WO2014017108A1 - Led装置及びその製造方法 - Google Patents
Led装置及びその製造方法 Download PDFInfo
- Publication number
- WO2014017108A1 WO2014017108A1 PCT/JP2013/004567 JP2013004567W WO2014017108A1 WO 2014017108 A1 WO2014017108 A1 WO 2014017108A1 JP 2013004567 W JP2013004567 W JP 2013004567W WO 2014017108 A1 WO2014017108 A1 WO 2014017108A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reflective layer
- substrate
- led device
- led
- metal
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 78
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 30
- 239000000758 substrate Substances 0.000 claims abstract description 134
- 239000002245 particle Substances 0.000 claims abstract description 72
- 239000011230 binding agent Substances 0.000 claims abstract description 31
- 239000000919 ceramic Substances 0.000 claims abstract description 15
- 239000010954 inorganic particle Substances 0.000 claims abstract description 9
- -1 silane compound Chemical class 0.000 claims description 161
- 229910052751 metal Inorganic materials 0.000 claims description 146
- 239000002184 metal Substances 0.000 claims description 146
- 239000000203 mixture Substances 0.000 claims description 102
- 238000006243 chemical reaction Methods 0.000 claims description 101
- 229910000077 silane Inorganic materials 0.000 claims description 85
- 239000013522 chelant Substances 0.000 claims description 35
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 30
- 229920005989 resin Polymers 0.000 claims description 28
- 239000011347 resin Substances 0.000 claims description 28
- 150000004703 alkoxides Chemical class 0.000 claims description 27
- 239000010419 fine particle Substances 0.000 claims description 26
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 25
- 230000001588 bifunctional effect Effects 0.000 claims description 24
- 229910044991 metal oxide Inorganic materials 0.000 claims description 23
- 150000004706 metal oxides Chemical class 0.000 claims description 23
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 23
- 238000006116 polymerization reaction Methods 0.000 claims description 21
- 238000000576 coating method Methods 0.000 claims description 18
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 18
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 15
- 239000011248 coating agent Substances 0.000 claims description 15
- 229920000642 polymer Polymers 0.000 claims description 14
- 239000011164 primary particle Substances 0.000 claims description 14
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 14
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 claims description 13
- 230000015572 biosynthetic process Effects 0.000 claims description 13
- 150000003961 organosilicon compounds Chemical class 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 11
- 238000009792 diffusion process Methods 0.000 claims description 10
- 238000005507 spraying Methods 0.000 claims description 10
- 239000011787 zinc oxide Substances 0.000 claims description 7
- 229910052582 BN Inorganic materials 0.000 claims description 6
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 6
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 claims description 5
- 229910002113 barium titanate Inorganic materials 0.000 claims description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 5
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 3
- 229910000484 niobium oxide Inorganic materials 0.000 claims description 3
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 claims description 3
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 3
- 230000006866 deterioration Effects 0.000 abstract description 15
- 239000010410 layer Substances 0.000 description 348
- 239000011254 layer-forming composition Substances 0.000 description 108
- 239000000243 solution Substances 0.000 description 70
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 66
- 229920001296 polysiloxane Polymers 0.000 description 64
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 48
- 230000000052 comparative effect Effects 0.000 description 45
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 32
- 239000011259 mixed solution Substances 0.000 description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 26
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 21
- 230000004907 flux Effects 0.000 description 21
- 229910052719 titanium Inorganic materials 0.000 description 20
- 239000010936 titanium Substances 0.000 description 20
- 238000001723 curing Methods 0.000 description 17
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 17
- 229920001709 polysilazane Polymers 0.000 description 17
- 238000004382 potting Methods 0.000 description 17
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 16
- 229910017604 nitric acid Inorganic materials 0.000 description 16
- 239000010408 film Substances 0.000 description 15
- 239000002904 solvent Substances 0.000 description 15
- 235000010724 Wisteria floribunda Nutrition 0.000 description 14
- 238000000605 extraction Methods 0.000 description 14
- 239000000463 material Substances 0.000 description 13
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 13
- 239000007921 spray Substances 0.000 description 12
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 11
- 239000000178 monomer Substances 0.000 description 10
- 229910052726 zirconium Inorganic materials 0.000 description 10
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 9
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 9
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 9
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 9
- 125000000217 alkyl group Chemical group 0.000 description 9
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 9
- JJQZDUKDJDQPMQ-UHFFFAOYSA-N dimethoxy(dimethyl)silane Chemical compound CO[Si](C)(C)OC JJQZDUKDJDQPMQ-UHFFFAOYSA-N 0.000 description 9
- 238000002156 mixing Methods 0.000 description 9
- 125000000962 organic group Chemical group 0.000 description 9
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 9
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 8
- 125000004432 carbon atom Chemical group C* 0.000 description 8
- 238000007747 plating Methods 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 7
- 239000002253 acid Substances 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 238000001579 optical reflectometry Methods 0.000 description 7
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 239000003822 epoxy resin Substances 0.000 description 6
- 229920000647 polyepoxide Polymers 0.000 description 6
- 150000005846 sugar alcohols Polymers 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 239000003377 acid catalyst Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 150000002430 hydrocarbons Chemical group 0.000 description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 125000003545 alkoxy group Chemical group 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 229920002050 silicone resin Polymers 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- 125000001424 substituent group Chemical group 0.000 description 4
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 239000007822 coupling agent Substances 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- 235000006408 oxalic acid Nutrition 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000007650 screen-printing Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 150000004756 silanes Chemical class 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- 229910052727 yttrium Inorganic materials 0.000 description 3
- FFWSICBKRCICMR-UHFFFAOYSA-N 5-methyl-2-hexanone Chemical compound CC(C)CCC(C)=O FFWSICBKRCICMR-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- 229910052688 Gadolinium Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 239000004954 Polyphthalamide Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 239000006087 Silane Coupling Agent Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 229960000583 acetic acid Drugs 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 125000002723 alicyclic group Chemical group 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- JFPQZHIIXIHEEG-UHFFFAOYSA-N butyl-methoxy-dipentoxysilane Chemical class CCCCCO[Si](CCCC)(OC)OCCCCC JFPQZHIIXIHEEG-UHFFFAOYSA-N 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 150000007942 carboxylates Chemical class 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- 125000000753 cycloalkyl group Chemical group 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- GAURFLBIDLSLQU-UHFFFAOYSA-N diethoxy(methyl)silicon Chemical compound CCO[Si](C)OCC GAURFLBIDLSLQU-UHFFFAOYSA-N 0.000 description 2
- ZXPDYFSTVHQQOI-UHFFFAOYSA-N diethoxysilane Chemical compound CCO[SiH2]OCC ZXPDYFSTVHQQOI-UHFFFAOYSA-N 0.000 description 2
- JVUVKQDVTIIMOD-UHFFFAOYSA-N dimethoxy(dipropyl)silane Chemical compound CCC[Si](OC)(OC)CCC JVUVKQDVTIIMOD-UHFFFAOYSA-N 0.000 description 2
- PKTOVQRKCNPVKY-UHFFFAOYSA-N dimethoxy(methyl)silicon Chemical compound CO[Si](C)OC PKTOVQRKCNPVKY-UHFFFAOYSA-N 0.000 description 2
- YQGOWXYZDLJBFL-UHFFFAOYSA-N dimethoxysilane Chemical compound CO[SiH2]OC YQGOWXYZDLJBFL-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000001530 fumaric acid Substances 0.000 description 2
- 239000002223 garnet Substances 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 229910021482 group 13 metal Inorganic materials 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 229920006015 heat resistant resin Polymers 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 239000011256 inorganic filler Substances 0.000 description 2
- 229910003475 inorganic filler Inorganic materials 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 125000005647 linker group Chemical group 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229960005235 piperonyl butoxide Drugs 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920006375 polyphtalamide Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229930195734 saturated hydrocarbon Natural products 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 125000000542 sulfonic acid group Chemical group 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 2
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- RYSXWUYLAWPLES-MTOQALJVSA-N (Z)-4-hydroxypent-3-en-2-one titanium Chemical compound [Ti].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O RYSXWUYLAWPLES-MTOQALJVSA-N 0.000 description 1
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- VPBZZPOGZPKYKX-UHFFFAOYSA-N 1,2-diethoxypropane Chemical compound CCOCC(C)OCC VPBZZPOGZPKYKX-UHFFFAOYSA-N 0.000 description 1
- LEEANUDEDHYDTG-UHFFFAOYSA-N 1,2-dimethoxypropane Chemical compound COCC(C)OC LEEANUDEDHYDTG-UHFFFAOYSA-N 0.000 description 1
- GDXHBFHOEYVPED-UHFFFAOYSA-N 1-(2-butoxyethoxy)butane Chemical compound CCCCOCCOCCCC GDXHBFHOEYVPED-UHFFFAOYSA-N 0.000 description 1
- HQSLKNLISLWZQH-UHFFFAOYSA-N 1-(2-propoxyethoxy)propane Chemical compound CCCOCCOCCC HQSLKNLISLWZQH-UHFFFAOYSA-N 0.000 description 1
- RWNUSVWFHDHRCJ-UHFFFAOYSA-N 1-butoxypropan-2-ol Chemical compound CCCCOCC(C)O RWNUSVWFHDHRCJ-UHFFFAOYSA-N 0.000 description 1
- RRQYJINTUHWNHW-UHFFFAOYSA-N 1-ethoxy-2-(2-ethoxyethoxy)ethane Chemical compound CCOCCOCCOCC RRQYJINTUHWNHW-UHFFFAOYSA-N 0.000 description 1
- PZHIWRCQKBBTOW-UHFFFAOYSA-N 1-ethoxybutane Chemical compound CCCCOCC PZHIWRCQKBBTOW-UHFFFAOYSA-N 0.000 description 1
- JOLQKTGDSGKSKJ-UHFFFAOYSA-N 1-ethoxypropan-2-ol Chemical compound CCOCC(C)O JOLQKTGDSGKSKJ-UHFFFAOYSA-N 0.000 description 1
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 1
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 1
- DJCYDDALXPHSHR-UHFFFAOYSA-N 2-(2-propoxyethoxy)ethanol Chemical compound CCCOCCOCCO DJCYDDALXPHSHR-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- WBIQQQGBSDOWNP-UHFFFAOYSA-N 2-dodecylbenzenesulfonic acid Chemical compound CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O WBIQQQGBSDOWNP-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- AIFLGMNWQFPTAJ-UHFFFAOYSA-J 2-hydroxypropanoate;titanium(4+) Chemical compound [Ti+4].CC(O)C([O-])=O.CC(O)C([O-])=O.CC(O)C([O-])=O.CC(O)C([O-])=O AIFLGMNWQFPTAJ-UHFFFAOYSA-J 0.000 description 1
- KVMAQXBSRFDBSI-UHFFFAOYSA-N 2-methoxyethoxy(dimethyl)silane Chemical compound COCCO[SiH](C)C KVMAQXBSRFDBSI-UHFFFAOYSA-N 0.000 description 1
- NTGFGMVYTAPOSF-UHFFFAOYSA-N 2-methoxyethoxy(dipropyl)silane Chemical compound C(CC)[SiH](OCCOC)CCC NTGFGMVYTAPOSF-UHFFFAOYSA-N 0.000 description 1
- HRWFFDJQZODCGS-UHFFFAOYSA-N 2-methoxyethoxy(methyl)silane Chemical compound COCCO[SiH2]C HRWFFDJQZODCGS-UHFFFAOYSA-N 0.000 description 1
- WKRJCCZAZDZNJL-UHFFFAOYSA-N 2-methoxyethoxysilicon Chemical compound COCCO[Si] WKRJCCZAZDZNJL-UHFFFAOYSA-N 0.000 description 1
- KOAUHLUAUFQHBM-UHFFFAOYSA-M 2-methylprop-2-enoate;propan-2-olate;titanium(4+) Chemical compound [Ti+4].CC(C)[O-].CC(C)[O-].CC(C)[O-].CC(=C)C([O-])=O KOAUHLUAUFQHBM-UHFFFAOYSA-M 0.000 description 1
- SDTMFDGELKWGFT-UHFFFAOYSA-N 2-methylpropan-2-olate Chemical compound CC(C)(C)[O-] SDTMFDGELKWGFT-UHFFFAOYSA-N 0.000 description 1
- YEYKMVJDLWJFOA-UHFFFAOYSA-N 2-propoxyethanol Chemical compound CCCOCCO YEYKMVJDLWJFOA-UHFFFAOYSA-N 0.000 description 1
- SAQJKAAHQOXPQA-UHFFFAOYSA-N 3-(2-methoxyethoxy)propoxy-methylsilane Chemical compound C[SiH2]OCCCOCCOC SAQJKAAHQOXPQA-UHFFFAOYSA-N 0.000 description 1
- JZOPEAAYHHDTRJ-UHFFFAOYSA-N 3-(2-methoxyethoxy)propoxy-propylsilane Chemical compound C(CC)[SiH2]OCCCOCCOC JZOPEAAYHHDTRJ-UHFFFAOYSA-N 0.000 description 1
- RVDMGSOWQHKICR-UHFFFAOYSA-N 3-(2-methoxyethoxy)propoxysilane Chemical compound COCCOCCCO[SiH3] RVDMGSOWQHKICR-UHFFFAOYSA-N 0.000 description 1
- GMRWKIKDDGCKKP-UHFFFAOYSA-N 3-ethoxypropoxy(dimethyl)silane Chemical compound C[SiH](OCCCOCC)C GMRWKIKDDGCKKP-UHFFFAOYSA-N 0.000 description 1
- OFTFAIWXZRZGDV-UHFFFAOYSA-N 3-ethoxypropoxy(propyl)silane Chemical compound C(CC)[SiH2]OCCCOCC OFTFAIWXZRZGDV-UHFFFAOYSA-N 0.000 description 1
- DPAWRIYVWQXVHR-UHFFFAOYSA-N 3-ethoxypropoxy-ethyl-methylsilane Chemical compound C[SiH](OCCCOCC)CC DPAWRIYVWQXVHR-UHFFFAOYSA-N 0.000 description 1
- VKIHJUUXHCZCAG-UHFFFAOYSA-N 3-methoxypropoxy(methyl)silane Chemical compound COCCCO[SiH2]C VKIHJUUXHCZCAG-UHFFFAOYSA-N 0.000 description 1
- BNHRZSXEOVMJJG-UHFFFAOYSA-N 3-methoxypropoxysilane Chemical compound COCCCO[SiH3] BNHRZSXEOVMJJG-UHFFFAOYSA-N 0.000 description 1
- LDMRLRNXHLPZJN-UHFFFAOYSA-N 3-propoxypropan-1-ol Chemical compound CCCOCCCO LDMRLRNXHLPZJN-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 1
- MXDLYHWABBLCEM-UHFFFAOYSA-N 5-ethoxypentoxysilane Chemical compound C(C)OCCCCCO[SiH3] MXDLYHWABBLCEM-UHFFFAOYSA-N 0.000 description 1
- JOVMKRBCVBAGPV-UHFFFAOYSA-N 5-methoxypentoxy(methyl)silane Chemical compound C[SiH2]OCCCCCOC JOVMKRBCVBAGPV-UHFFFAOYSA-N 0.000 description 1
- JVYVIFOODMGVPU-UHFFFAOYSA-N 5-methoxypentoxysilane Chemical compound COCCCCCO[SiH3] JVYVIFOODMGVPU-UHFFFAOYSA-N 0.000 description 1
- 229910002012 Aerosil® Inorganic materials 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- YZJPYYCVBOAJIA-UHFFFAOYSA-N C(CC)O[SiH](OCC)OCC.C(CC)O[SiH](OC)OC Chemical compound C(CC)O[SiH](OCC)OCC.C(CC)O[SiH](OC)OC YZJPYYCVBOAJIA-UHFFFAOYSA-N 0.000 description 1
- JQVCREABPACLSP-UHFFFAOYSA-N C=1C=CC=CC=1O[SiH2]OC1=CC=CC=C1 Chemical compound C=1C=CC=CC=1O[SiH2]OC1=CC=CC=C1 JQVCREABPACLSP-UHFFFAOYSA-N 0.000 description 1
- BGWWGDVCZYRRSZ-UHFFFAOYSA-N C=1C=CC=CC=1O[SiH](OC=1C=CC=CC=1)OC1=CC=CC=C1 Chemical compound C=1C=CC=CC=1O[SiH](OC=1C=CC=CC=1)OC1=CC=CC=C1 BGWWGDVCZYRRSZ-UHFFFAOYSA-N 0.000 description 1
- SCHYFEVPIBKUNB-UHFFFAOYSA-N CCCCCO[SiH](OCC)OCC Chemical compound CCCCCO[SiH](OCC)OCC SCHYFEVPIBKUNB-UHFFFAOYSA-N 0.000 description 1
- PBDYQPOAXBEPJI-UHFFFAOYSA-N CCCCO[SiH](OC)OC Chemical compound CCCCO[SiH](OC)OC PBDYQPOAXBEPJI-UHFFFAOYSA-N 0.000 description 1
- LDIKGRPEVICZDG-UHFFFAOYSA-N CCCC[SiH2]OCCOC Chemical compound CCCC[SiH2]OCCOC LDIKGRPEVICZDG-UHFFFAOYSA-N 0.000 description 1
- NTHKCSDJQGWPJY-UHFFFAOYSA-N CCCC[SiH](OC)OC Chemical compound CCCC[SiH](OC)OC NTHKCSDJQGWPJY-UHFFFAOYSA-N 0.000 description 1
- PMPGBDYFVDJHLK-UHFFFAOYSA-N CCCC[SiH](OCCC)OCCC Chemical compound CCCC[SiH](OCCC)OCCC PMPGBDYFVDJHLK-UHFFFAOYSA-N 0.000 description 1
- UGJLGGUQXBCUIA-UHFFFAOYSA-N CCO[SiH](OC)OC Chemical compound CCO[SiH](OC)OC UGJLGGUQXBCUIA-UHFFFAOYSA-N 0.000 description 1
- ATSKCUWHWYIJMW-UHFFFAOYSA-N CO[SiH2]Oc1ccccc1 Chemical compound CO[SiH2]Oc1ccccc1 ATSKCUWHWYIJMW-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 125000000174 L-prolyl group Chemical group [H]N1C([H])([H])C([H])([H])C([H])([H])[C@@]1([H])C(*)=O 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- XOBKSJJDNFUZPF-UHFFFAOYSA-N Methoxyethane Chemical compound CCOC XOBKSJJDNFUZPF-UHFFFAOYSA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229920000995 Spectralon Polymers 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- 238000003302 UV-light treatment Methods 0.000 description 1
- LDSQEKQMBGLXHE-UHFFFAOYSA-L [Zr+4].CCCC[O-].CCCC[O-].CC(=C)C([O-])=O.CC(=C)C([O-])=O Chemical compound [Zr+4].CCCC[O-].CCCC[O-].CC(=C)C([O-])=O.CC(=C)C([O-])=O LDSQEKQMBGLXHE-UHFFFAOYSA-L 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- JPUHCPXFQIXLMW-UHFFFAOYSA-N aluminium triethoxide Chemical compound CCO[Al](OCC)OCC JPUHCPXFQIXLMW-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 1
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 229920003233 aromatic nylon Polymers 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 1
- 229910052795 boron group element Inorganic materials 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 1
- OAKGITOBDKUFBR-UHFFFAOYSA-N butoxy-butyl-ethoxy-methoxysilane Chemical compound CCCCO[Si](OCC)(OC)CCCC OAKGITOBDKUFBR-UHFFFAOYSA-N 0.000 description 1
- HUUOQEMAQQPKGS-UHFFFAOYSA-N butoxy-ethoxy-ethyl-methoxysilane Chemical compound CCCCO[Si](CC)(OC)OCC HUUOQEMAQQPKGS-UHFFFAOYSA-N 0.000 description 1
- YIGRUUCTKSBMGE-UHFFFAOYSA-N butoxy-ethoxy-methoxy-methylsilane Chemical compound CCCCO[Si](C)(OC)OCC YIGRUUCTKSBMGE-UHFFFAOYSA-N 0.000 description 1
- CCBRDEWXSJFAMO-UHFFFAOYSA-N butoxy-ethoxy-methoxy-propylsilane Chemical compound CCCCO[Si](CCC)(OC)OCC CCBRDEWXSJFAMO-UHFFFAOYSA-N 0.000 description 1
- MIJYHJNSTXWNQX-UHFFFAOYSA-N butyl diethyl methyl silicate Chemical compound CCCCO[Si](OC)(OCC)OCC MIJYHJNSTXWNQX-UHFFFAOYSA-N 0.000 description 1
- OIEKEOOORZPUGH-UHFFFAOYSA-N butyl diethyl propyl silicate Chemical compound CCCCO[Si](OCC)(OCC)OCCC OIEKEOOORZPUGH-UHFFFAOYSA-N 0.000 description 1
- LXTZTIXTSZSGBR-UHFFFAOYSA-N butyl ethyl dipropyl silicate Chemical compound CCCCO[Si](OCC)(OCCC)OCCC LXTZTIXTSZSGBR-UHFFFAOYSA-N 0.000 description 1
- AGBZIWDKCKUACI-UHFFFAOYSA-N butyl ethyl methyl propyl silicate Chemical compound CCCCO[Si](OC)(OCC)OCCC AGBZIWDKCKUACI-UHFFFAOYSA-N 0.000 description 1
- WWIIWYLGTMNOEU-UHFFFAOYSA-N butyl methyl dipropyl silicate Chemical compound CCCCO[Si](OC)(OCCC)OCCC WWIIWYLGTMNOEU-UHFFFAOYSA-N 0.000 description 1
- GPLARHNOLLDPGA-UHFFFAOYSA-N butyl trimethyl silicate Chemical compound CCCCO[Si](OC)(OC)OC GPLARHNOLLDPGA-UHFFFAOYSA-N 0.000 description 1
- ZEZXMFBCRYGNNP-UHFFFAOYSA-N butyl(diethoxy)silane Chemical compound CCCC[SiH](OCC)OCC ZEZXMFBCRYGNNP-UHFFFAOYSA-N 0.000 description 1
- XGZGKDQVCBHSGI-UHFFFAOYSA-N butyl(triethoxy)silane Chemical compound CCCC[Si](OCC)(OCC)OCC XGZGKDQVCBHSGI-UHFFFAOYSA-N 0.000 description 1
- SXPLZNMUBFBFIA-UHFFFAOYSA-N butyl(trimethoxy)silane Chemical compound CCCC[Si](OC)(OC)OC SXPLZNMUBFBFIA-UHFFFAOYSA-N 0.000 description 1
- RUCGYSQSVJNDCX-UHFFFAOYSA-N butyl(tripentoxy)silane Chemical compound CCCCCO[Si](CCCC)(OCCCCC)OCCCCC RUCGYSQSVJNDCX-UHFFFAOYSA-N 0.000 description 1
- GNRBSDIBKIHSJH-UHFFFAOYSA-N butyl(tripropoxy)silane Chemical compound CCCC[Si](OCCC)(OCCC)OCCC GNRBSDIBKIHSJH-UHFFFAOYSA-N 0.000 description 1
- AAVHUXGAYVEBMM-UHFFFAOYSA-N butyl-[3-(2-methoxyethoxy)propoxy]silane Chemical compound CCCC[SiH2]OCCCOCCOC AAVHUXGAYVEBMM-UHFFFAOYSA-N 0.000 description 1
- BRKLXJLNOMYEPC-UHFFFAOYSA-N butyl-diethoxy-methoxysilane Chemical compound CCCC[Si](OC)(OCC)OCC BRKLXJLNOMYEPC-UHFFFAOYSA-N 0.000 description 1
- AFNPFLDWLMEASV-UHFFFAOYSA-N butyl-diethoxy-methylsilane Chemical compound CCCC[Si](C)(OCC)OCC AFNPFLDWLMEASV-UHFFFAOYSA-N 0.000 description 1
- ZQTCJZZVNNQCRS-UHFFFAOYSA-N butyl-diethoxy-propylsilane Chemical compound CCCC[Si](CCC)(OCC)OCC ZQTCJZZVNNQCRS-UHFFFAOYSA-N 0.000 description 1
- OOSZILWKTQCRSZ-UHFFFAOYSA-N butyl-dimethoxy-methylsilane Chemical compound CCCC[Si](C)(OC)OC OOSZILWKTQCRSZ-UHFFFAOYSA-N 0.000 description 1
- WEPTUKVCIZSMNO-UHFFFAOYSA-N butyl-dimethoxy-propylsilane Chemical compound CCCC[Si](OC)(OC)CCC WEPTUKVCIZSMNO-UHFFFAOYSA-N 0.000 description 1
- JVYLRDJQLUXKSK-UHFFFAOYSA-N butyl-ethoxy-propoxysilane Chemical compound CCCC[SiH](OCC)OCCC JVYLRDJQLUXKSK-UHFFFAOYSA-N 0.000 description 1
- YIKWDPVXTZFQFF-UHFFFAOYSA-N butyl-methoxy-diphenoxysilane Chemical compound C=1C=CC=CC=1O[Si](OC)(CCCC)OC1=CC=CC=C1 YIKWDPVXTZFQFF-UHFFFAOYSA-N 0.000 description 1
- CFGAMKNEOXZXAN-UHFFFAOYSA-N butyl-methoxy-dipropoxysilane Chemical compound CCCC[Si](OC)(OCCC)OCCC CFGAMKNEOXZXAN-UHFFFAOYSA-N 0.000 description 1
- MRXFMDLZOBFPIP-UHFFFAOYSA-N butyl-methyl-dipentoxysilane Chemical compound CCCCCO[Si](C)(CCCC)OCCCCC MRXFMDLZOBFPIP-UHFFFAOYSA-N 0.000 description 1
- CDYVRVUUWSHRMD-UHFFFAOYSA-N butyl-methyl-diphenoxysilane Chemical compound C=1C=CC=CC=1O[Si](C)(CCCC)OC1=CC=CC=C1 CDYVRVUUWSHRMD-UHFFFAOYSA-N 0.000 description 1
- WHFVJENFZHIOKB-UHFFFAOYSA-N butyl-methyl-dipropoxysilane Chemical compound CCCC[Si](C)(OCCC)OCCC WHFVJENFZHIOKB-UHFFFAOYSA-N 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- DKXKWUWRJAEPGM-UHFFFAOYSA-N dibutyl dimethyl silicate Chemical compound CCCCO[Si](OC)(OC)OCCCC DKXKWUWRJAEPGM-UHFFFAOYSA-N 0.000 description 1
- NLJWXBAFUPEBCT-UHFFFAOYSA-N dibutyl ethyl propyl silicate Chemical compound CCCCO[Si](OCC)(OCCC)OCCCC NLJWXBAFUPEBCT-UHFFFAOYSA-N 0.000 description 1
- DGPFXVBYDAVXLX-UHFFFAOYSA-N dibutyl(diethoxy)silane Chemical compound CCCC[Si](OCC)(OCC)CCCC DGPFXVBYDAVXLX-UHFFFAOYSA-N 0.000 description 1
- YPENMAABQGWRBR-UHFFFAOYSA-N dibutyl(dimethoxy)silane Chemical compound CCCC[Si](OC)(OC)CCCC YPENMAABQGWRBR-UHFFFAOYSA-N 0.000 description 1
- LWXABEZWLYKMRO-UHFFFAOYSA-N dibutyl-ethoxy-propoxysilane Chemical compound CCCC[Si](CCCC)(OCC)OCCC LWXABEZWLYKMRO-UHFFFAOYSA-N 0.000 description 1
- SUXFXSDGMCJFMP-UHFFFAOYSA-N dibutyl-methoxy-propoxysilane Chemical compound CCCC[Si](CCCC)(OC)OCCC SUXFXSDGMCJFMP-UHFFFAOYSA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- ZMAPKOCENOWQRE-UHFFFAOYSA-N diethoxy(diethyl)silane Chemical compound CCO[Si](CC)(CC)OCC ZMAPKOCENOWQRE-UHFFFAOYSA-N 0.000 description 1
- HZLIIKNXMLEWPA-UHFFFAOYSA-N diethoxy(dipropyl)silane Chemical compound CCC[Si](CCC)(OCC)OCC HZLIIKNXMLEWPA-UHFFFAOYSA-N 0.000 description 1
- AWQTZFCYSLRFJO-UHFFFAOYSA-N diethoxy(methoxy)silane Chemical compound CCO[SiH](OC)OCC AWQTZFCYSLRFJO-UHFFFAOYSA-N 0.000 description 1
- FZQNBVBLHJXOEA-UHFFFAOYSA-N diethoxy(propyl)silane Chemical compound CCC[SiH](OCC)OCC FZQNBVBLHJXOEA-UHFFFAOYSA-N 0.000 description 1
- KWHPGQVFPWGFMG-UHFFFAOYSA-N diethoxy-ethyl-methoxysilane Chemical compound CCO[Si](CC)(OC)OCC KWHPGQVFPWGFMG-UHFFFAOYSA-N 0.000 description 1
- UWGJCHRFALXDAR-UHFFFAOYSA-N diethoxy-ethyl-methylsilane Chemical compound CCO[Si](C)(CC)OCC UWGJCHRFALXDAR-UHFFFAOYSA-N 0.000 description 1
- VUVODZCTKMTLTH-UHFFFAOYSA-N diethoxy-methoxy-methylsilane Chemical compound CCO[Si](C)(OC)OCC VUVODZCTKMTLTH-UHFFFAOYSA-N 0.000 description 1
- UJTGYJODGVUOGO-UHFFFAOYSA-N diethoxy-methyl-propylsilane Chemical compound CCC[Si](C)(OCC)OCC UJTGYJODGVUOGO-UHFFFAOYSA-N 0.000 description 1
- VGWJKDPTLUDSJT-UHFFFAOYSA-N diethyl dimethyl silicate Chemical compound CCO[Si](OC)(OC)OCC VGWJKDPTLUDSJT-UHFFFAOYSA-N 0.000 description 1
- WXAYXYTUOFVMKE-UHFFFAOYSA-N diethyl dipropyl silicate Chemical compound CCCO[Si](OCC)(OCC)OCCC WXAYXYTUOFVMKE-UHFFFAOYSA-N 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- VSYLGGHSEIWGJV-UHFFFAOYSA-N diethyl(dimethoxy)silane Chemical compound CC[Si](CC)(OC)OC VSYLGGHSEIWGJV-UHFFFAOYSA-N 0.000 description 1
- GDKYIZVVUAWETK-UHFFFAOYSA-N diethyl-methoxy-propoxysilane Chemical compound CCCO[Si](CC)(CC)OC GDKYIZVVUAWETK-UHFFFAOYSA-N 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 229940019778 diethylene glycol diethyl ether Drugs 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 229940075557 diethylene glycol monoethyl ether Drugs 0.000 description 1
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- SGKDAFJDYSMACD-UHFFFAOYSA-N dimethoxy(propyl)silane Chemical compound CCC[SiH](OC)OC SGKDAFJDYSMACD-UHFFFAOYSA-N 0.000 description 1
- XKRPWHZLROBLDI-UHFFFAOYSA-N dimethoxy-methyl-propylsilane Chemical compound CCC[Si](C)(OC)OC XKRPWHZLROBLDI-UHFFFAOYSA-N 0.000 description 1
- HOXUFWMHAIJENN-UHFFFAOYSA-N dimethyl dipropyl silicate Chemical compound CCCO[Si](OC)(OC)OCCC HOXUFWMHAIJENN-UHFFFAOYSA-N 0.000 description 1
- QVRPADXIQWATCJ-UHFFFAOYSA-N dimethyl(dipentoxy)silane Chemical compound CCCCCO[Si](C)(C)OCCCCC QVRPADXIQWATCJ-UHFFFAOYSA-N 0.000 description 1
- SWLVAJXQIOKFSJ-UHFFFAOYSA-N dimethyl(diphenoxy)silane Chemical compound C=1C=CC=CC=1O[Si](C)(C)OC1=CC=CC=C1 SWLVAJXQIOKFSJ-UHFFFAOYSA-N 0.000 description 1
- ZIDTUTFKRRXWTK-UHFFFAOYSA-N dimethyl(dipropoxy)silane Chemical compound CCCO[Si](C)(C)OCCC ZIDTUTFKRRXWTK-UHFFFAOYSA-N 0.000 description 1
- YYLGKUPAFFKGRQ-UHFFFAOYSA-N dimethyldiethoxysilane Chemical compound CCO[Si](C)(C)OCC YYLGKUPAFFKGRQ-UHFFFAOYSA-N 0.000 description 1
- ARZAMTJRZZXHOE-UHFFFAOYSA-N dipentoxy(dipropyl)silane Chemical compound CCCCCO[Si](CCC)(CCC)OCCCCC ARZAMTJRZZXHOE-UHFFFAOYSA-N 0.000 description 1
- GVIRNLPCTJKMAW-UHFFFAOYSA-N dipentoxy(propyl)silane Chemical compound CCCCCO[SiH](CCC)OCCCCC GVIRNLPCTJKMAW-UHFFFAOYSA-N 0.000 description 1
- JFCVQVCWZYWWPV-UHFFFAOYSA-N diphenoxy(dipropyl)silane Chemical compound C=1C=CC=CC=1O[Si](CCC)(CCC)OC1=CC=CC=C1 JFCVQVCWZYWWPV-UHFFFAOYSA-N 0.000 description 1
- FODRZLHRNBNMCO-UHFFFAOYSA-N diphenoxy(propoxy)silane Chemical compound CCCO[SiH](Oc1ccccc1)Oc1ccccc1 FODRZLHRNBNMCO-UHFFFAOYSA-N 0.000 description 1
- XNAZVASFWJAZNT-UHFFFAOYSA-N diphenoxy(propyl)silane Chemical compound CCC[SiH](Oc1ccccc1)Oc1ccccc1 XNAZVASFWJAZNT-UHFFFAOYSA-N 0.000 description 1
- SACPKRUZWRIEBW-UHFFFAOYSA-N dipropoxysilane Chemical compound CCCO[SiH2]OCCC SACPKRUZWRIEBW-UHFFFAOYSA-N 0.000 description 1
- 229940060296 dodecylbenzenesulfonic acid Drugs 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- ASBGGHMVAMBCOR-UHFFFAOYSA-N ethanolate;zirconium(4+) Chemical compound [Zr+4].CC[O-].CC[O-].CC[O-].CC[O-] ASBGGHMVAMBCOR-UHFFFAOYSA-N 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- CEZDZFIYWRNIOW-UHFFFAOYSA-N ethoxy(diphenoxy)silane Chemical compound CCO[SiH](Oc1ccccc1)Oc1ccccc1 CEZDZFIYWRNIOW-UHFFFAOYSA-N 0.000 description 1
- OMUZVOVPUNRELL-UHFFFAOYSA-N ethoxy(phenoxy)silane Chemical compound CCO[SiH2]Oc1ccccc1 OMUZVOVPUNRELL-UHFFFAOYSA-N 0.000 description 1
- JKFALIMEKIHNIJ-UHFFFAOYSA-N ethoxy(propoxy)silane Chemical compound CCCO[SiH2]OCC JKFALIMEKIHNIJ-UHFFFAOYSA-N 0.000 description 1
- CWAFVXWRGIEBPL-UHFFFAOYSA-N ethoxysilane Chemical compound CCO[SiH3] CWAFVXWRGIEBPL-UHFFFAOYSA-N 0.000 description 1
- BHXIWUJLHYHGSJ-UHFFFAOYSA-N ethyl 3-ethoxypropanoate Chemical compound CCOCCC(=O)OCC BHXIWUJLHYHGSJ-UHFFFAOYSA-N 0.000 description 1
- XYIBRDXRRQCHLP-UHFFFAOYSA-N ethyl acetoacetate Chemical compound CCOC(=O)CC(C)=O XYIBRDXRRQCHLP-UHFFFAOYSA-N 0.000 description 1
- 229940093858 ethyl acetoacetate Drugs 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- LWVQRZRMDDXSQO-UHFFFAOYSA-N ethyl methyl dipropyl silicate Chemical compound CCCO[Si](OC)(OCC)OCCC LWVQRZRMDDXSQO-UHFFFAOYSA-N 0.000 description 1
- ITAHRPSKCCPKOK-UHFFFAOYSA-N ethyl trimethyl silicate Chemical compound CCO[Si](OC)(OC)OC ITAHRPSKCCPKOK-UHFFFAOYSA-N 0.000 description 1
- PZORNJWVGCSGJN-UHFFFAOYSA-N ethyl(dipentoxy)silane Chemical compound CCCCCO[SiH](CC)OCCCCC PZORNJWVGCSGJN-UHFFFAOYSA-N 0.000 description 1
- XBQKHZAEBLQEHX-UHFFFAOYSA-N ethyl(diphenoxy)silane Chemical compound CC[SiH](Oc1ccccc1)Oc1ccccc1 XBQKHZAEBLQEHX-UHFFFAOYSA-N 0.000 description 1
- BNFBSHKADAKNSK-UHFFFAOYSA-N ethyl(dipropoxy)silane Chemical compound CCCO[SiH](CC)OCCC BNFBSHKADAKNSK-UHFFFAOYSA-N 0.000 description 1
- SBRXLTRZCJVAPH-UHFFFAOYSA-N ethyl(trimethoxy)silane Chemical compound CC[Si](OC)(OC)OC SBRXLTRZCJVAPH-UHFFFAOYSA-N 0.000 description 1
- CZZBVPSIWUGVPZ-UHFFFAOYSA-N ethyl(tripentoxy)silane Chemical compound CCCCCO[Si](CC)(OCCCCC)OCCCCC CZZBVPSIWUGVPZ-UHFFFAOYSA-N 0.000 description 1
- HGWSCXYVBZYYDK-UHFFFAOYSA-N ethyl(triphenoxy)silane Chemical compound C=1C=CC=CC=1O[Si](OC=1C=CC=CC=1)(CC)OC1=CC=CC=C1 HGWSCXYVBZYYDK-UHFFFAOYSA-N 0.000 description 1
- KUCGHDUQOVVQED-UHFFFAOYSA-N ethyl(tripropoxy)silane Chemical compound CCCO[Si](CC)(OCCC)OCCC KUCGHDUQOVVQED-UHFFFAOYSA-N 0.000 description 1
- BKPOHJLJSNVXOQ-UHFFFAOYSA-N ethyl-(2-methoxyethoxy)-propylsilane Chemical compound C(C)[SiH](OCCOC)CCC BKPOHJLJSNVXOQ-UHFFFAOYSA-N 0.000 description 1
- HTSRFYSEWIPFNI-UHFFFAOYSA-N ethyl-dimethoxy-methylsilane Chemical compound CC[Si](C)(OC)OC HTSRFYSEWIPFNI-UHFFFAOYSA-N 0.000 description 1
- KHVNAEQQPTUVNP-UHFFFAOYSA-N ethyl-methoxy-dipentylsilane Chemical class C(C)[Si](CCCCC)(CCCCC)OC KHVNAEQQPTUVNP-UHFFFAOYSA-N 0.000 description 1
- PSKLDHFDQSYMOL-UHFFFAOYSA-N ethyl-methoxy-diphenoxysilane Chemical compound C=1C=CC=CC=1O[Si](OC)(CC)OC1=CC=CC=C1 PSKLDHFDQSYMOL-UHFFFAOYSA-N 0.000 description 1
- HIPNKAPHGKUQDM-UHFFFAOYSA-N ethyl-methoxy-dipropoxysilane Chemical compound CCCO[Si](CC)(OC)OCCC HIPNKAPHGKUQDM-UHFFFAOYSA-N 0.000 description 1
- UNBRJJYHSVNZBW-UHFFFAOYSA-N ethyl-methoxy-propoxysilane Chemical compound CCCO[SiH](CC)OC UNBRJJYHSVNZBW-UHFFFAOYSA-N 0.000 description 1
- QGLJHHJQWDIRDJ-UHFFFAOYSA-N ethyl-methyl-dipentoxysilane Chemical compound CCCCCO[Si](C)(CC)OCCCCC QGLJHHJQWDIRDJ-UHFFFAOYSA-N 0.000 description 1
- QIDROACCJPQEGZ-UHFFFAOYSA-N ethyl-methyl-diphenoxysilane Chemical compound C=1C=CC=CC=1O[Si](C)(CC)OC1=CC=CC=C1 QIDROACCJPQEGZ-UHFFFAOYSA-N 0.000 description 1
- GXAOCGRUWCYNML-UHFFFAOYSA-N ethyl-methyl-dipropoxysilane Chemical compound CCCO[Si](C)(CC)OCCC GXAOCGRUWCYNML-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910001195 gallium oxide Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 239000012362 glacial acetic acid Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229910021480 group 4 element Inorganic materials 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- TZMQHOJDDMFGQX-UHFFFAOYSA-N hexane-1,1,1-triol Chemical compound CCCCCC(O)(O)O TZMQHOJDDMFGQX-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- IKGXNCHYONXJSM-UHFFFAOYSA-N methanolate;zirconium(4+) Chemical compound [Zr+4].[O-]C.[O-]C.[O-]C.[O-]C IKGXNCHYONXJSM-UHFFFAOYSA-N 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- QBCNIGWTXULERZ-UHFFFAOYSA-N methoxy(dipropoxy)silane Chemical compound CCCO[SiH](OC)OCCC QBCNIGWTXULERZ-UHFFFAOYSA-N 0.000 description 1
- GQDLEOAFQKIWSO-UHFFFAOYSA-N methoxy-dipentoxy-propylsilane Chemical compound CCCCCO[Si](CCC)(OC)OCCCCC GQDLEOAFQKIWSO-UHFFFAOYSA-N 0.000 description 1
- JTOARSATYYFDSP-UHFFFAOYSA-N methoxy-diphenoxy-propylsilane Chemical compound C=1C=CC=CC=1O[Si](OC)(CCC)OC1=CC=CC=C1 JTOARSATYYFDSP-UHFFFAOYSA-N 0.000 description 1
- NPKCRFQGOQDCPM-UHFFFAOYSA-N methoxy-dipropoxy-propylsilane Chemical compound CCCO[Si](CCC)(OC)OCCC NPKCRFQGOQDCPM-UHFFFAOYSA-N 0.000 description 1
- IKESVYSZFPIZDP-UHFFFAOYSA-N methoxy-methyl-diphenoxysilane Chemical compound C=1C=CC=CC=1O[Si](C)(OC)OC1=CC=CC=C1 IKESVYSZFPIZDP-UHFFFAOYSA-N 0.000 description 1
- JRUSMKPBJTYUCR-UHFFFAOYSA-N methoxy-methyl-dipropoxysilane Chemical compound CCCO[Si](C)(OC)OCCC JRUSMKPBJTYUCR-UHFFFAOYSA-N 0.000 description 1
- NJISVYSHLYACRT-UHFFFAOYSA-N methoxy-methyl-phenoxysilane Chemical compound CO[SiH](C)Oc1ccccc1 NJISVYSHLYACRT-UHFFFAOYSA-N 0.000 description 1
- ARYZCSRUUPFYMY-UHFFFAOYSA-N methoxysilane Chemical compound CO[SiH3] ARYZCSRUUPFYMY-UHFFFAOYSA-N 0.000 description 1
- BDJSOPWXYLFTNW-UHFFFAOYSA-N methyl 3-methoxypropanoate Chemical compound COCCC(=O)OC BDJSOPWXYLFTNW-UHFFFAOYSA-N 0.000 description 1
- PKWNWHSONVFEON-UHFFFAOYSA-N methyl tripentyl silicate Chemical compound CCCCCO[Si](OC)(OCCCCC)OCCCCC PKWNWHSONVFEON-UHFFFAOYSA-N 0.000 description 1
- WUHFHHFIAKZOGV-UHFFFAOYSA-N methyl triphenyl silicate Chemical compound C=1C=CC=CC=1O[Si](OC=1C=CC=CC=1)(OC)OC1=CC=CC=C1 WUHFHHFIAKZOGV-UHFFFAOYSA-N 0.000 description 1
- QRBAVICMCJULJS-UHFFFAOYSA-N methyl(tripentoxy)silane Chemical compound CCCCCO[Si](C)(OCCCCC)OCCCCC QRBAVICMCJULJS-UHFFFAOYSA-N 0.000 description 1
- RJMRIDVWCWSWFR-UHFFFAOYSA-N methyl(tripropoxy)silane Chemical compound CCCO[Si](C)(OCCC)OCCC RJMRIDVWCWSWFR-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- XBQHAKXEAHVCNH-UHFFFAOYSA-N octyl(triphenyl)silane Chemical class C=1C=CC=CC=1[Si](C=1C=CC=CC=1)(CCCCCCCC)C1=CC=CC=C1 XBQHAKXEAHVCNH-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- JGTNAGYHADQMCM-UHFFFAOYSA-N perfluorobutanesulfonic acid Chemical compound OS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F JGTNAGYHADQMCM-UHFFFAOYSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- XPGAWFIWCWKDDL-UHFFFAOYSA-N propan-1-olate;zirconium(4+) Chemical compound [Zr+4].CCC[O-].CCC[O-].CCC[O-].CCC[O-] XPGAWFIWCWKDDL-UHFFFAOYSA-N 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- UIDUKLCLJMXFEO-UHFFFAOYSA-N propylsilane Chemical class CCC[SiH3] UIDUKLCLJMXFEO-UHFFFAOYSA-N 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- UQMOLLPKNHFRAC-UHFFFAOYSA-N tetrabutyl silicate Chemical compound CCCCO[Si](OCCCC)(OCCCC)OCCCC UQMOLLPKNHFRAC-UHFFFAOYSA-N 0.000 description 1
- KCTGOQZIKPDZNK-UHFFFAOYSA-N tetrapentyl silicate Chemical compound CCCCCO[Si](OCCCCC)(OCCCCC)OCCCCC KCTGOQZIKPDZNK-UHFFFAOYSA-N 0.000 description 1
- ADLSSRLDGACTEX-UHFFFAOYSA-N tetraphenyl silicate Chemical compound C=1C=CC=CC=1O[Si](OC=1C=CC=CC=1)(OC=1C=CC=CC=1)OC1=CC=CC=C1 ADLSSRLDGACTEX-UHFFFAOYSA-N 0.000 description 1
- ZQZCOBSUOFHDEE-UHFFFAOYSA-N tetrapropyl silicate Chemical compound CCCO[Si](OCCC)(OCCC)OCCC ZQZCOBSUOFHDEE-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- JMXKSZRRTHPKDL-UHFFFAOYSA-N titanium ethoxide Chemical compound [Ti+4].CC[O-].CC[O-].CC[O-].CC[O-] JMXKSZRRTHPKDL-UHFFFAOYSA-N 0.000 description 1
- MYWQGROTKMBNKN-UHFFFAOYSA-N tributoxyalumane Chemical compound [Al+3].CCCC[O-].CCCC[O-].CCCC[O-] MYWQGROTKMBNKN-UHFFFAOYSA-N 0.000 description 1
- LGQXXHMEBUOXRP-UHFFFAOYSA-N tributyl borate Chemical compound CCCCOB(OCCCC)OCCCC LGQXXHMEBUOXRP-UHFFFAOYSA-N 0.000 description 1
- HSDAZXVGQVMFAY-UHFFFAOYSA-N tributyl methyl silicate Chemical compound CCCCO[Si](OC)(OCCCC)OCCCC HSDAZXVGQVMFAY-UHFFFAOYSA-N 0.000 description 1
- PZOOLKGCOFWELU-UHFFFAOYSA-N tributyl propyl silicate Chemical compound CCCCO[Si](OCCC)(OCCCC)OCCCC PZOOLKGCOFWELU-UHFFFAOYSA-N 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- NBXZNTLFQLUFES-UHFFFAOYSA-N triethoxy(propyl)silane Chemical compound CCC[Si](OCC)(OCC)OCC NBXZNTLFQLUFES-UHFFFAOYSA-N 0.000 description 1
- QQQSFSZALRVCSZ-UHFFFAOYSA-N triethoxysilane Chemical compound CCO[SiH](OCC)OCC QQQSFSZALRVCSZ-UHFFFAOYSA-N 0.000 description 1
- CXZMPNCYSOLUEK-UHFFFAOYSA-N triethyl propyl silicate Chemical compound CCCO[Si](OCC)(OCC)OCC CXZMPNCYSOLUEK-UHFFFAOYSA-N 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical compound OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 1
- HQYALQRYBUJWDH-UHFFFAOYSA-N trimethoxy(propyl)silane Chemical compound CCC[Si](OC)(OC)OC HQYALQRYBUJWDH-UHFFFAOYSA-N 0.000 description 1
- YUYCVXFAYWRXLS-UHFFFAOYSA-N trimethoxysilane Chemical compound CO[SiH](OC)OC YUYCVXFAYWRXLS-UHFFFAOYSA-N 0.000 description 1
- WKEXHTMMGBYMTA-UHFFFAOYSA-N trimethyl propyl silicate Chemical compound CCCO[Si](OC)(OC)OC WKEXHTMMGBYMTA-UHFFFAOYSA-N 0.000 description 1
- OMBAQAOBNOSBNU-UHFFFAOYSA-N tripentoxy(propyl)silane Chemical compound CCCCCO[Si](CCC)(OCCCCC)OCCCCC OMBAQAOBNOSBNU-UHFFFAOYSA-N 0.000 description 1
- XJXSSNSCWGKDOW-UHFFFAOYSA-N tripentoxysilane Chemical compound CCCCCO[SiH](OCCCCC)OCCCCC XJXSSNSCWGKDOW-UHFFFAOYSA-N 0.000 description 1
- AMUIJRKZTXWCEA-UHFFFAOYSA-N triphenoxy(propyl)silane Chemical compound C=1C=CC=CC=1O[Si](OC=1C=CC=CC=1)(CCC)OC1=CC=CC=C1 AMUIJRKZTXWCEA-UHFFFAOYSA-N 0.000 description 1
- OZWKZRFXJPGDFM-UHFFFAOYSA-N tripropoxysilane Chemical compound CCCO[SiH](OCCC)OCCC OZWKZRFXJPGDFM-UHFFFAOYSA-N 0.000 description 1
- MDDPTCUZZASZIQ-UHFFFAOYSA-N tris[(2-methylpropan-2-yl)oxy]alumane Chemical compound [Al+3].CC(C)(C)[O-].CC(C)(C)[O-].CC(C)(C)[O-] MDDPTCUZZASZIQ-UHFFFAOYSA-N 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/58—Optical field-shaping elements
- H01L33/60—Reflective elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/85909—Post-treatment of the connector or wire bonding area
- H01L2224/8592—Applying permanent coating, e.g. protective coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
- H01L2933/0058—Processes relating to semiconductor body packages relating to optical field-shaping elements
Definitions
- the present invention relates to an LED device and a manufacturing method thereof.
- a white LED device in which a phosphor is arranged in the vicinity of an LED element, and white light is obtained by exciting the phosphor with light from the LED element.
- an LED device that obtains white light by combining blue light from a blue LED element and yellow fluorescence emitted from a phosphor upon receiving blue light.
- an LED device that obtains white light by using an LED element that emits ultraviolet light as a light source and mixing blue light, green light, and red light emitted from a phosphor upon receiving the ultraviolet light.
- the conventional LED device has a problem that the substrate on which the LED element is mounted easily absorbs the emitted light of the LED element and the fluorescence emitted by the phosphor, and the light extraction property is not sufficient. Therefore, in a general LED device, a reflector having a high light reflectance is disposed around the LED element. Such a reflector is generally formed of metal plating or the like.
- Patent Document 1 a reflector in which metal plating is covered with a resin layer
- Patent Document 2 a reflector in which metal plating is covered with a white resin layer
- the present invention has been made in view of such a situation. That is, the present invention provides an LED device capable of efficiently extracting light over a long period of time and a method for manufacturing the LED device, with little deterioration of a reflective layer for reflecting light emitted from an LED element.
- the first of the present invention relates to the following LED device.
- An LED device that includes a substrate and an LED element that is mounted on the substrate and emits light of a specific wavelength, and the light diffusion of inorganic particles on the surface outside the LED element mounting region of the substrate
- An LED device further comprising a reflective layer comprising particles and a ceramic binder.
- the light diffusing particles are composed of at least one inorganic particle selected from the group consisting of titanium oxide, barium sulfate, barium titanate, boron nitride, zinc oxide, and aluminum oxide, according to [1] to [5] LED device in any one.
- the ceramic binder is a polymer of a trifunctional silane compound and a tetrafunctional silane compound, and a polymerization ratio of the trifunctional silane compound and the tetrafunctional silane compound is 3: 7 to 7: 3.
- the ceramic binder is a polymer of a bifunctional silane compound and a trifunctional silane compound, and a polymerization ratio of the bifunctional silane compound and the trifunctional silane compound is 1: 9 to 4: 6.
- the LED device according to any one of to [6].
- the reflective layer further includes metal oxide fine particles having an average primary particle size of 5 to 100 nm.
- the metal oxide fine particles are at least one selected from the group consisting of zirconium oxide, titanium oxide, cerium oxide, niobium oxide, and zinc oxide.
- the reflective layer further includes a cured product of a metal alkoxide or metal chelate of a divalent or higher metal element other than Si element.
- a method for manufacturing an LED device comprising: a substrate; an LED element mounted on the substrate and emitting light of a specific wavelength; and a reflective layer formed on a surface outside the LED element mounting region of the substrate.
- the step of forming the reflective layer by spray-coating a composition for forming a reflective layer containing light diffusing particles and an organosilicon compound on the substrate surface while protecting the mounting region of the LED element with a mask.
- a method for manufacturing an LED device [15] The LED device according to [14], wherein the substrate has a metal portion, and in the step of forming the reflective layer, the reflective layer is formed outside the LED element mounting region and on the metal portion. Production method.
- the substrate has a metal portion, and in the step of forming the reflective layer, the reflective layer is formed on the substrate surface outside the LED element mounting region and outside the metal portion region.
- the manufacturing method of the LED device as described in 2 .. [17] The manufacturing of the LED device according to any one of [14] to [16], wherein the substrate has a cavity, and includes a step of spray-coating the reflective layer forming composition on the cavity inner wall. Method.
- the reflection layer binder is ceramic, and the light diffusion particles are inorganic particles. Therefore, the reflective layer is hardly deteriorated by heat or light, and good light extraction efficiency can be maintained over a long period of time.
- FIG. 8A is a top view showing another example of the LED device of the present invention
- FIG. 8B is a schematic cross-sectional view of the LED device. It is a schematic sectional drawing which shows the other example of the LED apparatus of this invention.
- FIG. 10 is an explanatory diagram for explaining a method of forming a reflective layer in the method for manufacturing an LED device of the present invention.
- FIG. 11 is an explanatory diagram for explaining a method of forming a reflective layer in the method for manufacturing an LED device of the present invention.
- FIG. 12 is an explanatory diagram for explaining a method of forming a reflective layer in the method for manufacturing an LED device of the present invention.
- the LED device of the present invention relates to an LED device having a reflective layer that reflects emitted light or the like of an LED element to a light extraction surface side. Examples of the structure of the LED device of the present invention are shown in the schematic cross-sectional views of FIGS. 1 to 4, the top view of FIG. 8 (FIG. 8A), and the schematic cross-sectional view (FIG. 8B).
- the LED device 100 of the present invention includes a substrate 1, an LED element 2 mounted on the substrate 1, a reflective layer 21 formed outside the LED element mounting region of the substrate 1, and a wavelength covering the LED element 2 and the reflective layer 21. A conversion layer 11 is provided.
- substrate 1 in the LED device 100 of this invention may be flat form, as FIG.3 and FIG.4 and FIG.8 (b) show, and it is shown by FIG.1 and FIG.2.
- you may have a cavity (recessed part).
- the shape of the cavity is not particularly limited.
- the shape may be a truncated cone, a truncated pyramid, a cylinder, a prism, or the like.
- the substrate 1 preferably has insulating properties and heat resistance, and is preferably made of a ceramic resin or a heat resistant resin.
- the heat resistant resin include liquid crystal polymer, polyphenylene sulfide, aromatic nylon, epoxy resin, hard silicone resin, polyphthalic acid amide and the like.
- the substrate 1 may contain an inorganic filler.
- the inorganic filler can be titanium oxide, zinc oxide, alumina, silica, barium titanate, calcium phosphate, calcium carbonate, white carbon, talc, magnesium carbonate, boron nitride, glass fiber, and the like.
- the metal part 3, 3 ′ is usually disposed on the substrate 1.
- the metal portions 3 and 3 ′ are made of a metal such as silver.
- the metal portion may be a pair of metal electrode portions (indicated by reference numeral 3 in FIG. 8) that electrically connect an external electrode (not shown) and the LED element 2.
- the metal part 3 may include a metal reflective film (indicated by reference numeral 3 ′ in FIG. 8) that surrounds the LED element 2 and reflects light from the LED element 2 toward the light extraction surface.
- the LED element 2 is connected to a metal portion (metal wiring) 3 disposed on the substrate 1 and fixed on the substrate 1.
- the LED element 2 may be connected to a metal part (metal electrode part) 3 disposed on the substrate 1 via a wiring 4 as shown in FIG. Further, as shown in FIG. 2, the metal part (metal electrode part) 3 disposed on the substrate 1 may be connected via the protruding electrode 5.
- a mode in which the LED element 2 is connected to the metal part (metal electrode part) 3 via the wiring 4 is called a wire bonding type, and the LED element 2 is connected to the metal part (metal electrode part) 3 via the protruding electrode 5. This mode is called a flip chip type.
- the wavelength of light emitted from the LED element 2 is not particularly limited.
- the LED element 2 may be, for example, an element that emits blue light (light of about 420 nm to 485 nm) or an element that emits ultraviolet light.
- the configuration of the LED element 2 is not particularly limited.
- the LED element 2 is an element that emits blue light
- the LED element 2 includes an n-GaN compound semiconductor layer (cladding layer), an InGaN compound semiconductor layer (light emitting layer), and a p-GaN compound semiconductor layer. It may be a laminate of (cladding layer) and a transparent electrode layer.
- the LED element 2 may have a light emitting surface of 200 to 300 ⁇ m ⁇ 200 to 300 ⁇ m, for example.
- the height of the LED element 2 is usually about 50 to 200 ⁇ m. In the LED device 100 shown in FIGS. 1 to 4, only one LED element 2 is disposed on the substrate 1, but a plurality of LED elements 2 may be disposed on the substrate 1.
- the reflective layer 21 is a layer that reflects the emitted light from the LED element 2 and the fluorescence emitted by the phosphor contained in the wavelength conversion layer 11 to the light extraction surface side of the LED device 100. By providing the reflective layer 21, the amount of light extracted from the light extraction surface of the LED device 100 increases.
- the reflective layer 21 is formed on the surface of the substrate 1 outside the mounting area of the LED element 2.
- the mounting area of the LED element 2 refers to a light emitting surface of the LED element 2 and a connection part between the LED element 2 and the metal part (metal electrode part) 3. That is, the reflective layer 21 is formed in a region that does not hinder the emission of light from the LED element 2 and the connection between the LED element 2 and the metal part (metal electrode part) 3.
- the reflective layer 21 may be formed only in the peripheral region of the LED element 2.
- the reflective layer 21 may be formed not only in the peripheral region of the LED element 2 but also between the substrate 1 and the LED element 2.
- the reflective layer 21 reflects the light that goes around the back side of the LED element 2. Therefore, the light extraction efficiency from the LED device 100 is increased.
- a reflective layer 21 is also formed on the inner wall surface 6 of the cavity.
- the reflective layer 21 is formed on the cavity inner wall surface 6, the light traveling in the horizontal direction on the surface of the wavelength conversion layer 11 can be reflected by the reflective layer 21 and extracted.
- the reflection layer 21 may be formed outside the mounting region of the LED element 2 and on the metal part 3 as shown in FIG. Further, as shown in FIG. 8, the reflective layer 21 is outside the LED element 2 mounting area and outside the metal part area; that is, outside the LED element 2 mounting area, and the metal parts 3 and 3 'are not formed. It may be formed only in the region. Specifically, as shown in FIG. 8, the reflective layer 21 may be formed in the gap between the metal electrode portion 3 and the metal reflective film 3 ′. In this case, light from the LED element 2 and the like is reflected by the metal portions 3 and 3 ′ and the reflective layer 21. For example, as shown in FIG. 9, the reflective layer 21 may be formed only on the cavity inner wall surface 6 of the substrate 1. Also in this case, light from the LED element 2 and the like is reflected by the metal part (metal electrode part) 3 and the reflective layer 21.
- the reflection layer of the conventional LED device is generally metal plating.
- metal plating cannot be formed on the entire surface of the substrate in order to prevent electrical conduction. Therefore, there is a problem that light is absorbed by the substrate in the region where the metal plating is not formed.
- a reflection layer made of a resin layer in which light diffusion particles are dispersed has been proposed, but is easily deteriorated by light emitted from the LED element, heat, or the like. Therefore, when the LED device is used for a long period of time, the light extraction from the LED device may be deteriorated due to deterioration of the resin.
- the reflective layer 21 of the LED device of the present invention is a layer in which light diffusion particles made of inorganic particles are bound by a ceramic binder (cured product of an organosilicon compound); electricity is not conducted. That is, in the LED device of the present invention, the reflective layer 21 can be formed in an arbitrary region of the substrate 1 and can be formed in a gap between the metal portions. Therefore, light can be efficiently extracted from the LED device. Furthermore, the reflective layer 21 of the LED device of the present invention is hardly decomposed even when receiving heat or light from the LED element 2. Therefore, the light reflectivity of the reflective layer 21 does not change over a long period, and good light extraction performance is maintained for a long period.
- the thickness of the reflective layer 21 is preferably 5 to 200 ⁇ m. By setting the thickness of the reflective layer 21 to 200 ⁇ m or less, cracks in the reflective layer 21 can be reduced. On the other hand, when the thickness of the reflective layer 21 is 5 ⁇ m or more, the light reflectivity of the reflective layer 21 can be sufficiently secured, and the light extraction efficiency can be increased. Further, the thickness of the reflective layer 21 may be 5 to 30 ⁇ m.
- the average reflectance of visible light (wavelength 450 nm to 700 nm) when the thickness of the reflective layer 21 is 30 ⁇ m is preferably 60% or more, and more preferably 75% or more. When the average reflectance at the thickness is 60% or more, the light extraction efficiency from the LED device is likely to be sufficiently increased.
- the reflectance of the reflective layer 21 is measured with a spectrophotometer.
- An example of a spectrophotometer is a spectrophotometer V-670 manufactured by JASCO Corporation.
- Reflectance is measured as follows. A standard reflector (Spectralon reflector manufactured by Labsphere) is installed in the integrating sphere unit. Then, the reflectance of the standard reflector is measured with a spectrophotometer. On the other hand, a sample in which a reflective layer having a thickness of 30 ⁇ m is prepared on a glass substrate is prepared. The reflectance of the sample is then measured in the same manner; the ratio of the reflectance of the sample to that of the standard reflector is taken as the reflectance of the reflective layer.
- a standard reflector Spectralon reflector manufactured by Labsphere
- the reflective layer 21 includes a ceramic binder (hereinafter also referred to as “binder”).
- the ceramic binder may be (i) a cured product of a polysilazane oligomer, and (ii) a polysiloxane that is a cured product of a monomer of a silane compound or an oligomer thereof.
- the amount of the binder contained in the reflective layer 21 is preferably 5 to 40% by mass, and more preferably 10 to 30% by mass with respect to the total mass of the reflective layer.
- the amount of the binder is less than 5% by mass, the strength of the film may not be sufficient.
- the binder content exceeds 40% by mass, the amount of light diffusing particles is relatively reduced. Therefore, the light reflectivity of the reflective layer may not be sufficient.
- the binder may be (i) a polymer (cured product) of a polysilazane oligomer represented by the general formula (I): (R 1 R 2 SiNR 3 ) n .
- R 1 , R 2 and R 3 each independently represent a hydrogen atom or an alkyl group, an aryl group, a vinyl group or a cycloalkyl group, but R 1 , R 2 and R 3 At least one of them is a hydrogen atom, preferably all are hydrogen atoms.
- n represents an integer of 1 to 60.
- the molecular shape of the polysilazane oligomer may be any shape, for example, linear or cyclic.
- a cured product of polysilazane can be obtained by subjecting the polysilazane oligomer represented by the above formula (I) to heating, excimer light treatment, UV light treatment, etc. in the presence of a reaction accelerator and a solvent as necessary.
- the binder may be (ii) a polysiloxane that is a polymer (cured product) of a monomer or oligomer of a bifunctional silane compound, a trifunctional silane compound, and / or a tetrafunctional silane compound.
- the polysiloxane can be, for example, a trifunctional silane compound and a tetrafunctional silane compound monomer or oligomer polymer thereof.
- the polymerization ratio of the trifunctional silane compound and the tetrafunctional silane compound is preferably 3: 7 to 7: 3, and more preferably 4: 6 to 6: 4.
- the degree of crosslinking of the polysiloxane does not increase excessively, and cracks are likely to occur in the reflective layer.
- the organic group derived from the trifunctional silane compound does not remain in a large amount, and the reflective layer 21 is difficult to repel the composition for forming the wavelength conversion layer 11, and the adhesion between the reflective layer 21 and the wavelength conversion layer 11. Is likely to increase.
- the polysiloxane may be a polymer of a monomer or oligomer of a bifunctional silane compound and a trifunctional silane compound.
- the polymerization ratio of the bifunctional silane compound and the trifunctional silane compound is preferably 1: 9 to 4: 6, and more preferably 1: 9 to 3: 7. When the ratio is the above, a large amount of the organic group derived from the bifunctional silane compound does not remain, it is difficult for the reflective layer 21 to repel the composition for forming the wavelength conversion layer 11, and the reflective layer 21 and the wavelength conversion layer 11 It is easy to increase the adhesion.
- the polysiloxane may be a polymer of a monomer or oligomer of a bifunctional silane compound, a trifunctional silane compound, and a tetrafunctional silane compound.
- the polymerization ratio of the bifunctional silane compound is preferably 3 to 30 (mol) when the total amount (mol) of the bifunctional silane compound, trifunctional silane compound, and tetrafunctional silane compound is 100.
- the polymerization ratio of the trifunctional silane compound is preferably 40 to 80 (mole) when the total amount (mole) of the bifunctional silane compound, the trifunctional silane compound, and the tetrafunctional silane compound is 100.
- the polymerization ratio of the tetrafunctional silane compound is preferably 10 to 30 (mol) when the total amount (mol) of the bifunctional silane compound, trifunctional silane compound, and tetrafunctional silane compound is 100.
- each R 4 independently represents an alkyl group or a phenyl group, preferably an alkyl group having 1 to 5 carbon atoms, or a phenyl group.
- tetrafunctional silane compounds include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, tetrapentyloxysilane, tetraphenyloxysilane, trimethoxymonoethoxysilane, dimethoxydiethoxysilane, triethoxymono.
- Examples of the trifunctional silane compound include a compound represented by the following general formula (III).
- R 5 each independently represents an alkyl group or a phenyl group, preferably an alkyl group having 1 to 5 carbon atoms, or a phenyl group.
- R 6 represents a hydrogen atom or an alkyl group.
- trifunctional silane compounds include trimethoxysilane, triethoxysilane, tripropoxysilane, tripentyloxysilane, triphenyloxysilane, dimethoxymonoethoxysilane, diethoxymonomethoxysilane, dipropoxymonomethoxysilane, di Propoxymonoethoxysilane, dipentyloxylmonomethoxysilane, dipentyloxymonoethoxysilane, dipentyloxymonopropoxysilane, diphenyloxylmonomethoxysilane, diphenyloxymonoethoxysilane, diphenyloxymonopropoxysilane, methoxyethoxypropoxysilane, monopropoxydimethoxysilane Monopropoxydiethoxysilane, monobutoxydimethoxysilane, monopentyloxydiethoxysilane, monofluoro Monohydrosilane compounds such as nyloxydieth
- R 5 represented by the general formula (III) of these trifunctional silane compounds is a methyl group
- the hydrophobicity of the surface of the reflective layer 21 becomes low. Thereby, the composition for forming the wavelength conversion layer 11 is sufficiently wet and spread, and the adhesion between the wavelength conversion layer 11 and the reflective layer 21 is increased.
- the trifunctional silane compound in which R 5 represented by the general formula (III) is a methyl group include methyltrimethoxysilane and methyltriethoxysilane, and methyltrimethoxysilane is particularly preferable.
- Examples of the bifunctional silane compound include a compound represented by the following general formula (IV).
- R 7 each independently represents an alkyl group or a phenyl group, preferably an alkyl group having 1 to 5 carbon atoms or a phenyl group.
- R 8 represents a hydrogen atom or an alkyl group.
- bifunctional silane compound examples include dimethoxysilane, diethoxysilane, dipropoxysilane, dipentyloxysilane, diphenyloxysilane, methoxyethoxysilane, methoxypropoxysilane, methoxypentyloxysilane, methoxyphenyloxysilane, ethoxypropoxy.
- the polysiloxane can be obtained by heat-treating the silane compound monomer or oligomer thereof in the presence of an acid catalyst, water, and a solvent, if necessary.
- the light diffusing particles contained in the reflective layer are not particularly limited as long as they are inorganic particles having high light diffusibility.
- the total reflectance of the light diffusing particles is preferably 80% or more, and more preferably 90% or more.
- the total reflectance can be measured by Hitachi High-Tech, Hitachi spectrophotometer U4100.
- inorganic particles that can be light diffusing particles include zinc oxide (ZnO), barium titanate (BaTiO 3 ), barium sulfate (BaSO 4 ), titanium dioxide (TiO 2 ), boron nitride (BrN), magnesium oxide ( MgO), calcium carbonate (CaCO 3 ), aluminum oxide (Al 2 O 3 ), barium sulfate (BaO), zirconium oxide (ZrO 2 ) and the like are included.
- preferable light diffusion particles include one or more selected from the group consisting of titanium oxide, barium sulfate, barium titanate, boron nitride, zinc oxide, and aluminum oxide. These particles have a high total reflectance and are easy to handle.
- the reflective layer 21 may contain only one type of light diffusing particles, or may contain two or more types.
- the average primary particle size of the light diffusing particles is preferably larger than 100 nm and not larger than 20 ⁇ m, more preferably larger than 100 nm and not larger than 10 ⁇ m, still more preferably 200 nm to 2.5 ⁇ m.
- the average primary particle size in the present invention refers to the value of D50 measured with a laser diffraction particle size distribution meter.
- Examples of the laser diffraction particle size distribution measuring device include a laser diffraction particle size distribution measuring device manufactured by Shimadzu Corporation.
- the amount of light diffusing particles contained in the reflective layer 21 is preferably 60 to 95% by mass, and more preferably 70 to 90% by mass with respect to the total mass of the reflective layer.
- the amount of the light diffusing particles is less than 60% by mass, the light reflectivity of the reflective layer may not be sufficient, and the light extraction efficiency may not be increased.
- the content of the light diffusing particles exceeds 95% by mass, the amount of the binder is relatively reduced, and the strength of the reflective layer may be lowered.
- the reflective layer 21 may contain metal oxide fine particles.
- metal oxide fine particles When metal oxide fine particles are contained in the reflective layer 21, minute irregularities are generated on the surface of the reflective layer 21. Due to the unevenness, an anchor effect is generated between the reflective layer 21 and the wavelength conversion layer 11, and adhesion between the reflective layer 21 and the wavelength conversion layer 11 is increased. In addition, since the gap between the light diffusing particles contained in the reflective layer 21 is filled, the strength of the reflective layer 21 is increased and cracks are hardly generated in the reflective layer 21.
- the type of metal oxide fine particles is not particularly limited, but is preferably at least one selected from the group consisting of zirconium oxide, titanium oxide, cerium oxide, niobium oxide, and zinc oxide. In particular, from the viewpoint of increasing the film strength, zirconium oxide fine particles are preferably contained.
- the reflective layer 21 may contain only one kind of metal oxide fine particles, or two or more kinds.
- the metal oxide fine particles may have a surface treated with a silane coupling agent or a titanium coupling agent. When the surface of the metal oxide fine particles is treated, the metal oxide fine particles are easily dispersed uniformly in the reflective layer 21.
- the average primary particle size of the metal oxide fine particles is 5 to 100 nm, preferably 5 to 80 nm, more preferably 5 to 50 nm.
- the average primary particle diameter of the metal oxide fine particles is 100 nm or less, the metal oxide fine particles easily enter the gaps between the light diffusion particles, and the strength of the reflective layer is likely to increase. Further, when the average primary particle size of the metal oxide fine particles is 5 nm or more, appropriate irregularities are easily formed on the surface of the reflective layer 21, and the above-described anchor effect is easily obtained.
- the amount of the metal oxide fine particles contained in the reflective layer 21 is preferably 0.5 to 30% by mass, more preferably 0.5 to 20% by mass, and still more preferably based on the total mass of the reflective layer. Is 1 to 10% by mass, particularly preferably 2 to 10% by mass.
- the content of the metal oxide fine particles is less than 0.5% by mass, the anchor effect at the interface between the reflective layer 21 and the wavelength conversion layer 11 and the strength of the film are not sufficiently increased.
- the content of the metal oxide fine particles exceeds 30% by mass, the amount of the binder is relatively reduced, and the film strength may be lowered.
- the reflective layer 21 may contain a hardened product of metal alkoxide or metal chelate of a divalent or higher metal element other than Si element.
- the reflective layer 21 contains a cured product of metal alkoxide or metal chelate, the adhesion between the reflective layer 21 and the substrate 1 is enhanced. Since the metal contained in the metal alkoxide or metal chelate forms a metalloxane bond with the hydroxyl group on the surface of the substrate 1, the adhesion between the reflective layer 21 and the substrate 1 is increased.
- the amount of metal element (excluding Si element) derived from metal alkoxide or metal chelate contained in the reflective layer 21 is 0.5 to 20 mol% with respect to the number of moles of Si element contained in the reflective layer 21. More preferably, it is 1 to 10 mol%.
- the amount of the metal element is less than 0.5 mol%, the adhesion between the reflective layer 21 and the substrate 1 does not increase.
- the amount of the metal alkoxide or metal chelate is increased, the amount of the light diffusing particles is relatively reduced, so that the light reflectivity of the reflective layer may be lowered.
- the amount of the metal element and the amount of the Si element can be calculated by energy dispersive X-ray spectroscopy (EDX).
- the type of metal element contained in the metal alkoxide or metal chelate is not particularly limited as long as it is a bivalent or higher-valent metal element (excluding Si), but is preferably a group 4 or group 13 element. That is, specifically, the metal alkoxide or metal chelate is preferably a compound represented by the following general formula (V).
- M m + X n Y mn (V) M represents a Group 4 or Group 13 metal element, and m represents the valence (3 or 4) of M.
- X represents a hydrolyzable group, and n represents the number of X groups (an integer of 2 or more and 4 or less). However, m ⁇ n. Y represents a monovalent organic group.
- the group 4 or group 13 metal element represented by M is preferably aluminum, zirconium, or titanium, and particularly preferably zirconium.
- a cured product of an alkoxide or chelate containing a zirconium element does not have an absorption wavelength in the emission wavelength region of the general LED element 2 (particularly blue light (wavelength 420 to 485 nm)). Therefore, light from the LED element 2 or the like is hardly absorbed by the cured product of zirconium alkoxide or chelate.
- the hydrolyzable group represented by X may be a group that is hydrolyzed with water to form a hydroxyl group.
- the hydrolyzable group include a lower alkoxy group having 1 to 5 carbon atoms, an acetoxy group, a butanoxime group, a chloro group and the like.
- all the groups represented by X may be the same group or different groups.
- the hydrolyzable group represented by X is hydrolyzed when the metal element forms a metalloxane bond with a hydroxyl group or the like on the surface of the substrate 1. Therefore, the group produced after hydrolysis is neutral and is preferably a light boiling group. Therefore, the group represented by X is preferably a lower alkoxy group having 1 to 5 carbon atoms, more preferably a methoxy group or an ethoxy group.
- the monovalent organic group represented by Y may be a monovalent organic group contained in a general silane coupling agent. Specifically, the aliphatic group, alicyclic group, aromatic group, fatty acid having 1 to 1000 carbon atoms, preferably 500 or less, more preferably 100 or less, further preferably 40 or less, and particularly preferably 6 or less. It may be a ring aromatic group.
- the organic group represented by Y may be an aliphatic group, an alicyclic group, an aromatic group, or a group in which an alicyclic aromatic group is bonded via a linking group.
- the linking group may be an atom such as O, N, or S, or an atomic group containing these.
- the organic group represented by Y may have a substituent.
- substituents include halogen atoms such as F, Cl, Br, and I; vinyl group, methacryloxy group, acryloxy group, styryl group, mercapto group, epoxy group, epoxycyclohexyl group, glycidoxy group, amino group, cyano group, Organic groups such as nitro group, sulfonic acid group, carboxy group, hydroxy group, acyl group, alkoxy group, imino group and phenyl group are included.
- metal alkoxide or metal chelate containing the aluminum element represented by the general formula (V) include aluminum triisopropoxide, aluminum tri-n-butoxide, aluminum tri-t-butoxide, aluminum triethoxide and the like. It is.
- metal alkoxide or metal chelate containing a zirconium element represented by the general formula (V) include zirconium tetramethoxide, zirconium tetraethoxide, zirconium tetra n-propoxide, zirconium tetra i-propoxide, zirconium.
- Examples include tetra n-butoxide, zirconium tetra i-butoxide, zirconium tetra t-butoxide, zirconium dimethacrylate dibutoxide, dibutoxyzirconium bis (ethylacetoacetate) and the like.
- metal alkoxide or metal chelate containing the titanium element represented by the general formula (V) include titanium tetraisopropoxide, titanium tetra n-butoxide, titanium tetra i-butoxide, titanium methacrylate triisopropoxide, titanium.
- examples include tetramethoxypropoxide, titanium tetra n-propoxide, titanium tetraethoxide, titanium lactate, titanium bis (ethylhexoxy) bis (2-ethyl-3-hydroxyhexoxide), titanium acetylacetonate, and the like.
- metal alkoxides or metal chelates exemplified above are a part of commercially available organometallic alkoxides or metal chelates.
- the cured products of metal alkoxides or metal chelates shown in the list of coupling agents and related products in Chapter 9 “Optimum Utilization Technology of Coupling Agents” published by National Institute of Science and Technology are also applied to the present invention.
- the wavelength conversion layer 11 in which phosphor particles are dispersed in a transparent resin may be formed.
- the wavelength conversion layer 11 is usually formed so as to cover the LED element 2 and the reflective layer 21.
- the wavelength conversion layer 11 receives light (excitation light) emitted from the LED element 2 and emits fluorescence. By mixing the excitation light and the fluorescence, the color of the light from the LED device 100 becomes a desired color. For example, when the light from the LED element 2 is blue and the fluorescence emitted from the phosphor included in the wavelength conversion layer 11 is yellow, the light from the LED device 100 is white.
- the transparent resin contained in the wavelength conversion layer 11 is not particularly limited, and may be, for example, a silicone resin or an epoxy resin.
- the phosphor particles contained in the wavelength conversion layer 11 may be anything that is excited by the light emitted from the LED element 2 and emits fluorescence having a wavelength different from that of the emitted light from the LED element 2.
- examples of phosphor particles that emit yellow fluorescence include YAG (yttrium, aluminum, garnet) phosphors.
- the YAG phosphor receives blue light (wavelength 420 nm to 485 nm) emitted from the blue LED element, and emits yellow fluorescence (wavelength 550 nm to 650 nm).
- the phosphor particles are, for example, 1) An appropriate amount of flux (fluoride such as ammonium fluoride) is mixed with a mixed raw material having a predetermined composition, and pressed to form a molded body. 2) The obtained molded body is packed in a crucible and fired in air at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a sintered body.
- flux fluoride such as ammonium fluoride
- a mixed raw material having a predetermined composition is obtained by sufficiently mixing oxides such as Y, Gd, Ce, Sm, Al, La, and Ga, or compounds that easily become oxides at high temperatures in a stoichiometric ratio. .
- the mixed raw material which has a predetermined composition mixes the solution which dissolved 1) the rare earth elements of Y, Gd, Ce, and Sm in the acid in stoichiometric ratio, and oxalic acid, and obtains a coprecipitation oxide. 2) It can also be obtained by mixing this coprecipitated oxide with aluminum oxide or gallium oxide.
- the kind of the phosphor is not limited to the YAG phosphor, and may be another phosphor such as a non-garnet phosphor that does not contain Ce.
- the average particle diameter of the phosphor particles is preferably 1 ⁇ m to 50 ⁇ m, and more preferably 10 ⁇ m or less.
- the particle diameter of the phosphor particles is too large, a gap generated at the interface between the phosphor particles and the transparent resin (epoxy resin or silicone resin) becomes large. Thereby, the intensity
- the average particle diameter of the phosphor particles can be measured, for example, by a Coulter counter method.
- the amount of the phosphor particles contained in the wavelength conversion layer 11 is generally 5 to 15% by mass with respect to the total solid content of the wavelength conversion layer.
- the thickness of the wavelength conversion layer is generally 25 ⁇ m to 5 mm.
- the wavelength conversion layer 11 prepares a composition for forming a wavelength conversion layer in which phosphor particles are dispersed in a transparent resin, and this is applied onto the LED element 2 and the reflective layer 21 with a dispenser or the like. Then, it is obtained by hardening this composition for wavelength conversion layer formation.
- the manufacturing method of the LED device of the present invention includes (1) a first mode in which the reflective layer 21 is formed after mounting the LED element 2 (for example, FIGS. 1 to 3 and FIG. 8). And (2) a second mode of forming the reflective layer 21 before mounting the LED element 2 (for example, a method of manufacturing the LED device shown in FIG. 4). included.
- the manufacturing method of the LED device includes the following three steps. 1) The process of mounting an LED element on a board
- the reflective layer 21 is formed. Therefore, the reflective layer forming composition is applied so that the reflective layer forming composition does not adhere to the light emitting surface of the LED element 2. At this time, not only the light emitting surface of the LED element but also the metal part region of the substrate 1 may be avoided and the reflective layer forming composition may be applied.
- the metal part (metal electrode part) 3 arrange
- FIG. The LED element 2 and the metal part (metal electrode part) 3 may be connected via a wiring 4 as shown in FIG. 1, or connected via a protruding electrode 5 as shown in FIG. May be.
- Step 1) Apply and apply the reflective layer forming composition so that the reflective layer forming composition does not adhere to the light emitting surface of the LED element 2 mounted in the step or the surfaces of the metal parts 3 and 3 ′.
- Let There are the following two methods for applying and curing the reflective layer forming composition. (I) Method of applying and curing a composition for forming a reflective layer on the substrate 1 while protecting the light emitting surface and the metal portions 3 and 3 ′ of the LED element 2 (ii) The light emitting surface and the metal portion of the LED element 2 Method of applying and curing a reflective layer forming composition only in a desired region without protecting 3 and 3 '
- the composition for forming a reflective layer applied to the substrate 1 includes the above-mentioned ceramic binder precursor (organosilicon compound), light diffusion particles, metal oxide fine particles, metal alkoxide or metal chelate, solvent, etc. Is included.
- the region where the reflective layer is not formed; that is, the light emitting surface of the LED element 2 and the metal portions 3 and 3 ′ are protected.
- the protection method is not particularly limited; for example, as shown in FIG. 5, the light emitting surface of the LED element 2 and the metal portions 3 and 3 ′ may be covered with a plate-like mask 41. Further, a cap may be disposed on the substrate 1 so as to cover the LED element 2 and the metal portions 3 and 3 ′.
- a reflective layer forming composition is applied on the substrate 1.
- the means for applying the reflective layer forming composition is not particularly limited, and may be, for example, a dispenser application method or a spray application method.
- the application means is spray application, the reflective layer 21 can be formed with a small thickness.
- the substrate 1 has a cavity, it is easy to apply the reflective layer forming composition to the inner wall surface 6 of the cavity.
- the reflective layer forming composition After applying the reflective layer forming composition to the substrate 1, the reflective layer forming composition is dried and cured.
- the temperature at which the composition for forming a reflective layer is dried and cured is preferably 20 to 200 ° C., more preferably 25 to 150 ° C. If the temperature is lower than 20 ° C, the solvent may not be sufficiently evaporated. On the other hand, if the temperature exceeds 200 ° C., the LED element 2 may be adversely affected.
- the drying / curing time is preferably from 0.1 to 30 minutes, more preferably from 0.1 to 15 minutes, from the viewpoint of production efficiency.
- the coating film is irradiated with VUV radiation having a wavelength in the range of 170 to 230 nm (eg, excimer light) and cured, and then heat-cured to obtain a denser film. Is formed. After curing of the reflective layer forming composition, the plate mask 41 and the cap are removed.
- VUV radiation having a wavelength in the range of 170 to 230 nm (eg, excimer light) and cured, and then heat-cured to obtain a denser film. Is formed.
- the plate mask 41 and the cap are removed.
- the reflective layer forming composition is applied only to a desired region without protecting the light emitting surface of the LED element 2 and the metal portions 3 and 3 ′.
- the application means of the reflective layer forming composition is not particularly limited, and may be, for example, a dispenser application method or an ink jet application method.
- coating of the composition for reflective layer formation the composition for reflective layer formation is dried and hardened similarly to the method of (i).
- the concentration of the polysilazane oligomer in the reflective layer forming composition is preferably higher. However, when these concentrations are too high, the storage stability of the composition for forming a reflective layer is lowered. Therefore, the amount of the polysilazane oligomer is preferably 5 to 50% by mass with respect to the total mass of the reflective layer forming composition.
- the amount of the silane compound monomer or oligomer contained in the reflective layer forming composition is The content is preferably 5 to 50% by mass relative to the total mass of the composition. The method for preparing the oligomer of the silane compound will be described later.
- the amount of light diffusing particles contained in the reflective layer forming composition is 60 to 95% by mass, more preferably 70 to 90% by mass, based on the total solid content of the reflective layer forming composition. If the amount of the light diffusing particles is less than 60% by mass, the resulting light reflecting layer 21 may have insufficient light reflectivity. On the other hand, when the amount of the light diffusing particles exceeds 95% by mass, the amount of the binder in the resulting reflective layer 21 is relatively small, and the strength of the reflective layer 21 may be lowered.
- the amount of the metal oxide fine particles contained in the reflective layer forming composition is preferably 0.5 to 30% by mass, more preferably 0.00%, based on the total solid content of the reflective layer forming composition.
- the content is 5 to 20% by mass, more preferably 1 to 10% by mass.
- the amount of the metal alkoxide or metal chelate contained in the reflective layer forming composition is preferably 1 to 30% by mass, more preferably 1.5 to 30% by mass based on the total solid content of the reflective layer forming composition. It is 20% by mass, more preferably 1.5 to 15% by mass.
- the amount of the metal alkoxide or metal chelate is less than 1% by mass, the adhesion between the resulting reflective layer 21 and the substrate 1 is difficult to increase.
- the amount of the cured product of the metal alkoxide or metal chelate exceeds 30% by mass, the amount of the binder component is relatively decreased in the resulting reflective layer 21 and the strength may be decreased.
- the solvent contained in the composition for forming a reflective layer is not particularly limited as long as it can dissolve or disperse the organosilicon compound.
- it may be an aqueous solvent having excellent compatibility with water, or may be a non-aqueous solvent having low compatibility with water.
- the solvent can be an aliphatic hydrocarbon, an aromatic hydrocarbon, a halogen hydrocarbon, an ether, or an ester.
- Specific examples include methyl ethyl ketone, tetrahydrofuran, benzene, toluene, xylene, dimethyl fluoride, chloroform, carbon tetrachloride, ethyl ether, isopropyl ether, dibutyl ether, and ethyl butyl ether.
- the organosilicon compound contained in the composition for forming a reflective layer is a silane compound monomer or oligomer thereof
- the solvent is not particularly limited, but alcohols are preferable, and polyhydric alcohols are particularly preferable.
- alcohol is contained in the composition for forming a reflective layer, the viscosity of the composition for forming a reflective layer increases, and precipitation of light diffusing particles is suppressed.
- polyhydric alcohols examples include ethylene glycol, propylene glycol, diethylene glycol, glycerin, 1,3-butanediol, 1,4-butanediol, and the like, particularly ethylene glycol, propylene glycol, 1,3-butanediol, Alternatively, 1,4-butanediol is preferable.
- the solvent contained in the composition for forming a reflective layer preferably has a boiling point of 250 ° C. or lower. If the boiling point of the solvent is too high, the evaporation of the solvent will be slow.
- the content of the solvent contained in the reflective layer forming composition is preferably 1 to 15% by mass, more preferably 1 to 10% by mass, based on the total mass of the reflective layer forming composition. More preferably, it is 3 to 10% by mass.
- the composition for forming a reflective layer may contain a reaction accelerator together with an organosilicon compound (particularly a polysilazane oligomer).
- the reaction accelerator may be either acid or base.
- reaction accelerators include amines such as triethylamine, diethylamine, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, and triethylamine; hydrochloric acid, oxalic acid, fumaric acid, sulfonic acid, and Acids such as acetic acid; metal carboxylates including nickel, iron, palladium, iridium, platinum, titanium, and aluminum are included.
- the reaction accelerator is particularly preferably a metal carboxylate.
- the addition amount of the reaction accelerator is preferably 0.01 to 5 mol% with respect to the mass of the polysilazane oligomer.
- FIG. 6 shows an outline of a spray device for applying the composition for forming a reflective layer.
- the reflective layer forming composition 220 is supplied to the coating liquid tank 210.
- the reflective layer forming composition 220 in the coating solution tank 210 is supplied with pressure to the head 240 through the connecting pipe 230.
- the reflective layer forming composition 220 supplied to the head 240 is discharged from the nozzle 250 and applied onto the substrate 1.
- the reflection layer forming composition 220 is discharged from the nozzle 250 by wind pressure.
- An opening that can be freely opened and closed is provided at the tip of the nozzle 250, and the opening may be opened and closed to control on / off of the discharge operation.
- the following operations (1) to (6) and setting conditions are preferably performed.
- (1) The tip portion of the nozzle 250 is disposed immediately above the substrate 1, and the reflective layer forming composition 220 is sprayed from directly above the substrate 1.
- the reflective layer forming composition 220 may be jetted from obliquely above, and the jetted reflective layer forming composition 270 may be adhered to the inner wall surface of the cavity.
- the injection amount of the reflective layer forming composition 220 is controlled according to the viscosity of the composition and the thickness of the reflective layer.
- the spray amount is constant and the coating amount per unit area is constant.
- the variation with time of the spray amount of the composition 220 for forming the reflective layer is within 10%, preferably within 1%.
- the injection amount of the reflective layer forming composition 220 is adjusted by the relative movement speed of the nozzle 250 with respect to the substrate 1 and the injection pressure from the nozzle 250. In general, when the viscosity of the reflective layer forming composition 220 is high, the relative movement speed of the nozzle 250 is slowed and the injection pressure is set high.
- the relative movement speed of the nozzle is usually about 30 mm / s to 200 mm / s; the injection pressure is usually about 0.01 MPa to 0.2 MPa.
- the temperature of the nozzle 250 is adjusted, and the viscosity at the time of injection of the reflective layer forming composition 220 is adjusted.
- the temperature adjustment mechanism of the substrate 1 can be installed on a moving table (not shown) on which the substrate 1 is placed. When the temperature of the substrate 1 is set to 30 to 100 ° C., the organic solvent in the reflective layer forming composition 220 can be volatilized quickly, and dripping of the reflective layer forming composition 220 from the substrate 1 can be suppressed.
- the spraying of the reflective layer forming composition 220 is stabilized while the environmental atmosphere (temperature / humidity) of the coating apparatus 220 is kept constant.
- the environmental atmosphere temperature / humidity
- the reflective layer forming composition 200 contains a polysilazane oligomer
- the polysilazane oligomer may absorb moisture and the reflective layer forming composition 220 itself may solidify. Therefore, it is preferable to reduce the humidity when spraying the reflective layer forming composition 220.
- the nozzle 250 may be cleaned during the spraying / coating operation of the reflective layer forming composition 220.
- a cleaning tank storing a cleaning liquid is installed in the vicinity of the coating apparatus 200.
- the tip of the nozzle 250 is immersed in the cleaning tank, for example, while the injection of the reflective layer forming composition 220 is stopped, thereby preventing the tip of the nozzle 250 from drying.
- the reflective layer forming composition 220 may be cured and the spray holes of the nozzle 250 may be clogged. Therefore, it is preferable to immerse the nozzle 250 in a cleaning tank or to clean the nozzle 250 at the start of the spraying / coating operation.
- the silane compound oligomer (polysiloxane oligomer) contained in the above-mentioned reflective layer forming composition can be prepared by the following method.
- the monomer of the silane compound is hydrolyzed in the presence of an acid catalyst, water, and an organic solvent to cause a condensation reaction.
- the mass average molecular weight of the oligomer of the silane compound is adjusted by reaction conditions (particularly reaction time).
- the mass average molecular weight of the silane compound oligomer contained in the reflective layer forming composition is preferably 1000 to 3000, more preferably 1200 to 2700, and further preferably 1500 to 2000.
- the mass average molecular weight of the oligomer of the silane compound contained in the composition for forming a reflective layer is less than 1000, the viscosity of the composition for forming a reflective layer is low, and liquid repellency or the like is likely to occur when the reflective layer is formed.
- the mass average molecular weight of the oligomer of the silane compound contained in the composition for forming a reflective layer exceeds 3000, the composition for forming a reflective layer increases in viscosity, and it may be difficult to form a uniform film.
- the mass average molecular weight is a value (polystyrene conversion) measured by gel permeation chromatography.
- the acid catalyst for preparing the oligomer of the silane compound only needs to act as a catalyst during hydrolysis of the silane compound, and may be either an organic acid or an inorganic acid.
- inorganic acids include sulfuric acid, phosphoric acid, nitric acid, hydrochloric acid and the like, with phosphoric acid and nitric acid being particularly preferred.
- organic acids include compounds having a carboxylic acid residue such as formic acid, oxalic acid, fumaric acid, maleic acid, glacial acetic acid, acetic anhydride, propionic acid, and n-butyric acid; organic sulfonic acid, and organic sulfone
- a sulfur-containing acid residue such as an acid esterified product (organic sulfate ester or organic sulfite ester), is included.
- the acid catalyst for preparing the oligomer of the silane compound is particularly preferably an organic sulfonic acid represented by the following general formula (VI).
- R 9 —SO 3 H (VI) the hydrocarbon group represented by R 9 is a linear, branched, or cyclic saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms.
- the cyclic hydrocarbon group include an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, or an anthryl group, preferably a phenyl group.
- the hydrocarbon group represented by R 9 in the general formula (VI) may have a substituent.
- substituents examples include linear, branched, or cyclic, saturated or unsaturated hydrocarbon groups having 1 to 20 carbon atoms; halogen atoms such as fluorine atoms; sulfonic acid groups; carboxyl groups; Amino group; cyano group and the like are included.
- the organic sulfonic acid represented by the general formula (VI) is particularly preferably nonafluorobutanesulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, or dodecylbenzenesulfonic acid.
- the amount of the acid catalyst added at the time of preparing the oligomer of the silane compound is preferably 1 to 1000 ppm by mass, more preferably 5 to 800 ppm by mass with respect to the total amount of the oligomer preparation solution.
- the film quality of the resulting polysiloxane varies depending on the amount of water added when preparing the oligomer of the silane compound. Therefore, it is preferable to adjust the water addition rate during oligomer preparation according to the target film quality.
- the water addition rate is the ratio (%) of the number of moles of water molecules to be added to the number of moles of alkoxy groups or aryloxy groups of the silane compound contained in the oligomer preparation solution.
- the water addition rate is preferably 50 to 200%, more preferably 75 to 180%. By setting the water addition rate to 50% or more, the film quality of the reflective layer is stabilized. Moreover, the storage stability of the composition for reflective layer formation becomes favorable by setting it as 200% or less.
- Examples of the solvent to be added when preparing the oligomer of the silane compound include monohydric alcohols such as methanol, ethanol, propanol and n-butanol; alkylcarboxylic acids such as methyl-3-methoxypropionate and ethyl-3-ethoxypropionate.
- Acid esters such as ethylene glycol, diethylene glycol, propylene glycol, glycerin, trimethylolpropane, hexanetriol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether , Diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol mono Monoethers of polyhydric alcohols such as butyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, or their monoacetates; methyl acetate, ethyl acetate, butyl acetate, etc.
- Esters such as acetone, methyl ethyl ketone, methyl isoamyl ketone; ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, ethylene glycol dibutyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether Jie Polyhydric alcohols ethers and all alkyl-etherified hydroxyl of polyhydric alcohols such as glycol methyl ethyl ether; and the like. These may be added alone or in combination of two or more.
- the wavelength conversion layer 11 is formed so that the reflective layer 21 and the LED element 2 may be covered.
- the wavelength conversion layer 11 is prepared by preparing a composition for forming a wavelength conversion layer containing a transparent resin or a precursor thereof and phosphor particles, and applying and curing the composition so as to cover the LED element 2 and the reflective layer 21. Can be obtained.
- the wavelength conversion layer forming composition includes a transparent resin or a precursor thereof and phosphor particles.
- a solvent, various additives, etc. may be contained as needed.
- the solvent is not particularly limited as long as it can dissolve the transparent resin or the precursor thereof.
- hydrocarbons such as toluene and xylene; ketones such as acetone and methyl ethyl ketone; diethyl ether and tetrahydrofuran And ethers such as propylene glycol monomethyl ether acetate and ethyl acetate.
- the mixing of the composition for forming a wavelength conversion layer can be performed, for example, with a stirring mill, a blade kneading stirring device, a thin film swirl type dispersing machine, or the like. By adjusting the stirring conditions, it is possible to suppress the precipitation of the phosphor particles in the wavelength conversion layer forming composition.
- the method for applying the wavelength conversion layer forming composition is not particularly limited.
- the wavelength conversion layer forming composition can be applied by a general application apparatus such as a dispenser.
- the curing method and curing conditions of the wavelength conversion layer forming composition are appropriately selected depending on the type of the transparent resin.
- An example of the curing method is heat curing.
- the manufacturing method of the LED device includes the following three steps. 1) Step of applying and curing a composition for forming a reflective layer in a desired region of the substrate 2) Step of mounting an LED element on the substrate 3) Forming a wavelength conversion layer so as to cover the reflective layer and the LED element Process
- the reflective layer forming composition is applied to the connection region between the metal part (metal electrode part) 3 and the LED element 2 so that the reflective layer forming composition does not adhere.
- the reflective layer forming composition may be applied so that the reflective layer forming composition does not adhere to the entire region of the metal portions 3 and 3 ′.
- Process There are the following three methods for forming the reflective layer only in a desired region of the substrate 1.
- (I) A method of applying and curing the reflective layer forming composition on the substrate 1 while protecting a partial region or all region of the metal portions 3 and 3 ′.
- (Ii) Protecting the metal portions 3 and 3 ′.
- (Iii) A method in which the reflective layer forming composition is attached only to a desired region and cured using a mold.
- the region where the reflective layer is not formed; that is, a partial region of the metal portions 3 and 3 ′ or the entire region of the metal portions 3 and 3 ′ is protected.
- the protection method is not particularly limited; for example, as shown in FIG. 7, a plate-like mask 41 is provided in a region to be protected (in FIG. 7, the upper portion of the connection region 8 between the metal part (metal electrode part) 3 and the LED element 2). May be arranged. Further, a cap that protects part or all of the metal portions 3 and 3 ′ may be disposed on the substrate 1. Further, a resist mask may be formed on the metal portions 3 and 3 '.
- FIG. 10A and 10B show a resist mask forming method.
- a resist material 51 is applied on the substrate 1 having the metal portions 3 and 3 '(FIG. 10A). Thereafter, the resist material 51 in the portion where the reflective layer is to be formed is removed to obtain a resist mask 51 ′ that protects the region where the reflective layer is not formed (FIG. 10B).
- the coating method of the resist material 51 is not particularly limited, and may be, for example, a spray coating method or a dispenser coating method. If the substrate 1 is a flat plate, the resist material 51 may be applied by screen printing.
- the resist material 51 is not particularly limited, and may be, for example, a positive photosensitive material such as a general naphthoquinone diazide compound, a negative photosensitive material such as a bisazide compound, or the like.
- the resist curing method is appropriately selected according to the type of resist material, and may be irradiation with light of a specific wavelength, heat treatment, or the like.
- the method of removing the resist material may be a method of dissolving and removing with a resist developer or the like.
- the formation method of the resist mask 51 is not limited to the above method.
- the resist mask 51 ′ may be formed by depositing the resist material 51 only in a desired region by a dispenser coating method or an ink jet method.
- a resist mask 51 ′ may be formed by applying a resist material 51 after disposing a plate-like mask, a cap, or the like in a region where the resist mask is not formed.
- a mask may be formed using a water-soluble resin such as polyvinyl alcohol instead of the resist material.
- the water-soluble resin is applied to a portion where the reflective layer is not formed and dried.
- the application method of the water-soluble resin is not particularly limited, and may be, for example, a dispenser application method or an ink jet method.
- substrate 1 is flat form, it can also be a screen printing method.
- a reflective layer forming composition 21 ′ is applied on the substrate 1 as shown in FIG.
- the means for applying the reflective layer forming composition 21 ' is not particularly limited, and may be, for example, a dispenser application method or a spray application method.
- the application means is spray application, the reflective layer 21 can be formed with a small thickness.
- the substrate 1 has a cavity, it is easy to apply the reflective layer forming composition to the inner wall surface 6 of the cavity.
- the composition of the reflective layer forming composition can be the same as in the first embodiment.
- the reflective layer forming composition 21 ′ After applying the reflective layer forming composition 21 ′ to the substrate 1, the reflective layer forming composition is dried and cured.
- the method for drying / curing the reflective layer forming composition may be the same as in the first embodiment.
- the reflective layer 21 is formed only in a desired region by removing the mask and the cap (FIG. 10D).
- the method of removing the mask and cap is appropriately selected according to the type. For example, the plate-like mask 41 and the cap may be removed.
- the resist mask 51 ' may be removed by etching.
- the etching method may be a general dry etching method or a wet etching method.
- a water-soluble resin such as polyvinyl alcohol may be a method of dissolving and removing with water.
- the reflective layer forming composition is applied without protecting the region where the reflective layer 21 is not formed.
- the means for applying the composition for forming a reflective layer can be a dispenser application method or an ink jet application method. If the board
- the composition for forming a reflective layer is attached only to a desired region using a mold and cured.
- a mold 61 having a reflective layer shape is prepared and placed on the substrate 1 (FIG. 11A).
- the mold 61 is removed (FIG. c))
- unnecessary portions of the reflective layer 21 may be shaved to adjust the shape of the reflective layer 21.
- the drying / curing temperature of the reflective layer forming composition, The drying / curing time can be the same as in the method (i).
- a flat plate mold 62 may be used as shown in FIG. 12. Specifically, a flat metal mold 62 is prepared and disposed on the metal portions 3 and 3 ′. Then, the reflective layer forming composition 21 ′ is injected between the mold 61 and the substrate, and the reflective layer forming composition 21 ′ is dried and cured. Thereafter, the desired reflective layer 21 is obtained by removing the mold 61.
- the molds 61 and 62 are not particularly limited as long as they have solvent resistance and heat resistance, and may be made of any material such as resin, metal, ceramic, rubber and the like.
- the mold 61 is preferably coated with a release agent.
- the release agent can be a silicone release agent, a fluorine compound release agent, or the like.
- the wavelength conversion layer 11 is formed so that the reflective layer 21 and the LED element 2 may be covered.
- the wavelength conversion layer 11 is prepared by preparing a composition for forming a wavelength conversion layer containing a transparent resin or a precursor thereof and phosphor particles, and applying and curing the composition so as to cover the LED chip 2 and the reflective layer 21. Can be obtained.
- the method for forming the wavelength conversion layer 11 may be the same as the step 3) of the first aspect.
- the substrate which has a cavity shown by FIG. 1 was prepared.
- the substrate was made of a polyphthalamide (PPA) resin.
- the substrate was a rectangular parallelepiped of 3.2 mm ⁇ 2.8 mm ⁇ 1.8 mm, and a truncated cone-shaped cavity having an opening diameter of 2.4 mm, a wall surface angle of 45 °, and a depth of 0.85 mm was formed.
- An LED element was mounted on this substrate.
- the outer shape of the LED element was 305 ⁇ m ⁇ 330 ⁇ m ⁇ 100 ⁇ m.
- the peak wavelength of the LED element was 475 nm.
- composition for forming wavelength conversion layer Silicone resin manufactured by Shin-Etsu Silicone Co., Ltd., KER2600
- yellow phosphor manufactured by Nemoto Special Chemical Co., Ltd., YAG 450C205 (volume average particle size particle size D50 20.5 ⁇ m)
- the package coated with the reflective layer forming composition was allowed to stand at 40 ° C. for 1 hour, 100 ° C. for 1 hour, and further at 150 ° C. for 1 hour to cure the epoxy resin. Thereafter, the composition for forming a wavelength conversion layer was potted in a package by a dispenser, and a wavelength conversion layer was formed in the same manner as in Comparative Example 1.
- Example 1 In 7.0 g of polysilazane oligomer (polysilazane (manufactured by AZ Electronic Materials Co., NN120-20 mass%, dibutyl ether 80 mass%)), 5.0 g of titanium oxide (Fuji Titanium Industry TA-100 particle size 600 nm) was mixed. Thus, a reflective layer forming composition was prepared. This reflective layer forming composition was applied onto a substrate in the same manner as in Comparative Example 2. At this time, the discharge pressure of the composition for forming a reflective layer was set to 0.1 MPa. The moving speed of the nozzle was 100 mm / s. Then, it heated at 150 degreeC for 1 hour, and formed the reflection layer. A wavelength conversion layer was formed in the same manner as in Comparative Example 1 by potting a composition for forming a wavelength conversion layer into a package with a dispenser.
- Tetramethoxysilane (3.25 g), methanol (4.00 g), and acetone (4.00 g) were mixed and stirred.
- methanol (4.00 g) methanol (4.00 g)
- acetone 4.00 g
- To the mixed solution 5.46 g of water and 4.7 ⁇ L of an aqueous nitric acid solution having a concentration of 60% by mass were added. This mixed solution was further stirred for 3 hours to obtain a polysiloxane oligomer solution.
- 12.0 g of barium sulfate (Sakai Chemical Industry BF-10, particle size 600 nm) and 1 g of 1,3-butanediol were mixed with the polysiloxane oligomer solution to prepare a composition for forming a reflective layer.
- This reflective layer forming composition was applied onto a substrate in the same manner as in Comparative Example 2.
- the discharge pressure of the composition for forming a reflective layer was set to 0.1 MPa.
- the moving speed of the nozzle was 100 mm / s. Then, it heated at 150 degreeC for 1 hour, and formed the reflection layer.
- a wavelength conversion layer was formed in the same manner as in Comparative Example 1 by potting a composition for forming a wavelength conversion layer into a package with a dispenser.
- Tetramethoxysilane (3.25 g), methanol (4.00 g), and acetone (4.00 g) were mixed and stirred.
- methanol (4.00 g) methanol (4.00 g)
- acetone 4.00 g
- To the mixed solution 5.46 g of water and 4.7 ⁇ L of an aqueous nitric acid solution having a concentration of 60% by mass were added. This mixed solution was further stirred for 3 hours to obtain a polysiloxane oligomer solution.
- 12.0 g of titanium oxide (Fuji Titanium Industry TA-100, particle size 600 nm) and 1 g of 1,3-butanediol were mixed with the polysiloxane oligomer solution to prepare a composition for forming a reflective layer.
- This reflective layer forming composition was applied onto a substrate in the same manner as in Comparative Example 2.
- the discharge pressure of the composition for forming a reflective layer was set to 0.1 MPa.
- the moving speed of the nozzle was 160 mm / s. Then, it heated at 150 degreeC for 1 hour, and formed the reflection layer.
- a wavelength conversion layer was formed in the same manner as in Comparative Example 1 by potting a composition for forming a wavelength conversion layer into a package with a dispenser.
- Example 4 In the same manner as in Example 3, a reflective layer forming composition was prepared. This reflective layer forming composition was applied onto a substrate in the same manner as in Comparative Example 2. At this time, the discharge pressure of the composition for forming a reflective layer was set to 0.1 MPa. The moving speed of the nozzle was 100 mm / s. Then, it heated at 150 degreeC for 1 hour, and formed the reflection layer. A wavelength conversion layer was formed in the same manner as in Comparative Example 1 by potting a composition for forming a wavelength conversion layer into a package with a dispenser.
- Example 5 In the same manner as in Example 3, a reflective layer forming composition was prepared. This reflective layer forming composition was applied onto a substrate in the same manner as in Comparative Example 2. At this time, the discharge pressure of the composition for forming a reflective layer was set to 0.1 MPa. The moving speed of the nozzle was 70 mm / s. Then, it heated at 150 degreeC for 1 hour, and formed the reflection layer. A wavelength conversion layer was formed in the same manner as in Comparative Example 1 by potting a composition for forming a wavelength conversion layer into a package with a dispenser.
- a dispersion of zirconium oxide (ZrO 2 ) having an average primary particle size of 5 nm (30% by mass methanol solution, manufactured by Sakai Chemical Co., Ltd.), 12.0 g of titanium oxide (Fuji titanium) Industrial TA-100 particle size 600 nm) and 1 g of 1,3-butanediol were mixed to prepare a composition for forming a reflective layer.
- This reflective layer forming composition was applied onto a substrate in the same manner as in Comparative Example 2. At this time, the discharge pressure of the composition for forming a reflective layer was set to 0.1 MPa.
- the moving speed of the nozzle was 100 mm / s. Then, it heated at 150 degreeC for 1 hour, and formed the reflection layer.
- a wavelength conversion layer was formed in the same manner as in Comparative Example 1 by potting a composition for forming a wavelength conversion layer into a package with a dispenser.
- acetylacetone manufactured by Kanto Chemical Co., Inc.
- acetylacetone manufactured by Kanto Chemical Co., Inc.
- Zr chelate solution ZC-580 (manufactured by Matsumoto Fine Chemical Co.)
- zirconium oxide (ZrO 2 ) dispersion having an average primary particle size of 5 nm (30% by mass methanol solution, manufactured by Sakai Chemical Co., Ltd.)
- titanium oxide A reflective layer forming composition was prepared by mixing 12.0 g (Fuji Titanium Industry TA-100 particle size 600 nm) and 1 g of 1,3-butanediol.
- the amount of Zr chelate solution added was such that the amount of Zr chelate was 10% by mass with respect to the total solid content of the polysiloxane oligomer solution, Zr chelate solution, and zirconium oxide dispersion.
- This reflective layer forming composition was applied onto a substrate in the same manner as in Comparative Example 2.
- the discharge pressure of the composition for forming a reflective layer was set to 0.1 MPa.
- the moving speed of the nozzle was 100 mm / s. Then, it heated at 150 degreeC for 1 hour, and formed the reflection layer.
- a wavelength conversion layer was formed in the same manner as in Comparative Example 1 by potting a composition for forming a wavelength conversion layer into a package with a dispenser.
- acetylacetone manufactured by Kanto Chemical Co., Inc.
- acetylacetone manufactured by Kanto Chemical Co., Inc.
- Al alkoxide (ALR15GB (manufactured by Kosei Chemical Co., Ltd.)
- zirconium oxide (ZrO 2 ) dispersion having an average primary particle size of 5 nm (30% by mass methanol solution, manufactured by Sakai Chemical Co., Ltd.), 3.0 g, titanium oxide 12.0 g (Fuji Titanium Industry TA-100 particle size 600 nm) and 1 g of 1,3-butanediol were mixed to prepare a mixed solution.
- the amount of Al alkoxide added was such that the amount of Al alkoxide was 10% by mass relative to the total solid content of the polysiloxane oligomer solution, Al alkoxide, and zirconium oxide dispersion.
- This reflective layer forming composition was applied onto a substrate in the same manner as in Comparative Example 2.
- the discharge pressure of the composition for forming a reflective layer was set to 0.1 MPa.
- the moving speed of the nozzle was 100 mm / s. Then, it heated at 150 degreeC for 1 hour, and formed the reflection layer.
- a wavelength conversion layer was formed in the same manner as in Comparative Example 1 by potting a composition for forming a wavelength conversion layer into a package with a dispenser.
- Example 12 A composition for forming a reflective layer was prepared in the same manner as in Example 3. This reflective layer forming composition was applied onto a substrate in the same manner as in Comparative Example 2. At this time, the discharge pressure of the composition for forming a reflective layer was set to 0.1 MPa. The moving speed of the nozzle was 180 mm / s. Then, it heated at 150 degreeC for 1 hour, and formed the reflection layer. A wavelength conversion layer was formed in the same manner as in Comparative Example 1 by potting a composition for forming a wavelength conversion layer into a package with a dispenser.
- Example 13 In the same manner as in Example 3, a reflective layer forming composition was prepared. This reflective layer forming composition was applied onto a substrate in the same manner as in Comparative Example 2. At this time, the discharge pressure of the composition for forming a reflective layer was set to 0.1 MPa. The moving speed of the nozzle was 50 mm / s. Then, it heated at 150 degreeC for 1 hour, and formed the reflection layer. A wavelength conversion layer was formed in the same manner as in Comparative Example 1 by potting a composition for forming a wavelength conversion layer into a package with a dispenser.
- each LED device was light-emitted with the electric current value of 20 mA in a 100 degreeC thermostat. After emitting light for 1000 hours, the total luminous flux value was measured for each LED device. The total luminous flux values before and after the durability test were compared, and the deterioration rate was calculated. The deterioration rate was (1 ⁇ (relative value of total luminous flux after durability test / relative value of total luminous flux before durability test)) ⁇ 100. When the deterioration rate was 15% or more, it was determined that the LED device was deteriorated.
- the deterioration rate was 10% or more and less than 15%, the LED device was hardly deteriorated and there was no actual harm, but it was determined that a slight crack or the like occurred in the reflective layer. Moreover, if the deterioration rate was less than 10%, it was judged that there was no deterioration of the LED device and no crack was generated in the reflective layer.
- the total luminous flux is immediately after the LED device is manufactured as compared with the case where the reflective layer whose resin is a resin is formed (Comparative Example 2) and the case where the reflective layer is not formed (Comparative Example 1). Although the value was good, the total luminous flux value became very low after the durability test. It is inferred from the durability test that the epoxy resin as the binder has deteriorated.
- the binder of the reflective layer is polysiloxane
- the thickness of the reflective layer is less than 5 ⁇ m (Example 12)
- the total luminous flux value is slightly increased, but the light intensity is higher than that of Examples 1-11.
- the effect of improving the extraction efficiency was small.
- the total luminous flux value was hardly lowered. Since the binder of the reflective layer is polysiloxane, it is presumed that the reflective layer was hardly deteriorated.
- the polysiloxane serving as the binder of the reflective layer is a polymer of a trifunctional silane compound and a tetrafunctional silane compound (Examples 6 to 11), it is a polymer of only a tetrafunctional silane compound (Example 2).
- the deterioration rate was small.
- the ratio of the trifunctional silane compound to the tetrafunctional silane compound was 3: 7 to 7: 3 (Examples 6, 7, and 9 to 11), the deterioration rate was particularly low.
- Example 15 An LED device was produced in the same manner as in Example 14 except that the moving speed of the nozzle during application was 65 mm / s.
- Example 16 An LED device was produced in the same manner as in Example 14 except that the moving speed of the nozzle at the time of application was 40 mm / s.
- Example 17 An LED device was produced in the same manner as in Example 14 except that the moving speed of the nozzle during application was 30 mm / s.
- Example 18 An LED device was produced in the same manner as in Example 15 except that the amount of dimethyldimethoxysilane at the time of preparing the composition for forming a reflective layer was changed to 0.9 g and the amount of methyltrimethoxysilane was changed to 2.37 g.
- Example 19 An LED device was produced in the same manner as in Example 15 except that the amount of dimethyldimethoxysilane at the time of preparing the composition for forming a reflective layer was 1.7 g and the amount of methyltrimethoxysilane was 2.04 g.
- Example 20 0.28 g of dimethyldimethoxysilane, 2.22 g of methyltrimethoxysilane, 0.71 g of tetramethoxysilane, 4.00 g of methanol, and 4.00 g of acetone were mixed and stirred. To the mixed solution, 5.46 g of water and 4.7 ⁇ L of an aqueous nitric acid solution having a concentration of 60% by mass were added. This mixed solution was further stirred for 3 hours to obtain a polysiloxane oligomer solution.
- a dispersion of zirconium oxide (ZrO 2 ) having an average primary particle size of 5 nm (30% by mass methanol solution, manufactured by Sakai Chemical Co., Ltd.), 12.0 g of titanium oxide (Fuji titanium) Industrial TA-100 particle size 600 nm) and 1 g of 1,3-butanediol were mixed to prepare a composition for forming a reflective layer.
- This reflective layer forming composition was applied onto a substrate in the same manner as in Comparative Example 2. At this time, the discharge pressure of the composition for forming a reflective layer was set to 0.1 MPa.
- the moving speed of the nozzle was 65 mm / s. Then, it heated at 150 degreeC for 1 hour, and formed the reflection layer.
- a wavelength conversion layer was formed in the same manner as in Comparative Example 1 by potting a composition for forming a wavelength conversion layer into a package with a dispenser.
- acetylacetone manufactured by Kanto Chemical Co., Inc.
- acetylacetone manufactured by Kanto Chemical Co., Inc.
- Zr chelate solution ZC-580 (manufactured by Matsumoto Fine Chemical Co.)
- zirconium oxide (ZrO 2 ) dispersion having an average primary particle size of 5 nm (30% by mass methanol solution, manufactured by Sakai Chemical Co., Ltd.)
- titanium oxide A reflective layer forming composition was prepared by mixing 12.0 g (Fuji Titanium Industry TA-100 particle size 600 nm) and 1 g of 1,3-butanediol.
- the amount of Zr chelate solution added was such that the amount of Zr chelate was 10% by mass with respect to the total solid content of the polysiloxane oligomer solution, Zr chelate solution, and zirconium oxide dispersion.
- This reflective layer forming composition was applied onto a substrate in the same manner as in Comparative Example 2.
- the discharge pressure of the composition for forming a reflective layer was set to 0.1 MPa.
- the moving speed of the nozzle was 65 mm / s. Then, it heated at 150 degreeC for 1 hour, and formed the reflection layer.
- a wavelength conversion layer was formed in the same manner as in Comparative Example 1 by potting a composition for forming a wavelength conversion layer into a package with a dispenser.
- a dispersion of zirconium oxide (ZrO 2 ) having an average primary particle size of 5 nm (30% by mass methanol solution, manufactured by Sakai Chemical Co., Ltd.), 12.0 g of titanium oxide (Fuji titanium) Industrial TA-100 particle size 600 nm) and 1 g of 1,3-butanediol were mixed to prepare a composition for forming a reflective layer.
- This reflective layer forming composition was applied onto a substrate in the same manner as in Comparative Example 2. At this time, the discharge pressure of the composition for forming a reflective layer was set to 0.1 MPa.
- the moving speed of the nozzle was 65 mm / s. Then, it heated at 150 degreeC for 1 hour, and formed the reflection layer.
- a wavelength conversion layer was formed in the same manner as in Comparative Example 1 by potting a composition for forming a wavelength conversion layer into a package with a dispenser.
- acetylacetone manufactured by Kanto Chemical Co., Inc.
- acetylacetone manufactured by Kanto Chemical Co., Inc.
- Zr chelate solution ZC-580 (manufactured by Matsumoto Fine Chemical Co.)
- zirconium oxide (ZrO 2 ) dispersion having an average primary particle size of 5 nm (30% by mass methanol solution, manufactured by Sakai Chemical Co., Ltd.)
- titanium oxide A reflective layer forming composition was prepared by mixing 12.0 g (Fuji Titanium Industry TA-100 particle size 600 nm) and 1 g of 1,3-butanediol.
- the amount of Zr chelate solution added was such that the amount of Zr chelate was 10% by mass with respect to the total solid content of the polysiloxane oligomer solution, Zr chelate solution, and zirconium oxide dispersion.
- This reflective layer forming composition was applied onto a substrate in the same manner as in Comparative Example 2.
- the discharge pressure of the composition for forming a reflective layer was set to 0.1 MPa.
- the moving speed of the nozzle was 65 mm / s. Then, it heated at 150 degreeC for 1 hour, and formed the reflection layer.
- a wavelength conversion layer was formed in the same manner as in Comparative Example 1 by potting a composition for forming a wavelength conversion layer into a package with a dispenser.
- the polysiloxane is a polymer of a bifunctional silane compound and a trifunctional silane compound (Examples 14 to 19, 21, and 22)
- the bifunctional silane compound and the trifunctional silane are used.
- a polymer of a compound and a tetrafunctional silane compound Examples 20, 23, and 24
- the LED device manufactured according to the present invention is suitable for various lighting devices used indoors and outdoors, including automotive headlights that require a large amount of light.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Led Device Packages (AREA)
Abstract
Description
[1]基板と、前記基板上に実装され、かつ特定波長の光を出射するLED素子とを有するLED装置であって、前記基板のLED素子実装領域外の表面に、無機粒子からなる光拡散粒子とセラミックバインダとを含む反射層をさらに有する、LED装置。
[3]前記反射層の厚みが5μm以上30μm以下である、[1]に記載のLED装置。
[4]前記基板がキャビティを有し、前記キャビティ内壁面に前記反射層を有する、[1]~[3]のいずれかに記載のLED装置。
[5]前記反射層及び前記LED素子を被覆する、波長変換層をさらに有し、前記波長変換層は、透明樹脂及び蛍光体粒子を含む、[1]~[4]のいずれかに記載のLED装置。
[6]前記光拡散粒子は酸化チタン、硫酸バリウム、チタン酸バリウム、窒化ホウ素、酸化亜鉛、及び酸化アルミニウムからなる群から選ばれる少なくとも1種の無機粒子からなる、[1]~[5]のいずれかに記載のLED装置。
[8]前記セラミックバインダは、2官能シラン化合物及び3官能シラン化合物の重合体であり、かつ2官能シラン化合物及び3官能シラン化合物の重合比率は1:9~4:6である、[1]~[6]のいずれか一項に記載のLED装置。
[10]前記金属酸化物微粒子が、酸化ジルコニウム、酸化チタン、酸化セリウム、酸化ニオブ、及び酸化亜鉛の群から選ばれる少なくとも1種である、[9]に記載のLED装置。
[11]前記反射層は、Si元素以外の2価以上の金属元素の金属アルコキシドまたは金属キレートの硬化物をさらに含む、[1]~[10]のいずれかに記載のLED装置。
[12]前記基板がメタル部を有し、前記LED素子実装領域外かつメタル部上に、前記反射層を有する、[1]~[11]のいずれかに記載のLED装置。
[13]前記基板がメタル部を有し、前記LED素子実装領域外かつメタル部領域外の前記基板の表面に、前記反射層を有する、[1]~[11]のいずれかに記載のLED装置。
[14]基板と、前記基板上に実装され、かつ特定波長の光を出射するLED素子と、前記基板のLED素子実装領域外の表面に形成された反射層と、を有するLED装置の製造方法であって、前記LED素子の実装領域をマスクで保護しながら、光拡散粒子及び有機ケイ素化合物を含む反射層形成用組成物を、前記基板表面にスプレー塗布し、前記反射層を形成する工程を含む、LED装置の製造方法。
[15]前記基板がメタル部を有し、前記反射層を形成する工程において、前記LED素子実装領域外かつ前記メタル部上に、前記反射層を形成する、[14]に記載のLED装置の製造方法。
[16]前記基板がメタル部を有し、前記反射層を形成する工程において、前記LED素子の実装領域外かつ前記メタル部領域外の前記基板表面に、前記反射層を形成する、[14]に記載のLED装置の製造方法。
[17]前記基板はキャビティを有し、前記キャビティ内壁に、前記反射層形成用組成物をスプレー塗布する工程を含む、[14]~[16]のいずれか一項に記載のLED装置の製造方法。
本発明のLED装置は、LED素子の出射光等を、光取り出し面側に反射する反射層を有するLED装置に関する。本発明のLED装置の構造の例を、図1~図4の概略断面図、及び図8の上面図(図8(a))及び概略断面図(図8(b))に示す。本発明のLED装置100は、基板1と、基板1に実装されたLED素子2と、基板1のLED素子実装領域外に形成された反射層21と、LED素子2及び反射層21を覆う波長変換層11を有する。
本発明のLED装置100における基板1は、図3及び図4、及び図8(b)に示されるように、平板状であってもよく、図1及び図2に示されるように、キャビティ(凹部)を有していてもよい。キャビティの形状は特に制限されない。例えば図1及び図2に示されるように円錐台状であってもよく、角錐台状や、円柱状、角柱状等であってもよい。
LED素子2は、基板1に配設されたメタル部(メタル配線)3と接続されて、基板1上に固定される。
反射層21は、LED素子2からの出射光や、波長変換層11に含まれる蛍光体が発する蛍光を、LED装置100の光取り出し面側に反射する層である。反射層21が配設されることで、LED装置100の光取り出し面から取り出される光量が増加する。
反射層21には、セラミックバインダ(以下、「バインダ」ともいう)が含まれる。セラミックバインダは、(i)ポリシラザンオリゴマーの硬化物、並びに(ii)シラン化合物のモノマーまたはそのオリゴマーの硬化物であるポリシロキサンでありうる。
Si(OR4)4 …(II)
上記一般式(II)中、R4はそれぞれ独立にアルキル基またはフェニル基を表し、好ましくは炭素数1~5のアルキル基、またはフェニル基を表す。
R5Si(OR6)3 …(III)
上記一般式(III)中、R5は、それぞれ独立にアルキル基またはフェニル基を表し、好ましくは炭素数1~5のアルキル基、またはフェニル基を表す。また、R6は、水素原子またはアルキル基を表す。
R7 2Si(OR8)2 (IV)
上記一般式(IV)中、R7はそれぞれ独立にアルキル基またはフェニル基を表し、好ましくは炭素数1~5のアルキル基、またはフェニル基を表す。また、R8は水素原子またはアルキル基を表す。
反射層に含まれる光拡散粒子は、光拡散性の高い無機粒子であれば、特に制限されない。光拡散粒子の全反射率は、80%以上であることが好ましく、さらに好ましくは90%以上である。全反射率は日立ハイテク社製、日立分光光度計U4100により測定できる。
反射層21には、金属酸化物微粒子が含まれてもよい。反射層21に金属酸化物微粒子が含まれると、反射層21表面に微少な凹凸が生じる。この凹凸により、反射層21と波長変換層11との間に、アンカー効果が生じ、反射層21と波長変換層11との密着性が高まる。また、反射層21に含まれる光拡散粒子同士の隙間が埋まるため、反射層21の強度が高まり、反射層21にクラックが生じ難くなる。
反射層21には、Si元素以外の2価以上の金属元素の金属アルコキシドまたは金属キレートの硬化物が含まれてもよい。反射層21に金属アルコキシドまたは金属キレートの硬化物が含まれると、反射層21と基板1との密着性が高まる。金属アルコキシドまたは金属キレートに含まれる金属が、基板1の表面の水酸基と、メタロキサン結合を形成するため、反射層21と基板1との密着性が高まる。
Mm+XnYm-n (V)
一般式(V)中、Mは4族または13族の金属元素を表し、mはMの価数(3または4)を表す。Xは加水分解性基を表し、nはX基の数(2以上4以下の整数)を表す。ただし、m≧nである。Yは1価の有機基を表す。
本発明のLED装置100には、蛍光体粒子が透明樹脂に分散された波長変換層11が形成されていてもよい。波長変換層11は、通常、LED素子2及び反射層21を覆うように形成される。波長変換層11は、LED素子2が出射する光(励起光)を受けて、蛍光を発する。励起光と蛍光とが混ざることで、LED装置100からの光の色が所望の色となる。例えば、LED素子2からの光が青色であり、波長変換層11に含まれる蛍光体が発する蛍光が黄色であると、LED装置100からの光が白色となる。
本発明のLED装置の製造方法には、(1)LED素子2を実装してから、反射層21を形成する第1の態様(例えば、図1~図3、及び図8に示されるLED装置を製造する方法)と、(2)LED素子2を実装する前に、反射層21を形成する第2の態様(例えば、図4に示されるLED装置を製造する方法)が含まれる。
LED素子2を実装してから、反射層21を形成する場合、LED装置の製造方法には、以下の3工程が含まれる。
1)基板にLED素子を実装する工程
2)基板上に反射層形成用組成物を塗布し、硬化させる工程
3)反射層及びLED素子を覆うように、波長変換層を形成する工程
基板1に配設されたメタル部(金属電極部)3と、LED素子2とを接続し、基板1上にLED素子2を固定する。LED素子2とメタル部(金属電極部)3とは、図1に示されるように、配線4を介して接続してもよく、図2に示されるように、突起電極5を介して接続してもよい。
1)工程で実装されたLED素子2の発光面やメタル部3,3’の表面に反射層形成用組成物が付着しないように、反射層形成用組成物を塗布し、硬化させる。反射層形成用組成物の塗布・硬化方法には、以下の2つの方法がある。
(i)LED素子2の発光面やメタル部3,3’を保護しながら、基板1上に反射層形成用組成物を塗布し、硬化させる方法
(ii)LED素子2の発光面やメタル部3,3’を保護せずに、所望の領域にのみ反射層形成用組成物を塗布し、硬化させる方法
(1)ノズル250の先端部を基板1の直上に配置して反射層形成用組成物220を基板1の真上から噴射する。基板1がキャビティを有する場合には、斜め上方から反射層形成用組成物220を噴射し、噴射後の反射層形成用組成物270をキャビティ内壁面に付着させてもよい。また、反射層形成用組成物220の噴射は、基板1とノズル250とを相対的に移動させながら行ってもよい。
(2)反射層形成用組成物220の噴射量を、組成物の粘度や、反射層の厚みに応じて制御する。同一の条件で塗布をする限り、噴射量を一定とし、単位面積当たりの塗布量を一定とする。反射層形成用組成物220の噴射量の経時的なバラツキは10%以内とし、好ましくは1%以内とする。反射層形成用組成物220の噴射量は、基板1に対するノズル250の相対移動速度と、ノズル250からの噴射圧力などで調整する。一般的には、反射層形成用組成物220の粘度が高い場合に、ノズル250の相対移動速度を遅くして、かつ噴射圧力を高く設定する。ノズルの相対移動速度は通常は約30mm/s~200mm/sであり;噴射圧力は通常は約0.01MPa~0.2MPaである。
(4)必要に応じて、基板1の温度調整をする。基板1の温度調整機構は、基板1を載置する移動台(図示せず)に設置することができる。基板1の温度を30~100℃とすると、反射層形成用組成物220中の有機溶媒を早く揮発させることができ、反射層形成用組成物220が基板1から液だれすることを抑制できる。
前述の反射層形成用組成物に含まれるシラン化合物のオリゴマー(ポリシロキサンオリゴマー)は、以下の方法で調製できる。シラン化合物のモノマーを、酸触媒、水、有機溶媒の存在下で加水分解し、縮合反応させる。シラン化合物のオリゴマーの質量平均分子量は、反応条件(特に反応時間)等で調整する。
R9-SO3H …(VI)
上記一般式(VI)において、R9で表される炭化水素基は、直鎖状、分岐鎖状、環状の飽和もしくは不飽和の炭素数1~20の炭化水素基である。環状の炭化水素基の例には、フェニル基、ナフチル基、またはアントリル基等の芳香族炭化水素基が含まれ、好ましくはフェニル基である。また、一般式(VI)においてR9で表される炭化水素基は、置換基を有してもよい。置換基の例には、直鎖状、分岐鎖状、または環状の、炭素数1~20の飽和若しくは不飽和の炭化水素基;フッ素原子等のハロゲン原子;スルホン酸基;カルボキシル基;水酸基;アミノ基;シアノ基等が含まれる。
反射層21及びLED素子2を覆うように、波長変換層11を形成する。波長変換層11は、透明樹脂もしくはその前駆体と、蛍光体粒子とを含有する波長変換層形成用組成物を調製し、これをLED素子2及び反射層21を被覆するように塗布し、硬化させることで得られる。
LED素子2を実装する前に、反射層21を形成する場合、LED装置の製造方法には以下の3工程が含まれる。
1)基板の所望の領域に、反射層形成用組成物を塗布し、硬化させる工程
2)基板にLED素子を実装する工程
3)反射層及びLED素子を覆うように、波長変換層を形成する工程
基板1の所望の領域のみに反射層を形成する方法には、以下の3つの方法がある。
(i)メタル部3,3’の一部領域、もしくは全領域を保護しながら、基板1上に反射層形成用組成物を塗布し、硬化させる方法
(ii)メタル部3,3’を保護せずに、所望の領域にのみ反射層形成用組成物を塗布し、硬化させる方法
(iii)金型を用いて、所望の領域にのみ反射層形成用組成物を付着させ、硬化させる方法
1)工程で形成された反射層2上に、LED素子2を配置する。このとき、反射層2が形成されていない領域のメタル部(金属電極部)3と、LED素子2とを接続し、固定する。LED素子2とメタル部(金属電極部)3とは、図1に示されるように、配線4を介して接続してもよく、図2に示されるように、突起電極5を介して接続してもよい。
反射層21及びLED素子2を覆うように、波長変換層11を形成する。波長変換層11は、透明樹脂もしくはその前駆体と、蛍光体粒子とを含有する波長変換層形成用組成物を調製し、これをLEDチップ2及び反射層21を被覆するように塗布し、硬化させて得られる。波長変換層11の形成方法は、第1の態様の3)工程と同様でありうる。
図1に示される、キャビティを有する基板を準備した。基板は、ポリフタル酸アミド(PPA)樹脂からなるものとした。基板は、3.2mm×2.8mm×1.8mmの直方体に、開口径2.4mm、壁面角度45°、深さ0.85mmの円錐台状のキャビティが形成されたものとした。この基板に、LED素子を実装した。LED素子の外形は、305μm×330μm×100μmとした。また、LED素子のピーク波長は、475nmとした。
シリコーン樹脂(信越シリコーン社製、KER2600)と、黄色蛍光体(根本特殊化学製、YAG 450C205(体積平均粒径 粒径D50 20.5μm))とを混合し、波長変換層形成用組成物を調製した。波長変換層形成用組成物における黄色蛍光体の濃度は、5質量%とした。
[比較例1]
前述のパッケージに、波長変換層形成用組成物をディスペンサーによりポッティングし、150℃で2時間静置し、波長変換層を形成した。
一液型のカチオン硬化型エポキシ樹脂(ファインポリマーズ社製、EpiFine)1g、酸化チタン(石原産業製 タイベークR-820)1g、プロピレングリコールモノメチルエーテルアセテート0.25g、及び酸化ケイ素(日本アエロジル社製 アエロジル380)0.05gを混合し、反射層形成用組成物を調製した。
スプレー装置の移動台上に、前述のパッケージを載置した。パッケージ内のLED素子の発光面を、図5に示されるマスク41で保護しながら、基板に反射層形成用組成物をスプレー塗布した。このとき、反射層形成用組成物の吐出圧力は、0.15MPaとした。また、ノズルが基板の一端から他端まで一往復するように、ノズルを移動させた。ノズルの移動速度は70mm/sとした。
ポリシラザンオリゴマー(ポリシラザン(AZエレクトロニックマテリアルズ株式会社製NN120-20質量%、ジブチルエーテル80質量%))7.0g中に、酸化チタン5.0g(富士チタン工業 TA-100 粒径600nm)を混合して反射層形成用組成物を調製した。この反射層形成用組成物を、比較例2と同様に、基板上に塗布した。このとき、反射層形成用組成物の吐出圧力は、0.1MPaとした。また、ノズルの移動速度は100mm/sとした。その後、150℃で1時間加熱して、反射層を形成した。反射層を形成したパッケージに、波長変換層形成用組成物をパッケージ内にディスペンサーにより、ポッティングし、比較例1と同様に波長変換層を形成した。
テトラメトキシシラン3.25g、メタノール4.00g、及びアセトン4.00gを混合し、撹拌した。混合液に水5.46g及び濃度60質量%の硝酸水溶液4.7μLを加えた。この混合液をさらに3時間撹拌し、ポリシロキサンオリゴマー溶液を得た。続いてポリシロキサンオリゴマー溶液に、硫酸バリウム12.0g(堺化学工業 BF-10 粒径600nm)、及び1,3-ブタンジオール1gを混合して、反射層形成用組成物を調製した。
この反射層形成用組成物を、比較例2と同様に基板上に塗布した。このとき、反射層形成用組成物の吐出圧力は、0.1MPaとした。また、ノズルの移動速度は100mm/sとした。その後、150℃で1時間加熱して、反射層を形成した。反射層を形成したパッケージに、波長変換層形成用組成物をパッケージ内にディスペンサーにより、ポッティングし、比較例1と同様に波長変換層を形成した。
テトラメトキシシラン3.25g、メタノール4.00g、及びアセトン4.00gを混合・撹拌した。混合液に水5.46g及び濃度60質量%の硝酸水溶液4.7μLを加えた。この混合液をさらに3時間撹拌し、ポリシロキサンオリゴマー溶液を得た。続いて前記ポリシロキサンオリゴマー溶液に、酸化チタン12.0g(富士チタン工業 TA-100 粒径600nm)、及び1,3-ブタンジオール1gを混合して反射層形成用組成物を調製した。
この反射層形成用組成物を、比較例2と同様に基板上に塗布した。このとき、反射層形成用組成物の吐出圧力は、0.1MPaとした。また、ノズルの移動速度は160mm/sとした。その後、150℃で1時間加熱して、反射層を形成した。反射層を形成したパッケージに、波長変換層形成用組成物をパッケージ内にディスペンサーにより、ポッティングし、比較例1と同様に波長変換層を形成した。
実施例3と同様に、反射層形成用組成物を調製した。この反射層形成用組成物を、比較例2と同様に基板上に塗布した。このとき、反射層形成用組成物の吐出圧力は、0.1MPaとした。また、ノズルの移動速度は100mm/sとした。その後、150℃で1時間加熱して、反射層を形成した。反射層を形成したパッケージに、波長変換層形成用組成物をパッケージ内にディスペンサーにより、ポッティングし、比較例1と同様に波長変換層を形成した。
実施例3と同様に、反射層形成用組成物を調製した。この反射層形成用組成物を、比較例2と同様に基板上に塗布した。このとき、反射層形成用組成物の吐出圧力は、0.1MPaとした。また、ノズルの移動速度は70mm/sとした。その後、150℃で1時間加熱して、反射層を形成した。反射層を形成したパッケージに、波長変換層形成用組成物をパッケージ内にディスペンサーにより、ポッティングし、比較例1と同様に波長変換層を形成した。
メチルトリメトキシシラン0.89g、テトラメトキシシラン2.30g、メタノール4.00g、及びアセトン4.00gを混合・撹拌した。混合液に水5.46g及び濃度60質量%の硝酸水溶液4.7μLを加えた。この混合液をさらに3時間撹拌し、3官能成分:4官能成分(重合比)=3:7のポリシロキサンオリゴマーを含むポリシロキサンオリゴマー溶液を得た。続いて前記ポリシロキサンオリゴマー溶液に、酸化チタン12.0g(富士チタン工業 TA-100 粒径600nm)、及び1,3-ブタンジオール1gを混合して反射層形成用組成物を調製した。
この反射層形成用組成物を、比較例2と同様に基板上に塗布した。このとき、反射層形成用組成物の吐出圧力は、0.1MPaとした。また、ノズルの移動速度は100mm/sとした。その後、150℃で1時間加熱して、反射層を形成した。反射層を形成したパッケージに、波長変換層形成用組成物をパッケージ内にディスペンサーにより、ポッティングし、比較例1と同様に波長変換層を形成した。
メチルトリメトキシシラン2.10g、テトラメトキシシラン0.98g、メタノール4.00g、及びアセトン4.00gを混合・撹拌した。混合液に水5.46g及び濃度60質量%の硝酸水溶液4.7μLを加えた。この混合液をさらに3時間撹拌し、3官能成分:4官能成分(重合比)=7:3のポリシロキサンオリゴマーを含むポリシロキサンオリゴマー溶液を得た。続いて前記ポリシロキサンオリゴマー溶液に、酸化チタン12.0g(富士チタン工業 TA-100 粒径600nm)、及び1,3-ブタンジオール1gを混合して反射層形成用組成物を調製した。
この反射層形成用組成物を、比較例2と同様に基板上に塗布した。このとき、反射層形成用組成物の吐出圧力は、0.1MPaとした。また、ノズルの移動速度は100mm/sとした。その後、150℃で1時間加熱して、反射層を形成した。反射層を形成したパッケージに、波長変換層形成用組成物をパッケージ内にディスペンサーにより、ポッティングし、比較例1と同様に波長変換層を形成した。
メチルトリメトキシシラン2.40g、テトラメトキシシラン0.65g、メタノール4.00g、及びアセトン4.00gを混合・撹拌した。混合液に水5.46g及び濃度60質量%の硝酸水溶液4.7μLを加えた。この混合液をさらに3時間撹拌し、3官能成分:4官能成分(重合比)=8:2のポリシロキサンオリゴマーを含むポリシロキサンオリゴマー溶液を得た。続いて前記ポリシロキサンオリゴマー溶液に、酸化チタン12.0g(富士チタン工業 TA-100 粒径600nm)、及び1,3-ブタンジオール1gを混合して反射層形成用組成物を調製した。
この反射層形成用組成物を、比較例2と同様に基板上に塗布した。このとき、反射層形成用組成物の吐出圧力は、0.1MPaとした。また、ノズルの移動速度は100mm/sとした。その後、150℃で1時間加熱して、反射層を形成した。反射層を形成したパッケージに、波長変換層形成用組成物をパッケージ内にディスペンサーにより、ポッティングし、比較例1と同様に波長変換層を形成した。
メチルトリメトキシシラン1.20g、テトラメトキシシラン1.95g、メタノール4.00g、及びアセトン4.00gを混合・撹拌した。混合液に水5.46g及び濃度60質量%の硝酸水溶液4.7μLを加えた。この混合液をさらに3時間撹拌し、3官能成分:4官能成分(重合比)=4:6のポリシロキサンオリゴマーを含むポリシロキサンオリゴマー溶液を得た。
続いて前記ポリシロキサンオリゴマー溶液に、平均一次粒径が5nmである酸化ジルコニウム(ZrO2)の分散液(30質量%メタノール溶液 堺化学株式会社製)2.0g、酸化チタン12.0g(富士チタン工業 TA-100 粒径600nm)、及び1,3-ブタンジオール1gを混合して反射層形成用組成物を調製した。
この反射層形成用組成物を、比較例2と同様に基板上に塗布した。このとき、反射層形成用組成物の吐出圧力は、0.1MPaとした。また、ノズルの移動速度は100mm/sとした。その後、150℃で1時間加熱して、反射層を形成した。反射層を形成したパッケージに、波長変換層形成用組成物をパッケージ内にディスペンサーにより、ポッティングし、比較例1と同様に波長変換層を形成した。
メチルトリメトキシシラン2.40g、テトラメトキシシラン3.90g、メタノール4.00g、及びアセトン4.00gを混合・撹拌した。混合液に水5.46g及び濃度60質量%の硝酸水溶液4.7μLを加えた。この混合液をさらに3時間撹拌し、3官能成分:4官能成分(重合比)=4:6のポリシロキサンオリゴマーを含むポリシロキサンオリゴマー溶液を得た。
続いて前記ポリシロキサンオリゴマー溶液に、安定化剤としてアセチルアセトン(関東化学社製)をポリシロキサンオリゴマー溶液の全量に対して10質量%添加した。さらにZrキレート溶液(ZC-580(マツモトファインケミカル社製))、平均一次粒径が5nmである酸化ジルコニウム(ZrO2)分散液(30質量%メタノール溶液 堺化学株式会社製)3.0g、酸化チタン12.0g(富士チタン工業 TA-100 粒径600nm)、及び1,3-ブタンジオール1gを混合して反射層形成用組成物を調製した。Zrキレート溶液の添加量は、Zrキレートの量が、ポリシロキサンオリゴマー溶液、Zrキレート溶液、及び酸化ジルコニウム分散液の固形分の合計に対して10質量%となる量とした。
この反射層形成用組成物を、比較例2と同様に基板上に塗布した。このとき、反射層形成用組成物の吐出圧力は、0.1MPaとした。また、ノズルの移動速度は100mm/sとした。その後、150℃で1時間加熱して、反射層を形成した。反射層を形成したパッケージに、波長変換層形成用組成物をパッケージ内にディスペンサーにより、ポッティングし、比較例1と同様に波長変換層を形成した。
メチルトリメトキシシラン2.40g、テトラメトキシシラン3.90g、メタノール4.00g、及びアセトン4.00gを混合・撹拌した。混合液に水5.46g及び濃度60質量%の硝酸水溶液4.7μLを加えた。この混合液をさらに3時間撹拌し、3官能成分:4官能成分(重合比)=4:6のポリシロキサンオリゴマーを含むポリシロキサンオリゴマー溶液を得た。続いて前記ポリシロキサンオリゴマー溶液に、安定化剤としてアセチルアセトン(関東化学社製)をポリシロキサン溶液の全量に対して10質量%添加した。さらに、Alアルコキシド(ALR15GB(高純度化学社製))、平均一次粒径が5nmである酸化ジルコニウム(ZrO2)の分散液(30質量%メタノール溶液 堺化学株式会社製)3.0g、酸化チタン12.0g(富士チタン工業 TA-100 粒径600nm)、及び1,3-ブタンジオール1gを混合して混合液を調製した。Alアルコキシドの添加量は、Alアルコキシドの量が、ポリシロキサンオリゴマー溶液、Alアルコキシド、及び酸化ジルコニウム分散液の固形分の合計に対して10質量%となる量とした。
この反射層形成用組成物を、比較例2と同様に基板上に塗布した。このとき、反射層形成用組成物の吐出圧力は、0.1MPaとした。また、ノズルの移動速度は100mm/sとした。その後、150℃で1時間加熱して、反射層を形成した。反射層を形成したパッケージに、波長変換層形成用組成物をパッケージ内にディスペンサーにより、ポッティングし、比較例1と同様に波長変換層を形成した。
実施例3と同様に反射層形成用組成物を調製した。
この反射層形成用組成物を、比較例2と同様に基板上に塗布した。このとき、反射層形成用組成物の吐出圧力は、0.1MPaとした。また、ノズルの移動速度は180mm/sとした。その後、150℃で1時間加熱して、反射層を形成した。反射層を形成したパッケージに、波長変換層形成用組成物をパッケージ内にディスペンサーにより、ポッティングし、比較例1と同様に波長変換層を形成した。
実施例3と同様に、反射層形成用組成物を調製した。この反射層形成用組成物を、比較例2と同様に基板上に塗布した。このとき、反射層形成用組成物の吐出圧力は、0.1MPaとした。また、ノズルの移動速度は50mm/sとした。その後、150℃で1時間加熱して、反射層を形成した。反射層を形成したパッケージに、波長変換層形成用組成物をパッケージ内にディスペンサーにより、ポッティングし、比較例1と同様に波長変換層を形成した。
比較例1、2、及び実施例1~13で作製したLED装置について、それぞれ反射層の厚み、全光束値、耐久性試験後の全光束値、劣化率、密着性を以下の方法で評価した。結果を表1に示す。
各LED装置作製途中で、反射層の膜厚をレーザホロゲージ(ミツトヨ社製)で測定した。
各LED装置の全光束値を、分光放射輝度計(CS-1000A、コニカミノルタセンシング社製)にて測定した。評価は、反射層を形成しない場合(比較例1)のLED装置の測定結果を100とし、相対的に評価した。
実施例及び比較例で作製したLED装置について、100℃の恒温槽中で各LED装置を20mAの電流値で発光させた。1000時間発光後、各LED装置について、全光束値を測定した。耐久性試験前後の全光束値を比較し、劣化率を算出した。劣化率は、(1-(耐久性試験後の全光束の相対値/耐久性試験前の全光束の相対値))×100とした。劣化率が15%以上である場合に、LED装置の劣化が生じたと判断した。また、劣化率が10%以上15%未満である場合、LED装置の劣化が殆どなく、実害性は無いが、わずかに反射層にクラック等が発生したと判断した。また、劣化率が10%未満であれば、LED装置の劣化がなく、反射層にクラックも生じなかった、と判断した。
実施例及び比較例で作製したLED装置について、ヒートショック試験器(TSA-42EL;エスペック社製)により、ヒートショック試験を行った。試験は、LED装置を、-40℃にて30分保存後、100℃にて30分保存する工程を1サイクルとし、これを3000サイクル行った。試験後のサンプルを光学顕微鏡(オリンパス社製 BX50)で確認し、基板と反射層との界面、及び反射層と波長変換層との界面にそれぞれ剥離が生じたか、確認した。
△・・・実害性はないが、部分的に剥離が生じている
○・・・わずかに剥離が生じている
◎・・・剥離なし
[実施例14]
ジメチルジメトキシシラン0.3g、メチルトリメトキシシラン3.06g、メタノール4.00g、及びアセトン4.00gを混合し、撹拌した。混合液に水5.46g及び濃度60質量%の硝酸水溶液4.7μLを加えた。この混合液をさらに3時間撹拌し、2官能成分と3官能成分との重合比が1:9であるポリシロキサンオリゴマー溶液を得た。続いてポリシロキサンオリゴマー溶液に、酸化チタン12.0g(富士チタン工業 TA-100 粒径600nm)、及び1,3-ブタンジオール1gを混合して反射層形成用組成物を調製した。
この反射層形成用組成物を、比較例2と同様に基板上に塗布した。このとき、反射層形成用組成物の吐出圧力は、0.1MPaとした。また、ノズルの移動速度は160mm/sとした。その後、150℃で1時間加熱して、反射層を形成した。反射層を形成したパッケージに、波長変換層形成用組成物をディスペンサーにより、ポッティングし、比較例1と同様に波長変換層を形成した。
塗布時のノズルの移動速度を65mm/sとした以外は実施例14と同様にLED装置を作製した。
塗布時のノズルの移動速度を40mm/sとした以外は実施例14と同様にLED装置を作製した。
塗布時のノズルの移動速度を30mm/sとした以外は実施例14と同様にLED装置を作製した。
反射層形成用組成物調製時のジメチルジメトキシシランの量を0.9gとし、メチルトリメトキシシランの量を2.37gに変更した以外は、実施例15と同様にLED装置を作製した。
反射層形成用組成物調製時のジメチルジメトキシシランの量を1.7gとし、メチルトリメトキシシランの量を2.04gとした以外は、実施例15と同様にLED装置を作製した。
ジメチルジメトキシシラン0.28g、メチルトリメトキシシラン2.22g、テトラメトキシシラン0.71g、メタノール4.00g、及びアセトン4.00gを混合し、撹拌した。混合液に水5.46g及び濃度60質量%の硝酸水溶液4.7μLを加えた。この混合液をさらに3時間撹拌し、ポリシロキサンオリゴマー溶液を得た。続いてポリシロキサンオリゴマー溶液に、酸化チタン12.0g(富士チタン工業 TA-100 粒径600nm)、及び1,3-ブタンジオール1gを混合して反射層形成用組成物を調製した。
当該反射層形成用組成物を塗布して反射層を成膜した以外は、実施例15と同様にLED装置を作製した。
ジメチルジメトキシシラン0.3g、メチルトリメトキシシラン3.06g、メタノール4.00g、及びアセトン4.00gを混合・撹拌した。混合液に水5.46g及び濃度60質量%の硝酸水溶液4.7μLを加えた。この混合液をさらに3時間撹拌し、2官能成分:3官能成分(重合比)=1:9のポリシロキサンオリゴマーを含むポリシロキサンオリゴマー溶液を得た。続いて前記ポリシロキサンオリゴマー溶液に、平均一次粒径が5nmである酸化ジルコニウム(ZrO2)の分散液(30質量%メタノール溶液 堺化学株式会社製)2.0g、酸化チタン12.0g(富士チタン工業 TA-100 粒径600nm)、及び1,3-ブタンジオール1gを混合して反射層形成用組成物を調製した。
この反射層形成用組成物を、比較例2と同様に基板上に塗布した。このとき、反射層形成用組成物の吐出圧力は、0.1MPaとした。また、ノズルの移動速度は65mm/sとした。その後、150℃で1時間加熱して、反射層を形成した。反射層を形成したパッケージに、波長変換層形成用組成物をパッケージ内にディスペンサーにより、ポッティングし、比較例1と同様に波長変換層を形成した。
ジメチルジメトキシシラン0.3g、メチルトリメトキシシラン3.06g、メタノール4.00g、及びアセトン4.00gを混合・撹拌した。混合液に水5.46g及び濃度60質量%の硝酸水溶液4.7μLを加えた。この混合液をさらに3時間撹拌し、2官能成分:3官能成分(重合比)=1:9のポリシロキサンオリゴマーを含むポリシロキサンオリゴマー溶液を得た。続いて前記ポリシロキサンオリゴマー溶液に、安定化剤としてアセチルアセトン(関東化学社製)をポリシロキサンオリゴマー溶液の全量に対して10質量%添加した。さらにZrキレート溶液(ZC-580(マツモトファインケミカル社製))、平均一次粒径が5nmである酸化ジルコニウム(ZrO2)分散液(30質量%メタノール溶液 堺化学株式会社製)3.0g、酸化チタン12.0g(富士チタン工業 TA-100 粒径600nm)、及び1,3-ブタンジオール1gを混合して反射層形成用組成物を調製した。Zrキレート溶液の添加量は、Zrキレートの量が、ポリシロキサンオリゴマー溶液、Zrキレート溶液、及び酸化ジルコニウム分散液の固形分の合計に対して10質量%となる量とした。
この反射層形成用組成物を、比較例2と同様に基板上に塗布した。このとき、反射層形成用組成物の吐出圧力は、0.1MPaとした。また、ノズルの移動速度は65mm/sとした。その後、150℃で1時間加熱して、反射層を形成した。反射層を形成したパッケージに、波長変換層形成用組成物をパッケージ内にディスペンサーにより、ポッティングし、比較例1と同様に波長変換層を形成した。
ジメチルジメトキシシラン0.28g、メチルトリメトキシシラン2.22g、テトラメトキシシラン0.71g、メタノール4.00g、及びアセトン4.00gを混合・撹拌した。混合液に水5.46g及び濃度60質量%の硝酸水溶液4.7μLを加えた。この混合液をさらに3時間撹拌し、2官能成分:3官能成分(重合比)=1:9のポリシロキサンオリゴマーを含むポリシロキサンオリゴマー溶液を得た。続いて前記ポリシロキサンオリゴマー溶液に、平均一次粒径が5nmである酸化ジルコニウム(ZrO2)の分散液(30質量%メタノール溶液 堺化学株式会社製)2.0g、酸化チタン12.0g(富士チタン工業 TA-100 粒径600nm)、及び1,3-ブタンジオール1gを混合して反射層形成用組成物を調製した。
この反射層形成用組成物を、比較例2と同様に基板上に塗布した。このとき、反射層形成用組成物の吐出圧力は、0.1MPaとした。また、ノズルの移動速度は65mm/sとした。その後、150℃で1時間加熱して、反射層を形成した。反射層を形成したパッケージに、波長変換層形成用組成物をパッケージ内にディスペンサーにより、ポッティングし、比較例1と同様に波長変換層を形成した。
ジメチルジメトキシシラン0.28g、メチルトリメトキシシラン2.22g、テトラメトキシシラン0.71g、メタノール4.00g、及びアセトン4.00gを混合・撹拌した。混合液に水5.46g及び濃度60質量%の硝酸水溶液4.7μLを加えた。この混合液をさらに3時間撹拌し、2官能成分:3官能成分(重合比)=1:9のポリシロキサンオリゴマーを含むポリシロキサンオリゴマー溶液を得た。続いて前記ポリシロキサンオリゴマー溶液に、安定化剤としてアセチルアセトン(関東化学社製)をポリシロキサンオリゴマー溶液の全量に対して10質量%添加した。さらにZrキレート溶液(ZC-580(マツモトファインケミカル社製))、平均一次粒径が5nmである酸化ジルコニウム(ZrO2)分散液(30質量%メタノール溶液 堺化学株式会社製)3.0g、酸化チタン12.0g(富士チタン工業 TA-100 粒径600nm)、及び1,3-ブタンジオール1gを混合して反射層形成用組成物を調製した。Zrキレート溶液の添加量は、Zrキレートの量が、ポリシロキサンオリゴマー溶液、Zrキレート溶液、及び酸化ジルコニウム分散液の固形分の合計に対して10質量%となる量とした。
この反射層形成用組成物を、比較例2と同様に基板上に塗布した。このとき、反射層形成用組成物の吐出圧力は、0.1MPaとした。また、ノズルの移動速度は65mm/sとした。その後、150℃で1時間加熱して、反射層を形成した。反射層を形成したパッケージに、波長変換層形成用組成物をパッケージ内にディスペンサーにより、ポッティングし、比較例1と同様に波長変換層を形成した。
実施例14~20で作製したLED装置について、それぞれ反射層の厚み、全光束値、耐久性試験後の全光束値、劣化率、密着性を実施例1と同様の方法で評価した。結果を表2に示す。
2 LED素子
3,3’ メタル部
4 配線
5 突起電極
6 キャビティ内壁面
11 波長変換層
21 反射層
100 LED装置
Claims (17)
- 基板と、前記基板上に実装され、かつ特定波長の光を出射するLED素子とを有するLED装置であって、
前記基板のLED素子実装領域外の表面に、無機粒子からなる光拡散粒子とセラミックバインダとを含む反射層をさらに有する、LED装置。 - 前記反射層の厚みが5μm以上200μm以下である、請求項1に記載のLED装置。
- 前記反射層の厚みが5μm以上30μm以下である、請求項1に記載のLED装置。
- 前記基板がキャビティを有し、前記キャビティ内壁面に前記反射層を有する、請求項1~3のいずれか一項に記載のLED装置。
- 前記反射層及び前記LED素子を被覆する、波長変換層をさらに有し、
前記波長変換層は、透明樹脂及び蛍光体粒子を含む、請求項1~4のいずれか一項に記載のLED装置。 - 前記光拡散粒子は酸化チタン、硫酸バリウム、チタン酸バリウム、窒化ホウ素、酸化亜鉛、及び酸化アルミニウムからなる群から選ばれる少なくとも1種の無機粒子からなる、請求項1~5のいずれか一項に記載のLED装置。
- 前記セラミックバインダは、3官能シラン化合物及び4官能シラン化合物の重合体であり、かつ3官能シラン化合物及び4官能シラン化合物の重合比率は3:7~7:3である、請求項1~6のいずれか一項に記載のLED装置。
- 前記セラミックバインダは、2官能シラン化合物及び3官能シラン化合物の重合体であり、かつ2官能シラン化合物及び3官能シラン化合物の重合比率は1:9~4:6である、請求項1~6のいずれか一項に記載のLED装置。
- 前記反射層は、平均一次粒径が5~100nmである金属酸化物微粒子をさらに含む、請求項1~8のいずれか一項に記載のLED装置。
- 前記金属酸化物微粒子が、酸化ジルコニウム、酸化チタン、酸化セリウム、酸化ニオブ、及び酸化亜鉛の群から選ばれる少なくとも1種である、請求項9に記載のLED装置。
- 前記反射層は、Si元素以外の2価以上の金属元素の金属アルコキシドまたは金属キレートの硬化物をさらに含む、請求項1~10のいずれか一項に記載のLED装置。
- 前記基板がメタル部を有し、
前記LED素子実装領域外かつメタル部上に、前記反射層を有する、請求項1~11のいずれか一項に記載のLED装置。 - 前記基板がメタル部を有し、
前記LED素子実装領域外かつメタル部領域外の前記基板の表面に、前記反射層を有する、請求項1~11のいずれか一項に記載のLED装置。 - 基板と、前記基板上に実装され、かつ特定波長の光を出射するLED素子と、前記基板のLED素子実装領域外の表面に形成された反射層と、を有するLED装置の製造方法であって、
前記LED素子の実装領域外の前記基板表面に、光拡散粒子及び有機ケイ素化合物を含む反射層形成用組成物を塗布し、前記反射層を形成する工程を含む、LED装置の製造方法。 - 前記基板がメタル部を有し、
前記反射層を形成する工程において、前記LED素子実装領域外かつ前記メタル部上に、前記反射層を形成する、請求項14に記載のLED装置の製造方法。 - 前記基板がメタル部を有し、
前記反射層を形成する工程において、前記LED素子の実装領域外かつ前記メタル部領域外の前記基板表面に、前記反射層を形成する、請求項14に記載のLED装置の製造方法。 - 前記基板はキャビティを有し、
前記キャビティ内壁面に、前記反射層形成用組成物をスプレー塗布する工程を含む、請求項14~16のいずれか一項に記載のLED装置の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13823059.4A EP2879195A4 (en) | 2012-07-27 | 2013-07-26 | LED DEVICE AND METHOD FOR THE PRODUCTION THEREOF |
US14/415,661 US20150162511A1 (en) | 2012-07-27 | 2013-07-26 | Led device and method for manufacturing same |
JP2014526780A JP5843016B2 (ja) | 2012-07-27 | 2013-07-26 | Led装置及びその製造方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-167100 | 2012-07-27 | ||
JP2012167100 | 2012-07-27 | ||
JP2012-204316 | 2012-09-18 | ||
JP2012204316 | 2012-09-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014017108A1 true WO2014017108A1 (ja) | 2014-01-30 |
Family
ID=49996930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/004567 WO2014017108A1 (ja) | 2012-07-27 | 2013-07-26 | Led装置及びその製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20150162511A1 (ja) |
EP (1) | EP2879195A4 (ja) |
JP (1) | JP5843016B2 (ja) |
WO (1) | WO2014017108A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170146219A1 (en) * | 2014-05-28 | 2017-05-25 | Appotronics China Corporation | Wavelength conversion device and related light-emitting device thereof |
US9865779B2 (en) | 2015-09-30 | 2018-01-09 | Nichia Corporation | Methods of manufacturing the package and light-emitting device |
WO2018168473A1 (ja) * | 2017-03-15 | 2018-09-20 | ミツミ電機株式会社 | 光学モジュールの製造方法及び光学モジュール |
JP2020167396A (ja) * | 2019-03-27 | 2020-10-08 | 日亜化学工業株式会社 | 発光装置の製造方法 |
JP2020167366A (ja) * | 2019-02-26 | 2020-10-08 | ローム株式会社 | 半導体発光装置および半導体発光装置の製造方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015211202A (ja) * | 2014-04-30 | 2015-11-24 | 株式会社東芝 | 発光装置 |
DE102015105661B4 (de) * | 2015-04-14 | 2022-04-28 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Optoelektronische Vorrichtung mit einer Mischung aufweisend ein Silikon und ein fluor-organisches Additiv |
US10672960B2 (en) | 2017-10-19 | 2020-06-02 | Lumileds Llc | Light emitting device package with a coating layer |
DE102019134728A1 (de) * | 2019-12-17 | 2021-06-17 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Optische komponente, optoelektronisches halbleiterbauteil und verfahren zur herstellung einer optischen komponente |
DE102020209542A1 (de) | 2020-07-29 | 2022-02-03 | Robert Bosch Gesellschaft mit beschränkter Haftung | Sensor zum Erfassen einer physikalischen Größe |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004070271A (ja) * | 2002-06-12 | 2004-03-04 | Ricoh Co Ltd | 電子写真感光体及びその製造方法 |
JP2005136379A (ja) | 2003-10-08 | 2005-05-26 | Nichia Chem Ind Ltd | 半導体装置 |
JP2005298573A (ja) * | 2004-04-07 | 2005-10-27 | Shin Etsu Chem Co Ltd | 防汚性コーティング剤及び被覆物品 |
JP2008060344A (ja) * | 2006-08-31 | 2008-03-13 | Toshiba Corp | 半導体発光装置 |
JP2008205453A (ja) * | 2007-01-26 | 2008-09-04 | Teijin Ltd | 放熱性実装基板およびその製造方法 |
JP2009212134A (ja) * | 2008-02-29 | 2009-09-17 | Toshiba Corp | 窒化アルミニウムパッケージ、発光装置、バックライトおよび照明装置 |
JP2010126559A (ja) * | 2008-11-25 | 2010-06-10 | Panasonic Electric Works Co Ltd | 撥水・撥油性皮膜形成用樹脂組成物、及び塗装品 |
JP2011023621A (ja) | 2009-07-17 | 2011-02-03 | Sharp Corp | 発光装置 |
WO2012002580A1 (ja) * | 2010-07-01 | 2012-01-05 | シチズンホールディングス株式会社 | Led光源装置及びその製造方法 |
JP2012074483A (ja) * | 2010-09-28 | 2012-04-12 | Toyoda Gosei Co Ltd | 発光素子収納用パッケージ |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1796181B1 (en) * | 2004-09-22 | 2020-02-19 | Kabushiki Kaisha Toshiba | Light emitting device, and back light and liquid crystal display employing it |
EP1873563B1 (en) * | 2005-03-29 | 2017-03-22 | Kyocera Corporation | Light-emitting device using reflective member and illuminating device |
JPWO2007037093A1 (ja) * | 2005-09-29 | 2009-04-02 | 出光興産株式会社 | 反射材及び発光ダイオード用反射体 |
JP2010021533A (ja) * | 2008-06-09 | 2010-01-28 | Shin-Etsu Chemical Co Ltd | 光半導体ケース形成用白色熱硬化性シリコーン樹脂組成物及び光半導体ケース |
JP2010018786A (ja) * | 2008-06-09 | 2010-01-28 | Shin-Etsu Chemical Co Ltd | 光半導体ケース形成用白色熱硬化性シリコーン樹脂組成物及び光半導体ケース |
KR101064026B1 (ko) * | 2009-02-17 | 2011-09-08 | 엘지이노텍 주식회사 | 발광 디바이스 패키지 및 그 제조방법 |
JP2010205954A (ja) * | 2009-03-04 | 2010-09-16 | Micro Coatec Kk | Led照明構造体 |
KR20120123242A (ko) * | 2009-06-26 | 2012-11-08 | 가부시키가이샤 아사히 러버 | 백색 반사재 및 그 제조방법 |
JP2011165967A (ja) * | 2010-02-10 | 2011-08-25 | Fujifilm Corp | 太陽電池用バックシート、及び、太陽電池用モジュール |
US20120074434A1 (en) * | 2010-09-24 | 2012-03-29 | Jun Seok Park | Light emitting device package and lighting apparatus using the same |
-
2013
- 2013-07-26 US US14/415,661 patent/US20150162511A1/en not_active Abandoned
- 2013-07-26 WO PCT/JP2013/004567 patent/WO2014017108A1/ja active Application Filing
- 2013-07-26 JP JP2014526780A patent/JP5843016B2/ja not_active Expired - Fee Related
- 2013-07-26 EP EP13823059.4A patent/EP2879195A4/en not_active Withdrawn
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004070271A (ja) * | 2002-06-12 | 2004-03-04 | Ricoh Co Ltd | 電子写真感光体及びその製造方法 |
JP2005136379A (ja) | 2003-10-08 | 2005-05-26 | Nichia Chem Ind Ltd | 半導体装置 |
JP2005298573A (ja) * | 2004-04-07 | 2005-10-27 | Shin Etsu Chem Co Ltd | 防汚性コーティング剤及び被覆物品 |
JP2008060344A (ja) * | 2006-08-31 | 2008-03-13 | Toshiba Corp | 半導体発光装置 |
JP2008205453A (ja) * | 2007-01-26 | 2008-09-04 | Teijin Ltd | 放熱性実装基板およびその製造方法 |
JP2009212134A (ja) * | 2008-02-29 | 2009-09-17 | Toshiba Corp | 窒化アルミニウムパッケージ、発光装置、バックライトおよび照明装置 |
JP2010126559A (ja) * | 2008-11-25 | 2010-06-10 | Panasonic Electric Works Co Ltd | 撥水・撥油性皮膜形成用樹脂組成物、及び塗装品 |
JP2011023621A (ja) | 2009-07-17 | 2011-02-03 | Sharp Corp | 発光装置 |
WO2012002580A1 (ja) * | 2010-07-01 | 2012-01-05 | シチズンホールディングス株式会社 | Led光源装置及びその製造方法 |
JP2012074483A (ja) * | 2010-09-28 | 2012-04-12 | Toyoda Gosei Co Ltd | 発光素子収納用パッケージ |
Non-Patent Citations (2)
Title |
---|
"Kappuringu-zai Saiteki Riyou Gijyutsu", NATIONAL INSTITUTE OF ADVANCED SCIENCE AND TECHNOLOGY |
See also references of EP2879195A4 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170146219A1 (en) * | 2014-05-28 | 2017-05-25 | Appotronics China Corporation | Wavelength conversion device and related light-emitting device thereof |
JP2017517771A (ja) * | 2014-05-28 | 2017-06-29 | 深▲せん▼市繹立鋭光科技開発有限公司Appotronics(China)Corporation | 波長変換装置及びその関連発光装置 |
US9865779B2 (en) | 2015-09-30 | 2018-01-09 | Nichia Corporation | Methods of manufacturing the package and light-emitting device |
US10367121B2 (en) | 2015-09-30 | 2019-07-30 | Nichia Corporation | Package and light-emitting device |
WO2018168473A1 (ja) * | 2017-03-15 | 2018-09-20 | ミツミ電機株式会社 | 光学モジュールの製造方法及び光学モジュール |
JP2018152536A (ja) * | 2017-03-15 | 2018-09-27 | ミツミ電機株式会社 | 光学モジュールの製造方法及び光学モジュール |
US10971666B2 (en) | 2017-03-15 | 2021-04-06 | Mitsumi Electric Co., Ltd. | Method for manufacturing an optical module and optical module |
JP2020167366A (ja) * | 2019-02-26 | 2020-10-08 | ローム株式会社 | 半導体発光装置および半導体発光装置の製造方法 |
JP2020167396A (ja) * | 2019-03-27 | 2020-10-08 | 日亜化学工業株式会社 | 発光装置の製造方法 |
JP7148811B2 (ja) | 2019-03-27 | 2022-10-06 | 日亜化学工業株式会社 | 発光装置の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014017108A1 (ja) | 2016-07-07 |
EP2879195A4 (en) | 2016-01-20 |
US20150162511A1 (en) | 2015-06-11 |
EP2879195A1 (en) | 2015-06-03 |
JP5843016B2 (ja) | 2016-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5843016B2 (ja) | Led装置及びその製造方法 | |
WO2014104295A1 (ja) | 発光装置 | |
JP2014158011A (ja) | Led装置の製造方法 | |
JP5299577B2 (ja) | 発光装置の製造方法 | |
US9708492B2 (en) | LED device and coating liquid used for production of same | |
JP2014130871A (ja) | 発光装置 | |
WO2013099193A1 (ja) | Led装置用封止剤、led装置、及びled装置の製造方法 | |
WO2016121855A1 (ja) | 投射型表示装置用カラーホイール及びその製造方法、並びにこれを含む投射型表示装置 | |
WO2014027460A1 (ja) | 蛍光体分散液の製造方法、及びled装置の製造方法 | |
JP5910340B2 (ja) | Led装置、及びその製造方法 | |
JP2014122296A (ja) | 発光装置用封止材前駆体溶液、これを用いた発光装置用封止材、led装置、並びにled装置の製造方法 | |
JP2014135400A (ja) | 発光装置及び波長変換素子 | |
WO2014030342A1 (ja) | Led装置及びその製造方法 | |
JP2014130903A (ja) | 半導体発光装置及びその製造方法 | |
JP2014138081A (ja) | 発光装置、波長変換・光拡散素子及びそれらの製造方法、光拡散セラミック層形成用組成物 | |
JP2016154179A (ja) | 発光装置、及びその製造方法 | |
WO2014103330A1 (ja) | 蛍光体分散液、led装置およびその製造方法 | |
JP2014019844A (ja) | 蛍光体分散液及びled装置の製造方法 | |
JP5880566B2 (ja) | Led装置 | |
JP5729327B2 (ja) | Led装置の製造方法 | |
JP2014041955A (ja) | Led装置、及びその製造方法 | |
JP2014160713A (ja) | Led装置の製造方法 | |
JP2014127495A (ja) | Led装置、及びその製造方法 | |
WO2016024604A1 (ja) | 無機微粒子含有ポリシルセスキオキサン組成物およびその製造方法、ならびに発光装置およびその製造方法 | |
WO2014087629A1 (ja) | ディスペンサー塗布用透光性セラミック材料、及びこれを用いたled装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13823059 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014526780 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2013823059 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14415661 Country of ref document: US Ref document number: 2013823059 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |