WO2014021012A1 - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
WO2014021012A1
WO2014021012A1 PCT/JP2013/066773 JP2013066773W WO2014021012A1 WO 2014021012 A1 WO2014021012 A1 WO 2014021012A1 JP 2013066773 W JP2013066773 W JP 2013066773W WO 2014021012 A1 WO2014021012 A1 WO 2014021012A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
engine
control
control device
controller
Prior art date
Application number
PCT/JP2013/066773
Other languages
English (en)
French (fr)
Inventor
小室 敦
史博 板羽
健太郎 志賀
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US14/413,250 priority Critical patent/US20150167615A1/en
Priority to CN201380040724.2A priority patent/CN104507775B/zh
Priority to DE112013003818.8T priority patent/DE112013003818T5/de
Publication of WO2014021012A1 publication Critical patent/WO2014021012A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0848Circuits or control means specially adapted for starting of engines with means for detecting successful engine start, e.g. to stop starter actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0084Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to control modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0092Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/15Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0851Circuits or control means specially adapted for starting of engines characterised by means for controlling the engagement or disengagement between engine and starter, e.g. meshing of pinion and engine gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a motor control device that controls a motor driven by a battery.
  • Patent Document 1 a one-motor two-clutch hybrid vehicle including a first clutch provided between an engine and a motor and a second clutch provided between the motor and a drive wheel is known (Patent Document 1). ).
  • each component of the engine, the motor, the first clutch, and the second clutch is controlled by a dedicated controller.
  • Each of these dedicated controllers is connected to the integrated controller via a CAN communication line, and controls corresponding components based on a command from the integrated controller.
  • Patent Document 1 does not disclose any control method in such a case.
  • a motor control device is mounted on a vehicle that is a hybrid vehicle including an engine and a motor, and controls the motor.
  • the motor drives the drive wheels of the vehicle and starts the engine. Used to do.
  • the vehicle is communicably connected to the motor control device, the engine control device that controls the engine, the motor control device, and the engine control device, and outputs commands according to the driving state of the vehicle to the motor control device and the engine control device, respectively. And an integrated control device.
  • the motor control device When the communication with the integrated control device is normal, the motor control device performs the first control mode for controlling the motor based on a command from the integrated control device, and the communication with the integrated control device is abnormal In addition, by executing the second control mode for controlling the motor based on the control information stored in advance, the motor is started when the engine is stopped.
  • a motor control device is mounted on a vehicle that is a hybrid vehicle including an engine and a motor, and controls the motor, and communication with the external control device is abnormal.
  • the first control mode for controlling the motor based on a command from the external control device is switched to the second control mode for controlling the motor based on previously stored control information.
  • the motor when the control of the motor becomes impossible, the motor can be stopped appropriately and the drive wheels can be driven by the engine to perform the retreat travel.
  • FIG. 1 is a diagram showing a configuration of a hybrid vehicle equipped with a motor controller according to an embodiment of a motor control device of the present invention.
  • the drive system of the hybrid vehicle includes an engine 3, a flywheel FW, a first clutch CL1, a motor / generator 4, a mechanical oil pump MO / P, a second clutch CL2, and an automatic It has a transmission CVT, a transmission input shaft IN, a transmission output shaft OUT, a differential 8, a left drive shaft DSL, a right drive shaft DSR, and left tire LT and right tire RT as drive wheels. .
  • the engine 3 is an internal combustion engine such as a gasoline engine or a diesel engine, and operates based on an engine control command from the engine controller 21.
  • the engine controller 21 is a device that controls the engine 3.
  • the engine controller 21 operates the engine 3 by performing engine start control, engine stop control, throttle valve opening control, fuel cut control, and the like. To control.
  • the first clutch CL1 is a clutch for fastening or releasing between the engine 3 and the motor / generator 4, and is interposed between them.
  • the first clutch controller 5 outputs a first clutch control command for controlling the operation of the first clutch CL1 to a first clutch hydraulic unit 6 built in a hydraulic control valve unit CVU described later.
  • the first clutch hydraulic unit 6 generates a first clutch control hydraulic pressure based on the first clutch control command from the first clutch controller 5, and outputs the first clutch control hydraulic pressure to the first clutch CL1.
  • the first clutch CL1 is controlled to be in an engaged state, a semi-engaged state (slip engaged state), or a released state.
  • the first clutch CL1 for example, a normally closed dry single plate in which the engagement state is controlled by a stroke control using a hydraulic actuator 14 having a piston 14a and the complete engagement is maintained by an urging force of a diaphragm spring.
  • a clutch is used.
  • the motor / generator 4 is a synchronous motor / generator in which a permanent magnet is embedded in a rotor and a stator coil is wound around a stator.
  • the motor controller 22 outputs a control command for controlling the motor / generator 4 to the inverter 10. Based on a control command from the motor controller 22, the inverter 10 generates three-phase AC power using DC power supplied from the battery 19 and applies it to the motor / generator 4.
  • the rotation state of the motor / generator 4 is controlled by the three-phase AC power.
  • the motor / generator 4 can operate as an electric motor that drives the driving wheels by performing a power running operation by being rotationally driven in response to the supply of electric power from the battery 19.
  • the motor / generator 4 receives rotational energy from the engine 3 and the driving wheels by the rotor, thereby generating electromotive force at both ends of the stator coil and charging the battery 19. In this case, the motor / generator 4 functions as a generator that performs regenerative operation.
  • the mechanical oil pump M-O / P is provided on the rotating shaft of the motor / generator 4 and is driven by the motor / generator 4.
  • the mechanical oil pump M-O / P is a hydraulic pressure source for the hydraulic control valve unit CVU attached to the automatic transmission CVT and the first clutch hydraulic unit 6 and the second clutch hydraulic unit 9 incorporated therein.
  • An electric oil pump driven by an electric motor may be further provided in consideration of a case where the discharge hydraulic pressure from the mechanical oil pump M-O / P cannot be sufficiently expected.
  • the second clutch CL2 is a clutch for fastening or releasing between the motor / generator 4 and the left and right tires LT, RT as drive wheels, and is between the rotation shaft of the motor / generator 4 and the transmission input shaft IN. It is intervened.
  • the CVT controller 23 outputs a second clutch control command for controlling the operation of the second clutch CL2 to the second clutch hydraulic unit 9 built in the hydraulic control valve unit CVU.
  • the second clutch hydraulic unit 9 generates a second clutch control hydraulic pressure based on the second clutch control command from the CVT controller 23 and outputs the second clutch control hydraulic pressure to the second clutch CL2.
  • the second clutch CL2 is controlled to be in an engaged state, a semi-engaged state (slip engaged state), or a released state.
  • a normally open wet multi-plate clutch capable of continuously controlling the oil flow rate and hydraulic pressure with a proportional solenoid is used.
  • the automatic transmission CVT is a belt-type continuously variable transmission that can automatically change the gear ratio steplessly, and is disposed downstream of the second clutch CL2.
  • the gear ratio in the automatic transmission CVT is adjusted by determining the target input rotational speed in accordance with the vehicle speed, the accelerator opening, and the like.
  • the automatic transmission CVT mainly includes a primary pulley on the transmission input shaft IN side, a secondary pulley on the transmission output shaft OUT side, and a belt stretched around these pulleys. Based on the hydraulic pressure supplied from the mechanical oil pump MO / P, primary pulley pressure and secondary pulley pressure are created, and these pulley pressures move the primary pulley movable pulley and the secondary pulley movable pulley in the axial direction, respectively. By changing the pulley contact radius, the gear ratio in the automatic transmission CVT can be changed steplessly.
  • the hybrid vehicle having the above-described configuration has an electric vehicle travel mode (hereinafter referred to as “EV mode”), a hybrid vehicle travel mode (hereinafter referred to as “HEV mode”), and drive torque control, depending on the drive mode.
  • EV mode electric vehicle travel mode
  • HEV mode hybrid vehicle travel mode
  • WSC mode travel mode
  • WSC is an abbreviation for “Wet Start Clutch”.
  • the EV mode is a mode in which the first clutch CL1 is disengaged and the motor / generator 4 is used as a drive source.
  • the EV mode is further classified into a motor travel mode in which the motor / generator 4 is powered and a regenerative travel mode in which the motor / generator 4 is regeneratively operated.
  • the hybrid vehicle travels by selecting one of these modes.
  • the EV mode is selected when the required driving force for the driving wheels is relatively low and the SOC (State Of Charge) representing the charging capacity of the battery 19 is sufficiently secured.
  • the HEV mode is a mode in which the first clutch CL1 is engaged and the engine 3 and the motor / generator 4 are used as drive sources.
  • the HEV mode further includes a motor-assisted traveling mode in which driving wheels are driven using the engine 3 and the motor / generator 4 simultaneously, and a power generation traveling mode in which the motor / generator 4 generates power while driving the driving wheels using the engine 3. And an engine traveling mode in which only the engine 3 is used to drive the drive wheels.
  • the hybrid vehicle travels by selecting one of these modes.
  • the HEV mode is selected when the required driving force for the driving wheels is relatively high or when the SOC of the battery 19 is insufficient.
  • the second clutch CL2 is maintained in the slip engagement state while controlling the rotation speed of the motor / generator 4, and the torque transmitted to the transmission input shaft IN via the second clutch CL2 is in the vehicle state or driver operation.
  • Is a mode in which the vehicle travels while controlling the clutch torque capacity of the second clutch CL2 so as to coincide with the required drive torque determined according to In this WSC mode for example, when the HEV mode is selected, when the vehicle stops, when starting, when decelerating, etc., the engine rotational speed falls below the idle rotational speed, or the discharge hydraulic pressure from the mechanical oil pump MO / P It is selected in a running area where it runs short.
  • the hybrid vehicle control system includes an engine controller 21, a motor controller 22, an inverter 10, a battery 19, a first clutch controller 5, a first clutch hydraulic unit 6, and a CVT controller 23. And a second clutch hydraulic unit 9, a brake controller 24, a battery controller 25, and an integrated controller 20.
  • the controllers of the engine controller 21, the motor controller 22, the first clutch controller 5, the CVT controller 23, the brake controller 24, the battery controller 25, and the integrated controller 20 are connected via CAN communication lines that can exchange information with each other. ing.
  • the engine controller 21 inputs the engine speed information from the engine speed sensor 11, the target engine torque command from the integrated controller 20, and other necessary information. Based on these pieces of information, the engine 3 is controlled by outputting a command for controlling the engine speed Ne and the engine torque Te representing the engine operating point to the throttle valve actuator or the like of the engine 3.
  • the motor controller 22 includes rotor position information (rotational speed information) from the resolver 12 that detects the rotor rotational position of the motor / generator 4, a target MG torque command, a target MG rotational speed command, and a control mode command from the integrated controller 20. Enter other required information. Based on these information, a control mode corresponding to any of the above-described EV mode, HEV mode, or WSC mode is selected, and a PWM signal is generated and output to the inverter 10. The motor / generator 4 is controlled by operating the inverter 10 in accordance with the PWM signal.
  • the motor controller 22 basically controls the motor / generator 4 using the motor torque Tm as a target torque, and basically performs torque control for causing the motor rotation speed Nm to follow the rotation of the drive system.
  • the motor / generator 4 is controlled with the motor rotation speed Nm as the target rotation speed, and the motor torque Tm is made to follow the load of the drive system. Rotational speed control is performed.
  • the battery controller 25 monitors the SOC that indicates the charging capacity of the battery 19, and sends information on the SOC based on the monitoring result, information on power that can be input to and output from the battery 19, and the like via the CAN communication line. Supply to the integrated controller 20.
  • the first clutch controller 5 inputs sensor information from the first clutch stroke sensor 15 that detects the stroke position of the piston 14a in the hydraulic actuator 14, a target CL1 torque command from the integrated controller 20, and other necessary information. . Based on this information, the first clutch CL1 is controlled by outputting a command for controlling the engaged state of the first clutch CL1 to the first clutch hydraulic unit 6 in the hydraulic control valve unit CVU.
  • the CVT controller 23 inputs the accelerator opening information from the accelerator opening sensor 16, the vehicle speed information from the vehicle speed sensor 17, and various information output from other sensors as required. Based on these information, when the D range is selected with a shift lever (not shown), the target input speed determined by the accelerator opening and the vehicle speed is searched from the shift map, and the searched target input speed is searched.
  • the automatic transmission CVT is controlled by outputting a control command for obtaining a gear ratio according to the condition to the hydraulic control valve unit CVU.
  • the CVT controller 23 prioritizes the shift control according to the shift control command as described above. And do it.
  • the CVT controller 23 controls the second clutch CL2 in addition to the above-described shift control. At this time, based on the target CL2 torque command, the CVT controller 23 outputs a command for controlling the clutch hydraulic pressure to the second clutch CL2 to the second clutch hydraulic unit 9 in the hydraulic control valve unit CVU. 2 clutch CL2 is controlled.
  • the brake controller 24 includes vehicle speed information from the wheel speed sensor 51 that detects each of the four wheel speeds of the vehicle, brake stroke information from the brake stroke sensor 52 that detects the amount of depression of the brake pedal, and regeneration from the integrated controller 20. A cooperative control command and other necessary information are input. And brake control is performed based on these information. For example, if the regenerative braking force is insufficient with respect to the required braking force required from the brake stroke during brake depression, regenerative coordination is used to compensate for the shortage with mechanical braking force (hydraulic braking force or motor braking force). Perform brake control.
  • the integrated controller 20 is responsible for managing the energy consumption of the entire vehicle and running the vehicle with maximum efficiency.
  • the integrated controller 20 inputs various information from a motor rotational speed sensor for detecting the motor rotational speed Nm and other sensors and switches, and information output from each controller via a CAN communication line. Then, based on these pieces of information, one of the three types of travel modes described above is selected, and a command corresponding to the selected travel mode is output to the other controllers.
  • the target engine torque command is sent to the engine controller 21
  • the target MG torque command, the target MG rotation speed command and the control mode command are sent to the motor controller 22
  • the target CL1 torque command is sent to the first clutch controller 5, and the CVT controller 23.
  • the target CL2 torque command and the regenerative cooperative control command are output to the brake controller 24, respectively.
  • FIG. 2 is a control block diagram of the motor controller 22.
  • the motor controller 22 includes a communication abnormality detection unit 201, a torque command calculation unit 202, a motor rotation number calculation unit 203, a motor current detection unit 204, a DC voltage detection unit 205, a current command calculation unit 206, a current
  • Each control block of the control calculation unit 207 and the PWM duty calculation unit 208 is functionally provided.
  • the motor controller 22 can implement
  • the communication abnormality detection unit 201 detects the state of CAN communication performed with the integrated controller 20 and determines whether it is normal or abnormal. As a result, when it is determined that the CAN communication is abnormal, an abnormality detection signal is output to the torque command calculation unit 202.
  • Torque command calculation unit 202 receives a target MG torque command, a target MG rotation number command, and a control mode command transmitted from integrated controller 20 through CAN communication, and calculates a calculation result of motor rotation number Nm by motor rotation number calculation unit 203. receive. Based on these values, a torque command for the motor / generator 4 is calculated, and the calculated torque command is output to the current command calculation unit 206. A method for calculating the torque command by the torque command calculation unit 202 will be described in detail later.
  • the torque command calculation unit 202 calculates the torque command using a method different from the normal time in order to retreat the hybrid vehicle. I do. A specific calculation method at this time will also be described in detail later.
  • the motor rotation speed calculation unit 203 receives the rotor position information from the resolver 12 and calculates a motor rotation speed Nm representing the rotation speed of the motor / generator 4 based on the rotor position information. Then, the calculated motor rotation speed Nm is output to the torque command calculation unit 202.
  • the motor current detection unit 204 detects the motor current flowing from the inverter 10 to the motor / generator 4 based on sensor information from the current sensor 210 provided between the inverter 10 and the motor / generator 4. Then, the detected current value is output to the current control calculation unit 207.
  • the DC voltage detection unit 205 detects the DC voltage supplied from the battery 19 to the inverter 10 based on sensor information from the voltage sensor 211 provided between the inverter 10 and the battery 19. Then, the detected voltage value is output to the current command calculation unit 206.
  • the voltage sensor 211 measures the voltage of the capacitor 212 connected in parallel with the battery 19 as a DC voltage supplied from the battery 19 to the inverter 10. Here, the voltage of the capacitor 212 is theoretically equal to the voltage of the battery 19.
  • Current command calculation unit 206 is a control current command value for controlling the current output from inverter 10 to motor / generator 4 based on the torque command from torque command calculation unit 202 and the voltage value from DC voltage detection unit 205. To decide. Then, the control current command value is output to the current control calculation unit 207.
  • Current control calculation unit 207 compares the control current command value from current command calculation unit 206 with the current value from motor current detection unit 204, and determines a voltage command value for inverter 10 based on the comparison result. . Then, the voltage command value is output to PWM duty calculator 208.
  • PWM duty calculation unit 208 determines the duty of PWM control for each switching element of inverter 10 based on the voltage command value from current control calculation unit 207. Then, a PWM signal corresponding to the determined duty of each switching element is generated and output to inverter 10. Each switching element of the inverter 10 performs a switching operation according to the PWM signal, whereby the DC power from the battery 19 is converted into three-phase AC power and output to the motor / generator 4.
  • FIG. 3 is a control block diagram of the torque command calculation unit 202.
  • the torque command calculation unit 202 includes control blocks for a rotation speed control torque calculation unit 301, a torque control torque calculation unit 302, a rotation speed control / torque control selection unit 303, and an upper / lower limit restriction unit 304. Functionally.
  • the rotational speed control torque calculation unit 301 includes a target MG rotational speed designated by a target MG rotational speed command sent from the external integrated controller 20 via CAN communication, and a motor from the motor rotational speed calculation unit 203.
  • the torque command value is calculated so that the motor rotation speed Nm matches the target MG rotation speed by comparing with the rotation speed Nm.
  • This torque command value is output to the rotation speed control / torque control selection unit 303 as a rotation speed control torque command value.
  • the rotational speed control torque calculator 301 cannot obtain the target MG rotational speed from the integrated controller 20. Therefore, when the abnormality detection signal is output from the communication abnormality detection unit 201, the rotation speed control torque calculation unit 301 correspondingly receives the control information at the time of occurrence of an abnormality instead of the target MG rotation number from the integrated controller 20. As described above, the torque command value is calculated using the rotation speed stored in advance. This point will be described in detail later.
  • the torque control torque calculation unit 302 performs a predetermined correction calculation, change rate limitation, and the like on the target MG torque value specified by the target MG torque command sent from the integrated controller 20 by CAN communication. Calculate the torque command value. This torque command value is output to the rotational speed control / torque control selection unit 303 as a torque control torque command value.
  • the rotation speed control / torque control selection unit 303 inputs the rotation speed control torque command value from the rotation speed control torque calculation unit 301 and the torque control torque command value from the torque control torque calculation unit 302, and inputs these values. Select one of the torque command values. Then, the selected torque command value is output to the upper / lower limit limiting unit 304.
  • the selection of the torque command value is performed as follows based on the control mode command sent from the integrated controller 20 by CAN communication and the abnormality detection signal output from the communication abnormality detection unit 201.
  • the rotation speed control / torque control selection unit 303 determines the rotation speed control torque if the rotation speed control is performed according to the control mode specified by the control mode command.
  • a command value is selected, and if it is torque control, a torque control torque command value is selected.
  • a control mode command a control mode according to the determination of the integrated controller 20 is specified. For example, during traveling in the EV mode or during traveling in the HEV mode, torque control is designated by the integrated controller 20, and the engine 3 is started by starting the engine 3 during traveling in the WSC mode or traveling in the EV mode.
  • the integrated controller 20 designates the rotational speed control.
  • the rotation speed control / torque control selection unit 303 selects the rotation speed control torque command value regardless of the control mode specified by the control mode command. To do.
  • This rotational speed control torque command value is calculated using the rotational speed stored in advance in the rotational speed control torque calculation unit 301 as described above.
  • the upper and lower limit limiting unit 304 limits the torque command value from the rotation speed control / torque control selection unit 303 as necessary based on the upper limit torque value and the lower limit torque value sent from the integrated controller 20 by CAN communication. Do. For example, a limit range corresponding to the upper limit torque value and the lower limit torque value is set, and when the torque command value is outside the limit range, the upper limit torque value or the lower limit torque value is limited and output. As a result, the final torque command output from the torque command calculation unit 202 is determined.
  • the integrated controller 20 determines that the mode should be shifted to the HEV mode due to the remaining SOC or torque request during traveling in the EV mode
  • the integrated controller 20 shifts to the HEV mode via the engine start control.
  • the integrated controller 20 puts the first clutch CL1 released during the EV mode into a semi-engaged state, and cranks the engine 3 using the motor / generator 4 as a starter motor, thereby performing fuel injection.
  • the engine 3 is started by ignition. Thereafter, the first clutch CL1 is engaged.
  • the integrated controller 20 changes the motor / generator 4 from torque control to rotation speed control by outputting a control mode command designating rotation speed control to the motor controller 22.
  • the cranking and rotation synchronization of the engine 3 are made possible. Further, by slip-engaging the second clutch CL2, torque fluctuations accompanying engine start control are absorbed by the second clutch CL2, and engine start shock due to torque transmission to the drive shaft is prevented.
  • the integrated controller 20 shifts to the EV mode after the engine stop control.
  • the integrated controller 20 stops the engine 3 disconnected from the drive shaft after releasing the engaged first clutch CL1 during the HEV mode.
  • the integrated controller 20 outputs a control mode command for designating the rotational speed control to the motor controller 22 in the same manner as in the engine start control described above, thereby causing the motor / generator 4 to operate. Change from torque control to rotational speed control. Further, by slip-engaging the second clutch CL2, the torque fluctuation accompanying the engine stop control is absorbed by the second clutch CL2, and an engine stop shock due to torque transmission to the drive shaft is prevented.
  • information is transmitted and received between the controllers by CAN communication.
  • the motor controller 22 makes the transition timing to the rotational speed control or the target MG rotation.
  • the number setting is unknown. Therefore, in such a case, the motor controller 22 performs a fail-safe operation, stops the PWM signal to the inverter 10 to shut off the gate, and sets the torque command to 0.
  • the fail-safe operation as described above is performed during the EV mode, EV driving using the motor / generator 4 as a driving source cannot be performed thereafter, so that the vehicle is driven to a safe place or a repair shop. Becomes difficult. Therefore, in the present invention, even when the motor controller 22 cannot receive information from the outside (integrated controller 20) due to malfunction of CAN communication, the engine controller 3 performs the predetermined operation in the motor controller 22. Provide a startable condition. As a result, the retreat travel can be performed using the engine 3 as a drive source without suddenly stopping the vehicle.
  • FIG. 4 is a flowchart of a motor control process executed in the motor controller 22.
  • step S102 the communication abnormality detection unit 201 is used to determine whether CAN communication with the integrated controller 20 is abnormal. If it is determined that the CAN communication is normal, the process proceeds to step S104, and the normal control for controlling the motor / generator 4 based on a command from the integrated controller 20 is performed in step S104 as the first control mode. On the other hand, when it is determined that the CAN communication is abnormal, the process proceeds to step S106, and the second control mode for controlling the motor / generator 4 based on the control information stored in advance is performed after step S106.
  • a well-known CAN communication failure diagnosis can be used to determine whether or not CAN communication is abnormal in step S102. For example, if the signal from the integrated controller 20 is interrupted for a certain time or more, it is determined that the CAN communication is abnormal. Moreover, it is preferable that the integrated controller 20 be configured to recognize CAN communication abnormality at the same timing. Specifically, it is only necessary that the integrated controller 20 can determine that the CAN communication is abnormal when a signal interruption occurs for the same time as that used by the motor controller 22 in the determination in step S102. Furthermore, in consideration of the case where only the reception of the motor controller 22 becomes abnormal, if the motor controller 22 determines that the CAN communication is abnormal, the information may be transmitted from the motor controller 22 to the integrated controller 20.
  • the CAN communication abnormality can be determined by the motor controller 22 and the integrated controller 20 respectively.
  • CAN communication abnormality in which the motor control command value from the integrated controller 20 cannot be normally received by the motor controller 22
  • CAN communication malfunction where CAN communication is interrupted is cited.
  • step S106 it is determined whether or not the current travel mode is the HEV mode.
  • the HEV mode is determined, that is, when the engine 3 is already operating, it is not necessary to perform motor control for starting the engine 3. Therefore, in this case, the process proceeds to step S112, and the motor / generator 4 is controlled to be stopped by stopping the PWM signal to the inverter 10 and turning off the gate in step S112. Then, the motor control process in FIG. 4 is terminated. Thereafter, in the vehicle, the retreat travel is performed using the engine 3 as a drive source without using the motor / generator 4. Even when the travel mode is the WSC mode, if the engine 3 is operating, the process proceeds to step S112 as in the HEV mode.
  • the mode is not the HEV mode, that is, when the engine 3 is in the EV mode in which the engine 3 is stopped, the engine 3 needs to be started for the evacuation travel, and thus the process proceeds to step S108.
  • the determination of the travel mode in step S106 can be performed by receiving, for example, travel mode information, engagement information of the first clutch CL1, and the like from the integrated controller 20.
  • the motor controller 22 can determine whether or not the current traveling mode is the HEV mode based on the information received immediately before the CAN communication abnormality occurs.
  • the driving mode may be determined by the motor controller 22 alone without using the information from the integrated controller 20.
  • the travel mode can be determined from the motor torque integration result or the like.
  • different SOC management methods are set in the EV mode and the HEV mode. That is, in EV travel, the SOC of the battery 19 is consumed and travel is performed using the driving force of the motor / generator 4, so that there are many positive torque (power running torque) integrated values and negative torque (regenerative torque) integrated values. A lesser operation is performed.
  • HEV traveling in order to maintain or increase the SOC of the battery 19, the driving force of the engine 3 is increased and the motor / generator 4 is actively regenerated.
  • an operation is performed in which the integrated value of negative torque (regenerative torque) is large and the integrated value of positive torque (powering torque) is small.
  • regenerative torque negative torque
  • powering torque powering torque
  • the integrated value of the motor torque in the latest motor / generator 4 it is possible to determine whether the travel mode is the EV mode or the HEV mode. For example, when the integrated value of the regenerative torque is large and the integrated value of the power running torque is small, it can be determined as the HEV mode. Conversely, when the integrated value of the regenerative torque is small and the integrated value of the power running torque is large, it can be determined that the EV mode is set.
  • step S108 it is determined whether a failure other than CAN communication has occurred regarding the control of the motor / generator 4.
  • engine start control is performed in step S110 described later, it is necessary that the motor controller 22 can correctly control the motor / generator 4.
  • the process proceeds to step S112 to turn off the gate, stop the motor / generator 4, and end the motor control process.
  • step S110 if no failure other than CAN communication has occurred and the motor / generator 4 can be controlled by the motor controller 22, the process proceeds to step S110.
  • step S110 engine start control for starting the engine 3 is performed on the motor / generator 4.
  • the engine / generator 4 is cranked so that the engine 3 can be started by controlling the speed of the motor / generator 4 in accordance with a pre-stored target speed.
  • step S110 When the engine start control in step S110 is completed, in the subsequent step S112, as described above, the PWM signal to the inverter 10 is stopped and the gate is turned off. Thereby, the motor / generator 4 is controlled to stop. Thereafter, the motor control process of FIG. 4 is terminated, and the vehicle / evacuation traveling using the engine 3 as a drive source is performed without using the motor / generator 4.
  • step S106 it is determined in step S106 whether or not the current travel mode is the HEV mode. However, this process may be omitted.
  • the motor / generator 4 is controlled by the motor controller 22 in accordance with a predetermined rotational speed even during HEV traveling, and the integrated controller 20, the second clutch CL2 is controlled to be released or slipped. Therefore, during this period, the driving force is not reflected as requested by the driver and the drivability of the vehicle is deteriorated.
  • the engine 3 is not stopped, so that the retreat travel is possible after the engine start control is completed.
  • FIG. 5 is a flowchart of engine start control.
  • step S202 it is determined whether or not the current control mode for the motor / generator 4 is torque control.
  • the process proceeds to step S204, and waits for a predetermined time in step S204.
  • the motor controller 22 preferably maintains the previous control state for the motor / generator 4. That is, at this time, the CAN communication with the integrated controller 20 is abnormal, and the currently required torque value in the motor / generator 4 is unknown. Therefore, torque control is performed using the torque command value immediately before the CAN communication becomes abnormal. Continue. Alternatively, in consideration of safety, the operation may be such that the torque is gradually reduced as time elapses.
  • step S204 the standby time in step S204 is ensured in order to prevent an adverse effect on the drive side when the motor / generator 4 is shifted from torque control to rotation speed control in step S206 described later.
  • This standby time can be determined according to the time from when the integrated controller 20 detects an abnormality in CAN communication until the second clutch CL2 is released or slipped.
  • the second clutch CL2 is completely engaged, and all the torque generated from the motor / generator 4 is transmitted to the drive side as drive force.
  • the control immediately shifts from the torque control to the rotational speed control and sets the predetermined cranking rotational speed to the target rotational speed in step S206 with respect to the motor / generator 4.
  • the drive-side rotational speed will change abruptly, and the vehicle traveling speed will also change accordingly. That is, when the rotation speed (primary rotation speed) of the primary pulley on the transmission input shaft IN side in the automatic transmission CVT is higher than the cranking rotation speed, the rotation speed of the motor / generator 4 is decreased to the cranking rotation speed. Thus, since the rotation speed control is performed, the vehicle decelerates rapidly. On the other hand, when the primary rotational speed is lower than the cranking rotational speed, the rotational speed control is performed to increase the rotational speed of the motor / generator 4 to the cranking rotational speed, so that the vehicle accelerates rapidly. Therefore, in order to prevent such an adverse effect, after the time until the second clutch CL2 is released or slipped after the CAN communication becomes abnormal is secured in step S204, the control is shifted to the rotation speed control.
  • FIG. 7 is a flowchart of a second clutch control process executed by the integrated controller 20 to control the second clutch CL2 during the standby time of step S204. At the start of this flowchart, the second clutch CL2 is in an engaged state.
  • step S402 it is determined whether or not the primary rotational speed is larger than the cranking rotational speed that is the target rotational speed in the rotational speed control of the motor / generator 4. If the primary rotational speed is greater than the cranking rotational speed, the torque generated by the motor / generator 4 cannot be transmitted to the drive side during the rotational speed control, and the process proceeds to step S406. In step S406, the target CL2 torque command is output to the CVT controller 23, and the second clutch CL2 is released.
  • step S404 the target CL2 torque command is output to the CVT controller 23, and the second clutch CL2 is controlled to the slip state.
  • step S404 it is preferable to maintain a plus slip state in which the motor rotation speed Nm is larger than the primary rotation speed and the difference between these rotation speeds is equal to or greater than a predetermined difference ⁇ . Therefore, in step S402, it may be determined whether or not the primary rotational speed is larger than “cranking rotational speed + difference ⁇ ”. Alternatively, by omitting the determination in step S404, step S406 may be executed in all cases to release the second clutch CL2 regardless of the primary rotational speed.
  • step S206 a predetermined cranking rotational speed is set as a target rotational speed, and rotational speed control for rotating the motor / generator 4 according to the target rotational speed is performed.
  • the rotational speed control torque calculator 301 in FIG. 3 the torque corresponding to the difference between the motor rotational speed Nm and the cranking rotational speed based on the cranking rotational speed information stored in advance in the motor controller 22. Calculate the command value.
  • the motor controller 22 controls the motor / generator 4 to rotate in a predetermined rotation state corresponding to the cranking rotation speed.
  • step S202 If it is determined in step S202 that the current control mode is not the torque control but the rotation speed control, the second clutch CL2 has already slipped. Therefore, it is not necessary to secure the standby time as in step S204, and it is possible to immediately set the cranking rotation speed to the target rotation speed. At this time, a standby time may be provided, but may be a value different from the standby time in step S204.
  • FIG. 8 is a flowchart of a first clutch control process performed by the integrated controller 20 to control the first clutch CL1 and start the engine 3 during the rotation speed control in step S206. At the start of this flowchart, the first clutch CL1 is in a released state.
  • the integrated controller 20 detects an abnormality in CAN communication with the motor controller 22, the integrated controller 20 executes the processing shown in the flowchart of FIG. 7 described above to release or slip the second clutch CL2, and then, FIG.
  • the processing shown in the flowchart is started. That is, when the motor controller 22 detects a CAN communication abnormality, the integrated controller 20 executes the process shown in the flowchart of FIG. 8 in accordance with the timing at which the rotational speed control is started in step S206 after waiting for a predetermined time in step S304. Then, control of the first clutch CL1 is started. In step S502, a target CL1 torque command is output to the first clutch controller 5, and the first clutch CL1 is gradually slipped from the released state to enter the engaged state.
  • step S504 a predetermined command is output to the engine controller 21, fuel injection and ignition are started in the cranked engine 3, and the engine 3 is started.
  • the fuel injection and ignition start timing at this time may be determined by either the engine controller 21 or the integrated controller 20. If it is confirmed in step S504 that the engine 3 has been started, the process proceeds to step S506. In step S506, the target CL1 torque command is output to the first clutch controller 5, and the first clutch CL1 is completely engaged.
  • the operation of the first clutch CL1 by the first clutch control process described above is performed when the engine is shifted from the EV mode to the HEV mode in the normal control when the CAN communication between the integrated controller 20 and the motor controller 22 is normal. This is the same as the operation of the first clutch CL1 in the start control.
  • the first clutch control process of FIG. 8 since CAN communication between the integrated controller 20 and the motor controller 22 is abnormal, the integrated controller 20, the motor controller 22, and the first clutch controller 5 cooperate with each other. Control cannot be performed. Therefore, in order to reduce a shock at the time of starting the engine, the first clutch CL1 may be operated under an operating condition different from that in the normal control in the first clutch control process.
  • step S208 it is determined whether or not the engine 3 has been started. If it is determined that the engine 3 has been started, it is determined that the rotation speed control has ended.
  • the detailed processing content in step S208 will be described later in detail with reference to the flowchart of FIG.
  • step S210 it is determined whether or not the determination of the end of the rotational speed control is made in a step S208. If it is not determined that the rotation speed control has ended, the process returns to step S208 to continue the rotation speed control end determination process.
  • step S206 when it is determined that the rotation speed control is completed, the rotation speed control of the motor / generator 4 started in step S206 is ended. Then, the engine start control in FIG. 5 is terminated and the process proceeds to step S112 in FIG. 4, and the motor / generator 4 is controlled to be turned off by stopping the gate.
  • step S204 after waiting for a predetermined time in step S204, the rotational speed of the motor / generator 4 is controlled so that the rotational speed of the motor / generator 4 becomes a predetermined cranking rotational speed in step S206.
  • the second clutch CL2 is still in an engaged state due to variations in hydraulic pressure or the like. Therefore, assuming such a situation, when the rotational speed of the motor / generator 4 is controlled in step S206, the rotational speed of the motor / generator 4 is changed from a value at the start of control to a cranking rotational speed at a predetermined rate of change.
  • FIG. 9 shows an example in which the change rate of the motor rotation speed is relatively small at the start of the rotation speed control, and the change rate of the motor rotation speed gradually increases according to the elapsed time from there. By doing so, it is possible to reduce adverse effects on the vehicle behavior (rapid acceleration, rapid deceleration) and minimize driver anxiety.
  • the change rate may be changed according to the magnitude of torque in the motor / generator 4 and the locus of torque change.
  • the second clutch CL2 is in the engaged state, and therefore it is necessary to change the motor rotation speed including the drive shaft during the rotation speed control. Therefore, more motor torque is required than when the second clutch CL2 is in the released state. Therefore, if the state of the second clutch CL2 is estimated from the magnitude of the motor torque and it is determined that the release amount of the second clutch CL2 is small as a result, the rate of change of the motor rotational speed in the rotational speed control is set higher than usual. Make it smaller. Thereby, the change of a vehicle behavior can be made smaller.
  • the process waits for a predetermined time in step S204 to wait until the second clutch CL2 is in a released state, and then the rotational speed control of the motor / generator 4 is performed in step S206.
  • the information indicating the state of the second clutch CL2 transmitted from the CVT controller 23 is received by the motor controller 22, and based on this, the timing at which the second clutch CL2 is released is determined.
  • the timing for controlling the rotational speed of the motor / generator 4 may be determined. In this way, it is possible to more accurately grasp the timing for shifting to the rotation speed control in step S206 after detecting the CAN communication abnormality.
  • step S206 information on the control state of the first clutch CL1 and the engine 3 is obtained from the first clutch controller 5, the engine controller 21, and the motor controller 22. You may send and receive between. By using such information, control suitable for the operation timing of each device can be accurately performed. For example, during the rotational speed control in step S206, a crankable signal indicating that the motor / generator 4 has reached the target rotational speed is transmitted from the motor controller 22 to the first clutch controller 5. By utilizing this, the first clutch controller 5 can accurately control the transition timing of the first clutch CL1 to the slip operation.
  • an engine complete explosion signal indicating that the engine 3 is in a complete explosion state is transmitted from the engine controller 21 to the motor controller 22, and the engagement of the first clutch CL1 is completed.
  • a first clutch engagement completion signal indicating this is transmitted from the first clutch controller 5 to the motor controller 22.
  • the motor controller 22 can make a determination that the rotation speed control is completed at an accurate timing.
  • These signals can be transmitted and received between the motor controller 22 and each controller using, for example, a CAN signal, a hard wire, or the like. In the case of CAN communication, continuous communication may be performed. Alternatively, when continuous communication is difficult from the viewpoint of communication load or the like, the communication of the above signal is started by using the CAN communication between the integrated controller 20 and the motor controller 22 as a trigger. Also good.
  • FIG. 6 is a flowchart of the rotation speed control end determination process.
  • step S504 in FIG. 8 When the engine 3 is started in step S504 in FIG. 8 and the first clutch CL1 is engaged in the subsequent step S506, if the rotation speed control of the motor / generator 4 is continued as it is, this rotation state follows the instruction of the integrated controller 20. This is an obstacle to reflecting the request from the driver in the driving state of the vehicle. For this reason, it is preferable that after the engine 3 is started, the rotational speed control of the motor / generator 4 is finished as quickly as possible to bring it into the gate-off state, and the vehicle 3 can be evacuated using only the engine 3 as a power source. Therefore, the following process is performed as a process for determining the rotation speed control end so that the motor controller 22 can quickly determine that the engine 3 has been started.
  • step S302 the time after the engine start control is started in step S110 of FIG. 4 is measured, and it is determined whether or not a predetermined allowable time has elapsed based on this measurement time. As a result, if the measurement time is less than the allowable time, the process proceeds to step S304, and if the allowable time has elapsed, the process proceeds to step S308.
  • the allowable time in the determination in step S302 is the worst value of the time allowed from the start of engine start control until the engine 3 is started. If this time is exceeded, the motor / generator 4 is gated off.
  • the allowable time may not be a fixed value, but may be variable according to vehicle parameters and the like.
  • the allowable time may be changed according to the water temperature information, the oil temperature information, and the like. Further, since the operating speed of the first clutch CL1 when cranking the engine 3 also changes depending on the temperature, the allowable time may be changed by further considering hydraulic information and the like.
  • step S304 and subsequent step S306 it is determined whether or not the engine 3 has been started.
  • the motor / generator 4 needs to generate a large positive torque (power running torque) exceeding the friction of the engine 3.
  • the motor / generator 4 outputs negative torque (regenerative torque) in order to suppress the rotation speed. Therefore, using such a phenomenon, when the torque command calculated by the torque command calculation unit 202 in FIG. 3 in the motor controller 22 is switched from positive torque to negative torque, it can be determined that the engine 3 has started. it can.
  • the sign of the torque command may be determined from the value of sensor information from the current sensor 210 to determine the start of the engine 3.
  • step S304 If the torque command value does not reverse in step S304, that is, if the torque is positive, cranking is still in progress, and the process returns to step S302. On the other hand, if the torque command value is reversed from positive to negative, it is determined that the engine 3 has started, and the process proceeds to step S306.
  • step S306 it is determined whether or not the motor / generator 4 has been in a negative torque state for a predetermined time. Even if the engine 3 is not started, the torque from the motor / generator 4 may reverse from positive torque to negative torque. For example, depending on the method of controlling the rotational speed, the rotational speed of the motor / generator 4 may exceed the target rotational speed during cranking (overshoot), and negative torque may be generated to suppress it. Therefore, in step S306, it is determined whether or not the negative torque is continuously generated from the motor / generator 4 for a predetermined time or more in order to reliably determine that the engine 3 has been started.
  • the start of the engine 3 is determined based on a change in the magnitude of the motor torque.
  • a power running of the motor torque, a change in the regeneration ratio, or the like may be used. At the time of cranking, the ratio of the power running torque is increased, whereas the ratio of the regenerative torque is increased after the engine is started. Therefore, it is possible to determine whether the engine 3 is started.
  • the motor controller 22 can detect the torque of the motor / generator 4 by the processes of steps S304 and S306 as described above, and can determine whether the engine 3 has been started based on the torque. In step S308, it is determined that the rotation speed control has ended, and the rotation speed control end determination process in FIG. 6 ends.
  • FIG. 10 is a diagram showing an example of an operation time chart when the CAN communication is interrupted in the hybrid vehicle of the present embodiment described above. The vehicle operation at the time of CAN communication malfunction will be described below using this figure.
  • the CAN communication is interrupted between the integrated controller 20 and the motor controller 22 at time T1 during the EV mode.
  • the control is continued using the previous command value.
  • the motor controller 22 and the integrated controller 20 be configured to recognize CAN communication abnormality at the same timing.
  • the integrated controller 20 When the CAN communication abnormality is determined at time T2, the integrated controller 20 outputs a target CL2 torque command to the CVT controller 23 in step S406 of FIG. 7 in order to release the second clutch CL2. Instruct to release 2 clutch CL2.
  • the motor controller 22 sets the motor / generator 4 to the rotational speed control state in step S206 of FIG. 5 and sets the target rotational speed to a predetermined cranking rotational speed.
  • the motor rotational speed is lowered by limiting the rate of change of the motor rotational speed.
  • the primary rotational speed gradually decreases.
  • the integrated controller 20 performs cranking to the first clutch controller 5 in step S502 of FIG.
  • the target CL1 torque command for output is output, and the first clutch CL1 is gradually slipped from the released state to enter the engaged state.
  • the first clutch CL1 is gradually engaged, the engine 3 is cranked, and the engine speed increases.
  • the motor / generator 4 When the engine 3 is completely exploded in step S504 and starts to start, the motor / generator 4 generates a negative torque in order to suppress the engine speed.
  • the motor controller 22 ends the rotational speed control of the motor / generator 4 and turns off the gate in step S112 in FIG. Thereafter, the torque from the engine 3 is transmitted to the drive side by gradually changing the second clutch CL2 from the released state to the engaged state. Thereby, the retreat travel using the engine 3 is started in the vehicle.
  • the engagement operation of the second clutch CL2 may be performed before time T4 in order to output the drive torque early. However, in this case, it is necessary to engage the second clutch CL2 after the complete explosion of the engine 3 at the earliest.
  • the cranking rotational speed is set to a predetermined rotational speed.
  • the cranking rotational speed corresponding to the primary rotational speed is set. It is also possible to set.
  • the motor rotation speed In order to be able to transmit torque to the drive side even during engine start-up, the motor rotation speed must always be higher than the primary rotation speed. Therefore, if the rotation speed obtained by adding the difference between the primary rotation speed received from the CVT controller 23 and the necessary motor rotation speed is set as the cranking rotation speed, the engine 3 can be started without interrupting the driving force. Thus, it is possible to shift to retreat travel.
  • the motor controller 22 is mounted on a hybrid vehicle including the engine 3 and the motor / generator 4 and controls the motor / generator 4.
  • the motor / generator 4 is used for driving the driving wheels of the vehicle and starting the engine 3.
  • the vehicle is communicably connected to the motor controller 22, the engine controller 21 that controls the engine 3, the motor controller 22, and the engine controller 21, and commands according to the driving state of the vehicle are sent to the motor controller 22 and the engine controller 21, respectively.
  • an integrated controller 20 for outputting.
  • the motor controller 22 performs a first control mode for controlling the motor / generator 4 based on a command from the integrated controller 20 (step S104).
  • the engine 3 is stopped by performing the second control mode for controlling the motor / generator 4 based on the control information stored in advance. Then, the motor / generator 4 starts the engine 3 (step S110).
  • the control of the motor / generator 4 becomes impossible, the motor / generator 4 can be stopped appropriately and the drive wheels can be driven by the engine 3 to perform retreat travel.
  • step S206 If the engine 3 is stopped, the motor controller 22 controls the motor / generator 4 to rotate in a predetermined rotation state in the second control mode (step S206). If the engine 3 is operating, control is performed so that the motor / generator 4 is stopped in the second control mode (step S112). Since it did in this way, according to the operation state of the engine 3, operation
  • step S112 If the engine 3 is stopped, the motor controller 22 controls the motor / generator 4 to rotate in a predetermined rotational state in step S206 in the second control mode, and then in step S112, the motor / generator 4 is controlled to stop. Since it did in this way, after the operation
  • step S206 the motor controller 22 performs rotation speed control for rotating the motor / generator 4 according to a predetermined target rotation speed, thereby controlling the motor / generator 4 to rotate in a predetermined rotation state. To do. Since it did in this way, engine 3 can be cranked appropriately by rotation of motor / generator 4, and engine 3 can be started.
  • the motor controller 22 determines whether or not the engine 3 has been started (steps S304 and S306). If it is determined that the start has been completed, the rotational speed control in step S206 is terminated (step S308). Since it did in this way, after starting the engine 3, the rotation speed control of the motor / generator 4 which became unnecessary can be complete
  • step S304 and S306 the motor controller 22 detects the torque of the motor / generator 4, and determines whether or not the engine 3 has been started based on the torque. Since it did in this way, it can be determined correctly whether the starting of the engine 3 was completed.
  • the motor controller 22 can change the rotational speed of the motor / generator 4 to the target rotational speed at a predetermined change rate when performing the rotational speed control in step S206. Specifically, the change rate can be changed according to the elapsed time since the rotation speed control is started in step S206. In this way, it is possible to reduce the adverse effect on the vehicle behavior caused by the rapid change in the motor rotation speed, and to minimize the driver's anxiety.
  • the motor controller 22 can also detect the torque of the motor / generator 4 and determine the rate of change based on this torque. In this way, adverse effects on vehicle behavior can be further reduced.
  • the vehicle has a first clutch CL1 for fastening or releasing between the engine 3 and the motor / generator 4, a first clutch controller 5 for controlling the first clutch CL1, and a space between the motor / generator 4 and the drive wheels. It further includes a second clutch CL2 that is engaged or released, and a CVT controller 23 that controls the second clutch CL2.
  • the engine 3 and the motor / generator 4 are engaged by the first clutch CL1 (step S502), and the motor / generator 4 is driven by the second clutch CL2.
  • the space between the rings is released (step S406). In this state, the engine 3 is started by the motor / generator 4 (step S504).
  • step S206 If the engine 3 is stopped, the motor controller 22 controls the motor / generator 4 to rotate in a predetermined rotation state in step S206 in the second control mode. Thereafter, in accordance with a signal from at least one of the engine controller 21 and the first clutch controller 5, a process for determining the end of the rotational speed control is performed in step S208, and the motor / generator 4 is controlled to be stopped in step S112. be able to. In this way, the motor / generator 4 can be stopped at an accurate timing after the engine 3 is started.
  • the motor controller 22 is mounted on a hybrid vehicle including the engine 3 and the motor / generator 4 and controls the motor / generator 4.
  • This motor controller 22 is stored in advance from the first control mode in which the motor / generator 4 is controlled based on a command from the integrated controller 20 when communication with the integrated controller 20 as an external control device is abnormal.
  • Switching to the second control mode for controlling the motor / generator 4 based on the control information steps S102, S104, S110, S112).
  • the motor / generator 4 is appropriately stopped and the driving wheels are driven by the engine 3 to perform the retreat travel. Can do.
  • the motor controller 22 executes the motor control process of FIG.
  • the example in which the engine 3 is started by controlling the rotation speed of the motor / generator 4 has been described.
  • another controller for example, another controller such as the first clutch controller 5.
  • the motor controller 22 may receive necessary information.
  • the motor controller 22 may control the motor / generator 4 based on information transmitted from a controller other than the integrated controller 20.
  • Second clutch hydraulic unit 10 Inverter 11
  • first clutch stroke sensor 16 accelerator opening sensor 17 vehicle speed sensor 19 battery 20 integrated controller 21
  • CVT controller 24 brake controller 25
  • battery controller 51 wheel speed sensor 52
  • communication abnormality detection unit 202 torque command calculation unit 203
  • motor rotation number calculation unit 204 motor current detection unit
  • Rotational speed control torque calculation unit 302 Torque control torque calculation unit 303
  • Rotational speed control / torque control selection unit 304 Upper / lower limit limiting unit

Abstract

 モータの制御が不可能となった場合に、モータを適切に停止すると共にエンジンにより駆動輪を駆動させて退避走行を行う。 モータ/ジェネレータ4は、車両の駆動輪を駆動すると共に、エンジン3を始動するために用いられる。モータコントローラ22は、統合コントローラ20とのCAN通信が正常である場合に、統合コントローラ20からの指令に基づいてモータ/ジェネレータ4を制御する第一制御モードを実施する。また、統合コントローラ20とのCAN通信が異常である場合に、予め記憶された制御情報に基づいてモータ/ジェネレータ4を制御する第二制御モードを実施することで、エンジン3が停止中であるときにモータ/ジェネレータ4にエンジン3を始動させる。

Description

モータ制御装置
 本発明は、バッテリにより駆動されるモータを制御するモータ制御装置に関する。
 従来、エンジンとモータの間に設けられた第1クラッチと、モータと駆動輪の間に設けられた第2クラッチとを備えた、1モータ2クラッチのハイブリッド車両が知られている(特許文献1)。
 特許文献1に開示されたハイブリッド車両において、エンジン、モータ、第1クラッチおよび第2クラッチの各構成要素は、それぞれ専用のコントローラによって制御される。これらの各専用コントローラは、CAN通信線を介して統合コントローラに接続されており、この統合コントローラからの指令に基づいて、対応する構成要素の制御を実施している。
特開2011-20543号公報
 上記のような1モータ2クラッチのハイブリッド車両において、通信不良等により統合コントローラからの指令をモータコントローラが正常に受信できなくなり、モータの制御が不可能となった場合、モータを停止すると共にエンジンにより駆動輪を駆動させて退避走行を行うことが、安全上好ましい。しかし、特許文献1には、このような場合の制御方法について何ら開示されていない。
 本発明の一態様によるモータ制御装置は、エンジンとモータを備えたハイブリッド自動車である車両に搭載されてモータを制御するものであって、モータは、車両の駆動輪を駆動すると共に、エンジンを始動するために用いられる。車両は、モータ制御装置と、エンジンを制御するエンジン制御装置と、モータ制御装置およびエンジン制御装置と通信可能に接続され、車両の運転状態に応じた指令をモータ制御装置およびエンジン制御装置へそれぞれ出力する統合制御装置とを備える。モータ制御装置は、統合制御装置との通信が正常である場合に、統合制御装置からの指令に基づいてモータを制御する第一制御モードを実施し、統合制御装置との通信が異常である場合に、予め記憶された制御情報に基づいてモータを制御する第二制御モードを実施することで、エンジンが停止中であるときにモータにエンジンを始動させる。
 また、本発明の他の一態様によるモータ制御装置は、エンジンとモータを備えたハイブリッド自動車である車両に搭載されてモータを制御するものであって、外部制御装置との通信が異常である場合に、外部制御装置からの指令に基づいてモータを制御する第一制御モードから、予め記憶された制御情報に基づいてモータを制御する第二制御モードへと切り替える。
 本発明によれば、モータの制御が不可能となった場合に、モータを適切に停止すると共にエンジンにより駆動輪を駆動させて退避走行を行うことができる。
本発明によるモータ制御装置の一実施形態であるモータコントローラを搭載したハイブリッド車両の構成を示す図である。 モータコントローラの制御ブロック図である。 モータコントローラにおけるトルク指令値の算出ブロック図である。 モータコントローラにおいて実行されるモータ制御処理のフローチャートである。 エンジン始動制御処理のフローチャートである。 回転数制御終了判定処理のフローチャートである。 待機時間中での第2クラッチ制御処理のフローチャートである。 第二制御モード選択時の第1クラッチ制御処理のフローチャートである。 第二制御モード選択時の回転数変化率の一例を示す図である。 CAN通信が途絶えたときの動作タイムチャートの一例を示す図である。
 以下に図面を用いて、本発明の一実施の形態について説明する。図1は、本発明によるモータ制御装置の一実施形態に係るモータコントローラを搭載したハイブリッド車両の構成を示す図である。
 ハイブリッド車両の駆動系は、図1に示すように、エンジン3と、フライホイールFWと、第1クラッチCL1と、モータ/ジェネレータ4と、メカオイルポンプM-O/Pと、第2クラッチCL2と、自動変速機CVTと、変速機入力軸INと、変速機出力軸OUTと、ディファレンシャル8と、左ドライブシャフトDSLと、右ドライブシャフトDSRと、駆動輪である左タイヤLTおよび右タイヤRTと、を有する。
 エンジン3は、ガソリンエンジンやディーゼルエンジン等の内燃機関であり、エンジンコントローラ21からのエンジン制御指令に基づいて動作する。エンジンコントローラ21は、エンジン3を制御する装置であり、たとえば、エンジン始動制御、エンジン停止制御、スロットルバルブのバルブ開度制御、燃料カット制御等をエンジン3に対して行うことにより、エンジン3の動作を制御する。
 第1クラッチCL1は、エンジン3とモータ/ジェネレータ4との間を締結または解放するためのクラッチであり、これらの間に介装されている。第1クラッチコントローラ5は、第1クラッチCL1の動作を制御するための第1クラッチ制御指令を、後述する油圧コントロールバルブユニットCVUに内蔵されている第1クラッチ油圧ユニット6へ出力する。第1クラッチ油圧ユニット6は、第1クラッチコントローラ5からの第1クラッチ制御指令に基づいて第1クラッチ制御油圧を生成し、第1クラッチCL1へ出力する。この第1クラッチ制御油圧により、第1クラッチCL1が締結状態、半締結状態(スリップ締結状態)、または解放状態のいずれかに制御される。第1クラッチCL1としては、たとえば、ピストン14aを有する油圧アクチュエータ14を用いたストローク制御により締結状態を制御すると共に、ダイアフラムスプリングによる付勢力にて完全締結を保つようにした、ノーマルクローズの乾式単板クラッチが用いられる。
 モータ/ジェネレータ4は、ロータに永久磁石が埋設され、ステータにステータコイルが巻き付けられた同期型モータ/ジェネレータである。モータコントローラ22は、モータ/ジェネレータ4を制御するための制御指令をインバータ10へ出力する。インバータ10は、モータコントローラ22からの制御指令に基づいて、バッテリ19から供給される直流電力を用いて三相交流電力を生成し、モータ/ジェネレータ4へ印加する。この三相交流電力により、モータ/ジェネレータ4の回転状態が制御される。このように、モータ/ジェネレータ4は、バッテリ19からの電力の供給を受けて回転駆動することで、力行運転を行って駆動輪を駆動させる電動機として動作することができる。さらにモータ/ジェネレータ4は、エンジン3や駆動輪からの回転エネルギーをロータにより受けることで、ステータコイルの両端に起電力を生じさせ、バッテリ19を充電することもできる。この場合、モータ/ジェネレータ4は、回生運転を行う発電機として機能する。
 メカオイルポンプM-O/Pは、モータ/ジェネレータ4の回転軸上に設けられており、モータ/ジェネレータ4により駆動される。このメカオイルポンプM-O/Pは、自動変速機CVTに付設される油圧コントロールバルブユニットCVUと、これに内蔵されている第1クラッチ油圧ユニット6および第2クラッチ油圧ユニット9に対する油圧源である。なお、メカオイルポンプM-O/Pからの吐出油圧が十分に見込めない場合を考慮して、電動モータにより駆動される電動オイルポンプをさらに設けるようにしてもよい。
 第2クラッチCL2は、モータ/ジェネレータ4と駆動輪である左右タイヤLT、RTとの間を締結または解放するためのクラッチであり、モータ/ジェネレータ4の回転軸と変速機入力軸INの間に介装されている。CVTコントローラ23は、第2クラッチCL2の動作を制御するための第2クラッチ制御指令を、油圧コントロールバルブユニットCVUに内蔵されている第2クラッチ油圧ユニット9へ出力する。第2クラッチ油圧ユニット9は、CVTコントローラ23からの第2クラッチ制御指令に基づいて第2クラッチ制御油圧を生成し、第2クラッチCL2へ出力する。この第2クラッチ制御油圧により、第2クラッチCL2が締結状態、半締結状態(スリップ締結状態)、または解放状態のいずれかに制御される。第2クラッチCL2としては、たとえば、比例ソレノイドで油流量および油圧を連続的に制御できるノーマルオープンの湿式多板クラッチ等が用いられる。
 自動変速機CVTは、変速比を無段階で自動的に変更可能なベルト式による無段変速機であり、第2クラッチCL2の下流位置に配置されている。自動変速機CVTにおける変速比は、車速やアクセル開度等に応じて目標入力回転数が決められることにより調節される。この自動変速機CVTは、変速機入力軸IN側のプライマリプーリと、変速機出力軸OUT側のセカンダリプーリと、これらの両プーリに掛け渡されたベルトとを主要構成としている。メカオイルポンプM-O/Pから供給される油圧を元に、プライマリプーリ圧とセカンダリプーリ圧を作り出し、これらのプーリ圧によりプライマリプーリの可動プーリとセカンダリプーリの可動プーリをそれぞれ軸方向に動かしてベルトのプーリ接触半径を変化させることで、自動変速機CVTにおいて変速比を無段階に変更することができる。
 以上説明した構成のハイブリッド車両は、駆動形態の違いにより、電気自動車走行モード(以下、「EVモード」という。)と、ハイブリッド車走行モード(以下、「HEVモード」という。)と、駆動トルクコントロール走行モード(以下、「WSCモード」という。)との三種類の走行モードを選択的に使用する。なお、WSCは、「Wet Start Clutch」の略である。
 EVモードは、第1クラッチCL1を解放状態とし、モータ/ジェネレータ4を駆動源として走行するモードである。このEVモードはさらに、モータ/ジェネレータ4を力行運転させるモータ走行モードと、モータ/ジェネレータ4を回生運転させる回生走行モードとに分類されている。ハイブリッド車両は、これらのうちいずれかのモードを選択して走行する。EVモードは、駆動輪に対する要求駆動力が比較的低く、バッテリ19の充電容量を表すSOC(State Of Charge)が十分に確保されているときに選択される。
 HEVモードは、第1クラッチCL1を締結状態とし、エンジン3とモータ/ジェネレータ4を駆動源として走行するモードである。このHEVモードはさらに、エンジン3とモータ/ジェネレータ4を同時に用いて駆動輪を駆動させるモータアシスト走行モードと、エンジン3を用いて駆動輪を駆動させつつモータ/ジェネレータ4により発電を行う発電走行モードと、エンジン3のみを用いて駆動輪を駆動させるエンジン走行モードとに分類されている。ハイブリッド車両は、これらのうちいずれかのモードを選択して走行する。HEVモードは、駆動輪に対する要求駆動力が比較的高いときや、バッテリ19のSOCが不足しているときなどに選択される。
 WSCモードは、モータ/ジェネレータ4の回転数制御を行いつつ第2クラッチCL2をスリップ締結状態に維持し、第2クラッチCL2を介して変速機入力軸INへ伝達されるトルクが車両状態やドライバ操作に応じて決まる要求駆動トルクと一致するように、第2クラッチCL2のクラッチトルク容量をコントロールしながら走行するモードである。このWSCモードは、たとえばHEVモードが選択されているときの停車時、発進時、減速時等のように、エンジン回転数がアイドル回転数を下回ったり、メカオイルポンプM-O/Pからの吐出油圧が不足したりするような走行領域において選択される。
 次に、ハイブリッド車両の制御系を説明する。ハイブリッド車両の制御系は、図1に示すように、エンジンコントローラ21と、モータコントローラ22と、インバータ10と、バッテリ19と、第1クラッチコントローラ5と、第1クラッチ油圧ユニット6と、CVTコントローラ23と、第2クラッチ油圧ユニット9と、ブレーキコントローラ24と、バッテリコントローラ25と、統合コントローラ20と、を有して構成されている。なお、エンジンコントローラ21、モータコントローラ22、第1クラッチコントローラ5、CVTコントローラ23、ブレーキコントローラ24、バッテリコントローラ25および統合コントローラ20の各コントローラは、情報交換が互いに可能なCAN通信線を介して接続されている。
 エンジンコントローラ21は、エンジン回転数センサ11からのエンジン回転数情報と、統合コントローラ20からの目標エンジントルク指令と、他の必要情報とを入力する。そして、これらの情報に基づいて、エンジン動作点を表すエンジン回転数NeおよびエンジントルクTeを制御する指令をエンジン3のスロットルバルブアクチュエータ等へ出力することにより、エンジン3を制御する。
 モータコントローラ22は、モータ/ジェネレータ4のロータ回転位置を検出するレゾルバ12からのロータ位置情報(回転数情報)と、統合コントローラ20からの目標MGトルク指令、目標MG回転数指令および制御モード指令と、他の必要情報とを入力する。そして、これらの情報に基づいて、前述のEVモード、HEVモードまたはWSCモードのいずれかの走行モードに応じた制御モードを選択し、PWM信号を生成してインバータ10へ出力する。このPWM信号に応じてインバータ10を動作させることにより、モータ/ジェネレータ4を制御する。なお、このモータコントローラ22は、ハイブリッド車両の走行中は、モータトルクTmを目標トルクとしてモータ/ジェネレータ4を制御し、モータ回転数Nmを駆動系の回転に追従させるトルク制御を基本的に行う。しかし、前述のWSCモードにおいて第2クラッチCL2をスリップ制御しているときなどには、モータ回転数Nmを目標回転数としてモータ/ジェネレータ4を制御し、モータトルクTmを駆動系の負荷に追従させる回転数制御を行う。
 バッテリコントローラ25は、バッテリ19の充電容量を表すSOCを監視しており、この監視結果に基づくSOCの情報や、バッテリ19に対して入出力可能なパワーの情報などを、CAN通信線を介して統合コントローラ20へ供給する。
 第1クラッチコントローラ5は、油圧アクチュエータ14におけるピストン14aのストローク位置を検出する第1クラッチストロークセンサ15からのセンサ情報と、統合コントローラ20からの目標CL1トルク指令と、他の必要情報とを入力する。そして、これらの情報に基づいて、第1クラッチCL1の締結状態を制御する指令を油圧コントロールバルブユニットCVU内の第1クラッチ油圧ユニット6へ出力することにより、第1クラッチCL1を制御する。
 CVTコントローラ23は、アクセル開度センサ16からのアクセル開度情報と、車速センサ17からの車速情報と、他のセンサ類等から必要に応じて出力される各種情報とを入力する。そして、これらの情報に基づいて、不図示のシフトレバーでDレンジが選択されているときに、アクセル開度と車速により決まる目標入力回転数をシフトマップから検索し、検索された目標入力回転数に応じた変速比を得るための制御指令を油圧コントロールバルブユニットCVUへ出力することにより、自動変速機CVTの変速制御を行う。なお、エンジン始動時やエンジン停止時等に統合コントローラ20から変速制御指令が出力された場合、CVTコントローラ23は、この変速制御指令にしたがった変速制御を、上記のような通常の変速制御に優先して行う。さらにCVTコントローラ23は、統合コントローラ20から目標CL2トルク指令が入力された場合、上記の変速制御に加えて第2クラッチCL2の制御を行う。このときCVTコントローラ23は、目標CL2トルク指令に基づいて、第2クラッチCL2へのクラッチ油圧を制御するための指令を油圧コントロールバルブユニットCVU内の第2クラッチ油圧ユニット9へ出力することにより、第2クラッチCL2を制御する。
 ブレーキコントローラ24は、車両の4つの各車輪速を検出する車輪速センサ51からの車速情報と、ブレーキペダルの踏み込み量を検出するブレーキストロークセンサ52からのブレーキストローク情報と、統合コントローラ20からの回生協調制御指令と、他の必要情報とを入力する。そして、これらの情報に基づいて、ブレーキ制御を行う。たとえば、ブレーキ踏み込み制動時に、ブレーキストロークから求められる要求制動力に対して回生制動力だけでは不足する場合、その不足分を機械制動力(液圧制動力やモータ制動力)で補うように、回生協調ブレーキ制御を行う。
 統合コントローラ20は、車両全体の消費エネルギーを管理し、最高効率で車両を走らせるための機能を担うものである。この統合コントローラ20は、モータ回転数Nmを検出するモータ回転数センサや他のセンサ・スイッチ類からの各種の情報と、各コントローラからCAN通信線を介して出力される情報とを入力する。そして、これらの情報に基づいて、前述の三種類の走行モードのうちいずれかの走行モードを選択し、選択した走行モードに応じた指令を他の各コントローラへ出力する。具体的には、エンジンコントローラ21へ目標エンジントルク指令を、モータコントローラ22へ目標MGトルク指令、目標MG回転数指令および制御モード指令を、第1クラッチコントローラ5へ目標CL1トルク指令を、CVTコントローラ23へ目標CL2トルク指令を、ブレーキコントローラ24へ回生協調制御指令をそれぞれ出力する。
 次に、モータコントローラ22において行われる制御内容について説明する。図2は、モータコントローラ22の制御ブロック図である。モータコントローラ22は、図2に示すように、通信異常検知部201、トルク指令算出部202、モータ回転数算出部203、モータ電流検出部204、直流電圧検出部205、電流指令演算部206、電流制御演算部207およびPWMデューティ算出部208の各制御ブロックを機能的に有する。なお、モータコントローラ22は、これらの各制御ブロックをマイコン等の処理によって実現することができる。
 通信異常検知部201は、統合コントローラ20との間で行われるCAN通信の状態を検知し、正常であるか異常であるかを判断する。その結果、CAN通信が異常であると判断した場合は、異常検知信号をトルク指令算出部202へ出力する。
 トルク指令算出部202は、統合コントローラ20からCAN通信により送信される目標MGトルク指令、目標MG回転数指令および制御モード指令を受けると共に、モータ回転数算出部203によるモータ回転数Nmの算出結果を受ける。そして、これらの各値に基づいて、モータ/ジェネレータ4に対するトルク指令を算出し、算出したトルク指令を電流指令演算部206へ出力する。このトルク指令算出部202によるトルク指令の算出方法については、後で詳しく説明する。
 なお、通信異常検知部201からトルク指令算出部202へ異常検知信号が出力された場合、トルク指令算出部202は、ハイブリッド車両を退避走行させるために、通常時とは異なる方法でトルク指令の演算を行う。このときの具体的な演算方法についても、後で詳しく説明する。
 モータ回転数算出部203は、レゾルバ12からのロータ位置情報を受け、これに基づいて、モータ/ジェネレータ4の回転数を表すモータ回転数Nmを算出する。そして、算出したモータ回転数Nmをトルク指令算出部202へ出力する。
 モータ電流検出部204は、インバータ10とモータ/ジェネレータ4の間に設けられた電流センサ210からのセンサ情報を基に、インバータ10からモータ/ジェネレータ4に流れているモータ電流を検出する。そして、検出した電流値を電流制御演算部207へ出力する。
 直流電圧検出部205は、インバータ10とバッテリ19の間に設けられた電圧センサ211からのセンサ情報を基に、バッテリ19からインバータ10へ供給されている直流電圧を検出する。そして、検出した電圧値を電流指令演算部206へ出力する。なお、電圧センサ211は、バッテリ19からインバータ10へ供給されている直流電圧として、バッテリ19と並列に接続されているコンデンサ212の電圧を測定している。ここで、コンデンサ212の電圧は、理論上、バッテリ19の電圧と同値である。
 電流指令演算部206は、トルク指令算出部202からのトルク指令および直流電圧検出部205からの電圧値に基づいて、インバータ10からモータ/ジェネレータ4へ出力する電流を制御するための制御電流指令値を決定する。そして、制御電流指令値を電流制御演算部207へ出力する。
 電流制御演算部207は、電流指令演算部206からの制御電流指令値と、モータ電流検出部204からの電流値とを比較し、その比較結果に基づいて、インバータ10に対する電圧指令値を決定する。そして、電圧指令値をPWMデューティ算出部208へ出力する。
 PWMデューティ算出部208は、電流制御演算部207からの電圧指令値に基づいて、インバータ10が有する各スイッチング素子に対するPWM制御のデューティをそれぞれ決定する。そして、決定した各スイッチング素子のデューティに応じたPWM信号を生成し、インバータ10へ出力する。このPWM信号に応じてインバータ10の各スイッチング素子がスイッチング動作を行うことにより、バッテリ19からの直流電力が三相交流電力に変換されてモータ/ジェネレータ4へ出力される。
 次に、トルク指令算出部202によるトルク指令の算出方法について説明する。図3は、トルク指令算出部202の制御ブロック図である。トルク指令算出部202は、図3に示すように、回転数制御用トルク演算部301、トルク制御用トルク演算部302、回転数制御/トルク制御選択部303および上下限制限部304の各制御ブロックを機能的に有する。
 回転数制御用トルク演算部301は、外部の統合コントローラ20からCAN通信を経由して送られてくる目標MG回転数指令で指定された目標MG回転数と、モータ回転数算出部203からのモータ回転数Nmとを比較して、モータ回転数Nmが目標MG回転数に一致するようにトルク指令値を算出する。このトルク指令値は、回転数制御トルク指令値として回転数制御/トルク制御選択部303へ出力される。
 なお、統合コントローラ20とモータコントローラ22の間で行われるCAN通信が異常である場合、前述のように通信異常検知部201により異常が検知されて異常検知信号が出力される。このとき、回転数制御用トルク演算部301では、統合コントローラ20から目標MG回転数を入手することができない。そのため、回転数制御用トルク演算部301は、通信異常検知部201から異常検知信号が出力されると、それに応じて、統合コントローラ20からの目標MG回転数の代わりに、異常発生時の制御情報として予め記憶された回転数を用いて、上記のようなトルク指令値の算出を行う。この点については、後で詳しく説明する。
 トルク制御用トルク演算部302は、統合コントローラ20からCAN通信により送られてくる目標MGトルク指令で指定された目標MGトルク値に対して、所定の補正演算や変化率制限等を行うことにより、トルク指令値を算出する。このトルク指令値は、トルク制御トルク指令値として回転数制御/トルク制御選択部303へ出力される。
 回転数制御/トルク制御選択部303は、回転数制御用トルク演算部301からの回転数制御トルク指令値と、トルク制御用トルク演算部302からのトルク制御トルク指令値とを入力し、これらのトルク指令値のいずれか一方を選択する。そして、選択したトルク指令値を上下限制限部304へ出力する。このトルク指令値の選択は、統合コントローラ20からCAN通信により送られてくる制御モード指令と、通信異常検知部201から出力される異常検知信号とに基づいて、以下のように行われる。
 通信異常検知部201から異常検知信号が出力されていない場合、回転数制御/トルク制御選択部303は、制御モード指令で指定された制御モードに応じて、回転数制御であれば回転数制御トルク指令値を選択し、トルク制御であればトルク制御トルク指令値を選択する。制御モード指令では、統合コントローラ20の判断に応じた制御モードが指定されている。たとえば、EVモードでの走行中や、HEVモードでの走行中には、統合コントローラ20によりトルク制御が指定され、WSCモードでの走行中や、EVモードでの走行からエンジン3を始動してHEVモードに移行する際には、統合コントローラ20により回転数制御が指定される。
 一方、通信異常検知部201から異常検知信号が出力されている場合、回転数制御/トルク制御選択部303は、制御モード指令で指定された制御モードに関わらず、回転数制御トルク指令値を選択する。この回転数制御トルク指令値は前述のように、回転数制御用トルク演算部301において、予め記憶された回転数を用いて算出されたものである。
 上下限制限部304は、統合コントローラ20からCAN通信により送られてくる上限トルク値および下限トルク値に基づいて、回転数制御/トルク制御選択部303からのトルク指令値に対する制限を必要に応じて行う。たとえば、上限トルク値と下限トルク値に応じた制限幅を設定し、トルク指令値がこの制限幅から外れている場合は、上限トルク値または下限トルク値に制限して出力する。これにより、トルク指令算出部202から出力される最終的なトルク指令が決定される。
 次に車両のモード遷移動作について説明する。統合コントローラ20は、EVモードでの走行中に、SOC残量やトルク要求などによりHEVモードへ移行すべきと判断した場合、エンジン始動制御を経由してHEVモードに移行する。このエンジン始動制御において、統合コントローラ20は、EVモード中には解放されている第1クラッチCL1を半締結状態にし、モータ/ジェネレータ4をスタータモータとしてエンジン3をクランキングすることで、燃料噴射と点火によりエンジン3を始動させる。その後、第1クラッチCL1を締結する。このエンジン始動制御を開始する際に、統合コントローラ20は、回転数制御を指定する制御モード指令をモータコントローラ22に対して出力することにより、モータ/ジェネレータ4をトルク制御から回転数制御に変更し、エンジン3のクランキングや回転同期が出来るようにする。また、第2クラッチCL2をスリップ締結することで、エンジン始動制御に伴うトルク変動を第2クラッチCL2により吸収し、駆動軸へのトルク伝達によるエンジン始動ショックを防止する。
 一方、HEVモードでの走行中にEVモードへ移行すべきと判断した場合、統合コントローラ20は、エンジン停止制御を経過してEVモードに移行する。このエンジン停止制御において、統合コントローラ20は、HEVモード中には締結されている第1クラッチCL1を解放した後、駆動軸から切り離されたエンジン3を停止させる。このエンジン停止制御の実行中において、統合コントローラ20は、前述のエンジン始動制御時と同様に、回転数制御を指定する制御モード指令をモータコントローラ22に対して出力することにより、モータ/ジェネレータ4をトルク制御から回転数制御に変更する。また、第2クラッチCL2をスリップ締結することで、エンジン停止制御に伴うトルク変動を第2クラッチCL2により吸収し、駆動軸へのトルク伝達によるエンジン停止ショックを防止する。
 上述のようにEVモードからHEVモードへ、またはHEVモードからEVモードへ遷移する場合には、エンジンコントローラ21、モータコントローラ22、第1クラッチコントローラ5、CVTコントローラ23、ブレーキコントローラ24、バッテリコントローラ25および統合コントローラ20の各コントローラ間で情報のやり取りを行いながら、各コントローラでの制御を実施する必要がある。一般には、CAN通信にて各コントローラ間で情報の送受信が行われる。
 ここで、EVモード中に統合コントローラ20とモータコントローラ22の間でCAN通信が不調となり、信号のやり取りができなくなった場合には、モータコントローラ22において、回転数制御への移行タイミングや目標MG回転数の設定が不明となる。そのため、このような場合にモータコントローラ22はフェールセーフ動作として、インバータ10へのPWM信号を停止してゲートを遮断すると共に、トルク指令を0とする。
 しかし、上記のようなフェールセーフ動作がEVモード中に行われると、それ以降はモータ/ジェネレータ4を駆動源としたEV走行ができなくなるため、車両を安全な場所や、修理工場まで走行させることが困難となってしまう。そこで、本発明では、CAN通信の不調等によりモータコントローラ22が外部(統合コントローラ20)からの情報を受信できなくなった場合でも、予め決められた動作をモータコントローラ22において行うことにより、エンジン3を始動可能な状態を提供する。これにより、車両が突然停止することなく、エンジン3を駆動源として退避走行を実施できるようにする。
 図4は、モータコントローラ22において実行されるモータ制御処理のフローチャートである。
 ステップS102では、通信異常検知部201を用いて、統合コントローラ20との間のCAN通信が異常であるかどうかの判定を行う。CAN通信が正常と判定した場合には、ステップS104に進み、第一制御モードとして、統合コントローラ20からの指令に基づいてモータ/ジェネレータ4を制御する通常制御をステップS104で実施する。一方、CAN通信が異常と判定した場合には、ステップS106へ進み、予め記憶された制御情報に基づいてモータ/ジェネレータ4を制御する第二制御モードをステップS106以降で実施する。
 ステップS102でのCAN通信が異常かどうかの判定には、周知のCAN通信故障診断を用いることができる。たとえば、統合コントローラ20からの信号が一定時間以上途絶えたら、CAN通信異常と判定する。また、統合コントローラ20も同じタイミングでCAN通信異常を認識できるような構成とすることが好ましい。具体的には、ステップS102の判定でモータコントローラ22が用いたのと同じ時間の信号途絶が発生したときに、統合コントローラ20でもCAN通信異常と判定できるようにしておけばよい。さらに、モータコントローラ22の受信のみが異常になった場合も考慮して、モータコントローラ22がCAN通信異常と判定したら、その情報をモータコントローラ22から統合コントローラ20へ送信してもよい。このようにすれば、モータコントローラ22と統合コントローラ20でそれぞれCAN通信異常を判定することができる。なお、ここでは統合コントローラ20からのモータ制御指令値がモータコントローラ22において正常に受信できないCAN通信異常の一例として、CAN通信が途絶するCAN通信不調を挙げている。これ以外に、たとえば統合コントローラ20からのモータ制御指令値が異常な値を示す場合などについても、同様にCAN通信異常と判定することが好ましい。
 ステップS106では、現在の走行モードがHEVモードであるか否かを判定する。HEVモードと判定した場合、すなわち既にエンジン3が動作中の場合は、エンジン3を始動させるためのモータ制御を実施する必要がない。したがってこの場合はステップS112へ進み、ステップS112でインバータ10へのPWM信号を停止してゲートをオフすることにより、モータ/ジェネレータ4を停止させるように制御する。そして、図4のモータ制御処理を終了する。その後車両では、モータ/ジェネレータ4を使用せずに、エンジン3を駆動源とした退避走行が行われる。なお、走行モードがWSCモードである場合も、エンジン3が動作中であればHEVモードの場合と同様に、ステップS112へ進むようにする。一方、HEVモードではないと判定した場合、すなわちエンジン3が停止中であるEVモードの場合は、退避走行のためにエンジン3を始動させる必要があるため、ステップS108へ進む。
 ステップS106での走行モードの判定は、たとえば、走行モードの情報や第1クラッチCL1の締結情報などを統合コントローラ20から受信することにより行うことができる。モータコントローラ22は、CAN通信異常となる直前に受信したこれらの情報に基づいて、現在の走行モードがHEVモードであるか否かを判定することができる。
 また、統合コントローラ20からの情報を利用せず、モータコントローラ22単体で走行モードを判断してもよい。たとえば、モータトルクの積算結果等により走行モードを判断することができる。一般に、EVモードとHEVモードでは異なったSOCマネージメント方式が設定されている。すなわち、EV走行では、バッテリ19のSOCを消費してモータ/ジェネレータ4の駆動力を使って走行するため、正トルク(力行トルク)の積算値が多く、負トルク(回生トルク)の積算値が少なくなるような動作が行われる。これに対して、HEV走行では、バッテリ19のSOCを維持または増加するために、エンジン3の駆動力を増大させてモータ/ジェネレータ4での回生を積極的に行う。そのため、負トルク(回生トルク)の積算値が多く、正トルク(力行トルク)の積算値が少なくなるような動作が行われる。これを利用して、直近のモータ/ジェネレータ4におけるモータトルクの積算値を観測することにより、走行モードがEVモードとHEVモードのどちらであるかの判断を行うことができる。たとえば、回生トルクの積算値が多く、力行トルクの積算値が少ない場合には、HEVモードと判断できる。反対に、回生トルクの積算値が少なく、力行トルクの積算値が多い場合には、EVモードと判断できる。
 ステップS108では、モータ/ジェネレータ4の制御に関してCAN通信以外の故障が発生していないかどうかを判定する。後述するステップS110でエンジン始動制御を行う際には、モータコントローラ22がモータ/ジェネレータ4を正しく制御できることが必要となる。しかし、たとえばレゾルバ12や電流センサ210が故障している場合などは、モータ/ジェネレータ4を正しく制御できない。そのため、このような故障が発生している場合は、ステップS112へ進んでゲートオフし、モータ/ジェネレータ4を停止させてモータ制御処理を終了する。一方、こうしたCAN通信以外の故障が発生しておらず、モータコントローラ22においてモータ/ジェネレータ4の制御が可能な場合は、ステップS110へ進む。
 ステップS110では、モータ/ジェネレータ4に対して、エンジン3を始動させるためのエンジン始動制御を行う。このエンジン始動制御では、予め記憶された目標回転数に応じてモータ/ジェネレータ4を回転数制御することで、エンジン3をクランキングし、エンジン3が始動できるようにする。なお、ステップS110での詳細な処理内容については、後で図5のフローチャートを用いて詳しく説明する。
 ステップS110のエンジン始動制御が終了したら、続くステップS112では前述のように、インバータ10へのPWM信号を停止してゲートをオフする。これにより、モータ/ジェネレータ4を停止させるように制御する。その後、図4のモータ制御処理を終了し、モータ/ジェネレータ4を使用せずに、エンジン3を駆動源とした退避走行が車両で行われるようにする。
 なお、以上説明した図4のフローチャートでは、ステップS106で現在の走行モードがHEVモードであるか否かを判定するようにしたが、この処理を省略することも可能である。この場合、ステップS110でエンジン始動制御が行われている間は、HEV走行中であっても、モータコントローラ22によりモータ/ジェネレータ4が所定の回転数に応じて回転数制御されると共に、統合コントローラ20により第2クラッチCL2が解放またはスリップ状態となるように制御される。そのため、この期間ではドライバの要求通りに駆動力が反映されずに車両の運転性が悪化するものの、エンジン3は停止されないため、エンジン始動制御の終了後に退避走行が可能となる。
 次に図5を用いて、上記ステップS110で行われるエンジン始動制御の詳細について説明する。図5は、エンジン始動制御のフローチャートである。
 ステップS202では、モータ/ジェネレータ4に対する現在の制御モードがトルク制御であるか否かを判定する。トルク制御中の場合はステップS204へ進み、ステップS204において所定時間待機する。このときモータコントローラ22は、モータ/ジェネレータ4に対して前回の制御状態を保持することが好ましい。すなわち、このときには統合コントローラ20との間のCAN通信が異常であり、モータ/ジェネレータ4において現在必要なトルク値が不明であるため、CAN通信が異常となる直前のトルク指令値を用いてトルク制御を継続する。または、安全を考慮して、時間経過に応じて徐々にトルクを落とすような動作としてもよい。
 なお、ステップS204での待機時間は、後述するステップS206でモータ/ジェネレータ4をトルク制御から回転数制御に移行させる際の駆動側への悪影響を防ぐために確保するものである。この待機時間は、統合コントローラ20がCAN通信の異常を検知してから第2クラッチCL2を解放またはスリップ状態とするまでの時間に応じて定めることができる。トルク制御中は、第2クラッチCL2が完全締結されており、モータ/ジェネレータ4からの発生トルクが全て駆動力として駆動側に伝えられる状態となっている。この状況下で、CAN通信が異常となったときにトルク制御から回転数制御へ即時に移行し、ステップS206で所定のクランキング回転数を目標回転数とする制御をモータ/ジェネレータ4に対して行うと、駆動側の回転数が急激に変化し、それに応じて車両の走行速度も急激に変化してしまうという弊害を生じる。すなわち、自動変速機CVTにおける変速機入力軸IN側のプライマリプーリの回転数(プライマリ回転数)がクランキング回転数よりも高い場合は、モータ/ジェネレータ4の回転数をクランキング回転数まで低下させるように回転数制御が行われるため、車両は急減速する。また、逆にプライマリ回転数がクランキング回転数よりも低い場合は、モータ/ジェネレータ4の回転数をクランキング回転数まで上昇させるように回転数制御が行われるため、車両は急加速する。そこで、こうした弊害を防止するため、CAN通信が異常となってから第2クラッチCL2が解放またはスリップ状態となるまでの時間をステップS204で確保した後に、回転数制御へと移行させるようにする。
 図7は、ステップS204の待機時間中に、統合コントローラ20が第2クラッチCL2を制御するために実行する第2クラッチ制御処理のフローチャートである。なお、このフローチャートの開始時点では、第2クラッチCL2は締結状態である。
 統合コントローラ20は、モータコントローラ22との間でのCAN通信異常を検知すると、図7のフローチャートに示す処理を開始する。ステップS402では、プライマリ回転数がモータ/ジェネレータ4の回転数制御での目標回転数であるクランキング回転数よりも大きいかどうかを判定する。プライマリ回転数がクランキング回転数より大きい場合は、回転数制御中にモータ/ジェネレータ4の発生トルクを駆動側に伝えることができないため、ステップS406へ進む。ステップS406では、CVTコントローラ23へ目標CL2トルク指令を出力し、第2クラッチCL2を解放する。一方、プライマリ回転数がクランキング回転数より小さい場合は、回転数制御中にモータ/ジェネレータ4の発生トルクを駆動側に伝えることが可能なため、ステップS404へ進む。ステップS404では、CVTコントローラ23へ目標CL2トルク指令を出力し、第2クラッチCL2をスリップ状態に制御する。
 なお、ステップS404では、プライマリ回転数よりもモータ回転数Nmが大きく、これらの回転数の差が所定の差分α以上であるプラススリップ状態を維持することが好ましい。そのため、ステップS402では、プライマリ回転数が「クランキング回転数+差分α」よりも大きいかどうかを判定するようにしてもよい。あるいは、ステップS404の判定を省略することで、プライマリ回転数によらず、全ての場合でステップS406を実行して第2クラッチCL2を解放するようにしてもよい。
 ここで図5のエンジン始動制御のフローチャートの説明に戻ると、モータコントローラ22は、ステップS204で所定時間待機した後にステップS206へ進む。ステップS206では、所定のクランキング回転数を目標回転数とし、この目標回転数に応じてモータ/ジェネレータ4を回転させる回転数制御を行う。ここでは、図3の回転数制御用トルク演算部301において、モータコントローラ22に予め記憶されたクランキング回転数の情報に基づいて、モータ回転数Nmとクランキング回転数との差に応じたトルク指令値を算出する。このトルク指令値を用いることにより、モータコントローラ22は、モータ/ジェネレータ4をクランキング回転数に応じた所定の回転状態で回転させるように制御する。
 なお、ステップS202で現在の制御モードがトルク制御ではなく、回転数制御であると判定した場合は、第2クラッチCL2が既にスリップ状態となっている。そのため、ステップS204のような待機時間を確保する必要がなく、即時にクランキング回転数を目標回転数に設定することが可能である。このとき待機時間を設けてもよいが、ステップS204での待機時間とは別の値とすることができる。
 図8は、ステップS206での回転数制御中に、統合コントローラ20が第1クラッチCL1を制御してエンジン3を始動させるために行う第1クラッチ制御処理のフローチャートである。なお、このフローチャートの開始時点では、第1クラッチCL1は解放状態である。
 統合コントローラ20は、モータコントローラ22との間でのCAN通信異常を検知すると、前述の図7のフローチャートに示す処理を実行することで第2クラッチCL2を解放またはスリップ状態とした後に、図8のフローチャートに示す処理を開始する。すなわち、モータコントローラ22がCAN通信異常を検知した場合に、ステップS304で所定時間待機した後にステップS206で回転数制御を開始するタイミングに合わせて、図8のフローチャートに示す処理が統合コントローラ20により実行され、第1クラッチCL1の制御が開始される。ステップS502では、第1クラッチコントローラ5へ目標CL1トルク指令を出力して、第1クラッチCL1を解放状態から徐々にスリップさせて締結状態とする。これにより、モータ/ジェネレータ4の回転をエンジン3へ徐々に伝達してエンジン3をクランキングさせる。続いてステップS504では、エンジンコントローラ21へ所定の指令を出力して、クランキングされているエンジン3において燃料噴射と点火を開始し、エンジン3を始動させる。このときの燃料噴射と点火の開始タイミングは、エンジンコントローラ21と統合コントローラ20のどちらで決定してもよい。ステップS504でエンジン3が始動されたことを確認したらステップS506へ進む。ステップS506では、第1クラッチコントローラ5へ目標CL1トルク指令を出力し、第1クラッチCL1を完全に締結させる。
 なお、以上説明した第1クラッチ制御処理による第1クラッチCL1の動作は、統合コントローラ20とモータコントローラ22の間のCAN通信が正常な場合の通常制御においてEVモードからHEVモードへ移行する際のエンジン始動制御での第1クラッチCL1の動作と同様である。ここで、図8の第1クラッチ制御処理では、統合コントローラ20とモータコントローラ22の間のCAN通信が異常であることから、統合コントローラ20とモータコントローラ22および第1クラッチコントローラ5との間で協調制御を行うことができない。したがって、エンジン始動時のショックを低減するために、第1クラッチ制御処理では通常制御と異なる動作条件で第1クラッチCL1を動作させてもよい。
 ここで図5のエンジン始動制御のフローチャートの説明に戻ると、モータコントローラ22は、ステップS206でモータ/ジェネレータ4の回転数制御を開始したら、ステップS208で回転数制御終了判定の処理を行う。この処理では、エンジン3の始動が完了したか否かを判断し、エンジン3の始動が完了したと判断した場合には、回転数制御終了との判定を下す。なお、ステップS208での詳細な処理内容については、後で図6のフローチャートを用いて詳しく説明する。続くステップS210では、ステップS208で回転数制御終了との判定が下されたかどうかを判断する。回転数制御終了との判定が下されていない場合はステップS208へ戻って回転数制御終了判定の処理を継続する。一方、回転数制御終了との判定が下された場合は、ステップS206で開始したモータ/ジェネレータ4の回転数制御を終了する。そして、図5のエンジン始動制御を終了して図4のステップS112へ進み、ゲートをオフしてモータ/ジェネレータ4を停止させるように制御する。
 なお、上記のエンジン始動制御では、ステップS204で所定時間待機した後に、ステップS206でモータ/ジェネレータ4の回転数が所定のクランキング回転数となるようにモータ/ジェネレータ4の回転数制御を行う。しかし、ステップS204で所定時間待機した後でも、油圧のばらつき等により、第2クラッチCL2がまだ締結状態にある場合も考えられる。そこで、このような事態を想定して、ステップS206でモータ/ジェネレータ4を回転数制御する際には、モータ/ジェネレータ4の回転数を制御開始時点の値からクランキング回転数まで所定の変化率で変化させることにより、モータ回転数の変化に制限を設けて急激なモータ回転数の変化を防止することが好ましい。このときの回転数変化率の一例を図9に示す。図9には、回転数制御の開始時点ではモータ回転数の変化率が比較的小さく、そこからの経過時間に応じてモータ回転数の変化率が徐々に大きくなる例を示している。このようにすることで、車両挙動への悪影響(急加速、急減速)を低減し、ドライバの不安を最小限に抑えることが可能となる。
 さらに、モータ/ジェネレータ4におけるトルクの大きさや、トルク変化の軌跡に応じて、上記の変化率を変えるようにしてもよい。こうした処理を組み合わせることで、車両挙動への悪影響をより一層抑えることが可能となる。たとえば、第2クラッチCL2の解放動作が何らかの原因で遅れた場合、第2クラッチCL2が締結状態であることから、回転数制御時には駆動軸分を含めてモータ回転数を変化させる必要がある。そのため、第2クラッチCL2が解放状態である場合よりも多くのモータトルクが必要となる。そこで、モータトルクの大きさから第2クラッチCL2の状態を推定し、その結果第2クラッチCL2の解放量が小さいと判断された場合は、回転数制御におけるモータ回転数の変化率を通常よりも小さくする。これにより、車両挙動の変化をより小さくすることができる。
 また、上記のエンジン始動制御では、ステップS204で所定時間待機することにより第2クラッチCL2が解放状態となるまで待ち、その後にステップS206でモータ/ジェネレータ4の回転数制御を行うようにした。これに代えて、CVTコントローラ23から送信される第2クラッチCL2の状態を示す情報をモータコントローラ22において受信し、これに基づいて第2クラッチCL2が解放状態とされたタイミングを判断することで、モータ/ジェネレータ4の回転数制御を行うタイミングを決定してもよい。このようにすれば、CAN通信異常を検知してからステップS206の回転数制御へ移行するタイミングをより正確に把握することが可能となる。
 さらに、ステップS206の回転数制御や、ステップS208の回転数制御終了判定処理において、第1クラッチCL1やエンジン3の制御状態に関する情報を、第1クラッチコントローラ5やエンジンコントローラ21とモータコントローラ22との間で送受信してもよい。こうした情報を用いることにより、各デバイスの動作タイミングに適した制御を正確に行うことができる。たとえば、ステップS206の回転数制御中に、モータコントローラ22から第1クラッチコントローラ5に対して、モータ/ジェネレータ4が目標回転数に到達したことを示すクランキング可能信号を送信する。これを利用することで、第1クラッチコントローラ5では、第1クラッチCL1のスリップ動作への移行タイミングを正確にコントロールすることができる。また、ステップS208の回転数制御終了判定処理において、エンジン3が完爆状態であることを示すエンジン完爆信号をエンジンコントローラ21からモータコントローラ22へ送信すると共に、第1クラッチCL1の締結が完了したことを示す第1クラッチ締結完了信号を第1クラッチコントローラ5からモータコントローラ22へ送信する。これらの信号のうちいずれか少なくとも一方を利用することで、モータコントローラ22では、正確なタイミングで回転数制御終了との判定を下すことができる。なお、これらの信号は、モータコントローラ22と各コントローラ間で、たとえばCAN信号やハードワイヤ等を用いて送受信することができる。CAN通信の場合は、常時通信を行ってもよい。または、通信負荷等の観点から常時通信が困難な場合には、統合コントローラ20とモータコントローラ22との間でCAN通信が異常となったことをトリガにして、上記信号の通信を開始する構成としてもよい。
 次に図6を用いて、上記ステップS208で行われる回転数制御終了判定処理の詳細について説明する。図6は、回転数制御終了判定処理のフローチャートである。
 図8のステップS504でエンジン3が始動され、続くステップS506で第1クラッチCL1が締結された後に、モータ/ジェネレータ4の回転数制御をそのまま継続すると、この回転状態は統合コントローラ20の指示に従ったものではないため、ドライバからの要求を車両の駆動状態に反映させる際の妨げになる。そのため、エンジン3の始動後は、モータ/ジェネレータ4の回転数制御を極力素早く終了させてゲートオフ状態に持っていき、エンジン3のみを動力源として車両の退避走行を実現させることが好ましい。そこで、回転数制御終了判定の処理として以下のような処理を行うことで、エンジン3が始動されたことをモータコントローラ22において素早く判断できるようにする。
 ステップS302では、図4のステップS110でエンジン始動制御を開始してからの時間を計測し、この計測時間により所定の許容時間を経過したか否かを判定する。その結果、計測時間が許容時間未満である場合はステップS304へ進み、許容時間を経過した場合はステップS308へ進む。なお、ステップS302の判定における許容時間は、エンジン始動制御を開始してからエンジン3が始動されるまでに許容される時間の最悪値であり、この時間を超えた場合はモータ/ジェネレータ4をゲートオフさせる。なお、許容時間を固定値とはせず、車両パラメータ等に応じて可変としてもよい。たとえば、極低温時と常温時とではエンジン3の始動を完了するまでの時間に差があるため、水温情報や油温情報等に応じて許容時間を変化させてもよい。また、エンジン3をクランキングさせるときの第1クラッチCL1の動作速度も温度によって変わるため、油圧情報等をさらに加味して許容時間を変化させてもよい。
 ステップS302からステップS304へ進んだ場合、ステップS304および続くステップS306では、エンジン3が始動したかどうかの判定を行う。モータ/ジェネレータ4によりエンジン3をクランキングさせてエンジン3を始動するとき、モータ/ジェネレータ4は、エンジン3のフリクションを上回る大きな正トルク(力行トルク)を発生する必要がある。一方、エンジン3が始動してエンジントルクの発生が開始されると、今度は回転数を抑えるために、モータ/ジェネレータ4は負トルク(回生トルク)を出すことになる。そこで、こうした現象を利用して、モータコントローラ22内で図3のトルク指令算出部202により算出されるトルク指令が正トルクから負トルクに切り替わったときに、エンジン3が始動したと判定することができる。あるいは、モータコントローラ22のトルク指令値の他に、たとえば電流センサ210からのセンサ情報の値からトルク指令の正負を判断し、エンジン3の始動を判定してもよい。
 ステップS304でトルク指令値が反転しない、すなわち正トルクの場合には、まだクランキング中であるため、ステップS302に戻る。一方、トルク指令値が正から負へ反転した場合には、エンジン3が始動したと判断してステップS306に進む。
 ステップS306では、モータ/ジェネレータ4において負トルクの状態が所定時間経過したかどうかを判定する。エンジン3が始動されなくても、モータ/ジェネレータ4からのトルクが正トルクから負トルクに反転する場合があり得る。たとえば、回転数制御の方法によっては、クランキング中にモータ/ジェネレータ4の回転数が目標回転数を超えてしまい(オーバーシュート)、それを抑え込むために負トルクを発生することがある。そこで、ステップS306ではエンジン3が始動されたことを確実に判断するために、モータ/ジェネレータ4から負トルクが所定時間以上継続して発生しているかどうかを判定する。その結果、負トルクの発生時間が所定時間以上である場合には、エンジン3が始動したと判断してステップS308に進み、そうでない場合はステップS302へ戻る。なお、上記の説明では、モータトルクの大きさの変化でエンジン3の始動を判定する構成としているが、モータトルクの力行、回生の割合の変化などを使用してもよい。クランキング時には、力行トルクの割合が大きくなるのに対し、エンジン始動後は回生トルクの割合が大きくなるため、これを使ってエンジン3の始動判定を行うこともできる。
 モータコントローラ22は、以上説明したようなステップS304、S306の処理により、モータ/ジェネレータ4のトルクを検出し、そのトルクに基づいてエンジン3の始動が完了したか否かを判定することができる。ステップS308では、回転数制御終了と判定して図6の回転数制御終了判定処理を終了する。
 図10は、以上説明した本実施形態のハイブリッド車両においてCAN通信が途絶えたときの動作タイムチャートの一例を示す図である。この図を用いて、CAN通信不調時の車両動作を以下に説明する。
 EVモード中に時刻T1において、統合コントローラ20とモータコントローラ22の間でCAN通信の途絶が発生したとする。このとき、モータコントローラ22ではモータトルク指令値が更新されなくなるため、前回の指令値を用いて制御を継続する。これ以降もCAN通信の途絶状態が継続し、時刻T2でCAN通信の異常が確定したとする。このとき、モータコントローラ22と統合コントローラ20において同じタイミングでCAN通信の異常を認識できるような構成としておくことが好ましい。
 時刻T2でCAN通信の異常が確定されると、統合コントローラ20は、第2クラッチCL2を解放状態にすべく、図7のステップS406でCVTコントローラ23に対して目標CL2トルク指令を出力し、第2クラッチCL2の解放を指示する。一方、モータコントローラ22は、図5のステップS206でモータ/ジェネレータ4を回転数制御状態にするとともに、目標回転数をあらかじめ決められたクランキング回転数に設定する。このとき前述のように、第2クラッチCL2の解放速度のばらつきを考慮して、モータ回転数の変化率に制限をかけてモータ回転数を引き下げていく。なお、第2クラッチCL2が解放されることでモータトルクが駆動側に伝達されなくなるため、プライマリ回転数は徐々に低下していく。
 こうしてクランキング回転数に応じた回転数制御がモータ/ジェネレータ4に対して行われている状態で時刻T3になると、統合コントローラ20は、図8のステップS502で第1クラッチコントローラ5へクランキングのための目標CL1トルク指令を出力して、第1クラッチCL1を解放状態から徐々にスリップさせて締結状態とする。これにより、第1クラッチCL1が徐々に締結され、エンジン3がクランキングされてエンジン回転数が上昇していく。
 ステップS504でエンジン3が完爆されて始動を開始すると、エンジン回転数を抑えるために、モータ/ジェネレータ4はマイナストルクを発生する。このマイナストルク状態が所定時間継続した時刻T4において、モータコントローラ22は、モータ/ジェネレータ4の回転数制御を終了し、図4のステップS112でゲートをオフしてモータトルクを0にする。その後、第2クラッチCL2を解放状態から徐々に締結状態にすることで、エンジン3からのトルクを駆動側に伝達する。これにより、車両においてエンジン3を用いた退避走行が開始される。なお、早めに駆動トルクを出すために、第2クラッチCL2の締結動作は、時刻T4より前で行ってもよい。ただしこの場合は、早くてもエンジン3の完爆後に第2クラッチCL2を締結する必要がある。
 以上説明した実施形態では、クランキング回転数をあらかじめ決められた回転数としていたが、CVTコントローラ23からプライマリ回転数情報の受信が可能であるならば、プライマリ回転数に応じたクランキング回転数を設定することも可能である。エンジン始動中でも駆動側にトルクを伝達できるようにするためには、モータ回転数はプライマリ回転数よりも常に高い状態にする必要がある。そこで、CVTコントローラ23から受信したプライマリ回転数に対して、必要なモータ回転数との差を上乗せした回転数をクランキング回転数として設定すれば、駆動力を途切れさせることなくエンジン3を始動させて、退避走行に移行することが可能となる。
 以上説明した実施の形態によれば、次の作用効果を奏する。
(1)モータコントローラ22は、エンジン3とモータ/ジェネレータ4を備えたハイブリッド車両に搭載されており、モータ/ジェネレータ4を制御する。モータ/ジェネレータ4は、車両の駆動輪を駆動すると共に、エンジン3を始動するために用いられる。車両は、モータコントローラ22と、エンジン3を制御するエンジンコントローラ21と、モータコントローラ22およびエンジンコントローラ21と通信可能に接続され、車両の運転状態に応じた指令をモータコントローラ22およびエンジンコントローラ21へそれぞれ出力する統合コントローラ20とを備える。モータコントローラ22は、統合コントローラ20とのCAN通信が正常である場合に、統合コントローラ20からの指令に基づいてモータ/ジェネレータ4を制御する第一制御モードを実施する(ステップS104)。また、統合コントローラ20とのCAN通信が異常である場合に、予め記憶された制御情報に基づいてモータ/ジェネレータ4を制御する第二制御モードを実施することで、エンジン3が停止中であるときにモータ/ジェネレータ4にエンジン3を始動させる(ステップS110)。このようにしたので、モータ/ジェネレータ4の制御が不可能となった場合に、モータ/ジェネレータ4を適切に停止すると共にエンジン3により駆動輪を駆動させて退避走行を行うことができる。
(2)モータコントローラ22は、エンジン3が停止中であれば、第二制御モードにおいてモータ/ジェネレータ4を所定の回転状態で回転させるように制御する(ステップS206)。また、エンジン3が動作中であれば、第二制御モードにおいてモータ/ジェネレータ4を停止させるように制御する(ステップS112)。このようにしたので、エンジン3の動作状態に応じて、モータ/ジェネレータ4の動作を適切に制御することができる。
(3)モータコントローラ22は、エンジン3が停止中であれば、第二制御モードにおいて、ステップS206でモータ/ジェネレータ4を所定の回転状態で回転させるように制御した後、ステップS112でモータ/ジェネレータ4を停止させるように制御する。このようにしたので、モータ/ジェネレータ4の動作が不要になった後は、モータ/ジェネレータ4を適切に停止させることができる。
(4)モータコントローラ22は、ステップS206において、所定の目標回転数に応じてモータ/ジェネレータ4を回転させる回転数制御を行うことにより、モータ/ジェネレータ4を所定の回転状態で回転させるように制御する。このようにしたので、モータ/ジェネレータ4の回転によりエンジン3を適切にクランキングさせ、エンジン3を始動することができる。
(5)モータコントローラ22は、エンジン3の始動が完了したか否かを判定し(ステップS304、S306)、始動が完了したと判定したら、ステップS206の回転数制御を終了する(ステップS308)。このようにしたので、エンジン3の始動後に、不要となったモータ/ジェネレータ4の回転数制御を確実に終了することができる。
(6)モータコントローラ22は、ステップS304、S306において、モータ/ジェネレータ4のトルクを検出し、そのトルクに基づいてエンジン3の始動が完了したか否かを判定する。このようにしたので、エンジン3の始動が完了したか否かを正確に判定することができる。
(7)モータコントローラ22は、ステップS206で回転数制御を行う際に、所定の変化率でモータ/ジェネレータ4の回転数を目標回転数まで変化させることができる。具体的には、ステップS206で回転数制御を開始してからの経過時間に応じて、上記の変化率を変化させることができる。このようにすれば、モータ回転数が急激に変化することで生じる車両挙動への悪影響を低減し、ドライバの不安を最小限に抑えることができる。
(8)また、モータコントローラ22は、モータ/ジェネレータ4のトルクを検出し、このトルクに基づいて上記の変化率を決定することもできる。このようにすれば、車両挙動への悪影響をより一層低減することができる。
(9)車両は、エンジン3とモータ/ジェネレータ4の間を締結または解放する第1クラッチCL1と、第1クラッチCL1を制御する第1クラッチコントローラ5と、モータ/ジェネレータ4と駆動輪の間を締結または解放する第2クラッチCL2と、第2クラッチCL2を制御するCVTコントローラ23とをさらに備える。モータコントローラ22により第二制御モードが実施されているとき、第1クラッチCL1によりエンジン3とモータ/ジェネレータ4の間が締結される(ステップS502)と共に、第2クラッチCL2によりモータ/ジェネレータ4と駆動輪の間が解放される(ステップS406)。この状態で、モータ/ジェネレータ4によりエンジン3が始動される(ステップS504)。このようにしたので、モータ/ジェネレータ4の回転をエンジン3へ適切に伝達してエンジン3をクランキングさせ、エンジン3を始動することができる。また、エンジン3のクランキング中にモータ/ジェネレータ4の回転が車両の駆動輪に伝達されるのを防ぐことで、車両挙動への悪影響を回避することができる。
(10)モータコントローラ22は、エンジン3が停止中であれば、第二制御モードにおいて、ステップS206でモータ/ジェネレータ4を所定の回転状態で回転させるように制御する。その後、エンジンコントローラ21および第1クラッチコントローラ5のいずれか少なくとも一方からの信号に応じて、ステップS208で回転数制御終了判定の処理を行い、ステップS112でモータ/ジェネレータ4を停止させるように制御することができる。このようにすれば、エンジン3が始動された後、正確なタイミングでモータ/ジェネレータ4を停止させることができる。
(11)モータコントローラ22は、エンジン3とモータ/ジェネレータ4を備えたハイブリッド車両に搭載されており、モータ/ジェネレータ4を制御する。このモータコントローラ22は、外部制御装置としての統合コントローラ20との通信が異常である場合に、統合コントローラ20からの指令に基づいてモータ/ジェネレータ4を制御する第一制御モードから、予め記憶された制御情報に基づいてモータ/ジェネレータ4を制御する第二制御モードへと切り替える(ステップS102、S104、S110、S112)。このようにしたので、前述のように、モータ/ジェネレータ4の制御が不可能となった場合に、モータ/ジェネレータ4を適切に停止すると共にエンジン3により駆動輪を駆動させて退避走行を行うことができる。
 なお、以上説明した実施の形態では、統合コントローラ20とモータコントローラ22の間でCAN通信が異常となった場合に、モータコントローラ22において図4のモータ制御処理を実行することで、所定の回転数でモータ/ジェネレータ4を回転数制御してエンジン3を始動させる例を説明した。しかし、統合コントローラ20とモータコントローラ22の間でCAN通信が異常となった場合に、他の経路、たとえば第1クラッチコントローラ5等の他のコントローラを介して、モータ/ジェネレータ4を制御するために必要な情報をモータコントローラ22が受信するようにしてもよい。あるいは、統合コントローラ20以外のコントローラから送信される情報に基づいて、モータコントローラ22がモータ/ジェネレータ4の制御を行うようにしてもよい。
 以上説明した実施形態や各種変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。
3 エンジン
4 モータ/ジェネレータ
5 第1クラッチコントローラ
6 第1クラッチ油圧ユニット
9 第2クラッチ油圧ユニット
10 インバータ
11 エンジン回転数センサ(クランク角センサ)
12 レゾルバ
14 油圧アクチュエータ
14a ピストン
15 第1クラッチストロークセンサ
16 アクセル開度センサ
17 車速センサ
19 バッテリ
20 統合コントローラ
21 エンジンコントローラ(ECM)
22 モータコントローラ
23 CVTコントローラ
24 ブレーキコントローラ
25 バッテリコントローラ
51 車輪速センサ
52 ブレーキストロークセンサ
CL1 第1クラッチ
CL2 第2クラッチ
201 通信異常検知部
202 トルク指令算出部
203 モータ回転数算出部
204 モータ電流検出部
205 直流電圧検出部
206 電流指令演算部
207 電流制御演算部
208 PWMデューティ算出部
301 回転数制御用トルク演算部
302 トルク制御用トルク演算部
303 回転数制御/トルク制御選択部
304 上下限制限部

Claims (12)

  1.  エンジンとモータを備えたハイブリッド自動車である車両に搭載され、前記モータを制御するモータ制御装置であって、
     前記モータは、前記車両の駆動輪を駆動すると共に、前記エンジンを始動するために用いられ、
     前記車両は、
     前記モータ制御装置と、
     前記エンジンを制御するエンジン制御装置と、
     前記モータ制御装置および前記エンジン制御装置と通信可能に接続され、前記車両の運転状態に応じた指令を前記モータ制御装置および前記エンジン制御装置へそれぞれ出力する統合制御装置とを備え、
     前記モータ制御装置は、
     前記統合制御装置との通信が正常である場合に、前記統合制御装置からの指令に基づいて前記モータを制御する第一制御モードを実施し、
     前記統合制御装置との通信が異常である場合に、予め記憶された制御情報に基づいて前記モータを制御する第二制御モードを実施することで、前記エンジンが停止中であるときに前記モータに前記エンジンを始動させることを特徴とするモータ制御装置。
  2.  請求項1に記載のモータ制御装置において、
     前記エンジンが停止中であれば、前記第二制御モードにおいて前記モータを所定の回転状態で回転させるように制御し、
     前記エンジンが動作中であれば、前記第二制御モードにおいて前記モータを停止させるように制御することを特徴とするモータ制御装置。
  3.  請求項2に記載のモータ制御装置において、
     前記エンジンが停止中であれば、前記第二制御モードにおいて、前記モータを前記所定の回転状態で回転させるように制御した後、前記モータを停止させるように制御することを特徴とするモータ制御装置。
  4.  請求項2または3に記載のモータ制御装置において、
     所定の目標回転数に応じて前記モータを回転させる回転数制御を行うことにより、前記モータを前記所定の回転状態で回転させるように制御することを特徴とするモータ制御装置。
  5.  請求項4に記載のモータ制御装置において、
     前記エンジンの始動が完了したか否かを判定し、
     前記エンジンの始動が完了したと判定したら、前記回転数制御を終了することを特徴とするモータ制御装置。
  6.  請求項5に記載のモータ制御装置において、
     前記モータのトルクを検出し、
     検出した前記モータのトルクに基づいて前記エンジンの始動が完了したか否かを判定することを特徴とするモータ制御装置。
  7.  請求項4に記載のモータ制御装置において、
     前記回転数制御を行う際に、所定の変化率で前記モータの回転数を前記目標回転数まで変化させることを特徴とするモータ制御装置。
  8.  請求項7に記載のモータ制御装置において、
     前記回転数制御を開始してからの経過時間に応じて、前記変化率を変化させることを特徴とするモータ制御装置。
  9.  請求項7に記載のモータ制御装置において、
     前記モータのトルクを検出し、
     検出した前記モータのトルクに基づいて前記変化率を決定することを特徴とするモータ制御装置。
  10.  請求項1に記載のモータ制御装置において、
     前記車両は、
     前記エンジンと前記モータの間を締結または解放する第一締結解放部と、
     前記第一締結解放部を制御する第一締結解放制御装置と、
     前記モータと前記駆動輪の間を締結または解放する第二締結解放部と、
     前記第二締結解放部を制御する第二締結解放制御装置とをさらに備え、
     前記モータ制御装置により前記第二制御モードが実施されているとき、前記第一締結解放部により前記エンジンと前記モータの間が締結されると共に、前記第二締結解放部により前記モータと前記駆動輪の間が解放された状態で、前記モータにより前記エンジンが始動されることを特徴とするモータ制御装置。
  11.  請求項10に記載のモータ制御装置において、
     前記エンジンが停止中であれば、前記第二制御モードにおいて前記モータを所定の回転状態で回転させるように制御した後、前記エンジン制御装置および前記第一締結解放制御装置のいずれか少なくとも一方からの信号に応じて、前記モータを停止させるように制御することを特徴とするモータ制御装置。
  12.  エンジンとモータを備えたハイブリッド自動車である車両に搭載され、前記モータを制御するモータ制御装置であって、
     外部制御装置との通信が異常である場合に、前記外部制御装置からの指令に基づいて前記モータを制御する第一制御モードから、予め記憶された制御情報に基づいて前記モータを制御する第二制御モードへと切り替えることを特徴とするモータ制御装置。
PCT/JP2013/066773 2012-07-31 2013-06-19 モータ制御装置 WO2014021012A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/413,250 US20150167615A1 (en) 2012-07-31 2013-06-19 Motor Control Device
CN201380040724.2A CN104507775B (zh) 2012-07-31 2013-06-19 电动机控制装置
DE112013003818.8T DE112013003818T5 (de) 2012-07-31 2013-06-19 Elektromotor-Steuereinrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-170128 2012-07-31
JP2012170128A JP5925079B2 (ja) 2012-07-31 2012-07-31 モータ制御装置

Publications (1)

Publication Number Publication Date
WO2014021012A1 true WO2014021012A1 (ja) 2014-02-06

Family

ID=50027702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066773 WO2014021012A1 (ja) 2012-07-31 2013-06-19 モータ制御装置

Country Status (5)

Country Link
US (1) US20150167615A1 (ja)
JP (1) JP5925079B2 (ja)
CN (1) CN104507775B (ja)
DE (1) DE112013003818T5 (ja)
WO (1) WO2014021012A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108757175A (zh) * 2018-08-01 2018-11-06 郑州森鹏电子技术有限公司 一种can总线发动机监控仪及其控制方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6084914B2 (ja) * 2013-09-24 2017-02-22 トヨタ自動車株式会社 電力供給システム
US9828749B2 (en) * 2014-03-18 2017-11-28 Hitachi Construction Machinery Co., Ltd. Working machine
US9738265B2 (en) * 2014-03-24 2017-08-22 Ford Global Technologies, Llc System and method for determining engine disconnect clutch torque
JP6344338B2 (ja) * 2015-08-28 2018-06-20 トヨタ自動車株式会社 ハイブリッド車両
JP6269624B2 (ja) * 2015-09-08 2018-01-31 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP6455379B2 (ja) * 2015-09-15 2019-01-23 トヨタ自動車株式会社 ハイブリッド車両
JP6354769B2 (ja) * 2016-02-16 2018-07-11 トヨタ自動車株式会社 ハイブリッド車両
JP6258997B2 (ja) * 2016-03-31 2018-01-10 本田技研工業株式会社 車両制御システム
CN106184198B (zh) * 2016-07-11 2018-09-11 中国第一汽车股份有限公司 一种用于混合动力汽车的失效跛行控制方法及装置
JP6491167B2 (ja) * 2016-10-25 2019-03-27 株式会社Subaru ハイブリッド車両の制御装置
US20180281597A1 (en) * 2017-03-28 2018-10-04 NextEv USA, Inc. Electric vehicle safety concept using distributed vehicle control units
US10686815B2 (en) * 2017-09-11 2020-06-16 GM Global Technology Operations LLC Systems and methods for in-vehicle network intrusion detection
KR102406178B1 (ko) * 2017-10-11 2022-06-07 현대자동차주식회사 모터를 구비한 차량의 제어 장치 및 방법
JP6919519B2 (ja) * 2017-11-20 2021-08-18 トヨタ自動車株式会社 車両の制御装置
DE102018115781B4 (de) * 2018-06-29 2020-04-09 Maximilian Geisberger Verfahren zum Regeln einer Fluidenergiemaschine und eine Regelungsanordnung, insbesondere zum Durchführen des Verfahrens
US10677350B2 (en) 2018-10-23 2020-06-09 Allison Transmission, Inc. Method of controlling transmission range in response to a loss of communication with an engine and system thereof
JP7275565B2 (ja) * 2018-12-21 2023-05-18 株式会社デンソー 制御装置
CN114592961B (zh) * 2021-02-23 2023-03-31 长城汽车股份有限公司 电子水泵故障处理方法、系统、存储介质以及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001263209A (ja) * 2000-03-21 2001-09-26 Nissan Motor Co Ltd 内燃機関の始動装置
JP2007168564A (ja) * 2005-12-21 2007-07-05 Nissan Motor Co Ltd ハイブリッド車両の通信異常対応制御装置
JP2008168836A (ja) * 2007-01-15 2008-07-24 Nissan Motor Co Ltd ハイブリッド車両のエンジン失火検出制御装置
JP2010111194A (ja) * 2008-11-05 2010-05-20 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2010179882A (ja) * 2009-02-09 2010-08-19 Nissan Motor Co Ltd 車両の再始動制御装置及び再始動制御方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007069804A (ja) * 2005-09-08 2007-03-22 Nissan Motor Co Ltd ハイブリッド車両のエンジン始動応答改善装置
DE102007055827A1 (de) * 2007-12-17 2009-06-18 Zf Friedrichshafen Ag Verfahren und Vorrichtung zum Betrieb eines Hybridantriebes eines Fahrzeuges
WO2009090524A1 (en) * 2008-01-16 2009-07-23 Nissan Motor Co., Ltd. Drive control apparatus and drive control method for hybrid vehicle
JP4798154B2 (ja) * 2008-03-06 2011-10-19 日産自動車株式会社 ハイブリッド車両の制御装置
CN101920652B (zh) * 2009-06-17 2014-06-25 上海捷能汽车技术有限公司 一种车用串/并联双电机多离合器混合动力驱动单元
JP5039098B2 (ja) * 2009-07-24 2012-10-03 日産自動車株式会社 ハイブリッド車両の制御装置
US9186975B2 (en) * 2009-10-14 2015-11-17 Nissan Motor Co., Ltd. Control apparatus for hybrid vehicle
US20130096749A1 (en) * 2011-10-18 2013-04-18 Fuel Motion Inc. Method for a vehicle control unit (VCU) for control of the engine in a converted hybrid electric powered vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001263209A (ja) * 2000-03-21 2001-09-26 Nissan Motor Co Ltd 内燃機関の始動装置
JP2007168564A (ja) * 2005-12-21 2007-07-05 Nissan Motor Co Ltd ハイブリッド車両の通信異常対応制御装置
JP2008168836A (ja) * 2007-01-15 2008-07-24 Nissan Motor Co Ltd ハイブリッド車両のエンジン失火検出制御装置
JP2010111194A (ja) * 2008-11-05 2010-05-20 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2010179882A (ja) * 2009-02-09 2010-08-19 Nissan Motor Co Ltd 車両の再始動制御装置及び再始動制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108757175A (zh) * 2018-08-01 2018-11-06 郑州森鹏电子技术有限公司 一种can总线发动机监控仪及其控制方法
CN108757175B (zh) * 2018-08-01 2023-07-04 郑州森鹏电子技术股份有限公司 一种can总线发动机监控仪的控制方法

Also Published As

Publication number Publication date
CN104507775A (zh) 2015-04-08
DE112013003818T5 (de) 2015-05-21
US20150167615A1 (en) 2015-06-18
JP5925079B2 (ja) 2016-05-25
JP2014028586A (ja) 2014-02-13
CN104507775B (zh) 2017-04-05

Similar Documents

Publication Publication Date Title
JP5925079B2 (ja) モータ制御装置
US10000205B2 (en) Fail-safe control apparatus for hybrid vehicles
KR101496105B1 (ko) 하이브리드 차량의 제어 장치
JP2000152411A (ja) 車両制御装置
JP5212199B2 (ja) ハイブリッド車両のクラッチ制御装置
JP2010030486A (ja) ハイブリッド車両の制御装置
US11207968B2 (en) Hybrid vehicle cruise control device
JP2010195363A (ja) ハイブリッド車両の制御装置
JP2011063089A (ja) ハイブリッド電気自動車の制御装置
EP2873576B1 (en) Hybrid vehicle control device and hybrid vehicle control method
JP5765426B2 (ja) 車両制御システム
JP5807379B2 (ja) ハイブリッド車両のエンジン停止制御装置
JP2010143308A (ja) 車両の駆動トルク制御装置
JP5464122B2 (ja) ハイブリッド車両のオイルポンプ駆動装置
JP2010269642A (ja) ハイブリッド車両の制動制御装置
JP2010143307A (ja) ハイブリッド車両の制御装置
JP6492908B2 (ja) ハイブリッド車両の制御装置
JP5212001B2 (ja) ハイブリッド車両の制御装置及び制御方法
US10124803B2 (en) Vehicle control apparatus
JP5803626B2 (ja) 車両の制御装置
JP2019124178A (ja) 再始動装置
JP2012106514A (ja) ハイブリッド車両のエンジン始動制御装置
JP2012092975A (ja) 自動変速機
JP2012086710A (ja) ハイブリッド車両のアイドル制御装置
JP2012091579A (ja) ハイブリッド車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13826288

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14413250

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112013003818

Country of ref document: DE

Ref document number: 1120130038188

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13826288

Country of ref document: EP

Kind code of ref document: A1