WO2014017617A1 - リチウム二次電池用正極活物質、それを用いたリチウム二次電池用正極及びリチウム二次電池、並びにリチウム二次電池用正極活物質の製造方法 - Google Patents

リチウム二次電池用正極活物質、それを用いたリチウム二次電池用正極及びリチウム二次電池、並びにリチウム二次電池用正極活物質の製造方法 Download PDF

Info

Publication number
WO2014017617A1
WO2014017617A1 PCT/JP2013/070251 JP2013070251W WO2014017617A1 WO 2014017617 A1 WO2014017617 A1 WO 2014017617A1 JP 2013070251 W JP2013070251 W JP 2013070251W WO 2014017617 A1 WO2014017617 A1 WO 2014017617A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
lithium secondary
electrode active
secondary battery
Prior art date
Application number
PCT/JP2013/070251
Other languages
English (en)
French (fr)
Inventor
寛 北川
秀一 高野
豊隆 湯浅
心 高橋
崇 中林
小林 満
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to US14/416,394 priority Critical patent/US20150188139A1/en
Priority to CN201380039177.6A priority patent/CN104584282A/zh
Priority to KR1020157001740A priority patent/KR20150047477A/ko
Priority to JP2014527021A priority patent/JP6094584B2/ja
Publication of WO2014017617A1 publication Critical patent/WO2014017617A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a lithium secondary battery, a positive electrode for a lithium secondary battery and a lithium secondary battery using the same, and a method for producing a positive electrode active material for a lithium secondary battery.
  • lithium cobaltate As a positive electrode active material for a lithium secondary battery, lithium cobaltate has conventionally been the mainstream, and a lithium secondary battery using this has been widely used.
  • cobalt which is a raw material of lithium cobaltate, has been studied as a substitute material because it is less expensive and expensive.
  • Lithium manganate having a spinel structure and lithium nickelate have been studied as substitutes for lithium cobaltate.
  • lithium manganate has a problem that the discharge capacity is not sufficient and manganese is eluted at high temperature.
  • lithium nickel oxide can be expected to have a high capacity, but its thermal stability at high temperature is not sufficient.
  • a polyanion-based compound having a polyanion an anion formed by binding a plurality of oxygen to one typical element such as PO 4 3- , BO 3 3- , SiO 4 4- ) in a crystal structure is It is excellent and expected as a positive electrode active material for lithium secondary batteries. This is because the polyanion bond (PO bond, BO bond, Si-O bond, etc.) is strong and oxygen is not released even at high temperature.
  • polyanionic compounds have low electron conductivity and ion conductivity, and there is a problem that the discharge capacity can not be sufficiently extracted. This is because the electrons are localized to the above-described strong polyanion bond.
  • Patent Document 1 proposes a technique for covering the surface of a polyanion-based compound with carbon to improve the electron conductivity with respect to the problem of the polyanion-based compound described above. Further, Non-Patent Document 1 proposes a technique for reducing the particle diameter of the polyanionic compound to increase the reaction area and shortening the diffusion distance to improve the electron conductivity and the ion conductivity.
  • the method of carbon-coating a polyanion-based compound includes a method of mixing the compound with acetylene black or graphite and adhering them with a ball mill or the like, a method of mixing the compound with a sugar, an organic acid, or an organic substance such as pitch and firing There is. Further, as a method for reducing the particle size of the polyanion-based compound, there are a method of lowering the baking temperature of the compound, a method of mixing the compound with a carbon source, and a method of suppressing crystal growth.
  • any of the methods described above may lead to a decrease in the crystallinity of the polyanion compound.
  • the decrease in crystallinity of the positive electrode active material leads to a decrease in discharge capacity and rate characteristics.
  • a positive electrode active material for a lithium secondary battery comprising carbon-coated polyanionic compound particles, comprising:
  • the polyanion compound has a structure represented by the following (Chemical Formula 1),
  • the roughness factor represented by the following (formula 1) of the polyanionic compound is 1 to 2
  • the present invention provides a positive electrode active material for a lithium secondary battery, wherein an average primary particle diameter of the polyanionic compound is 10 to 150 nm.
  • LixMAyOz ⁇ (Chemical formula 1) (Wherein M contains at least one transition metal element, A is a typical element which forms an anion by bonding with oxygen O, and 0 ⁇ x ⁇ 2, 1 ⁇ y ⁇ 2, 3 ⁇ z ⁇ 7 .)
  • the metal M contained in the chemical formula 1 contains a transition metal element such as Fe, Mn, Ni, or Co as an essential component. In addition, some other typical element may be contained as another component.
  • Another aspect of the present invention is a method for producing a polyanion compound, particularly a positive electrode active material for a lithium secondary battery having an olivine type structure, wherein a raw material containing a transition metal compound as a metal source and a phosphorus compound is mixed. And baking the mixed raw materials, mixing the carbon source with the calcined body, and baking the material, wherein the baking temperature is equal to or higher than the crystallization temperature of the positive electrode active material, and the crystallization temperature is It is characterized by being below the temperature which added 200 degreeC.
  • the present invention also provides a method of producing a positive electrode active material for a lithium secondary battery, a positive electrode for a lithium secondary battery produced using the positive electrode active material for a lithium secondary battery, and a lithium secondary battery.
  • a highly safe polyanion compound is used as a positive electrode active material for a lithium secondary battery, and the discharge capacity and rate characteristics are improved compared to a lithium secondary battery using a conventional polyanion type positive electrode active material.
  • a high positive electrode active material for lithium secondary battery can be provided.
  • security and battery performance compatible, the positive electrode for lithium secondary batteries, and a lithium secondary battery can be provided.
  • any one or more of PO 4 3- , BO 3 3- , and SiO 4 4- are applicable.
  • Fe, Mn, Co, Ni etc. are represented as a transition metal contained in the metal part (M) of a polyanion type compound. Note that part of M may contain a typical element such as Mg.
  • the particle diameter of the positive electrode active material particles is preferably within a predetermined range. In the case of the present invention, it is preferable that the average primary particle size is 10 to 150 nm. Moreover, it is preferable to contribute to the improvement of the packing density by making the primary particles into secondary particles in a state of being aggregated by sintering or the like before the slurry formation.
  • a highly safe polyanionic compound is used, and at the same time, high capacity, high rate characteristics, and high energy density are achieved compared to a lithium secondary battery using a conventional polyanionic positive electrode active material. And, it is possible to provide a positive electrode active material for a lithium secondary battery having good smoothness and uniformity of the electrode. As a result, the performance of the positive electrode for a lithium secondary battery manufactured using the positive electrode active material for a lithium secondary battery, and the lithium secondary battery can be improved.
  • the positive electrode active material for a lithium secondary battery can be used for the positive electrode as secondary particles as described above.
  • the method for producing a positive electrode active material comprising secondary particles of a polyanionic compound comprises the steps of mixing a lithium compound, a transition metal compound to be a metal element source, and a phosphoric acid compound, calcining the mixture, and a carbon source in a calcined body. And a step of forming secondary particles, and a step of firing.
  • the present invention can add the following improvements and changes to the above-described positive electrode active material for a lithium secondary battery.
  • the polyanion-based compound has an olivine type structure represented by the following (Chemical formula 2).
  • LiMPO 4 ⁇ (Chemical formula 2) (However, M is at least one of Fe, Mn, Co and Ni.)
  • M in the polyanionic compound having an olivine type structure contains Mn and Fe, and the ratio of Fe occupying M is more than 0 mol% and 50 mol% or less in molar ratio.
  • the content of carbon is 2 to 5% by mass.
  • the positive electrode active material for a lithium secondary battery according to the present invention is a positive electrode active material for a lithium secondary battery including a carbon-coated polyanion-based compound particle, wherein the polyanion-based compound particle is It has a structure represented by (Chemical formula 1).
  • Non-aqueous electrolytes of lithium secondary batteries are widely known in which a supporting salt (electrolyte) such as lithium hexafluorophosphate is dissolved in a non-aqueous solvent such as ethylene carbonate (EC) or propylene carbonate (PC). ing.
  • a non-aqueous solvent such as ethylene carbonate (EC) or propylene carbonate (PC).
  • EC ethylene carbonate
  • PC propylene carbonate
  • these non-aqueous solvents are flammable (for example, the flash points of EC and PC are 130 to 140 ° C.), they can in principle ignite if there is a fire species.
  • the constituent material releases oxygen when the lithium secondary battery is in a high temperature state due to overcharging or the like, the oxygen may react with the non-aqueous electrolyte to cause ignition.
  • the bond of the polyanion (A-O bond in (Chemical formula 1)) is strong, and oxygen is not released even at high temperature. Therefore, even when the temperature of the lithium secondary battery becomes high, the electrolyte does not burn. Therefore, a highly safe lithium secondary battery can be provided.
  • the said polyanion type compound is a compound which has an olivine type structure represented by said (Chemical formula 2).
  • M in the polyanionic compound having an olivine type structure contains Mn and Fe, and the ratio of Fe occupying M is preferably more than 0 mol% and 50 mol% or less in molar ratio.
  • M in (Chemical Formula 1) the resistance decreases as the proportion of Fe increases, and the average voltage increases as the proportion of Mn increases. The higher the average voltage, the higher the energy density (capacitance ⁇ voltage). However, if the Mn content is 100%, the resistance is too high to obtain a capacity, and the energy density also decreases.
  • M in the polyanionic compound contains Mn and Fe, and the ratio of Fe to M is more than 0 mol% and 50 mol% or less in molar ratio.
  • the polyanion compound of the present invention has a roughness factor of 1 to 2 represented by the above (formula 1).
  • the roughness factor refers to the specific surface area (a) measured using the BET method and the shape of the primary particles in the positive electrode active material containing polyanionic compound particles, assuming that the shape of the primary particles is a true sphere, X-ray It is a ratio (a / b) of the specific surface area (b) calculated from the average primary particle diameter calculated using Scherrer's formula from the diffraction measurement result, and indicates the degree of surface roughness of the particles. As the surface roughness of the particles is larger and the number of irregularities is larger, the value of the roughness factor is larger.
  • the value of the roughness factor decreases. That is, since the specific surface area of the particles is larger as the value of the roughness factor is larger, the reactivity between the positive electrode active material and the electrolyte becomes higher.
  • the roughness factor of the positive electrode active material of the present invention is 1 to 2, and this value is compared with the value (less than 1) of the polyanion-based positive electrode active material manufactured by the conventional manufacturing method. You are big. Therefore, the lithium secondary battery produced using the positive electrode active material of the present invention is more reactive between the positive electrode active material and the electrolyte than a lithium secondary battery using a conventional polyanion-based positive electrode active material having the same particle diameter. Can achieve high capacity, high rate characteristics, and high energy density. When the roughness factor is less than 1, the effect of enhancing the reactivity between the positive electrode active material and the electrolyte described above can not be obtained.
  • a positive electrode active material when it becomes larger than 2, the shape of a positive electrode active material will remove
  • “1 to 2” means 1 or more and 2 or less. The method for producing the positive electrode active material for a lithium secondary battery of the present invention having a roughness factor of 1 to 2 will be described in detail later.
  • the positive electrode active material of the present invention is a secondary particle in which a large number of primary particles having an average particle diameter of 10 to 150 nm are collected.
  • the average primary particle diameter is less than 10 nm, aggregation is likely to occur, particles of about several mm may occur in the slurry, and when it exceeds the electrode thickness, the smoothness and uniformity of the electrode are degraded.
  • the average primary particle diameter is larger than 150 nm, the specific surface area becomes small, and it becomes difficult to sufficiently ensure the reactivity between the positive electrode active material and the electrolyte.
  • the specific surface area of the positive electrode active material increases as the average primary particle diameter of the positive electrode active material decreases, and the reactivity between the positive electrode active material and the electrolyte increases to improve the characteristics.
  • the particle diameter is smaller, aggregation is more likely to occur, and the smoothness and uniformity of the electrode are reduced.
  • the positive electrode active material of the present invention is larger in roughness factor than the conventional positive electrode active material using polyanionic compound particles as described above, it is preferable that the average primary particle diameter has good electrode smoothness and uniformity. Even in the range that can be provided (10 to 150 nm), higher capacity, higher rate characteristics, and higher energy density can be achieved than ever before.
  • the average primary particle size is a value determined from a pattern obtained by powder X-ray diffraction measurement.
  • the measuring method and the calculating method of the average primary particle diameter will be described in detail in Examples.
  • the polyanion-based compound particles of the present invention are coated with carbon, and the content of the carbon is preferably 2 to 5% by mass in the positive electrode active material.
  • carbon is considered to be present inside the particle or between the particle and the particle in addition to the surface of the particle.
  • the "carbon content” mentioned above also includes the amount of carbon present other than the surface of the polyanion compound particles. If the carbon content is less than 2% by mass, the electron conductivity is reduced, and sufficient battery performance can not be obtained. When the carbon content is more than 5% by mass, the energy density decreases and the specific surface area increases, and the smoothness and the uniformity of the electrode decrease.
  • the "coating" in the present invention is used in the meaning including the above-mentioned form.
  • the manufacturing method of the positive electrode active material for lithium secondary batteries of this invention is demonstrated.
  • the present invention is directed to a positive electrode active material that needs to be used with a reduced particle diameter of 200 nm or less, including compounds having an olivine structure.
  • a positive electrode active material that needs to be used with a reduced particle diameter of 200 nm or less, including compounds having an olivine structure.
  • aggregation is apt to occur, whereby the specific surface area is reduced and the roughness factor is easily reduced. Therefore, in order to increase the roughness factor, it is necessary to improve the surface roughness of the active material particles and to carry out a manufacturing method that prevents aggregation and sintering.
  • the method for producing a positive electrode active material for a lithium secondary battery according to the present invention includes (i) mixing of raw materials, (ii) pre-sintering, (iii) carbon source mixing, and (ix) main firing, twice by the solid phase method Carry out the above.
  • the production of the positive electrode active material by the solid phase method is to generate a solid phase reaction by heating in a state where the raw materials are sufficiently mixed according to the target composition.
  • the production flow of the positive electrode active material according to the present invention is shown in FIG.
  • the production method of the present invention has two or more solid phase firing steps in the production of a positive electrode active material, and at least one firing step among firing steps other than the final firing step (hereinafter referred to as main firing).
  • pre-baking is characterized in that it is carried out at a temperature above the crystallization temperature in the solid phase reaction and at a temperature that does not greatly exceed it, and it is preferable to bake at 600.degree. .
  • Pre-baking is preferably performed in an oxidizing atmosphere, such as air, and the main baking is performed in a non-oxidizing atmosphere.
  • the pre-baking and the main-baking can be performed twice or more.
  • the particles produced by such a method have a large roughness factor and a large specific surface area as compared with particles having the same particle diameter and a small roughness factor, and are excellent in the reactivity with the electrolyte.
  • the particle size is increased for particles with a large roughness factor, it is possible to lower the reaction resistance (increase the reactivity with the electrolyte) while suppressing the adverse effect of reducing the particle size (aggregation of particles etc.), When the particle size is reduced, particles with lower resistance can be obtained.
  • the steps described above will be described in order.
  • the positive electrode active material for a lithium secondary battery of the present invention can obtain microcrystals by performing calcination at a temperature above the crystallization temperature and at a temperature not significantly exceeding the crystallization temperature.
  • primary particles containing a large number of such microcrystals can be obtained.
  • Such primary particles have large surface irregularities and a large roughness factor.
  • the size of microcrystals constituting primary particles depends on the particle diameter of the raw material and the like. Since the surface roughness increases as the crystallites become smaller, the particle diameter of the material of the positive electrode active material is desirably as small as possible (for example, 1 ⁇ m or less).
  • the crystals generated during calcination may be coarsened, or heterophases (compounds other than polyanionic compounds such as oxides of Mn or Fe, MnP 2 O 7 etc.) may be generated. It is desirable to be mixed more uniformly in order to
  • a method of mixing the raw materials uniformly there is a method of mechanically grinding and mixing the raw materials using a bead mill or the like, or drying the raw materials in a solution state using an acid, an alkali, a chelating agent, etc.
  • the method of mixing is preferred.
  • the method of mixing in a solution state is advantageous for the precipitation of finer crystals because the raw materials are mixed at the molecular level.
  • lithium acetate, lithium carbonate, lithium hydroxide or the like can be used as a raw material of Li.
  • a raw material of M at least one of acetate, oxalate, citrate, carbonate, tartrate and the like can be used.
  • a raw material of A y O z a compound in an acid state of polyanion, or a salt in which the acid is neutralized (ammonium salt, lithium salt, etc.) can be used.
  • a compound in an acid state of polyanion, or a salt in which the acid is neutralized (ammonium salt, lithium salt, etc.) can be used.
  • a salt in which the acid is neutralized (ammonium salt, lithium salt, etc.)
  • PO 4 can be used lithium dihydrogen phosphate, ammonium dihydrogen phosphate, and the like diammonium hydrogen phosphate.
  • the pre-baking temperature be equal to or higher than the crystallization temperature of the polyanionic compound and not significantly exceed the crystallization temperature. If the temperature is lower than the crystallization temperature, a large amount of unreacted material is generated by calcination. These non-reacted substances are transferred to the active material phase in the main firing to be described later, but at that time, a plurality of particles are bonded to each other to cause aggregation and sintering of the particles. When aggregation or sintering of particles occurs, the specific surface area decreases and the reactivity decreases.
  • the particle diameter after production can be increased by raising the pre-sintering temperature, but if the pre-sintering temperature is too high, the particles become coarse and the specific surface area of the positive electrode active material decreases, and the positive electrode active The reaction area between substance and electrolyte is reduced.
  • the preferable range of the pre-baking temperature also differs.
  • the crystallization temperature is around 420 ° C. (Source: Robert Dominko, Marjan Bele, Jean-Michel Goupil, Miran Gaberscek, Darko Hanzel, Iztok Arcon, and Janez Jamnik Since it is "Wired Porous Cathode Materials: A Novel Concept for Synthesis of LiFePO4" Chemistry of Materials 19 (2007), pp. 2960-2969.), Firing at 420 ° C. or higher is necessary.
  • the temperature is more preferably 440 to 500 ° C. If the temperature is 440 ° C. or higher, the entire sample will be at the crystallization temperature or higher even if there is some temperature unevenness in the sample. When the temperature is 500 ° C. or less, the average primary particle diameter after temporary firing is 100 nm or less, and particles having a length of 100 nm or less can be obtained after the main firing described later.
  • the atmosphere for temporary firing is preferably an oxidizing atmosphere.
  • an oxidizing atmosphere By pre-baking in an oxidizing atmosphere and in the above-mentioned temperature range, the organic matter derived from the raw material (including a part of the organic matter such as carbon) disappears, and these can be prevented from being mixed inside the crystal. . Therefore, in the oxidizing atmosphere, the crystallinity can be improved more than in the case of firing in an inert atmosphere or a reducing atmosphere.
  • the organic substances are uniformly mixed in the raw materials, so the organic substances are easily taken into the crystal in an inert atmosphere or a reducing atmosphere.
  • the calcination temperature is preferably 400 ° C. or higher regardless of the above-mentioned crystallization temperature, so that the calcination is preferably 420 to 600 ° C.
  • a ball mill or a bead mill as a method which mixes a carbon source with the crystallites obtained by calcination and coats them, and can also make the crystallites finer.
  • a plurality of particles (primary particles) as described above are aggregated to form a secondary particle in an integrated form. By forming into secondary particles, the particle size is increased to a certain extent, which contributes to the improvement of electrode volume density and the like. When performing secondary particle formation, it is preferable to carry out before main baking.
  • (Iv) Main Firing In the main firing, the carbon source coated on the temporary firing body is carbonized to improve the conductivity of the positive electrode active material and to improve the crystallinity or crystallization of the active material particles. In this firing, it is necessary to carbonize the organic substance (carbon source) to prevent oxidation of the metal element, so it is performed in an inert atmosphere or a reducing atmosphere.
  • the main firing temperature is preferably 600 ° C. or higher in order to carbonize the organic matter.
  • carbon source can be carbonized and conductivity can be provided.
  • the temperature is 850 ° C. or less, the compound having an olivine structure does not undergo decomposition. More desirably, the temperature is 700 to 750.degree. In this temperature range, the conductivity of carbon can be sufficiently improved, and the formation of impurities due to the reaction of carbon and a compound having an olivine structure can be suppressed.
  • a hydrothermal synthesis method in general, as a method for producing a compound having an olivine structure other than the solid phase method, a hydrothermal synthesis method can be mentioned.
  • the hydrothermal synthesis method dispersed primary particles free of impurities are obtained.
  • the particles produced by the hydrothermal synthesis method have a smooth surface. This is to perform nuclear growth in accordance with the growth rate of the crystal face. Compared with such smooth particles, the particles of the present production method have a larger specific surface area at the same particle diameter, and the reactivity with the electrolyte is higher.
  • temporary baking may be performed twice or more, if the conditions of the present invention are satisfied.
  • the positive electrode for a lithium secondary battery of the present invention has a configuration in which a positive electrode mixture containing the above-described positive electrode active material of the present invention and a binder is formed on a current collector.
  • a conductive aid may be added to the positive electrode mixture, if necessary, in order to compensate for the electron conductivity.
  • the materials for the binder, the conductive additive, and the current collector and conventional materials can be used.
  • PVDF polyvinylidene fluoride
  • polyacrylonitrile are suitable.
  • the type of binding agent is not particularly limited as long as it has sufficient binding properties.
  • the conductive aid carbon-based conductive aids such as acetylene black and graphite powder are suitable. Since the positive electrode active material according to the present invention has a high specific surface area, it is desirable for the conductive support to have a large specific surface area in order to form a conductive network, and specifically, acetylene black is particularly preferable. By using a binder excellent in adhesion as described above and mixing a conductive aid to impart conductivity, a strong conductive network is formed. Therefore, the conductivity of the positive electrode can be improved, and the capacity and rate characteristics can be improved.
  • a support having conductivity such as aluminum foil is suitable.
  • FIG. 1 is a half sectional schematic view showing an example of a lithium secondary battery to which the invention is applied.
  • the positive electrode 10 and the negative electrode 6 are wound in a state in which the separator 7 is sandwiched so as not to be in direct contact with each other to form an electrode group.
  • the structure of an electrode group is not limited to winding of shapes, such as cylindrical shape and flat shape, What laminated
  • the positive electrode lead 3 is attached to the positive electrode 10, and the negative electrode lead 9 is attached to the negative electrode 6.
  • the leads 3 and 9 can have any shape such as wire, foil, plate and the like. The structure and material are selected so as to reduce the electrical loss and secure the chemical stability.
  • the electrode group is housed in the battery case 5, and the inserted electrode group is not in direct contact with the battery case 5 by the insulating plate 4 provided at the top of the battery case 5 and the insulating plate 8 provided at the bottom. It has become. Furthermore, a non-aqueous electrolyte (not shown) is injected into the battery container 5.
  • the shape of the battery case 5 is usually selected to have a shape (for example, a cylindrical shape, a flat long cylindrical shape, a prism, etc.) that matches the shape of the electrode group.
  • any material for example, a thermosetting resin, a glass hermetic seal, etc. which does not react with the non-aqueous electrolytic solution and is excellent in airtightness is preferable.
  • the material of the battery case 5 is selected from materials having corrosion resistance to the non-aqueous electrolyte, such as aluminum, stainless steel, and nickel-plated steel.
  • the attachment of the battery cover 1 to the battery case 5 may be performed by caulking, adhesion, or the like, in addition to welding.
  • the positive electrode 10 constituting the lithium secondary battery is formed by applying and drying a positive electrode mixture slurry containing a positive electrode active material on one side or both sides of a positive electrode current collector, and compression molding using a roll press machine etc. It is produced by cutting to the size of.
  • a positive electrode mixture slurry containing a positive electrode active material on one side or both sides of a positive electrode current collector, and compression molding using a roll press machine etc. It is produced by cutting to the size of.
  • an aluminum foil having a thickness of 10 to 100 ⁇ m, a perforated foil made of aluminum having a thickness of 10 to 100 ⁇ m and a hole diameter of 0.1 to 10 mm, an expanded metal, a foam aluminum plate or the like is used for the current collector of the positive electrode.
  • stainless steel, titanium, etc. can be applied as the material.
  • negative electrode 6 constituting a lithium secondary battery is formed by applying and drying a negative electrode mixture slurry containing a negative electrode active material on one side or both sides of a negative electrode current collector, and then compression molding using a roll press machine or the like. It is produced by cutting into a predetermined size.
  • a copper foil having a thickness of 10 to 100 ⁇ m, a perforated copper foil having a thickness of 10 to 100 ⁇ m and a hole diameter of 0.1 to 10 mm, an expanded metal, a foamed copper plate, etc. are used for the current collector of the negative electrode.
  • stainless steel, titanium, nickel and the like are also applicable.
  • the method of applying the positive electrode mixture slurry and the negative electrode mixture slurry there is no particular limitation on the method of applying the positive electrode mixture slurry and the negative electrode mixture slurry, and a conventional method (for example, a doctor blade method, a dipping method, a spray method, etc.) can be used.
  • a conventional method for example, a doctor blade method, a dipping method, a spray method, etc.
  • the positive electrode active material of the present invention As a positive electrode active material used for the positive electrode 10, the positive electrode active material of the present invention described above is used. A binder, a thickener, a conductive agent, a solvent, and the like are mixed as needed with respect to the positive electrode active material to prepare a positive electrode mixture slurry.
  • the negative electrode active material used for the negative electrode 6 is not particularly limited as long as it is a material capable of inserting and extracting lithium ions.
  • artificial graphite, natural graphite, amorphous carbon, non-graphitizable carbons, activated carbon, coke, pyrolytic carbon, metal oxides, metal nitrides, lithium metal or lithium metal alloy and the like can be mentioned. Any one of these or a mixture of two or more can be used.
  • amorphous carbon is a material having a small volume change rate at the time of insertion and extraction of lithium ions, it is preferable to include amorphous carbon as a negative electrode active material because charge and discharge cycle characteristics are enhanced.
  • a binder, a thickener, a conductive agent, a solvent, and the like are mixed with the negative electrode active material as necessary to prepare a negative electrode mixture slurry.
  • conductive polymer materials for example, polyacene, polyparaphenylene, polyaniline, polyacetylene, etc.
  • conductive polymer materials for example, polyacene, polyparaphenylene, polyaniline, polyacetylene, etc.
  • binder There is no particular limitation on the binder, the thickener and the solvent used for the mixture slurry, and the same one as before can be used.
  • the separator 7 is preferably a porous body (for example, with a pore diameter of 0.01 to 10 ⁇ m and a porosity of 20 to 90%) because lithium ions need to be transmitted during charge and discharge of the secondary battery.
  • a material of the separator 7 a multilayer structure sheet obtained by welding a polyolefin-based polymer sheet (for example, polyethylene or polypropylene) or a polyolefin-based polymer sheet and a fluorine-based polymer sheet (for example, polytetrafluoroethylene) Or a glass fiber sheet can be used conveniently.
  • a mixture of ceramics and a binder may be formed in a thin layer on the surface of the separator 7.
  • lithium salts such as LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 F) 2 can be used alone or in combination.
  • a solvent for dissolving the lithium salt linear carbonates, cyclic carbonates, cyclic esters, nitrile compounds and the like can be used. Specifically, ethylene carbonate, propylene carbonate, diethyl carbonate, dimethoxyethane, ⁇ -butyrolactone, n-methyl pyrrolidine, acetonitrile and the like.
  • polymer gel electrolytes and solid electrolytes can also be used as electrolytes.
  • a solid polymer electrolyte polymer electrolyte
  • ion conductive polymers such as ethylene oxide, acrylonitrile, polyvinylidene fluoride, methyl methacrylate, polyethylene oxide of hexafluoropropylene, and the like can be suitably used.
  • the separator 7 can be omitted.
  • the positive electrode, the negative electrode, the separator, and the electrolyte described above can be used to form various types of lithium secondary batteries such as cylindrical batteries, square batteries, and laminate batteries.
  • Example 1 a positive electrode active material composed of primary particles of a polyanion compound is produced, and the results of evaluation of the characteristics of the electrode by the model cell are described.
  • Example 1-1 (I) Mixing of raw materials As metal sources, iron citrate (FeC 6 H 5 O 7 ⁇ n H 2 O) and manganese acetate tetrahydrate (Mn (CH 3 COO) 2 ⁇ 4 H 2 O) are used, and Fe and It weighed so that Mn might be set to 2: 8, and this was melt
  • FeC 6 H 5 O 7 ⁇ n H 2 O iron citrate
  • lithium dihydrogen phosphate H 2 LiO 4 P
  • an aqueous lithium acetate solution CH 3 CO 2 Li
  • the reason for using this preparation composition is to prevent cation mixing and to compensate volatilization of Li during firing.
  • lithium phosphate Li 3 PO 4
  • this material has high Li ion conductivity, which is one of the reasons that the adverse effect is small.
  • the solution obtained above was dried using a spray dryer, and dried under the conditions of an inlet temperature of 195 ° C. and an outlet temperature of 80 ° C. to obtain a raw material powder.
  • the raw material powder is in a state in which each element is uniformly dispersed in a citric acid matrix.
  • sucrose is added as a carbon source and a particle size control agent at a ratio of 7 mass% in mass ratio, and pulverized for 2 hours using a ball mill. Mixed.
  • the positive electrode active material was obtained by the above steps.
  • the positive electrode was created using the positive electrode active material obtained above.
  • the method of producing the electrode will be described below.
  • the positive electrode active material, the conductive agent, the binder, and the solvent were mixed in a mortar to prepare a positive electrode mixture slurry.
  • Acetylene black (Denka Black (registered trademark) manufactured by Denki Kagaku Kogyo Co., Ltd.) was used as a conductive agent, modified polyacrylonitrile as a binder, and N-methyl-2-pyrrolidone (NMP) as a solvent.
  • the binder was a solution dissolved in NMP.
  • the composition of the electrode was such that the mass ratio of the positive electrode active material, the conductive material, and the binder was 82.5: 10: 7.5.
  • the positive electrode material mixture slurry is applied to one side of a 20 ⁇ m-thick positive electrode current collector (aluminum foil) by a doctor blade method so that the coating amount is 5 to 6 mg / cm 2 , The resultant was dried at 80 ° C. for 1 hour to form a positive electrode mixture layer (thickness 38 to 42 ⁇ m).
  • the positive electrode mixture layer was punched into a disk shape having a diameter of 15 mm using a punch. The punched positive electrode mixture layer was compression molded using a hand press to obtain a positive electrode for a lithium secondary battery.
  • All the electrodes were produced so as to fall within the above coating amount and thickness range, and the electrode structure was kept constant.
  • the prepared electrode was dried at 120 ° C. In addition, in order to remove the influence of moisture, all the operations were done in the dry room.
  • a three-pole model cell in which the battery was simply reproduced was manufactured in the following procedure.
  • the test electrode punched into a diameter of 15 mm, an aluminum current collector, metallic lithium for a counter electrode, and metallic lithium for a reference electrode were laminated via a separator impregnated with an electrolytic solution.
  • Electrolyte solution dissolves LiPF 6 in the solvent which mixed ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in the ratio of 1: 2 (volume ratio), and makes it 1 mol / l, 0.8 mass in this solution % Vinylene carbonate (VC) was used.
  • This laminate was sandwiched between two SUS end plates and tightened with a bolt. This was placed in a glass cell to make a tripolar model cell.
  • composition and production conditions of the positive electrode active material of Example 1-1 are shown in Table 1 described later.
  • Test evaluation (A) XRD measurement (crystal phase identification, average primary particle size evaluation) Powder X-ray diffraction measurement (XRD measurement) was performed according to the following procedure, and the identification of the crystal phase of the carbon-coated positive electrode active material obtained above and the average primary particle diameter were calculated.
  • a powder X-ray diffraction measuring device manufactured by Rigaku Corporation, model: RINT-2000 was used.
  • the crystal phase was identified about the diffraction pattern obtained by measuring using ICSD (Inorganic Crystal Structure Database).
  • the integral width ⁇ i was determined when a standard Si sample (manufactured by NIST, product name: 640 d) was measured under the same apparatus and under the same conditions, and the integral width ⁇ was defined by the following (formula 2).
  • the crystallite diameter D is determined using the Scherrer equation shown in the following (formula 3), and this is taken as the average primary particle diameter.
  • is the wavelength of the X-ray source
  • is the reflection angle
  • K is the Scherrer constant
  • K 4/3.
  • FIG. 2A is an appearance photograph (SEM observation image) of the positive electrode active material for a lithium secondary battery according to the present invention before the carbon coating removal treatment.
  • FIG. 2B is an external appearance photograph (SEM observation image) after heating the positive electrode active material for lithium secondary batteries of FIG. 2A in air at 450 ° C. for 1 hour. As shown in FIGS. 2A and 2B, it can be seen that the appearance of the particles has not changed before and after the carbon coating removal treatment.
  • the measured value (a) of the specific surface area was measured using an automatic specific surface area measuring device (manufactured by Nippon Bell Co., Ltd., model: BELSORP-mini). Moreover, the calculated value (b) of the specific surface area was calculated using the value of the average primary particle diameter described above. The obtained values of (a) and (b) were substituted into (Expression 1) to obtain the roughness factor.
  • the primary particle diameter calculated according to the above definition is a primary particle diameter measured by X-ray diffraction and evaluated from the overall averaged crystallite diameter, so an aggregate including a large number of small crystallites
  • the primary particle diameter is calculated to be smaller than usual, and it is not consistent with the case where individual particles are observed and measured with an electron microscope or the like.
  • the particle diameter being calculated to be smaller, when the crystallite becomes smaller than the effect that the denominator (b) of the formula shown in (Expression 1) becomes larger, the measured value of the specific surface area of the positive electrode active material is The effect of increasing the molecule (a) increases, and the roughness factor increases.
  • Carbon Content Measurement The carbon content of the positive electrode active material was measured using a high frequency combustion-infrared absorption method. The carbon content is also shown in Table 3.
  • Rate characteristic evaluation After repeating the above-mentioned charge / discharge test for 3 cycles, rate characteristics were evaluated under the following conditions. The capacity of the model cell subjected to constant current charging and constant voltage charging in the same manner as in the capacity measurement was subjected to constant current discharge at a current value of 5 mA as a rate characteristic. The results are shown in Table 3.
  • LiFe 0.2 Mn 0.8 PO 4 was obtained by the same method as Example 1-1 except that the pre-baking temperature was 600 ° C.
  • the XRD measurement, specific surface area measurement, charge / discharge test, rate characteristic evaluation, energy density measurement, and SEM observation were also performed similarly.
  • Table 1 shows the composition and manufacturing conditions of the positive electrode active material
  • Table 3 shows the measurement results. An appearance photograph of the positive electrode active material powder of Example 1-2 is shown in FIG. 3B.
  • LiMnPO 4 was prepared in the same manner as in Example 1-1 except that manganese acetate tetrahydrate (Mn (CH 3 COO) 2 .4H 2 O) was used as the metal source, and the total amount of transition metals was Mn. Obtained.
  • the XRD measurement, specific surface area measurement, charge / discharge test, rate characteristic evaluation, and energy density measurement were performed in the same manner.
  • Table 1 shows the composition and manufacturing conditions of the positive electrode active material, and Table 3 shows the measurement results.
  • LiMnPO 4 was obtained by the same method as Example 1-3 except that the pre-baking temperature was 600 ° C.
  • the XRD measurement, specific surface area measurement, charge / discharge test, rate characteristic evaluation, and energy density measurement were performed in the same manner.
  • Table 1 shows the composition and manufacturing conditions of the positive electrode active material, and Table 3 shows the measurement results.
  • LiFePO 4 was obtained by the same method as in Example 1-1 except that only citrate iron (FeC 6 H 5 O 7 ⁇ n H 2 O) was used as the metal source, and the total amount of transition metals was Fe.
  • the XRD measurement, specific surface area measurement, charge / discharge test, rate characteristic evaluation, and energy density measurement were performed in the same manner.
  • Table 1 shows the composition and manufacturing conditions of the positive electrode active material, and Table 3 shows the measurement results.
  • LiFePO 4 was obtained by the same method as Example 1-5 except that the pre-baking temperature was 600 ° C.
  • the XRD measurement, specific surface area measurement, charge / discharge test, rate characteristic evaluation, and energy density measurement were performed in the same manner.
  • Table 1 shows the composition and manufacturing conditions of the positive electrode active material, and Table 3 shows the measurement results.
  • LiFe 0.2 Mn 0.8 PO 4 was obtained in the same manner as in Example 1-1 except that the pre-baking temperature was changed to 380 ° C. XRD measurement, specific surface area measurement, charge / discharge test, rate characteristic evaluation, energy density measurement and SEM observation were also performed similarly. Table 2 shows the composition and manufacturing conditions of the positive electrode active material, and Table 4 shows the measurement results. An appearance photograph of the positive electrode active material powder of Reference Example 1-1 is shown in FIG. 3C.
  • reference examples refer to temporary firing in an oxidizing atmosphere and main firing in a non-oxidizing atmosphere as in the present invention, and a positive electrode active material manufactured by a solid phase method.
  • the pre-baking temperature is lower than the crystallization temperature of olivine. Therefore, the reference example is described in order to show the importance of the roughness factor and the calcination temperature of the present invention although not known per se.
  • Lithium hydroxide (LiOH), phosphoric acid (H 3 PO 4 ), manganese sulfate (MnSO 4 ), and iron sulfate (FeSO 4 ) were used as raw materials.
  • an aqueous solution of lithium hydroxide was dropped therein to obtain a suspension containing a precipitate.
  • the obtained suspension was subjected to nitrogen bubbling and sealed in a pressure resistant vessel while replacing with nitrogen.
  • the pressure container was heated at 170 ° C. for 5 hours while rotating and stirring, and the obtained precipitate was filtered and washed to obtain LiMn 0.8 Fe 0.2 PO 4 .
  • Sucrose was added to the obtained LiMn 0.8 Fe 0.2 PO 4 at a mass ratio of 7% by mass. This was mixed for 2 hours using a wet ball mill. Next, it was fired using an atmosphere-controllable tubular furnace and subjected to carbon coating.
  • the firing atmosphere was Ar atmosphere, the firing temperature was 700 ° C., and the firing time was 3 hours.
  • Table 2 shows the composition and manufacturing conditions of the positive electrode active material
  • Table 4 shows the measurement results. Further, an appearance photograph of the positive electrode active material powder of Comparative Example 1-1 is shown in FIG. 3D.
  • LiMnPO 4 was produced in the same manner as in Example 1-3 except that the pre-baking temperature was changed to 380 ° C.
  • the XRD measurement, specific surface area measurement, charge / discharge test, rate characteristic evaluation, and energy density measurement were performed in the same manner.
  • Table 2 shows the composition and manufacturing conditions of the positive electrode active material, and Table 4 shows the measurement results.
  • LiFePO 4 was produced in the same manner as in Example 1-5 except that the pre-baking temperature was changed to 380 ° C.
  • the XRD measurement, specific surface area measurement, charge / discharge test, rate characteristic evaluation, and energy density measurement were performed in the same manner.
  • Table 2 shows the composition and manufacturing conditions of the positive electrode active material, and Table 4 shows the measurement results.
  • the characteristics of the positive electrode active material having an olivine type structure differ depending on the molar ratio of Mn to Fe in M. Generally, the larger the amount of Fe, the better the capacity and rate characteristics, but the lower the average voltage, the lower the energy density. Therefore, the examples, reference examples, and comparative examples are compared for each composition of the positive electrode active material.
  • the positive electrode active material is LiMnPO 4 and Examples 1-3 and 1-4 are compared with Reference Example 1-2 and Comparative Example 1-2, respectively, the Example has the same capacity, rate characteristics, and energy density. All three items are higher than the comparative example.
  • Example 1-7 improvement in energy density and rate characteristics was observed as compared with Example 1 in which Mg was not added.
  • the addition of Mg may improve the crystallinity and facilitate the absorption and release of Li.
  • the roughness factor of the example, the reference example and the comparative example is compared, in all the examples, it exceeds 1 whereas in the reference example and the comparative example, it is all 1 or less. If the particle diameter is a true sphere and it is completely dispersed, the roughness factor will be 1, but it will increase or decrease due to several factors. The cause of the increase is the increase in the particle surface roughness, which is high in the example because the production method is used to increase the particle surface roughness. Further, in the examples, the firing at the crystallization temperature or higher prevents the generation of unreacted substances and maintains a good dispersed state even after the main firing, so the specific surface area is high.
  • the positive electrode active material is manufactured by a hydrothermal method, and since the particle surface is smooth and thus lower than the example, the roughness factor is small, and the positive electrode active material and the electrolyte are It is believed that the battery's capacity, rate characteristics and energy density have been reduced.
  • the positive electrode active material (FIGS. 3A and 3B) according to the present invention has a larger surface roughness than the conventional positive electrode active material (FIGS. 3C and 3D).
  • the positive electrode active material for a lithium secondary battery according to the present invention uses a highly safe polyanion-based compound and has a higher capacity than a lithium secondary battery using a conventional polyanion-based positive electrode active material. It has been shown that a positive electrode active material for a lithium secondary battery can be provided that achieves high rate characteristics and high energy density, and that the smoothness and uniformity of the electrode are good.
  • Example 1 the positive electrode active material having a primary particle shape has been described.
  • the positive electrode active material is often used as secondary particles for reasons such as facilitation of electrode production.
  • Example 2 a method of producing a secondary particle-formed positive electrode active material and measurement results of characteristics (capacity and rate characteristics) of an electrode produced using the produced positive electrode active material will be described. In particular, the relationship between the secondary particle diameter and the corresponding electrode will be described.
  • FIG. 5 shows a manufacturing flow.
  • Step S100 The materials of the positive electrode active material are mixed.
  • Step S200 The mixed materials are calcined temporarily to obtain a calcined body.
  • Step S300 A carbon source is mixed with the temporary fired body.
  • Step S400 Secondaryize the slurry having the mixed carbon source.
  • Step S500 The pre-sintered body and the carbon source mixed are subjected to main firing.
  • Example 2-1 (I) Mixing of Raw Materials: The same materials and specifications as those described above (Fabrication of lithium secondary battery of Example 1-1). (Ii) Pre-baking: The raw material powder was temporarily fired using a box-type electric furnace. The firing atmosphere was air, the firing temperature was 440 ° C., and the firing time was 10 hours. (Iii) Mixing and coating with carbon sources: 7% by mass of sucrose was added to the calcined body as a carbon source and a particle size control agent. This was ground and mixed for 2 hours using a ball mill. (Iv) Secondary particle formation: In the ball mill process, pure water was used as a dispersion medium. After the ball mill mixing, the slurry was spray-dried at an air spray pressure of 0.2 MPa using a spray dryer equipped with a 4-fluid nozzle to perform secondary particle formation.
  • FIG. 4 shows an SEM photograph of spherical secondary particles according to the present invention as an example.
  • spray drying is the method of supplying the slurry which was micronized in the drying chamber, and drying it to obtain spherical particles.
  • the mean particle size of the spherical secondary particles is less than 5 ⁇ m, the packing density tends to be low when electroded.
  • the average particle size is more than 20 ⁇ m, the secondary particles become large with respect to the electrode thickness, and the electrode density decreases.
  • the electrode density is calculated by dividing the coating amount (mg / cm 2 ) by the electrode thickness ( ⁇ m).
  • An electrode (positive electrode) was produced using the produced active material, and the characteristics of the electrode, that is, the capacity and rate characteristics were measured.
  • the method of producing the electrode is the same as the method described in the section of Example 1 described above.
  • rate characteristics were evaluated under the following conditions.
  • the capacity of the model cell subjected to constant current charging and constant voltage charging in the same manner as in the capacity measurement was subjected to constant current discharge at a current value of 5 mA as a rate characteristic.
  • all the tests were performed at room temperature (25 degreeC).
  • Example 2-2 A LiFe 0.2 Mn 0.8 PO 4 was obtained in the same manner as in Example 2-1 except that the pre-baking temperature was 600 ° C. The capacity and rate characteristics were also measured in the same manner.
  • Example 2-3 To the calcined body, 7 parts by weight of sucrose was added per 100 parts by weight as a carbon source and a particle size control agent, and pulverized and mixed for 2 hours using a ball mill. After the ball mill mixing, a slurry was manufactured using an evaporator in the same manner as in Example 2-1 except that the slurry was dried to obtain LiFe 0.2 Mn 0.8 PO 4 . The capacity and rate characteristics were also measured in the same manner.
  • the slurry was prepared using a wet ball mill and was spray-dried at an air spray pressure of 0.2 MPa using a spray dryer equipped with a four-fluid nozzle to form secondary particles.
  • Carbon-coated LiFe 0.2 Mn 0.8 PO 4 was obtained by the above steps.
  • the capacity and rate characteristics were measured in the same manner as in Example 2-1.
  • Example 2-4 A lithium Fe 0.2 Mn 0.8 PO 4 was produced in the same manner as in Example 2-1 except that the air spray pressure was 1.0 MPa. The capacity and rate characteristics were also measured in the same manner.
  • Example 2-5 A LiFe 0.2 Mn 0.8 PO 4 was produced in the same manner as in Example 2-1 except that a disk spray dryer was used for slurry drying after ball mill mixing. The capacity and rate characteristics were also measured in the same manner.
  • the rate characteristic it is understood from Table 5 that the examples 2-1 and 12 have higher rate characteristics than any of the comparative examples 2-1 and 2-2. Therefore, it can be seen that the embodiment is higher in both capacity and rate characteristics than the comparative example, and in particular, the rate characteristics are higher.
  • the roughness factors of the primary particles of Examples 2-1 and 2-2 and Comparative Examples 2-1 and 2-2 are all over 1 in Examples, In the comparative example, it is all 1 or less.
  • the roughness factor of the primary particles is 1, but increases or decreases depending on several factors.
  • the cause of the increase is the increase of the particle surface roughness, and in the example, the production method of increasing the particle surface roughness is used, and the roughness factor of the primary particles is high.
  • the roughness factor of the primary particle is lower than that of the example.
  • Comparative Example 2-2 is produced by a hydrothermal synthesis method, and the particles have a smooth surface, and the roughness factor of the primary particles is lowered. That is, if the particle size is the same, it is considered that the specific surface area is lowered and the activity is lowered. On the other hand, in the examples, the firing at the crystallization temperature or higher prevents the generation of unreacted substances and maintains a good dispersed state even after the main firing, so the specific surface area is high. That is, it can be seen that the roughness factor of primary particles obtained from the values of particle diameter and specific surface area greatly affects the characteristics.
  • Example 2-1 When Example 2-1 is compared with Examples 2-3 and 2-4, the average particle diameter of the secondary particles in Example 2-1 is 12 ⁇ m, and it is 3 ⁇ m in Example 2-3. In 2-4, it shows 25 ⁇ m. Then, when the relationship between the particle size and the electrical characteristics is seen, the capacity per volume (mAh / cc) in Example 2-1 is 285, whereas in Examples 2-3, 249 and 260, respectively. And low values.
  • the value is as low as 1.63 and 1.68 in Examples 2-3 and 2-4, while it is 1.83 in Example 2-1. It shows.
  • the average secondary particle size affects the electrode density and the volume per volume.
  • the average secondary particle diameter is less than 5 ⁇ m or more than 20 ⁇ m, it is understood that the electrode density decreases and the capacity per volume of the positive electrode active material decreases.
  • Example 2-1 and Example 2-3 add 7 parts by weight of sucrose to 100 parts by weight as a carbon source and a particle size control agent to the calcined body, and after mixing in a ball mill, the slurry is It is the difference between drying with a spray dryer to obtain secondary particles or drying using an evaporator to obtain secondary particles.
  • Example 2-1 Comparing Example 2-1 with Example 2-5, with respect to the shape of the positive electrode active material, while spherical secondary particles were obtained in Example 2-1, Example 2-5 is amorphous. Secondary particles were obtained.
  • Example 2-1 the electrode density, capacity per volume, and rate characteristics of Example 2-1 are 1.83, 285 and 142, respectively, while Example 2-5 includes 1.45 and 228, respectively. Since the value is 137, in Example 2-1, the electrode density, the capacity per volume, and the rate characteristics are higher. The electrode density is improved by granulating the spherical secondary particles by spray drying. On the other hand, the one which is not granulated by spray drying is difficult to increase the electrode density. The electrode characteristics were also better when granulated by spray drying.
  • the electrode density of the positive electrode is 1.8 g / cm 3 or more, the capacity value per weight is 150 Ah / kg or more, and the rate characteristic is 140 Ah / kg or more. Positive electrode was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 安全性の高いポリアニオン系化合物を使用し、高容量、高レート特性、及び高エネルギー密度のリチウム二次電池用正極活物質を提供する。 炭素で被覆されたポリアニオン系化合物粒子を含むリチウム二次電池用正極活物質であって、前記ポリアニオン系化合物は下記(化学式1)で表わされる構造を有し、前記ポリアニオン系化合物の下記(式1)で表わされるラフネスファクターが1~2であり、前記ポリアニオン系化合物の平均一次粒子径が10~150nmであることを特徴とするリチウム二次電池用正極活物質。 LixMAyOz・・・・(化学式1) (ただし、Mは少なくとも一種の遷移金属元素を含み、Aは酸素Oと結合してアニオンを形成する典型元素であり、0<x≦2、1≦y≦2、3≦z≦7である。)

Description

リチウム二次電池用正極活物質、それを用いたリチウム二次電池用正極及びリチウム二次電池、並びにリチウム二次電池用正極活物質の製造方法
 本発明は、リチウム二次電池用正極活物質、それを用いたリチウム二次電池用正極及びリチウム二次電池、並びにリチウム二次電池用正極活物質の製造方法に関するものである。
 リチウム二次電池用の正極活物質としては、従来はコバルト酸リチウムが主流であり、これを用いたリチウム二次電池が広く用いられている。しかし、コバルト酸リチウムの原料であるコバルトは、産出量が少なく高価であるため代替材料が検討されている。コバルト酸リチウムの代替材料として、スピネル構造を持つマンガン酸リチウム及びニッケル酸リチウムが検討されている。しかし、マンガン酸リチウムは放電容量が十分でなく、高温でマンガンが溶出することが問題となっている。また、ニッケル酸リチウムは高容量が期待できるが、高温時の熱安定性が十分ではない。
 熱安定性の観点では、結晶構造内にポリアニオン(PO 3-、BO 3-、SiO 4-など、1つの典型元素に複数の酸素が結合してなるアニオン)を有するポリアニオン系化合物が優れており、リチウム二次電池用正極活物質として期待されている。これは、ポリアニオンの結合(P‐O結合、B‐O結合、Si‐O結合など)が強固であり、高温時も酸素が脱離しないためである。
 しかしながら、ポリアニオン系化合物は、電子伝導性及びイオン伝導性が低く、放電容量を十分に取り出すことができない課題がある。これは、上述した強固なポリアニオン結合に電子が局在化してしまうためである。
 上述したポリアニオン系化合物の課題に対し、例えば、特許文献1では、ポリアニオン系化合物の表面を炭素で被覆し、電子伝導性を向上させる技術が提案されている。また、非特許文献1では、ポリアニオン系化合物の粒子径を小粒径化して反応面積を増加し、拡散距離を短縮して電子伝導性とイオン伝導性を向上させる技術が提案されている。
特開2001‐015111号公報
A. Yamada, S. C. Chung, and K. Hinokuma "Optimized LiFePO4 for Lithium Battery Cathodes" Journal of the Electrochemical Society 148(2001), pp. A224-A229.
 ポリアニオン系化合物を炭素被覆する方法には、該化合物をアセチレンブラックや黒鉛と混合し、ボールミルなどによって密着させる方法や、該化合物を糖、有機酸、またはピッチなどの有機物と混合し焼成する方法などがある。また、ポリアニオン系化合物を小粒径化する手法としては、該化合物の焼成温度を低くする方法や、該化合物を炭素源と混合し、結晶成長を抑制する方法などがある。
 しかしながら、上述した方法は、いずれもポリアニオン系化合物の結晶性の低下を招く恐れがある。正極活物質の結晶性の低下は、放電容量及びレート特性の低下につながる。
 したがって、本発明の目的は、高温時の熱安定性が高く、かつ放電容量及びレート特性の高いリチウム二次電池用正極活物質を提供することにある。また、他の本発明の目的は、該正極活物質の製造方法及びそれを用いて作製したリチウム二次電池用正極、リチウム二次電池を提供することにある。
 本発明は、上記目的を達成するため、
炭素で被覆されたポリアニオン系化合物粒子を含むリチウム二次電池用正極活物質であって、
前記ポリアニオン系化合物は下記(化学式1)で表わされる構造を有し、
前記ポリアニオン系化合物の下記(式1)で表わされるラフネスファクターが1~2であり、
前記ポリアニオン系化合物の平均一次粒子径が10~150nmであることを特徴とするリチウム二次電池用正極活物質を提供する。
  LixMAyOz・・・・(化学式1)
(ただし、Mは少なくとも一種の遷移金属元素を含み、Aは酸素Oと結合してアニオンを形成する典型元素であり、0<x≦2、1≦y≦2、3≦z≦7である。)
Figure JPOXMLDOC01-appb-M000002
 化学式1に含まれる金属Mとしては、Fe、Mn、Ni、Co等の遷移金属元素を必須成分として含む。また、その他の成分として、一部典型元素を含んでもよい。
 また、他の本発明は、ポリアニオン系化合物、特にオリビン型構造を有するリチウム二次電池用正極活物質の製造方法であって、金属源となる遷移金属化合物と、リン化合物とを含む原料を混合する工程、混合した原料を仮焼成する工程、仮焼成体に炭素源を混合する工程、本焼成する工程を有し、仮焼成温度は、正極活物質の結晶化温度以上で、結晶化温度に200℃を加えた温度以下であることを特徴とする。
 また、本発明は、リチウム二次電池用正極活物質の製造方法、該リチウム二次電池用正極活物質を用いて作製したリチウム二次電池用正極及びリチウム二次電池を提供する。
 本発明によれば、リチウム二次電池用正極活物質として、安全性の高いポリアニオン系化合物を使用し、従来のポリアニオン系正極活物質を用いたリチウム二次電池よりも、放電容量及びレート特性の高いリチウム二次電池用正極活物質を提供することができる。また、安全性と電池性能を両立させるリチウム二次電池用正極活物質の製造方法、リチウム二次電池用正極及びリチウム二次電池を提供することができる。
本発明を適用したリチウム二次電池の1例を示す半断面模式図である。 本発明に係るリチウム二次電池用正極活物質の炭素被覆除去処理前の外観写真(SEM観察像)である。 図2Aの炭素被覆除去処理後の外観写真(SEM観察像)である。 実施例1-1の正極活物質粉末の外観写真(SEM観察像)である。 実施例1-2の正極活物質粉末の外観写真(SEM観察像)である。 比較例1-1の正極活物質粉末の外観写真(SEM観察像)である。 比較例1-2の正極活物質粉末の外観写真(SEM観察像)である。 本発明法で製造した球状に二次粒子化した正極活物質のSEM写真である。 本発明の正極活物質の製造フローを示す図である。
 近年、リチウム二次電池への安全性と電池性能(例えば、容量、レート特性、エネルギー密度など)向上への要求は、ますます高まっている。しかしながら、上述したように、安全性の向上を目指してポリアニオン系化合物を使用すると、リチウム二次電池の電池性能の観点で、要求特性を十分に満たせなくなる問題があった。すなわち、それらの点で更なる改善が強く望まれていた。本願発明者らは、所定の表面粗さを達成することが、ポリアニオン系化合物の性能向上に大きい影響を与えることを見出した。ポリアニオン系化合物のアニオン(AyOz)としては、PO 3-、BO 3-、SiO 4-のいずれか、もしくは複数が組み合わされて該当する。ポリアニオン系化合物の金属部分(M)に含まれる遷移金属としては、Fe、Mn、Co、Ni等が代表される。なお、Mの一部にMgなどの典型元素を含んでもよい。
 また、ポリアニオン系化合物の粒径が大きすぎると、拡散距離が長くなり、出力低下が生じる。一方、過度に小粒径化しすぎると、電極化した際の充填密度が上がりにくく、実用上のエネルギー密度が低下する恐れがある。さらに、過度に小粒径化された粒子は、電極作製プロセスにおいてスラリー化した際、凝集を起し易く、電極の平滑性、均一性を損なう恐れがある。電極の平滑性、均一性を損なうことも、電池特性の低下につながる。したがって、正極活物質粒子の粒径は所定の範囲であることが好ましい。本発明の場合には、平均一次粒子径が10~150nmであることが好適であった。また、スラリー化の前に、一次粒子を焼結などにより凝集させた状態の二次粒子とすることによっても充填密度の向上に寄与するので好ましい。
 上記本発明によれば、安全性の高いポリアニオン系化合物を使用するとともに、従来のポリアニオン系正極活物質を用いたリチウム二次電池よりも、高容量、高レート特性、及び高エネルギー密度を達成し、かつ電極の平滑性、均一性が良好なリチウム二次電池用正極活物質を提供できる。その結果、該リチウム二次電池用正極活物質を用いて作製したリチウム二次電池用正極、リチウム二次電池の高性能化が図れる。
 リチウム二次電池用正極活物質は、上述の通り二次粒子として正極に使用できる。ポリアニオン系化合物の二次粒子よりなる正極活物質の製造方法は、リチウム化合物、金属元素源となる遷移金属化合物、リン酸化合物を混合する工程、混合物を仮焼成する工程、仮焼成体に炭素源を混合する工程、二次粒子化する工程、本焼成する工程、よりなる。
 さらに本発明は、前述したリチウム二次電池用正極活物質において、以下のような改良や変更を加えることができる。
 (1)前記ポリアニオン系化合物は、下記(化学式2)で表わされるオリビン型構造を有する。
    LiMPO             ・・・・(化学式2)
(ただし、MはFe、Mn、Co及びNiの内の少なくとも1種である。)
 (2)前記オリビン型構造を有するポリアニオン系化合物中のMはMnとFeを含み、Mを占めるFeの割合が、モル比で0mol%超、50mol%以下である。
 (3)前記炭素の含有量が2~5質量%である。
 以下、本発明に係る実施の形態について、より具体的に説明する。ただし、本発明は、ここで取り上げた実施の形態に限定されることはなく、要旨を変更しない範囲で適宜組み合わせや改良が可能である。
 [リチウム二次電池用正極活物質]
 前述したように、本発明に係るリチウム二次電池用正極活物質は、炭素で被覆されたポリアニオン系化合物粒子を含むリチウム二次電池用正極活物質であって、該ポリアニオン系化合物粒子は、前記(化学式1)で表わされる構造を有する。
 リチウム二次電池の非水電解液は、六フッ化リン酸リチウム等の支持塩(電解質)をエチレンカーボネート(EC)やプロピレンカーボネート(PC)等の非水溶媒に溶解させたものが広く知られている。しかしながら、これらの非水溶媒は、引火性(例えば、ECおよびPCの引火点は130~140℃)を有するため、原理的には火種があれば引火する。リチウム二次電池が過充電等で高温状態になったとき、構成材料が酸素を放出すると、該酸素と非水電解液が反応し、発火を引き起こす恐れがある。
 前述したように、前記(化学式1)で表わされるポリアニオン系化合物は、ポリアニオンの結合((化学式1)中の、A‐O結合)が強固であり、高温時も酸素が脱離しない。そのため、リチウム二次電池が高温になった場合であっても、電解液が燃焼することはない。従って、安全性の高いリチウム二次電池を提供することができる。
 上記ポリアニオン系化合物は、前記(化学式2)で表わされるオリビン型構造を有する化合物であることが好ましい。
 さらに、上記オリビン型構造を有するポリアニオン系化合物中のMはMnとFeを含み、Mを占めるFeの割合が、モル比で0mol%超、50mol%以下であることが好ましい。(化学式1)におけるMにおいて、Feの割合が高いほど抵抗が低くなり、Mnの割合が高いほど平均電圧が高くなる。平均電圧が高くなると、エネルギー密度(容量×電圧)が高くなる。しかし、Mnが100%だと抵抗が高すぎて容量が得られず、エネルギー密度も低下する。
 MとしてFeを20%程度加えると抵抗が低下し、容量も得られるために高いエネルギー密度が得られる。しかし、Feが多すぎる領域では抵抗が低くなり、高い容量は得られるものの、容量の増加の効果よりも平均電圧の低下の効果が高く、エネルギー密度が低下する。
 以上より、ポリアニオン系化合物中のMはMnとFeを含み、Mに占めるFeの割合が、モル比で0mol%超、50mol%以下であることが好ましい。
 本発明のポリアニオン系化合物は、前記(式1)で表わされるラフネスファクターが1~2である。
 ここでラフネスファクターについて説明する。上式が示すように、ラフネスファクターとはポリアニオン系化合物粒子を含む正極活物質において、BET法を用いて測定した比表面積(a)と、一次粒子の形状を真球と仮定して、X線回折測定結果よりScherrerの式を用いて算出される平均一次粒子径から算出した比表面積(b)の比(a/b)であり、粒子の表面粗さの度合いを示す。粒子の表面の粗さが大きく、凹凸が多いほどラフネスファクターの値が大きくなる。
 また、粒子同士が焼結などによって凝集し、比表面積が低下するほどラフネスファクターの値は小さくなる。すなわち、ラフネスファクターの値が大きいほど粒子の比表面積は大きいため、正極活物質と電解質との反応性が高くなる。
 後述する実施例において詳述するが、本発明の正極活物質のラフネスファクターは1~2であり、この値は従来の製造方法で製造されたポリアニオン系正極活物質の値(1未満)と比較して大きい。そのため、本発明の正極活物質を用いて作製したリチウム二次電池は、同じ粒子径を有する従来のポリアニオン系正極活物質を用いたリチウム二次電池よりも、正極活物質と電解質との反応性が高くなり、高容量、高レート特性、及び高エネルギー密度を達成することができる。ラフネスファクターが1より小さいと、上述した正極活物質と電解質との反応性を高める効果は得られない。また、2より大きくなると、正極活物質の形状は球から大きく外れ、電極を作製する際に充填密度を高くすることができず、好ましくない。なお、本発明において「1~2」とは、1以上2以下であることを意味する。ラフネスファクターが1~2となる本発明のリチウム二次電池用正極活物質の製造方法については、追って詳述する。
 本発明の正極活物質は、平均粒子径が10~150nmの一次粒子が多数集合した二次粒子である。平均一次粒子径が10nm未満であると凝集が起きやすく、スラリー中で数mm程度の粒子が生じる場合があり、電極厚みを超えると電極の平滑性、均一性が低下する。また、平均1次粒子径が150nmより大きいと、比表面積が小さくなり、正極活物質と電解質との反応性を十分に確保することが困難となる。
 一般に、リチウム二次電池は、正極活物質の平均一次粒子径を小さくすればするほど正極活物質の比表面積が大きくなり、正極活物質と電解質との反応性が高くなって特性が向上するが、一方で粒子径が小さいほど凝集が起こりやすくなり、電極の平滑性、均一性が低下する。本発明の正極活物質は、上述したようにラフネスファクターが従来のポリアニオン系化合物粒子を用いた正極活物質よりも大きいため、平均一次粒子径が、電極の平滑性、均一性が良好なものを提供できる範囲(10~150nm)であっても、従来よりも高い容量、高いレート特性、及び高いエネルギー密度を達成することができる。
 なお本発明において、平均一次粒子径は粉末X線回折測定によって得られたパターンから求めた値である。平均一次粒子径の測定方法及び算出方法については、実施例において詳述する。
 本発明のポリアニオン系化合物粒子は炭素で被覆されており、該炭素の含有量は、正極活物質中2~5質量%であることが好ましい。なお、本発明のポリアニオン系化合物粒子において、炭素は粒子の表面以外にも、粒子の内部や、粒子と粒子の間にも存在しているものと考えられる。上述した「炭素の含有量」は、これら、ポリアニオン化合物粒子の表面以外に存在する炭素の量も含む。炭素含有量が2質量%未満であると電子伝導性が低下し、十分な電池性能が得られない。また、炭素含有量が5質量%より多いと、エネルギー密度が低下すると共に、比表面積が増加し、電極の平滑性、均一性が低下する。本発明における「被覆」は上記の形態を含む意味で用いられる。
 [リチウム二次電池用正極活物質の製造方法]
 本発明のリチウム二次電池用正極活物質の製造方法について説明する。本発明は、オリビン型構造を有する化合物を初めとした、粒子径を200nm以下にして低抵抗化して使用することが必要な正極活物質を対象としている。粒子径が200nm以下の微粒子では凝集が起きやすく、それにより比表面積が低下し、ラフネスファクターが低下しやすい。
そのため、ラフネスファクターを大きくするためには、活物質粒子の表面粗さを向上させると共に、凝集、焼結を防ぐ製造方法を行う必要がある。
 本発明のリチウム二次電池用正極活物質の製造方法は、(i)原料の混合、(ii)仮焼成、(iii)炭素源混合、(ix)本焼成を含み、固相法で2回以上の焼成を行う。固相法による正極活物質の製造は、目的組成に合わせて原料を充分に混合した状態で加熱することにより固相反応を生じさせるものである。
本発明による正極活物質の製造フローは、図5に示す。
 本発明の製造方法は、正極活物質の製造において2回以上の固相焼成工程を有し、最後の焼成工程(以下、本焼成と称する)以外の焼成工程のうち、少なくとも1回の焼成工程(以下、仮焼成と称する)は固相反応における結晶化温度以上かつそれを大きく超えない温度で行うことを特徴とし、最後の焼成工程では炭素源が炭化する600℃以上で焼成することが好ましい。仮焼成は酸化性雰囲気、例えば空気中で行うことが好ましく、本焼成は非酸化性雰囲気で行う。仮焼成及び本焼成は、2回以上に分けて行うことが可能である。
 このような手法で製造された粒子は、ラフネスファクターが大きく、同一粒子径のラフネスファクターが小さい粒子に比べ比表面積が大きく、電解質との反応性に優れる。ラフネスファクターの大きい粒子において、粒子径を大きくした場合は、小粒径化の弊害(粒子の凝集等)を抑えつつ、反応抵抗を下げる(電解質との反応性を高める)ことが可能であり、粒子径を小さくした場合は、より低抵抗な粒子を得ることができる。以下、上述した工程について順を追って説明する。
 (i)原料の混合
 本発明のリチウム二次電池用正極活物質は、結晶化温度以上でかつ結晶化温度を大幅に超えない温度で仮焼成を行うことにより、微結晶を得ることができる。後述する本焼成において、この微結晶を多数含む一次粒子を得ることができる。このような形態の一次粒子は、表面の凹凸が大きく、ラフネスファクターが大きくなる。このとき、一次粒子を構成する微結晶の大きさは、原料の粒子径などに依存する。該微結晶を小さくするほど表面粗さは大きくなるので、正極活物質の原料の粒子径は、可能な限り小さい(例えば、1μm以下)ことが望ましい。また、原料を均一に混合していない場合、仮焼成時に生成する結晶が粗大化したり、異相(ポリアニオン系化合物以外の化合物、例えばMn又はFeの酸化物、MnPなど)が発生したりするため、より均一に混合されていることが望ましい。
 原料を均一に混合する方法としては、ビーズミルなどを用いて機械的に原料を粉砕して混合する方法や、酸、アルカリ、キレート剤などを用いて原料を溶液状態にしたものを乾燥させることにより混合する方法が好ましい。特に、溶液状態にして混合する方法は、原料が分子レベルで混合するため、より微細な結晶の析出に有利である。
 正極活物質の原料としては、後述する仮焼成後に残留しない塩を用いることが望ましい。(化学式1)中、Liの原料としては、酢酸リチウム、炭酸リチウム、水酸化リチウムなどを用いることができる。Mの原料としては、酢酸塩、シュウ酸塩、クエン酸塩、炭酸塩、酒石酸塩などのうち、少なくとも1つを用いることができる。Aの原料としては、ポリアニオンの酸状態の化合物、もしくは酸が中和された塩(アンモニウム塩、リチウム塩など)を用いることができる。例えば、POの場合にはリン酸二水素リチウム、リン酸二水素アンモニウム、リン酸水素二アンモニウムなどを用いることができる。
 (ii)仮焼成
 仮焼成温度は、ポリアニオン系化合物の結晶化温度以上で、かつ結晶化温度を大きく超えないことが必要である。結晶化温度より低いと、仮焼成で多量の未反応物が生じる。これら未反応物は後述する本焼成において活物質相に転移するが、その際に複数の粒子同士を結合してしまい、粒子の凝集、焼結を招く。粒子の凝集、焼結が起きると比表面積が低下し、反応性が下がる。また、仮焼成温度を上げていくことにより製造後の粒子径を大きくすることができるが、仮焼成温度があまり高すぎると粒子が粗大化して正極活部質の比表面積が減少し、正極活物質と電解質の反応面積が減少する。
 ポリアニオン系化合物によって結晶化温度及び成長速度が異なるため、仮焼成温度の好ましい範囲も異なる。前記(化学式2)で表わされるオリビン型構造を有する化合物においては、結晶化温度が420℃付近(出典:Robert Dominko, Marjan Bele, Jean-Michel Goupil, Miran Gaberscek, Darko Hanzel, Iztok Arcon, and Janez Jamnik “Wired Porous Cathode Materials: A Novel Concept for Synthesis of LiFePO4” Chemistry of Materials 19(2007), pp. 2960-2969.)であるため、420℃以上で焼成することが必要である。また、600℃以下であれば、粒子の粗大化を抑制することができる。600℃より高いと、結晶成長が大きく促進され、粒子が粗大化し、正極活物質と電解質の反応面積が減少するため好ましくない。特に、440~500℃であることがより好ましい。440℃以上であれば、試料中に多少温度むらがある場合でも、試料全体が結晶化温度以上になる。また、500℃以下であれば、仮焼成後の平均一次粒子径が100nm以下となり、後述する本焼成後に100nm以下の粒子を得ることができる。
 仮焼成の雰囲気は酸化雰囲気であることが好ましい。酸化雰囲気で、かつ上述した温度範囲で仮焼成を行うと、原料由来の有機物(炭素などの有機物の一部を含む)が消失することにより、これらが結晶内部へ混入することを防ぐことができる。従って、酸化雰囲気では、不活性雰囲気や還元雰囲気で焼成した場合よりも、結晶性を高めることができる。
特に、原料を、溶液状態を経て均一に混合した場合には、原料中に有機物が均一に混ざっているので、不活性雰囲気や還元雰囲気では有機物が結晶中に取り込まれやすい。
 有機物を除去するためには、仮焼成温度は上述した結晶化温度に拘わらず、400℃以上であることが好ましいので、仮焼成は420~600℃が好ましい。
 酸化雰囲気を得る方法としては、酸素を含有したガスを用いることが簡便である。また、酸化雰囲気を得る方法として空気を用いることは、コストの面で好ましい。
 (iii)炭素源との混合及び被覆
 上記で得た仮焼成体は結晶性が低いので、結晶性向上のためには、より高温での焼成が必要である。しかし、単に高温で本焼成した場合、仮焼成で得られた微結晶同士が容易に結合して成長し、粒子が粗大化してしまう。そこで本焼成の前に、仮焼成体に炭素源となる有機物または炭素を混合し、被覆する。このように仮焼成で得られた微結晶の周囲に有機物や炭素を密着させて、微結晶を被覆することにより、本焼成時に結晶同士が結合して結晶が成長することを抑えることができる。炭素源としては、アセチレンブラック、黒鉛、糖、有機酸、ピッチなどが好適である。この中でも、仮焼成体表面への密着性を考慮すると糖、有機酸、ピッチが特に好ましい。
 仮焼成で得た微結晶に炭素源を混合して被覆し、また微結晶の微細化も可能な手法としては、ボールミルやビーズミルを用いて機械的圧力を加えることが望ましい。また、上記のような粒子(一次粒子)が複数凝集し、一体化した形態の二次粒子とすることも好ましい。二次粒子化することで、粒径がある程度大きくなり、電極体積密度向上等に寄与する。二次粒子化を行う場合には、本焼成の前に行うことが好ましい。
 (iv)本焼成
 本焼成では、上記で仮焼成体に被覆した炭素源を炭化して正極活物質の導電性を向上させると共に、活物質粒子の結晶性向上もしくは結晶化を行う。本焼成では、有機物(炭素源)の炭化を行い、金属元素の酸化を防止する必要があるため、不活性雰囲気または還元雰囲気で行う。本焼成温度は有機物を炭化するために600℃以上が望ましい。また本焼成は、正極活物質の熱分解が起きる温度以下で行うことが望ましい。オリビン型構造を有する化合物においては、望ましい本焼成温度の範囲は、600~850℃である。600℃以上ならば、炭素源を炭化して導電性を付与することができる。850℃以下ならば、オリビン型構造を有する化合物が分解を起こさない。さらに望ましくは、700~750℃である。この温度範囲では、炭素の導電性を十分に向上できると共に、炭素とオリビン型構造を有する化合物の反応による不純物の生成を抑えることができる。
 一般に、オリビン型構造を有する化合物の固相法以外の製造法としては水熱合成法が挙げられる。水熱合成法では不純物のない、分散した一次粒子が得られる。しかし、水熱合成法で作製した粒子は表面が平滑になる。これは結晶面の成長速度に応じた核成長をするためである。このような平滑な粒子に比べ、本製造方法の粒子は同じ粒子径での比表面積が大きく、電解質との反応性が高くなる。
 なお、上記では固相法で仮焼成と本焼成の1回ずつ焼成を行う製造方法について説明したが、本発明の条件を満たしていれば、仮焼成を2回以上行っても良い。
 以上説明した本発明に係るリチウム二次電池用正極活物質の製造方法では、微結晶が多数含まれる一次粒子を得ることができ、従来のポリアニオン系化合物を用いた正極活物質と比較して、ラフネスファクターが大きい正極活物質を得ることができる。
 [リチウム二次電池用正極]
 本発明のリチウム二次電池用正極は、上述した本発明の正極活物質と結着剤を含む正極合材が、集電体上に形成された構成である。正極合剤には、電子伝導性を補うために、必要に応じて導電助材が添加されていてもよい。結着剤、導電助材、集電体の材料には特段の制限はなく、従来のものを用いることができる。
 結着剤としては、PVDF(ポリフッ化ビニリデン)やポリアクリロニトリルが好適である。結着剤の種類は、十分な結着性を有するものならば、特に制限されない。
 導電助材としては、アセチレンブラックや黒鉛粉末などの炭素系導電助材が好適である。本発明に係る正極活物質は高比表面積であるため、導電ネットワークを形成するためには導電助材は比表面積が大きいことが望ましく、具体的にはアセチレンブラックなどが特に好ましい。上記のような密着性に優れた結着剤を用いると同時に、導電性付与のために導電助材を混合すると、強固な導電ネットワークが形成される。このため、正極の導電性が改善され、容量やレート特性を改善することができる。
 集電体としては、アルミ箔などの導電性を有する支持体が好適である。
 [リチウム二次電池]
 リチウム二次電池の構成について説明する。図1は、発明を適用したリチウム二次電池の1例を示す半断面模式図である。図1に示したように、正極10および負極6は、これらが直接接触しないようにセパレータ7を挟み込んだ状態で惓回されて、電極群を形成している。なお、電極群の構造は、円筒状、扁平状などの形状の捲回に限定されるものではなく、短冊状電極を積層したものであってもよい。
 正極10には正極リード3が付設されており、負極6には負極リード9が付設されている。リード3、9は、ワイヤ状、箔状、板状などの任意の形状を採ることができる。電気的損失を小さくし、かつ化学的安定性を確保できるような構造・材質が選定される。
 電極群は、電池容器5に収容されており、電池容器5の上部に設置された絶縁板4および底部に設置された絶縁板8によって、挿入された電極群が電池容器5と直接接触しないようになっている。さらに、電池容器5の内部には、非水電解液(図示せず)が注入されている。電池容器5の形状は、通常、電極群の形状に合わせた形状(例えば、円筒状、扁平長円柱状、角柱など)が選択される。絶縁板4、8としては、非水電解液と反応せず、かつ気密性に優れた任意の材質(例えば、熱硬化性樹脂、ガラスハーメチックシールなど)が好適である。
 電池容器5の材質は、アルミニウム、ステンレス鋼、ニッケルメッキ鋼製など、非水電解液に対し耐食性のある材料から選択される。電池容器5への電池蓋1の取り付けは、溶接の他に、かしめ、接着などの方法も採ることができる。
 リチウム二次電池を構成する正極10は、正極集電体の片面または両面に正極活物質を含む正極合剤スラリーを塗布・乾燥させた後、ロールプレス機などを用いて圧縮成形して、所定の大きさに切断することで作製される。正極の集電体には、厚さが10~100μmのアルミニウム箔や、厚さ10~100μmで孔径0.1~10mmのアルミニウム製穿孔箔、エキスパンドメタル、発泡アルミニウム板などが用いられる。材質は、アルミニウムの他に、ステンレス、チタンなども適用可能である。
 同様に、リチウム二次電池を構成する負極6は、負極集電体の片面または両面に負極活物質を含む負極合剤スラリーを塗布・乾燥させた後、ロールプレス機などを用いて圧縮成形して、所定の大きさに切断することで作製される。負極の集電体には、厚さが10~100μmの銅箔や、厚さ10~100μmで孔径0.1~10mmの銅製穿孔箔、エキスパンドメタル、発泡銅板などが用いられ、材質は、銅の他に、ステンレス、チタン、ニッケルなども適用可能である。
 正極合剤スラリーおよび負極合剤スラリーの塗布方法に特段の限定はなく、従前の方法(例えば、ドクターブレード法、ディッピング法、スプレー法など)を利用することができる。
 正極10に用いられる正極活物質としては、前述した本発明の正極活物質を用いる。正極活物質に対して、バインダ、増粘剤、導電剤、溶媒等を必要に応じて混合して正極合剤スラリーが作製される。
 負極6に用いられる負極活物質は、リチウムイオンの吸蔵および放出をすることができる材料であれば特に限定されない。例えば、人造黒鉛、天然黒鉛、非晶質炭素、難黒鉛化炭素類、活性炭、コークス、熱分解炭素、金属酸化物、金属窒化物、リチウム金属またはリチウム金属合金などが挙げられる。これらいずれかの単独または2種以上の混合物を用いることができる。その中でも、非晶質炭素はリチウムイオンの吸蔵および放出の際の体積変化率が少ない材料であるため、充放電のサイクル特性が高まることから、負極活物質として非晶質炭素を含むことは好ましい。負極活物質に対して、バインダ、増粘剤、導電剤、溶媒等を必要に応じて混合して負極合剤スラリーが作製される。
 負極導電助剤としては、上述した正極活物質の導電助剤の他、導電性高分子材料(例えば、ポリアセン、ポリパラフェニレン、ポリアニリン、ポリアセチレンなど)を用いることが可能である。
 合剤スラリーに用いられるバインダ、増粘剤および溶媒に特段の限定はなく、従前と同様のものを用いることができる。
 セパレータ7は、二次電池の充放電時にリチウムイオンを透過させる必要があるため、多孔体(例えば、細孔径が0.01~10μm、気孔率が20~90%)であることが好ましい。セパレータ7の素材としては、ポリオレフィン系高分子シート(例えば、ポリエチレンやポリプロピレンなど)や、ポリオレフィン系高分子シートとフッ素系高分子シート(例えば、四フッ化ポリエチレン)とを溶着させた多層構造シート、またはガラス繊維シートを好適に使用できる。また、セパレータ7の表面にセラミックスとバインダの混合物を薄層状に形成しても良い。
 電解質は、LiPF、LiBF、LiCFSO、LiN(SOCF、LiN(SOF)などのリチウム塩を単独でまたは混合して用いることができる。リチウム塩を溶解する溶媒としては、鎖状カーボネート、環状カーボネート、環状エステル、ニトリル化合物などを用いることができる。具体的には、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、ジメトキシエタン、γ―ブチロラクトン、n-メチルピロリジン、アセトニトリルなどである。他に、ポリマーゲル電解質や固体電解質も、電解質として使用できる。固体高分子電解質(ポリマー電解質)を用いる場合には、エチレンオキシド、アクリロニトリル、ポリフッ化ビニリデン、メタクリル酸メチル、ヘキサフルオロプロピレンのポリエチレンオキサイドなどのイオン導電性ポリマーを好適に用いることができる。これらの固体高分子電解質を用いた場合、セパレータ7を省略することができる。
 以上に示した、正極、負極、セパレータ、及び電解質を用いて、円筒型電池、角型電池、ラミネート型電池など、各種形態のリチウム二次電池を構成することができる。
 以下、実施例および比較例により本発明をさらに具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
 実施例1では、ポリアニオン化合物の一次粒子よりなる正極活物質を製造し、そのモデルセルにより電極の特性の評価を行った結果について記載する。
 (実施例1-1)
(i)原料の混合
 金属源として、クエン酸鉄(FeC・nHO)と酢酸マンガン四水和物(Mn(CHCOO)・4HO)を用い、FeとMnが2:8となるように秤量し、これを純水中に溶解した。これにキレート剤としてクエン酸一水和物(CO7・HO)を添加した。キレート剤の量は、クエン酸イオンが金属イオンの合計量に対し80mol%添加となるよう、他のクエン酸塩の添加量に応じて調整した。キレート剤を添加すると、クエン酸イオンが金属イオン周囲に配位することにより、沈殿の生成を抑え、均一に溶解した原料溶液を得ることができる。
 次に、リン酸二水素リチウム(HLiOP)と酢酸リチウム水溶液(CHCOLi)を加え、原料全てが溶解した溶液を得た。溶液濃度は、金属イオン基準で0.2mol/lとした。
 仕込み組成は、Li:M(金属イオン):PO=1.05:1:1として、Li過剰とした。この仕込み組成とした理由は、カチオンミキシングを防ぐため、及び焼成時のLiの揮発を補うためである。また、Li過剰のためにリン酸リチウム(LiPO)が生じても、この物質は高Liイオン導電性であり、悪影響が小さいことも理由の一つである。
 上記で得た溶液を、スプレードライヤを用いて乾燥し、入り口温度195℃、出口温度80℃の条件で乾燥し、原料粉を得た。原料粉は、クエン酸マトリックス中に各元素が均一に分散した状態となっている。
 (ii)仮焼成
 上記で得た原料粉を、箱型電気炉を用いて仮焼成した。焼成雰囲気は空気とし、焼成温度は440℃で、焼成時間は10時間とした。
 (iii)炭素源との混合及び被覆
 上記で得た仮焼成体に対し、炭素源及び粒径制御剤として、質量比7質量%の割合でスクロースを添加し、ボールミルを用いて2時間粉砕、混合した。
 (iv)本焼成
 次に、雰囲気制御可能な管状炉を用いて、本焼成を行った。焼成雰囲気はアルゴン(Ar)雰囲気とし、焼成温度は700℃で、焼成時間は10時間とした。
 以上の工程により、正極活物質を得た。
 続いて、上記で得た正極活物質を用いて正極を作成した。以下に電極の作成方法を説明する。
 正極活物質、導電剤、バインダ、及び溶媒を乳鉢上で混錬して、正極合剤スラリーを調製した。導電剤としてアセチレンブラック(電気化学工業株式会社製、デンカブラック(登録商標))、バインダとして変性ポリアクリロニトリル、溶媒としてN-メチル-2-ピロリドン(NMP)を用いた。なお、バインダは、NMPに溶解させた溶液を用いた。
電極の組成は、正極活物質、導電材、バインダの質量比が82.5:10:7.5となるようにした。
 次に、これらの正極合剤スラリーを、厚さ20μmの正極集電体(アルミニウム箔)の片面にドクターブレード法を用いて、塗工量が5~6mg/cmになるように塗布し、これを80℃で1時間乾燥して正極合剤層(厚さ38~42μm)を形成した。次に、該正極合剤層を打ち抜き金具を用いて直径15mmの円盤状に打ち抜いた。打ち抜いた正極合剤層をハンドプレスを用いて圧縮成形し、リチウム二次電池用正極を得た。
 全ての電極は、以上の塗工量と厚さの範囲内に収まるよう作製し、電極構造を一定に保った。作成した電極を120℃で乾燥した。なお、水分の影響を除くため、全ての操作はドライルーム内の作業とした。
 容量とレート特性の評価のために、電池を簡易的に再現した三極式モデルセルを次の手順で作製した。直径15mmに打ち抜いた試験電極、アルミニウム集電体、対極用金属リチウム、及び参照極用金属リチウムを、電解液を含侵させたセパレータを介して積層させた。電解液は、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを1:2(容量比)の割合で混合した溶媒にLiPFを溶解させて1mol/lとし、この溶液に0.8質量%のビニレンカーボネート(VC)を添加したものを用いた。この積層体を、SUS製端板2枚を用いて挟み込み、ボルトで締め付けた。これをガラスセル中に入れ、三極式モデルセルとした。
 実施例1-1の正極活物質の組成と製造条件を後述する表1に示す。
(試験評価)
 (a)XRD測定(結晶相同定、平均一次粒子径評価)
 以下の手順で粉末X線回折測定(XRD測定)を行い、上記で得た、炭素被覆した正極活物質の結晶相の同定と平均一次粒子径を算出した。測定装置には、粉末X線回折測定装置(株式会社リガク製、型式:RINT‐2000)を用いた。測定条件は、集中法で、X線としてCuKα線を用い、X線出力を40kV×40mAとし、走査範囲を2θ=15~120degとし、発散スリットをDS=0.5deg、ソーラースリットをSS=0.5deg、受光スリットをRS=0.3mmとし、ステップ幅0.03°、1ステップ当たりの測定時間が15秒とした。 測定して得た回折パターンについて、ICSD(Inorganic Crystal Structure Database)を用いて結晶相を同定した。
 測定データをSavitzky-Golay法によりスムージングした後、バックグラウンド及びCuKα線を除去し、その時の(101)ピーク(空間群をPmnaとした)の積分幅βexpを求めた。さらに、同一装置、同一条件で標準Siサンプル(NIST製、製品名:640d)を測定したときの積分幅βiを求め、下記の(式2)により積分幅βを定義した。この積分幅を用い、下記(式3)で示されるScherrerの式を用いて結晶子径Dを求め、これを平均一次粒子径とした。ここでλはX線源の波長、θは反射角、KはScherrer定数であり、K=4/3とした。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 結晶相の同定結果及び平均一次粒子径の測定値を、後述する表3に示す。
 (b)比表面積測定(ラフネスファクター評価)
 炭素など比表面積が大きい物質が付着することにより、正極活物質本来の比表面積より高い値が測定されてしまうことがある。さらには、炭素被覆量によって比表面積が大きく変化し、比表面積が活物質粒子自体の特性を反映しなくなってしまう。そのため、本発明では、正極活物質粒子の比表面積の実測値(a)を測定する際、炭素の表面被覆を除去した粒子を用いた。除去方法は限定されないが、粒子表面の形状を変化させてはならない。
例えば炭素被覆の場合、空気中、450℃で1時間加熱することにより、粒子表面の形状に影響を与えない上で炭素被覆を除去できる。
 図2Aは本発明に係るリチウム二次電池用正極活物質の炭素被覆除去処理前の外観写真(SEM観察像)である。また、図2Bは、図2Aのリチウム二次電池用正極活物質を空気中、450℃で1時間加熱した後の外観写真(SEM観察像)である。図2A及び図2Bに示したように、炭素被覆除去処理の前後で、粒子の外観は変化していないことがわかる。
 比表面積の実測値(a)は、自動比表面積測定装置(日本ベル株式会社製、型式:BELSORP‐mini)を用いて測定した。また、比表面積の計算値(b)は、前述した平均一次粒子径の値を用いて計算した。得られた(a)と(b)の値を(式1)に代入し、ラフネスファクターを求めた。
 比表面積の実測値(a)及びラフネスファクターの値を表3に併記する。
 なお、上述のとおり、上記定義により算出される一次粒子径は、X線回折で測定され、全体の平均化された結晶子径より評価した一次粒子径であるため、小さい結晶子を多数含む集合体で構成される一次粒子では通常よりも一次粒子径が小さく算出され、個々の粒子をそれぞれ電子顕微鏡等で観察、実測した場合とは一致しない。ただし、粒子径が小さく算出された結果、(式1)で示される数式の分母(b)が大きくなる効果よりも、結晶子が小さくなった場合に、正極活物質の比表面積の実測値が増加し、分子(a)が大きくなる効果が大きく、ラフネスファクターは大きくなる。
 (c)炭素含有量測定
  正極活物質の炭素含有量は、高周波燃焼‐赤外線吸収法を用いて測定した。炭素含有量を表3に併記する。
 (d)充放電試験(容量評価)
  上記で用意した三極式モデルセルについて、以下の充放電試験を実施し、初期容量を評価した。なお試験はAr雰囲気のグローブボックス内で、室温(25℃)で行った。電流値を0.1mAとして4.5Vまで定電流充電を行い、4.5Vに達した後は、電流値が0.03mAに減衰するまで定電圧充電を行った。その後、2Vまで0.1mAの定電流で放電し、その際の放電容量を容量とした。結果を表3に併記する。
 (e)レート特性評価
  上記の充放電試験を3サイクル繰り返した後、以下の条件でレート特性を評価した。容量測定と同様に定電流充電と定電圧充電を行ったモデルセルを、5mAの電流値で定電流放電したときの容量をレート特性とした。結果を表3に併記する。
 (f)エネルギー密度測定
  上記で用意した三極式モデルセルについて、放電曲線(電池電圧の容量依存性)を測定し、これを数値積分してエネル密度を算出した。結果を表3に併記する。
 (g)SEM観察
  正極活物質の試料表面をSEM測定によって観察した。観察には、走査電子顕微鏡(株式会社日立ハイテクノロジーズ製、型式:S-4300)を用いた。実施例1-1の正極活物質粉末の外観写真を図3Aに示す。
 (実施例1-2のリチウム二次電池の作製)
  仮焼成温度を600℃とした以外は、実施例1-1と同様の方法により、LiFe0.2Mn0.8POを得た。XRD測定、比表面積測定、充放電試験、レート特性評価、エネルギー密度測定、SEM観察も同様に行った。正極活物質の組成と製造条件を表1に、測定結果を表3に併記する。また、実施例1-2の正極活物質粉末の外観写真を図3Bに示す。
 (実施例1-3のリチウム二次電池の作製)
  金属源として、酢酸マンガン四水和物(Mn(CHCOO)・4HO)を用い、遷移金属を全量Mnとした以外は、実施例1-1と同様の方法により、LiMnPOを得た。XRD測定、比表面積測定、充放電試験、レート特性評価、エネルギー密度測定も同様に行った。正極活物質の組成と製造条件を表1に、測定結果を表3に併記する。
 (実施例1-4のリチウム二次電池の作製)
  仮焼成温度を600℃とした以外は、実施例1-3と同様の方法により、LiMnPOを得た。XRD測定、比表面積測定、充放電試験、レート特性評価、エネルギー密度測定も同様に行った。正極活物質の組成と製造条件を表1に、測定結果を表3に併記する。
 (実施例1-5のリチウム二次電池の作製)
  金属源として、クエン酸鉄(FeC・nHO)のみを用い、遷移金属を全量Feとした以外は、実施例1-1と同様の方法により、LiFePOを得た。XRD測定、比表面積測定、充放電試験、レート特性評価、エネルギー密度測定も同様に行った。正極活物質の組成と製造条件を表1に、測定結果を表3に併記する。
 (実施例1-6のリチウム二次電池の作製)
  仮焼成温度を600℃とした以外は、実施例1-5と同様の方法により、LiFePOを得た。XRD測定、比表面積測定、充放電試験、レート特性評価、エネルギー密度測定も同様に行った。正極活物質の組成と製造条件を表1に、測定結果を表3に併記する。
 (実施例1-7のリチウム二次電池の作製)
 金属源として、酢酸マンガン四水和物(Mn(CHCOO)・4HO)、クエン酸鉄(FeC・nHO)、水酸化マグネシウム(Mg(OH))を用いた以外は、実施例1-1と同様の方法により、LiMn0.77Fe0.2Mg0.03POを得た。XRD測定、比表面積測定、充放電試験、レート特性評価、エネルギー密度測定も同様に行った。正極活物質の組成と製造条件を表1に、測定結果を表3に併記する。
 (参考例1-1のリチウム二次電池の作製)
  仮焼成温度を380℃にした以外は、実施例1-1と同様の方法により、LiFe0.2Mn0.8POを得た。XRD測定、比表面積測定、充放電試験、レート特性評価、エネルギー密度測定及びSEM観察も同様に行った。正極活物質の組成と製造条件を表2に、測定結果を表4に示す。また、参考例1-1の正極活物質粉末の外観写真を図3Cに示す。なお、本明細書において参考例とは本発明と同様に酸化雰囲気下での仮焼成及び非酸化雰囲気下での本焼成を行っており、固相法により正極活物質を製造したものであるが、仮焼成温度がオリビンの結晶化温度より低い温度である。したがって参考例はそれ自体公知ではないが本発明のラフネスファクター及び仮焼成温度の重要性を示すために記載した。
 (比較例1のリチウム二次電池の作製)
  水熱合成法を実施した。原料に水酸化リチウム(LiOH)、リン酸(HPO)、硫酸マンガン(MnSO)、硫酸鉄(FeSO)を用いた。モル比でLi:PO:Mn:Fe=3:1:0.8:0.2となるように原料を秤量した。硫酸マンガン、硫酸鉄、リン酸を純水に溶解させた溶液を攪拌しながら、その中に水酸化リチウム水溶液を滴下し、沈殿を含む懸濁液を得た。
 得られた懸濁液に窒素バブリングを行い、耐圧容器に窒素置換しながら封入した。耐圧容器を回転攪拌しながら170℃で5時間加熱し、得られた沈殿物をろ過、洗浄することによりLiMn0.8Fe0.2POを得た。得られたLiMn0.8Fe0.2POに、質量比7質量%の割合でスクロースを添加した。これを、湿式ボールミルを用いて2時間混合した。次に、雰囲気制御可能な管状炉を用いて焼成し、炭素被覆を行った。焼成雰囲気はAr雰囲気とし、焼成温度は700℃で、焼成時間は3時間とした。以上の工程により、炭素被覆LiFe0.2Mn0.8POを得た。XRD測定、比表面積測定、充放電試験、レート特性評価、エネルギー密度測定及びSEM観察も同様に行った。正極活物質の組成と製造条件を表2に、測定結果を表4に示す。また、比較例1-1の正極活物質粉末の外観写真を図3Dに示す。
 (参考例1-2のリチウム二次電池の作製)
  仮焼成温度を380℃にした以外は、実施例1-3と同様に製造し、LiMnPOを得た。XRD測定、比表面積測定、充放電試験、レート特性評価、エネルギー密度測定も同様に行った。正極活物質の組成と製造条件を表2に、測定結果を表4に示す。
 (比較例1-2のリチウム二次電池の作製)
 原料に水酸化リチウム、リン酸、硫酸マンガンを用い、モル比でLi:PO:Mn=3:1:1となるように原料を秤量し用いた以外は比較例1-1と同様に製造し、LiMnPOを得た。XRD測定、比表面積測定、充放電試験、レート特性評価、エネルギー密度測定も同様に行った。正極活物質の組成と製造条件を表2に、測定結果を表4に示す。
 (参考例1-3のリチウム二次電池の作製)
 仮焼成温度を380℃にした以外は、実施例1-5と同様に製造し、LiFePOを得た。XRD測定、比表面積測定、充放電試験、レート特性評価、エネルギー密度測定も同様に行った。正極活物質の組成と製造条件を表2に、測定結果を表4に示す。
 (比較例1-3のリチウム二次電池の作製)
 水酸化リチウム、リン酸、硫酸鉄を用い、モル比でLi:PO:Fe=3:1:1となるように原料を秤量し用いた以外は比較例1-1と同様に製造し、LiFePOを得た。
XRD測定、比表面積測定、充放電試験、レート特性評価、エネルギー密度測定も同様に行った。正極活物質の組成と製造条件を表2に、測定結果を表4に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 オリビン型構造を有する正極活物質の特性は、M中のMnとFeのモル比で異なる。一般にFeが多い方が容量、レート特性に優れるが、平均電圧が低下するためにエネルギー密度は低下する。そこで、正極活物質の組成ごとに、実施例、参考例及び比較例の比較を行う。
 正極活物質がLiFe0.2Mn0.8POである実施例1-1及び1-2と、参考例1-1及び比較例1-1をそれぞれ比較すると、実施例の方が容量、レート特性、エネルギー密度の3項目全てにおいて参考例、比較例よりも高い。
 また、正極活物質がLiMnPOである実施例1-3及び1-4と参考例1-2及び比較例1-2をそれぞれ比較すると、やはり実施例の方が容量、レート特性、エネルギー密度の3項目全てにおいて比較例よりも高い。
 さらに、正極活物質がLiFePOである実施例1-5及び1-6と参考例1-3及び比較例1-3をそれぞれ比較すると、やはり実施例の方が容量、レート特性、エネルギー密度の3項目全てにおいて比較例よりも高い。
 また、Mgを追加した実施例1-7は、添加していない実施例1に比して、エネルギー密度、レート特性の向上が見られた。Mgを添加したことで、結晶性が改善し、Liの吸蔵放出が容易化した可能性がある。
 実施例、参考例及び比較例のラフネスファクターを比較すると、実施例では全て1を超えているのに対し、参考例、比較例では全て1以下である。粒子径が真球で完全に分散していればラフネスファクターは1となるが、複数の要因で増減する。増加する原因としては粒子表面粗さの増加であり、実施例では粒子表面粗さを増加させる製造方法を用いているために高い。また、実施例では結晶化温度以上での焼成により、未反応物の発生を防ぎ、本焼成後でも良好な分散状態を保っているため、比表面積が高い。
 これに対し、参考例1-1~1-3は仮焼成温度が結晶化温度よりも低く、未反応物が本焼成前に残っているため、粒子同士の凝集、焼結を招き、粒子径が小さくても(17~21μm)、比表面積及びラフネスファクターが小さくなり、正極活物質と電解質との反応性が低下して、電池の容量、レート特性及びエネルギー密度が低下したと考えられる。
 比較例1-1~1-3は正極活物質を水熱法によって製造しており、粒子表面が平滑であるため、実施例に対して低いため、ラフネスファクターが小さくなり、正極活物質と電解質との反応性が低下して、電池の容量、レート特性及びエネルギー密度が低下したと考えられる。
 図3A~Dの比較においても、本発明に係る正極活物質(図3A及び3B)は、従来の正極活物質(図3C及び3D)よりも、表面粗さが大きいことがわかる。
 以上の結果から、本発明に係るリチウム二次電池用正極活物質は、安全性の高いポリアニオン系化合物を使用し、従来のポリアニオン系正極活物質を用いたリチウム二次電池よりも、高容量、高レート特性、及び高エネルギー密度を達成し、かつ電極の平滑性、均一性が良好なリチウム二次電池用正極活物質を提供することができることが示された。
 実施例1では、一次粒子形状の正極活物質について説明した。正極活物質は、電極作製の容易化等の理由により、二次粒子化して用いられることが多い。以下、実施例2では、二次粒子化した正極活物質の製法と製造した正極活物質を用いて作製した電極の特性(容量とレート特性)の測定結果について記載する。特に、二次粒子径とそれに対応した電極との関係について説明する。
 [正極活物質の製造方法]
  以下に、本発明による正極活物質の製造方法を説明する。図5に製造フローを示す。
ステップS100:正極活物質の原料を混合する。
ステップS200:混合した原料を仮焼成し、仮焼成体を得る。
ステップS300:仮焼成体に炭素源を混合する。
ステップS400:混合した炭素源を有するスラリーを二次粒子化する。
ステップS500:混合した仮焼成体及び炭素源を本焼成する。
 なお、上記各ステップにおけるプロセスの詳細は下記に順を追って説明する。
 (実施例2-1)
(i)原料の混合:上述した(実施例1-1のリチウム二次電池の作製)と同様の材料及び仕様である。
(ii)仮焼成:
 原料粉に対し、箱型電気炉を用いて仮焼成した。焼成雰囲気は空気とし、焼成温度は440℃で、焼成時間は10時間とした。
(iii)炭素源との混合及び被覆:
 この仮焼成体に対し、炭素源及び粒径制御剤として、7質量%のスクロースを添加した。これを、ボールミルを用いて2時間粉砕、混合した。
(iv)二次粒子化:
 ボールミル工程では、分散媒として純水を用いた。ボールミル混合後、スラリーを4流体ノズルを備えたスプレードライヤを用いてエア噴霧圧0.2MPaで噴霧乾燥し、二次粒子化を行った。
 なお、炭素との混合、被覆工程で作製したスラリーをスプレードライヤで噴霧乾燥させて、平均二次粒子径5~20μmである球形の二次粒子を作製する。図4に本発明に係る球形の二次粒子のSEM写真を一例として示す。
 なお、噴霧乾燥とは、乾燥室に微粒子化したスラリーを供給し、乾燥させて球状粒子を得る方法である。球形の二次粒子の平均粒子径が5μm未満であると、電極化した際、充填密度が低くなる傾向がある。平均粒子径が20μm超であると、電極厚さに対して二次粒子が大きくなり電極密度が低下する。なお、電極密度は塗工量(mg/cm)を電極厚さ(μm)で割ることにより算出される。
(v)本焼成:
 次に、雰囲気制御可能な管状炉を用いて、本焼成を行った。焼成雰囲気はAr雰囲気とし、焼成温度は700℃で、焼成時間は10時間とした。
  以上の工程により、オリビンLiFe0.2Mn0.8POを得た。
 [正極の作製方法]
 製造した活物質を用いて電極(正極)を作製し、電極の特性、すなわち容量とレート特性を測定した。電極の作製方法は、上述した実施例1の項で説明した方法と同様である。
 [正極の測定と評価]
 容量とレート特性の測定試験は、Ar雰囲気のグローブボックスで行った。容量測定では、モデルセルに対して、電流値を0.1mAとして4.5Vまで定電流充電を行い、4.5Vに達した後は、電流値が0.03mAに減衰するまで定電圧充電を行った。その後、2Vまで0.1mAの定電流で放電し、その際の放電容量を容量とした。容量は正極活物質の重量当たり、体積当たりをそれぞれ算出した。
 上記の充放電サイクルを3サイクル繰り返した後、以下の条件でレート特性を評価した。容量測定と同様に定電流充電と定電圧充電を行ったモデルセルを、5mAの電流値で定電流放電したときの容量をレート特性とした。なお、全ての試験は、室温(25℃)で行った。
 なお、材料評価等に用いた条件は下記の通りである。
 (a)平均一次粒子径評価:上述した実施例1の項で説明した方法と同様にXRD測定で評価した。
 (b)比表面積測定(ラフネスファクター評価):上述した実施例1の項で説明した同様の方法を用いて評価した。なお、活物質粒子の比表面積を測定する際、表面被覆を除去した粒子を用いた。除去方法は限定されないが、粒子表面の形状を変化させてはならない。例えば炭素被覆の場合、450℃空気雰囲気下で1時間加熱することにより、粒子表面の形状に影響を与えない上で炭素被覆を除去できる。
 (c)充放電試験(容量評価):上述した実施例1の項で説明した同様の方法を用いて評価した。
 (d)平均二次粒子径評価:レーザー回折式粒度分布計(HORIBA社製LA-920)にて平均粒径を測定した。
 (実施例2-2)
 仮焼成温度を600℃とした以外は、実施例2-1と同様に製造し、LiFe0.2Mn0.8POを得た。容量、レート特性の測定も同様に行った。
 (実施例2-3)
 仮焼成体に対し、炭素源及び粒径制御剤として、100重量部に対して7重量部のスクロースを添加し、ボールミルを用いて2時間粉砕、混合した。ボールミル混合後、スラリーをエバポレーターを用いて乾燥させた以外は実施例2-1と同様に製造し、LiFe0.2Mn0.8POを得た。容量、レート特性の測定も同様に行った。
 (比較例2-1)
 仮焼成温度を380℃にした以外は、実施例2-1と同様に製造し、LiFe0.2Mn0.8POを得た。容量、レート特性の測定も同様に行った。
 (比較例2-2)
 水熱合成法を実施した。原料に水酸化リチウム、リン酸、硫酸マンガン、硫酸鉄を用いた。モル比でLi:PO:Mn:Fe=3:1:0.8:0.2となるように原料を秤量した。硫酸マンガン、硫酸鉄、リン酸を純水に溶解させた溶液を攪拌しながら、その中に水酸化リチウム水溶液を滴下し、沈殿を含む懸濁液を得た。得られた懸濁液に窒素バブリングを行い、耐圧容器に窒素置換しながら封入した。耐圧容器を回転攪拌しながら170℃で5時間加熱し、得られた沈殿物をろ過、洗浄することによりLiMn0.8Fe0.2POを得た。
 これを湿式ボールミルを用いてスラリーを作製し、4流体ノズルを備えたスプレードライヤを用いてエア噴霧圧0.2MPaで噴霧乾燥し、二次粒子化を行った。
 以上の工程により、炭素被覆LiFe0.2Mn0.8POを得た。容量、レート特性の測定は実施例2-1と同様に行った。
 (実施例2-4)
 エア噴霧圧を1.0MPaとした以外は、実施例2-1と同様に製造し、LiFe0.2Mn0.8POを得た。容量、レート特性の測定も同様に行った。
 (実施例2-5)
 ボールミル混合後のスラリー乾燥にディスク式スプレードライヤを用いた以外は、実施例2-1と同様に製造し、LiFe0.2Mn0.8POを得た。容量、レート特性の測定も同様に行った。
 [測定結果の比較]
 上述した実施例2-1~2-5、比較例2-1、2-2のそれぞれについて、本焼成して得られたLiFe0.2Mn0.8POの一次粒子の粒子径、比表面積、ラフネスファクター、二次粒子形状、二次粒子の平均粒径、電極密度、容量、レート特性を示したものを表5に示す。
Figure JPOXMLDOC01-appb-T000009
 実施例2-1、2-2と比較例2-1、2-2を比較すると、実施例2-1、2-2において、重量当たりの容量値(Ah/kg)はそれぞれ156、152であり、一方、比較例2-1、2-2において、重量当たりの容量値(Ah/kg)はそれぞれ、100、135である。実施例の方が比較例に比べて容量が高いことが分かる。また、体積当たりの容量値(mAh/cc)も同様な傾向があることが分かる。
 さらに、レート特性に関しても、表5から実施例2-1、12の方が比較例2-1、2-2のいずれよりも高いレート特性を持つことが分かる。従って、実施例の方が比較例よりも容量、およびレート特性共に高く、特にレート特性が高いことが分かる。
 一次粒子の粉体特性に関しては、実施例2-1、2-2と比較例2-1、2-2の一次粒子のラフネスファクターを比較すると実施例では全て1を超えているのに対し、比較例では全て1以下である。
 真球で完全に分散していれば一次粒子のラフネスファクターは1となるが、複数の要因で増減する。増加する原因としては粒子表面粗さの増加であり、実施例では粒子表面粗さを増加させる製造方法を用いているために一次粒子のラフネスファクターは高い。それに対して比較例では粒子表面が平滑であるため、実施例に対して一次粒子のラフネスファクターは低い。
 また、粒子同士の凝集、焼結が起きると一次粒子のラフネスファクターは低下する。
比較例2-1は、仮焼成温度が結晶化温度よりも低く未反応物が本焼成前に残っているため、粒子同士の凝集、焼結を招き、粒子径が小さいように見えても比表面積が低くなり、活性が低下していると考えられる。
 比較例2-2は、水熱合成法で作製しており、粒子は表面が平滑になり、一次粒子のラフネスファクターが低下する。つまり、同じ粒子径だと比表面積が低くなり活性が低下していると考えられる。それに対して、実施例では結晶化温度以上での焼成により、未反応物の発生を防ぎ、本焼成後でも良好な分散状態を保っているため、比表面積が高い。
すなわち、粒子径と比表面積の値から求められる一次粒子のラフネスファクターが特性に大きな影響を与えることがわかる。
 実施例2-1と実施例2-3、2-4を比較すると、実施例2-1における二次粒子の平均粒径が、12μmであり、実施例2-3では3μmであり、実施例2-4では25μmを示している。そこで、粒径と電気特性との関係を見ると、実施例2-1における体積当たりの容量(mAh/cc)は285であるのに対して、実施例2-3、14はそれぞれ249,260と低い値を示している。
 また、電極密度(g/cm)に関しても、実施例2-1では1.83であるのに対して、実施例2-3、2-4では1.63、1.68と低い値を示している。
 すなわち、平均二次粒子径が電極密度、体積当たりの容量に影響を与えることが分かる。平均二次粒子径が5μm未満、20μm超だと電極密度が低下し、正極活物質の体積当たり容量が低下することが分かる。
 実施例2-1と実施例2-3は、仮焼成体に対し、炭素源及び粒径制御剤として、100重量部に対して7重量部のスクロースを添加し、ボールミルで混合後、スラリーをスプレードライヤで乾燥させて二次粒子を得るか、エバポレーターを用いて乾燥させ二次粒子を得るかの違いである。
 実施例2-1と実施例2-5を比較すると、正極活物質の形状に関しては、実施例2-1は球状の二次粒子が得られたのに対し、実施例2-5は不定形の二次粒子が得られた。
 次に、実施例2-1の電極密度、体積当たりの容量、レート特性を見ると、それぞれ1.83、285,142であり、一方、実施例2-5では、それぞれ1.45、228、137であるので、実施例2-1の方が電極密度、体積当たりの容量、レート特性共に高い結果となった。スプレードライで球状の二次粒子を造粒することにより、電極密度が向上する。一方、スプレードライで造粒していないものは電極密度が上がりにくい。電極特性もスプレードライで造粒した方がより良好であった。
 スプレードライヤで乾燥させる場合、一次粒子が分散したスラリー液滴を熱風で瞬時に乾燥させるため、一次粒子が密に詰まった二次粒子が得られる。一次粒子のラフネスファクターが1を超える一次粒子が密に詰まった二次粒子は一次粒子同士の接触点が増加して、一次粒子間の抵抗が低減され、レート特性が改善されたと考えられる。
 以上のように、本実施例によれば、正極の電極密度が1.8g/cm以上であって、重量当たりの容量値が150Ah/kg以上、レート特性が140Ah/kg以上の特性を備えた正極が得られた。
 1…電池蓋、2…ガスケット、3…正極リード、4…絶縁板、5…電池缶、6…負極、7…セパレータ、8…絶縁板、9…負極リード、10…正極。

Claims (15)

  1. 炭素で被覆されたポリアニオン系化合物粒子を含むリチウム二次電池用正極活物質であって、
    前記ポリアニオン系化合物は下記(化学式1)で表わされる構造を有し、
    前記ポリアニオン系化合物の下記(式1)で表わされるラフネスファクターが1~2であり、
    前記ポリアニオン系化合物の平均一次粒子径が10~150nmであることを特徴とするリチウム二次電池用正極活物質。
      LixMAyOz・・・・(化学式1)
    (ただし、Mは少なくとも一種の遷移金属元素を含み、Aは酸素Oと結合してアニオンを形成する典型元素であり、0<x≦2、1≦y≦2、3≦z≦7である。)
    Figure JPOXMLDOC01-appb-M000001
  2.  請求項1に記載のリチウム二次電池用正極活物質において、
     前記ポリアニオン系化合物は、下記(化学式2)で表わされるオリビン型構造を有することを特徴とするリチウム二次電池用正極活物質。
        LiMPO             ・・・・(化学式2)
    (ただし、MはFe、Mn、Co及びNiの内の少なくとも1種である。)
  3.  請求項2に記載のリチウム二次電池用正極活物質において、
     前記オリビン型構造を有するポリアニオン系化合物中のMはMnとFeを含み、Mに占めるFeの割合が、モル比で0mol%超、50mol%以下であることを特徴とするリチウム二次電池用正極活物質。
  4.  請求項1ないし3のいずれか1項に記載のリチウム二次電池用正極活物質において、
     前記炭素の含有量が2~5質量%であることを特徴とするリチウム二次電池用正極活物質。
  5.  請求項1に記載のリチウム二次電池用正極活物質において、
     前記一次粒子の平均粒径は、10nm以上100nm以下の範囲であることを特徴とするリチウム二次電池用正極活物質。
  6.  請求項1に記載のリチウム二次電池用正極活物質において、
     前記正極活物質は複数の一次粒子が凝集した二次粒子よりなることを特徴とするリチウム二次電池用正極活物質。
  7.  請求項6に記載のリチウム二次電池用正極活物質において、
     前記二次粒子径の平均粒径は、5~20μmの範囲であることを特徴とするリチウム二次電池用正極活物質。
  8. 正極活物質を含む正極合剤と、正極集電体とを有するリチウム二次電池用正極であって、前記正極活物質が、請求項1ないし7のいずれか1項に記載のリチウム二次電池用正極活物質であることを特徴とするリチウム二次電池用正極。
  9.  正極と、負極と、前記正極と前記負極とを仕切るセパレータと、電解質を備えたリチウム二次電池であって、前記正極は、請求項8に記載のリチウム二次電池用正極であることを特徴とするリチウム二次電池。
  10.  前記正極の電極密度が1.8g/cm以上であって、重量当たりの容量値が150Ah/kg以上で、レート特性が140Ah/kg以上の特性を備えたことを特徴とする請求項7に記載のリチウム二次電池。
  11. 化学式LiMPO(Mは、Fe、Mn、Co、及びNiのうち少なくとも1つを含む)で表されるリチウム二次電池用正極活物質の製造方法であって、
     金属源となる遷移金属化合物と、リン化合物とを含むを混合する工程と、
     混合した前記原料を仮焼成する工程と、
     前記仮焼成する工程により得た仮焼成体に炭素源を混合する工程と、
     炭素源が混合された前記仮焼成体を本焼成する工程とを有し、
     前記仮焼成における仮焼成温度は、前記正極活物質の結晶化温度以上で、前記結晶化温度に200℃を加えた温度以下である、
    ことを特徴とするリチウム二次電池用正極活物質の製造方法。
  12.  請求項11に記載のリチウム二次電池用正極活物質の製造方法において、
     前記仮焼成工程の後、前記本焼成の工程前に、前記仮焼成体を二次粒子化する工程を備えることを特徴とするリチウム二次電池用正極活物質の製造方法。
  13.  請求項11に記載のリチウム二次電池用正極活物質の製造方法において、
     前記仮焼成工程の仮焼成温度は、420℃~600℃であることを特徴とするリチウム二次電池用正極活物質の製造方法。
  14.  請求項11ないし13のいずれかに記載のリチウム二次電池用正極活物質の製造方法において、
     前記本焼成工程の本焼成温度は、600~850℃であることを特徴とするリチウム二次電池用正極活物質の製造方法。
  15.  請求項11ないし13のいずれかに記載のリチウム二次電池用正極活物質の製造方法において、
     前記仮焼成工程、前記本焼成工程は、固相法であることを特徴とするリチウム二次電池用正極活物質の製造方法。
PCT/JP2013/070251 2012-07-25 2013-07-25 リチウム二次電池用正極活物質、それを用いたリチウム二次電池用正極及びリチウム二次電池、並びにリチウム二次電池用正極活物質の製造方法 WO2014017617A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/416,394 US20150188139A1 (en) 2012-07-25 2013-07-25 Positive Electrode Active Material for Lithium Secondary Batteries, Positive Electrode for Lithium Secondary Batteries Using Same, Lithium Secondary Battery, and Method for Producing Positive Electrode Active Material for Lithium Secondary Batteries
CN201380039177.6A CN104584282A (zh) 2012-07-25 2013-07-25 锂二次电池用正极活性物质、使用其的锂二次电池用正极及锂二次电池、以及锂二次电池用正极活性物质的制造方法
KR1020157001740A KR20150047477A (ko) 2012-07-25 2013-07-25 리튬 이차전지용 양극 활물질, 그것을 사용한 리튬 이차전지용 양극 및 리튬 이차전지, 및 리튬 이차전지용 양극 활물질의 제조 방법
JP2014527021A JP6094584B2 (ja) 2012-07-25 2013-07-25 リチウム二次電池用正極活物質、それを用いたリチウム二次電池用正極及びリチウム二次電池、並びにリチウム二次電池用正極活物質の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-164802 2012-07-25
JP2012164802 2012-07-25
JP2013-013285 2013-01-28
JP2013013285 2013-01-28

Publications (1)

Publication Number Publication Date
WO2014017617A1 true WO2014017617A1 (ja) 2014-01-30

Family

ID=49997422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070251 WO2014017617A1 (ja) 2012-07-25 2013-07-25 リチウム二次電池用正極活物質、それを用いたリチウム二次電池用正極及びリチウム二次電池、並びにリチウム二次電池用正極活物質の製造方法

Country Status (5)

Country Link
US (1) US20150188139A1 (ja)
JP (1) JP6094584B2 (ja)
KR (1) KR20150047477A (ja)
CN (1) CN104584282A (ja)
WO (1) WO2014017617A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015195172A (ja) * 2014-03-24 2015-11-05 株式会社デンソー リチウムイオン二次電池
JP5876558B1 (ja) * 2014-10-24 2016-03-02 太平洋セメント株式会社 オリビン型リチウムイオン二次電池用正極活物質及びその製造方法
JP2016115524A (ja) * 2014-12-15 2016-06-23 三井造船株式会社 リチウムイオン二次電池用電極材料の製造方法
JP2016149296A (ja) * 2015-02-13 2016-08-18 三井造船株式会社 炭素被覆リン酸鉄リチウムの製造方法
KR20160146974A (ko) * 2014-07-09 2016-12-21 아사히 가세이 가부시키가이샤 비수계 리튬형 축전 소자
WO2017154592A1 (ja) * 2016-03-07 2017-09-14 日立マクセル株式会社 非水電解液電池
JP6288341B1 (ja) * 2017-03-30 2018-03-07 住友大阪セメント株式会社 リチウムイオン二次電池用正極材料、及びリチウムイオン二次電池
JP6288342B1 (ja) * 2017-03-30 2018-03-07 住友大阪セメント株式会社 リチウムイオン二次電池用正極材料、及びリチウムイオン二次電池
JP2019040854A (ja) * 2017-07-14 2019-03-14 泓辰電池材料有限公司Hcm Co., Ltd. リチウム電池のカソードに用いるためのリン酸マンガン鉄リチウム系粒子、これを含有するリン酸マンガン鉄リチウム系粉末材料、およびその粉末材料を製造する方法
WO2021153110A1 (ja) 2020-01-30 2021-08-05 東レ株式会社 リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015040747A1 (ja) * 2013-09-20 2015-03-26 株式会社 東芝 非水電解質電池用電極、非水電解質電池及び電池パック
JP7133435B2 (ja) * 2018-02-20 2022-09-08 Fdk株式会社 全固体電池
AU2020203801B1 (en) * 2020-06-09 2021-03-11 VSPC Ltd Method for making lithium metal phosphates
CN112582608B (zh) * 2020-12-10 2021-10-01 散裂中子源科学中心 硅掺杂铁基聚阴离子化合物及其制备方法和应用
KR102593317B1 (ko) * 2021-08-23 2023-10-23 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 탄소 코팅 리튬인산철 캐소드 활물질, 이의 제조 방법, 이를 포함하는 캐소드 극판 및 리튬 이온 전지
CN117117153B (zh) * 2023-10-16 2024-02-20 宁波容百新能源科技股份有限公司 一种正极材料及其制备方法、锂离子电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013243A1 (ja) * 2009-07-31 2011-02-03 トヨタ自動車株式会社 正極活物質及びその製造方法
JP2011076820A (ja) * 2009-09-30 2011-04-14 Hitachi Vehicle Energy Ltd リチウム二次電池及びリチウム二次電池用正極
WO2011129224A1 (ja) * 2010-04-13 2011-10-20 日本電気硝子株式会社 リチウムイオン二次電池正極材料およびその製造方法
JP2011216477A (ja) * 2010-03-19 2011-10-27 Semiconductor Energy Lab Co Ltd 蓄電装置及びその作製方法
JP2011249324A (ja) * 2010-04-28 2011-12-08 Semiconductor Energy Lab Co Ltd 蓄電装置用正極活物質、蓄電装置、及び電気推進車両、並びに蓄電装置の作製方法
JP2012248378A (ja) * 2011-05-27 2012-12-13 Hitachi Metals Ltd リチウム二次電池用正極活物質とその製造方法、リチウム二次電池用正極、及びリチウム二次電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5268134B2 (ja) * 2005-09-21 2013-08-21 関東電化工業株式会社 正極活物質の製造方法およびそれを用いた非水電解質電池
US7862987B2 (en) * 2007-11-20 2011-01-04 International Business Machines Corporation Method for forming an electrical structure comprising multiple photosensitive materials

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013243A1 (ja) * 2009-07-31 2011-02-03 トヨタ自動車株式会社 正極活物質及びその製造方法
JP2011076820A (ja) * 2009-09-30 2011-04-14 Hitachi Vehicle Energy Ltd リチウム二次電池及びリチウム二次電池用正極
JP2011216477A (ja) * 2010-03-19 2011-10-27 Semiconductor Energy Lab Co Ltd 蓄電装置及びその作製方法
WO2011129224A1 (ja) * 2010-04-13 2011-10-20 日本電気硝子株式会社 リチウムイオン二次電池正極材料およびその製造方法
JP2011249324A (ja) * 2010-04-28 2011-12-08 Semiconductor Energy Lab Co Ltd 蓄電装置用正極活物質、蓄電装置、及び電気推進車両、並びに蓄電装置の作製方法
JP2012248378A (ja) * 2011-05-27 2012-12-13 Hitachi Metals Ltd リチウム二次電池用正極活物質とその製造方法、リチウム二次電池用正極、及びリチウム二次電池

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015195172A (ja) * 2014-03-24 2015-11-05 株式会社デンソー リチウムイオン二次電池
KR101986001B1 (ko) * 2014-07-09 2019-09-03 아사히 가세이 가부시키가이샤 비수계 리튬형 축전 소자
KR20160146974A (ko) * 2014-07-09 2016-12-21 아사히 가세이 가부시키가이샤 비수계 리튬형 축전 소자
EP3168849A4 (en) * 2014-07-09 2017-07-26 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium-type power storage element
US10446847B2 (en) 2014-07-09 2019-10-15 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium-type power storage element
JP5876558B1 (ja) * 2014-10-24 2016-03-02 太平洋セメント株式会社 オリビン型リチウムイオン二次電池用正極活物質及びその製造方法
JP2016085815A (ja) * 2014-10-24 2016-05-19 太平洋セメント株式会社 オリビン型リチウムイオン二次電池用正極活物質及びその製造方法
JP2016115524A (ja) * 2014-12-15 2016-06-23 三井造船株式会社 リチウムイオン二次電池用電極材料の製造方法
JP2016149296A (ja) * 2015-02-13 2016-08-18 三井造船株式会社 炭素被覆リン酸鉄リチウムの製造方法
WO2017154592A1 (ja) * 2016-03-07 2017-09-14 日立マクセル株式会社 非水電解液電池
JP6288341B1 (ja) * 2017-03-30 2018-03-07 住友大阪セメント株式会社 リチウムイオン二次電池用正極材料、及びリチウムイオン二次電池
JP2018170186A (ja) * 2017-03-30 2018-11-01 住友大阪セメント株式会社 リチウムイオン二次電池用正極材料、及びリチウムイオン二次電池
JP2018170187A (ja) * 2017-03-30 2018-11-01 住友大阪セメント株式会社 リチウムイオン二次電池用正極材料、及びリチウムイオン二次電池
JP6288342B1 (ja) * 2017-03-30 2018-03-07 住友大阪セメント株式会社 リチウムイオン二次電池用正極材料、及びリチウムイオン二次電池
JP2019040854A (ja) * 2017-07-14 2019-03-14 泓辰電池材料有限公司Hcm Co., Ltd. リチウム電池のカソードに用いるためのリン酸マンガン鉄リチウム系粒子、これを含有するリン酸マンガン鉄リチウム系粉末材料、およびその粉末材料を製造する方法
WO2021153110A1 (ja) 2020-01-30 2021-08-05 東レ株式会社 リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
KR20220134536A (ko) 2020-01-30 2022-10-05 도레이 카부시키가이샤 리튬 이온 이차 전지용 정극 활물질 및 리튬 이온 이차 전지

Also Published As

Publication number Publication date
JP6094584B2 (ja) 2017-03-15
JPWO2014017617A1 (ja) 2016-07-11
US20150188139A1 (en) 2015-07-02
KR20150047477A (ko) 2015-05-04
CN104584282A (zh) 2015-04-29

Similar Documents

Publication Publication Date Title
JP6094584B2 (ja) リチウム二次電池用正極活物質、それを用いたリチウム二次電池用正極及びリチウム二次電池、並びにリチウム二次電池用正極活物質の製造方法
JP5268134B2 (ja) 正極活物質の製造方法およびそれを用いた非水電解質電池
JP5736965B2 (ja) リチウム二次電池用正極活物質とその製造方法、リチウム二次電池用正極、及びリチウム二次電池
JP5544934B2 (ja) リチウムイオン電池用正極活物質の製造方法
US20100233540A1 (en) Lithium iron phosphate having olivine structure and method for preparing the same
JP5928302B2 (ja) リチウム二次電池用正極活物質の製造方法
TWI619675B (zh) 經碳塗覆的磷酸鋰鐵奈米粉末之製法
JP5381192B2 (ja) リチウムイオン二次電池用活物質の製造方法
JP5915732B2 (ja) 非水二次電池用正極活物質の製造方法、非水二次電池用正極の製造方法及び非水二次電池の製造方法
JP5820521B1 (ja) リチウム二次電池用正極材料及びその製造方法
JP2014032803A (ja) リチウム二次電池用正極活物質、及びリチウム二次電池
JP5347605B2 (ja) 活物質、これを含む電極、当該電極を含むリチウムイオン二次電池、及び活物質の製造方法
US20210111404A1 (en) Cathode active material for lithium ion secondary battery and method for producing same
JP6070222B2 (ja) 非水系二次電池用正極活物質及びその製造方法、並びにその正極活物質を用いた非水系二次電池用正極を有する非水系二次電池
JP2021150081A (ja) リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP2015056223A (ja) 非水系二次電池用正極活物質、非水系二次電池用正極活物質の製造方法、非水系二次電池用正極および非水系二次電池
JP2015002091A (ja) リチウムイオン二次電池用正極活物質、それを用いたリチウムイオン二次電池用正極、リチウムイオン二次電池、リチウムイオン二次電池モジュール、及びリチウムイオン二次電池用正極活物質の製造方法
US20220399545A1 (en) Negative electrode active material and fabrication method thereof
KR101957233B1 (ko) 리튬이차전지용 양극활물질 및 그 제조방법
JP2015002092A (ja) リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池用正極活物質の製造方法
KR102273771B1 (ko) 리튬이차전지용 양극 활물질 및 그것을 포함하는 리튬이차전지
US9825295B2 (en) Positive electrode active material and lithium-ion secondary battery
KR101764474B1 (ko) 리튬 망간인산화물 합성 방법 및 이로부터 제조된 다공성 리튬 망간인산화물
JP2018156930A (ja) 正極活物質、それを用いた正極及びリチウムイオン二次電池
JP2018156823A (ja) 正極活物質、それを用いた正極及びリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13823550

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014527021

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157001740

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14416394

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13823550

Country of ref document: EP

Kind code of ref document: A1