WO2015119098A1 - 異方性導電フィルム及びその製造方法 - Google Patents

異方性導電フィルム及びその製造方法 Download PDF

Info

Publication number
WO2015119098A1
WO2015119098A1 PCT/JP2015/052937 JP2015052937W WO2015119098A1 WO 2015119098 A1 WO2015119098 A1 WO 2015119098A1 JP 2015052937 W JP2015052937 W JP 2015052937W WO 2015119098 A1 WO2015119098 A1 WO 2015119098A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection layer
layer
resin layer
connection
anisotropic conductive
Prior art date
Application number
PCT/JP2015/052937
Other languages
English (en)
French (fr)
Inventor
怜司 塚尾
恭志 阿久津
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014019866A external-priority patent/JP6233069B2/ja
Priority claimed from JP2014019855A external-priority patent/JP6409281B2/ja
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to US15/116,033 priority Critical patent/US20170077056A1/en
Priority to CN201580007303.9A priority patent/CN105940561B/zh
Priority to KR1020167021122A priority patent/KR102552788B1/ko
Publication of WO2015119098A1 publication Critical patent/WO2015119098A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/14Layered products comprising a layer of synthetic resin next to a particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/02Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by a sequence of laminating steps, e.g. by adding new layers at consecutive laminating stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/02Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by the reacting monomers or modifying agents during the preparation or modification of macromolecules
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/08Treatment by energy or chemical effects by wave energy or particle radiation
    • B32B2310/0806Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation
    • B32B2310/0831Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/20Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself
    • C09J2301/208Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself the adhesive layer being constituted by at least two or more adjacent or superposed adhesive layers, e.g. multilayer adhesive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/314Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive layer and/or the carrier being conductive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/416Additional features of adhesives in the form of films or foils characterized by the presence of essential components use of irradiation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2433/00Presence of (meth)acrylic polymer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2463/00Presence of epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/27001Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/27001Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
    • H01L2224/27003Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate for holding or transferring the layer preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/273Manufacturing methods by local deposition of the material of the layer connector
    • H01L2224/2733Manufacturing methods by local deposition of the material of the layer connector in solid form
    • H01L2224/27332Manufacturing methods by local deposition of the material of the layer connector in solid form using a powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/273Manufacturing methods by local deposition of the material of the layer connector
    • H01L2224/2733Manufacturing methods by local deposition of the material of the layer connector in solid form
    • H01L2224/27334Manufacturing methods by local deposition of the material of the layer connector in solid form using preformed layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/2743Manufacturing methods by blanket deposition of the material of the layer connector in solid form
    • H01L2224/27436Lamination of a preform, e.g. foil, sheet or layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/278Post-treatment of the layer connector
    • H01L2224/27848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/2908Plural core members being stacked
    • H01L2224/29082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/2908Plural core members being stacked
    • H01L2224/29083Three-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29344Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29355Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29357Cobalt [Co] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29363Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29364Palladium [Pd] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/2939Base material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0635Acrylic polymer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/202Electromagnetic wavelength ranges [W]
    • H01L2924/2021Ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/206Length ranges
    • H01L2924/2064Length ranges larger or equal to 1 micron less than 100 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads

Definitions

  • the present invention relates to an anisotropic conductive film and a method for producing the same.
  • Anisotropic conductive films are widely used for mounting electronic components such as IC chips, and in recent years, from the viewpoint of application to high-density mounting, improved conduction reliability and insulation, improved mounting conductive particle capture rate
  • Patent Document 1 a two-layer anisotropic conductive film in which conductive particles for anisotropic conductive connection are arranged in a single layer on an insulating adhesive layer has been proposed.
  • conductive particles are arranged uniformly at predetermined intervals by biaxially stretching the transfer layer after conductive particles are arranged in a single layer and closely packed in the transfer layer.
  • the conductive particles on the transfer layer are transferred to an insulating resin layer containing a thermosetting resin and a polymerization initiator, and the transferred conductive particles contain a thermosetting resin.
  • it is manufactured by laminating another insulating resin layer that does not contain a polymerization initiator (Patent Document 1).
  • the anisotropic conductive film having a two-layer structure in Patent Document 1 uses an insulating resin layer that does not contain a polymerization initiator, the conductive particles are evenly arranged at predetermined intervals in a single layer. Nevertheless, a relatively large resin flow is likely to occur in the insulating resin layer that does not contain the polymerization initiator due to heating during anisotropic conductive connection, and the conductive particles also easily flow along the flow. For this reason, problems such as a decrease in the mounting conductive particle capture rate, the occurrence of short circuits, and a decrease in insulation have occurred.
  • the object of the present invention is to solve the above-mentioned problems of the prior art, in a multilayer structure anisotropic conductive film having conductive particles arranged in a single layer, good conduction reliability, good insulation. And good mounting conductive particle capture rate.
  • the present inventors fixed or temporarily fixed conductive particles by irradiating with ultraviolet rays after arranging the conductive particles in a photopolymerizable resin layer in a single layer so as to fill in a specific ratio.
  • fever or a photocation, anion, or a radically polymerizable resin layer on the electrically fixed electrically conductive particle is the structure which can achieve the objective of the above-mentioned this invention. As a result, the present invention has been completed.
  • the present invention is an anisotropic conductive film having a first connection layer and a second connection layer formed on one side thereof,
  • the first connection layer is a photopolymerization resin layer;
  • the second connection layer is a heat or photocation, anion or radical polymerizable resin layer; Whether the conductive particles for anisotropic conductive connection are arranged in a single layer on the second connection layer side surface of the first connection layer, and the embedding rate of the conductive particles in the first connection layer is 80% or more.
  • an anisotropic conductive film characterized by being 1% or more and 20% or less is provided.
  • the embedding rate means the degree to which the conductive particles are buried in the first connection layer, and the depth Lb of the conductive particles embedded in the first connection layer with respect to the particle diameter La of the conductive particles.
  • the second connection layer is preferably a thermopolymerizable resin layer using a thermal polymerization initiator that starts a polymerization reaction by heating, but photopolymerization using a photopolymerization initiator that starts a polymerization reaction by light. May be a conductive resin layer.
  • a thermal / photopolymerizable resin layer in which a thermal polymerization initiator and a photopolymerization initiator are used in combination may be used.
  • the second connection layer may be limited to a thermopolymerizable resin layer using a thermal polymerization initiator in production.
  • the anisotropic conductive film of the present invention has a third connection layer having substantially the same configuration as the second connection layer on the other surface of the first connection layer for the purpose of preventing warpage of the joined body such as stress relaxation. It may be. That is, you may have the 3rd connection layer which consists of a heat
  • the third connection layer is preferably a thermopolymerizable resin layer using a thermal polymerization initiator that initiates a polymerization reaction by heating, but photopolymerization using a photopolymerization initiator that initiates a polymerization reaction by light. May be a conductive resin layer.
  • a thermal / photopolymerizable resin layer in which a thermal polymerization initiator and a photopolymerization initiator are used in combination may be used.
  • the third connection layer may be limited to a thermopolymerizable resin layer using a thermal polymerization initiator in production.
  • the present invention is also a method for producing the anisotropic conductive film described above, wherein the first connection layer is formed by a one-step photopolymerization reaction, and the following steps (A) to (C) or the first connection layer: There is provided a production method comprising the steps (AA) to (DD), which will be described later, which is formed by a two-stage photopolymerization reaction.
  • Step (A) Arranging the conductive particles in the photopolymerizable resin layer in a single layer so that the embedding ratio of the conductive particles to the first connection layer is 80% or more, or 1% or more and 20% or less;
  • Process (B) A step of forming a first connection layer in which conductive particles are fixed on the surface by irradiating the photopolymerizable resin layer in which the conductive particles are arranged by irradiating with ultraviolet rays; and step (C) The process of forming the 2nd connection layer which consists of a heat
  • Process (AA) Arranging the conductive particles in the photopolymerizable resin layer in a single layer so that the embedding ratio of the conductive particles to the first connection layer is 80% or more, or 1% or more and 20% or less;
  • Process (BB) A step of forming a temporary first connection layer in which the conductive particles are temporarily fixed on the surface by irradiating the photopolymerizable resin layer in which the conductive particles are arranged with an ultraviolet ray to cause a photopolymerization reaction;
  • Process (CC) Forming a second connection layer comprising a thermal cation, anion, or radical polymerizable resin layer on the surface of the temporary first connection layer on the conductive particle side;
  • step (DD) A step of forming a first connection layer by subjecting the temporary first connection layer to a photopolymerization reaction by irradiating ultraviolet rays from the side opposite to the second connection layer, and finally curing the temporary first connection layer.
  • the initiator used in forming the second connection layer in the step (CC) is limited to the thermal polymerization initiator in terms of product life as an anisotropic conductive film, connection and stability of the connection structure. This is to prevent adverse effects from occurring. That is, in the case where the first connection layer is irradiated with ultraviolet rays in two stages, the second connection layer may be limited to a thermosetting curable one due to restrictions on the process. In addition, when performing two-step irradiation continuously, since it can form by the process substantially the same as one step
  • this invention is a manufacturing method of the anisotropic conductive film which has the 3rd connection layer of the structure similar to a 2nd connection layer in the other surface of a 1st connection layer, Comprising: The above process (A ) To (C), after the step (C), the production method having the following step (Z), or after the step (DD) in addition to the above steps (AA) to (DD), The manufacturing method which has the following processes (Z) is provided.
  • Step (Z) The process of forming the 3rd connection layer which consists of a heat
  • this invention is a manufacturing method of the anisotropic conductive film which has the 3rd connection layer of the structure substantially the same as the 2nd connection layer on the other surface of the 1st connection layer, Comprising: A manufacturing method having the following step (a) prior to step (A) in addition to A) to (C), or the following steps prior to step (AA) in addition to steps (AA) to (DD) The manufacturing method which has a process (a) is provided.
  • Step (a) A step of forming a third connection layer comprising a heat or photocation, anion or radical polymerizable resin layer on one surface of the photopolymerizable resin layer.
  • the embedding rate of the electroconductive particle with respect to the other surface of a photopolymerizable resin layer and the 1st connection layer is 80. It may be arranged in a single layer so as to be not less than 1% or not less than 1% and not more than 20%.
  • the polymerization initiator is limited to a thermal reaction due to the above-described reason.
  • the second and third connection layers containing the photopolymerization initiator are provided by a method that does not adversely affect the product life and connection after the first connection layer is provided, the photopolymerization initiator containing the photopolymerization initiator can be obtained.
  • the anisotropic conductive film along the gist There is no particular limitation on the production of the anisotropic conductive film along the gist.
  • connection layer or the third connection layer of the present invention functions as a tack layer
  • the present invention provides a connection structure in which the first electronic component is anisotropically conductively connected to the second electronic component with the above-described anisotropic conductive film.
  • the anisotropic conductive film of the present invention has a first connection layer made of a photopolymerization resin layer and a second connection layer made of a heat or photocation, anion or radical polymerizable resin layer formed on one surface thereof. Furthermore, the conductive particles for anisotropic conductive connection are formed on the surface of the first connection layer on the second connection layer side so that the embedding rate of the conductive particles in the first connection layer is 80% or more. Alternatively, they are arranged in a single layer so as to be 1% or more and 20% or less. For this reason, the conductive particles can be firmly fixed to the first connection layer.
  • the conductive particles when the conductive particles are arranged in a single layer so that the embedding rate is 80% or more, the conductive particles are attached to the first connection layer. It can be fixed more firmly. Reflectively, the sticking property of the anisotropic conductive film is stably improved, and the productivity of anisotropic conductive connection is also improved.
  • the photo-radically polymerizable resin layer below (back side) of the conductive particles in the first connection layer is not sufficiently irradiated with ultraviolet rays due to the presence of the conductive particles, so that the curing rate is relatively low and good indentation is achieved. As a result, good conduction reliability, insulation, and mounting conductive particle capture rate can be realized.
  • the amount of resin of the first connection layer when it is arranged in a single layer so that the embedding rate is 1% or more and 20% or less, the amount of resin of the first connection layer is not greatly reduced. Can be improved.
  • connection tool when using heat for anisotropic conductive connection, it becomes the same method as the connection method of a normal anisotropic conductive film.
  • the connection tool In the case of using light, the connection tool may be pushed in until the reaction is completed. Even in this case, the connection tool or the like is often heated to promote resin flow and particle indentation. Moreover, what is necessary is just to carry out similarly to the above also when using heat and light together.
  • FIG. 1 is a cross-sectional view of the anisotropic conductive film of the present invention.
  • Drawing 2 is an explanatory view of the manufacturing process (A) of the anisotropic conductive film of the present invention.
  • FIG. 3A is an explanatory diagram of the production process (B) of the anisotropic conductive film of the present invention.
  • FIG. 3B is an explanatory diagram of the production process (B) of the anisotropic conductive film of the present invention.
  • FIG. 4A is an explanatory diagram of the production process (C) of the anisotropic conductive film of the present invention.
  • FIG. 4B is an explanatory diagram of the production process (C) of the anisotropic conductive film of the present invention.
  • FIG. 5 is a cross-sectional view of the anisotropic conductive film of the present invention.
  • FIG. 6 is an explanatory view of the production process (AA) of the anisotropic conductive film of the present invention.
  • FIG. 7A is an explanatory diagram of the production process (BB) of the anisotropic conductive film of the present invention.
  • FIG. 7B is explanatory drawing of the manufacturing process (BB) of the anisotropic conductive film of this invention.
  • FIG. 8A is explanatory drawing of the manufacturing process (CC) of the anisotropic conductive film of this invention.
  • FIG. 8B is explanatory drawing of the manufacturing process (CC) of the anisotropic conductive film of this invention.
  • FIG. 9A is explanatory drawing of the manufacturing process (DD) of the anisotropic conductive film of this invention.
  • FIG. 9B is an explanatory diagram of the production process (DD) of the anisotropic conductive film of the present invention.
  • anisotropic conductive film >>
  • anisotropic conductive film of the present invention a preferable example of the anisotropic conductive film of the present invention will be described in detail.
  • the anisotropic conductive film 1 of the present invention has heat or a photocation, an anion or It has a structure in which a second connection layer 3 made of a radical polymerizable resin layer is formed.
  • the conductive particles 4 are arranged in a single layer, preferably evenly arranged for anisotropic conductive connection.
  • “equal” means a state in which the conductive particles are arranged in the plane direction. This regularity may be provided at regular intervals.
  • the first connection layer 2 constituting the anisotropic conductive film 1 of the present invention is a photopolymerized resin layer obtained by photopolymerizing a photopolymerizable resin layer such as a photocation, anion or radical polymerizable resin layer, Particles can be immobilized.
  • the resin is difficult to flow even when heated at the time of anisotropic conductive connection because it is polymerized, it is possible to greatly suppress the occurrence of a short circuit, thus improving conduction reliability and insulation, and mounting particle capture efficiency Can also be improved.
  • the particularly preferable first connection layer 2 is a photo radical polymerization resin layer obtained by photo radical polymerization of a photo radical polymerizable resin layer containing an acrylate compound and a photo radical polymerization initiator.
  • the 1st connection layer 2 is a radical photopolymerization resin layer.
  • (Acrylate compound) As the acrylate compound serving as the acrylate unit, a conventionally known photoradical polymerizable acrylate can be used.
  • monofunctional (meth) acrylate here, (meth) acrylate includes acrylate and methacrylate
  • bifunctional or more polyfunctional (meth) acrylate can be used.
  • the amount is preferably 2 to 70% by mass, more preferably 10 to 50% by mass.
  • Photo radical polymerization initiator As a radical photopolymerization initiator, it can be used by appropriately selecting from known radical photopolymerization initiators. Examples include acetophenone photopolymerization initiators, benzyl ketal photopolymerization initiators, and phosphorus photopolymerization initiators.
  • the photo radical polymerization initiator used is too small relative to 100 parts by mass of the acrylate compound, the photo radical polymerization does not proceed sufficiently, and if it is too large, it causes a reduction in rigidity. Part, more preferably 0.5 to 15 parts by weight.
  • the conductive particles can be appropriately selected from those used in conventionally known anisotropic conductive films.
  • metal particles such as nickel, cobalt, silver, copper, gold, and palladium, metal-coated resin particles, and the like can be given. Two or more kinds can be used in combination.
  • the average particle diameter of the conductive particles is too small, the variation in the height of the wiring cannot be absorbed and the resistance tends to be high, and if it is too large, it tends to cause a short circuit. More preferably, it is 2 to 6 ⁇ m.
  • the number is preferably 50 to 50000 per square mm, more preferably 200 to 30000.
  • a film forming resin such as a phenoxy resin, an epoxy resin, an unsaturated polyester resin, a saturated polyester resin, a urethane resin, a butadiene resin, a polyimide resin, a polyamide resin, or a polyolefin resin is used in combination as necessary. be able to. You may use together similarly to a 2nd connection layer and a 3rd connection layer.
  • the layer thickness of the first connection layer 2 is too thin, the mounting conductive particle trapping rate tends to decrease, and if it is too thick, the conduction resistance tends to increase, so that it is preferably 1.0 to 6.0 ⁇ m, more preferably Is 2.0 to 5.0 ⁇ m.
  • the first connection layer 2 may further contain an epoxy compound and a heat or photocation or an anionic polymerization initiator.
  • the second connection layer 3 is also preferably a heat or photocation or anion polymerizable resin layer containing an epoxy compound and heat or a photocation or anion polymerization initiator. Thereby, delamination strength can be improved.
  • the epoxy compound and the heat or photocation or anion polymerization initiator will be described in the second connection layer 3.
  • the conductive particles 4 are embedded in the first connection layer 2 as shown in FIG. 1.
  • the degree of embedding is defined as the ratio of the depth Lb embedded in the first connection layer 2 of the conductive particles 4 to the particle diameter La of the conductive particles 4 (embedding rate)
  • the conductive particles 4 are embedded in the first connection layer 2.
  • the rate is adjusted to be 80% or more, preferably 85% or more, more preferably 90% or more. In this case, all of the conductive particles 4 may be buried in the first connection layer 2, but is preferably 120% or less.
  • the problem “to enable the conductive particles to be fixed at an intended position in order to achieve good mounting conductive particle trapping properties” and “between the first connection layer 2 and the adherend are provided.
  • the conductive particles 4 are embedded in the first connection layer 2. The input rate is adjusted so that the lower limit is 1% or more, preferably greater than 1%, and the upper limit is 20% or less, preferably less than 20%.
  • adjustment of the embedding rate of the conductive particles 4 in the first connection layer 2 can be performed, for example, by repeatedly pressing with a rubber roll provided with a release material on the surface. Specifically, when the embedding rate is reduced, the number of repetitions may be reduced, and when it is increased, the number of repetitions may be increased.
  • the first connection layer 2 when the first connection layer 2 is formed by irradiating the photopolymerizable resin layer with ultraviolet rays, the first polymerizable layer 2 is irradiated from either the surface where the conductive particles are not disposed or the surface where the conductive particles are disposed.
  • the first connection layer located between the conductive particles 4 and the outermost surface 2b of the first connection layer 2 is acceptable.
  • the curing rate of the region 2X can be lower than the curing rate of the region 2Y of the first connection layer located between the conductive particles 4 adjacent to each other.
  • the region 2X of the first connection layer is easily removed during the thermocompression bonding of the anisotropic conductive connection, and the conduction reliability is improved.
  • the curing rate is a numerical value defined as the vinyl group reduction ratio
  • the curing rate of the region 2X of the first connection layer is preferably 40 to 80%
  • the curing rate of the region 2Y of the first connection layer is Preferably it is 70 to 100%.
  • the difference in the curing rate between the regions 2X and 2Y of the first connection layer is substantially eliminated.
  • the radical photopolymerization at the time of forming the first connection layer 2 may be performed in one step (that is, one time of light irradiation), but may be performed in two steps (that is, two times of light irradiation). Good.
  • the second-stage light irradiation is performed from the other surface side of the first connection layer 2 in an oxygen-containing atmosphere (in the atmosphere) after the second connection layer 3 is formed on one surface of the first connection layer 2. It is preferable. Thereby, it can be expected that the radical polymerization reaction is oxygen-inhibited, the surface concentration of the uncured component is increased, and tackiness can be improved.
  • the polymerization reaction since the polymerization reaction is complicated by performing the curing in two stages, it can be expected that the fluidity of the resin and particles can be precisely controlled.
  • the curing rate in the first stage of the region 2X of the first connection layer in the two-stage photoradical polymerization is preferably 10 to 50%, and the curing ratio in the second stage is preferably 40 to 80%,
  • the curing rate in the first stage of the region 2Y of the first connection layer is preferably 30 to 90%, and the curing rate in the second stage is preferably 70 to 100%.
  • the radical photopolymerization initiator is preferably used for improving tackiness.
  • a photo radical polymerization initiator for example, IRGACURE 369, BASF Japan Ltd.
  • a photo radical polymerization initiator that initiates a radical reaction with light having a wavelength of 365 nm from an LED light source
  • a photo radical polymerization that initiates a radical reaction with light from a high pressure mercury lamp light source. It is preferable to use together with an initiator (for example, IRGACURE2959, BASF Japan Ltd.).
  • the minimum melt viscosity when measured with the rheometer of the first connection layer 2 is higher than the minimum melt viscosity of the second connection layer 3, specifically, [the minimum melt viscosity of the first connection layer 2 (mPa ⁇ S)] / [the minimum melt viscosity (mPa ⁇ s) of the second connection layer 3] is preferably 1 to 1000, more preferably 4 to 400.
  • the preferred minimum melt viscosity for each of the former is 100 to 100,000 mPa ⁇ s, and more preferably 500 to 50,000 mPa ⁇ s.
  • the latter is preferably 0.1 to 10000 mPa ⁇ s, more preferably 0.5 to 1000 mPa ⁇ s.
  • the first connection layer 2 is formed on a photo radical polymerizable resin layer containing a photo radical polymerizable acrylate and a photo radical polymerization initiator by a film transfer method, a mold transfer method, an ink jet method, an electrostatic adhesion method, or the like.
  • Conductive particles can be attached by a technique, and ultraviolet rays can be irradiated from the conductive particle side, the opposite side, or both sides. In particular, it is preferable to irradiate ultraviolet rays only from the conductive particle side from the viewpoint that the curing rate of the region 2X of the first connection layer can be suppressed relatively low.
  • the second connection layer 3 is a heat or photocation, anion or radical polymerizable resin layer, preferably a heat or photocation or anion polymerizable resin layer containing an epoxy compound and a heat or photocation or anion polymerization initiator, or It consists of a heat or photo radical polymerizable resin layer containing an acrylate compound and a heat or photo radical polymerization initiator.
  • the formation of the second connection layer 3 from the thermopolymerizable resin layer means that the polymerization reaction of the second connection layer 3 does not occur due to the ultraviolet irradiation when the first connection layer 2 is formed. And desirable in terms of quality stability.
  • the second connection layer 3 is a heat, photocation or anion polymerizable resin layer, it can further contain an acrylate compound and a heat or photo radical polymerization initiator. Thereby, the 1st connection layer 2 and delamination strength can be improved.
  • the epoxy compound When the second connection layer 3 is a heat or photocation or anion polymerizable resin layer containing an epoxy compound and a heat or photocation or anion polymerization initiator, the epoxy compound has two or more epoxy groups in the molecule. Preferred are compounds or resins having These may be liquid or solid.
  • thermal cationic polymerization initiator those known as the thermal cationic polymerization initiator of the epoxy compound can be adopted, for example, those which generate an acid capable of cationically polymerizing the cationic polymerizable compound by heat.
  • Iodonium salts, sulfonium salts, phosphonium salts, ferrocenes, and the like can be used, and aromatic sulfonium salts exhibiting good potential with respect to temperature can be preferably used.
  • the amount of the thermal cationic polymerization initiator is preferably 2 to 60 masses per 100 mass parts of the epoxy compound. Part, more preferably 5 to 40 parts by weight.
  • thermal anionic polymerization initiator those known as the thermal anionic polymerization initiator of the epoxy compound can be employed.
  • a base capable of anionic polymerization of the anionic polymerizable compound is generated by heat, and is publicly known.
  • Aliphatic amine compounds, aromatic amine compounds, secondary or tertiary amine compounds, imidazole compounds, polymercaptan compounds, boron trifluoride-amine complexes, dicyandiamide, organic acid hydrazides, etc. can be used.
  • An encapsulated imidazole compound showing good potential with respect to temperature can be preferably used.
  • the amount of the thermal anionic polymerization initiator is preferably 2 to 60 masses per 100 mass parts of the epoxy compound. Part, more preferably 5 to 40 parts by weight.
  • Photocationic polymerization initiator and photoanionic polymerization initiator A well-known thing can be used suitably as a photocationic polymerization initiator or photoanion polymerization initiator for epoxy compounds.
  • connection layer 3 is a heat or photo radical polymerizable resin layer containing an acrylate compound and a heat or photo radical polymerization initiator
  • the acrylate compound is appropriately selected from those described for the first connection layer 2 Can be used.
  • thermal radical polymerization initiator examples include organic peroxides and azo compounds, but organic peroxides that do not generate nitrogen that causes bubbles can be preferably used.
  • the amount of the thermal radical polymerization initiator used is preferably 2 to 60 parts by weight, more preferably 5 to 40 parts per 100 parts by weight of the acrylate compound. Part by mass.
  • Photo radical polymerization initiator As a radical photopolymerization initiator for the acrylate compound, a known radical photopolymerization initiator can be used.
  • the amount of the radical photopolymerization initiator used is preferably 2 to 60 parts by weight, more preferably 5 to 40 parts per 100 parts by weight of the acrylate compound. Part by mass.
  • connection layer 5 The anisotropic conductive film having the two-layer structure in FIG. 1 has been described above, but the third connection layer 5 may be formed on the other surface of the first connection layer 2 as shown in FIG. Thereby, the effect that it becomes possible to control the fluidity
  • the third connection layer 5 may have the same configuration as the second connection layer 3 described above. That is, the third connection layer 5 is a thermal or photocationic or anionic polymerizable resin layer (preferably a polymerizable resin layer containing an epoxy compound and a thermal or photocationic or anionic polymerization initiator), or thermal or photoradical polymerization.
  • the third connection layer 5 may be formed on the other surface of the first connection layer after the second connection layer is formed on one surface of the first connection layer. Before the second connection layer is formed, the third connection layer 5 may be formed. The third connection layer may be formed in advance on the other surface (the surface on which the second connection layer is not formed) of one connection layer or a photopolymerizable resin layer that is a precursor thereof.
  • Examples of the method for producing an anisotropic conductive film of the present invention include a production method for carrying out a one-stage photopolymerization reaction and a production method for carrying out a two-stage photopolymerization reaction.
  • the conductive particles 4 are embedded in the photopolymerizable resin layer 31 formed on the release film 30 as necessary so that the embedding rate is 80% or more, or 1% or more and 20% or less. It arranges with a single layer so that it may become.
  • the method for arranging the conductive particles 4 is not particularly limited, and a method using a biaxial stretching operation for the unstretched polypropylene film of Example 1 of Japanese Patent No. 4778938, or a mold disclosed in Japanese Patent Application Laid-Open No. 2010-33793. The method used can be adopted. It should be noted that the degree of arrangement is preferably two-dimensionally separated from each other by about 1 to 100 ⁇ m in consideration of the size of the connection target, conduction reliability, insulation, mounting conductive particle capture rate, and the like.
  • the adjustment of the embedding rate can be performed by repeatedly pressing an elastic body such as a rubber roll.
  • UV ultraviolet rays
  • FIG. 3A the photopolymerizable resin layer 31 in which the conductive particles 4 are arranged is subjected to a photopolymerization reaction by irradiating ultraviolet rays (UV), and the conductive particles 4 are fixed on the surface.
  • the first connection layer 2 is formed.
  • ultraviolet rays (UV) may be irradiated from the conductive particle side or from the opposite side, but when ultraviolet rays (UV) are irradiated from the conductive particle side, as shown in FIG.
  • the curing rate of the region 2X of the first connection layer located between the conductive particles 4 and the outermost surface of the first connection layer 2 is set to cure the region 2Y of the first connection layer located between the adjacent conductive particles 4. Can be lower than the rate. By doing so, the curability of the back side of the particles is surely lowered, the pushing at the time of joining is facilitated, and the effect of preventing the flow of the particles can be provided at the same time.
  • the second connection layer 3 made of heat, photocation, anion, or radical polymerizable resin layer is formed on the surface of the first connection layer 2 on the conductive particle 4 side.
  • the second connection layer 3 formed on the release film 40 by a conventional method is placed on the surface of the first connection layer 2 on the conductive particle 4 side, and thermocompression-bonded to such an extent that excessive thermal polymerization does not occur. Then, by removing the release films 30 and 40, the anisotropic conductive film of FIG. 4B can be obtained.
  • anisotropic conductive film 100 of FIG. 5 can be obtained by implementing the following processes (Z) after a process (C).
  • a third connection layer made of a heat, photocation, anion, or radical polymerizable resin layer is formed on the opposite surface of the first connection layer on the conductive particle side, preferably in the same manner as the second connection layer. Thereby, the anisotropic conductive film of FIG. 5 can be obtained.
  • anisotropic conductive film 100 of FIG. 5 can also be obtained by performing the following process (a) prior to the process (A) without performing the process (Z).
  • This step is a step of forming a third connection layer made of heat, photocation, anion, or radical polymerizable resin layer on one side of the photopolymerizable resin layer.
  • the anisotropic conductive film 100 of FIG. 5 can be obtained by carrying out the steps (A), (B) and (C).
  • the conductive particles are arranged in a single layer on the other surface of the photopolymerizable resin layer so that the embedding rate is 80% or more or 1% or more and 20% or less.
  • the conductive particles 4 are embedded in the photopolymerizable resin layer 31 formed on the release film 30 as necessary so that the embedding rate becomes 80% or more, or 1% or more and 20% or less. It arranges with a single layer so that it may become.
  • the method for arranging the conductive particles 4 is not particularly limited, and a method using a biaxial stretching operation for the unstretched polypropylene film of Example 1 of Japanese Patent No. 4778938, or a mold disclosed in Japanese Patent Application Laid-Open No. 2010-33793. The method used can be adopted. It should be noted that the degree of arrangement is preferably two-dimensionally separated from each other by about 1 to 100 ⁇ m in consideration of the size of the connection target, conduction reliability, insulation, mounting conductive particle capture rate, and the like.
  • UV ultraviolet rays
  • FIG. 7A the photopolymerizable resin layer 31 in which the conductive particles 4 are arranged is subjected to a photopolymerization reaction by irradiating ultraviolet rays (UV), and the conductive particles 4 are temporarily fixed on the surface.
  • the temporary first connection layer 20 is formed.
  • ultraviolet rays (UV) may be irradiated from the conductive particle side or from the opposite side, but when ultraviolet rays (UV) are irradiated from the conductive particle side, as shown in FIG.
  • the curing rate of the region 2X of the first connection layer located between the conductive particles 4 and the outermost surface of the temporary first connection layer 20 is set to be equal to that of the region 2Y of the first connection layer located between the adjacent conductive particles 4. It can be made lower than the curing rate.
  • the second connection layer 3 made of a thermal cation, anion, or radical polymerizable resin layer is formed on the surface of the temporary first connection layer 20 on the conductive particle 4 side.
  • the second connection layer 3 formed on the release film 40 by a conventional method is placed on the surface of the first connection layer 2 on the conductive particle 4 side, and thermocompression-bonded to such an extent that excessive thermal polymerization does not occur.
  • the temporary anisotropic conductive film 50 of FIG. 8B can be obtained by removing the release films 30 and 40.
  • the temporary first connection layer 20 is irradiated with ultraviolet rays from the side opposite to the second connection layer 3 to undergo a photopolymerization reaction, and the temporary first connection layer 20 is fully cured to be first.
  • the connection layer 2 is formed.
  • the anisotropic conductive film 1 of FIG. 9B can be obtained.
  • the ultraviolet irradiation in this step is preferably performed from a direction perpendicular to the temporary first connection layer.
  • the anisotropic conductive film 100 of FIG. 5 can be obtained by implementing the following process (Z) after a process (DD).
  • a third connection layer made of a heat, photocation, anion, or radical polymerizable resin layer is formed on the opposite surface of the first connection layer on the conductive particle side, preferably in the same manner as the second connection layer. Thereby, the anisotropic conductive film of FIG. 5 can be obtained.
  • anisotropic conductive film 100 of FIG. 5 can also be obtained by performing the following process (a) prior to the process (AA) without performing the process (Z).
  • This step is a step of forming a third connection layer made of heat, photocation, anion, or radical polymerizable resin layer on one side of the photopolymerizable resin layer.
  • steps (AA) to (DD) are carried out to obtain the anisotropic conductive film 100 of FIG.
  • the conductive particles are arranged in a single layer so that the embedding rate is 80% or more or 1% or more and 20% or less on the other surface of the photopolymerizable resin layer.
  • a photopolymerization initiator there is a concern that the product life as an anisotropic conductive film, connection, and stability of the connection structure may be adversely affected in the process.
  • connection structure is preferably applied when anisotropically conductively connecting a first electronic component such as an IC chip or IC module and a second electronic component such as a flexible substrate or a glass substrate. can do.
  • the connection structure thus obtained is also part of the present invention. Note that the first connection layer side of the anisotropic conductive film is disposed on the second electronic component side such as a flexible substrate, and the second connection layer side is disposed on the first electronic component side such as an IC chip. It is preferable from the point of improving the property.
  • Examples 1 to 6 Comparative Example 1
  • the conductive particles are arranged in accordance with the operation of Example 1 of Japanese Patent No. 4778938, and the difference in the two-layer structure in which the first connection layer and the second connection layer are laminated according to the formulation (parts by mass) shown in Table 1.
  • An anisotropic conductive film was prepared.
  • First connection layer Specifically, first, a mixed solution of an acrylate compound, a radical photopolymerization initiator, and the like was prepared using ethyl acetate or toluene so that the solid content was 50% by mass. This mixed solution is applied to a polyethylene terephthalate film having a thickness of 50 ⁇ m so as to have a dry thickness of 5 ⁇ m, and dried in an oven at 80 ° C. for 5 minutes, whereby radical photopolymerization that is a precursor layer of the first connection layer is performed. A functional resin layer was formed.
  • conductive particles Ni / Au plating resin particles, AUL 704, Sekisui Chemical Co., Ltd.
  • conductive particles having an average particle diameter of 4 ⁇ m are separated from each other by 4 ⁇ m from the obtained radical photopolymerizable resin layer, and repeated by a rubber roll.
  • the conductive particles were arranged in a single layer so that the embedding rate of the conductive particles in the first connection layer became the percentage shown in Table 1 of the particle diameter.
  • the first connection layer having conductive particles fixed on the surface was formed by irradiating the radical photopolymerizable resin layer with ultraviolet rays having a wavelength of 365 nm and an integrated light amount of 4000 mJ / cm 2 from the conductive particle side.
  • thermosetting resin e.g., polyethylene terephthalate film having a thickness of 50 ⁇ m so as to have a dry thickness of 12 ⁇ m, and dried in an oven at 80 ° C. for 5 minutes to form a second connection layer.
  • An anisotropic conductive film was obtained by laminating the first connection layer and the second connection layer thus obtained so that the conductive particles were inside.
  • connection structure sample (Connection structure sample) Using the obtained anisotropic conductive film, an IC chip (bump size 30 ⁇ 85 ⁇ m, bump height 15 ⁇ m, bump pitch 50 ⁇ m) of 0.5 ⁇ 1.8 ⁇ 20.0 mm was 0.5 The sample was mounted on a glass wiring board (1737F) manufactured by Corning having a size of ⁇ 50 ⁇ 30 mm under the conditions of 180 ° C., 80 MPa, and 5 seconds to obtain a connection structure sample.
  • a glass wiring board (1737F) manufactured by Corning having a size of ⁇ 50 ⁇ 30 mm under the conditions of 180 ° C., 80 MPa, and 5 seconds to obtain a connection structure sample.
  • connection structure sample body As described below, the “mounting conductive particle capture rate”, “conduction reliability”, “number of connected particles”, and “insulation” of the anisotropic conductive film were evaluated. .
  • the obtained results are shown in Table 1.
  • an IC chip having a size of 0.5 ⁇ 1.5 ⁇ 13 mm (gold-plated bump size 25 ⁇ 140 ⁇ m, bump height 15 ⁇ m, space between bumps 7.5 ⁇ m), A connection structure sample body obtained by mounting on a glass wiring board (1737F) manufactured by Corning Inc. having a size of 0.5 ⁇ 50 ⁇ 30 mm under the conditions of 180 ° C., 80 MPa, and 5 seconds was used.
  • connection structure sample was left in a high-temperature and high-humidity environment at 85 ° C. and 85% RH for 500 hours, the conduction resistance was measured using a digital multimeter (Agilent Technology Co., Ltd.). Practically, it is desirable that it is 4 ⁇ or less.
  • connection structure sample body A 10 mm square region of the obtained connection structure sample body was observed with an electron microscope at a magnification of 50 times, and a connection body in which two or more conductive particles were connected in a linear or lump shape was used as one connection particle.
  • the number of connected particles was counted. For example, when there are two connected particles in which two conductive particles are connected and there is one connected particle in which four connected particles are connected, the number of connected particles is three.
  • the number of conductive particles constituting the connected particles also tends to increase, that is, the independence of the conductive particles in the space between the bumps tends to be impaired, and thus the probability of occurrence of a short circuit tends to increase.
  • the conductive particle burying rate in the first connection layer was 80% or more, and thus the number of connected particles was 10 or less.
  • practically preferable results were obtained for each of the evaluation items of the mounting conductive particle capture rate, conduction reliability, and occurrence rate of short circuit.
  • Example 7 An anisotropic conductive film was produced in the same manner as in Example 1 except that ultraviolet rays were irradiated with an integrated light amount of 2000 mJ / cm 2 when forming the first connection layer. Anisotropy of Example 7 in which ultraviolet rays were irradiated from both sides of the first connection layer by further irradiating ultraviolet rays having a wavelength of 365 nm with an integrated light quantity of 2000 mJ / cm 2 from the first connection layer side of the anisotropic conductive film. Conductive film was obtained. Using this anisotropic conductive film, a connection structure sample was prepared and evaluated in the same manner as the anisotropic conductive film of Example 1, and almost the same practically no problem was obtained. The particle capture rate tended to be further improved.
  • Examples 8-12, Comparative Examples 2-3 Implementation was performed except that the conductive particles were arranged in a single layer so that the embedding rate of the conductive particles in the first connection layer was a percentage shown in Table 2 of the particle diameter by adjusting the number of repeated pressings by the rubber roll.
  • Example 1 By repeating the operation of Example 1, an anisotropic conductive film was obtained, and a connection structure sample was obtained.
  • connection structure sample body in the same manner as in Example 1, the “mounting conductive particle capture rate”, “conduction reliability”, and “insulation (short-circuit occurrence rate)” of the anisotropic conductive film were tested and evaluated. Further, as described below, “the“ tacking force ”on the first connection layer side” and “adhesion strength (die shear)” were evaluated. The obtained results are shown in Table 2.
  • the embedding rate of the conductive particles in the first connection layer exceeded 20%, so that it was tacky compared with the anisotropic conductive films of Examples 8-12.
  • the strength and adhesive strength were poor.
  • the occurrence rate of short circuit has increased by about 2.5 times.
  • the anisotropic conductive film of Comparative Example 3 since the embedding rate of the conductive particles in the first connection layer was less than 1%, the mounting conductive particle trapping was compared with the anisotropic conductive films of Examples 8-12. The rate decreased, and the occurrence rate of short circuit, which is an evaluation index of insulation, increased by about 7.5 times.
  • Example 13 An anisotropic conductive film was produced in the same manner as in Example 8 except that ultraviolet rays were irradiated with an integrated light amount of 2000 mJ / cm 2 when forming the first connection layer. Anisotropy of Example 13 in which ultraviolet rays with a wavelength of 365 nm were further irradiated from the first connection layer side of this anisotropic conductive film at an integrated light quantity of 2000 mJ / cm 2 , so that ultraviolet rays were irradiated from both surfaces of the first connection layer. Conductive film was obtained. Using this anisotropic conductive film, a connection structure sample body was prepared and evaluated in the same manner as the anisotropic conductive film of Example 8, and almost the same practically no problem was obtained. The particle capture rate tended to be further improved.
  • the anisotropic conductive film of the present invention comprises a first connection layer comprising a photopolymerization resin layer, and a second connection layer comprising a heat or photocationic or anion polymerizable resin layer, or a heat or photoradical polymerizable resin layer.
  • conductive particles for anisotropic conductive connection are embedded on the surface of the first connection layer on the second connection layer side, and the embedding rate of the first connection layer is 80. % Are arranged in a single layer so as to be at least%. For this reason, it is possible to satisfactorily fix the conductive particles to the first connection layer, and a good mounting conductive particle capture rate, conduction reliability, the number of connected particles, and insulation are exhibited.
  • the conductive particles for anisotropic conductive connection are arranged in a single layer so that the embedding rate in the first connection layer is 1% or more and 20% or less. Has been. For this reason, the first connection layer exhibits good tackiness and adhesive strength, and exhibits good conduction reliability, insulation (short-circuit occurrence rate), and mounted conductive particle capture rate. Therefore, these anisotropic conductive films of the present invention are useful for anisotropic conductive connection to wiring boards of electronic components such as IC chips. The wiring of such electronic parts is being narrowed, and the present invention particularly exhibits its effect when it contributes to such technical progress.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

 異方性導電フィルムは、第1接続層とその片面に形成された第2接続層とを有する。第1接続層は、光重合樹脂層あり、第2接続層は、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層である。第1接続層の第2接続層側表面には、異方性導電接続用の導電粒子が、第1接続層に対する埋入率が80%以上となるように又は1%以上20%以下となるように配列されている。

Description

異方性導電フィルム及びその製造方法
 本発明は、異方性導電フィルム及びその製造方法に関する。
 ICチップなどの電子部品の実装に異方性導電フィルムは広く使用されており、近年では、高密度実装への適用の観点から、導通信頼性や絶縁性の向上、実装導電粒子捕捉率の向上、製造コストの低減等を目的に、異方性導電接続用の導電粒子を単層で絶縁性接着層に配列させた2層構造の異方性導電フィルムが提案されている(特許文献1)。
 この2層構造の異方性導電フィルムは、転写層に単層且つ細密充填で導電粒子を配列させた後、転写層を2軸延伸処理することにより、導電粒子が所定間隔で均等に配列された転写層を形成した後、その転写層上の導電粒子を熱硬化性樹脂と重合開始剤とを含有する絶縁性樹脂層に転写し、更に転写した導電粒子上に、熱硬化性樹脂を含有するが重合開始剤を含有しない別の絶縁性樹脂層をラミネートすることにより製造されている(特許文献1)。
特許第4789738号明細書
 しかしながら、特許文献1の2層構造の異方性導電フィルムは、重合開始剤を含有していない絶縁性樹脂層を使用しているために、単層で所定間隔で均等に導電粒子を配列させたにもかかわらず、異方性導電接続の際の加熱により、重合開始剤を含有していない絶縁性樹脂層に比較的大きな樹脂流れが生じ易く、その流れに沿って導電粒子も流れ易くなるため、実装導電粒子捕捉率の低下、ショートの発生、絶縁性の低下等の問題が生じていた。
 本発明の目的は、以上の従来の技術の問題点を解決することであり、単層で配列された導電粒子を有する多層構造の異方性導電フィルムにおいて、良好な導通信頼性、良好な絶縁性、及び良好な実装導電粒子捕捉率を実現することである。
 本発明者らは、光重合性樹脂層に、導電粒子を特定の割合で埋めるように単層で配列させた後に、紫外線を照射することにより導電粒子を固定化若しくは仮固定化し、更に固定化もしくは仮固定化された導電粒子上に、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層を積層することにより得た異方性導電フィルムが、上述の本発明の目的を達成できる構成であることを見出し、本発明を完成させるに至った。
 即ち、本発明は、第1接続層とその片面に形成された第2接続層とを有する異方性導電フィルムであって、
 第1接続層が、光重合樹脂層であり、
 第2接続層が、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層であり、
 第1接続層の第2接続層側表面に、異方性導電接続用の導電粒子が単層で配列されており、且つ第1接続層に対する導電粒子の埋入率が80%以上であるか又は1%以上20%以下である
ことを特徴とする異方性導電フィルムを提供する。ここで、埋入率は、導電粒子が第1接続層に埋まっている程度を意味しており、導電粒子の粒子径Laに対し、導電粒子の第1接続層中に埋まっている深さLbの割合(埋入率)として定義することができ、「埋入率(%)=(Lb/La)×100」の式で求めることができる。
 なお、第2接続層は、加熱により重合反応を開始する熱重合開始剤を使用した熱重合性樹脂層であることが好ましいが、光により重合反応を開始する光重合開始剤を使用した光重合性樹脂層であってもよい。熱重合開始剤と光重合開始剤とを併用した熱・光重合性樹脂層であってもよい。ここで、第2接続層は、製造上、熱重合開始剤を使用した熱重合性樹脂層に限定される場合がある。
 本発明の異方性導電フィルムは、第1接続層の他面に、応力緩和などの接合体の反り防止を目的に、第2の接続層と略同様の構成の第3接続層を有していてもよい。即ち、第1接続層の他面に、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層からなる第3接続層を有していてもよい。
 なお、第3接続層は、加熱により重合反応を開始する熱重合開始剤を使用した熱重合性樹脂層であることが好ましいが、光により重合反応を開始する光重合開始剤を使用した光重合性樹脂層であってもよい。熱重合開始剤と光重合開始剤とを併用した熱・光重合性樹脂層であってもよい。ここで、第3接続層は、製造上、熱重合開始剤を使用した熱重合性樹脂層に限定される場合がある。
 また、本発明は、上述の異方性導電フィルムの製造方法であって、第1接続層を一段階の光重合反応で形成する以下の工程(A)~(C)、又は第1接続層を二段階の光重合反応で形成する後述する工程(AA)~(DD)を有する製造方法を提供する。
(第1接続層を一段階の光重合反応で形成する場合)
工程(A)
 光重合性樹脂層に、導電粒子を第1接続層に対する導電粒子の埋入率が80%以上となるように又は1%以上20%以下となるように単層で配列させる工程;
工程(B)
 導電粒子が配列した光重合性樹脂層に対して紫外線を照射することにより光重合反応させ、表面に導電粒子が固定化された第1接続層を形成する工程;及び
工程(C)
 第1接続層の導電粒子側表面に、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層からなる第2接続層を形成する工程。
(第1接続層を二段階の光重合反応で形成する場合)
工程(AA)
 光重合性樹脂層に、導電粒子を第1接続層に対する導電粒子の埋入率が80%以上となるように又は1%以上20%以下となるように単層で配列させる工程;
工程(BB)
 導電粒子が配列した光重合性樹脂層に対して紫外線を照射することにより光重合反応させ、表面に導電粒子が仮固定化された仮第1接続層を形成する工程;
工程(CC)
 仮第1接続層の導電粒子側表面に、熱カチオン、アニオン若しくはラジカル重合性樹脂層からなる第2接続層を形成する工程;及び
工程(DD)
 第2接続層と反対側から仮第1接続層に紫外線を照射することにより光重合反応させ、仮第1接続層を本硬化させて第1接続層を形成する工程。
 工程(CC)で第2接続層の形成の際に使用する開始剤として熱重合開始剤に限定しているのは、異方性導電フィルムとしての製品ライフ、接続および接続構造体の安定性に悪影響が生じないようにするためである。つまり、第1接続層に紫外線を二段階に分けて照射する場合には、その工程上の制約から第2接続層は熱重合硬化性のものに限定せざるを得ない場合がある。なお、二段階照射を連続的に行う場合は、一段階と略同様の工程で形成することができるので、同等の作用効果が期待できる。
 また、本発明は、第1接続層の他面に、第2接続層と同様の構成の第3接続層を有している異方性導電フィルムの製造方法であって、以上の工程(A)~(C)に加えて工程(C)の後で、以下の工程(Z)を有する製造方法、または、以上の工程(AA)~(DD)に加えて工程(DD)の後で、以下の工程(Z)を有する製造方法を提供する。
工程(Z)
 第1接続層の導電粒子側の反対面に、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層からなる第3接続層を形成する工程。
 更に、本発明は、第1接続層の他面に、第2接続層と略同様の構成の第3接続層を有している異方性導電フィルムの製造方法であって、以上の工程(A)~(C)に加えて、工程(A)に先だって以下の工程(a)を有する製造方法、または以上の工程(AA)~(DD)に加えて、工程(AA)に先だって以下の工程(a)を有する製造方法を提供する。
工程(a)
 光重合性樹脂層の片面に、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層からなる第3接続層を形成する工程。
 なお、この工程(a)を有する製造方法の工程(A)又は工程(AA)においては、光重合性樹脂層の他面に導電粒子を、第1接続層に対する導電粒子の埋入率が80%以上となるように又は1%以上20%以下となるように単層で配列させればよい。
 このような工程で第3接続層を設ける場合には、上述した理由から重合開始剤は熱反応によるものに限定されることが好ましい。しかしながら、第1接続層を設けた後に製品ライフや接続に悪影響を及ぼさない方法により、光重合開始剤を含む第2および第3接続層を設ければ、光重合開始剤を含んだ本発明の主旨に沿う異方性導電フィルムを作成することは、特に制限はされない。
 なお、本発明の第2接続層又は第3接続層のどちらかがタック層として機能する態様も本発明に包含される。
 加えて、本発明は、上述の異方性導電フィルムで第1電子部品を第2電子部品に異方性導電接続した接続構造体を提供する。
 本発明の異方性導電フィルムは、光重合樹脂層からなる第1接続層と、その片面に形成された、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層からなる第2接続層とを有しており、更に、第1接続層の第2接続層側表面には、異方性導電接続用の導電粒子が、第1接続層に対する導電粒子の埋入率が80%以上となるように又は1%以上20%以下となるように単層で配列されている。このため、導電粒子を第1接続層にしっかりと固定化でき、特に、埋入率が80%以上となるように単層で配列されている場合には、導電粒子を第1接続層に、より強固に固定化できる。反射的に、異方性導電フィルムの貼り付け性が安定的に向上し、異方性導電接続の生産性も向上する。しかも、第1接続層における導電粒子の下方(裏側)の光ラジカル重合性樹脂層は、導電粒子の存在のために紫外線が十分に照射されないので、相対的に硬化率が低くなり、良好な押し込み性を示し、結果的に、良好な導通信頼性、絶縁性、実装導電粒子捕捉率を実現することができる。なお、埋入率が1%以上20%以下となるように単層で配列されている場合には、第1接続層の樹脂量も大きく減ずることがないので、更に、タック性と接着強度とを向上させることができる。
 なお、異方性導電接続に熱を利用する場合は、通常の異方性導電フィルムの接続方法と同様の方法になる。光によるものの場合は、接続ツールによる押し込みを、反応が終了するまでに行えばよい。この場合においても、接続ツール等は樹脂流動や粒子の押し込みを促進するため加熱されている場合が多い。また熱と光を併用する場合も、上記と同様に行えばよい。
図1は、本発明の異方性導電フィルムの断面図である。 図2は、本発明の異方性導電フィルムの製造工程(A)の説明図である。 図3Aは、本発明の異方性導電フィルムの製造工程(B)の説明図である。 図3Bは、本発明の異方性導電フィルムの製造工程(B)の説明図である。 図4Aは、本発明の異方性導電フィルムの製造工程(C)の説明図である。 図4Bは、本発明の異方性導電フィルムの製造工程(C)の説明図である。 図5は、本発明の異方性導電フィルムの断面図である。 図6は、本発明の異方性導電フィルムの製造工程(AA)の説明図である。 図7Aは、本発明の異方性導電フィルムの製造工程(BB)の説明図である。 図7Bは、本発明の異方性導電フィルムの製造工程(BB)の説明図である。 図8Aは、本発明の異方性導電フィルムの製造工程(CC)の説明図である。 図8Bは、本発明の異方性導電フィルムの製造工程(CC)の説明図である。 図9Aは、本発明の異方性導電フィルムの製造工程(DD)の説明図である。 図9Bは、本発明の異方性導電フィルムの製造工程(DD)の説明図である。
<<異方性導電フィルム>>
 以下、本発明の異方性導電フィルムの好ましい一例を詳細に説明する。
 図1に示すように、本発明の異方性導電フィルム1は、光重合性樹脂層を光重合させた光重合樹脂層からなる第1接続層2の片面に、熱又は光カチオン、アニオンもしくはラジカル重合性樹脂層からなる第2接続層3が形成された構造を有している。そして、第1接続層2の第2接続層3側の表面2aには、異方性導電接続のために導電粒子4が単層で配列、好ましくは均等に配列されている。ここで均等とは、導電粒子が平面方向に配列されている状態を意味する。この規則性は一定の間隔で設けられてもよい。
<第1接続層2>
 本発明の異方性導電フィルム1を構成する第1接続層2は、光カチオン、アニオン又はラジカル重合性樹脂層等の光重合性樹脂層を光重合させた光重合樹脂層であるから、導電粒子を固定化できる。また、重合しているので、異方性導電接続時に加熱されても樹脂が流れ難くなるので、ショートの発生を大きく抑制でき、従って導通信頼性と絶縁性とを向上させ、且つ実装粒子捕捉効率も向上させることができる。特に好ましい第1接続層2は、アクリレート化合物と光ラジカル重合開始剤とを含む光ラジカル重合性樹脂層を光ラジカル重合させた光ラジカル重合樹脂層である。以下、第1接続層2が光ラジカル重合樹脂層である場合について説明する。
(アクリレート化合物)
 アクリレート単位となるアクリレート化合物としては、従来公知の光ラジカル重合性アクリレートを使用することができる。例えば、単官能(メタ)アクリレート(ここで、(メタ)アクリレートにはアクリレートとメタクリレートとが包含される)、二官能以上の多官能(メタ)アクリレートを使用することができる。本発明においては、接着剤を熱硬化性とするために、アクリル系モノマーの少なくとも一部に多官能(メタ)アクリレートを使用することが好ましい。
 第1接続層2におけるアクリレート化合物の含有量は、少なすぎると第2接続層3との粘度差を付けにくくなる傾向があり、多すぎると硬化収縮が大きく作業性が低下する傾向があるので、好ましくは2~70質量%、より好ましくは10~50質量%である。
(光ラジカル重合開始剤)
 光ラジカル重合開始剤としては、公知の光ラジカル重合開始剤の中から適宜選択して使用することができる。例えば、アセトフェノン系光重合開始剤、ベンジルケタール系光重合開始剤、リン系光重合開始剤等が挙げられる。
 光ラジカル重合開始剤の使用量は、アクリレート化合物100質量部に対し、少なすぎると光ラジカル重合が十分に進行せず、多すぎると剛性低下の原因となるので、好ましくは0.1~25質量部、より好ましくは0.5~15質量部である。
(導電粒子)
 導電粒子としては、従来公知の異方性導電フィルムに用いられているものの中から適宜選択して使用することができる。例えばニッケル、コバルト、銀、銅、金、パラジウムなどの金属粒子、金属被覆樹脂粒子などが挙げられる。2種以上を併用することもできる。
 導電粒子の平均粒子径としては、小さすぎると配線の高さのばらつきを吸収できず抵抗が高くなる傾向があり、大きすぎてもショートの原因となる傾向があるので、好ましくは1~10μm、より好ましくは2~6μmである。
 このような導電粒子の第1接続層2中の粒子量は、少なすぎると実装導電粒子捕捉数が低下して異方性導電接続が難しくなり、多すぎるとショートすることが懸念されるので、好ましくは1平方mm当たり50~50000個、より好ましくは200~30000個である。
 第1接続層2には、必要に応じて、フェノキシ樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ウレタン樹脂、ブタジエン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリオレフィン樹脂などの膜形成樹脂を併用することができる。第2接続層および第3接続層にも、同様に併用してもよい。
 第1接続層2の層厚は、薄すぎると実装導電粒子捕捉率が低下する傾向があり、厚すぎると導通抵抗が高くなる傾向があるので、好ましくは1.0~6.0μm、より好ましくは2.0~5.0μmである。
 第1接続層2には、更に、エポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有させることもできる。この場合、後述するように、第2接続層3もエポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する熱又は光カチオン若しくはアニオン重合性樹脂層とすることが好ましい。これにより、層間剥離強度を向上させることができる。エポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤については、第2接続層3で説明する。
 第1接続層2においては、図1に示すように、導電粒子4が第1接続層2に埋まっている。埋まっている程度を、導電粒子4の粒子径Laに対し、導電粒子4の第1接続層2中に埋まっている深さLbの割合(埋入率)として定義すると、埋入率は、「埋入率(%)=(Lb/La)×100」の式で求めることができる。
 本発明では、「良好な実装導電粒子捕捉性を実現するために導電粒子を意図した位置に固定できるようにする」という課題を解決するために、第1接続層2に対する導電粒子4の埋入率を80%以上、好ましくは85%以上、より好ましくは90%より大きくなるように調整する。この場合、導電粒子4が全て第1接続層2中に埋没してもよいが、120%以下とすることが好ましい。
 また、本発明では、「良好な実装導電粒子捕捉性を実現するために導電粒子を意図した位置に固定できるようにする」という課題と、「第1接続層2と被接着体との間の接着強度を向上させるために導電粒子の下方に存在する樹脂量を確保して良好なタック性を実現する」という課題とをバランス良く解決するために、第1接続層2に対する導電粒子4の埋入率を、その下限が1%以上、好ましくは1%より大きく、上限が20%以下、好ましくは20%未満となるように調整する。
 なお、第1接続層2に対する導電粒子4の埋入率の調整は、例えば、剥離材を表面に備えたゴムロールにより繰り返して押圧することにより行うことができる。具体的には、埋入率を小さくする場合には、繰り返し回数を少なくすればよく、大きくする場合には、繰り返し回数を多くすればよい。
 また、光重合性樹脂層に紫外線を照射して第1接続層2を形成する場合、導電粒子が配置されていない側の面と導電粒子が配置されている側の面のいずれから照射してもよいが、導電粒子が配置されている側から照射した場合には、第1接続層2において、導電粒子4と第1接続層2の最外表面2bとの間に位置する第1接続層の領域2Xの硬化率を、互いに隣接する導電粒子4間に位置する第1接続層の領域2Yの硬化率よりも低くすることができる。これにより、異方性導電接続の熱圧着の際に、第1接続層の領域2Xが排除され易くなり、導通信頼性が向上する。ここで、硬化率はビニル基の減少比率と定義される数値であり、第1接続層の領域2Xの硬化率は好ましくは40~80%であり、第1接続層の領域2Yの硬化率は好ましくは70~100%である。
 ここで、導電粒子が配置されていない面から照射した場合は、第1接続層の領域2Xと2Yに硬化率の差が、実質的になくなる。これは、ACFの製品品質の上では好ましい。ACF製造工程において、導電粒子の固定化が促進し、安定な品質を確保できるためである。製品として一般的な長尺化をする際、巻き始めと巻き終わりで、配列した導電粒子にかかる圧力を略同一にすることができ、配列の乱れを防止できるためである。
 なお、第1接続層2の形成の際の光ラジカル重合は、一段階(即ち、一回の光照射)で行ってもよいが、二段階(即ち、二回の光照射)で行ってもよい。この場合、二段階目の光照射は、第1接続層2の片面に第2接続層3が形成された後に、酸素含有雰囲気(大気中)下で第1接続層2の他面側から行うことが好ましい。これにより、ラジカル重合反応が酸素阻害され、未硬化成分の表面濃度が高まり、タック性を向上させることができるという効果を期待できる。また、硬化を二段階で行うことで重合反応も複雑化するため、樹脂や粒子の流動性の精緻な制御が可能となることも期待できる。
 このような二段階の光ラジカル重合における第1接続層の領域2Xの第一段階における硬化率は好ましくは10~50%であり、第二段階における硬化率は好ましくは40~80%であり、第1接続層の領域2Yの第一段階における硬化率は好ましくは30~90%であり、第二段階における硬化率は好ましくは70~100%である。
 また、第1接続層2の形成の際の光ラジカル重合反応が二段階で行われる場合、ラジカル重合開始剤として1種類だけ使用することもできるが、ラジカル反応を開始する波長帯域が異なる2種類の光ラジカル重合開始剤を使用することがタック性向上のために好ましい。例えば、LED光源からの波長365nmの光でラジカル反応を開始する光ラジカル重合開始剤(例えば、IRGACURE369、BASFジャパン(株))と、高圧水銀ランプ光源からの光でラジカル反応を開始する光ラジカル重合開始剤(例えば、IRGACURE2959、BASFジャパン(株))とを併用することが好ましい。このように2種類の異なる光ラジカル重合開始剤を使用することで樹脂の結合が複雑化するため、接続時の樹脂の熱流動の挙動をより精緻に制御することが可能になる。これは異方性導電接続の押し込み時に、粒子は厚み方向にかかる力は受け易くなるが、面方向への流動は抑制されるため本発明の効果がより発現しやすくなるからである。
 また、第1接続層2のレオメーターで測定した際の最低溶融粘度は、第2接続層3の最低溶融粘度よりも高いこと、具体的には[第1接続層2の最低溶融粘度(mPa・s)]/[第2接続層3の最低溶融粘度(mPa・s)]の数値が、好ましくは1~1000、より好ましくは4~400である。なお、それぞれの好ましい最低溶融粘度は、前者については100~100000mPa・s、より好ましくは500~50000mPa・sである。後者については好ましくは0.1~10000mPa・s、より好ましくは0.5~1000mPa・sである。
 第1接続層2の形成は、光ラジカル重合性アクリレートと光ラジカル重合開始剤とを含有する光ラジカル重合性樹脂層に、フィルム転写法、金型転写法、インクジェット法、静電付着法等の手法により導電粒子を付着させ、紫外線を導電粒子側、その反対側、もしくは両側から照射することにより行うことができる。特に、紫外線を導電粒子側からのみ照射することが、第1接続層の領域2Xの硬化率を相対的に低く抑制することができる点から好ましい。
<第2接続層3>
 第2接続層3は、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層、好ましくはエポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する熱又は光カチオン若しくはアニオン重合性樹脂層、又はアクリレート化合物と熱又は光ラジカル重合開始剤とを含有する熱又は光ラジカル重合性樹脂層からなる。ここで、第2接続層3を熱重合性樹脂層から形成することは、第1接続層2を形成する際の紫外線照射により第2接続層3の重合反応が生じないため、生産の簡便性および品質安定性の上では望ましい。
 第2接続層3が、熱又は光カチオン若しくはアニオン重合性樹脂層である場合、更に、アクリレート化合物と熱又は光ラジカル重合開始剤とを含有することができる。これにより第1接続層2と層間剥離強度を向上させることができる。
(エポキシ化合物)
 第2接続層3がエポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する熱又は光カチオン若しくはアニオン重合性樹脂層である場合、エポキシ化合物としては、分子内に2つ以上のエポキシ基を有する化合物もしくは樹脂が好ましく挙げられる。これらは液状であっても、固体状であってもよい。
(熱カチオン重合開始剤)
 熱カチオン重合開始剤としては、エポキシ化合物の熱カチオン重合開始剤として公知のものを採用することができ、例えば、熱により、カチオン重合性化合物をカチオン重合させ得る酸を発生するものであり、公知のヨードニウム塩、スルホニウム塩、ホスホニウム塩、フェロセン類等を用いることができ、温度に対して良好な潜在性を示す芳香族スルホニウム塩を好ましく使用することができる。
 熱カチオン重合開始剤の配合量は、少なすぎても硬化不良となる傾向があり、多すぎても製品ライフが低下する傾向があるので、エポキシ化合物100質量部に対し、好ましくは2~60質量部、より好ましくは5~40質量部である。
(熱アニオン重合開始剤)
 熱アニオン重合開始剤としては、エポキシ化合物の熱アニオン重合開始剤として公知のものを採用することができ、例えば、熱により、アニオン重合性化合物をアニオン重合させ得る塩基を発生するものであり、公知の脂肪族アミン系化合物、芳香族アミン系化合物、二級又は三級アミン系化合物、イミダゾール系化合物、ポリメルカプタン系化合物、三フッ化ホウ素-アミン錯体、ジシアンジアミド、有機酸ヒドラジッド等を用いることができ、温度に対して良好な潜在性を示すカプセル化イミダゾール系化合物を好ましく使用することができる。
 熱アニオン重合開始剤の配合量は、少なすぎても硬化不良となる傾向があり、多すぎても製品ライフが低下する傾向があるので、エポキシ化合物100質量部に対し、好ましくは2~60質量部、より好ましくは5~40質量部である。
(光カチオン重合開始剤及び光アニオン重合開始剤)
 エポキシ化合物用の光カチオン重合開始剤又は光アニオン重合開始剤としては、公知のものを適宜使用することができる。
(アクリレート化合物)
 第2接続層3がアクリレート化合物と熱又は光ラジカル重合開始剤とを含有する熱又は光ラジカル重合性樹脂層である場合、アクリレート化合物としては、第1接続層2に関して説明したものの中から適宜選択して使用することができる。
(熱ラジカル重合開始剤)
 また、熱ラジカル重合開始剤としては、例えば、有機過酸化物やアゾ系化合物等が挙げられるが、気泡の原因となる窒素を発生しない有機過酸化物を好ましく使用することができる。
 熱ラジカル重合開始剤の使用量は、少なすぎると硬化不良となり、多すぎると製品ライフの低下となるので、アクリレート化合物100質量部に対し、好ましくは2~60質量部、より好ましくは5~40質量部である。
(光ラジカル重合開始剤)
 アクリレート化合物用の光ラジカル重合開始剤としては、公知の光ラジカル重合開始剤を使用することができる。
 光ラジカル重合開始剤の使用量は、少なすぎると硬化不良となり、多すぎると製品ライフの低下となるので、アクリレート化合物100質量部に対し、好ましくは2~60質量部、より好ましくは5~40質量部である。
(第3接続層5)
 以上、図1の2層構造の異方性導電フィルムについて説明したが、図5に示すように、第1接続層2の他面に第3接続層5が形成されていてもよい。これにより、層全体の流動性をより精緻に制御することが可能となるという効果が得られる。ここで、第3接続層5としては、前述した第2接続層3と同じ構成としてもよい。即ち、第3接続層5は、熱又は光カチオン若しくはアニオン重合性樹脂層(好ましくはエポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する重合性樹脂層)、又は熱又は光ラジカル重合性樹脂層(好ましくはアクリレート化合物と熱又は光ラジカル重合開始剤とを含有する重合性樹脂層)からなるものである。このような第3接続層5は、第1接続層の片面に第2接続層を形成した後に、第1接続層の他面に形成してもよく、第2接続層の形成前に、第1接続層もしくはその前駆体である光重合性樹脂層の他面(第2接続層が形成されない面)に予め第3接続層を形成しておいてもよい。
<<異方性導電フィルムの製造方法>>
 本発明の異方性導電フィルムの製造方法には、一段階の光重合反応を行う製造方法と、二段階の光重合反応を行う製造方法が挙げられる。
<一段階の光重合反応を行う製造方法>
 図1(図4B)の異方性導電フィルムを一段階で光重合させて製造する一例を説明する。この製造例は、以下の工程(A)~(C)を有する。
(工程(A))
 図2に示すように、必要に応じて剥離フィルム30上に形成した、光重合性樹脂層31に、導電粒子4を埋入率が80%以上となるように又は1%以上20%以下となるように単層で配列させる。導電粒子4の配列の手法としては、特に制限はなく、特許第4789738号の実施例1の無延伸ポリプロピレンフィルムに2軸延伸操作を利用する方法や、特開2010-33793号公報の金型を使用する方法等を採用することができる。なお、配列の程度としては、接続対象のサイズ、導通信頼性、絶縁性、実装導電粒子捕捉率等を考慮し、2次元的に互いに1~100μm程度離隔して配列されることが好ましい。
 埋入率の調整は、ゴムロールなどの弾性体を繰り返し押圧することにより行うことができる。
(工程(B))
 次に、図3Aに示すように、導電粒子4が配列した光重合性樹脂層31に対して、紫外線(UV)を照射することにより光重合反応させ、表面に導電粒子4が固定化された第1接続層2を形成する。この場合、紫外線(UV)を導電粒子側から照射してもよく、反対側から照射してもよいが、導電粒子側から紫外線(UV)を照射した場合には、図3Bに示すように、導電粒子4と第1接続層2の最外表面との間に位置する第1接続層の領域2Xの硬化率を、互いに隣接する導電粒子4間に位置する第1接続層の領域2Yの硬化率よりも低くすることができる。このようにすることで、粒子の裏側の硬化性は確実に低くなり接合時の押し込みを容易にし、且つ粒子の流動を防ぐ効果も同時に備えることができる。
(工程(C))
 次に、図4Aに示すように、第1接続層2の導電粒子4側表面に、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層からなる第2接続層3を形成する。具体的な一例として、剥離フィルム40に常法により形成された第2接続層3を、第1接続層2の導電粒子4側表面に載せ、過大な熱重合が生じない程度に熱圧着する。そして剥離フィルム30と40とを取り除くことにより図4Bの異方性導電フィルムを得ることができる。
 なお、図5の異方性導電フィルム100は、工程(C)の後で、以下の工程(Z)を実施することにより得ることができる。
(工程(Z))
 第1接続層の導電粒子側の反対面に、好ましくは第2接続層と同様に、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層からなる第3接続層を形成する。これにより図5の異方性導電フィルムを得ることができる。
 また、図5の異方性導電フィルム100は、工程(Z)を行うことなく、工程(A)に先だって、以下の工程(a)を実施することでも得ることができる。
(工程(a))
 この工程は、光重合性樹脂層の片面に、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層からなる第3接続層を形成する工程である。この工程(a)に引き続き、工程(A)、(B)及び(C)を実施することにより図5の異方性導電フィルム100を得ることができる。但し、工程(A)において、光重合性樹脂層の他面に導電粒子を、埋入率が80%以上となるように又は1%以上20%以下となるように単層で配列させる。
(二段階の光重合反応を行う製造方法)
 次に、図1(図4B)の異方性導電フィルムを二段階で光重合させて製造する一例を説明する。この製造例は、以下の工程(AA)~(DD)を有する。
(工程(AA))
 図6に示すように、必要に応じて剥離フィルム30上に形成した、光重合性樹脂層31に、導電粒子4を埋入率が80%以上となるように又は1%以上20%以下となるように単層で配列させる。導電粒子4の配列の手法としては、特に制限はなく、特許第4789738号の実施例1の無延伸ポリプロピレンフィルムに2軸延伸操作を利用する方法や、特開2010-33793号公報の金型を使用する方法等を採用することができる。なお、配列の程度としては、接続対象のサイズ、導通信頼性、絶縁性、実装導電粒子捕捉率等を考慮し、2次元的に互いに1~100μm程度離隔して配列されることが好ましい。
(工程(BB))
 次に、図7Aに示すように、導電粒子4が配列した光重合性樹脂層31に対して、紫外線(UV)を照射することにより光重合反応させ、表面に導電粒子4が仮固定化された仮第1接続層20を形成する。この場合、紫外線(UV)を導電粒子側から照射してもよく、反対側から照射してもよいが、導電粒子側から紫外線(UV)を照射した場合には、図7Bに示すように、導電粒子4と仮第1接続層20の最外表面との間に位置する第1接続層の領域2Xの硬化率を、互いに隣接する導電粒子4間に位置する第1接続層の領域2Yの硬化率よりも低くすることができる。
(工程(CC))
 次に、図8Aに示すように、仮第1接続層20の導電粒子4側表面に、熱カチオン、アニオン若しくはラジカル重合性樹脂層からなる第2接続層3を形成する。具体的な一例として、剥離フィルム40に常法により形成された第2接続層3を、第1接続層2の導電粒子4側表面に載せ、過大な熱重合が生じない程度に熱圧着する。そして剥離フィルム30と40とを取り除くことにより図8Bの仮異方性導電フィルム50を得ることができる。
(工程DD)
 次に、図9Aに示すように、第2接続層3と反対側から仮第1接続層20に紫外線を照射することにより光重合反応させ、仮第1接続層20を本硬化させて第1接続層2を形成する。これにより、図9Bの異方性導電フィルム1を得ることができる。この工程における紫外線の照射は、仮第1接続層に対し垂直方向から行うことが好ましい。また、第1接続層の領域2Xと2Yの硬化率差が消失しないように、マスクを介して照射したり、照射部位により照射光量に差を設けることが好ましい。
 なお、2段階で光重合させた場合、図5の異方性導電フィルム100は、工程(DD)の後で、以下の工程(Z)を実施することにより得ることができる。
(工程(Z))
 第1接続層の導電粒子側の反対面に、好ましくは第2接続層と同様に、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層からなる第3接続層を形成する。これにより図5の異方性導電フィルムを得ることができる。
 また、図5の異方性導電フィルム100は、工程(Z)を行うことなく、工程(AA)に先だって、以下の工程(a)を実施することでも得ることができる。
(工程(a))
 この工程は、光重合性樹脂層の片面に、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層からなる第3接続層を形成する工程である。この工程(a)に引き続き、工程(AA)~(DD)を実施することにより図5の異方性導電フィルム100を得ることができる。但し、工程(AA)において、光重合性樹脂層の他面に導電粒子を埋入率が80%以上となるように又は1%以上20%以下となるように単層で配列させる。この場合、第2接続層の形成の際に使用する重合開始剤としては、熱重合開始剤を適用することが好ましい。光重合開始剤の場合は、工程上、異方性導電フィルムとしての製品ライフ、接続および接続構造体の安定性に悪影響を及ぼすことが懸念される。
<<接続構造体>>
 このようにして得られた異方性導電フィルムは、ICチップ、ICモジュールなどの第1電子部品と、フレキシブル基板、ガラス基板などの第2電子部品とを異方性導電接続する際に好ましく適用することができる。このようにして得られる接続構造体も本発明の一部である。なお、異方性導電フィルムの第1接続層側をフレキシブル基板等の第2電子部品側に配し、第2接続層側をICチップなどの第1電子部品側に配することが、導通信頼性を高める点から好ましい。
 以下、本発明を実施例により具体的に説明する。
  実施例1~6、比較例1
 特許第4789738号の実施例1の操作に準じて導電粒子の配列を行うとともに、表1に示す配合(質量部)に従って第1接続層と第2接続層とが積層された2層構造の異方性導電フィルムを作成した。
(第1接続層)
 具体的には、まず、アクリレート化合物及び光ラジカル重合開始剤等を酢酸エチル又はトルエンにて固形分が50質量%となるように混合液を調製した。この混合液を、厚さ50μmのポリエチレンテレフタレートフィルムに、乾燥厚が5μmとなるように塗布し、80℃のオーブン中で5分間乾燥することにより、第1接続層の前駆層である光ラジカル重合性樹脂層を形成した。
 次に、得られた光ラジカル重合性樹脂層に対し、平均粒子径4μmの導電粒子(Ni/Auメッキ樹脂粒子、AUL704、積水化学工業(株))を、互いに4μm離隔して、ゴムロールによる繰り返しの押圧回数を調整することにより、第1接続層に対する導電粒子の埋入率が粒子径の表1に示すパーセンテージとなるように単層で配列させた。更に、この導電粒子側から光ラジカル重合性樹脂層に対し、波長365nm、積算光量4000mJ/cmの紫外線を照射することにより、表面に導電粒子が固定された第1接続層を形成した。
(第2接続層)
 熱硬化性樹脂及び潜在性硬化剤等を酢酸エチル又はトルエンにて固形分が50質量%となるように混合液を調製した。この混合液を、厚さ50μmのポリエチレンテレフタレートフィルムに、乾燥厚が12μmとなるように塗布し、80℃のオーブン中で5分間乾燥することにより、第2接続層を形成した。
(異方性導電フィルム)
 このようにして得られた第1接続層と第2接続層とを、導電粒子が内側となるようにラミネートすることにより異方性導電フィルムを得た。
(接続構造サンプル体)
 得られた異方性導電フィルムを用いて、0.5×1.8×20.0mmの大きさのICチップ(バンプサイズ30×85μm、バンプ高さ15μm、バンプピッチ50μm)を、0.5×50×30mmの大きさのコーニング社製のガラス配線基板(1737F)に180℃、80MPa、5秒という条件で実装して接続構造サンプル体を得た。
(試験評価)
 得られた接続構造サンプル体について、以下に説明するように、異方性導電フィルムの「実装導電粒子捕捉率」、「導通信頼性」、「連結粒子個数」及び「絶縁性」を試験評価した。得られた結果を表1に示す。
 なお、「絶縁性」の評価の場合には、0.5×1.5×13mmの大きさのICチップ(金メッキバンプサイズ25×140μm、バンプ高さ15μm、バンプ間スペース7.5μm)を、0.5×50×30mmの大きさのコーニング社製のガラス配線基板(1737F)に180℃、80MPa、5秒という条件で実装して得た接続構造サンプル体を使用した。
「実装導電粒子捕捉率」
 “加熱・加圧前の接続構造サンプル体のバンプ上に存在する理論粒子量”に対する“加熱・加圧後(実際の実装後)の接続構造サンプル体のバンプ上で実際に捕捉されている粒子量”の割合を以下の数式に従って求めた。
Figure JPOXMLDOC01-appb-I000001
「導通信頼性」
 接続構造サンプル体を85℃、85%RHの高温高湿環境下に500時間放置した後の導通抵抗をデジタルマルチメーター(アジレント・テクノロジー(株))を用いて測定した。実用上、4Ω以下であることが望ましい。
「連結粒子個数」
 得られた接続構造サンプル体の10mm角の領域を、倍率50倍の電子顕微鏡にて観察し、2個以上の導電粒子が線状もしくは塊状に連結した連結体を一つの連結粒子とし、そのような連結粒子の個数をカウントした。例えば、2個の導電粒子が連結した連結粒子が2個あり、4個の連結粒子が連結した連結粒子が1個あった場合には、連結粒子数は3個となる。連結個数が増大すると、連結粒子を構成する導電粒子数も増大する傾向があり、即ちバンプ間スペースに占める導電粒子の独立性が損なわれやすくなり、そのためショートの発生確率が増大する傾向がある。
「絶縁性(ショートの発生率)」
 7.5μmスペースの櫛歯TEGパターンのショート発生率を求めた。実用上、100ppm以下であることが望ましい。
Figure JPOXMLDOC01-appb-T000002
 
 表1から分かるように、実施例1~6の異方性導電フィルムについては、第1接続層に対する導電粒子の埋入率が80%以上であったので、連結粒子個数も10個以下であり、実装導電粒子捕捉率、導通信頼性、ショートの発生率の各評価項目についてはいずれも実用上好ましい結果を示した。
 それに対し、比較例1の異方性導電フィルムについては、第1接続層に対する導電粒子の埋入率が80%を下回る75%であったので、連結粒子数が増大し、ショート発生率が50ppmと増大してしまった。
  実施例7
 第1接続層形成の際、紫外線を積算光量2000mJ/cmで照射すること以外、実施例1と同様に異方性導電フィルムを作成した。この異方性導電フィルムの第1接続層側から、更に波長365nmの紫外線を積算光量2000mJ/cmで照射することにより、第1接続層の両面から紫外線が照射された実施例7の異方性導電フィルムを得た。この異方性導電フィルムを用いて、実施例1の異方性導電フィルムと同様に接続構造サンプル体を作成し、評価したところ、ほぼ同等の実用上問題ない結果が得られたが、実装導電粒子捕捉率については更に改善される傾向にあった。
  実施例8~12、比較例2~3
 導電粒子を、ゴムロールによる繰り返しの押圧回数を調整することにより、第1接続層に対する導電粒子の埋入率が粒子径の表2に示すパーセンテージとなるように単層で配列させたこと以外、実施例1の操作を繰り返すことにより異方性導電フィルムを取得し、更に接続構造サンプル体を得た。
 (試験評価)
 得られた接続構造サンプル体について、実施例1と同様に、異方性導電フィルムの「実装導電粒子捕捉率」、「導通信頼性」及び「絶縁性(ショート発生率)」を試験評価し、更に、以下に説明するように、「第1接続層側の「タック力」」及び「接着強度(ダイシェア)」を試験評価した。得られた結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
 表2から分かるように、実施例8~12の異方性導電フィルムについては、第1接続層に対する導電粒子の埋入率が1%以上20%以下であったので、タック力、接着強度、実装導電粒子捕捉率、導通信頼性、絶縁性(ショート発生率)の各評価項目についてはいずれも実用上好ましい結果を示した。
 それに対し、比較例2の異方性導電フィルムについては、第1接続層に対する導電粒子の埋入率が20%を超えていたので、実施例8~12の異方性導電フィルムに比べ、タック力と接着強度が劣っていた。また、ショート発生率については約2.5倍も増加していた。比較例3の異方性導電フィルムについては、第1接続層に対する導電粒子の埋入率が1%を下回っていたので、実施例8~12の異方性導電フィルムに比べ、実装導電粒子捕捉率が低下し、また、絶縁性の評価指標であるショート発生率については約7.5倍も増加していた。
  実施例13
 第1接続層形成の際、紫外線を積算光量2000mJ/cmで照射すること以外、実施例8と同様に異方性導電フィルムを作成した。この異方性導電フィルムの第1接続層側から、更に波長365nmの紫外線を積算光量2000mJ/cmで照射することにより、第1接続層の両面から紫外線が照射された実施例13の異方性導電フィルムを得た。この異方性導電フィルムを用いて、実施例8の異方性導電フィルムと同様に接続構造サンプル体を作成し、評価したところ、ほぼ同等の実用上問題ない結果が得られたが、実装導電粒子捕捉率については更に改善される傾向にあった。
 本発明の異方性導電フィルムは、光重合樹脂層からなる第1接続層と、熱又は光カチオン若しくはアニオン重合性樹脂層、又は熱又は光ラジカル重合性樹脂層とからなる第2接続層とが積層された2層構造を有しており、更に、第1接続層の第2接続層側表面には、異方性導電接続用の導電粒子が、第1接続層に対する埋入率が80%以上となるように単層で配列されている。このため、導電粒子を第1接続層に良好に固定化することができ、良好な実装導電粒子捕捉率、導通信頼性、連結粒子個数、絶縁性を示す。また、本発明の異方性導電フィルムの別の態様では、異方性導電接続用の導電粒子が、第1接続層に対する埋入率が1%以上20%以下となるように単層で配列されている。このため、第1接続層が良好なタック性と接着強度とを示し、良好な導通信頼性、絶縁性(ショート発生率)、実装導電粒子捕捉率を示す。よって、これらの本発明の異方性導電フィルムは、ICチップなどの電子部品の配線基板への異方性導電接続に有用である。このような電子部品の配線は狭小化が進んでおり、本発明はこのような技術的進歩に貢献する場合において、特にその効果を発現することになる。
1、100 異方性導電フィルム
2、 第1接続層
2X、2Y 第1接続層の領域
3 第2接続層
4 導電粒子
5 第3接続層
30、40 剥離フィルム
20 仮第1接続層
31 光重合性樹脂層
50 仮異方性導電フィルム
La 導電粒子の粒子径
Lb 導電粒子の第1接続層に埋まっている深さ

Claims (16)

  1.  第1接続層とその片面に形成された第2接続層とを有する異方性導電フィルムであって、
     第1接続層が光重合樹脂層であり、
     第2接続層が、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層であり、
     第1接続層の第2接続層側表面に、異方性導電接続用の導電粒子が単層で配列されており、且つ第1接続層に対する導電粒子の埋入率が80%以上又は1%以上20%以下である
    ことを特徴とする異方性導電フィルム。
  2.  第1接続層が、アクリレート化合物と光ラジカル重合開始剤とを含む光ラジカル重合性樹脂層を光ラジカル重合させた光ラジカル重合樹脂層である請求項1記載の異方性導電フィルム。
  3.  第1接続層が、更に、エポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有している請求項2記載の異方性導電フィルム。
  4.  第2接続層が、エポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する熱又は光カチオン若しくはアニオン重合性樹脂層、又はアクリレート化合物と熱又は光ラジカル重合開始剤とを含有する熱又は光ラジカル重合性樹脂層である請求項1又は2記載の異方性導電フィルム。
  5.  第2接続層が、エポキシ化合物と熱又は光カチオン若しくはアニオン重合開始剤とを含有する熱又は光カチオン若しくはアニオン重合性樹脂層であり、更にアクリレート化合物と熱又は光ラジカル重合開始剤とを含有する請求項4記載の異方性導電フィルム。
  6.  第1接続層において、導電粒子と第1接続層の最外表面との間に位置する領域の第1接続層の硬化率が、互いに隣接する導電粒子間に位置する領域の第1接続層の硬化率よりも低い請求項1~5のいずれかに記載の異方性導電フィルム。
  7.  第1接続層の最低溶融粘度が、第2接続層の最低溶融粘度よりも高い請求項1~6のいずれかに記載の異方性導電フィルム。
  8.  請求項1記載の異方性導電フィルムの製造方法であって、以下の工程(A)~(C):
    工程(A)
     光重合性樹脂層に、導電粒子を第1接続層に対する導電粒子の埋入率が80%以上又は1%以上20%以下となるように単層で配列させる工程;
    工程(B)
     導電粒子が配列した光重合性樹脂層に対して紫外線を照射することにより光重合反応させ、表面に導電粒子が固定化された第1接続層を形成する工程;及び
    工程(C)
     第1接続層の導電粒子側表面に、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層からなる第2接続層を形成する工程
    を有する製造方法。
  9.  工程(B)の紫外線照射を、光重合性樹脂層の導電粒子が配列した側から行う請求項8記載の製造方法。
  10.  請求項1記載の異方性導電フィルムの製造方法であって、以下の工程(AA)~(DD):
    工程(AA)
     光重合性樹脂層に、導電粒子を第1接続層に対する導電粒子の埋入率が80%以上又は1%以上20%以下となるように単層で配列させる工程;
    工程(BB)
     導電粒子が配列した光重合性樹脂層に対して紫外線を照射することにより光重合反応させ、表面に導電粒子が仮固定化された仮第1接続層を形成する工程;
    工程(CC)
     仮第1接続層の導電粒子側表面に、熱カチオン、アニオン若しくはラジカル重合性樹脂層からなる第2接続層を形成する工程;及び
    工程(DD)
     第2接続層と反対側から仮第1接続層に紫外線を照射することにより光重合反応させ、仮第1接続層を本硬化させて第1接続層を形成する工程
    を有する製造方法。
  11.  工程(BB)の紫外線照射を、光重合性樹脂層の導電粒子が配列した側から行う請求項10記載の製造方法。
  12.  請求項8記載の製造方法において、工程(C)の後で、以下の工程(Z)
    工程(Z)
     第1接続層の導電粒子側の反対面に、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層からなる第3接続層を形成する工程
    を有する製造方法。
  13.  請求項8記載の製造方法において、工程(A)に先だって、以下の工程(a)
    工程(a)
     光重合性樹脂層の片面に、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層からなる第3接続層を形成する工程
    を有し、工程(A)において、光重合性樹脂層の他面に導電粒子を80%以上又は1%以上20%以下の埋入率で単層で配列させる製造方法。
  14.  請求項10記載の製造方法において、工程(DD)の後で、以下の工程(Z)
    工程(Z)
     第1接続層の導電粒子側の反対面に、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層からなる第3接続層を形成する工程
    を有する製造方法。
  15.  請求項10記載の製造方法において、工程(AA)に先だって、以下の工程(a)
    工程(a)
     光重合性樹脂層の片面に、熱又は光カチオン、アニオン若しくはラジカル重合性樹脂層からなる第3接続層を形成する工程
    を有し、工程(AA)において、光重合性樹脂層の他面に導電粒子を80%以上又は1%以上20%以下の埋入率で単層で配列させる製造方法。
  16.  請求項1~7のいずれかに記載の異方性導電フィルムで第1電子部品を第2電子部品に異方性導電接続した接続構造体。
     
PCT/JP2015/052937 2014-02-04 2015-02-03 異方性導電フィルム及びその製造方法 WO2015119098A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/116,033 US20170077056A1 (en) 2014-02-04 2015-02-03 Anisotropic conductive film and production method of the same
CN201580007303.9A CN105940561B (zh) 2014-02-04 2015-02-03 各向异性导电膜及其制备方法
KR1020167021122A KR102552788B1 (ko) 2014-02-04 2015-02-03 이방성 도전 필름 및 그 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014019866A JP6233069B2 (ja) 2014-02-04 2014-02-04 異方性導電フィルム及びその製造方法
JP2014-019866 2014-02-04
JP2014-019855 2014-02-04
JP2014019855A JP6409281B2 (ja) 2014-02-04 2014-02-04 異方性導電フィルム及びその製造方法

Publications (1)

Publication Number Publication Date
WO2015119098A1 true WO2015119098A1 (ja) 2015-08-13

Family

ID=53777903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052937 WO2015119098A1 (ja) 2014-02-04 2015-02-03 異方性導電フィルム及びその製造方法

Country Status (5)

Country Link
US (1) US20170077056A1 (ja)
KR (1) KR102552788B1 (ja)
CN (1) CN105940561B (ja)
TW (1) TWI664262B (ja)
WO (1) WO2015119098A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053942A1 (ja) * 2021-09-30 2023-04-06 デクセリアルズ株式会社 導電フィルム、接続構造体及びその製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052778A (ja) * 1999-08-06 2001-02-23 Hitachi Chem Co Ltd 異方導電性接着フィルムおよびその製造方法
JP2008034232A (ja) * 2006-07-28 2008-02-14 Asahi Kasei Electronics Co Ltd 異方導電性フィルム
JP2010199087A (ja) * 2010-05-11 2010-09-09 Sony Chemical & Information Device Corp 異方性導電膜及びその製造方法、並びに、接合体及びその製造方法
JP2012169263A (ja) * 2011-01-24 2012-09-06 Sekisui Chem Co Ltd 異方性導電材料、接続構造体の製造方法及び接続構造体
JP2012172128A (ja) * 2011-02-24 2012-09-10 Kuraray Co Ltd 異方導電性接着フィルム
JP2013058412A (ja) * 2011-09-08 2013-03-28 Sekisui Chem Co Ltd 絶縁材料、積層体、接続構造体、積層体の製造方法及び接続構造体の製造方法
JP2013105636A (ja) * 2011-11-14 2013-05-30 Dexerials Corp 異方性導電フィルム、接続方法、及び接合体
JP2013149466A (ja) * 2012-01-19 2013-08-01 Sekisui Chem Co Ltd 異方性導電材料、接続構造体及び接続構造体の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010052778A1 (en) * 2000-06-07 2001-12-20 Smith Paul Samuel Device for detecting and locating insulation defects
US20030178221A1 (en) * 2002-03-21 2003-09-25 Chiu Cindy Chia-Wen Anisotropically conductive film
JP4130747B2 (ja) * 2002-03-28 2008-08-06 旭化成エレクトロニクス株式会社 異方導電性接着シートおよびその製造方法
KR100601341B1 (ko) * 2004-06-23 2006-07-14 엘에스전선 주식회사 이방 도전성 접착제 및 이를 이용한 접착필름
US20060280912A1 (en) * 2005-06-13 2006-12-14 Rong-Chang Liang Non-random array anisotropic conductive film (ACF) and manufacturing processes
CN101432931B (zh) * 2006-04-27 2013-04-24 旭化成电子材料株式会社 导电颗粒配置薄片及各向异性导电膜
JP2008258106A (ja) * 2007-04-09 2008-10-23 Hitachi Ltd 画像表示装置の製造方法
CN102634286B (zh) * 2012-05-17 2013-08-14 深圳市飞世尔实业有限公司 一种光热双重固化型异方性导电膜的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052778A (ja) * 1999-08-06 2001-02-23 Hitachi Chem Co Ltd 異方導電性接着フィルムおよびその製造方法
JP2008034232A (ja) * 2006-07-28 2008-02-14 Asahi Kasei Electronics Co Ltd 異方導電性フィルム
JP2010199087A (ja) * 2010-05-11 2010-09-09 Sony Chemical & Information Device Corp 異方性導電膜及びその製造方法、並びに、接合体及びその製造方法
JP2012169263A (ja) * 2011-01-24 2012-09-06 Sekisui Chem Co Ltd 異方性導電材料、接続構造体の製造方法及び接続構造体
JP2012172128A (ja) * 2011-02-24 2012-09-10 Kuraray Co Ltd 異方導電性接着フィルム
JP2013058412A (ja) * 2011-09-08 2013-03-28 Sekisui Chem Co Ltd 絶縁材料、積層体、接続構造体、積層体の製造方法及び接続構造体の製造方法
JP2013105636A (ja) * 2011-11-14 2013-05-30 Dexerials Corp 異方性導電フィルム、接続方法、及び接合体
JP2013149466A (ja) * 2012-01-19 2013-08-01 Sekisui Chem Co Ltd 異方性導電材料、接続構造体及び接続構造体の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053942A1 (ja) * 2021-09-30 2023-04-06 デクセリアルズ株式会社 導電フィルム、接続構造体及びその製造方法

Also Published As

Publication number Publication date
TWI664262B (zh) 2019-07-01
KR102552788B1 (ko) 2023-07-06
US20170077056A1 (en) 2017-03-16
CN105940561B (zh) 2019-04-19
KR20160117458A (ko) 2016-10-10
TW201606036A (zh) 2016-02-16
CN105940561A (zh) 2016-09-14

Similar Documents

Publication Publication Date Title
JP6056700B2 (ja) 異方性導電フィルム及びその製造方法
JP2018160461A (ja) 異方性導電フィルム及びその製造方法
KR102450569B1 (ko) 이방성 도전 필름 및 그 제조 방법
US20220084975A1 (en) Anisotropic conductive film and production method of the same
JP6269114B2 (ja) 異方性導電フィルム及びその製造方法
WO2015119090A1 (ja) 異方性導電フィルム及びその製造方法
JP6428325B2 (ja) 異方性導電フィルム及びその製造方法
JP6409281B2 (ja) 異方性導電フィルム及びその製造方法
KR102439365B1 (ko) 이방성 도전 필름 및 그 제조 방법
JP6260313B2 (ja) 異方性導電フィルム及びその製造方法
WO2015119098A1 (ja) 異方性導電フィルム及びその製造方法
JP6233069B2 (ja) 異方性導電フィルム及びその製造方法
JP2015147823A (ja) 異方性導電フィルム及びその製造方法
JP6260312B2 (ja) 異方性導電フィルム及びその製造方法
JP6217422B2 (ja) 異方性導電フィルム及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15745975

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20167021122

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15116033

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15745975

Country of ref document: EP

Kind code of ref document: A1