WO2014021457A1 - 異方性導電フィルム及びその製造方法 - Google Patents

異方性導電フィルム及びその製造方法 Download PDF

Info

Publication number
WO2014021457A1
WO2014021457A1 PCT/JP2013/071033 JP2013071033W WO2014021457A1 WO 2014021457 A1 WO2014021457 A1 WO 2014021457A1 JP 2013071033 W JP2013071033 W JP 2013071033W WO 2014021457 A1 WO2014021457 A1 WO 2014021457A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection layer
heat
type resin
resin layer
radical polymerization
Prior art date
Application number
PCT/JP2013/071033
Other languages
English (en)
French (fr)
Inventor
恭志 阿久津
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to US14/418,743 priority Critical patent/US9585247B2/en
Priority to KR1020157001036A priority patent/KR101741340B1/ko
Priority to CN201380041047.6A priority patent/CN104508064B/zh
Publication of WO2014021457A1 publication Critical patent/WO2014021457A1/ja
Priority to HK15105981.3A priority patent/HK1205176A1/xx

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/04Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation using electrically conductive adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1283After-treatment of the printed patterns, e.g. sintering or curing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/2908Plural core members being stacked
    • H01L2224/29082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83194Lateral distribution of the layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L24/09Structure, shape, material or disposition of the bonding areas after the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers
    • Y10T428/31928Ester, halide or nitrile of addition polymer

Definitions

  • the present invention relates to an anisotropic conductive film and a method for producing the same.
  • Anisotropic conductive films are widely used for mounting electronic components such as IC chips.
  • Anisotropic conductive films are widely used for mounting electronic components such as IC chips.
  • an anisotropic conductive film having a two-layer structure in which conductive particles for anisotropic conductive connection are arranged in a single layer on an insulating adhesive layer has been proposed (Patent Document 1).
  • conductive particles are arranged uniformly at predetermined intervals by biaxially stretching the transfer layer after conductive particles are arranged in a single layer and closely packed in the transfer layer.
  • the conductive particles on the transfer layer are transferred to an insulating resin layer containing a thermosetting resin and a polymerization initiator, and the transferred conductive particles contain a thermosetting resin.
  • it is manufactured by laminating another insulating resin layer that does not contain a polymerization initiator (Patent Document 1).
  • the anisotropic conductive film having a two-layer structure in Patent Document 1 uses an insulating resin layer that does not contain a polymerization initiator, the conductive particles are evenly arranged at predetermined intervals in a single layer. Nevertheless, a relatively large resin flow is likely to occur in the insulating resin layer that does not contain the polymerization initiator due to heating during anisotropic conductive connection, and the conductive particles also easily flow along the flow. For this reason, problems such as a decrease in particle trapping efficiency, occurrence of short circuits, and a decrease in insulation have occurred.
  • An object of the present invention is to solve the above-mentioned problems of the prior art, in a multilayer structure anisotropic conductive film having conductive particles arranged in a single layer, good connection reliability, good insulation. And good particle capture efficiency.
  • the present inventor arranged conductive particles in a photo-radical polymerization type resin layer, and then fixed or temporarily fixed the conductive particles by irradiating ultraviolet rays, and further on the fixed or temporarily fixed conductive particles, It has been found that an anisotropic conductive film obtained by laminating a heat or photocation, anion or radical polymerization type resin layer has a configuration capable of achieving the above-mentioned object of the present invention, and has completed the present invention. .
  • the present invention is an anisotropic conductive film having a first connection layer and a second connection layer formed on one side thereof
  • the first connection layer is obtained by photo radical polymerization of a photo radical polymerization type resin layer containing an acrylate compound and a photo radical polymerization initiator
  • the second connection layer is a heat containing an epoxy compound and heat or a photocation or anion polymerization initiator, or a heat or photocation or anion polymerization type resin layer, or a heat containing an acrylate compound and a heat or radical polymerization initiator, or It consists of a photo radical polymerization type resin layer
  • an anisotropic conductive film in which conductive particles for anisotropic conductive connection are arranged in a single layer on the second connection layer side surface of the first connection layer.
  • the second connection layer is preferably a thermal polymerization resin layer using a thermal polymerization initiator that starts a polymerization reaction by heating, but photopolymerization using a photopolymerization initiator that starts a polymerization reaction by light. It may be a mold resin layer. It may be a heat / photopolymerization type resin layer in which a thermal polymerization initiator and a photopolymerization initiator are used in combination.
  • the second connection layer may be limited to a thermal polymerization type resin layer using a thermal polymerization initiator in production.
  • the anisotropic conductive film of the present invention has a third connection layer having substantially the same configuration as the second connection layer on the other surface of the first connection layer for the purpose of preventing warpage of the joined body such as stress relaxation. It may be. That is, on the other side of the first connection layer, a heat or photocation or anion polymerization type resin layer containing an epoxy compound and a heat or photocation or anion polymerization initiator, or an acrylate compound and a heat or photoradical polymerization initiator You may have the 3rd connection layer which consists of a heat
  • the third connection layer is preferably a thermal polymerization type resin layer using a thermal polymerization initiator that starts a polymerization reaction by heating, but photopolymerization using a photopolymerization initiator that starts a polymerization reaction by light. It may be a mold resin layer. It may be a heat / photopolymerization type resin layer in which a thermal polymerization initiator and a photopolymerization initiator are used in combination.
  • the third connection layer may be limited to a thermal polymerization type resin layer using a thermal polymerization initiator in production.
  • the present invention also provides a method for producing the above-described anisotropic conductive film, wherein the first connection layer is formed by a one-step photoradical polymerization reaction (A) to (C), or the first connection: Provided is a production method having steps (AA) to (DD) described later, wherein a layer is formed by a two-stage photoradical polymerization reaction.
  • Step (A) A step of arranging conductive particles in a single layer on a photo radical polymerization type resin layer containing an acrylate compound and a photo radical polymerization initiator;
  • Process (B) A step of forming a first connection layer in which conductive particles are immobilized on the surface thereof by irradiating the photo radical polymerization type resin layer in which the conductive particles are arranged with ultraviolet rays to form a first connection layer; and step (C) On the conductive particle side surface of the first connection layer, a heat or photocation or anion polymerization type resin layer containing an epoxy compound and a heat or photocation or anion polymerization initiator, or an acrylate compound and a heat or photo radical polymerization initiator Forming a second connection layer comprising a heat- or photo-radical polymerization type resin layer containing
  • Process (AA) A step of arranging conductive particles in a single layer on a photo radical polymerization type resin layer containing an acrylate compound and a photo radical polymerization initiator; Process (BB) A step of forming a temporary first connection layer in which the conductive particles are temporarily fixed on the surface by irradiating the photo radical polymerization type resin layer in which the conductive particles are arranged with an ultraviolet ray to cause a photo radical polymerization reaction; Process (CC) The conductive particle side surface of the temporary first connection layer contains a thermal cation or thermal anion polymerization type resin layer containing an epoxy compound and a thermal cation or thermal anion polymerization initiator, or an acrylate compound and a thermal radical polymerization initiator. Forming a second connection layer comprising a thermal radical polymerization resin layer; and
  • Process (DD) A step of forming a first connection layer by subjecting the temporary first connection layer to ultraviolet radical irradiation from the side opposite to the second connection layer to cause a photoradical polymerization reaction, and finally curing the temporary first connection layer.
  • the initiator used in forming the second connection layer in the step (CC) is limited to the thermal polymerization initiator in terms of product life as an anisotropic conductive film, connection and stability of the connection structure. This is to prevent adverse effects from occurring. That is, when the first connection layer is irradiated in two stages, the second connection layer may be limited to the thermal polymerization initiator due to restrictions on the process. In addition, when performing two-step irradiation continuously, since it can form by the process substantially the same as one step
  • this invention is a manufacturing method of the anisotropic conductive film which has the 3rd connection layer of the structure similar to a 2nd connection layer in the other surface of a 1st connection layer, Comprising: The above process (A ) To (C), after the step (C), the production method having the following step (Z), or after the step (DD) in addition to the above steps (AA) to (DD), The manufacturing method which has the following processes (Z) is provided.
  • Step (Z) A heat or photocationic or thermal anion polymerization type resin layer containing an epoxy compound and a heat or photocation or anion polymerization initiator or an acrylate compound and heat or a photoradical on the opposite surface of the first connection layer on the conductive particle side
  • a step of forming a third connection layer comprising a heat or photo radical polymerization type resin layer containing a polymerization initiator.
  • this invention is a manufacturing method of the anisotropic conductive film which has the 3rd connection layer of the structure substantially the same as the 2nd connection layer on the other surface of the 1st connection layer, Comprising: A manufacturing method having the following step (a) prior to step (A) in addition to A) to (C), or the following steps prior to step (AA) in addition to steps (AA) to (DD) The manufacturing method which has a process (a) is provided.
  • Step (a) A thermal or photocationic or anionic polymerization type resin layer containing an epoxy compound and a heat or photocationic or anionic polymerization initiator on one side of the photoradical polymerization type resin layer containing an acrylate compound and a photoradical polymerization initiator, or The process of forming the 3rd connection layer which consists of a heat
  • the conductive particles may be arranged in a single layer on the other surface of the radical photopolymerizable resin layer.
  • the polymerization initiator is limited to a thermal reaction for the reasons described above.
  • the second and third connection layers containing the photopolymerization initiator are provided by a method that does not adversely affect the product life and connection after the first connection layer is provided, the photopolymerization initiator containing the photopolymerization initiator can be obtained.
  • the anisotropic conductive film along the gist There is no particular limitation on the production of the anisotropic conductive film along the gist.
  • connection layer or the third connection layer of the present invention functions as a tack layer
  • the present invention provides a connection structure in which the first electronic component is anisotropically conductively connected to the second electronic component with the above-described anisotropic conductive film.
  • the anisotropic conductive film of the present invention includes a first connection layer obtained by photoradical polymerization of a photoradical polymerization type resin layer containing an acrylate compound and a photoradical polymerization initiator, and an epoxy compound and heat formed on one surface thereof. Or a heat or photo radical polymerization type resin layer containing a photo cation or an anionic polymerization initiator, or a heat or photo radical polymerization type resin layer containing an acrylate compound and a heat or photo radical polymerization initiator. Further, conductive particles for anisotropic conductive connection are arranged in a single layer on the second connection layer side surface of the first connection layer.
  • the conductive particles can be firmly fixed to the first connection layer, and the photoradical polymerization type resin layer below (on the back side) of the conductive particles in the first connection layer has sufficient ultraviolet rays due to the presence of the conductive particles. Therefore, the curing rate is relatively low and good pushability is exhibited. As a result, good conduction reliability, insulation, and particle trapping efficiency can be realized.
  • connection tool When this joining is by heat, the method is the same as the method for connecting ordinary anisotropic conductive films.
  • the connection tool may be pushed in until the reaction is completed. Even in this case, the connection tool or the like is often heated to promote resin flow and particle indentation. Moreover, what is necessary is just to carry out similarly to the above also when using heat and light together.
  • anisotropic conductive connection using a photoreaction In the case of anisotropic conductive connection using a photoreaction, light is irradiated from the translucent part side. Although there is a concern that this is hindered by the wiring, the present invention is effective in anisotropic conductive connection although the wiring is narrowed (that is, narrow pitch), so a photoreactive compound that can withstand the connection is provided. Even if the included mode is included, there is no particular contradiction.
  • FIG. 1 is a cross-sectional view of the anisotropic conductive film of the present invention.
  • Drawing 2 is an explanatory view of the manufacturing process (A) of the anisotropic conductive film of the present invention.
  • FIG. 3A is an explanatory diagram of the production process (B) of the anisotropic conductive film of the present invention.
  • FIG. 3B is an explanatory diagram of the production process (B) of the anisotropic conductive film of the present invention.
  • FIG. 4A is an explanatory diagram of the production process (C) of the anisotropic conductive film of the present invention.
  • FIG. 4B is an explanatory diagram of the production process (C) of the anisotropic conductive film of the present invention.
  • FIG. 5 is a cross-sectional view of the anisotropic conductive film of the present invention.
  • FIG. 6 is an explanatory view of the production process (AA) of the anisotropic conductive film of the present invention.
  • FIG. 7A is an explanatory diagram of the production process (BB) of the anisotropic conductive film of the present invention.
  • FIG. 7B is explanatory drawing of the manufacturing process (BB) of the anisotropic conductive film of this invention.
  • FIG. 8A is explanatory drawing of the manufacturing process (CC) of the anisotropic conductive film of this invention.
  • FIG. 8B is explanatory drawing of the manufacturing process (CC) of the anisotropic conductive film of this invention.
  • FIG. 9A is explanatory drawing of the manufacturing process (DD) of the anisotropic conductive film of this invention.
  • FIG. 9B is an explanatory diagram of the production process (DD) of the anisotropic conductive film of the present invention.
  • anisotropic conductive film >>
  • anisotropic conductive film of the present invention will be described in detail.
  • the anisotropic conductive film 1 of the present invention has a photo-radical polymerization resin layer containing an acrylate compound and a photo-radical polymerization initiator on one side of a first connection layer 2 obtained by photo-radical polymerization.
  • the second connection layer 3 made of is formed.
  • the conductive particles 4 are arranged in a single layer, preferably evenly arranged for anisotropic conductive connection.
  • “equal” means a state in which the conductive particles are arranged in the plane direction. This regularity may be provided at regular intervals.
  • the first connection layer 2 constituting the anisotropic conductive film 1 of the present invention is obtained by photoradical polymerization of a photoradical polymerization type resin layer containing an acrylate compound and a photoradical polymerization initiator. Can be fixed. In addition, since the resin is difficult to flow even when heated at the time of anisotropic conductive connection because it is polymerized, the occurrence of a short circuit can be greatly suppressed, so that the connection reliability and insulation are improved, and the particle trapping efficiency is also improved. Can be improved.
  • acrylate compound to be an acrylate unit a conventionally known photo radical polymerization type acrylate can be used.
  • monofunctional (meth) acrylate here, (meth) acrylate includes acrylate and methacrylate
  • bifunctional or more polyfunctional (meth) acrylate can be used.
  • Monofunctional (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) ) Acrylate, t-butyl (meth) acrylate, 2-methylbutyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, n-heptyl (meth) acrylate, 2-methylhexyl (meth) Acrylate, 2-ethylhexyl (meth) acrylate, 2-butylhexyl (meth) acrylate, isooctyl (meth) acrylate, isopentyl (meth) acrylate, isononyl (meth) acrylate, isode
  • Bifunctional (meth) acrylates include bisphenol F-EO-modified di (meth) acrylate, bisphenol A-EO-modified di (meth) acrylate, polypropylene glycol di (meth) acrylate, polyethylene glycol (meth) acrylate, and tricyclodecanedi. Examples include methylol di (meth) acrylate and dicyclopentadiene (meth) acrylate.
  • the trifunctional (meth) acrylate include trimethylolpropane tri (meth) acrylate, trimethylolpropane PO-modified (meth) acrylate, and isocyanuric acid EO-modified tri (meth) acrylate.
  • tetrafunctional or higher functional (meth) acrylates examples include dipentaerythritol penta (meth) acrylate, pentaerythritol hexa (meth) acrylate, pentaerythritol tetra (meth) acrylate, and ditrimethylolpropane tetra (meth) acrylate.
  • polyfunctional urethane (meth) acrylates can also be used. Specific examples include M1100, M1200, M1210, M1600 (above, Toagosei Co., Ltd.), AH-600, AT-600 (above, Kyoeisha Chemical Co., Ltd.) and the like.
  • the amount is preferably 2 to 70% by mass, more preferably 10 to 50% by mass.
  • Photo radical polymerization initiator As a radical photopolymerization initiator, it can be used by appropriately selecting from known radical photopolymerization initiators. Examples include acetophenone photopolymerization initiators, benzyl ketal photopolymerization initiators, and phosphorus photopolymerization initiators. Specifically, 2-hydroxy-2-cyclohexylacetophenone (IRGACURE 184, BASF Japan Ltd.), ⁇ -hydroxy- ⁇ , ⁇ ′-dimethylacetophenone (Darocur) as an acetophenone photopolymerization initiator.
  • acetophenone photopolymerization initiators examples include acetophenone photopolymerization initiators, benzyl ketal photopolymerization initiators, and phosphorus photopolymerization initiators. Specifically, 2-hydroxy-2-cyclohexylacetophenone (IRGACURE 184, BASF Japan Ltd.), ⁇ -hydroxy- ⁇ , ⁇ ′-dimethylacetophenone (D
  • DAROCUR 1173, BASF Japan Ltd.
  • 2,2-dimethoxy-2-phenylacetophenone IRGACURE 651, BASF Japan Ltd.
  • 4- (2-hydroxyethoxy) phenyl (2-hydroxy-) 2-propyl) ketone IRGACURE 2959, BASF Japan Ltd.
  • 2-hydroxy-1- ⁇ 4- [2-hydroxy-2-methyl-propionyl] -benzyl ⁇ phenyl ⁇ -2-methyl-propane -1-On irga Interview A (IRGACURE) 127, BASF Japan Ltd.) and the like.
  • benzyl ketal photopolymerization initiators examples include benzophenone, fluorenone, dibenzosuberone, 4-aminobenzophenone, 4,4'-diaminobenzophenone, 4-hydroxybenzophenone, 4-chlorobenzophenone, 4,4'-dichlorobenzophenone, etc. It is done. Further, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 (IRGACURE 369, BASF Japan Ltd.) can also be used.
  • phosphorous photopolymerization initiators bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (IRGACURE 819, BASF Japan Ltd.), (2,4,6-trimethylbenzoyl) -diphenyl Phosphine oxide (DAROCURE TPO, BASF Japan Ltd.) etc. are mentioned.
  • the photo radical polymerization initiator used is too small relative to 100 parts by mass of the acrylate compound, the photo radical polymerization does not proceed sufficiently, and if it is too large, it causes a reduction in rigidity. Part, more preferably 0.5 to 15 parts by weight.
  • the conductive particles can be appropriately selected from those used in conventionally known anisotropic conductive films.
  • metal particles such as nickel, cobalt, silver, copper, gold, and palladium, metal-coated resin particles, and the like can be given. Two or more kinds can be used in combination.
  • the average particle diameter of the conductive particles is too small, the variation in the height of the wiring cannot be absorbed and the resistance tends to be high, and if it is too large, it tends to cause a short circuit. More preferably, it is 2 to 6 ⁇ m.
  • the number is 50 to 50000 per square mm, more preferably 200 to 30000.
  • a film forming resin such as a phenoxy resin, an epoxy resin, an unsaturated polyester resin, a saturated polyester resin, a urethane resin, a butadiene resin, a polyimide resin, a polyamide resin, or a polyolefin resin is used in combination as necessary. be able to. You may use together similarly to a 2nd connection layer and a 3rd connection layer.
  • the thickness of the first connection layer 2 is preferably 1.0 to 6.0 ⁇ m, more preferably 2 0.0 to 5.0 ⁇ m.
  • the first connection layer 2 may further contain an epoxy compound and a heat or photocation or an anionic polymerization initiator.
  • the second connection layer 3 is also preferably a thermal, photocationic or anionic polymerization type resin layer containing an epoxy compound and thermal, photocationic or anionic polymerization initiator. Thereby, delamination strength can be improved.
  • the epoxy compound and the heat or photocation or anion polymerization initiator will be described in the second connection layer 3.
  • the conductive particles 4 bite into the second connection layer 3 (in other words, the conductive particles 4 are exposed on the surface of the first connection layer 2.
  • the average particle diameter of the conductive particles is preferably 10 to 90%, more preferably 20 to 90%. 80%.
  • the curing rate of the first connection layer 2 ⁇ / b> X in the region located between the conductive particles 4 and the outermost surface 2 b of the first connection layer 2 is located between the adjacent conductive particles 4. It is preferable that it is lower than the curing rate of the first connection layer 2Y in the region to be processed. As a result, the first connection layer 2X is easily removed during the thermocompression bonding of the anisotropic conductive connection, and the connection reliability is improved.
  • the curing rate is a numerical value defined as the vinyl group reduction ratio
  • the curing rate of the first connection layer 2X is preferably 40 to 80%
  • the curing rate of the first connection layer 2Y is preferably 70 to 80%. 100%.
  • the radical photopolymerization at the time of forming the first connection layer 2 may be performed in one step (that is, one time of light irradiation), but may be performed in two steps (that is, two times of light irradiation). Good.
  • the second-stage light irradiation is performed from the other surface side of the first connection layer 2 in an oxygen-containing atmosphere (in the atmosphere) after the second connection layer 3 is formed on one surface of the first connection layer 2. It is preferable. Thereby, it can be expected that the radical polymerization reaction is oxygen-inhibited, the surface concentration of the uncured component is increased, and tackiness can be improved.
  • the polymerization reaction since the polymerization reaction is complicated by performing the curing in two stages, it can be expected that the fluidity of the resin and particles can be precisely controlled.
  • the curing rate in the first stage of the first connection layer 2X is preferably 10 to 50%, and the curing rate in the second stage is preferably 40 to 80%.
  • the curing rate in the first stage of the connection layer 2Y is preferably 30 to 90%, and the curing rate in the second stage is preferably 70 to 100%.
  • the radical photopolymerization initiator is preferably used for improving tackiness.
  • IRGACURE 369 BASF Japan Co., Ltd.
  • IRGACURE 2959 BASF that initiates a radical reaction with light from a high-pressure mercury lamp light source. Japan
  • IRGACURE 369 BASF Japan Co., Ltd.
  • IRGACURE 2959 BASF
  • the minimum melt viscosity when measured with the rheometer of the first connection layer 2 is higher than the minimum melt viscosity of the second connection layer 3, specifically, [the minimum melt viscosity of the first connection layer 2 (mPa ⁇ S)] / [the minimum melt viscosity (mPa ⁇ s) of the second connection layer 3] is preferably 1 to 1000, more preferably 4 to 400.
  • the preferred minimum melt viscosity for each of the former is 00 to 100,000 mPa ⁇ s, more preferably 500 to 50,000 mPa ⁇ s.
  • the latter is preferably 0.1 to 10000 mPa ⁇ s, more preferably 0.5 to 1000 mPa ⁇ s.
  • the first connection layer 2 is formed on a photo radical polymerization type resin layer containing a photo radical polymerizable acrylate and a photo radical polymerization initiator by a film transfer method, a mold transfer method, an ink jet method, an electrostatic adhesion method, or the like.
  • Conductive particles can be attached by a technique, and ultraviolet rays can be irradiated from the conductive particle side, the opposite type, or both sides. In particular, it is preferable to irradiate ultraviolet rays only from the conductive particle side from the viewpoint that the curing rate of the first connection layer 2X can be suppressed relatively low.
  • the second connection layer 3 is a heat containing an epoxy compound and heat or a photocation or an anionic polymerization initiator, or a photocation or anion polymerization type resin layer, or a heat containing an acrylate compound and a heat or a photoradical polymerization initiator. Or it consists of a radical photopolymerization type resin layer.
  • the formation of the second connection layer 3 from the heat-polymerizable resin layer means that since the second polymerization reaction of the second connection layer 3 does not occur due to ultraviolet irradiation when forming the first connection layer 2, the simplicity and quality of production. This is desirable for stability.
  • the epoxy compound When the second connection layer 3 is a heat or photocation or anion polymerization type resin layer containing an epoxy compound and a heat or photocation or anion polymerization initiator, the epoxy compound has two or more epoxy groups in the molecule. Preferred are compounds or resins having These may be liquid or solid.
  • epoxy resins such as epoxidized polyolefin.
  • alicyclic epoxy compounds such as 3,4-epoxycyclohexenylmethyl-3 ', 4'-epoxycyclohexenecarboxylate can also be used.
  • thermal cationic polymerization initiator those known as the thermal cationic polymerization initiator of the epoxy compound can be adopted, for example, those which generate an acid capable of cationically polymerizing the cationic polymerizable compound by heat.
  • Iodonium salts, sulfonium salts, phosphonium salts, ferrocenes, and the like can be used, and aromatic sulfonium salts exhibiting good potential with respect to temperature can be preferably used.
  • thermal cationic polymerization initiator examples include diphenyliodonium hexafluoroantimonate, diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroborate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium hexafluorophosphate, triphenyls.
  • Rufonium hexafluoroborate is exemplified. Specifically, SP-150, SP-170, CP-66, CP-77 manufactured by ADEKA Co., Ltd.
  • the amount of the thermal cationic polymerization initiator is preferably 2 to 60 masses per 100 mass parts of the epoxy compound. Part, more preferably 5 to 40 parts by weight.
  • thermal anionic polymerization initiator those known as the thermal anionic polymerization initiator of the epoxy compound can be employed.
  • a base capable of anionic polymerization of the anionic polymerizable compound is generated by heat, and is publicly known.
  • Aliphatic amine compounds, aromatic amine compounds, secondary or tertiary amine compounds, imidazole compounds, polymercaptan compounds, boron trifluoride-amine complexes, dicyandiamide, organic acid hydrazides, etc. can be used.
  • An encapsulated imidazole compound showing good potential with respect to temperature can be preferably used. Specific examples include NovaCure HX3941HP manufactured by Asahi Kasei E-Materials Corporation.
  • the amount of the thermal anionic polymerization initiator is preferably 2 to 60 masses per 100 mass parts of the epoxy compound. Part, more preferably 5 to 40 parts by weight.
  • Photocationic polymerization initiator and photoanionic polymerization initiator A well-known thing can be used suitably as a photocationic polymerization initiator or photoanion polymerization initiator for epoxy compounds.
  • the second connection layer 3 is a heat or photo radical polymerization type resin layer containing an acrylate compound and a heat or photo radical polymerization initiator
  • the acrylate compound is appropriately selected from those described for the first connection layer 2 Can be used.
  • thermal radical polymerization initiator examples include organic peroxides and azo compounds, but organic peroxides that do not generate nitrogen that causes bubbles can be preferably used.
  • organic peroxides include methyl ethyl ketone peroxide, cyclohexanone peroxide, methylcyclohexanone peroxide, acetylacetone peroxide, 1,1-bis (tert-butylperoxy) 3,3,5-trimethylcyclohexane, 1,1-bis (Tert-butylperoxy) cyclohexane, 1,1-bis (tert-hexylperoxy) 3,3,5-trimethylcyclohexane, 1,1-bis (tert-hexylperoxy) cyclohexane, 1,1-bis ( tert-butylperoxy) cyclododecane, isobutyl peroxide, lauroyl peroxide, oxalic acid peroxide, 3,5,5-trimethylhexanoyl peroxide, benzoyl peroxide, octanoyl peroxide, stearoyl peroxide Id, di
  • azo compound examples include 1,1-azobis (cyclohexane-1-carbonitrile), 2,2′-azobis (2-methyl-butyronitrile), 2,2′-azobisbutyronitrile, 2,2′- Azobis (2,4-dimethyl-valeronitrile), 2,2'-azobis (2,4-dimethyl-4-methoxyvaleronitrile), 2,2'-azobis (2-amidino-propane) hydrochloride, 2, 2'-azobis [2- (5-methyl-2-imidazolin-2-yl) propane] hydrochloride, 2,2'-azobis [2- (2-imidazolin-2-yl) propane] hydrochloride, 2, 2'-azobis [2- (5-methyl-2-imidazolin-2-yl) propane], 2,2'-azobis [2-methyl-N- (1,1-bis (2-hydroxymethyl) -2 -Hydroxyethyl) Propionamide], 2,2'-azobis [2-methyl-N- (2-(
  • the amount of the thermal radical polymerization initiator used is preferably 2 to 60 parts by weight, more preferably 5 to 40 parts per 100 parts by weight of the acrylate compound. Part by mass.
  • Photo radical polymerization initiator As a radical photopolymerization initiator for the acrylate compound, a known radical photopolymerization initiator can be used.
  • the amount of the radical photopolymerization initiator used is preferably 2 to 60 parts by weight, more preferably 5 to 40 parts per 100 parts by weight of the acrylate compound. Part by mass.
  • connection layer 5 The anisotropic conductive film having the two-layer structure in FIG. 1 has been described above, but the third connection layer 5 may be formed on the other surface of the first connection layer 2 as shown in FIG. Thereby, the effect that it becomes possible to control the fluidity
  • the third connection layer 5 may have the same configuration as the second connection layer 3 described above. That is, the third connection layer 5 contains a heat or photocation or anion polymerization type resin layer containing an epoxy compound and a heat or photocation or anion polymerization initiator, or an acrylate compound and a heat or photoradical polymerization initiator. It consists of a heat or photo radical polymerization type resin layer.
  • the third connection layer 5 may be formed on the other surface of the first connection layer after the second connection layer is formed on one surface of the first connection layer. Before the second connection layer is formed, the third connection layer 5 may be formed. The third connection layer may be formed in advance on the other surface of the photo-radical resin layer that is one connection layer or its precursor (the surface on which the second connection layer is not formed).
  • Examples of the method for producing an anisotropic conductive film of the present invention include a production method for carrying out a one-step photo radical polymerization reaction and a production method for carrying out a two-step photo radical polymerization reaction.
  • FIG. 4B An example in which the anisotropic conductive film of FIG. 1 (FIG. 4B) is produced by photoradical polymerization in one step will be described.
  • This production example has the following steps (A) to (C).
  • steps (A)) As shown in FIG. 2, the conductive particles 4 are formed as a single layer on the photoradical polymerizable resin layer 31 containing a photoradical polymerizable acrylate and a photoradical polymerization initiator, which is formed on the release film 30 as necessary. Arrange.
  • the method for arranging the conductive particles 4 is not particularly limited, and a method using a biaxial stretching operation for the unstretched polypropylene film of Example 1 of Japanese Patent No. 4778938, or a mold disclosed in Japanese Patent Application Laid-Open No. 2010-33793.
  • the method used can be adopted.
  • the degree of arrangement is preferably two-dimensionally separated from each other by about 1 to 100 ⁇ m in consideration of the size of the connection target, conduction reliability, insulation, particle trapping efficiency, and the like.
  • the photoradical polymerization type resin layer 31 in which the conductive particles 4 are arranged is subjected to a photoradical polymerization reaction by irradiating ultraviolet rays (UV) from the conductive particle side, so that the conductive particles are formed on the surface.
  • the first connection layer 2 in which 4 is fixed is formed.
  • the curing rate of the first connection layer 2X in the region located between the conductive particles 4 and the outermost surface of the first connection layer 2 is set between the conductive particles 4 adjacent to each other. It can be made lower than the curing rate of the first connection layer 2Y in the region to be. By doing so, the curability of the back side of the particles is surely lowered, the pushing at the time of joining is facilitated, and the effect of preventing the flow of the particles can be provided at the same time.
  • the 2nd connection layer 3 which consists of a heat
  • the second connection layer 3 formed on the release film 40 by a conventional method is placed on the surface of the first connection layer 2 on the conductive particle 4 side, and thermocompression-bonded to such an extent that excessive thermal polymerization does not occur. Then, by removing the release films 30 and 40, the anisotropic conductive film of FIG. 4B can be obtained.
  • the anisotropic conductive film 100 of FIG. 5 can be obtained by implementing the following processes (Z) after a process (C).
  • Process (Z) A heat or photocation or anion polymerization type resin layer containing an epoxy compound and a heat or photocation or anion polymerization initiator, preferably on the opposite surface of the first connection layer on the conductive particle side, Alternatively, a third connection layer made of a heat or photo radical polymerization type resin layer containing an acrylate compound and a heat or photo radical polymerization initiator is formed. Thereby, the anisotropic conductive film of FIG. 5 can be obtained.
  • anisotropic conductive film 100 of FIG. 5 can also be obtained by performing the following process (a) prior to the process (A) without performing the process (Z).
  • the conductive particles 4 are formed as a single layer on the photoradical polymerizable resin layer 31 containing a photoradical polymerizable acrylate and a photoradical polymerization initiator formed on the release film 30 as necessary.
  • the method for arranging the conductive particles 4 is not particularly limited, and a method using a biaxial stretching operation for the unstretched polypropylene film of Example 1 of Japanese Patent No. 4778938, or a mold disclosed in Japanese Patent Application Laid-Open No. 2010-33793. The method used can be adopted.
  • the degree of arrangement is preferably two-dimensionally separated from each other by about 1 to 100 ⁇ m in consideration of the size of the connection target, conduction reliability, insulation, particle trapping efficiency, and the like.
  • the photoradical polymerization resin layer 31 in which the conductive particles 4 are arranged is subjected to photoradical polymerization reaction by irradiating ultraviolet rays (UV) from the conductive particle side, so that the conductive particles are formed on the surface.
  • a temporary first connection layer 20 in which 4 is temporarily fixed is formed. Accordingly, as shown in FIG. 7B, the curing rate of the first connection layer 2X in the region located between the conductive particles 4 and the outermost surface of the temporary first connection layer 20 is set between the conductive particles 4 adjacent to each other. It can be made lower than the curing rate of the first connection layer 2Y in the located region.
  • the second connection layer 3 formed on the release film 40 by a conventional method is placed on the surface of the first connection layer 2 on the conductive particle 4 side, and thermocompression-bonded to such an extent that excessive thermal polymerization does not occur.
  • the temporary anisotropic conductive film 50 of FIG. 8B can be obtained by removing the release films 30 and 40.
  • the temporary first connection layer 20 is irradiated with ultraviolet rays from the side opposite to the second connection layer 3 to cause photo radical polymerization reaction, thereby temporarily curing the temporary first connection layer 20 and 1 connection layer 2 is formed. Thereby, the anisotropic conductive film 1 of FIG. 9B can be obtained.
  • the anisotropic conductive film 100 of FIG. 5 can be obtained by implementing the following processes (Z) after a process (DD). (Process (Z)) A heat or photocation or anion polymerization type resin layer containing an epoxy compound and a heat or photocation or anion polymerization initiator, preferably on the opposite surface of the first connection layer on the conductive particle side, Alternatively, a third connection layer made of a heat or photo radical polymerization type resin layer containing an acrylate compound and a heat or photo radical polymerization initiator is formed. Thereby, the anisotropic conductive film of FIG. 5 can be obtained.
  • anisotropic conductive film 100 of FIG. 5 can also be obtained by performing the following process (a) prior to the process (AA) without performing the process (Z).
  • steps (AA) to (DD) are carried out to obtain the anisotropic conductive film 100 of FIG.
  • a thermal polymerization initiator as a polymerization initiator used in forming the second connection layer.
  • a photopolymerization initiator there is a concern that the product life as an anisotropic conductive film, connection, and stability of the connection structure may be adversely affected in the process.
  • connection structure ⁇ Connection structure
  • the anisotropic conductive film thus obtained is preferably applied when anisotropically conductively connecting a first electronic component such as an IC chip or IC module and a second electronic component such as a flexible substrate or a glass substrate. can do.
  • the connection structure thus obtained is also part of the present invention.
  • the first connection layer side of the anisotropic conductive film is arranged on the second electronic component side such as a flexible substrate, and the second connection layer side is arranged on the first electronic component side such as an IC chip. It is preferable from the point of improving the property.
  • Examples 1-6, Comparative Examples 1-5 Conductive particles are arranged in accordance with the operation of Example 1 of Japanese Patent No. 4778938, the operation of Japanese Patent Application Laid-Open No. 2010-33793, or the operation of Japanese Patent Application Laid-Open No. 2010-123418, and the first in accordance with the formulation shown in Table 1.
  • An anisotropic conductive film having a two-layer structure in which a connection layer and a second connection layer were laminated was prepared.
  • “4789738” in the conductive particle arrangement method is Japanese Patent No. 4778938
  • “2010-33793” and “2010-123418” are “JP 2010-33793” and “Special”, respectively. No. 2010-123418.
  • a mixed solution of an acrylate compound, a radical photopolymerization initiator, and the like was prepared with ethyl acetate or toluene so that the solid content was 50% by mass.
  • This mixed solution is applied to a polyethylene terephthalate film having a thickness of 50 ⁇ m so as to have a dry thickness of 5 ⁇ m, and dried in an oven at 80 ° C. for 5 minutes, whereby radical photopolymerization that is a precursor layer of the first connection layer is performed.
  • a mold resin layer was formed.
  • conductive particles Ni / Au plating resin particles, AUL704, Sekisui Chemical Co., Ltd.
  • conductive particles having an average particle diameter of 4 ⁇ m are arranged in a single layer with a separation of 5 ⁇ m from the obtained photoradical polymerization type resin layer. I let you. Further, by irradiating the radical photopolymerizable resin layer from the conductive particle side with ultraviolet rays having a wavelength of 365 nm and an integrated light amount of 4000 mL / cm 2 , a first connection layer having conductive particles fixed on the surface was formed.
  • thermosetting resin and a latent curing agent A liquid mixture of a thermosetting resin and a latent curing agent was prepared with ethyl acetate or toluene so that the solid content was 50% by mass. This mixed solution was applied to a polyethylene terephthalate film having a thickness of 50 ⁇ m so as to have a dry thickness of 12 ⁇ m, and dried in an oven at 80 ° C. for 5 minutes to form a second connection layer.
  • the anisotropic conductive film was obtained by laminating the first connection layer and the second connection layer thus obtained so that the conductive particles were inside.
  • an IC chip (bump size 30 ⁇ 85 ⁇ m: bump height 15 ⁇ m, bump pitch 50 ⁇ m) of 0.5 ⁇ 1.8 ⁇ 20.0 mm is 0.5
  • the sample was mounted on a glass wiring board (1737F) manufactured by Corning having a size of ⁇ 50 ⁇ 30 mm under the conditions of 180 ° C., 80 MPa, and 5 seconds to obtain a connection structure sample body.
  • connection structure sample was tested and evaluated for “minimum melt viscosity”, “mounting particle capture efficiency”, “conduction reliability”, and “insulation” as described below.
  • the obtained results are shown in Table 1.
  • the “tack force” on the first connection layer side of the anisotropic conductive films of Example 1 and Comparative Example 4 was evaluated as described below. The obtained results are shown in Table 1.
  • Minimum melt viscosity The minimum melt viscosity of each of the first connection layer and the second connection layer constituting the connection structure sample body was measured using a rotary rheometer (TA Instruments) at a heating rate of 10 ° C./min; Measurement was performed under the condition of a plate diameter of 8 mm.
  • connection structure sample was left in a high-temperature and high-humidity environment at 85 ° C. and 85% RH, and taken out at 100-hour intervals to confirm an increase in conduction resistance.
  • the time when the conduction resistance exceeded 50 ⁇ was defined as the defect occurrence time. Practically, it is desirable that it is 1000 hours or more.
  • Tack power Using a tack tester (TACII, Reska Co., Ltd.), measurement at a probe diameter of 5 mm (stainless steel mirror, cylindrical), pressing load of 196 kgf, pressing speed of 30 mm / min, peeling speed of 5 mm / min in an atmosphere at 22 ° C. Under the condition, the probe was pressed against the first connection layer side of the anisotropic conductive film and measured. The peak intensity of the measurement chart was taken as tack force (kPa).
  • the anisotropic conductive films of Examples 1 to 6 showed practically preferable results for each evaluation item of the mounting particle trapping efficiency, conduction reliability, and insulation.
  • the resin layer corresponding to the first connection layer of the example was not irradiated with UV, and the conductive particles were also randomly arranged.
  • the conductive particles were in a uniform arrangement, but UV irradiation was not performed, and thus there was a problem in mounting particle capture efficiency and conduction reliability.
  • the anisotropic conductive film of Comparative Example 3 the insulating property was improved because the viscosity was increased by adding silica fine particles to the anisotropic conductive film of Comparative Example 2, but the mounting particle capturing efficiency was still improved. And there was a problem with conduction reliability.
  • the anisotropic conductive film of Comparative Example 4 showed a weaker tack force. From this, when the anisotropic conductive film is produced, when UV irradiation is performed from the conductive particle side of the first connection layer, the curing rate of the first connection layer located below (back side) of the conductive particles is relatively You can see that it is lower.
  • the first connection layer has a different degree of curing on the front and back surfaces depending on the light-receiving surface of light irradiation.
  • particles exist in the region where the difference in the degree of curing occurs.
  • there is no problem in mobility in the thickness direction (pushing is possible), and lateral displacement is suppressed (short circuit prevention due to local fluidity deterioration).
  • the anisotropic conductive film of the present invention includes a first connection layer obtained by photoradical polymerization of a photoradical polymerization resin layer containing an acrylate compound and a photoradical polymerization initiator, and an epoxy compound and heat or photocation or anion polymerization initiation.
  • conductive particles for anisotropic conductive connection are arranged in a single layer on the second connection layer side surface of the first connection layer. For this reason, good conduction reliability, insulation, and particle trapping efficiency are exhibited. Therefore, it is useful for anisotropic conductive connection of an electronic component such as an IC chip to a wiring board. The wiring of such electronic parts is being narrowed, and the present invention particularly exhibits its effect when it contributes to such technical progress.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Non-Insulated Conductors (AREA)
  • Adhesive Tapes (AREA)
  • Wire Bonding (AREA)
  • Conductive Materials (AREA)

Abstract

 異方性導電フィルムは、第1接続層とその片面に形成された第2接続層とを有する。第1接続層は、アクリレート化合物と光ラジカル重合開始剤とを含む光ラジカル重合型樹脂層を光ラジカル重合させたものであり、第2接続層は、エポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する熱又は光カチオン若しくはアニオン重合型樹脂層、又はアクリレート化合物と熱又は光ラジカル重合開始剤とを含有する熱又は光ラジカル重合型樹脂層からなるものである。第1接続層の第2接続層側表面には、異方性導電接続用の導電粒子が単層で配列されている。

Description

異方性導電フィルム及びその製造方法
 本発明は、異方性導電フィルム及びその製造方法に関する。
 ICチップなどの電子部品の実装に異方性導電フィルムは広く使用されており、近年では、高実装密度への適用の観点から、接続信頼性や絶縁性の向上、粒子捕捉効率の向上、製造コストの低減等を目的に、異方性導電接続用の導電粒子を単層で絶縁性接着層に配列させた2層構造の異方性導電フィルムが提案されている(特許文献1)。
 この2層構造の異方性導電フィルムは、転写層に単層且つ細密充填で導電粒子を配列させた後、転写層を2軸延伸処理することにより、導電粒子が所定間隔で均等に配列された転写層を形成した後、その転写層上の導電粒子を熱硬化性樹脂と重合開始剤とを含有する絶縁性樹脂層に転写し、更に転写した導電粒子上に、熱硬化性樹脂を含有するが重合開始剤を含有しない別の絶縁性樹脂層をラミネートすることにより製造されている(特許文献1)。
特許第4789738号明細書
 しかしながら、特許文献1の2層構造の異方性導電フィルムは、重合開始剤を含有していない絶縁性樹脂層を使用しているために、単層で所定間隔で均等に導電粒子を配列させたにもかかわらず、異方性導電接続の際の加熱により、重合開始剤を含有していない絶縁性樹脂層に比較的大きな樹脂流れが生じ易く、その流れに沿って導電粒子も流れ易くなるため、粒子捕捉効率の低下、ショートの発生、絶縁性の低下等の問題が生じていた。
 本発明の目的は、以上の従来の技術の問題点を解決することであり、単層で配列された導電粒子を有する多層構造の異方性導電フィルムにおいて、良好な接続信頼性、良好な絶縁性、及び良好な粒子捕捉効率を実現することである。
 本発明者は、光ラジカル重合型樹脂層に導電粒子を配列させた後に、紫外線を照射することにより導電粒子を固定化もしくは仮固定化し、更に固定化もしくは仮固定化された導電粒子上に、熱又は光カチオン、アニオン若しくはラジカル重合型樹脂層を積層することにより得た異方性導電フィルムが、上述の本発明の目的を達成できる構成であることを見出し、本発明を完成させるに至った。
 即ち、本発明は、第1接続層とその片面に形成された第2接続層とを有する異方性導電フィルムであって、
 第1接続層が、アクリレート化合物と光ラジカル重合開始剤とを含む光ラジカル重合型樹脂層を光ラジカル重合させたものであり、
 第2接続層が、エポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する熱又は光カチオン若しくはアニオン重合型樹脂層、又はアクリレート化合物と熱又は光ラジカル重合開始剤とを含有する熱又は光ラジカル重合型樹脂層からなるものであり、
 第1接続層の第2接続層側表面に、異方性導電接続用の導電粒子が単層で配列されている異方性導電フィルムを提供する。
 なお、第2接続層は、加熱により重合反応を開始する熱重合開始剤を使用した熱重合型樹脂層であることが好ましいが、光により重合反応を開始する光重合開始剤を使用した光重合型樹脂層であってもよい。熱重合開始剤と光重合開始剤とを併用した熱・光重合型樹脂層であってもよい。ここで、第2接続層は、製造上、熱重合開始剤を使用した熱重合型樹脂層に限定される場合がある。
 本発明の異方性導電フィルムは、第1接続層の他面に、応力緩和などの接合体の反り防止を目的に、第2の接続層と略同様の構成の第3接続層を有していてもよい。即ち、第1接続層の他面に、エポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する熱又は光カチオン若しくはアニオン重合型樹脂層、又はアクリレート化合物と熱又は光ラジカル重合開始剤とを含有する熱又は光ラジカル重合型樹脂層からなる第3接続層を有していてもよい。
 なお、第3接続層は、加熱により重合反応を開始する熱重合開始剤を使用した熱重合型樹脂層であることが好ましいが、光により重合反応を開始する光重合開始剤を使用した光重合型樹脂層であってもよい。熱重合開始剤と光重合開始剤とを併用した熱・光重合型樹脂層であってもよい。ここで、第3接続層は、製造上、熱重合開始剤を使用した熱重合型樹脂層に限定される場合がある。
 また、本発明は、上述の異方性導電フィルムの製造方法であって、第1接続層を一段階の光ラジカル重合反応で形成する以下の工程(A)~(C)、又は第1接続層を二段階の光ラジカル重合反応で形成する後述する工程(AA)~(DD)を有する製造方法を提供する。
(第1接続層を一段階の光ラジカル重合反応で形成する場合)
工程(A)
 アクリレート化合物と光ラジカル重合開始剤とを含有する光ラジカル重合型樹脂層に、導電粒子を単層で配列させる工程;
工程(B)
 導電粒子が配列した光ラジカル重合型樹脂層に対して紫外線を照射することにより光ラジカル重合反応させ、表面に導電粒子が固定化された第1接続層を形成する工程; 及び
工程(C)
 第1接続層の導電粒子側表面に、エポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する熱又は光カチオン若しくはアニオン重合型樹脂層、又はアクリレート化合物と熱又は光ラジカル重合開始剤とを含有する熱又は光ラジカル重合型樹脂層からなる第2接続層を形成する工程。
(第1接続層を二段階の光ラジカル重合反応で形成する場合)
工程(AA)
 アクリレート化合物と光ラジカル重合開始剤とを含有する光ラジカル重合型樹脂層に、導電粒子を単層で配列させる工程;
工程(BB)
 導電粒子が配列した光ラジカル重合型樹脂層に対して紫外線を照射することにより光ラジカル重合反応させ、表面に導電粒子が仮固定化された仮第1接続層を形成する工程;
工程(CC)
 仮第1接続層の導電粒子側表面に、エポキシ化合物と熱カチオン若しくは熱アニオン重合開始剤とを含有する熱カチオン若しくは熱アニオン重合型樹脂層、又はアクリレート化合物と熱ラジカル重合開始剤とを含有する熱ラジカル重合型樹脂層からなる第2接続層を形成する工程; 及び
工程(DD)
 第2接続層と反対側から仮第1接続層に紫外線を照射することにより光ラジカル重合反応させ、仮第1接続層を本硬化させて第1接続層を形成する工程。
 工程(CC)で第2接続層の形成の際に使用する開始剤として熱重合開始剤に限定しているのは、異方性導電フィルムとしての製品ライフ、接続および接続構造体の安定性に悪影響が生じないようにするためである。つまり、第1接続層を二段階に分けて照射させる場合には、その工程上の制約から第2接続層は熱重合開始剤に限定せざるを得ない場合がある。なお、二段階照射を連続的に行う場合は、一段階と略同様の工程で形成することができるので、同等の作用効果が期待できる。
 また、本発明は、第1接続層の他面に、第2接続層と同様の構成の第3接続層を有している異方性導電フィルムの製造方法であって、以上の工程(A)~(C)に加えて工程(C)の後で、以下の工程(Z)を有する製造方法、または、以上の工程(AA)~(DD)に加えて工程(DD)の後で、以下の工程(Z)を有する製造方法を提供する。
工程(Z)
 第1接続層の導電粒子側の反対面に、エポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する熱又は光カチオン若しく熱アニオン重合型樹脂層、又はアクリレート化合物と熱又は光ラジカル重合開始剤とを含有する熱又は光ラジカル重合型樹脂層からなる第3接続層を形成する工程。
 更に、本発明は、第1接続層の他面に、第2接続層と略同様の構成の第3接続層を有している異方性導電フィルムの製造方法であって、以上の工程(A)~(C)に加えて、工程(A)に先だって以下の工程(a)を有する製造方法、または以上の工程(AA)~(DD)に加えて、工程(AA)に先だって以下の工程(a)を有する製造方法を提供する。
工程(a)
 アクリレート化合物と光ラジカル重合開始剤とを含有する光ラジカル重合型樹脂層の片面に、エポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する熱又は光カチオン若しくはアニオン重合型樹脂層、又はアクリレート化合物と熱又は光ラジカル重合開始剤とを含有する熱又は光ラジカル重合型樹脂層からなる第3接続層を形成する工程。
 なお、この工程(a)を有する製造方法の工程(A)又は工程(AA)においては、光ラジカル重合型樹脂層の他面に導電粒子を単層で配列させればよい。
 このような工程で第3の接続層を設ける場合には、上述した理由から重合開始剤は熱反応によるものに限定されることが好ましい。しかしながら、第1接続層を設けた後に製品ライフや接続に悪影響を及ぼさない方法により、光重合開始剤を含む第2および第3接続層を設ければ、光重合開始剤を含んだ本発明の主旨に沿う異方性導電フィルムを作成することは、特に制限はされない。
 なお、本発明の第2接続層又は第3接続層のどちらかがタック層として機能する態様も本発明に包含される。
 加えて、本発明は、上述の異方性導電フィルムで第1電子部品を第2電子部品に異方性導電接続した接続構造体を提供する。
 本発明の異方性導電フィルムは、アクリレート化合物と光ラジカル重合開始剤とを含む光ラジカル重合型樹脂層を光ラジカル重合させた第1接続層と、その片面に形成された、エポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する熱又は光カチオン若しくはアニオン重合型樹脂層、又はアクリレート化合物と熱又は光ラジカル重合開始剤とを含有する熱又は光ラジカル重合型樹脂層からなる第2接続層とを有しており、更に、第1接続層の第2接続層側表面には、異方性導電接続用の導電粒子が単層で配列されている。このため、導電粒子を第1接続層にしっかりと固定化でき、しかも、第1接続層における導電粒子の下方(裏側)の光ラジカル重合型樹脂層は、導電粒子の存在のために紫外線が十分に照射されないので、相対的に硬化率が低くなり、良好な押し込み性を示し、結果的に、良好な導通信頼性、絶縁性、粒子捕捉効率を実現することができる。
 この接合が熱によるものの場合は、通常の異方性導電フィルムの接続方法と同様の方法になる。光によるものの場合は、接続ツールによる押し込みを、反応が終了するまでに行えばよい。この場合においても、接続ツール等は樹脂流動や粒子の押し込みを促進するため加熱されている場合が多い。また熱と光を併用する場合も、上記と同様に行えばよい。
 光反応を利用する異方性導電接続の場合は、透光部側からの光照射になる。これが配線で阻害されることが懸念されるが、本発明は配線が狭小化(即ち狭ピッチ化)したものの異方導電接続に効果を発現するものであるため、接続に耐えうる光反応化合物を含んだ態様を含んだとしても、特に矛盾が生じることはない。
図1は、本発明の異方性導電フィルムの断面図である。 図2は、本発明の異方性導電フィルムの製造工程(A)の説明図である。 図3Aは、本発明の異方性導電フィルムの製造工程(B)の説明図である。 図3Bは、本発明の異方性導電フィルムの製造工程(B)の説明図である。 図4Aは、本発明の異方性導電フィルムの製造工程(C)の説明図である。 図4Bは、本発明の異方性導電フィルムの製造工程(C)の説明図である。 図5は、本発明の異方性導電フィルムの断面図である。 図6は、本発明の異方性導電フィルムの製造工程(AA)の説明図である。 図7Aは、本発明の異方性導電フィルムの製造工程(BB)の説明図である。 図7Bは、本発明の異方性導電フィルムの製造工程(BB)の説明図である。 図8Aは、本発明の異方性導電フィルムの製造工程(CC)の説明図である。 図8Bは、本発明の異方性導電フィルムの製造工程(CC)の説明図である。 図9Aは、本発明の異方性導電フィルムの製造工程(DD)の説明図である。 図9Bは、本発明の異方性導電フィルムの製造工程(DD)の説明図である。
<<異方性導電フィルム>>
 以下、本発明の異方性導電フィルムの一例を詳細に説明する。
 図1に示すように、本発明の異方性導電フィルム1は、アクリレート化合物と光ラジカル重合開始剤とを含む光ラジカル重合型樹脂層を光ラジカル重合させた第1接続層2の片面に、エポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する熱又は光カチオン若しくはアニオン重合型樹脂層、又はアクリレート化合物と熱又は光ラジカル重合開始剤とを含有する熱又は光ラジカル重合型樹脂層からなる第2接続層3が形成された構造を有している。そして、第1接続層2の第2接続層3側の表面2aには、異方性導電接続のために導電粒子4が単層で配列、好ましくは均等に配列されている。ここで均等とは、導電粒子が平面方向に配列されている状態を意味する。この規則性は一定の間隔で設けられてもよい。
<第1接続層2>
 本発明の異方性導電フィルム1を構成する第1接続層2は、アクリレート化合物と光ラジカル重合開始剤とを含む光ラジカル重合型樹脂層を光ラジカル重合させたものであるから、導電粒子を固定化できる。また、重合しているので、異方性導電接続時に加熱されても樹脂が流れ難くなるので、ショートの発生を大きく抑制でき、従って接続信頼性と絶縁性とを向上させ、且つ粒子捕捉効率も向上させることができる。
(アクリレート化合物)
 アクリレート単位となるアクリレート化合物としては、従来公知の光ラジカル重合型アクリレートを使用することができる。例えば、単官能(メタ)アクリレート(ここで、(メタ)アクリレートにはアクリレートとメタクリレートとが包含される)、二官能以上の多官能(メタ)アクリレートを使用することができる。本発明においては、接着剤を熱硬化性とするために、アクリル系モノマーの少なくとも一部に多官能(メタ)アクリレートを使用することが好ましい。
 単官能(メタ)アクリレートとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、i-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-メチルブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、n-ヘプチル(メタ)アクリレート、2-メチルヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、2-ブチルヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソペンチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソデシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシ(メタ)アクリレート、n-ノニル(メタ)アクリレート、n-デシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、モルホリン-4-イル(メタ)アクリレート等が挙げられる。二官能(メタ)アクリレートとしては、ビスフェノールF―EO変性ジ(メタ)アクリレート、ビスフェノールA―EO変性ジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、トリシクロデカンジメチロールジ(メタ)アクリレート、ジシクロペンタジエン(メタ)アクリレート等が挙げられる。三官能(メタ)アクリレートとしては、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンPO変性(メタ)アクリレート、イソシアヌル酸EO変性トリ(メタ)アクリレート等が挙げられる。四官能以上の(メタ)アクリレートとしては、ジペンタエリスリトールペンタ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート等が挙げられる。その他に、多官能ウレタン(メタ)アクリレートも使用することができる。具体的には、M1100、M1200、M1210、M1600(以上、東亞合成(株))、AH-600、AT-600(以上、共栄社化学(株))等が挙げられる。
 第1接続層2におけるアクリレート化合物の含有量は、少なすぎると第2接続層3との粘度差を付けにくくなる傾向があり、多すぎると硬化収縮が大きく作業性が低下する傾向があるので、好ましくは2~70質量%、より好ましくは10~50質量%である。
(光ラジカル重合開始剤)
 光ラジカル重合開始剤としては、公知の光ラジカル重合開始剤の中から適宜選択して使用することができる。例えば、アセトフェノン系光重合開始剤、ベンジルケタール系光重合開始剤、リン系光重合開始剤等が挙げられる。具体的には、アセトフェノン系光重合開始剤として、2-ヒドロキシ-2-シクロへキシルアセトフェノン(イルガキュア(IRGACURE)184、BASFジャパン(株))、α-ヒドロキシ-α,α′-ジメチルアセトフェノン(ダロキュア(DAROCUR)1173、BASFジャパン(株))、2,2-ジメトキシ-2-フェニルアセトフェノン(イルガキュア(IRGACURE)651、BASFジャパン(株))、4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン(イルガキュア(IRGACURE)2959、BASFジャパン(株))、2-ヒドロキシ-1-{4-[2-ヒドロキシ-2-メチル-プロピオニル]-ベンジル}フェニル}-2-メチル-プロパン-1-オン(イルガキュア(IRGACURE)127、BASFジャパン(株))等が挙げられる。ベンジルケタール系光重合開始剤として、ベンゾフェノン、フルオレノン、ジベンゾスベロン、4-アミノベンゾフェノン、4,4′-ジアミノベンゾフェノン、4-ヒドロキシベンゾフェノン、4-クロロベンゾフェノン、4,4′-ジクロロベンゾフェノン等が挙げられる。また、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1(イルガキュア(IRGACURE)369、BASFジャパン(株))も使用することができる。リン系光重合開始剤として、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド(イルガキュア(IRGACURE)819、BASFジャパン(株))、(2,4,6-トリメチルベンゾイル)-ジフェニルフォスフィンオキサイド(ダロキュア(DAROCURE)TPO、BASFジャパン(株))等が挙げられる。
 光ラジカル重合開始剤の使用量は、アクリレート化合物100質量部に対し、少なすぎると光ラジカル重合が十分に進行せず、多すぎると剛性低下の原因となるので、好ましくは0.1~25質量部、より好ましくは0.5~15質量部である。
(導電粒子)
 導電粒子としては、従来公知の異方性導電フィルムに用いられているものの中から適宜選択して使用することができる。例えばニッケル、コバルト、銀、銅、金、パラジウムなどの金属粒子、金属被覆樹脂粒子などが挙げられる。2種以上を併用することもできる。
 導電粒子の平均粒径としては、小さすぎると配線の高さのばらつきを吸収できず抵抗が高くなる傾向があり、大きすぎてもショートの原因となる傾向があるので、好ましくは1~10μm、より好ましくは2~6μmである。
 このような導電粒子の第1接続層2中の粒子量は、少なすぎると粒子捕捉数が低下して異方性導電接続が難しくなり、多すぎるとショートすることが懸念されるので、好ましくは1平方mm当たり50~50000個、より好ましくは200~30000個である。
 第1接続層2には、必要に応じて、フェノキシ樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ウレタン樹脂、ブタジエン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリオレフィン樹脂などの膜形成樹脂を併用することができる。第2接続層および第3接続層にも、同様に併用してもよい。
 第1接続層2の層厚は、薄すぎると粒子捕捉効率が低下する傾向があり、厚すぎると導通抵抗が高くなる傾向があるので、好ましくは1.0~6.0μm、より好ましくは2.0~5.0μmである。
 第1接続層2には、更に、エポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有させることもできる。この場合、後述するように、第2接続層3もエポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する熱又は光カチオン若しくはアニオン重合型樹脂層とすることが好ましい。これにより、層間剥離強度を向上させることができる。エポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤については、第2接続層3で説明する。
 第1接続層2においては、図1に示すように、導電粒子4が、第2接続層3に食い込んでいる(換言すれば、導電粒子4が第1接続層2の表面に露出している)ことが好ましい。導電粒子がすべて第1接続層2に埋没していると、抵抗導通が高くなることが懸念されるからである。食い込みの程度は、小さすぎると粒子捕捉効率が少なくなる傾向があり、大きすぎると導通抵抗が高くなる傾向があるので、好ましくは導電粒子の平均粒子径の10~90%、より好ましくは20~80%である。
 また、第1接続層2において、導電粒子4と第1接続層2の最外表面2bとの間に位置する領域の第1接続層2Xの硬化率が、互いに隣接する導電粒子4間に位置する領域の第1接続層2Yの硬化率よりも低いことが好ましい。これにより、異方性導電接続の熱圧着の際に、第1接続層2Xが排除され易くなり、接続信頼性が向上する。ここで、硬化率はビニル基の減少比率と定義される数値であり、第1接続層2Xの硬化率は好ましくは40~80%であり、第1接続層2Yの硬化率は好ましくは70~100%である。
 なお、第1接続層2の形成の際の光ラジカル重合は、一段階(即ち、一回の光照射)で行ってもよいが、二段階(即ち、二回の光照射)で行ってもよい。この場合、二段階目の光照射は、第1接続層2の片面に第2接続層3が形成された後に、酸素含有雰囲気(大気中)下で第1接続層2の他面側から行うことが好ましい。これにより、ラジカル重合反応が酸素阻害され、未硬化成分の表面濃度が高まり、タック性を向上させることができるという効果を期待できる。また、硬化を二段階で行うことで重合反応も複雑化するため、樹脂や粒子の流動性の精緻な制御が可能となることも期待できる。
 このような二段階の光ラジカル重合における第1接続層2Xの第一段階における硬化率は好ましくは10~50%であり、第二段階における硬化率は好ましくは40~80%であり、第1接続層2Yの第一段階における硬化率は好ましくは30~90%であり、第二段階における硬化率は好ましくは70~100%である。
 また、第1接続層2の形成の際の光ラジカル重合反応が二段階で行われる場合、ラジカル重合開始剤として1種類だけ使用することもできるが、ラジカル反応を開始する波長帯域が異なる2種類の光ラジカル重合開始剤を使用することがタック性向上のために好ましい。例えば、LED光源からの波長365nmの光でラジカル反応を開始するイルガキュア(IRGACURE)369(BASFジャパン(株))と、高圧水銀ランプ光源からの光でラジカル反応を開始するイルガキュア(IRGACURE)2959(BASFジャパン(株))とを併用することが好ましい。このように2種類の異なる硬化剤を使用することで樹脂の結合が複雑化するため、接続時の樹脂の熱流動の挙動をより精緻に制御することが可能になる。これは異方性導電接続の押し込み時に、粒子は厚み方向にかかる力は受け易くなるが、面方向への流動は抑制される、本発明の効果がより発現しやすくなるということである。
 また、第1接続層2のレオメーターで測定した際の最低溶融粘度は、第2接続層3の最低溶融粘度よりも高いこと、具体的には[第1接続層2の最低溶融粘度(mPa・s)]/[第2接続層3の最低溶融粘度(mPa・s)]の数値が、好ましくは1~1000、より好ましくは4~400である。なお、それぞれの好ましい最低溶融粘度は、前者については00~100000mPa・s、より好ましくは500~50000mPa・sである。後者については好ましくは0.1~10000mPa・s、より好ましくは0.5~1000mPa・sである。
 第1接続層2の形成は、光ラジカル重合性アクリレートと光ラジカル重合開始剤とを含有する光ラジカル重合型樹脂層に、フィルム転写法、金型転写法、インクジェット法、静電付着法等の手法により導電粒子を付着させ、紫外線を導電粒子側、その反対型、もしくは両側から照射することにより行うことができる。特に、紫外線を導電粒子側からのみ照射することが、第1接続層2Xの硬化率を相対的に低く抑制することができる点から好ましい。
<第2接続層3>
 第2接続層3は、エポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する熱又は光カチオン若しくはアニオン重合型樹脂層、又はアクリレート化合物と熱又は光ラジカル重合開始剤とを含有する熱又は光ラジカル重合型樹脂層からなるものである。第2接続層3を熱重合型樹脂層から形成することは、第1接続層2を形成する際の紫外線照射により第2接続層3の2重合反応が生じないため、生産の簡便性および品質安定性の上では望ましい。
(エポキシ化合物)
 第2接続層3がエポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する熱又は光カチオン若しくはアニオン重合型樹脂層である場合、エポキシ化合物としては、分子内に2つ以上のエポキシ基を有する化合物もしくは樹脂が好ましく挙げられる。これらは液状であっても、固体状であってもよい。具体的には、ビスフェノールA、ビスフェノールF、ビスフェノールS、ヘキサヒドロビスフェノールA、テトラメチルビスフェノールA、ジアリールビスフェノールA、ハイドロキノン、カテコール、レゾルシン、クレゾール、テトラブロモビスフェノールA、トリヒドロキシビフェニル、ベンゾフェノン、ビスレゾルシノール、ビスフェノールヘキサフルオロアセトン、テトラメチルビスフェノールA、テトラメチルビスフェノールF、トリス(ヒドロキシフェニル)メタン、ビキシレノール、フェノールノボラック、クレゾールノボラックなどの多価フェノールとエピクロルヒドリンとを反応させて得られるグリシジルエーテル、またはグリセリン、ネオペンチルグリコール、エチレングリコール、プロピレングリコール、チレングリコール、ヘキシレングリコール、ポリエチレングリコール、ポリプロピレングリコールなどの脂肪族多価アルコールとエピクロルヒドリンとを反応させて得られるポリグリシジルエーテル;p-オキシ安息香酸、β-オキシナフトエ酸のようなヒドロキシカルボン酸とエピクロルヒドリンとを反応させて得られるグリシジルエーテルエステル、あるいはフタル酸、メチルフタル酸、イソフタル酸、テレフタル酸、テトラハイドロフタル酸、ヘキサハイドロフタル酸、エンドメチレンテトラハイドロフタル酸、エンドメチレンヘキサハイドロフタル酸、トリメリット酸、重合脂肪酸のようなポリカルボン酸から得られるポリグリシジルエステル;アミノフェノール、アミノアルキルフェノールから得られるグリシジルアミノグリシジルエーテル;アミノ安息香酸から得られるグリシジルアミノグリシジルエステル;アニリン、トルイジン、トリブロムアニリン、キシリレンジアミン、ジアミノシクロヘキサン、ビスアミノメチルシクロヘキサン、4,4′-ジアミノジフェニルメタン、4,4′-ジアミノジフェニルスルホンなどから得られるグリシジルアミン;エポキシ化ポリオレフィン等の公知のエポキシ樹脂類が挙げられる。また、3,4-エポキシシクロヘキセニルメチル-3′,4′-エポキシシクロヘキセンカルボキシレート等の脂環式エポキシ化合物も使用することができる。
(熱カチオン重合開始剤)
 熱カチオン重合開始剤としては、エポキシ化合物の熱カチオン重合開始剤として公知のものを採用することができ、例えば、熱により、カチオン重合性化合物をカチオン重合させ得る酸を発生するものであり、公知のヨードニウム塩、スルホニウム塩、ホスホニウム塩、フェロセン類等を用いることができ、温度に対して良好な潜在性を示す芳香族スルホニウム塩を好ましく使用することができる。熱カチオン系重合開始剤の好ましい例としては、ジフェニルヨードニウムヘキサフルオロアンチモネート、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムヘキサフルオロボレート、トリフェニルスルフォニウムヘキサフルオロアンチモネート、トリフェニルスルフォニウムヘキサフルオロホスフェート、トリフェニルスルフォニウムヘキサフルオロボレートが挙げられる。具体的には、(株)ADEKA製SP-150、SP-170、CP-66、CP-77;日本曹達(株)製CI-2855、CI-2639;三新化学工業(株)製サンエイドSI-60、SI-80;ユニオンカーバイド社製のCYRACURE-UVI-6990、UVI-6974等が挙げられる。
 熱カチオン重合開始剤の配合量は、少なすぎても硬化不良となる傾向があり、多すぎても製品ライフが低下する傾向があるので、エポキシ化合物100質量部に対し、好ましくは2~60質量部、より好ましくは5~40質量部である。
(熱アニオン重合開始剤)
 熱アニオン重合開始剤としては、エポキシ化合物の熱アニオン重合開始剤として公知のものを採用することができ、例えば、熱により、アニオン重合性化合物をアニオン重合させ得る塩基を発生するものであり、公知の脂肪族アミン系化合物、芳香族アミン系化合物、二級又は三級アミン系化合物、イミダゾール系化合物、ポリメルカプタン系化合物、三フッ化ホウ素-アミン錯体、ジシアンジアミド、有機酸ヒドラジッド等を用いることができ、温度に対して良好な潜在性を示すカプセル化イミダゾール系化合物を好ましく使用することができる。具体的には、旭化成イーマテリアルズ(株)製ノバキュアHX3941HP等が挙げられる。
 熱アニオン重合開始剤の配合量は、少なすぎても硬化不良となる傾向があり、多すぎても製品ライフが低下する傾向があるので、エポキシ化合物100質量部に対し、好ましくは2~60質量部、より好ましくは5~40質量部である。
(光カチオン重合開始剤及び光アニオン重合開始剤)
 エポキシ化合物用の光カチオン重合開始剤又は光アニオン重合開始剤としては、公知のものを適宜使用することができる。
(アクリレート化合物)
 第2接続層3がアクリレート化合物と熱又は光ラジカル重合開始剤とを含有する熱又は光ラジカル重合型樹脂層である場合、アクリレート化合物としては、第1接続層2に関して説明したものの中から適宜選択して使用することができる。
(熱ラジカル重合開始剤)
 また、熱ラジカル重合開始剤としては、例えば、有機過酸化物やアゾ系化合物等が挙げられるが、気泡の原因となる窒素を発生しない有機過酸化物を好ましく使用することができる。
 有機過酸化物としては、メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド、メチルシクロヘキサノンパーオキサイド、アセチルアセトンパーオキサイド、1,1-ビス(tert-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン、1,1-ビス(tert-ブチルパーオキシ)シクロヘキサン、1,1-ビス(tert-ヘキシルパーオキシ)3,3,5-トリメチルシクロヘキサン、1,1-ビス(tert-ヘキシルパーオキシ)シクロヘキサン、1,1-ビス(tert-ブチルパーオキシ)シクロドデカン、イソブチルパーオキサイド、過酸化ラウロイル、琥珀酸パーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、過酸化ベンゾイル、オクタノイルパーオキサイド、ステアロイルパーオキサイド、ジイソプロピルパーオキシジカルボネート、ジノルマルプロピルパーオキシジカルボネート、ジ-2-エチルヘキシルパーオキシジカルボネート、ジ-2-エトキシエチルパーオキシジカルボネート、ジ-2-メトキシブチルパーオキシジカルボネート、ビス-(4-tert-ブチルシクロヘキシル)パーオキシジカルボネート、(α,α-ビス-ネオデカノイルパーオキシ)ジイソプロピルベンゼン、パーオキシネオデカン酸クミルエステル、パーオキシネオデカン酸オクチルエステル、パーオキシネオデカン酸ヘキシルエステル、パーオキシネオデカン酸-tert-ブチルエステル、パーオキシピバリン酸-tert-ヘキシルエステル、パーオキシピバリン酸-tert-ブチルエステル、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサン、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、パーオキシ-2-エチルヘキサン酸-tert-ヘキシルエステル、パーオキシ-2-エチルヘキサン酸-tert-ブチルエステル、パーオキシ-2-エチルヘキサン酸-tert-ブチルエステル、パーオキシ-3-メチルプロピオン酸-tert-ブチルエステル、パーオキシラウリン酸-tert-ブチルエステル、tert-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、tert-ヘキシルパーオキシイソプロピルモノカルボネート、tert-ブチルパーオキシイソプロピルカルボネート、2,5-ジメチル-2,5-ビス(ベンゾイルパーオキシ)ヘキサン、過酢酸-tert-ブチルエステル、過安息香酸-tert-ヘキシルエステル、過安息香酸-tert-ブチルエステルなどが挙げられる。有機過酸物に還元剤を添加し、レドックス系重合開始剤として使用してもよい。
 アゾ系化合物としては、1,1-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2′-アゾビス(2-メチル-ブチロニトリル)、2,2′-アゾビスブチロニトリル、2,2′-アゾビス(2,4-ジメチル-バレロニトリル)、2,2′-アゾビス(2,4-ジメチル-4-メトキシバレロニトリル)、2,2′-アゾビス(2-アミジノ-プロパン)塩酸塩、2,2′-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]塩酸塩、2,2′-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]塩酸塩、2,2′-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]、2,2′-アゾビス[2-メチル-N-(1,1-ビス(2-ヒドロキシメチル)-2-ヒドロキシエチル)プロピオンアミド]、2,2′-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2′-アゾビス(2-メチル-プロピオンアミド)二水塩、4,4′-アゾビス(4-シアノ-吉草酸)、2,2′-アゾビス(2-ヒドロキシメチルプロピオニトリル)、2,2′-アゾビス(2-メチルプロピオン酸)ジメチルエステル(ジメチル2,2′-アゾビス(2-メチルプロピオネート))、シアノ-2-プロピルアゾホルムアミドなどが挙げられる。
 熱ラジカル重合開始剤の使用量は、少なすぎると硬化不良となり、多すぎると製品ライフの低下となるので、アクリレート化合物100質量部に対し、好ましくは2~60質量部、より好ましくは5~40質量部である。
(光ラジカル重合開始剤)
 アクリレート化合物用の光ラジカル重合開始剤としては、公知の光ラジカル重合開始剤を使用することができる。
 光ラジカル重合開始剤の使用量は、少なすぎると硬化不良となり、多すぎると製品ライフの低下となるので、アクリレート化合物100質量部に対し、好ましくは2~60質量部、より好ましくは5~40質量部である。
(第3接続層5)
 以上、図1の2層構造の異方性導電フィルムについて説明したが、図5に示すように、第1接続層2の他面に第3接続層5が形成されていてもよい。これにより、層全体の流動性をより精緻に制御することが可能となるという効果が得られる。ここで、第3接続層5としては、前述した第2接続層3と同じ構成としてもよい。即ち、第3接続層5は、エポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する熱又は光カチオン若しくはアニオン重合型樹脂層、又はアクリレート化合物と熱又は光ラジカル重合開始剤とを含有する熱又は光ラジカル重合型樹脂層からなるものである。このような第3接続層5は、第1接続層の片面に第2接続層を形成した後に、第1接続層の他面に形成してもよく、第2接続層の形成前に、第1接続層もしくはその前駆体である光ラジカル型樹脂層の他面(第2接続層が形成されない面)に予め第3接続層を形成しておいてもよい。
<<異方性導電フィルムの製造方法>>
 本発明の異方性導電フィルムの製造方法には、一段階の光ラジカル重合反応を行う製造方法と、二段階の光ラジカル重合反応を行う製造方法が挙げられる。
<一段階の光ラジカル重合反応を行う製造方法>
 図1(図4B)の異方性導電フィルムを一段階で光ラジカル重合させて製造する一例を説明する。この製造例は、以下の工程(A)~(C)を有する。
(工程(A))
 図2に示すように、必要に応じて剥離フィルム30上に形成した、光ラジカル重合性アクリレートと光ラジカル重合開始剤とを含有する光ラジカル重合型樹脂層31に、単層で導電粒子4を配列させる。導電粒子4の配列の手法としては、特に制限はなく、特許第4789738号の実施例1の無延伸ポリプロピレンフィルムに2軸延伸操作を利用する方法や、特開2010-33793号公報の金型を使用する方法等を採用することができる。なお、配列の程度としては、接続対象のサイズ、導通信頼性、絶縁性、粒子捕捉効率等を考慮し、2次元的に互いに1~100μm程度離隔して配列されることが好ましい。
(工程(B))
 次に、図3Aに示すように、導電粒子4が配列した光ラジカル重合型樹脂層31に対して、導電粒子側から紫外線(UV)を照射することにより光ラジカル重合反応させ、表面に導電粒子4が固定化された第1接続層2を形成する。これにより、図3Bに示すように、導電粒子4と第1接続層2の最外表面との間に位置する領域の第1接続層2Xの硬化率を、互いに隣接する導電粒子4間に位置する領域の第1接続層2Yの硬化率よりも低くすることができる。このようにすることで、粒子の裏側の硬化性は確実に低くなり接合時の押し込みを容易にし、且つ粒子の流動を防ぐ効果も同時に備えることができる。
(工程(C))
 次に、図4Aに示すように、第1接続層2の導電粒子4側表面に、エポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する熱又は光カチオン若しくはアニオン重合型樹脂層、又はアクリレート化合物と熱又は光ラジカル重合開始剤とを含有する熱又は光カチオン若しくはアニオン重合型樹脂層からなる第2接続層3を形成する。具体的な一例として、剥離フィルム40に常法により形成された第2接続層3を、第1接続層2の導電粒子4側表面に載せ、過大な熱重合が生じない程度に熱圧着する。そして剥離フィルム30と40とを取り除くことにより図4Bの異方性導電フィルムを得ることができる。
 なお、図5の異方性導電フィルム100は、工程(C)の後で、以下の工程(Z)を実施することにより得ることができる。
(工程(Z))
 第1接続層の導電粒子側の反対面に、好ましくは第2接続層と同様に、エポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する熱又は光カチオン若しくはアニオン重合型樹脂層、又はアクリレート化合物と熱又は光ラジカル重合開始剤とを含有する熱又は光ラジカル重合型樹脂層からなる第3接続層を形成する。これにより図5の異方性導電フィルムを得ることができる。
 また、図5の異方性導電フィルム100は、工程(Z)を行うことなく、工程(A)に先だって、以下の工程(a)を実施することでも得ることができる。
(工程(a))
 アクリレート化合物と光ラジカル重合開始剤とを含有する光ラジカル重合型樹脂層の片面に、エポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する熱又は光カチオン若しくはアニオン重合型樹脂層、又はアクリレート化合物と熱又は光ラジカル重合開始剤とを含有する熱又は光ラジカル重合型樹脂層からなる第3接続層を形成する工程。但し、工程(A)において、光ラジカル重合型樹脂層の他面に導電粒子を単層で配列させる。この工程(a)に引き続き、工程(A)、(B)及び(C)を実施することにより図5の異方性導電フィルム100を得ることができる。
(二段階の光ラジカル重合反応を行う製造方法)
 次に、図1(図4B)の異方性導電フィルムを二段階で光ラジカル重合させて製造する一例を説明する。この製造例は、以下の工程(AA)~(DD)を有する。
(工程(AA))
 図6に示すように、必要に応じて剥離フィルム30上に形成した、光ラジカル重合性アクリレートと光ラジカル重合開始剤とを含有する光ラジカル重合型樹脂層31に、単層で導電粒子4を配列させる。導電粒子4の配列の手法としては、特に制限はなく、特許第4789738号の実施例1の無延伸ポリプロピレンフィルムに2軸延伸操作を利用する方法や、特開2010-33793号公報の金型を使用する方法等を採用することができる。なお、配列の程度としては、接続対象のサイズ、導通信頼性、絶縁性、粒子捕捉効率等を考慮し、2次元的に互いに1~100μm程度離隔して配列されることが好ましい。
(工程(BB))
 次に、図7Aに示すように、導電粒子4が配列した光ラジカル重合型樹脂層31に対して、導電粒子側から紫外線(UV)を照射することにより光ラジカル重合反応させ、表面に導電粒子4が仮固定化された仮第1接続層20を形成する。これにより、図7Bに示すように、導電粒子4と仮第1接続層20の最外表面との間に位置する領域の第1接続層2Xの硬化率を、互いに隣接する導電粒子4間に位置する領域の第1接続層2Yの硬化率よりも低くすることができる。
(工程(CC))
 次に、図8Aに示すように、仮第1接続層20の導電粒子4側表面に、エポキシ化合物と熱カチオン若しくは熱アニオン重合開始剤とを含有する熱カチオン若しくは熱アニオン重合型樹脂層、又はアクリレート化合物と熱ラジカル重合開始剤とを含有する熱カチオン若しくは熱アニオン重合型樹脂層からなる第2接続層3を形成する。具体的な一例として、剥離フィルム40に常法により形成された第2接続層3を、第1接続層2の導電粒子4側表面に載せ、過大な熱重合が生じない程度に熱圧着する。そして剥離フィルム30と40とを取り除くことにより図8Bの仮異方性導電フィルム50を得ることができる。
(工程DD)
 次に、図9Aに示すように、第2接続層3と反対側から仮第1接続層20に紫外線を照射することにより光ラジカル重合反応させ、仮第1接続層20を本硬化させて第1接続層2を形成する。これにより、図9Bの異方性導電フィルム1を得ることができる。
 なお、2段階で光ラジカル重合させた場合、図5の異方性導電フィルム100は、工程(DD)の後で、以下の工程(Z)を実施することにより得ることができる。
(工程(Z))
 第1接続層の導電粒子側の反対面に、好ましくは第2接続層と同様に、エポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する熱又は光カチオン若しくはアニオン重合型樹脂層、又はアクリレート化合物と熱又は光ラジカル重合開始剤とを含有する熱又は光ラジカル重合型樹脂層からなる第3接続層を形成する。これにより図5の異方性導電フィルムを得ることができる。
 また、図5の異方性導電フィルム100は、工程(Z)を行うことなく、工程(AA)に先だって、以下の工程(a)を実施することでも得ることができる。
(工程(a))
 アクリレート化合物と光ラジカル重合開始剤とを含有する光ラジカル重合型樹脂層の片面に、エポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する熱又は光カチオン若しくはアニオン重合型樹脂層、又はアクリレート化合物と熱又は光ラジカル重合開始剤とを含有する熱又は光ラジカル重合型樹脂層からなる第3接続層を形成する工程。但し、工程(A)において、光ラジカル重合型樹脂層の他面に導電粒子を単層で配列させる。この工程(a)に引き続き、工程(AA)~(DD)を実施することにより図5の異方性導電フィルム100を得ることができる。この場合、第2接続層の形成の際に使用する重合開始剤としては、熱重合開始剤を適用することが好ましい。光重合開始剤の場合は、工程上、異方性導電フィルムとしての製品ライフ、接続および接続構造体の安定性に悪影響を及ぼすことが懸念される。
<<接続構造体>>
 このようにして得られた異方性導電フィルムは、ICチップ、ICモジュールなどの第1電子部品と、フレキシブル基板、ガラス基板などの第2電子部品とを異方性導電接続する際に好ましく適用することができる。このようにして得られる接続構造体も本発明の一部である。なお、異方性導電フィルムの第1接続層側をフレキシブル基板等の第2電子部品側に配し、第2接続層側をICチップなどの第1電子部品側に配することが、接続信頼性を高める点から好ましい。
 以下、本発明を実施例により具体的に説明する。
  実施例1~6、比較例1~5
 特許第4789738号の実施例1の操作、特開2010-33793号公報の操作、又は特開2010-123418号公報の操作に準じて導電粒子の配列を行うとともに、表1に示す配合に従って第1接続層と第2接続層とが積層された2層構造の異方性導電フィルムを作成した。表1中、導電粒子配列方法の「4789738」は日本国特許第4789738号のことであり、「2010-33793」及び「2010-123418」は、それぞれ「特開2010-33793号公報」及び「特開2010-123418号公報」のことである。
 具体的には、まず、アクリレート化合物及び光ラジカル重合開始剤等を酢酸エチル又はトルエンにて固形分が50質量%となるように混合液を調製した。この混合液を、厚さ50μmのポリエチレンテレフタレートフィルムに、乾燥厚が5μmとなるように塗布し、80℃のオーブン中で5分間乾燥することにより、第1接続層の前駆層である光ラジカル重合型樹脂層を形成した。
 次に、得られた光ラジカル重合型樹脂層に対し、平均粒子径4μmの導電粒子(Ni/Auメッキ樹脂粒子、AUL704、積水化学工業(株))を、互いに5μm離隔して単層で配列させた。更に、この導電粒子側から光ラジカル重合型樹脂層に対し、波長365nm、積算光量4000mL/cmの紫外線を照射することにより、表面に導電粒子が固定された第1接続層を形成した。
 熱硬化性樹脂及び潜在性硬化剤等を酢酸エチル又はトルエンにて固形分が50質量%となるように混合液を調製した。この混合液を、厚さ50μmのポリエチレンテレフタレートフィルムに、乾燥厚が12μmとなるように塗布し、80℃のオーブン中で5分間乾燥することにより、第2接続層を形成した。
 このようにして得られた第1接続層と第2接続層とを、導電粒子が内側となるようにラミネートすることにより異方性導電フィルムを得た。
 得られた異方性導電フィルムを用いて、0.5×1.8×20.0mmの大きさのICチップ(バンプサイズ30×85μm:バンプ高さ15μm、バンプピッチ50μm)を、0.5×50×30mmの大きさのコーニング社製のガラス配線基板(1737F)に180℃、80MPa、5秒という条件で実装して接続構造サンプル体を得た。
 得られた接続構造サンプル体について、以下に説明するように、「最低溶融粘度」、「実装粒子捕捉効率」、「導通信頼性」及び「絶縁性」を試験評価した。得られた結果を表1に示す。また、実施例1及び比較例4の異方性導電フィルムの第1接続層側の「タック力」を以下に説明するように評価した。得られた結果を表1に示す。
「最低溶融粘度」
 接続構造サンプル体を構成する第1接続層及び第2接続層のそれぞれの最低溶融粘度を、回転式レオメータ(TA Instruments社)を用い、昇温速度10℃/分;測定圧力5g一定;使用測定プレート直径8mmという条件で測定した。
「実装粒子捕捉効率」
 “加熱・加圧前の接続構造サンプル体のバンプ上に存在する理論粒子量”に対する“加熱・加圧後(実際の実装後)の接続構造サンプル体のバンプ上で実際に捕捉されている粒子量”の割合を以下の数式に従って求めた。実用上、50%以上であることが望ましい。
Figure JPOXMLDOC01-appb-I000001
「導通信頼性」
 接続構造サンプル体を、85℃、85%RHの高温高湿環境下に放置し、100時間間隔で取り出して導通抵抗の上昇を確認した。導通抵抗が50Ωを超えた時間を不良発生時間とした。実用上、1000時間以上であることが望ましい。
「絶縁性」
 7.5μmスペースの櫛歯TEGパターンのショート発生率を求めた。実用上、100ppm以下であることが望ましい。
「タック力」
 タック試験機(TACII、(株)レスカ)を用い、22℃の雰囲気下において、プローブ直径5mm(ステンレス製鏡面、円柱状)、押し付け荷重196kgf、押し付け速度30mm/min、剥離速度5mm/minの測定条件で、プローブを異方性導電フィルムの第1接続層側に押し付けて測定した。測定チャートのピーク強度をタック力(kPa)とした。
Figure JPOXMLDOC01-appb-T000002
 表1から分かるように、実施例1~6の異方性導電フィルムについては、実装粒子捕捉効率、導通信頼性、絶縁性の各評価項目についてはいずれも実用上好ましい結果を示した。
 それに対し、比較例1の異方性導電フィルムについては、実施例の第1接続層に相当する樹脂層にUV照射を行っておらず、導電粒子もランダム配列であるので、実装粒子捕捉効率、導通信頼性及び絶縁性について問題があった。比較例2の異方性導電フィルムについては、導電粒子が均等配列であったが、UV照射を行っていなかったため、実装粒子捕捉効率、導通信頼性に問題があった。比較例3の異方性導電フィルムについては、比較例2の異方性導電フィルムにシリカ微粒子を配合して粘度を増大させたものであるので絶縁性は改善されたが、依然として実装粒子捕捉効率と導通信頼性とに問題があった。比較例4の異方性導電フィルムについては、UV照射を第1接続層の粘着層側から照射したため、導電粒子下方に位置する領域の第1接続層の最低溶融粘度が上昇して導電粒子の押し込み性が低下し、導通信頼性に問題があった。比較例5の異方性導電フィルムについては、UV照射を両側から行ったため、導通信頼性に問題があった。
 なお、実施例1及び比較例4の異方性導電フィルムのタック力を比較すると、比較例4の異方性導電フィルムの方が弱いタック力を示していた。このことから、異方性導電フィルムの製造の際に、第1接続層の導電粒子側からUV照射をすると、導電粒子の下方(裏側)に位置する第1接続層の硬化率が相対的に低くなっていることがわかる。
 以上のことから、第1接続層は光照射の受光面によって硬化度合いが表裏面で異なり、換言すれば、この硬化度合いの違いが生じた領域に粒子が存在していることになる。つまりは厚み方向への移動性には問題がなく(押し込み可能)、横ズレが抑制される(局所的な流動性低下によるショート防止)ことになる。
 本発明の異方性導電フィルムは、アクリレート化合物と光ラジカル重合開始剤とを含む光ラジカル重合型樹脂層を光ラジカル重合させた第1接続層と、エポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する熱又は光カチオン若しくはアニオン重合型樹脂層、又はアクリレート化合物と熱又は光ラジカル重合開始剤とを含有する熱又は光ラジカル重合型樹脂層とからなる第2接続層とが積層された2層構造を有しており、更に、第1接続層の第2接続層側表面には、異方性導電接続用の導電粒子が単層で配列されている。このため、良好な導通信頼性、絶縁性、粒子捕捉効率を示す。よって、ICチップなどの電子部品の配線基板への異方性導電接続に有用である。このような電子部品の配線は狭小化が進んでおり、本発明はこのような技術的進歩に貢献する場合において、特にその効果を発現することになる。
1、100 異方性導電フィルム
2、2X、2Y 第1接続層
3 第2接続層
4 導電粒子
5 第3接続層
30、40 剥離フィルム
20 仮第1接続層
31 光ラジカル重合型樹脂層
50 仮異方性導電フィルム
 

Claims (15)

  1.  第1接続層とその片面に形成された第2接続層とを有する異方性導電フィルムであって、
     第1接続層が、アクリレート化合物と光ラジカル重合開始剤とを含む光ラジカル重合型樹脂層を光ラジカル重合させたものであり、
     第2接続層が、エポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する熱又は光カチオン若しくはアニオン重合型樹脂層、又はアクリレート化合物と熱又は光ラジカル重合開始剤とを含有する熱又は光ラジカル重合型樹脂層からなるものであり、
     第1接続層の第2接続層側表面に、異方性導電接続用の導電粒子が単層で配列されている異方性導電フィルム。
  2.  第2接続層が、アクリレート化合物と熱ラジカル重合開始剤と光ラジカル重合開始剤とを含有する請求項1記載の異方性導電フィルム。
  3.  第1接続層が、更に、エポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤と、又はアクリレート化合物と熱又は光ラジカル重合開始剤とを含有している請求項1又は2記載の異方性導電フィルム。
  4.  導電粒子が、第2接続層に食い込んでいる請求項1~3のいずれかに記載の異方性導電フィルム。
  5.  第1接続層において、導電粒子と第1接続層の最外表面との間に位置する領域の第1接続層の硬化率が、互いに隣接する導電粒子間に位置する領域の第1接続層の硬化率よりも低い請求項1~4のいずれかに記載の異方性導電フィルム。
  6.  第1接続層の最低溶融粘度が、第2接続層の最低溶融粘度よりも高い請求項1~5のいずれかに記載の異方性導電フィルム。
  7.  請求項1記載の異方性導電フィルムの製造方法であって、以下の工程(A)~(C):
    工程(A)
     アクリレート化合物と光ラジカル重合開始剤とを含有する光ラジカル重合型樹脂層に、導電粒子を単層で配列させる工程;
    工程(B)
     導電粒子が配列した光ラジカル重合型樹脂層に対して紫外線を照射することにより光ラジカル重合反応させ、表面に導電粒子が固定化された第1接続層を形成する工程;及び
    工程(C)
     第1接続層の導電粒子側表面に、エポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する熱又は光カチオン若しくはアニオン重合型樹脂層、又はアクリレート化合物と熱又は光ラジカル重合開始剤とを含有する熱又は光ラジカル重合型樹脂層からなる第2接続層を形成する工程
    を有する製造方法。
  8.  工程(B)の紫外線照射が、光ラジカル重合型樹脂層の導電粒子が配列した側から行う請求項7記載の製造方法。
  9.  請求項1記載の異方性導電フィルムの製造方法であって、以下の工程(AA)~(DD):
    工程(AA)
     アクリレート化合物と光ラジカル重合開始剤とを含有する光ラジカル重合型樹脂層に、導電粒子を単層で配列させる工程;
    工程(BB)
     導電粒子が配列した光ラジカル重合型樹脂層に対して紫外線を照射することにより光ラジカル重合反応させ、表面に導電粒子が仮固定化された仮第1接続層を形成する工程;
    工程(CC)
     仮第1接続層の導電粒子側表面に、エポキシ化合物と熱カチオン若しくは熱アニオン重合開始剤とを含有する熱カチオン若しくは熱アニオン重合型樹脂層、又はアクリレート化合物と熱ラジカル重合開始剤とを含有する熱ラジカル重合型樹脂層からなる第2接続層を形成する工程; 及び
    工程(DD)
     第2接続層と反対側から仮第1接続層に紫外線を照射することにより光ラジカル重合反応させ、仮第1接続層を本硬化させて第1接続層を形成する工程
    を有する製造方法。
  10.  工程(BB)の紫外線照射が、光ラジカル重合型樹脂層の導電粒子が配列した側から行う請求項9記載の製造方法。
  11.  請求項7記載の製造方法において、工程(C)の後で、以下の工程(Z)
    工程(Z)
     第1接続層の導電粒子側の反対面に、エポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する熱又は光カチオン若しくはアニオン重合型樹脂層、又はアクリレート化合物と熱又は光ラジカル重合開始剤とを含有する熱又は光ラジカル重合型樹脂層からなる第3接続層を形成する工程
    を有する製造方法。
  12.  請求項7記載の製造方法において、工程(A)に先だって、以下の工程(a)
    工程(a)
     アクリレート化合物と光ラジカル重合開始剤とを含有する光ラジカル重合型樹脂層の片面に、エポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する熱又は光カチオン若しくはアニオン重合型樹脂層、又はアクリレート化合物と熱又は光ラジカル重合開始剤とを含有する熱又は光ラジカル重合型樹脂層からなる第3接続層を形成する工程
    を有し、工程(A)において、光ラジカル重合型樹脂層の他面に導電粒子を単層で配列させる製造方法。
  13.  請求項9記載の製造方法において、工程(DD)の後で、以下の工程(Z)
    工程(Z)
     第1接続層の導電粒子側の反対面に、エポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する熱又は光カチオン若しくはアニオン重合型樹脂層、又はアクリレート化合物と熱又は光ラジカル重合開始剤とを含有する熱又は光ラジカル重合型樹脂層からなる第3接続層を形成する工程
    を有する製造方法。
  14.  請求項9記載の製造方法において、工程(AA)に先だって、以下の工程(a)
    工程(a)
     アクリレート化合物と光ラジカル重合開始剤とを含有する光ラジカル重合型樹脂層の片面に、エポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する熱又は光カチオン若しくはアニオン重合型樹脂層、又はアクリレート化合物と熱又は光ラジカル重合開始剤とを含有する熱又は光ラジカル重合型樹脂層からなる第3接続層を形成する工程
    を有し、工程(AA)において、光ラジカル重合型樹脂層の他面に導電粒子を単層で配列させる製造方法。
  15.  請求項1~6のいずれかに記載の異方性導電フィルムで第1電子部品を第2電子部品に異方性導電接続した接続構造体。
     
PCT/JP2013/071033 2012-08-03 2013-08-02 異方性導電フィルム及びその製造方法 WO2014021457A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/418,743 US9585247B2 (en) 2012-08-03 2013-08-02 Anisotropic conductive film and method of producing the same
KR1020157001036A KR101741340B1 (ko) 2012-08-03 2013-08-02 이방성 도전 필름 및 그 제조 방법
CN201380041047.6A CN104508064B (zh) 2012-08-03 2013-08-02 各向异性导电膜及其制造方法
HK15105981.3A HK1205176A1 (en) 2012-08-03 2015-06-24 Anisotropic conductive film and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-173448 2012-08-03
JP2012173448 2012-08-03

Publications (1)

Publication Number Publication Date
WO2014021457A1 true WO2014021457A1 (ja) 2014-02-06

Family

ID=50028120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071033 WO2014021457A1 (ja) 2012-08-03 2013-08-02 異方性導電フィルム及びその製造方法

Country Status (7)

Country Link
US (1) US9585247B2 (ja)
JP (1) JP6056700B2 (ja)
KR (1) KR101741340B1 (ja)
CN (1) CN104508064B (ja)
HK (1) HK1205176A1 (ja)
TW (1) TW201422745A (ja)
WO (1) WO2014021457A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015149131A (ja) * 2014-02-04 2015-08-20 デクセリアルズ株式会社 異方性導電フィルム及びその製造方法
JP2015149126A (ja) * 2014-02-04 2015-08-20 デクセリアルズ株式会社 異方性導電フィルム及びその製造方法
JP2015149127A (ja) * 2014-02-04 2015-08-20 デクセリアルズ株式会社 異方性導電フィルム及びその製造方法
JP2015147823A (ja) * 2014-02-04 2015-08-20 デクセリアルズ株式会社 異方性導電フィルム及びその製造方法
JP2015149125A (ja) * 2014-02-04 2015-08-20 デクセリアルズ株式会社 異方性導電フィルム及びその製造方法
WO2020184585A1 (ja) * 2019-03-13 2020-09-17 日立化成株式会社 回路接続用接着剤フィルム及びその製造方法、回路接続構造体の製造方法、並びに、接着剤フィルム収容セット
WO2020184584A1 (ja) * 2019-03-13 2020-09-17 日立化成株式会社 回路接続用接着剤フィルム及びその製造方法、回路接続構造体の製造方法、並びに、接着剤フィルム収容セット
KR20210138137A (ko) * 2014-10-28 2021-11-18 데쿠세리아루즈 가부시키가이샤 이방성 도전 필름, 그 제조 방법, 및 접속 구조체
WO2022009846A1 (ja) * 2020-07-07 2022-01-13 昭和電工マテリアルズ株式会社 回路接続用接着剤フィルム、並びに回路接続構造体及びその製造方法
WO2023074474A1 (ja) * 2021-10-29 2023-05-04 株式会社レゾナック 半導体用フィルム状接着剤、半導体用フィルム状接着剤の製造方法、接着剤テープ、半導体装置の製造方法及び半導体装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105940564B (zh) * 2014-02-04 2020-03-24 迪睿合株式会社 各向异性导电膜及其制造方法
JP6661969B2 (ja) * 2014-10-28 2020-03-11 デクセリアルズ株式会社 異方性導電フィルム及び接続構造体
CN106318244A (zh) * 2015-07-02 2017-01-11 玮锋科技股份有限公司 核层技术异方性导电胶膜
JP6776609B2 (ja) * 2016-02-22 2020-10-28 デクセリアルズ株式会社 異方性導電フィルム
WO2017191772A1 (ja) * 2016-05-05 2017-11-09 デクセリアルズ株式会社 フィラー配置フィルム
CA3034533A1 (en) * 2016-08-23 2018-03-01 The University Of Massachusetts Polymerizing composition, method of manufacture thereof and articles comprising the same
JP7062389B2 (ja) * 2017-08-23 2022-05-06 デクセリアルズ株式会社 異方性導電フィルム
WO2019050005A1 (ja) * 2017-09-11 2019-03-14 日立化成株式会社 接着剤フィルム収容セット及びその製造方法
KR20230074287A (ko) * 2017-09-11 2023-05-26 가부시끼가이샤 레조낙 회로 접속용 접착제 필름 및 그의 제조 방법, 회로 접속 구조체의 제조 방법, 그리고 접착제 필름 수용 세트
KR102569980B1 (ko) * 2017-09-11 2023-08-24 가부시끼가이샤 레조낙 회로 접속용 접착제 필름 및 그의 제조 방법, 회로 접속 구조체의 제조 방법, 그리고 접착제 필름 수용 세트
KR20210141953A (ko) * 2019-03-13 2021-11-23 쇼와덴코머티리얼즈가부시끼가이샤 회로 접속용 접착제 필름 및 그 제조 방법, 회로 접속 구조체의 제조 방법, 및, 접착제 필름 수용 세트
JP2020073404A (ja) * 2019-09-30 2020-05-14 日立化成株式会社 異方導電フィルム用リール及び異方導電フィルム巻
JPWO2022059647A1 (ja) * 2020-09-15 2022-03-24
JP2024025090A (ja) * 2022-08-10 2024-02-26 株式会社レゾナック 回路接続用接着剤フィルム、並びに回路接続構造体及びその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03107888A (ja) * 1989-09-21 1991-05-08 Sharp Corp 回路基板の接続構造
JPH04366630A (ja) * 1991-06-13 1992-12-18 Sharp Corp 異方性導電接着テープ
JPH09312176A (ja) * 1996-05-23 1997-12-02 Hitachi Chem Co Ltd 接続部材および該接続部材を用いた電極の接続構造並びに接続方法
JP2000178511A (ja) * 1997-07-24 2000-06-27 Sony Chem Corp 多層異方導電性接着剤およびその製造方法
JP2003286457A (ja) * 2002-03-28 2003-10-10 Asahi Kasei Corp 異方導電性接着シートおよびその製造方法
JP2008034232A (ja) * 2006-07-28 2008-02-14 Asahi Kasei Electronics Co Ltd 異方導電性フィルム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930007065B1 (ko) 1991-01-30 1993-07-26 삼성전자 주식회사 전자카메라시스템에 있어서 재생시 화면편집장치
JPH0512176A (ja) 1991-07-03 1993-01-22 Nec Corp 情報処理システム
JPH11135567A (ja) * 1997-10-30 1999-05-21 Toshiba Corp 異方性導電膜、半導体装置の製造方法
WO2000046315A1 (fr) * 1999-02-08 2000-08-10 Hitachi Chemical Co., Ltd. Adhesif, structure de connexion d'electrodes, et procede de connexion d'electrodes
JP2000348538A (ja) * 1999-06-04 2000-12-15 Tomoegawa Paper Co Ltd 異方性導電フィルムおよびその製造方法
JP2003049152A (ja) * 2001-08-02 2003-02-21 Hitachi Chem Co Ltd 回路接続用接着剤及びそれを用いた接続方法、接続構造体
JP4366630B2 (ja) 2003-06-06 2009-11-18 靜甲株式会社 物品集積搬送カートン充填システム
CN101483080A (zh) * 2003-12-04 2009-07-15 旭化成电子材料元件株式会社 各向异性的导电粘合片材及连接结构体
KR100662176B1 (ko) * 2004-12-30 2006-12-27 제일모직주식회사 이방성 도전 필름용 조성물
JP2006233203A (ja) * 2005-01-31 2006-09-07 Asahi Kasei Electronics Co Ltd 異方導電性接着剤フィルム
JP2007233185A (ja) * 2006-03-02 2007-09-13 Fujifilm Corp 光学フィルム、反射防止フィルム、偏光板および画像表示装置
KR20080109895A (ko) * 2006-04-27 2008-12-17 스미토모 베이클리트 컴퍼니 리미티드 접착 테이프, 반도체 패키지 및 전자기기
JP4880533B2 (ja) 2007-07-03 2012-02-22 ソニーケミカル&インフォメーションデバイス株式会社 異方性導電膜及びその製造方法、並びに接合体
JP5226562B2 (ja) * 2008-03-27 2013-07-03 デクセリアルズ株式会社 異方性導電フィルム、並びに、接合体及びその製造方法
JP2010218875A (ja) * 2009-03-17 2010-09-30 Tokai Rubber Ind Ltd 吸引型およびその製造方法ならびに異方性導電膜およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03107888A (ja) * 1989-09-21 1991-05-08 Sharp Corp 回路基板の接続構造
JPH04366630A (ja) * 1991-06-13 1992-12-18 Sharp Corp 異方性導電接着テープ
JPH09312176A (ja) * 1996-05-23 1997-12-02 Hitachi Chem Co Ltd 接続部材および該接続部材を用いた電極の接続構造並びに接続方法
JP2000178511A (ja) * 1997-07-24 2000-06-27 Sony Chem Corp 多層異方導電性接着剤およびその製造方法
JP2003286457A (ja) * 2002-03-28 2003-10-10 Asahi Kasei Corp 異方導電性接着シートおよびその製造方法
JP2008034232A (ja) * 2006-07-28 2008-02-14 Asahi Kasei Electronics Co Ltd 異方導電性フィルム

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015149131A (ja) * 2014-02-04 2015-08-20 デクセリアルズ株式会社 異方性導電フィルム及びその製造方法
JP2015149126A (ja) * 2014-02-04 2015-08-20 デクセリアルズ株式会社 異方性導電フィルム及びその製造方法
JP2015149127A (ja) * 2014-02-04 2015-08-20 デクセリアルズ株式会社 異方性導電フィルム及びその製造方法
JP2015147823A (ja) * 2014-02-04 2015-08-20 デクセリアルズ株式会社 異方性導電フィルム及びその製造方法
JP2015149125A (ja) * 2014-02-04 2015-08-20 デクセリアルズ株式会社 異方性導電フィルム及びその製造方法
KR20210138137A (ko) * 2014-10-28 2021-11-18 데쿠세리아루즈 가부시키가이샤 이방성 도전 필름, 그 제조 방법, 및 접속 구조체
KR102489187B1 (ko) * 2014-10-28 2023-01-17 데쿠세리아루즈 가부시키가이샤 이방성 도전 필름, 그 제조 방법, 및 접속 구조체
TWI824740B (zh) * 2014-10-28 2023-12-01 日商迪睿合股份有限公司 異向性導電膜、連接構造體、及連接構造體之製造方法
WO2020184584A1 (ja) * 2019-03-13 2020-09-17 日立化成株式会社 回路接続用接着剤フィルム及びその製造方法、回路接続構造体の製造方法、並びに、接着剤フィルム収容セット
CN113557274A (zh) * 2019-03-13 2021-10-26 昭和电工材料株式会社 电路连接用黏合剂膜及其制造方法、电路连接结构体的制造方法以及黏合剂膜收纳套组
WO2020184585A1 (ja) * 2019-03-13 2020-09-17 日立化成株式会社 回路接続用接着剤フィルム及びその製造方法、回路接続構造体の製造方法、並びに、接着剤フィルム収容セット
JP7468507B2 (ja) 2019-03-13 2024-04-16 株式会社レゾナック 回路接続用接着剤フィルム及びその製造方法、回路接続構造体の製造方法、並びに、接着剤フィルム収容セット
JP7480772B2 (ja) 2019-03-13 2024-05-10 株式会社レゾナック 回路接続用接着剤フィルム及びその製造方法、回路接続構造体の製造方法、並びに、接着剤フィルム収容セット
WO2022009846A1 (ja) * 2020-07-07 2022-01-13 昭和電工マテリアルズ株式会社 回路接続用接着剤フィルム、並びに回路接続構造体及びその製造方法
CN115777008A (zh) * 2020-07-07 2023-03-10 昭和电工材料株式会社 电路连接用黏合剂薄膜以及电路连接结构体及其制造方法
WO2023074474A1 (ja) * 2021-10-29 2023-05-04 株式会社レゾナック 半導体用フィルム状接着剤、半導体用フィルム状接着剤の製造方法、接着剤テープ、半導体装置の製造方法及び半導体装置

Also Published As

Publication number Publication date
TWI561600B (ja) 2016-12-11
JP2014043574A (ja) 2014-03-13
JP6056700B2 (ja) 2017-01-11
TW201422745A (zh) 2014-06-16
US9585247B2 (en) 2017-02-28
KR101741340B1 (ko) 2017-05-29
CN104508064B (zh) 2016-10-12
US20150271918A1 (en) 2015-09-24
KR20150039743A (ko) 2015-04-13
HK1205176A1 (en) 2015-12-11
CN104508064A (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
JP6056700B2 (ja) 異方性導電フィルム及びその製造方法
JP7315865B2 (ja) 異方性導電フィルム及びその製造方法
JP7170612B2 (ja) 異方性導電フィルムの製造方法及び異方性導電フィルム
JP6319472B2 (ja) 異方性導電フィルム及びその製造方法
JP6409281B2 (ja) 異方性導電フィルム及びその製造方法
WO2015119095A1 (ja) 異方性導電フィルム及びその製造方法
WO2015119098A1 (ja) 異方性導電フィルム及びその製造方法
JP6233069B2 (ja) 異方性導電フィルム及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13824789

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157001036

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14418743

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13824789

Country of ref document: EP

Kind code of ref document: A1