラッド層30cおよび後に説明するp型クラッド層30eのバンドギャップよりも小さくなっている必要がある。
 活性層30dの上面には、p型クラッド層30eが形成されており、活性層30dに電子を閉じ込める機能を有している。p型クラッド層30eは、アルミニウムガリウム砒素(AlGaAs)にp型不純物である亜鉛(Zn)、マグネシウム(Mg)または炭素(C)などがドーピングされており、ドーピング濃度は1×1016~1×1020atoms/cm程度とされるとともに、その厚さが0.2~0.5μm程度とされている。本例では、p型不純物としてマグネシウム(Mg)が1×1019~5×1020atoms/cmのドーピング濃度でドーピングされている。
 p型クラッド層30eの上面には、p型コンタクト層30fが形成されている。p型コンタクト層30fは、アルミニウムガリウム砒素(AlGaAs)にp型不純物である亜鉛(Zn)、マグネシウム(Mg)または炭素(C)などがドーピングされており、ドーピング濃度は1×1016~1×1020atoms/cm程度とされるとともに、その厚さが0.2~0.5μm程度とされている。
 p型コンタクト層30fは、発光素子側第2電極31b(第2電極31b)を介して、発光素子側第2電極パッド31B(第2電極パッド31B)に接続されている。第2電極パッド31Bは、発光素子第1側電極パッド31Aと同様に、金属塊34を介して外部電源と電気的に接続されている。接続方法と接合形態のバリエーションは第1電極パッド31Aの場合と同様である。p型コンタクト層30fは、p型コンタクト層30fに接続される発光素子側第2電極配線31bとの接触抵抗を下げる機能を有している。
 なお、p型コンタクト層30fの上面には、p型コンタクト層30fの酸化を抑制する機能を有するキャップ層を形成してもよい。キャップ層は、例えば不純物を含まないガリウム砒素(GaAs)で形成して、その厚さを0.01~0.03μm程度とすればよい。
 第2電極31bおよび第2電極パッド31Bは、例えば金(Au)やアルミニウム(Al)と、密着層であるニッケル(Ni)、クロム(Cr)またはチタン(Ti)とを組み合わせたAuNi、AuCr、AuTiまたはAlCr合金などで形成されており、その厚さが0.5~5μm程度とされる。そして、基板2の上面からp型コンタクト層30fの上面を覆うように形成される絶縁層8の上に配置されているため、基板2およびp型コンタクト層30f以外の半導体層とは電気的に絶縁されている。
 このようにして構成された発光素子3aは、第1電極パッド31Aと第2電極パッド31Bとの間にバイアスを印加することによって、活性層30dが発光して、光源として機能する。
 受光素子3bは、図2(b)に示すように、基板2の上面にp型半導体領域32を設けることによって、n型の基板2とでpn接合を形成して構成される。p型半導体領域32は、基板2にp型不純物を高濃度に拡散させて形成されている。p型不純物としては、例えば亜鉛(Zn)、マグネシウム(Mg)、炭素(C)、ホウ素(B)、インジウム(In)またはセレン(Se)などが挙げられ、ドーピング濃度は1×1016~1×1020atoms/cmとされる。本例では、p型半導体領域32の厚さが0.5~3μm程度となるように、ホウ素(B)がp型不純物として拡散されている。
 p型半導体領域32は、受光素子側第1電極33a(第3電極33a)を介して受光素子側第1電極パッド33A(第3電極パッド33A)と電気的に接続されており、n型半導体である基板2には、受光素子側第2電極パッド33B(第4電極パッド33B)が電気的に接続されている。
 第3電極33aおよび第3電極パッド33Aは、基板2の上面に絶縁層8を介して配置されているため、基板2と電気的に絶縁されている。一方、第4電極パッド33Bは基板2の上面に配置されている。
 第3電極33a、第3電極パッド33A、第4電極パッド33Bは、例えば金(Au)アンチモン(Sb)合金、金(Au)ゲルマニウム(Ge)合金またはNi系合金などを用いて、その厚さが0.5~5μm程度で形成される。
 このように構成された受光素子3bは、p型半導体領域32に光が入射すると、光電効果によって光電流が発生して、この光電流を第3電極パッド33Aを介して取り出すことによって、光検出部として機能する。なお、第3電極パッド33Aと第4電極パッド33Bとの間に逆バイアスを印加すれば、受光素子3bの光検出感度が高くなるので好ましい。
 ここで、第1電極パッド31A、第2電極パッド31B、第3電極パッド33Aおよび第4電極パッド33Bの配置について説明する。
 本例の場合、発光素子3aと受光素子3bとの間における基板2の上面に絶縁層8を介して第2電極パッド31Bが配置されている。そして、第1電極パッド31Aは、第2電極パッド31Bとで発光素子3aを挟むように、第3電極パッド33Aおよび第4電極パッド33Bは、第2電極パッド31Bとで受光素子3bを挟むように配置されている。第1電極パッド31Aおよび第3電極パッド33Aは基板2の上面に絶縁層8を介して、第4電極パッド33Bは基板2の上面に配置されている。
 第2電極パッド31Bを発光素子3aと受光素子3bとの間における基板2の上面に絶縁層8を介して配置することにより、発光素子3aから発せられて受光素子3bに向かう光は、第2電極パッド31Bの上面に接合された金属塊34によって遮られる。よって、発光素子3aの発する光が直接受光素子3bに照射されることを抑制することができ、センシング性能の高い受発光素子を実現することができる。
 なお、本例では発光素子3aと受光素子3bとの間における基板2の上面に絶縁層8を介して第2電極パッド31Bを配置したが、第1電極31a、第3電極パッド33Aまたは第4電極パッド33Bのいずれかを配置してもよい。第4電極パッド33Bを配置する場合には、絶縁層8を介することなく基板2の上面に配置することに留意する。
 また、基板上に位置する発光素子3aおよび受光素子3bは1つであってもよいし、複数であってもよい。
 (受発光素子の製造方法)
 次に、受発光素子1の製造方法の例を示す。
 まず、シリコン(Si)にn型不純物がドーピングされた基板2を準備する。そして、熱酸化法を用いて、基板2の上に酸化シリコン(SiO)からなる拡散素子膜S(図示せず)を形成する。
 拡散阻止膜S上にフォトレジストを塗布して、フォトリソグラフィ法によって所望のパターンを露光、現像した後、ウェットエッチング法によって、p型半導体領域32を形成するための開口部Sa(図示せず)を拡散阻止膜S中に形成する。開口部Saは、必ずしも拡散阻止膜Sを貫通している必要はない。
 そして、拡散阻止膜S上にポリボロンフィルム(PBF)を塗布する。続いて、熱拡散法を用いて、拡散阻止膜Sの開口部Saを介して、ポリボロンフィルム(PBF)に含まれているホウ素(B)を基板2の内部に拡散させ、p型半導体領域32を形成する。このとき、例えばポリボロンフィルム(PBF)の厚さを0.1~1μmとし、窒素(N)および酸素(O)を含む雰囲気中で700~1200℃の温度で熱拡散させる。その後、拡散阻止膜Sを除去する。
 次に、基板2をMOCVD(Metal-organic Chemical Vapor Deposition)装置の反応炉内で熱処理することによって、基板2の表面に形成された自然酸化膜を除去する。この熱処理は、例えば1000℃の温度で10分間程度行なう。
 次いで、MOCVD法を用いて、発光素子3aを構成する各々の半導体層(バッファ層30a、n型コンタクト層30b、n型クラッド層30c、活性層30d、p型クラッド層30e、p型コンタクト層30f)を基板2上に順次積層する。そして、積層された半導体層L(図示せず)上にフォトレジストを塗布し、フォトリソグラフィ法によって所望のパターンを露光、現像した後、ウェットエッチング法によって発光素子3aを形成する。なお、n型コンタクト層30bの上面の一部が露出するように、複数回のエッチングを行なう。その後、フォトレジストを除去する。
 次に、熱酸化法、スパッタリング法またはプラズマCVD法などを用いて、発光素子3aの露出面および基板2(p型半導体領域32を含む)の上面を覆うように絶縁層8を形成する。続いて、絶縁層8上にフォトレジストを塗布し、フォトリソグラフィ法によって所望のパターンを露光、現像した後、ウェットエッチング法によって、後に説明する第1電極31aおよび第2電極31bならびに第3電極33aを、それぞれn型コンタクト層30bおよびp型コンタクト層30fならびにp型半導体領域32に接続するための開口を、絶縁層8に形成する。その後、フォトレジストを除去する。
 次に、絶縁層8上にフォトレジストを塗布し、フォトリソグラフィ法によって所望のパターンを露光、現像した後、抵抗加熱法やスパッタリング法などを用いて、第1電極31a、第1電極パッド31A、第3電極33a、第3電極パッド33Aおよび第4電極パッド33Bを形成するための合金膜を形成する。そして、リフトオフ法を用いて、フォトレジストを除去するとともに、第1電極31a、第1電極パッド31A、第3電極33a、第3電極パッド33Aおよび第4電極パッド33Bを所望の形状に形成する。同様に第2電極31bおよび第2電極パッド33Bもそれぞれ同様の工程によって形成する。
 (センサ装置)
 次に、受発光素子1を備えたセンサ装置100について説明する。以下では、受発光素子1を、画像形成装置における、中間転写ベルトV上に付着したトナーT(被照射物)の位置を検出するセンサ装置に適用する場合を例に挙げて説明する。
 図3に示すように、本例のセンサ装置100は、受発光素子1の発光素子3aおよび受光素子3bが形成された面が、中間転写ベルトVに対向するように配置される。そして、発光素子3aから中間転写ベルトVまたは中間転写ベルトV上のトナーTへ光が照射される。本例では、発光素子3aの上方にプリズムP1を、また受光素子3bの上方にプリズムP2を配置して、発光素子3aから発せられた光が、プリズムP1で屈折して中間転写ベルトVまたは中間転写ベルトV上のトナーTに入射する。そして、この入射光L1に対する正反射光L2が、プリズムP2で屈折して、受光素子3bによって受光される。受光素子3bには、受光した光の強度に応じて光電流が発生し、第3電極33aなどを介して、外部装置でこの光電流が検出される。
 本例のセンサ装置100では、以上のように中間転写ベルトVまたはトナーTからの正反射光の強度に応じた光電流を検出することができる。そのため、例えば受光素子3bで検出される光電流値に応じて、トナーTの位置を検出することができる。なお、正反射光の強度はトナーTの濃度にも対応するため、発生した光電流の大きさに応じて、トナーTの濃度を検出することも可能である。同様に、正反射光の強度は、受発光素子アレイ3からトナーTとの距離にも対応するため、発生した光電流の大きさに応じて、受発光素子アレイ3とトナーTとの距離を検出することも可能である。
 本例のセンサ装置100によれば、受発光素子1の有する上述の効果を奏することができる。
 以上、本発明の具体的な実施の形態の例を示したが、本発明はこれに限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更が可能である。
 例えば、図4に示した第1変形例のように、第2電極パッド31Bが、発光素子3aの受光素子3bに対向する辺と受光素子3bの発光素子3aに対向する辺との一方端同士を結ぶ線分50aおよび他方端同士を結ぶ線分50bと交わって配置されて、複数の金属塊34(本変形例の場合は2つ)が接合されていてもよい。
 このような構成とすることで、発光素子3aの発する光が直接受光素子3bに照射されることをさらに抑制することができ、センシング性能の高い受発光素子を実現することができる。
 なお、発光素子3aおよび受光素子3bが複数の場合には、それぞれ受光素子3bおよび発光素子3a側から見たときに、両端に位置する発光素子3aおよび受光素子3bの一方端と他方端とで線分50aおよび線分50bとを作ればよい。つまり、発光素子3aおよび受光素子3bが、線分50aおよび線分50bをそれぞれ含む直線の間に配置されていなければならない。
 また、図5に示した第2変形例のように、第2電極パッド31Bが、発光素子3aと受光素子3bとの間に沿って複数配置されており、複数の第2電極パッド31Bは、発光素子3a側から受光素子3b側を見たときに隣り合うもの同士の一部が重なっており、両端に位置する第2電極パッド31Bのそれぞれは、発光素子3aの受光素子3bに対向する辺と受光素子3bの発光素子3aに対向する辺との一方端同士を結ぶ線分50aおよび他方端同士を結ぶ線分50bと交わって配置されており、複数の第2電極パッド31Bのそれぞれに少なくとも1つの金属塊34が接合されていてもよい。なお、発光素子3a側から受光素子3b側を見たときとは、側面視において発光素子3aから受光素子3bに向かう方向に見たときをいう。
 このような構成とすることで、発光素子3aの発する光が直接受光素子3bに照射されることをさらに抑制することができ、センシング性能の高い受発光素子を実現することができる。
 なお、第2変形例では、複数の電極パッドを第2電極パッド31Bのみで構成したが、第1電極パッド31A、第3電極パッド33Aおよび第4電極パッド33Bであってもよいし、これらの電極パッドをどのように組み合わせてもよいし、それぞれの電極パッドの数も適宜設定すればよい。
 さらに、図6(a)、(b)に示した第3変形例、第4変形例のように、複数の金属塊34は、発光素子3a側から受光素子3b側を見たときに隣り合うもの同士の一部が重なっていてもよい。
 このような構成とすることで、発光素子3a側から受光素子3b側を見たときに金属塊34同士が隙間なく配置されていることになるため、発光素子3aの発する光が直接受光素子3bに照射されることをさらに抑制することができ、センシング性能の高い受発光素子を実現することができる。
 なぜならば、発光素子3aから発せられた光で、線分50aおよび線分50bで挟まれる領域の上方を通過するものは受光素子3bに照射される可能性のある光であるため、この領域の上方を通過する光を遮れば、発光素子3aから発せられた光は受光素子3bに照射されることはない。
 また、図7に示した第5変形例のように、受発光素子1は、配線基板40の上面に、発光素子3aおよび受光素子3bとを備えた基板2と、基板2を取り囲むように配置された枠上の外壁4と、外壁4の内側に位置した、外壁4の内部空間4aを発光素子3aおよび受光素子3bのそれぞれに対応した空間に仕切る遮光壁5と、基板2を覆っており、発光素子3aおよび受光素子3bのそれぞれ対応した受光素子側レンズ6aおよび発光素子側レンズ6bとを支持する上壁7とを有していてもよい。
 そして、遮光壁5は基板2に対向する下面5cを有し、基板2と遮光壁5の下面5cとの間隔は、金属塊34の発光素子側第1電極パッド31Bの法線方向の厚みよりも小さくされていてもよい。
 配線基板40は、基板2および外部装置とそれぞれ電気的に接続されて、基板2に形成された発光素子3aおよび受光素子3bにバイアスを印加したり、基板2と外部装置との間で電気信号の授受を行なったりするための配線基板として機能する。
 外壁4は、配線基板40の上面に、基板2を取り囲むように、図示はしないが接着剤9を介して接続されている。そして、発光素子3aが発した光が被照射物に向かう方向以外に散乱するのを抑制したり、受光素子3bに被照射物で反射された以外の光が入射するのを抑制したり、配線基板40および基板2を外部環境から保護する機能を有する。
 外壁4は、ポリプロピレン樹脂(PP)、ポリスチレン樹脂(PS)、塩化ビニル樹脂(PVC)、ポリエチレンテレフタレート樹脂(PET)、アクリロニトリル/ブタジエン/スチレン樹脂(ABS)などの汎用プラスチック、ポリアミド樹脂(PA)ポリカーボネート樹脂(PC)などのエンジニアリングプラスチック、液晶ポリマーなどのスーパーエンジニアリングプラスチック、およびアルミニウム(Al)、チタン(Ti)などの金属材料で形成される。
 なお、外壁4の奥行および幅の寸法は基板2の奥行および幅の寸法と同じでもよいし、異なっていてもよい。外壁4の奥行および幅の寸法は少なくとも発光素子3aおよび受光素子3bが覆われる寸法であればよい。
 遮光壁5は、外壁4の内側に、外壁4の内側空間4aを発光素子3aおよび受光素子3bに対応した空間に仕切るように配置されている。外壁4の内側空間4aを発光素子3aおよび受光素子3bに対応した空間に仕切るように配置するとは、受発光素子1を受発光素子1側から配線基板40を見たときに、遮光壁5と外壁4で形成される一方の空間に発光素子3aが存在し、他方の空間に受光素子3bが存在するように配置することである。
 遮光壁5は、発光素子3aの発した光が、被照射物に反射されることなく受光素子3bに入射するのを抑制する機能を有する。
 遮光壁5は、配線基板40および基板2とは接触しないように配置されている。このように配置することで、受発光素子1が駆動により熱を発したり、外部環境から熱を受けたりして、遮光壁5が熱膨張によって寸法が伸びたとしても、発光素子3aおよび受光素子3bが形成されている基板2に当接することがないことから、発光素子3aおよび受光素子3bの位置関係を維持することができ、センシング性能を高めることができる。
 遮光壁5は、発光素子3a側に位置する発光素子側遮光面5a(第1面5a)と、受光素子3b側に位置する受光素子側遮光面5b(第2面5b)と、発光素子側遮光面5aおよび受光素子側遮光面5bに接続される下面5cとを有している。
 第5変形例の第1面5aおよび第2面5bは、外壁4の内部空間4aを発光素子3a側と受光素子3b側に対応した空間に仕切ることができればどのような形状であってもよい。第5変形例では、基板2の上面の法線方向、ならびに発光素子3aと受光素子3bの間に沿って配置されて、外壁4と当接している。発光素子3aと受光素子3bの間に沿った長さは、少なくとも発光素子3aの長さ以上の長さにする必要がある。さもなければ、発光素子3aの発した光が直接受光素子3b側の空間に照射されるためである。
 遮光壁5は、外壁4と同様の材料を用いることができる。
 上壁7は、配線基板40および基板2を覆うように配置される。第5変形例の上壁7は外壁4の上端に当接して配置されている。そして、発光素子3aおよび受光素子3bに対応した位置に、貫通孔7a,7bを有している。上壁7は、基板2および受発光素子アレイ3を外部環境から保護する機能、および後に説明するレンズ6a,6bの支持体として機能する。
 上壁7は、外壁4および遮光壁5と同様の材料を用いることができる。
 なお、第5変形例の外壁4、遮光壁5および上壁7は、ポリカーボネート樹脂(PC)で射出成形によって一体的に形成されている。
 発光素子側レンズ6aおよび受光素子側レンズ6bは上壁7の貫通孔7a,7bに対応して配置されて、それぞれ発光素子3aの発した光を集光する機能と、被照射物で反射された光を集光する機能を有する。なお、本明細書においては、発光素子側レンズ6aおよび受光素子側レンズ6bを単にレンズ6aおよび6bという場合がある。これらのレンズ6aおよび6bを有することにより、受発光素子1と被照射物との距離が長くなった場合でもセンシング性能を高くすることができる。
 レンズ6aおよび6bの材質は、シリコーン樹脂、ウレタン樹脂ならびにエポキシ樹脂などの熱硬化性樹脂、またはポリカーボネート樹脂ならびにアクリル樹脂などの熱可塑性樹脂などのプラスチック、あるいはサファイアおよび無機ガラスなどが挙げられる。
 第5変形例のレンズ6aおよび6bは、シリコーン樹脂で形成されたシリンドリカルレンズであり、貫通孔7aおよび貫通孔7bの長手方向、つまり受発光素子アレイ3に形成された受光素子3aの列および発光素子3bの列に沿った方向に直交する方向に曲率を有している。レンズ6aおよび6bの上壁7への取付けは、シリコーン樹脂などの有機接着剤などによって行なえばよい。
 本例では、発光素子3aの発光部の中心を結んだ直線および受光素子3bの受光部の中心を結んだ直線と、レンズ6aおよび6bの光軸とをそれぞれ略一致させており、光軸は受発光素子アレイ3の上面から上方に向かう法線方向と略一致する。このような構成とすることにより、発光素子3aから発した光を高い照度で被照射物に照射することが可能となり、発光素子3aが発した光が被照射物で反射されて受光素子3bによって受光するときの照度を高くすることが可能となるため、感度の高い、つまりセンシング性能の高い受発光素子1を実現することができる。
 ここで、受光部の中心とは、p型半導体領域32a側から基板2を平面視した場合のp型半導体領域32aの中心のことである。同様に、発光部の中心とは、p型コンタクト層30f側から基板2を平面視した場合の活性層30dの中心のことである。活性層30dの上面には、p型クラッド層30eおよびp型コンタクト層30fなどが積層されているため、活性層30dの中心を直接に観察することができない。そのため、p型コンタクト層30fの中心を活性層30dの中心とみなしても問題ない。なぜなら、上述したように、半導体層の各層は非常に薄いことから、発光素子アレイ3aを形成するためのエッチングとn型コンタクト層30bの上面の一部を露出するためのエッチングとが個別に行なわれたとしても、p型コンタクト層30f側から平面透視して、p型コンタクト層30fの中心と活性層30dの中心とは略一致するからである。
 なお、レンズ6aおよび6bは、シリンドリカルレンズであるが、受光素子3aおよび発光素子3bのそれぞれに対応した平凸レンズであってもよい。
 なお、第5変形例では、上壁7、レンズ6aおよび6bを有しているが、受発光素子1と被照射物が近距離で設置される場合などは、上壁7、レンズ6aおよび6bは設けなくてもよい。
 次に、第5変形例の製造方法について簡単に説明する。
 上述した受発光素子製造方法に加えて、以下の工程により製造する。
 第5変形例の配線基板40は、セラミックスからなり、次のような工程を経て製造される。まず、セラミックグリーンシートを準備する。
 次に、第1電極31a、第1電極パッド31A、第2電極31b、第2電極パッド31B、第3電極33a、第3電極パッド33Aおよび第4電極パッド33Bや、これらの電極をそれぞれ接続したり、外部装置と接続したりするための電気配線となる金属ペーストをセラミックグリーンシート上に印刷する。電気配線になる金属ペーストとしては、例えばタングステン(W)、モリブデン(Mo)、マンガン(Mn)および銅(Cu)などの金属を含有させたものが挙げられる。
 なお、配線基板40は樹脂からなるものでもよい。この場合の配線基板40の製造方法は、例えば次のような方法が考えられる。まず、熱硬化型樹脂の前駆体シートを準備する。次に、第1電極31a、第1電極パッド31A、第2電極31b、第2電極パッド31B、第3電極33a、第3電極パッド33Aおよび第4電極パッド33Bや、これらの電極をそれぞれ接続したり、外部装置と接続したりするための電気配線となる、金属材料からなるリード端子を前駆体シート間に配置し、かつリード端子を前駆体シートに埋設させるように複数の前駆体シートを積層する。このリード端子の形成材料としては、例えば銅(Cu)、銀(Ag)、アルミニウム(Al)、鉄(Fe)-ニッケル(Ni)-コバルト(Co)合金および鉄(Fe)-ニッケル(Ni)合金などの金属材料が挙げられる。そして、これを熱硬化させることにより、配線基板40が完成する。
 このように準備した、配線基板40の上面にを基板2を配置する。配線基板40と基板2とをワイヤボンディングによって電気的に接続する場合には、配線基板40と基板2とをエポキシ樹脂や銀ペーストなどの接着剤で接合すればよく、フリップチップボンディングによって接続する場合には、はんだ、銀ロウおよび銅ロウなどのロウ材、金スタッドバンプとはんだとの組合せ、あるいは異方性導電フィルムなど、電気的な接続とを兼ねて行なえばよい。
 そして、外壁4、遮光壁5および上壁7が一体的に形成された部材に、あらかじめレンズ6aおよび6bをシリコーン樹脂などによって接着し、これを基板2の上面に、エポキシ樹脂およびシリコーン樹脂などの樹脂系接着剤、あるいはポリエステル、不織布、アクリルフォーム、ポリイミド、ポリ塩化ビニル(PVC)またはアルミ箔などの基材に対してアクリル系粘着剤、ゴム系粘着剤またはシリコーン系粘着剤の接着剤が塗布された両面テープなどを用いて接着する。
1 受発光素子
2 基板
3a 発光素子
3b 受光素子
4 外壁
4a 内部空間
5 遮光壁
5a 発光素子側遮光面
5b 受光素子側遮光面
5c 下面
6a 発光素子側レンズ
6b 受光素子側レンズ
7 上壁
8 絶縁層
9 接着剤
30a バッファ層
30b n型コンタクト層
30c n型クラッド層
30d 活性層
30e p型クラッド層
30f p型コンタクト層
31A 発光素子側第1電極パッド
31B 発光素子側第2電極パッド
31a 発光素子側第1電極
31b 発光素子側第2電極
32 p型半導体領域
33A 受光素子側第1電極パッド
33B 受光素子側第2電極パッド
33a 受光素子側第1電極
34 金属塊
40 配線基板
50a 第1線分
50b 第2線分
100 センサ装置

Claims (6)

  1.  一導電型半導体からなる基板と、該基板の上面に一導電型半導体層と逆導電型半導体層とを含む複数の半導体層が積層されてなる発光素子と、前記基板の上面側に逆導電型の不純物がドーピングされた逆導電型半導体領域を有してなる受光素子と、前記基板、前記一導電型半導体層、前記逆導電型半導体層および前記逆導電型半導体領域の少なくとも1つのそれぞれに接続された少なくとも1つの電極パッドと、該電極パッドの上面に接合された金属塊とを備え、
    前記電極パッドの少なくとも1つは、前記電極パッドが前記基板に接続されたものである場合は前記発光素子と前記受光素子との間における前記基板の上面に、前記電極パッドが前記一導電型半導体層、前記逆導電型半導体層または前記逆導電型半導体領域に接続されたものである場合は絶縁層を介して前記基板の上面に配置されている受発光素子。
  2.  前記電極パッドは、前記発光素子における前記受光素子に対向する辺と前記受光素子における前記発光素子に対向する辺との一方端同士を結ぶ線分および他方端同士を結ぶ線分と交わって配置されており、
    前記電極パッドに複数の前記金属塊が接合されている請求項1に記載の受発光素子。
  3.  前記電極パッドは前記発光素子と前記受光素子との間に沿って複数配置されており、複数の前記電極パッドは、前記発光素子側から前記受光素子側を見たときに隣り合うもの同士の一部が重なっており、両端に位置する前記電極パッドのそれぞれは、前記発光素子の前記受光素子に対向する辺と前記受光素子の前記発光素子に対向する辺との一方端同士を結ぶ線分または他方端同士を結ぶ線分と交わっており、
    複数の前記電極パッドのそれぞれに少なくとも1つの前記金属塊が接合されている請求項1に記載の受発光素子。
  4.  複数の前記金属塊は、前記発光素子側から前記受光素子側を見たときに隣り合うもの同士の一部が重なっている請求項2または請求項3に記載の受発光素子。
  5.  前記基板の上面に前記発光素子および前記受光素子を取り囲むように配置された枠状の外壁と、該外壁の内側に位置して内側空間を前記発光素子および前記受光素子のそれぞれに対応した空間に仕切る遮光壁とをさらに備え、
    該遮光壁は前記基板に対向する下面を有し、
    前記基板と前記遮光壁の下面との間隔は、前記金属塊の前記電極パッドの法線方向の厚みよりも小さい請求項1乃至請求項4のいずれか1項に記載の受発光素子。
  6.  請求項1乃至5のいずれか1項に記載の受発光素子を用いたセンサ装置であって、
    前記発光素子から被照射物に光を照射し、該被照射物からの反射光に応じて出力される前記受光素子からの出力電流に応じて前記被照射物の位置情報、距離情報および濃度情報のうち少なくとも1つを検出するセンサ装置。
PCT/JP2013/073085 2012-08-30 2013-08-29 受発光素子およびこれを用いたセンサ装置 WO2014034755A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13833502.1A EP2892081B1 (en) 2012-08-30 2013-08-29 Light receiving/emitting element and sensor device using same
US14/425,282 US9231127B2 (en) 2012-08-30 2013-08-29 Light receiving and emitting element and sensor device using same
CN201380043214.0A CN104584238B (zh) 2012-08-30 2013-08-29 受光发光元件以及使用该受光发光元件的传感器装置
JP2014533064A JP6030656B2 (ja) 2012-08-30 2013-08-29 受発光素子およびこれを用いたセンサ装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-189665 2012-08-30
JP2012189665 2012-08-30

Publications (1)

Publication Number Publication Date
WO2014034755A1 true WO2014034755A1 (ja) 2014-03-06

Family

ID=50183560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073085 WO2014034755A1 (ja) 2012-08-30 2013-08-29 受発光素子およびこれを用いたセンサ装置

Country Status (5)

Country Link
US (1) US9231127B2 (ja)
EP (1) EP2892081B1 (ja)
JP (1) JP6030656B2 (ja)
CN (2) CN104584238B (ja)
WO (1) WO2014034755A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017028136A (ja) * 2015-07-24 2017-02-02 京セラ株式会社 受発光素子モジュールおよびセンサ装置
JP2019145586A (ja) * 2018-02-16 2019-08-29 京セラ株式会社 受発光素子モジュールおよびセンサー装置
EP3249351B1 (en) * 2015-01-23 2020-07-15 KYOCERA Corporation Measuring apparatus and measuring method

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9197796B2 (en) * 2011-11-23 2015-11-24 Lg Innotek Co., Ltd. Camera module
US9496247B2 (en) * 2013-08-26 2016-11-15 Optiz, Inc. Integrated camera module and method of making same
EP3072155B1 (en) * 2013-11-22 2019-05-08 Heptagon Micro Optics Pte. Ltd. Compact optoelectronic modules
US20160307881A1 (en) * 2015-04-20 2016-10-20 Advanced Semiconductor Engineering, Inc. Optical sensor module and method for manufacturing the same
FR3041152B1 (fr) * 2015-09-10 2018-07-27 Aledia Dispositif electroluminescent a capteur de lumiere integre
CN107342337B (zh) * 2016-04-29 2020-01-24 上海芯晨科技有限公司 一种人民币防伪检测传感器及其制备方法
JP2019133960A (ja) * 2016-05-26 2019-08-08 シャープ株式会社 光センサ
US20180017741A1 (en) * 2016-07-15 2018-01-18 Advanced Semiconductor Engineering, Inc. Semiconductor package device and method of manufacturing the same
US20180315894A1 (en) * 2017-04-26 2018-11-01 Advanced Semiconductor Engineering, Inc. Semiconductor device package and a method of manufacturing the same
CN117253885A (zh) 2017-10-06 2023-12-19 浜松光子学株式会社 光检测装置
FR3075467B1 (fr) * 2017-12-15 2020-03-27 Stmicroelectronics (Grenoble 2) Sas Couvercle de boitier de circuit electronique
FR3075465B1 (fr) * 2017-12-15 2020-03-27 Stmicroelectronics (Grenoble 2) Sas Couvercle de boitier de circuit electronique
FR3075466B1 (fr) * 2017-12-15 2020-05-29 Stmicroelectronics (Grenoble 2) Sas Couvercle de boitier de circuit electronique
CN110098180B (zh) * 2018-01-31 2023-10-20 光宝新加坡有限公司 晶圆级感应模块及其制造方法
US11437539B2 (en) * 2020-09-30 2022-09-06 Lite-On Singapore Pte. Ltd. Optical sensor package and manufacturing method for the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58118175A (ja) * 1982-01-06 1983-07-14 Nippon Telegr & Teleph Corp <Ntt> フオトカプラ
JPH1041539A (ja) * 1996-07-23 1998-02-13 Shichizun Denshi:Kk 赤外線送受信モジュールの構造
JP2001168377A (ja) * 1999-12-10 2001-06-22 Yokogawa Electric Corp フォトカプラ
JP2007201360A (ja) 2006-01-30 2007-08-09 Citizen Electronics Co Ltd フォトリフレクタ装置
JP2010114196A (ja) * 2008-11-05 2010-05-20 Rohm Co Ltd 反射型フォトインタラプタ
WO2012098981A1 (ja) * 2011-01-20 2012-07-26 ローム株式会社 光学装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252178A (ja) * 1986-04-24 1987-11-02 Sharp Corp 反射型光センサ
JPH0745912A (ja) * 1993-07-30 1995-02-14 Sony Corp 半導体レーザ装置
JP3505488B2 (ja) * 1999-10-12 2004-03-08 古河電気工業株式会社 光モジュール
US6608360B2 (en) * 2000-12-15 2003-08-19 University Of Houston One-chip micro-integrated optoelectronic sensor
US7122840B2 (en) * 2004-06-17 2006-10-17 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor with optical guard ring and fabrication method thereof
JP4584066B2 (ja) * 2004-12-10 2010-11-17 韓國電子通信研究院 光感知器を備えた面発光レーザ素子及びこれを用いた光導波路素子
KR100945621B1 (ko) * 2005-03-07 2010-03-04 로무 가부시키가이샤 광 통신 모듈 및 그 제조 방법
US7638754B2 (en) * 2005-10-07 2009-12-29 Sharp Kabushiki Kaisha Backlight device, display apparatus including backlight device, method for driving backlight device, and method for adjusting backlight device
JP4708214B2 (ja) * 2006-02-23 2011-06-22 浜松ホトニクス株式会社 光送受信デバイス
US20110260176A1 (en) * 2008-05-12 2011-10-27 Pioneer Corporation Light-emitting sensor device and method for manufacturing the same
CN101777602B (zh) * 2008-11-04 2012-06-27 罗姆股份有限公司 反射型光断续器
US20110024627A1 (en) * 2009-07-31 2011-02-03 Avago Technologies Ecbu (Singapore) Pte. Ltd. Proximity Sensor with Ceramic Housing and Light Barrier
JP5604897B2 (ja) * 2010-02-18 2014-10-15 セイコーエプソン株式会社 光デバイスの製造方法、光デバイス及び生体情報検出器
JP5595524B2 (ja) * 2010-12-28 2014-09-24 京セラ株式会社 光モジュールおよび光配線基板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58118175A (ja) * 1982-01-06 1983-07-14 Nippon Telegr & Teleph Corp <Ntt> フオトカプラ
JPH1041539A (ja) * 1996-07-23 1998-02-13 Shichizun Denshi:Kk 赤外線送受信モジュールの構造
JP2001168377A (ja) * 1999-12-10 2001-06-22 Yokogawa Electric Corp フォトカプラ
JP2007201360A (ja) 2006-01-30 2007-08-09 Citizen Electronics Co Ltd フォトリフレクタ装置
JP2010114196A (ja) * 2008-11-05 2010-05-20 Rohm Co Ltd 反射型フォトインタラプタ
WO2012098981A1 (ja) * 2011-01-20 2012-07-26 ローム株式会社 光学装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3249351B1 (en) * 2015-01-23 2020-07-15 KYOCERA Corporation Measuring apparatus and measuring method
JP2017028136A (ja) * 2015-07-24 2017-02-02 京セラ株式会社 受発光素子モジュールおよびセンサ装置
JP2019145586A (ja) * 2018-02-16 2019-08-29 京セラ株式会社 受発光素子モジュールおよびセンサー装置

Also Published As

Publication number Publication date
US9231127B2 (en) 2016-01-05
EP2892081A4 (en) 2016-06-22
CN107369728B (zh) 2019-07-26
US20150243802A1 (en) 2015-08-27
CN107369728A (zh) 2017-11-21
CN104584238A (zh) 2015-04-29
EP2892081A1 (en) 2015-07-08
JPWO2014034755A1 (ja) 2016-08-08
EP2892081B1 (en) 2021-03-10
CN104584238B (zh) 2018-10-23
JP6030656B2 (ja) 2016-11-24

Similar Documents

Publication Publication Date Title
JP6030656B2 (ja) 受発光素子およびこれを用いたセンサ装置
JP6130456B2 (ja) 受発光素子モジュールおよびこれを用いたセンサ装置
JP6420423B2 (ja) 受発光素子モジュールおよびこれを用いたセンサ装置
JP5882720B2 (ja) 受発光素子モジュールおよびこれを用いたセンサ装置
JP6495988B2 (ja) 受発光素子およびこれを用いたセンサ装置
JP6294500B2 (ja) 受発光素子モジュールおよびこれを用いたセンサ装置
JP2015162473A (ja) 受発光素子モジュール
JP5970370B2 (ja) 受発光素子およびこれを用いたセンサ装置
JP2018046314A (ja) 受発光素子およびこれを用いたセンサ装置
JP2015008256A (ja) 受発光素子およびこれを用いたセンサ装置
JP6117604B2 (ja) 受発光素子およびこれを用いたセンサ装置
JP6616369B2 (ja) 受発光素子モジュール
JP2017139478A (ja) 受発光素子およびこれを用いたセンサ装置
JP2008047818A (ja) 光結合装置及びその製造方法
JP2015191894A (ja) 受発光素子およびこれを用いたセンサ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13833502

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014533064

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14425282

Country of ref document: US