WO2014032588A1 - 电池复合材料及其前驱物的制备方法 - Google Patents

电池复合材料及其前驱物的制备方法 Download PDF

Info

Publication number
WO2014032588A1
WO2014032588A1 PCT/CN2013/082451 CN2013082451W WO2014032588A1 WO 2014032588 A1 WO2014032588 A1 WO 2014032588A1 CN 2013082451 W CN2013082451 W CN 2013082451W WO 2014032588 A1 WO2014032588 A1 WO 2014032588A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery composite
manganese
precursor
preparing
lithium
Prior art date
Application number
PCT/CN2013/082451
Other languages
English (en)
French (fr)
Inventor
李文超
林翔斌
谢瀚纬
Original Assignee
台湾立凯电能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台湾立凯电能科技股份有限公司 filed Critical 台湾立凯电能科技股份有限公司
Priority to US14/424,517 priority Critical patent/US9932235B2/en
Priority to JP2015528861A priority patent/JP6189957B2/ja
Priority to KR1020157008110A priority patent/KR101787212B1/ko
Priority to EP13834181.3A priority patent/EP2892091B1/en
Priority to CA2883582A priority patent/CA2883582C/en
Priority to CN201380045376.8A priority patent/CN104871348B/zh
Publication of WO2014032588A1 publication Critical patent/WO2014032588A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/38Condensed phosphates
    • C01B25/42Pyrophosphates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures
    • C01P2002/22Two-dimensional structures layered hydroxide-type, e.g. of the hydrotalcite-type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a preparation method, in particular to a battery composite material and a preparation method thereof. Background technique
  • lithium phosphate (LiMP0 4 , where M can be any metal such as: iron, cobalt, manganese, etc.) composite battery because there is no danger of explosion, and has the advantages of large current, long cycle life, etc.
  • traditional low-power, high-pollution batteries such as lead acid, nickel-metal hydride, and nickel-cadmium.
  • a nano-metal oxide co-crystallized lithium phosphate compound (LMP-NCO) battery has been developed, which is a single inseparable compound formed by a precursor containing lithium, phosphorus and a metal or metal compound.
  • the presently applied method for preparing a nano-metal oxide co-crystallized lithium phosphate compound is carried out by reacting a compound such as iron phosphate (FeP0 4 ), lithium hydroxide (LiOH), and lithium carbonate (Li 2 CO 3 ).
  • Preparation due to the high cost of lithium hydroxide raw materials, and the use of more iron phosphate raw materials during preparation, and more time spent on raw material grinding, so that the unit time and money cost of the battery is increased, plus the reaction includes acid and alkali Neutralization reaction, so it is quite sensitive to the pH value of the process, and it will cause the raw material to be viscous, which leads to blockage of the process pipeline, and the process temperature cannot be stably controlled due to the acid-base neutralization accompanied by the absorption and exothermic phenomenon, further improving the process.
  • the difficulty of operation due to the high cost of lithium hydroxide raw materials, and the use of more iron phosphate raw materials during preparation, and more time spent on raw material grinding, so that the unit time and money cost of the battery is increased, plus the reaction includes acid and alkali Neutralization reaction, so it is quite sensitive to the pH value of the process, and it will cause the raw material to be viscous, which leads to blockage of the process pipeline, and the process temperature cannot be stably controlled
  • the main object of the present invention is to provide a battery composite material and a method for preparing the same, which solve the problem that the raw materials and time cost of the known battery preparation are high, and the acid-base neutralization reaction causes the process pH value to be sensitive and the pipeline is blocked. And temperature control The system is not easy, the redox reaction causes insufficient process stability, and the disadvantages of contamination caused by multiple material transfer grooves.
  • Another object of the present invention is to provide a battery composite material and a method for preparing the same, which can prepare a battery composite material by using a precursor generated by the reaction, thereby effectively reducing the number of redox reactions to improve process stability, thereby reducing the process. Operational difficulty. At the same time, it can also achieve a significant reduction in the time required for grinding, thereby reducing unit time and money costs, as well as reducing process pH sensitivity, avoiding material stickiness and pipe blockage, and stable control of process temperature.
  • Another object of the present invention is to provide a method for preparing a battery composite material and a precursor thereof, which can reduce the pH of the process by using lithium carbonate instead of lithium hydroxide in the process, thereby enhancing the effect of carbon coating and achieving Improve the performance of product performance.
  • an embodiment of the present invention provides a method for preparing a battery composite, comprising at least the steps of: (a) providing phosphoric acid, manganese carbonate, water, and a first reactant, the chemical formula of the phosphoric acid is 3 ⁇ 4P0 4 ; (b) to the manganese carbonate, the water of reaction with the phosphoric acid to produce a first product; (c) calcining the product to form a first precursor, the precursor is manganese phosphate pyrophosphate, the formula Mn 2 P 2 0 7 ; and (d) reacting the precursor with at least the first reactant, and calcining the reacted mixture to form the battery composite.
  • another embodiment of the present invention provides a method for preparing a battery composite precursor, comprising at least the steps of: reacting a compound that releases a phosphate ion in a solution with manganese to form a first product And heat treating the first product to form a precursor, the precursor being manganese pyrophosphate having a chemical formula of Mn 2 P 2 0 7 .
  • another embodiment of the present invention provides a method for preparing a battery composite, comprising at least the steps of: using Mn 2 P 2 0 7 as a precursor, and performing the precursor with at least a first reactant. Reacting, and calcining the reaction mixture to form a battery composite material, wherein the battery composite material is lithium manganese phosphate, lithium iron iron manganese phosphate, nano metal oxide co-crystallized lithium manganese phosphate compound or nano metal oxide co-crystallized lithium phosphate Iron manganese compound.
  • FIG. 1 is a flow chart of a method of preparing a battery composite material according to a preferred embodiment of the present invention.
  • FIG. 2 is a detailed flow chart of a method for preparing a battery composite material of the present invention.
  • FIG. 3 is a further detailed flow chart of a method of preparing a battery composite material of the present invention.
  • Fig. 4 is a X-ray diffraction analysis diagram of a precursor prepared by a method for preparing a battery composite according to the present invention.
  • Figure 5 is a scanning electron microscope analysis of a precursor prepared by a method for preparing a battery composite according to the present invention.
  • Fig. 6 is a X-ray diffraction analysis diagram of a finished battery composite material prepared by the method for preparing a battery composite according to the present invention.
  • Fig. 7 is a scanning electron microscope analysis diagram of a finished battery composite material prepared by the method for preparing a battery composite according to the present invention.
  • Fig. 8 is a graph showing the charge and discharge of a button type battery made of a battery composite material prepared by a method for preparing a battery composite material according to the present invention.
  • FIG. 9 is an X-ray diffraction of another battery composite product prepared according to the method for preparing a battery composite material of the present invention. Analysis chart.
  • Figure 10 is a scanning electron microscope analysis of another battery composite product prepared according to the method for preparing a battery composite of the present invention.
  • Fig. 11 is a graph showing the charge and discharge of a button type battery made of another battery composite material prepared by the method for preparing a battery composite material according to the present invention.
  • FIGS. 12A, 12B and 12C are scanning electron microscopic analysis views of a nanometal oxide co-crystallized lithium manganese phosphate compound (LMP-NCO) prepared according to the method for preparing a battery composite of the present invention.
  • LMP-NCO lithium manganese phosphate compound
  • 13A, 13B and 13C are scanning electron microscopic analysis views of a nanometal oxide co-crystallized lithium iron iron manganese compound (LFMP-NCO) prepared by a method for preparing a battery composite according to the present invention.
  • LFMP-NCO nanometal oxide co-crystallized lithium iron iron manganese compound
  • FIG. 1 is a flow chart of a method for preparing a battery composite according to a preferred embodiment of the present invention.
  • the method for preparing the battery composite material of the present invention comprises the following steps: First, as shown in step S100, phosphoric acid, manganese carbonate, water and a first reactant are provided, wherein the chemical formula of the phosphoric acid is H 3 P0 4 .
  • the first reactant may be lithium carbonate (chemical formula Li 2 C0 3 ) or other compound having a lithium atom, or a mixture of several lithium-containing compounds, but is not limited thereto.
  • step S200 phosphoric acid is reacted with water to generate a first product
  • step S200 preferably dissolves the second amount of phosphoric acid and the third amount in a first amount of water.
  • the manganese carbonate is continuously stirred for the first time to produce the first product.
  • the first time may be, but is not limited to, 24 hours, and the weight ratio of the second quantity and the third quantity is substantially about 1 to 1, for example, the second quantity is 462.7 grams, and the third quantity is 460 grams, the first time
  • the basis weight is preferably 3.2 liters.
  • step S200 dissolves 462.7 g of phosphoric acid and 460 g of manganese carbonate in 3.2 liters of water, and stirring is continued for 24 hours to produce a first product, but not limited thereto.
  • the first product may be obtained by reacting another compound which releases phosphate ions in a solution after mixing with manganese, and is not limited thereto.
  • step S300 the precursor is produced by calcining the first product obtained in step S200, and the precursor is manganese pyrophosphate having a chemical formula of Mn 2 P 2 0 7 .
  • step S400 the precursor is reacted with the first reactant, and the reacted mixture is calcined to form a battery composite such as lithium manganese phosphate (LiMnP0 4 , LMP) o wherein it should be understood that
  • the precursor is reacted with at least the first reactant, and is not limited to reacting with the first reactant as described above, or reacting the precursor with the first reactant and the second reactant,
  • the first reactant is lithium carbonate
  • the second reactant is iron phosphate containing two crystal waters (chemical formula: FeP0 4 * 2H 2 0)
  • the reaction mixture is calcined to form a battery composite material such as lithium iron manganese phosphate. (LiMn x F ei _ x P0 4 , x>0, LFMP).
  • a metal oxide such as V 2 O 5 , Ti0 2 , MgO or the like may be added to obtain LiMnP0 4 containing a metal oxide or LiMn x F ei _ x P0 containing a metal oxide.
  • the metal oxide-containing LiMnPO 4 material may be referred to as "nano metal oxide co-crystallized lithium manganese phosphate compound (LMP-NCO)", and the metal oxide-containing LiMn x F ei _ x P0 4 The material may be referred to as “nanometal oxide co-crystallized lithium iron phosphate manganese compound (LFMP-NCO)".
  • the preparation method of the battery composite material of the invention reacts with the lithium carbonate by the precursor generated by the reaction to prepare the battery composite material, so that the number of necessary redox reactions can be reduced when the lithium salt is added, thereby improving the process stability. Thereby reducing the difficulty of the process operation. At the same time, it can also achieve a significant reduction in the time required for grinding, which in turn reduces unit time and money costs, as well as reducing process pH sensitivity, avoiding material stickiness and pipe blockage, and stable control of process temperature.
  • the pH of the process can be stabilized to enhance the effect of carbon coating and improve the performance of the product.
  • FIG. 2 is a detailed flow chart of a method for preparing a battery composite material according to the present invention.
  • the detailed process of the step S300 of the method for preparing a battery composite material of the present invention includes the steps of: adding a dispersant to the first product as shown in step S301; then, as shown in step S302, The first rotation speed is performed for the second time to obtain a precursor solution.
  • the first speed is 450 to 650 revolutions per minute (450 to 650 rpm), and the second time is 1 hour.
  • step S302 is: performing a grinding operation for 1 hour at a rotational speed of 450 to 650 revolutions per minute, which is not limited thereto. Then, as shown in step S303, the precursor solution is subjected to a spray drying operation and a heat treatment operation to obtain a dried precursor, that is, manganese pyrophosphate (Mn 2 P 2 0 7 ), wherein the heat treatment operation is at a temperature greater than 380°.
  • the heat treatment of at least 2 hours is carried out in nitrogen of C, but is not limited thereto.
  • step S401 is to mix a precursor, that is, Mn 2 P 2 0 7 , with at least a first reactant, which may be lithium carbonate or other compound having a lithium atom, or a mixture of lithium-containing compounds; then, as shown in step S402, a dispersant such as polyethylene glycol octylphenyl ether (Triton X-100) is added, and a spray granulation operation is performed; then, as shown in step S403 And performing a high-temperature calcination operation, for example, performing a calcination operation for at least 8 to 12 hours in a nitrogen atmosphere having a temperature of 550 ° C to 750 ° C, but not limited thereto; and finally, generating the present as shown in step S404
  • the invention discloses a finished battery composite material, such as lithium manganes, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium
  • a dispersing agent was added and ground using a grinding method (rotation speed: 450 to 650 rpm) for several hours to obtain a Mn 2 P 2 0 7 precursor solution.
  • the precursor solution was spray dried.
  • the spray dried product was placed in a ceramic crucible and calcined in nitrogen at a temperature of 380 ° C for at least 2 hours.
  • XRD X-ray Diffraction
  • a ratio of 8:1:1 is mixed.
  • the mixture was mixed for 10 minutes, and then the dispersed slurry was coated on an aluminum substrate with a blade coater to a thickness of 0.3 mm. After that, the coated pole piece was placed in an oven and dried at 100 ° C for 1 hour, and then taken out, and formed into a circular plate having a diameter of 1.3 cm, using lithium metal as a negative electrode, 1 molar molecular concentration.
  • a mixture of LiPF 6 and EC and DMC in a volume ratio of 1:1 is an electrolyte, which is made into a coin-type battery (Coin-Cell), and is charged and discharged for 0.1 cycles and 2 coulomb charge.
  • a two-cycle electrical test is performed. The test results are shown in Figure 8. The cut-off voltage is 2 to 4.5 volts.
  • step S200 or step S400 of the first embodiment by adding a metal oxide such as V 2 0 5 , Ti0 2 , MgO or the like, a nano metal oxide eutectic lithium manganese phosphate compound can be formed, and the rest is The same as the first embodiment, and details are not described herein again.
  • a metal oxide such as V 2 0 5 , Ti0 2 , MgO or the like
  • the dispersion-coated slurry was coated on an aluminum substrate to a thickness of 0.3 mm.
  • the coated pole piece was placed in an oven and dried at 100 ° C for 1 hour, and then taken out, and formed into a circular plate having a diameter of 1.3 cm, using lithium metal as a negative electrode, 1 molar molecular concentration.
  • a mixture of LiPF 6 and a ratio of 3:7 EC and DMC is used as an electrolyte, which is made into a coin-type battery (Coin-Cell), and is charged and discharged for 0.1 cycles and 2 coulomb charge.
  • a two-cycle electrical test was performed. The test results are shown in Figure 11, with a cut-off voltage of 2.5 to 4.5 volts.
  • step S200 or step S400 of the fourth embodiment a metal oxide such as V 2 O 5 , Ti0 2 , MgO or the like is added to form a nano metal oxide eutectic lithium iron phosphate manganese compound, and the rest The same as the fourth embodiment, and details are not described herein again.
  • FIG. 12A, FIG. 12B and FIG. 12C are scanning electron microscope analysis diagrams of the nano metal oxide cocrystallized lithium manganese phosphate compound (LMP-NCO) prepared by the method for preparing the battery composite material of the present invention. As shown in Figure 12A, 12B and FIG.
  • the scanning electron microscopic analysis chart of the nano-metal oxide co-crystallized lithium manganese phosphate compound prepared by the foregoing examples of the present invention is performed at 50,000 times magnification, 10,000 times magnification and 1,000 times.
  • the analysis images at the magnification are shown in Fig. 12A, Fig. 12B, and Fig. 12C, respectively.
  • FIG. 13A, FIG. 13B and FIG. 13C are scanning electron microscope analysis diagrams of the nano metal oxide co-crystallized lithium iron phosphate manganese compound (LFMP-NCO) prepared by the method for preparing a battery composite of the present invention.
  • the scanning electron microscope analysis pattern of the nano metal oxide cocrystallized lithium iron phosphate manganese compound prepared by the foregoing embodiments of the present invention is 50,000 times and 10,000 times.
  • the analysis images at the magnification and the thousandth magnification are shown in Fig. 13A, Fig. 13B, and Fig. 13C, respectively.
  • the preparation method of the battery composite material of the invention prepares the battery composite material by the precursor generated by the reaction, and can effectively reduce the number of redox reactions to improve the process stability, thereby reducing the operation difficulty of the process. At the same time, it can also achieve a significant reduction in the time required for grinding, thereby reducing unit time and money costs, as well as reducing process pH sensitivity, avoiding material stickiness and pipe blockage, and stable control of process temperature. At the same time, by replacing lithium hydroxide with lithium carbonate in the process, the pH of the process can be stabilized to enhance the effect of carbon coating and to enhance the performance of the product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种电池复合材料的制备方法,包括步骤:提供磷酸、碳酸锰、水以及第一反应物,磷酸的化学式为H3PO4;以碳酸锰、磷酸与水进行反应,以生成第一生成物;煅烧第一生成物以生成前驱物,前驱物为焦磷酸锰,化学式为Mn2P2O7;以及以前驱物与至少第一反应物进行反应,再煅烧反应的混合物,以生成电池复合材料,其可有效减少氧化还原反应的次数以增进工艺稳定性,进而降低工艺操作难度。

Description

电池复合材料及其前驱物的制备方法 技术领域
本发明涉及一种制备方法, 特别涉及一种电池复合材料及其前驱物的制备方法。 背景技术
由于全球能源的持续短缺, 造成石油价格高居不下, 以及近年来环保意识逐渐抬头, 因此目前相关产业最关心的议题莫过于如何提供环保、干净又不失效能的能源。在各种替 代性的能源中, 化学电池是目前业界积极研发的技术。 随着相关产业持续投入研发, 不但 使电池的技术不断精进、 提升, 同时也广泛地应用于日常生活, 例如消费性电子产品、 医 疗器材、 电动脚踏车、 电动机车、 电动汽车以及电动巴士等。
其中, 又以磷酸锂盐 (LiMP04, 其中 M可为任何金属例如: 铁、 钴、 锰等)复合材料 电池, 因为不会有爆炸的危险, 且具有大电流、 循环寿命长等优点, 故广为市场所接受, 以取代铅酸、 镍氢、 镍镉等低功率、 高污染的传统电池。 经过多年研发, 更开发出了纳米 金属氧化物共晶体化磷酸锂盐化合物 (LMP-NCO)电池, 其系藉由含有锂、磷与金属或金属 化合物之前驱物所形成的单一不可分割化合物, 并且是一种非掺杂也非涂布型态的材料, 可大幅改善传统磷酸锂盐材料导电率较低及杂质多的问题,且价格较传统磷酸锂盐材料便 宜, 具有较佳的市场竞争力, 遂成为目前市场的主流。
然而, 目前应用于纳米金属氧化物共晶体化磷酸锂盐化合物的制备方法, 多透过磷酸 铁 (FeP04)、 氢氧化锂 (LiOH)以及碳酸锂 (Li2C03)等化合物进行反应而制备, 由于氢氧化锂 原料成本较高, 且制备时须使用较多磷酸铁原料, 并耗费较多时间进行原料研磨, 使得电 池的单位时间及金钱成本连带提高, 再加上该反应包括酸碱中和反应, 故对工艺 pH值相 当敏感, 更会连带造成原料粘滞, 进而导致工艺管路堵塞, 且由于酸碱中和伴随吸、 放热 现象, 使工艺温度无法稳定控制, 进一步提高工艺的操作难度。
虽然已有部分方法改而采用锰以取代铁, 然由于在制造过程中需经多次氧化还原反 应, 造成工艺稳定性不足, 且于磷酸锂锰制备过程中若采用氢氧化锂, 会造成工艺 pH值 上升, 进而导致碳包覆效果不佳并影响产品表现。 此外, 前述各种制备方法于工艺中尚须 经过多次原料移槽动作, 导致原料可能造成污染的风险, 严重影响产品品质。
因此, 如何改善上述现有技术的缺失, 提升产品品质, 降低原料、 时间成本以及工艺 操作难度, 实为目前迫切需要解决的问题。 发明内容
本发明的主要目的为提供一种电池复合材料及其前驱物的制备方法, 以解决已知电池 制备所需原料及时间成本较高, 且酸碱中和反应造成工艺 pH值敏感、 管路堵塞及温度控 制不易, 氧化还原反应造成工艺稳定性不足, 以及多次原料移槽导致污染等缺点。
本发明的另一目的在于提供一种电池复合材料及其前驱物的制备方法,通过反应产生 的前驱物来制备电池复合材料, 可有效减少氧化还原反应的次数以增进工艺稳定性, 进而 降低工艺操作难度。 同时, 亦可达到大幅缩短研磨所需时间, 进而降低单位时间及金钱成 本, 以及降低工艺 pH值敏感性、避免原料粘滞及管路堵塞且能稳定控制工艺温度等功效。
本发明的另一目的在于提供一种电池复合材料及其前驱物的制备方法,通过工艺中采 用碳酸锂取代氢氧化锂, 可使工艺 pH值较为稳定, 以加强碳包覆的效果, 并达到增进产 品表现的功效。
为达上述目的, 本发明的一种实施方式为提供一种电池复合材料的制备方法, 至少包 括步骤: (a)提供磷酸、 碳酸锰、 水以及第一反应物, 该磷酸的化学式为 ¾P04; (b)以该碳 酸锰、 该磷酸与该水进行反应, 以生成第一生成物; (c)煅烧该第一生成物以生成前驱物, 该前驱物为焦磷酸锰, 化学式为 Mn2P207 ; 以及 (d)以该前驱物与至少该第一反应物进行反 应, 再煅烧反应的混合物, 以生成该电池复合材料。
为达上述目的, 本发明的另一实施方式为提供一种电池复合材料前驱物的制备方法, 至少包括步骤: 以在溶液中释放磷酸根离子的化合物与锰进行反应, 以生成第一生成物; 以及热处理该第一生成物以生成前驱物, 该前驱物为焦磷酸锰, 化学式为 Mn2P207
为达上述目的, 本发明的另一实施方式为提供一种电池复合材料的制备方法, 至少包 括步骤: 以 Mn2P207为前驱物, 并以该前驱物与至少第一反应物进行反应, 再煅烧反应的 混合物, 以生成电池复合材料, 其中该电池复合材料为磷酸锂锰、 磷酸锂铁锰、 纳米金属 氧化物共晶体化磷酸锂锰化合物或纳米金属氧化物共晶体化磷酸锂铁锰化合物。 附图说明
图 1为本发明优选实施例的电池复合材料的制备方法流程图。
图 2为本发明电池复合材料的制备方法的一细部流程图。
图 3为本发明电池复合材料的制备方法的另一细部流程图。
图 4为根据本发明电池复合材料的制备方法制备的前驱物的 X光衍射分析图。
图 5 为根据本发明电池复合材料的制备方法制备的前驱物的扫描式电子显微镜分析 图。
图 6为根据本发明电池复合材料的制备方法制备的电池复合材料成品的 X光衍射分析 图。
图 7 为根据本发明电池复合材料的制备方法制备的电池复合材料成品的扫描式电子 显微镜分析图。
图 8 为根据本发明电池复合材料的制备方法制备的电池复合材料成品制成的钮扣型 电池的充放电性图。
图 9为根据本发明电池复合材料的制备方法制备的另一电池复合材料成品的 X光衍射 分析图。
图 10为根据本发明电池复合材料的制备方法制备的另一电池复合材料成品的扫描式 电子显微镜分析图。
图 11为根据本发明电池复合材料的制备方法制备的另一电池复合材料成品制成的钮 扣型电池的充放电性图。
图 12A、 图 12B及图 12C为根据本发明电池复合材料的制备方法制备的纳米金属氧 化物共晶体化磷酸锂锰化合物 (LMP-NCO)的扫描式电子显微镜分析图。
图 13A、 图 13B及图 13C为根据本发明电池复合材料的制备方法制备的纳米金属氧 化物共晶体化磷酸锂铁锰化合物 (LFMP-NCO)的扫描式电子显微镜分析图。
其中, 附图标记说明如下:
S100-S400: 步骤
S301-S303: 步骤
S401-S404: 步骤 具体实施方式
体现本发明特征与优点的一些典型实施例将在后段的说明中详细叙述。应理解的是本 发明能够在不同的实施方式上具有各种的变化, 其皆不脱离本案的范围, 且其中的说明及 图示在本质上当作说明之用, 而非架构于限制本发明。
请参阅图 1,其为本发明优选实施例的电池复合材料的制备方法流程图。如图 1所示, 本发明电池复合材料的制备方法包括步骤如下: 首先, 如步骤 S100所示, 提供磷酸、 碳 酸锰、 水以及第一反应物, 其中磷酸的化学式为 H3P04。 于一些实施例中, 第一反应物可 为碳酸锂 (化学式为 Li2C03)或其他带有锂原子的化合物, 或数种含锂化合物的混合物, 但 不以此为限。
其次, 如步骤 S200所示, 以磷酸与水进行反应, 以生成第一生成物, 且根据本发明 的构想, 步骤 S200优选是以第一定量的水溶解第二定量的磷酸及第三定量的碳酸锰, 并 持续搅拌第一时间, 以生成第一生成物。 其中, 第一时间可为但不限于 24小时, 第二定 量及第三定量的重量比例实质上约为 1 比 1, 例如第二定量为 462.7克, 第三定量为 460 克, 此时第一定量优选为 3.2升。 换言之, 步骤 S200以 3.2升的水溶解 462.7克的磷酸以 及 460克的碳酸锰, 并持续搅拌 24小时, 以生成第一生成物, 但不以此为限。 此外, 根 据本发明的构思,第一生成物亦可以其他于混合后在溶液中释放磷酸根离子的化合物与锰 进行反应而得, 然亦不以此为限。
然后, 如步骤 S300所示, 煅烧自步骤 S200中取得的第一生成物后生成前驱物, 该前 驱物为焦磷酸锰, 化学式为 Mn2P207
最后, 如步骤 S400所示, 以前驱物与第一反应物进行反应, 再煅烧反应的混合物, 以生成电池复合材料, 例如磷酸锂锰 (LiMnP04, LMP) o 其中应当被理解的是, 于此步骤 S400 中, 以前驱物与至少第一反应物进行反应, 当不限于如前述以前驱物与第一反应物 进行反应, 抑或以前驱物与该第一反应物及一第二反应物进行反应, 例如第一反应物为碳 酸锂, 第二反应物为包含两个结晶水的磷酸铁 (化学式为 FeP04 * 2H20), 再煅烧反应的混 合物, 以生成电池复合材料, 例如磷酸锂铁锰 (LiMnxFei_xP04, x>0,LFMP)。
于步骤 S200或步骤 S400中, 亦可加入金属氧化物, 如 V205、 Ti02、 MgO等, 则可 得含有金属氧化物的 LiMnP04或含有金属氧化物的 LiMnxFei_xP0^4料, 该含有金属氧化 物的 LiMnP04材料可称为 "纳米金属氧化物共晶体化磷酸锂锰化合物 (LMP-NCO)" , 且 该含有金属氧化物的 LiMnxFei_xP04材料可称为 "纳米金属氧化物共晶体化磷酸锂铁锰化 合物 (LFMP-NCO)" 。
由此可见, 本发明电池复合材料的制备方法, 通过反应产生的前驱物与碳酸锂进行反 应以制备电池复合材料, 使得加入锂盐时可减少必要的氧化还原反应次数, 以增进工艺稳 定性, 进而降低工艺操作难度。 同时, 亦可达到大幅缩短研磨所需时间, 进而降低单位时 间及金钱成本, 以及降低工艺 pH值敏感性、 避免原料粘滞及管路堵塞且能稳定控制工艺 温度等功效。 此外, 藉由工艺中采用碳酸锂取代常用的氢氧化锂, 可使工艺 pH值较为稳 定, 以加强碳包覆的效果, 并达到增进产品表现的功效。
请参阅图 2并配合图 1,其中图 2为本发明电池复合材料的制备方法的一细部流程图。 如图 1及图 2所示, 本发明电池复合材料的制备方法的步骤 S300的细部流程包括步骤: 如步骤 S301所示, 添加分散剂至第一生成物; 接着, 如步骤 S302所示, 以第一转速进行 第二时间的研磨动作, 以得到前驱物溶液。 其中第一转速为每分钟 450至 650转 (450〜650 rpm), 且第二时间为 1小时。
简言之, 步骤 S302优选实施例为: 以每分钟 450至 650转的转速进行 1小时的研磨 动作, 然不以此为限。 而后, 如步骤 S303所示, 对前驱物溶液进行喷雾干燥动作及热处 理动作, 以得到干燥的前驱物, 即焦磷酸锰 (Mn2P207), 其中该热处理动作是于温度大于 380°C的氮气中进行至少 2小时的热处理, 但不以此为限。
至此, 本发明电池复合材料的制备方法所述前驱物已制备完成, 以下将说明后续步骤
S400的细部流程。 请参阅图 4, 其为本发明电池复合材料的制备方法的又一细部流程图。 如图 4所示, 步骤 S401是将前驱物, 亦即 Mn2P207, 与至少第一反应物混合, 该第一反 应物可为碳酸锂或其他带有锂原子的化合物, 或数种含锂化合物的混合物; 紧接着, 如步 骤 S402 所示, 加入分散剂, 例如聚乙二醇辛基苯基醚 (TritonX-100), 并进行喷雾造粒动 作; 然后, 如步骤 S403所示, 进行高温煅烧动作, 例如于温度介于 550°C至 750°C的氮 气环境中进行至少 8至 12小时的煅烧动作, 然不以此为限; 最后, 则如步骤 S404所示, 生成本发明欲制备的电池复合材料成品, 例如磷酸锂锰、 磷酸锂铁锰、 纳米金属氧化物共 晶体化磷酸锂锰化合物或纳米金属氧化物共晶体化磷酸锂铁锰化合物。
以下将藉由数个示范性实施例辅助说明本发明的电池复合材料的制备方法。 第一实施例
首先, 提供 460克的碳酸锰 (纯度 99%以上)、 462.7克的磷酸 (纯度 85%以上)、 3.2升 的去离子水以及 147.76克的碳酸锂, 并将碳酸锰、 磷酸及去离子水混合并搅拌反应 24小 时后,加入分散剂并使用研磨法进行研磨 (转速 450〜650rpm)—小时, 以得到 Mn2P207前驱 物溶液。 将此前驱物溶液进行喷雾干燥。 再将喷雾干燥后的成品置于陶瓷匣钵中, 在温度 380°C的氮气中煅烧至少 2小时。煅烧后得到的化合物,经 X光衍射 (X-ray Diffraction, XRD) 分析结果如图 4所示, 对照标准衍射图谱 (JCPDS Card)后, 确认其结构为 Mn2P207 ; 其表 面形貌的扫描式电子显微镜 (SEM)分析图则如图 5所示。
接着, 将前述得到的 283.84克 Mn2P207与 147.76克的碳酸锂、 30克果糖及 0.06克聚 乙二醇辛基苯基醚 (TritonX-100)加入纯水中, 经卧式砂磨机研磨, 得到 LiMnP04前驱物溶 液。 将此前驱物溶液进行喷雾干燥。 再将喷雾干燥后的前驱物置于陶瓷匣钵中, 在 550°C 至 750°C的氮气中煅烧 8至 12小时。 煅烧后得到的化合物, 经 X光衍射分析结果如图 6 所示, 确认其结构为磷酸锂锰 LiMnP04; 其表面形貌的扫描式电子显微镜 (SEM)分析图则 如图 7所示。
将前述步骤所得的 LiMnP04、 导电碳黑 Super P、 4百分比的粘结剂 (PVDF+NMP)以
8:1 :1的比例混合, 首先将 1克碳黑 (sp)与 25克粘结剂 (PVDF:NMP=40:960)混合 10分钟, 转速为 1200rpm, 随后添加 8克的 LiMnP04, 再混合 10分钟, 随后以刮刀涂布机, 将分 散完成的浆料涂布在铝基板上, 涂布厚度为 0.3毫米。 之后, 再将涂布完成的极片, 放入 烘箱中以 100°C烘干 1小时后取出, 并将其形成直径为 1.3厘米的圆形极板, 以锂金属当 做负极, 1摩尔分子浓度的 LiPF6与体积比为 1 :1的 EC及 DMC的混合物为电解液, 将其 制作成钮扣型电池 (Coin-Cell),利用充放电机进行 0.1库仑充放 2个循环以及 2库仑充放 2 个循环的电性测试, 测试结果如图 8所示, 其截止电压为 2至 4.5伏特。 第二实施例
在第一实施例的步骤 S200或步骤 S400中, 加入金属氧化物, 如 V205、 Ti02、 MgO 等, 则可形成纳米金属氧化物共晶体化磷酸锂锰化合物的特征, 其余部分则与第一实施例 相同, 于此不再赘述。 第三实施例
将第一实施例中, 用以作为碳源的 30克果糖, 改以 12%乳糖取代, 其余部分则与第 一实施例相同, 于此不再赘述。 第四实施例
首先, 提供 460克的碳酸锰 (纯度 99%以上)、 462.7克的磷酸 (纯度 85%以上)、 3.2升 的去离子水、 147.76 克的碳酸锂以及 74.7 克的包含二个结晶水的磷酸铁 (化学式为 FeP04 - 2H20), 并将碳酸锰、 磷酸及去离子水混合并搅拌反应 24小时后, 加入分散剂并 使用研磨法进行研磨 (转速 450〜650rpm)—小时, 以得到 Mn2P207前驱物溶液。将此前驱物 溶液进行喷雾干燥。再将喷雾干燥后的成品置于陶瓷匣钵中, 在温度大于 380°C的氮气中 煅烧至少 2小时。 煅烧后得到的化合物经确认为 Mn2P207
接着, 将前述得到的前驱物 Mn2P207添加 227.1克, 并与 147.76克的碳酸锂以及 74.7 克的 FeP04 · 2H20、 30克果糖及 0.06克聚乙二醇辛基苯基醚 (TritonX-100)加入纯水中, 经卧式砂磨机研磨, 得到 LiMn。.8Fe。.2P04前驱物溶液。 将此前驱物溶液进行喷雾干燥。 再 将喷雾干燥后的前驱物置于陶瓷匣钵中, 在 550至 750°C的氮气中煅烧 8至 12小时。 煅 烧后得到的化合物, 经 X 光衍射分析结果如图 9 所示, 确认其结构为磷酸锂铁锰 LiMno.gFeo.2PO4; 其表面形貌的扫描式电子显微镜 (SEM)分析图则如图 10所示。
将前述步骤所得的 LiMnQ.8FeQ.2P04、导电碳黑 Super P、4百分比的粘结剂 (PVDF+NMP) 以 8.5:0.5:1的比例混合,首先将 0.5克碳黑 (sp)与 25克粘结剂 (PVDF:NMP=40:960)混合 10 分钟, 转速为 1200rpm, 随后添加 8.5克的 LiMnQ.8Feo.2P04, 再混合 10分钟, 随后以刮刀 涂布机, 将分散完成的浆料涂布在铝基板上, 涂布厚度为 0.3毫米。 之后, 再将涂布完成 的极片,放入烘箱中以 100°C烘干 1小时后取出,并将其形成直径为 1.3厘米的圆形极板, 以锂金属当做负极, 1摩尔分子浓度的 LiPF6与体积比为 3:7的 EC及 DMC的混合物为电 解液, 将其制作成钮扣型电池 (Coin-Cell), 利用充放电机进行 0.1库仑充放 2个循环以及 2 库仑充放 2个循环的电性测试, 测试结果如图 11所示, 其截止电压为 2.5至 4.5伏特。 第五实施例
在第四实施例的步骤 S200或步骤 S400中, 加入金属氧化物, 如 V205、 Ti02、 MgO 等, 则可形成纳米金属氧化物共晶体化磷酸锂铁锰化合物的特征, 其余部分则与第四实施 例相同, 于此不再赘述。 第六实施例
将第四实施例中, 用以作为碳源的 30克果糖, 改以 12%乳糖取代, 其余部分则与第 四实施例相同, 于此不再赘述。 第七实施例
将第四实施例中的锰与铁的比例进行调整, 并且达成不同比例的特性调整, 通常以
LiMnxFei_xP04, 且 x大于 0, 且 x优选为 0.2至 0.8。 其余部分与第四实施例相同, 于此不 再赘述。 请参阅图 12A、 图 12B及图 12C, 其为以本发明电池复合材料的制备方法制备的纳米 金属氧化物共晶体化磷酸锂锰化合物 (LMP-NCO)的扫描式电子显微镜分析图。 如图 12A、 图 12B及图 12C所示, 通过本发明前述实施例所制备的纳米金属氧化物共晶体化磷酸锂 锰化合物的扫描式电子显微镜分析图, 于 5万倍倍率、 1万倍倍率及 1千倍倍率时的分析 影像分别显示如图 12A、 图 12B及图 12C。
请参阅图 13A、 图 13B及图 13C, 其为以本发明电池复合材料的制备方法制备的纳米 金属氧化物共晶体化磷酸锂铁锰化合物 (LFMP-NCO)的扫描式电子显微镜分析图。 如图 13A、 图 13B及图 13C所示, 通过本发明前述实施例所制备的纳米金属氧化物共晶体化磷 酸锂铁锰化合物的扫描式电子显微镜分析图, 于 5万倍倍率、 1万倍倍率及 1千倍倍率时 的分析影像分别显示如图 13A、 图 13B及图 13C。
综上所述, 本发明的电池复合材料的制备方法, 通过反应产生的前驱物来制备电池复 合材料, 可有效减少氧化还原反应的次数以增进工艺稳定性, 进而降低工艺的操作难度。 同时,亦可达到大幅缩短研磨所需时间,进而降低单位时间及金钱成本, 以及降低工艺 pH 值敏感性、 避免原料粘滞及管路堵塞且能稳定控制工艺温度等功效。 同时, 藉由工艺中采 用碳酸锂取代氢氧化锂, 可使工艺 pH值较为稳定, 以加强碳包覆的效果, 并达到增进产 品表现的功效。
纵使本发明已由上述实施例详细叙述而可由本领域技术人员任施匠思而为诸般修饰, 然皆不脱如所附权利要求所欲保护者。

Claims

权利要求
1. 一种电池复合材料的制备方法, 至少包括步骤:
(a)提供磷酸、 碳酸锰、 水以及第一反应物, 该磷酸的化学式为 H3P04;
(b)以该碳酸锰、 该磷酸与该水进行反应, 以生成第一生成物;
(c)煅烧该第一生成物以生成前驱物, 该前驱物为焦磷酸锰, 化学式为 Mn2P207 ; 以 及
(d)以该前驱物与至少该第一反应物进行反应, 再煅烧反应的混合物, 以生成该电池 复合材料。
2. 如权利要求 1所述的电池复合材料的制备方法, 其中该第一反应物为碳酸锂, 化 学式为 Li2C03, 且该电池复合材料为一磷酸锂锰或一纳米金属氧化物共晶体化磷酸锂锰 化合物, 其中该磷酸锂锰的化学式为 LiMnP04
3. 如权利要求 1所述的电池复合材料的制备方法, 其中该步骤 (d)是以该前驱物与该 第一反应物及一第二反应物进行反应, 再煅烧反应的混合物, 以生成该电池复合材料。
4. 如权利要求 3所述的电池复合材料的制备方法, 其中该第二反应物为包含二个结 晶水的磷酸铁, 化学式为 FeP04 * 2H20, 且该电池复合材料为一磷酸锂铁锰或一纳米金 属氧化物共晶体化磷酸锂铁锰化合物, 其中该磷酸锂铁锰的化学式为 LiMnxFei_xP04, 且 X大于 0。
5. 如权利要求 1 所述的电池复合材料的制备方法, 其中该步骤 (b)还包括步骤 (bl)以 第一定量的该水溶解第二定量的该磷酸及第三定量的该碳酸锰, 并持续搅拌一第一时间, 以生成该第一生成物。
6. 如权利要求 5所述的电池复合材料的制备方法, 其中该第二定量及该第三定量的 重量比例为 1比 1。
7. 如权利要求 5所述的电池复合材料的制备方法, 其中该第一定量为 3.2升, 该第 二定量为 462.7克, 该第三定量为 460克, 且该第一时间为 24小时。
8. 如权利要求 1所述的电池复合材料的制备方法, 其中该步骤 (c)还包括步骤:
(cl)添加分散剂至该第一生成物;
(c2)以一第一转速进行一第二时间的一研磨动作, 以得到前驱物溶液; 以及
(c3)对该前驱物溶液进行一喷雾干燥动作及一热处理动作。
9. 如权利要求 8所述的电池复合材料的制备方法, 其中该第一转速为每分钟 450至 650转, 该第二时间为 1小时。
10. 如权利要求 8所述的电池复合材料的制备方法,其中该热处理动作是于温度大于 380°C的氮气中进行至少 2小时的热处理。
11. 如权利要求 1所述的电池复合材料的制备方法, 其中该步骤 (d)还包括步骤: (dl)混合该前驱物与至少该第一反应物;
(d2)加入分散剂并进行一喷雾造粒动作; (d3)进行一高温煅烧动作; 以及
(d4)生成该电池复合材料。
12. 如权利要求 11所述的电池复合材料的制备方法, 其中该高温煅烧动作是于温度 介于 550°C至 750°C氮气中进行至少 8至 12小时。
13. 如权利要求 11所述的电池复合材料的制备方法, 其中该分散剂为聚乙二醇辛基 苯基醚。
14. 一种电池复合材料前驱物的制备方法, 至少包括步骤:
以在溶液中释放磷酸根离子的化合物与锰进行反应, 以生成第一生成物; 以及 热处理该第一生成物以生成前驱物, 该前驱物为焦磷酸锰, 化学式为 Mn2P207
15. —种电池复合材料的制备方法, 至少包括步骤:
以 Mn2P207为前驱物, 并以该前驱物与至少第一反应物进行反应, 再煅烧反应的混 合物, 以生成电池复合材料, 其中该电池复合材料为磷酸锂锰、 磷酸锂铁锰、 纳米金属氧 化物共晶体化磷酸锂锰化合物或纳米金属氧化物共晶体化磷酸锂铁锰化合物。
PCT/CN2013/082451 2012-08-28 2013-08-28 电池复合材料及其前驱物的制备方法 WO2014032588A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/424,517 US9932235B2 (en) 2012-08-28 2013-08-28 Preparation method of battery composite material and precursor thereof
JP2015528861A JP6189957B2 (ja) 2012-08-28 2013-08-28 バッテリー複合素材及びその前駆体の調製方法
KR1020157008110A KR101787212B1 (ko) 2012-08-28 2013-08-28 배터리 복합 재료 및 이의 전구물질의 제조 방법
EP13834181.3A EP2892091B1 (en) 2012-08-28 2013-08-28 Method of producing battery composite material and its precursor
CA2883582A CA2883582C (en) 2012-08-28 2013-08-28 Preparation method of battery composite material and precursor thereof
CN201380045376.8A CN104871348B (zh) 2012-08-28 2013-08-28 电池复合材料及其前驱物的制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261694034P 2012-08-28 2012-08-28
US61/694,034 2012-08-28

Publications (1)

Publication Number Publication Date
WO2014032588A1 true WO2014032588A1 (zh) 2014-03-06

Family

ID=50182520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/082451 WO2014032588A1 (zh) 2012-08-28 2013-08-28 电池复合材料及其前驱物的制备方法

Country Status (8)

Country Link
US (1) US9932235B2 (zh)
EP (1) EP2892091B1 (zh)
JP (1) JP6189957B2 (zh)
KR (1) KR101787212B1 (zh)
CN (1) CN104871348B (zh)
CA (1) CA2883582C (zh)
TW (1) TWI498278B (zh)
WO (1) WO2014032588A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016110261A1 (zh) * 2015-01-08 2016-07-14 台湾立凯电能科技股份有限公司 电池复合材料及其前驱物的制备方法
JP2019040854A (ja) * 2017-07-14 2019-03-14 泓辰電池材料有限公司Hcm Co., Ltd. リチウム電池のカソードに用いるためのリン酸マンガン鉄リチウム系粒子、これを含有するリン酸マンガン鉄リチウム系粉末材料、およびその粉末材料を製造する方法
CN115535991A (zh) * 2022-09-28 2022-12-30 深圳中芯能科技有限公司 一种纳米晶磷酸系正极材料及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104009234B (zh) * 2014-06-20 2016-04-06 刘新保 微波法合成锂离子电池正极材料磷酸锰铁锂的方法
CN107697895B (zh) * 2017-09-13 2019-11-15 宁波致良新能源有限公司 一种纳米多孔焦磷酸锰及其制备方法
CN110217771A (zh) * 2019-05-21 2019-09-10 中南大学 一种焦磷酸锰聚阴离子型锂电池负极材料及其制备方法
CN111900382B (zh) * 2020-07-21 2021-06-15 多助科技(武汉)有限公司 一种焦磷酸锰电极材料的制备方法和应用
CN113582151B (zh) * 2021-07-28 2024-03-22 段镇忠 一种磷酸铁锰锂正极材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101913588A (zh) * 2010-07-08 2010-12-15 中国科学院宁波材料技术与工程研究所 一种磷酸铁锂纳米材料的制备方法
CN102364726A (zh) * 2011-10-21 2012-02-29 济宁市无界科技有限公司 碳还原制备锂离子电池用磷酸锰铁锂复合正极材料的方法
WO2012039687A1 (en) * 2010-09-22 2012-03-29 Kemijski inštitut A two-step synthesis method for the preparation of composites of insertion active compounds for lithium-ion batteries
CN103022487A (zh) * 2012-12-20 2013-04-03 中国东方电气集团有限公司 一种锂电池纳米磷酸锰锂正极材料的制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1160276C (zh) * 2002-04-12 2004-08-04 武汉理工大学 镍—氧化锆金属陶瓷的制备方法
JP4620378B2 (ja) 2003-05-09 2011-01-26 日本化学工業株式会社 リン酸リチウム凝集体、その製造方法及びリチウム鉄リン系複合酸化物の製造方法
WO2011025823A1 (en) * 2009-08-25 2011-03-03 A123 Systems, Inc. Mixed metal olivine electrode materials for lithium ion batteries having improved specific capacity and energy density
CN101673820A (zh) * 2009-09-25 2010-03-17 清华大学 一种固液结合制备磷酸锰锂/碳复合材料的方法
CN102781827B (zh) * 2010-03-19 2016-05-04 户田工业株式会社 磷酸锰铁锂颗粒粉末的制造方法、磷酸锰铁锂颗粒粉末和使用该颗粒粉末的非水电解质二次电池
JP5636772B2 (ja) * 2010-07-02 2014-12-10 日亜化学工業株式会社 オリビン型リチウム遷移金属複合酸化物及びその製造方法
US9040199B2 (en) 2010-09-27 2015-05-26 Panasonic intellectual property Management co., Ltd Positive electrode active material particles for lithium ion secondary batteries, positive electrode using the same, and lithium ion secondary battery
JP5557715B2 (ja) 2010-12-06 2014-07-23 株式会社日立製作所 リチウムイオン二次電池用正極材料およびその製造方法,リチウムイオン二次電池用正極活物質,リチウムイオン二次電池用正極,リチウムイオン二次電池
CN102205956A (zh) * 2011-03-31 2011-10-05 江苏国泰锂宝新材料有限公司 制备电池级磷酸锰锂的方法
US9321648B2 (en) * 2011-07-20 2016-04-26 Advanced Lithium Electrochemistry Co., Ltd. Preparation method of battery composite material and precursor thereof
CN102610816B (zh) * 2012-03-12 2014-12-24 中国科学院过程工程研究所 一种纤维球形锂离子电池正极材料磷酸锰锂及其制备方法
WO2014134969A1 (zh) * 2013-03-04 2014-09-12 中国科学院苏州纳米技术与纳米仿生研究所 多孔磷酸锰锂-碳复合材料、其制备方法及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101913588A (zh) * 2010-07-08 2010-12-15 中国科学院宁波材料技术与工程研究所 一种磷酸铁锂纳米材料的制备方法
WO2012039687A1 (en) * 2010-09-22 2012-03-29 Kemijski inštitut A two-step synthesis method for the preparation of composites of insertion active compounds for lithium-ion batteries
CN102364726A (zh) * 2011-10-21 2012-02-29 济宁市无界科技有限公司 碳还原制备锂离子电池用磷酸锰铁锂复合正极材料的方法
CN103022487A (zh) * 2012-12-20 2013-04-03 中国东方电气集团有限公司 一种锂电池纳米磷酸锰锂正极材料的制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016110261A1 (zh) * 2015-01-08 2016-07-14 台湾立凯电能科技股份有限公司 电池复合材料及其前驱物的制备方法
KR20170093918A (ko) * 2015-01-08 2017-08-16 어드밴스드 리튬 일렉트로케미스트리 컴퍼니 리미티드 배터리 복합 재료 및 이의 전구 물질의 제조 방법
CN107112525A (zh) * 2015-01-08 2017-08-29 台湾立凯电能科技股份有限公司 电池复合材料及其前驱物的制备方法
KR101939930B1 (ko) * 2015-01-08 2019-01-17 어드밴스드 리튬 일렉트로케미스트리 컴퍼니 리미티드 배터리 복합 재료 및 이의 전구 물질의 제조 방법
US10266410B2 (en) 2015-01-08 2019-04-23 Advanced Lithium Electrochemistry Co., Ltd. Preparation method of battery composite material and precursor thereof
JP2019040854A (ja) * 2017-07-14 2019-03-14 泓辰電池材料有限公司Hcm Co., Ltd. リチウム電池のカソードに用いるためのリン酸マンガン鉄リチウム系粒子、これを含有するリン酸マンガン鉄リチウム系粉末材料、およびその粉末材料を製造する方法
CN115535991A (zh) * 2022-09-28 2022-12-30 深圳中芯能科技有限公司 一种纳米晶磷酸系正极材料及其制备方法

Also Published As

Publication number Publication date
CN104871348B (zh) 2017-12-22
TWI498278B (zh) 2015-09-01
CA2883582C (en) 2017-09-12
CA2883582A1 (en) 2014-03-06
CN104871348A (zh) 2015-08-26
TW201408589A (zh) 2014-03-01
KR101787212B1 (ko) 2017-10-18
US9932235B2 (en) 2018-04-03
US20150218000A1 (en) 2015-08-06
JP6189957B2 (ja) 2017-08-30
JP2015531970A (ja) 2015-11-05
KR20150048860A (ko) 2015-05-07
EP2892091B1 (en) 2020-10-07
EP2892091A4 (en) 2016-04-13
EP2892091A1 (en) 2015-07-08

Similar Documents

Publication Publication Date Title
TWI498278B (zh) 電池複合材料及其前驅物之製備方法
JP5113081B2 (ja) リチウム二次電池用リチウムマンガンリン酸塩正極材料
CN101399343B (zh) 锂离子二次电池正极活性物质磷酸铁锂的制备方法
CN101901905B (zh) 一种钛系复合材料及其制备方法和应用
JP5323410B2 (ja) リチウム鉄リン系複合酸化物炭素複合体の製造方法及びリチウム、鉄及びリンを含む共沈体の製造方法
JP5281765B2 (ja) リチウム鉄リン系複合酸化物炭素複合体の製造方法及びリチウム、鉄及びリンを含む共沈体の製造方法
US8728436B2 (en) Synthesis strategy toward microspheric carbon coated off-stoichiometric lithium—iron—phosphorus compound materials
WO2014180333A1 (zh) 电池复合材料及其前驱物的制备方法
WO2024055519A1 (zh) 一种磷酸锰铁锂的制备方法及其应用
TWI464109B (zh) 電池複合材料及其前驅物之製備方法
TWI612716B (zh) 電池複合材料及其前驅物之製備方法
CN102544493A (zh) 一种石墨烯复合的锂离子电池复合正极材料的制备方法
CN117776287A (zh) 一种钠离子电池正极材料及其制备方法与应用
CN117776134A (zh) 磷酸锂铁正极材料的制备方法
CN118221092A (zh) 一种磷酸钴锂正极材料及其制备方法与应用
CN118666260A (zh) 磷酸焦磷酸铁钠/碳复合正极材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13834181

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015528861

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2883582

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14424517

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157008110

Country of ref document: KR

Kind code of ref document: A