WO2014180333A1 - 电池复合材料及其前驱物的制备方法 - Google Patents

电池复合材料及其前驱物的制备方法 Download PDF

Info

Publication number
WO2014180333A1
WO2014180333A1 PCT/CN2014/077080 CN2014077080W WO2014180333A1 WO 2014180333 A1 WO2014180333 A1 WO 2014180333A1 CN 2014077080 W CN2014077080 W CN 2014077080W WO 2014180333 A1 WO2014180333 A1 WO 2014180333A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphoric acid
battery composite
compound
solution
precursor
Prior art date
Application number
PCT/CN2014/077080
Other languages
English (en)
French (fr)
Inventor
洪辰宗
林季延
黄安锋
Original Assignee
台湾立凯电能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台湾立凯电能科技股份有限公司 filed Critical 台湾立凯电能科技股份有限公司
Priority to KR1020157034869A priority Critical patent/KR101787229B1/ko
Priority to JP2016512215A priority patent/JP6239095B2/ja
Priority to EP14794480.5A priority patent/EP2996179A4/en
Priority to CN201480022089.XA priority patent/CN105409033B/zh
Priority to CA2911458A priority patent/CA2911458C/en
Priority to US14/889,418 priority patent/US10236512B2/en
Publication of WO2014180333A1 publication Critical patent/WO2014180333A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a preparation method, in particular to a preparation method of a battery composite material. Background technique
  • lithium-ion batteries have potential for development, and they have become the mainstream in the market, including high volumetric capacitance, rechargeable, and good cycle charge and discharge.
  • lithium ion batteries using lithium iron phosphate as a positive electrode material have attracted the most attention.
  • the battery with lithium iron phosphate (LiFeP0 4 , abbreviated as LFP) as the positive electrode material has the advantages of large current, long cycle life, oxidation resistance, acid corrosion resistance, etc., and does not release oxygen during charging and discharging, and there is no risk of explosion. It exists, so it is considered to be one of the most promising lithium ion battery cathode materials.
  • the object of the present invention is to provide a method for preparing a battery composite material, which can avoid the agglomeration effect between the finished powders during the heat treatment by diffusing the manganese source into the iron source, thereby solving the existing process for preparing the lithium iron phosphate compound. Due to the increase in the particle size of the finished powder, the electrical properties are degraded.
  • Another object of the present invention is to provide a method for preparing a battery composite material, wherein a manganese source is diffused into an iron source, and a manganese atom is surrounded and coated with iron atoms, which facilitates the reaction and prevents the finished powder from being heat treated.
  • the agglomeration effect occurs in the process, thereby achieving the advantage of improving the electrical performance of the battery.
  • Another object of the present invention is to provide a method for preparing a battery composite material, which is prepared by selecting a particle size of an iron source and a ratio of a manganese source ratio to prepare a battery composite material having an ideal electrical performance according to actual needs.
  • a broader embodiment of the present invention provides a method for preparing a battery composite, comprising at least the steps of: (a) providing an iron compound, a phosphoric acid, a manganese compound, a lithium compound, and a carbon source, wherein the phosphoric acid The chemical formula is H 3 P0 4; (b) the iron compound is mixed with deionized water and stirred, and then the phosphoric acid is added and stirred to form the first a phosphoric acid solution, adding a first amount of the manganese compound to the first phosphoric acid solution, and continuously reacting the manganese compound with the first phosphoric acid solution for a first time to form the first product solution; (c) At least the first product solution, the carbon source, and the lithium compound are reacted to form a precursor, the carbon source being a saccharide, an organic compound, a polymer or a polymer material; and (d) heat treating the precursor To generate the battery composite material, the chemical formula of the battery composite is Li
  • another broad embodiment of the present invention provides a method for preparing a battery composite, comprising at least the steps of: (a) providing an iron compound, phosphoric acid, MnCO 3 , LiOH, and a carbon source, wherein the phosphoric acid The chemical formula is H 3 P0 4; (b) mixing and stirring the iron compound and deionized water, adding the phosphoric acid and stirring to form a first phosphoric acid solution, and adding a first amount of the first phosphoric acid solution MnC0 3, MnC0 3 the reaction was continued for the first time to a first acid solution to form a first product of the solution; (c) reacting the first product in solution, the carbon source and LiOH, to produce a precursor, the carbon source being a saccharide, an organic compound, a polymer or a polymer material; and (d) heat treating the precursor to form the battery composite, the chemical formula of the battery composite being LiFe x M ni — x P0 4, wherein X is
  • another broad embodiment of the present invention provides a method for preparing a precursor of a battery composite, comprising at least the steps of: reacting iron with a compound that releases manganese ions in an aqueous phosphoric acid solution to form a first a product solution; reacting the first product solution with a compound that releases lithium ions in an aqueous phosphoric acid solution to form a precursor solution; and drying the precursor solution to obtain a precursor of the battery composite material, the precursor
  • the chemical formula is LiFe x M ni - x P0 4 , where X is greater than zero.
  • FIG. 1 is a flow chart of a method for preparing a battery composite material according to a preferred embodiment of the present invention.
  • step S300 is a detailed flow chart of step S300 of the method for preparing a battery composite material of the present invention.
  • Fig. 3 is a X-ray diffraction analysis chart of the finished powder obtained in Example 1.
  • Fig. 4 is a X-ray diffraction analysis diagram of the finished powder obtained in Example 2.
  • Fig. 5 is a scanning electron microscope analysis chart of the finished powder obtained in Example 1.
  • Fig. 6 is a scanning electron microscope analysis chart of the finished powder obtained in Example 2.
  • Fig. 7 is a graph showing the charge and discharge characteristics of a button type battery made of the finished powder obtained by the method for producing a battery composite material of Example 1.
  • Fig. 8 is a graph showing the charge and discharge characteristics of a button type battery made of the finished powder obtained by the method for producing a battery composite material of Example 2.
  • FIG. 1 is a flow chart of a method for preparing a battery composite material according to a preferred embodiment of the present invention.
  • the preparation method of the battery composite material of the present invention comprises the following steps: First, as shown in step S100, an iron compound, a phosphoric acid, a manganese compound and a lithium compound are provided. Among them, the chemical formula of phosphoric acid is H 3 P0 4 .
  • the manganese compound may be, but not limited to, manganese carbonate (MnCO 3 ), manganese oxide (MnO), or other compound containing manganese and releasing manganese ions in an aqueous phosphoric acid solution, and manganese carbonate is preferred.
  • the lithium compound may be, but not limited to, lithium hydroxide (LiOH), lithium carbonate (Li 2 CO 3 ) or other compound containing lithium and capable of releasing lithium ions in an aqueous phosphoric acid solution, and lithium hydroxide is preferred.
  • LiOH lithium hydroxide
  • Li 2 CO 3 lithium carbonate
  • lithium hydroxide lithium hydroxide
  • the iron compound may be selected from, but not limited to, Fe 7 (P0 4 ) 6 , FeP (V 2 H 2 0, LiFeP 0 4 , Fe 2 0 3
  • compounds such as Fe 7 (P0 4 ) 6 , FeP0 4 -2H 2 0 and LiFeP 0 4 are preferred iron sources.
  • the iron compound and the deionized water are mixed and stirred to initially disperse the iron compound in the deionized water.
  • at least 85% by weight of phosphoric acid is added and stirred to further uniformly disperse the iron source to form a first phosphoric acid solution.
  • a first amount of the manganese compound is added to the first phosphoric acid solution, and the manganese compound is continuously reacted with the first phosphoric acid solution for a first time to form a first product solution.
  • an iron compound is used as an iron source, and the dispersibility of the iron compound in deionized water is increased by phosphoric acid to promote the subsequent reaction.
  • the first product solution is a solution containing an iron compound, a manganese ion, and a phosphate ion.
  • the phosphate ions contained in the first phosphoric acid solution increase the degree of dissociation of the manganese compound and uniformly distribute the manganese ions in the first product solution.
  • the first time that the manganese compound and the first phosphoric acid solution are continuously reacted is at least 24 hours, and preferably 24 hours, but not limited thereto, according to the phosphoric acid contained in the first phosphoric acid solution. The root concentration is adjusted.
  • the reaction is carried out with at least a first product solution, a carbon source, and a lithium compound to produce a precursor.
  • the carbon source may be, but not limited to, a saccharide, an organic compound, a polymer or a polymer material, and the saccharide may be at least one of fructose or lactose.
  • the precursor is heat treated to form a battery composite.
  • the step S300 further comprises reacting an oxide of a transition metal with the first product solution, the carbon source, and the lithium compound, and generating LiFe x M ni - 0 containing the metal oxide in the step S400. 4 , or nano metal oxide co-crystallized lithium iron phosphate manganese compound (LFMP-NC0), the chemical formula is LiFe x M ni - x P (V ⁇ , where ⁇ is greater than or equal to 1, ⁇ is a transition metal oxide,
  • the transition metal can be, but is not limited to, vanadium pentoxide (V 2 0 5 ).
  • FIG. 2 is a detailed flowchart of step S300 of the method for preparing a battery composite material of the present invention.
  • a lithium compound, a carbon source and a dispersing agent are added to the first product solution to form a second product solution.
  • the dispersing agent can be a nonionic surfactant, For example, Triton X-100.
  • a second polishing action is performed on the second product solution to generate a precursor solution.
  • the grinding operation is performed by a ball mill, for example, at a rotation speed of 450 rpm to 600 rpm for one hour, but not limited thereto.
  • step S303 the precursor solution is dried to remove excess water to form a preliminary dried precursor.
  • the preliminary dried precursor is placed in a ceramic crucible, and the precursor is surrounded by a protective atmosphere, such as nitrogen or an inert gas, and then the precursor is heated to a first temperature, for example 800 degrees Celsius, under a protective atmosphere. And continuing to calcine for a second time, such as but not limited to at least 7 hours, to effect heat treatment of the precursor.
  • a finished powder of the battery composite material to be prepared by the present invention that is, lithium iron manganese phosphate, having a chemical formula of LiFe x M ni - 0 4 is formed .
  • the manganese source contained in the precursor diffuses into the iron source, and the manganese source surrounds and coats the iron source in a partial substitution manner, thereby avoiding the agglomeration effect of the finished powder during the heat treatment process and improving the battery. Electrical performance. Further, the particle size of the finished powder obtained by the production method of the present invention is similar to the particle size of the iron compound as a raw material, and therefore, the stability of the product can be improved while improving the electrical properties of the battery.
  • the ratio of iron to manganese in the battery composite material synthesized in step S400 is determined, and therefore, the battery having ideal electrical properties can be prepared according to actual needs.
  • Composite material
  • fructose can be substituted with 12% by weight of lactose and 88% by weight of fructose.
  • the second product solution was ground in a ball mill and continuously milled at 450 to 650 rpm for one hour to form a precursor solution of lithium iron phosphate (LiFe x M ni — x P04).
  • the precursor solution is dried to obtain a preliminary dried precursor.
  • the dried precursor is placed in a ceramic crucible, and the precursor is subjected to at least 7 hours and above 800 degrees Celsius under a protective atmosphere. The calcination process produces a finished powder.
  • Fe 7 (P0 4 ) 6 of Example 1 was substituted with LiFePO 4 and the arrangement of other reactants was adjusted accordingly.
  • First take 118.32 grams of LiFeP0 4 and 2 liters of deionized water to mix and stir well, then add 85% by weight of phosphoric acid (H 3 P0 4 ) 264. 4 grams, the phosphoric acid can also be selected At a concentration of 85% by weight or more, after stirring uniformly, manganese carbonate (MnCO 3 ) is further added to carry out a reaction to form a first product solution.
  • MnCO 3 manganese carbonate
  • the first product solution was continuously stirred for 24 hours to fully react, and then, 13.1 g of lithium hydroxide (LiOH), 54 g of fructose, and 0.06 g of Triton X-100 were added to the first product.
  • a second product solution is formed.
  • fructose can be substituted with 12% by weight of lactose and 88% by weight of fructose.
  • the second product solution is a ball mill Grinding was carried out and grinding was continued for one hour at a speed of 450 to 650 rpm to form a precursor solution of lithium iron phosphate (LiFe x M ni -J04).
  • the precursor solution is dried to obtain a preliminary dried precursor.
  • the dried precursor is placed in a ceramic crucible, and the precursor is subjected to at least 7 hours and above 800 degrees Celsius under a protective atmosphere.
  • the calcination process produces a finished powder.
  • Example 1 and Example 2 were analyzed by X-ray diffraction (XRD) and compared with the data of International Center for Diffraction Data (ICDD). 3 and FIG. 4, the surface topography exhibited by a scanning electron microscope (SEM) is shown in FIG. 5 and FIG. 6, respectively. As shown in FIG. 3 and FIG. 4, the data measured by X-ray diffraction of the finished powders of Examples 1 and 2 were compared with the data of LiFeo.3Mno. 7PO4 provided by the International Diffraction Center, and Raman was calculated. The displacement (Raman shift) confirmed that the chemical formula is LiFeo 0 .73P0 4 .
  • the particle size of the finished powder prepared in Example 1 was less than 100 nm on average, and the particle size of the reactant Fe 7 (P0 4 ) 6 was also less than 100 nm on average.
  • the particle size of the finished powder prepared in Example 2 is between 100 nm and 300 nm, and the particle size of the reactant LiFeP0 4 is also between 100 nm and 300 nm.
  • the particle size of the iron source is similar to the particle size of the prepared finished powder, and the particle size of the finished powder is not affected by the agglomeration phenomenon, so that it has better battery electrical performance.
  • the finished powder obtained in the first embodiment and the second embodiment was coated on an aluminum substrate, and assembled into a coin-type battery (coin cel l), and charged and discharged by a charging and discharging machine for 2 cycles and 2 Coulomb charge and discharge two cycles of electrical test, the test results are shown in Figure 7 and Figure 8, respectively, therefore, the finished powder prepared in Example 1 and Example 2 has a relatively stable charge as the positive electrode material of the battery.
  • the discharge platform has a high battery capacity, and therefore, the electrical performance of the battery can be improved by the method for preparing the battery composite of the present invention.
  • the method for preparing the battery composite material of the present invention has the advantages of diffusing into the iron source by the manganese source, avoiding the agglomeration effect between the finished powders during the heat treatment, and improving the electrical performance and stability of the battery.
  • the iron source particle size and the arrangement of the manganese source ratio are selected according to actual needs.

Abstract

一种电池复合材料的制备方法,至少包括步骤:提供铁化合物、磷酸、锰化合物、锂化合物及碳源;将铁化合物与去离子水混合搅拌,再加入磷酸并进行搅拌,以形成第一磷酸溶液,在第一磷酸溶液中加入第一定量的锰化合物,使该锰化合物与该第一磷酸溶液持续反应一第一时间,以形成第一生成物溶液;以至少该第一生成物溶液、碳源及锂化合物进行反应,以生成前驱物;以及对前驱物进行热处理,以生成电池复合材料,化学式为LiFexMn1-xPO4,其中x>0,其可避免成品粉末在热处理过程中发生团聚效应,进而提高电池的电性表现。

Description

电池复合材料及其前驱物的制备方法
技术领域
本发明关于一种制备方法, 尤指一种电池复合材料的制备方法。 背景技术
随着科技的快速发展, 大量的电子产品孕育而生, 而为提升使用上的便利性, 许多电 子产品均朝轻巧、 可携带的方向发展。 例如, 可携式消费性电子产品、 可携式测量仪器、 可携式医疗器材、 电动脚踏车及电动手工具等领域, 皆需要使用可携式能源, 作为其驱动 的来源。 在可携式能源中, 以电池最具安全、 轻巧且方便等特性而广为大众使用。
此外, 随着永续发展及环境保护等观念的提倡, 电动汽机车亦被视为可减少空气污染 及解决石油短缺而受到重视。 由于现行电动车主要仰赖充电电池作为能源供给, 故提高电 池电性及循环寿命亦成为该领域目前着重的课题之一。
现行众多的电池当中, 以锂离子电池较具发展潜力, 其包括高体积比电容、 可重复充 电且循环充放良好等特性而逐渐成为市场主流。其中, 又以磷酸锂铁作为正极材料的锂离 子电池最受瞩目。 以磷酸锂铁 (LiFeP04, 简称 LFP)作为正极材料的电池具有大电流、 循环 寿命长、 抗氧化、 抗酸蚀等优点, 且于充放电的过程中不会释放出氧气, 没有爆炸的风险 存在, 故被认为是极具发展潜力的锂离子电池正极材料之一。
然而, 现有制备磷酸锂铁化合物的方法, 于热处理过程中, 磷酸锂铁粒子之间易发生 团聚效应, 造成磷酸锂铁粉末的粒径增大, 导致电池电性下降。 因此, 如何发展一种可提 高电池电性的正极材料的制备方法, 实为目前有待解决的重要课题。 发明内容
本发明的目的在于提供一种电池复合材料的制备方法, 通过锰源扩散进入铁源的方 式, 避免成品粉末之间于热处理过程中发生团聚效应, 以解决现有制备磷酸锂铁化合物的 过程中, 因成品粉末粒径增大导致电性下降的缺点。
本发明的另一目的在于提供一种电池复合材料的制备方法,通过锰源扩散进入铁源的 方式, 使锰原子环绕并包覆铁原子, 有助反应的进行, 且可避免成品粉末于热处理过程中 发生团聚效应, 进而达到提高电池电性表现的优点。
本发明的又一目的在于提供一种电池复合材料的制备方法,通过铁源粒径的选择以及 锰源比例的配置, 以根据实际需求制备出具有理想电性表现的电池复合材料。
为达上述目的, 本发明的一较广实施方式为提供一种电池复合材料的制备方法, 至少 包括步骤: (a)提供铁化合物、 磷酸、 锰化合物、 锂化合物及碳源, 其中该磷酸的化学式 为 H3P04; (b)将该铁化合物与去离子水混合搅拌, 再加入该磷酸并进行搅拌, 以形成第一 磷酸溶液, 于该第一磷酸溶液中加入第一定量的该锰化合物, 使该锰化合物与该第一磷酸 溶液持续反应一第一时间, 以形成该第一生成物溶液; (c)以至少该第一生成物溶液、 该 碳源及该锂化合物进行反应, 以生成前驱物, 该碳源为糖类、 有机化合物、 聚合物或高分 子材料; 以及(d)对该前驱物进行热处理, 以生成该电池复合材料, 该电池复合材料的化 学式为 LiFexMni-xP04, 其中 X大于 0。
为达上述目的, 本发明的另一较广实施方式为提供一种电池复合材料的制备方法, 至 少包括步骤: (a)提供铁化合物、磷酸、 MnC03、 LiOH及碳源,其中该磷酸的化学式为 H3P04; (b)将该铁化合物与去离子水混合搅拌, 再加入该磷酸并进行搅拌, 以形成第一磷酸溶液, 于该第一磷酸溶液中加入第一定量的该 MnC03,使该 MnC03与该第一磷酸溶液持续反应一第 一时间, 以形成该第一生成物溶液; (c)以该第一生成物溶液、 碳源及该 LiOH进行反应, 以生成前驱物, 该碳源为糖类、 有机化合物、 聚合物或高分子材料; 以及 (d)对该前驱物 进行热处理, 以生成该电池复合材料, 该电池复合材料的化学式为 LiFexMnixP04, 其中 X 大于等于 0. 1并小于等于 0. 9。
为达上述目的,本发明的另一较广实施方式为提供一种电池复合材料的前驱物的制备 方法, 至少包括步骤: 以铁与在磷酸水溶液中释放锰离子的化合物进行反应, 以形成第一 生成物溶液; 使该第一生成物溶液与在磷酸水溶液中释放锂离子的化合物进行反应, 以形 成前驱物溶液; 以及干燥该前驱物溶液, 以得到电池复合材料的前驱物, 该前驱物的化学 式为 LiFexMni-xP04, 其中 X大于 0。 附图说明
图 1为本发明较佳实施例的电池复合材料的制备方法流程图。
图 2为本发明电池复合材料的制备方法的步骤 S300的细部流程图。
图 3为实施例 1所制得的成品粉末的 X光衍射分析图。
图 4为实施例 2所制得的成品粉末的 X光衍射分析图。
图 5为实施例 1所制得的成品粉末的扫描式电子显微镜分析图。
图 6为实施例 2所制得的成品粉末的扫描式电子显微镜分析图。
图 7为以实施例 1的电池复合材料的制备方法所制得的成品粉末制成的钮扣型电池的 充放电性图。
图 8为以实施例 2的电池复合材料的制备方法所制得的成品粉末制成的钮扣型电池的 充放电性图。
【符号说明】
S 100、 S200、 S300、 S400 : 步骤
S301、 S302、 S303 : 步骤 具体实施方式 体现本发明特征与优点的一些典型实施例将在后段的说明中详细叙述。应理解的是本 发明能够在不同的方式上具有各种的变化, 其皆不脱离本发明的范围, 且其中的说明及附 图在本质上当作说明之用, 而非架构于限制本发明。
请参阅图 1,其为本发明较佳实施例的电池复合材料的制备方法流程图。如图 1所示, 本发明电池复合材料的制备方法包括步骤如下: 首先, 如步骤 S 100所示, 提供铁化合物、 磷酸、 锰化合物及锂化合物。 其中, 磷酸的化学式为 H3P04。 于一些实施例中, 锰化合物可 为但不限于碳酸锰 (MnC03)、 氧化锰 (MnO)或其他含锰且可于磷酸水溶液中释放出锰离子的 化合物, 并以碳酸锰为较佳。 锂化合物可为但不限于氢氧化锂 (LiOH)、 碳酸锂 (Li2C03)或 其他含锂且可于磷酸水溶液中释放出锂离子的化合物, 且以氢氧化锂为较佳。
于一些实施例中, 铁化合物可选自但不限于 Fe7 (P04) 6、 FeP(V2H20、 LiFeP04、 Fe203
FeC204*2H20、FeC6H507、其他含铁化合物及其组成的组的至少其中之一。其中,又以 Fe7 (P04) 6、 FeP04-2H20及 LiFeP04等化合物为较佳的铁源。
接着, 如步骤 S200所示, 将铁化合物与去离子水混合搅拌, 使铁化合物初步分散于 去离子水中。 接着, 再加入重量百分浓度至少 85%的磷酸并进行搅拌, 使铁源进一步地均 匀分散, 形成第一磷酸溶液。 然后, 于第一磷酸溶液中加入第一定量的锰化合物, 使锰化 合物与第一磷酸溶液持续反应第一时间, 以形成第一生成物溶液。 换言之, 以铁化合物作 为铁源, 并通过磷酸提高铁化合物于去离子水中的分散性, 以促进后续反应的进行。 于本 实施例中, 第一生成物溶液为含有铁化合物、 锰离子及磷酸根离子的溶液。
于本实施例中, 第一磷酸溶液中所含的磷酸根离子会提高锰化合物的解离度, 使第一 生成物溶液中的锰离子均匀分布。于一些实施例中, 锰化合物与第一磷酸溶液持续反应的 第一时间至少为 24小时, 且以 24小时为较佳, 但不以此为限, 可根据第一磷酸溶液中所 含的磷酸根浓度进行调整。
随后, 如步骤 S300所示, 以至少第一生成物溶液、 碳源及锂化合物进行反应, 以生 成前驱物。 其中, 该碳源可为但不限于糖类、 有机化合物、 聚合物或高分子材料, 糖类可 为果糖或乳糖的至少其中一种。
最后, 如步骤 S400所示, 对前驱物进行热处理, 以生成电池复合材料。 通过本发明 的制备方法所生成的电池复合材料的化学式为 LiFexMni-xP04, X用以代表铁与锰的比例,其 中, X大于等于 0. 1且小于等于 0. 9, 并以 0. 27为较佳。
于一些实施例中, 该步骤 S300还包括将一过渡金属的氧化物与第一生成物溶液、 碳 源及锂化合物进行反应, 并于该步骤 S400生成含有金属氧化物的 LiFexMni- 04, 或称为纳 米金属氧化物共晶体化磷酸锂铁锰化合物(LFMP-NC0) , 化学式为 LiFexMni-xP(V ζΜ, 其中 ζ 大于等于 1, Μ为过渡金属氧化物, 该过渡金属可为但不限于五氧化二钒 (V205)。
请接着参阅图 2,其为本发明电池复合材料的制备方法的步骤 S300的细部流程图。于 铁源与锰源充分反应 24小时后, 如图 2的步骤 S301所示, 于第一生成物溶液中加入锂化 合物、 碳源及分散剂, 以形成第二生成物溶液。 其中, 分散剂可为非离子型界面活性剂, 例如 Triton X-100。 接着如步骤 S302所示, 对第二生成物溶液进行一研磨动作, 以生成 前驱物溶液。于本实施例中该研磨动作通过球磨机例如以每分钟 450转至每分钟 600转的 转速持续研磨 1小时实现, 但不以此为限。
然后, 请再参阅图 2, 如步骤 S303所示, 将前驱物溶液进行干燥处理, 以脱除多余水 分, 生成初步干燥的前驱物。 最后, 将初步干燥的前驱物置于一陶瓷匣钵中, 再用保护气 氛环绕该前驱物, 例如填充氮气或惰性气体, 然后, 于保护气氛下将前驱物加热至第一温 度, 例如摄氏 800度, 且持续煅烧第二时间, 例如但不限于至少 7小时, 以实现对该前驱 物进行热处理。 煅烧后生成本发明欲制备的电池复合材料的成品粉末, 亦即磷酸锂铁锰, 化学式为 LiFexMni- 04。 于此热处理过程中, 该前驱物所含的锰源会扩散进入铁源, 以部 分取代的方式使锰源环绕并包覆铁源, 故可避免成品粉末于热处理过程中发生团聚效应, 提高电池的电性表现。且通过本发明的制备方法所制得的成品粉末的粒径大小与作为原料 的铁化合物的粒径大小相似, 因此, 在提高电池电性的同时更可提高产品的稳定性。
此外,通过调整铁化合物、磷酸、锰化合物以及锂化合物之间的配置,以决定步骤 S400 合成得到的该电池复合材料中铁与锰的比例, 因此, 可根据实际需求制备出具有理想电性 的电池复合材料。
以下将以示范性实施例详细说明本发明的电池复合材料的制备方法。
实施例 1
首先取 103克的 Fe7 (P04) 6和 2升的去离子水进行混合并充分搅拌,接着, 加入重量百 分浓度为 85%的磷酸 (H3P04) 264. 4克,该磷酸亦可选用重量百分浓度 85%以上的浓度,于搅 拌均匀后再加入碳酸锰 (MnC03)进行反应, 以形成第一生成物溶液。持续搅拌该第一生成物 溶液 24小时使其充分反应, 然后, 将 132. 1克的氢氧化锂 (LiOH)、 54克的果糖以及 0. 06 克的 Triton X-100加入该第一生成物溶液中, 以形成第二生成物溶液。 其中, 果糖可以 重量百分浓度 12%的乳糖及重量百分浓度 88%的果糖取代。 接着, 对该第二生成物溶液以 球磨机进行研磨, 并以每分钟 450 至 650 转的转速持续研磨一小时后生成磷酸锂铁锰 (LiFexMnixP04)的前驱物溶液。 随后, 将前驱物溶液进行干燥处理得到初步干燥的前驱物, 最后, 将该干燥的前驱物置于陶瓷匣钵中, 并于保护气氛下, 将该前驱物经过至少 7小时 且摄氏 800度以上的煅烧过程, 得到成品粉末。
实施例 2
本实施例将实施例 1的 Fe7 (P04) 6以 LiFeP04取代, 并对应调整其他反应物的配置。 首 先取 118. 32克的 LiFeP04和 2升的去离子水进行混合并充分搅拌,接着, 加入重量百分浓 度为 85%的磷酸 (H3P04) 264. 4克,该磷酸亦可选用重量百分浓度 85%以上的浓度,于搅拌均 匀后再加入碳酸锰 (MnC03)进行反应, 以形成第一生成物溶液。持续搅拌该第一生成物溶液 24小时使其充分反应, 然后, 将 132. 1克的氢氧化锂 (LiOH)、 54克的果糖以及 0. 06克的 Triton X-100加入该第一生成物溶液中, 以形成第二生成物溶液。 其中, 果糖可以重量百 分浓度 12%的乳糖及重量百分浓度 88%的果糖取代。 接着, 对该第二生成物溶液以球磨机 进行研磨, 并以每分钟 450 至 650 转的转速持续研磨一小时后生成磷酸锂铁锰 (LiFexMni-J04)的前驱物溶液。 随后, 将前驱物溶液进行干燥处理得到初步干燥的前驱物, 最后, 将该干燥的前驱物置于陶瓷匣钵中, 并于保护气氛下, 将该前驱物经过至少 7小时 且摄氏 800度以上的煅烧过程, 得到成品粉末。
将实施例 1及实施例 2所得的成品粉末以 X光衍射 (X-ray diffraction, XRD)进行分 析, 并对照国际衍射数据中心(International Center for Diffraction Data, ICDD)的 资料, 其结果分别如图 3 及图 4 所示, 再通过扫描电子显微镜(scanning electron microscope, SEM)所呈现的表面形貌分别如图 5及图 6所示。 如图 3及图 4所示, 将实施 例 1 及实施例 2 的成品粉末经 X 光衍射所测量到的资料与国际衍射中心所提供的 LiFeo.3Mno. 7PO4的数据做比较, 并计算拉曼位移(Raman shift)确认其化学式皆为 LiFeo 0.73P04
如图 5所示, 实施例 1所制得的成品粉末粒径平均小于 100纳米, 其反应物 Fe7 (P04) 6 的粒径平均亦小于 100纳米。 另如图 6所示, 实施例 2所制得的成品粉末粒径介于 100纳 米至 300纳米之间, 其反应物 LiFeP04的粒径亦介于 100纳米至 300纳米之间。 换言之, 铁源的粒径大小与制备而得的成品粉末的粒径大小相似,其成品粉末的粒径大小未受团聚 现象影响而增大, 故具有较佳的电池电性表现。
将实施例 1及实施例 2所制得的成品粉末涂布在铝基板上,并组装成钮扣型电池 (coin cel l),并利用充放电机进行 0. 1库仑充放 2个循环以及 2库仑充放 2个循环的电性测试, 测试结果分别如图 7及图 8所示, 因此, 将实施例 1及实施例 2所制得的成品粉末作为电 池的正极材料具有较稳定的充放电平台, 并具有较高的电池电容量, 因此, 通过本发明的 电池复合材料的制备方法可提高电池的电性表现。
综上所述, 本发明的电池复合材料的制备方法, 通过锰源扩散进入铁源的方式, 避免 成品粉末之间于热处理过程中发生团聚效应, 达到提高电池电性表现及稳定性的优点。 同 时, 通过铁源粒径的选择以及锰源比例的配置, 以根据实际需求制备出具有理想电性表现 的电池复合材料。
本发明得由本领域技术人员任施匠思而为诸般修饰,然皆不脱如附申请专利范围所请 求保护的范围。

Claims

权利要求
1.一种电池复合材料的制备方法, 至少包括步骤:
(a)提供铁化合物、磷酸、锰化合物、锂化合物及碳源,其中该磷酸的化学式为 H3P04 ;
(b)将该铁化合物与去离子水混合搅拌, 再加入该磷酸并进行搅拌, 以形成第一磷酸 溶液,于该第一磷酸溶液中加入第一定量的该锰化合物,使该锰化合物与该第一磷酸溶液 持续反应一第一时间, 以形成该第一生成物溶液;
(c)以至少该第一生成物溶液、 该碳源及该锂化合物进行反应, 以生成前驱物, 该碳 源为糖类、 有机化合物、 聚合物或高分子材料; 以及
(d)对该前驱物进行热处理, 以生成该电池复合材料, 该电池复合材料的化学式为 LiFexMni-xP04, 其中 x大于 0。
2.如权利要求 1所述的电池复合材料的制备方法, 其中该铁化合物选自 Fe7(P04)6、 FeP04*2H20、 LiFeP04、 Fe203、 FeC204*2H20、 FeC6H507及其组成的组的至少其中之一。
3.如权利要求 2 所述的电池复合材料的制备方法, 其中于该步骤 (c)还包括以一过渡 金属氧化物与该第一生成物溶液、 该碳源及该锂化合物进行反应的步骤, 且于该步骤 (d) 生成的该电池复合材料为纳米金属氧化物共晶体化磷酸锂铁锰化合物。
4.如权利要求 1所述的电池复合材料的制备方法, 其中该电池复合材料的化学式中, X大于等于 0.1并小于等于 0.9, 且 X由该第一定量的锰化合物的配置决定。
5.如权利要求 4所述的电池复合材料的制备方法, 其中该电池复合材料的化学式中, 该 X为 0.27。
6.如权利要求 1所述的电池复合材料的制备方法, 其中该第一时间为至少 24小时。
7.如权利要求 1所述的电池复合材料的制备方法, 其中该步骤 (c)还包括步骤:
(cl)于该第一生成物溶液中加入该锂化合物、 该碳源及分散剂, 以形成第二生成物溶 液;
(c2)对该第二生成物溶液进行一研磨动作, 以生成前驱物溶液; 以及
(c3)对该前驱物溶液进行干燥处理, 以生成该前驱物。
8.如权利要求 7所述的电池复合材料的制备方法, 其中该研磨动作通过球磨机实现。
9.如权利要求 1 所述的电池复合材料的制备方法, 其中该步骤 (d)还包括步骤: 将该 前驱物置于一陶瓷匣钵中,并于保护气氛下,将该前驱物加热至一第一温度且持续煅烧一 第二时间, 以生成该电池复合材料的粉末。
10.如权利要求 9所述的电池复合材料的制备方法, 其中该第一温度为摄氏 800度以 上, 该第二时间为至少 7小时。
11.如权利要求 1所述的电池复合材料的制备方法,其中该步骤 (b)还包括步骤:将 103 克的 Fe7(P04)6与 2升的该去离子水混合搅拌, 再加入 264.4克的该磷酸并进行搅拌, 以 形成第一磷酸溶液, 于该第一磷酸溶液中加入第一定量的 MnC03, 使该 MnC03与该第一 磷酸溶液持续反应一第一时间, 以形成该第一生成物溶液。
12.如权利要求 1 所述的电池复合材料的制备方法, 其中该步骤 (b)还包括步骤: 将 1 18.32克的 LiFeP04与 2升的该去离子水混合搅拌,再加入 264.4克的该磷酸并进行搅拌, 以形成第一磷酸溶液, 于该第一磷酸溶液中加入第一定量的 MnC03, 使该 MnC03与该第 一磷酸溶液持续反应一第一时间, 以形成该第一生成物溶液。
13.—种电池复合材料的制备方法, 至少包括步骤:
(a)提供铁化合物、 磷酸、 MnC03、 LiOH及碳源, 其中该磷酸的化学式为 H3P04 ;
(b)将该铁化合物与去离子水混合搅拌, 再加入该磷酸并进行搅拌, 以形成第一磷酸 溶液, 于该第一磷酸溶液中加入第一定量的该 MnC03, 使该 MnC03与该第一磷酸溶液持 续反应一第一时间, 以形成该第一生成物溶液;
(c)以该第一生成物溶液、 碳源及该 LiOH进行反应, 以生成前驱物, 该碳源为糖类、 有机化合物、 聚合物或高分子材料; 以及
(d)对该前驱物进行热处理, 以生成该电池复合材料, 该电池复合材料的化学式为 LiFexMni-xP04, 其中 x大于等于 0.1并小于等于 0.9。
14.一种电池复合材料的前驱物的制备方法, 至少包括步骤:
以铁与在磷酸水溶液中释放锰离子的化合物进行反应, 以形成第一生成物溶液; 使该第一生成物溶液与在磷酸水溶液中释放锂离子的化合物进行反应,以形成前驱物 溶液; 以及
干燥该前驱物溶液, 以得到电池复合材料的前驱物, 该前驱物的化学式为 LiFexMni-xP04, 其中 x大于 0。
PCT/CN2014/077080 2013-05-08 2014-05-08 电池复合材料及其前驱物的制备方法 WO2014180333A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020157034869A KR101787229B1 (ko) 2013-05-08 2014-05-08 배터리 복합 재료 및 이의 전구물질 제조 방법
JP2016512215A JP6239095B2 (ja) 2013-05-08 2014-05-08 電池複合材料及びその前駆体の製造方法
EP14794480.5A EP2996179A4 (en) 2013-05-08 2014-05-08 Battery composite material and preparation method of precursor thereof
CN201480022089.XA CN105409033B (zh) 2013-05-08 2014-05-08 电池复合材料及其前驱物的制备方法
CA2911458A CA2911458C (en) 2013-05-08 2014-05-08 Preparation method of battery composite material and precursor thereof
US14/889,418 US10236512B2 (en) 2013-05-08 2014-05-08 Preparation method of battery composite material and precursor thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361820939P 2013-05-08 2013-05-08
US61/820,939 2013-05-08

Publications (1)

Publication Number Publication Date
WO2014180333A1 true WO2014180333A1 (zh) 2014-11-13

Family

ID=51866733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/077080 WO2014180333A1 (zh) 2013-05-08 2014-05-08 电池复合材料及其前驱物的制备方法

Country Status (8)

Country Link
US (1) US10236512B2 (zh)
EP (1) EP2996179A4 (zh)
JP (1) JP6239095B2 (zh)
KR (1) KR101787229B1 (zh)
CN (1) CN105409033B (zh)
CA (1) CA2911458C (zh)
TW (1) TWI617074B (zh)
WO (1) WO2014180333A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107112525A (zh) * 2015-01-08 2017-08-29 台湾立凯电能科技股份有限公司 电池复合材料及其前驱物的制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106887586B (zh) * 2017-03-17 2018-11-20 江苏贝肯新材料有限公司 一种碳气凝胶网络的磷酸锰铁锂电池电极材料及制备方法
CN115321507B (zh) * 2022-08-25 2023-07-07 广东邦普循环科技有限公司 共沉淀制备磷酸锰铁的方法及其应用
CN117645287A (zh) * 2022-09-05 2024-03-05 台湾立凯电能科技股份有限公司 一种电池复合材料及其前驱物的制作方法
CN115806281B (zh) * 2022-11-15 2023-10-24 广东国光电子有限公司 一种磷酸锰铁锂复合材料及其制备方法与电池
CN115535993A (zh) * 2022-12-05 2022-12-30 深圳中芯能科技有限公司 磷酸锰铁锂正极材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101142138A (zh) * 2005-03-18 2008-03-12 南方化学股份公司 湿化学生产锂金属磷酸盐的循环法
CN101327922A (zh) * 2008-07-07 2008-12-24 杭州赛诺索欧电池有限公司 一种LiFePO4的制备方法
CN102468479A (zh) * 2010-11-18 2012-05-23 芯和能源股份有限公司 磷酸铁锂正极材料的制造方法
CN102695760A (zh) * 2009-09-18 2012-09-26 A123系统公司 磷酸铁及其制备方法
CN102803133A (zh) * 2009-06-24 2012-11-28 巴斯夫欧洲公司 制备LiFePO4-碳复合材料的方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2502592C (en) 2002-10-18 2014-05-06 Japan As Represented By President Of The University Of Kyusyu Method for producing cathode material for secondary battery and secondary battery
US7901810B2 (en) * 2003-06-03 2011-03-08 Valence Technology, Inc. Battery active materials and methods for synthesis
JP5272756B2 (ja) * 2008-02-12 2013-08-28 株式会社Gsユアサ リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池、並びに、その製造方法
CN101636049B (zh) * 2008-07-23 2012-07-04 深圳富泰宏精密工业有限公司 壳体的制作方法
US8731334B2 (en) * 2008-08-04 2014-05-20 Siemens Aktiengesellschaft Multilevel thresholding for mutual information based registration and image registration using a GPU
TW201029918A (en) * 2009-02-12 2010-08-16 Enerage Inc Method for synthesizing lithium phosphate compound having olivine crystal structure
JP5359440B2 (ja) * 2009-03-25 2013-12-04 コニカミノルタ株式会社 電解質及び二次電池
CN102422467B (zh) * 2009-05-04 2014-09-10 觅科科技公司 电极活性复合材料及其制备方法
DE102010006077B4 (de) 2010-01-28 2014-12-11 Süd-Chemie Ip Gmbh & Co. Kg Substituiertes Lithium-Mangan-Metallphosphat
DE102010006083B4 (de) 2010-01-28 2014-12-11 Süd-Chemie Ip Gmbh & Co. Kg Substituiertes Lithium-Mangan-Metallphosphat
CN102791625A (zh) * 2010-03-09 2012-11-21 旭硝子株式会社 磷酸化合物、二次电池用正极、以及二次电池的制造方法
KR101810259B1 (ko) 2010-03-19 2017-12-18 도다 고교 가부시끼가이샤 인산망간철리튬 입자 분말의 제조 방법, 인산망간철리튬 입자 분말, 및 상기 입자 분말을 이용한 비수전해질 이차 전지
JP2012022639A (ja) * 2010-07-16 2012-02-02 Ntt Docomo Inc 表示装置、映像表示システムおよび映像表示方法
KR101265197B1 (ko) * 2010-11-25 2013-05-27 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
JP5760524B2 (ja) * 2011-03-09 2015-08-12 株式会社Gsユアサ リチウム二次電池用正極活物質およびリチウム二次電池
JP2013001605A (ja) * 2011-06-17 2013-01-07 Jfe Chemical Corp リン酸鉄リチウムの製造方法
JP5811695B2 (ja) 2011-08-30 2015-11-11 日亜化学工業株式会社 オリビン型リチウム遷移金属酸化物およびその製造方法
US10318969B2 (en) * 2012-07-06 2019-06-11 Oracle International Corporation Service design and order fulfillment system with technical order calculation provider function
CN103066258B (zh) 2012-12-06 2016-06-01 合肥国轩高科动力能源有限公司 一种高振实密度的钒氧化物与磷酸铁锂复合材料的制备方法
CN104885268B (zh) 2012-12-21 2018-09-28 陶氏环球技术有限责任公司 具有改进的电化学性能的lmfp阴极材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101142138A (zh) * 2005-03-18 2008-03-12 南方化学股份公司 湿化学生产锂金属磷酸盐的循环法
CN101327922A (zh) * 2008-07-07 2008-12-24 杭州赛诺索欧电池有限公司 一种LiFePO4的制备方法
CN102803133A (zh) * 2009-06-24 2012-11-28 巴斯夫欧洲公司 制备LiFePO4-碳复合材料的方法
CN102695760A (zh) * 2009-09-18 2012-09-26 A123系统公司 磷酸铁及其制备方法
CN102468479A (zh) * 2010-11-18 2012-05-23 芯和能源股份有限公司 磷酸铁锂正极材料的制造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107112525A (zh) * 2015-01-08 2017-08-29 台湾立凯电能科技股份有限公司 电池复合材料及其前驱物的制备方法
JP2018503229A (ja) * 2015-01-08 2018-02-01 台湾立凱電能科技股▲ふん▼有限公司Advanced Lithium Electrochemistry Co., Ltd. 電池複合材料及びその前駆体の調製方法
EP3244473A4 (en) * 2015-01-08 2018-10-10 Advanced Lithium Electrochemistry Co., Ltd. Method for preparing battery composite material and precursor thereof
US10266410B2 (en) 2015-01-08 2019-04-23 Advanced Lithium Electrochemistry Co., Ltd. Preparation method of battery composite material and precursor thereof

Also Published As

Publication number Publication date
CN105409033A (zh) 2016-03-16
US20160072129A1 (en) 2016-03-10
CA2911458A1 (en) 2014-11-13
CN105409033B (zh) 2018-07-17
KR20160006739A (ko) 2016-01-19
EP2996179A1 (en) 2016-03-16
JP6239095B2 (ja) 2017-11-29
EP2996179A4 (en) 2017-01-18
US10236512B2 (en) 2019-03-19
KR101787229B1 (ko) 2017-10-18
CA2911458C (en) 2018-03-06
TW201444163A (zh) 2014-11-16
TWI617074B (zh) 2018-03-01
JP2016522965A (ja) 2016-08-04

Similar Documents

Publication Publication Date Title
Tang et al. Improving the electrochemical performance of Ni-rich cathode material LiNi0. 815Co0. 15Al0. 035O2 by removing the lithium residues and forming Li3PO4 coating layer
JP5263807B2 (ja) 電極用リン酸鉄リチウム粉体の製造方法
TWI617074B (zh) 電池複合材料及其前驅物之製備方法
JP5612392B2 (ja) リン酸バナジウムリチウム炭素複合体の製造方法
JP5245084B2 (ja) オリビン型化合物超微粒子およびその製造方法
JP6756279B2 (ja) 正極活物質の製造方法
JP2006131485A (ja) オリビン型リン酸鉄リチウム正極材料の製造方法
JP6688840B2 (ja) 金属化合物粒子群の製造方法、金属化合物粒子群及び金属化合物粒子群を含む蓄電デバイス用電極
JP6408710B2 (ja) 二次電池用正極素材の製造方法
JP6182673B2 (ja) リン酸鉄リチウムの製造方法
TW201408589A (zh) 電池複合材料及其前驅物之製備方法
JP2014051418A (ja) 複合材料及びその製造方法、正極活物質、正極、並びに非水電解質二次電池
Nithya et al. LiCoxMn1‐xPO4/C: a high performing nanocomposite cathode material for lithium rechargeable batteries
JP2015011943A (ja) 蓄電デバイス用正極材料およびその製造方法
JP5881468B2 (ja) リチウム二次電池用正極活物質およびリチウム二次電池
Zhu et al. Effect of the stirring rate on physical and electrochemical properties of LiMnPO4 nanoplates prepared in a polyol process
TW201803803A (zh) 磷酸釩鋰的製造方法
JP2006012616A (ja) リチウム二次電池用正極材およびその製造方法
TW202111987A (zh) 鋰二次電池用正極活性物質、鋰二次電池用正極活性物質的製造方法及鋰二次電池
Zeng et al. LiMn 0.8 Fe 0.2 PO 4@ C cathode prepared via a novel hydrated MnHPO 4 intermediate for high performance lithium-ion batteries
Yao et al. On the sol-gel synthesis mechanism of nanostructured Li3. 95La0. 05Ti4. 95Ag0. 05O12 with enhanced electrochemical performance for lithium ion battery
Han et al. Enhancing electrochemical performance of LiMnPO 4 cathode via LiNi 1/3 Co 1/3 Mn 1/3 O 2
JP6394391B2 (ja) ポリアニオン系正極活物質複合体粒子の製造方法
TWI612716B (zh) 電池複合材料及其前驅物之製備方法
JP2013069567A (ja) 電極活物質及びその製造方法並びにリチウムイオン電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480022089.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14794480

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2911458

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14889418

Country of ref document: US

Ref document number: 2014794480

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016512215

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157034869

Country of ref document: KR

Kind code of ref document: A