WO2014015765A1 - 一种激光退火装置及激光退火方法 - Google Patents

一种激光退火装置及激光退火方法 Download PDF

Info

Publication number
WO2014015765A1
WO2014015765A1 PCT/CN2013/079697 CN2013079697W WO2014015765A1 WO 2014015765 A1 WO2014015765 A1 WO 2014015765A1 CN 2013079697 W CN2013079697 W CN 2013079697W WO 2014015765 A1 WO2014015765 A1 WO 2014015765A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
beam splitter
delay
mirror
laser annealing
Prior art date
Application number
PCT/CN2013/079697
Other languages
English (en)
French (fr)
Inventor
张俊
李志丹
李喆
Original Assignee
上海微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微电子装备有限公司 filed Critical 上海微电子装备有限公司
Priority to JP2015507369A priority Critical patent/JP6006864B2/ja
Priority to SG11201405564XA priority patent/SG11201405564XA/en
Priority to KR1020147036149A priority patent/KR101660440B1/ko
Priority to US14/385,464 priority patent/US9455164B2/en
Publication of WO2014015765A1 publication Critical patent/WO2014015765A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/0007Applications not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping

Definitions

  • the invention relates to a field of application of semiconductor material processing technology, in particular to a laser annealing device and a laser annealing method. Background technique
  • Annealing treatment mainly refers to a heat treatment process in which a material is exposed to a high temperature for a long period of time and then slowly cooled. Conventional furnaces are heated and annealed, and even at up to 1100 degrees, the crystal defects cannot be completely eliminated. Semiconductor laser annealing can completely eliminate crystal defects. Semiconductor laser annealing uses a wide range of optical wavelengths, from UV (UV) to IR (red). Single-pulse laser annealing, high-frequency Q-switched pulsed laser annealing, connected-wave laser scanning, as disclosed in U.S. Patent No. 6,336,308 (published on Jan. 2002), and U.S. Pat. Annealing, double-laser scanning annealing at the same wavelength, double-laser scanning annealing at different wavelengths, etc.
  • Double laser annealing There are two kinds of double laser annealing, one is that two pulses of the same wavelength radiate to the silicon plane at different times (such as the literature of the laser laser annealing by a two-pulse laser system with variable pulse offsets, V.Gonfa, etc and the literature Laser Annealing of Double implanted layers for igbt power devices, as shown in Clement Sabatier, etc.); another is to use a long-wave continuous laser or pulsed laser for preheating, and then further annealed with shortwaves (UL Dual beam laser spike) Annealing technology shows).
  • the dual laser mode laser annealing device has been applied in the fields of IGBT, TFT and the like in the industry.
  • Liquid Phase Reflectivtity under Conditions of Laser Induced Silicon Melting In the laser annealing process, when the silicon surface is melted, the surface liquid silicon has a reflectance twice that of the original solid silicon. The pulsed laser energy will be reflected out in large quantities without being absorbed by the silicon, which reduces the laser energy utilization and affects the annealing effect.
  • annealing is not necessarily required to reach a melting point of 1414 degrees (as in the prior art Sub-Melt Laser Annealing Followed by Low-Temperature RTP for Minimized Diffusion, SB Felch, D. E Downey, and EA Arevalo Varian Semiconductor Equipment Associates, Inc.
  • both of the above schemes may cause the temperature to exceed the temperature required for activation annealing (e.g., 1100 degrees, the activation efficiency is more than 90%) for a short period of time (such as less than 100 ns), thereby affecting the annealing effect. How to improve the energy utilization rate and improve the annealing effect has become an important problem to be improved in laser annealing. Summary of the invention
  • a first aspect of the invention provides a laser annealing apparatus, comprising: a laser beam generating module for providing a stable single pulse laser;
  • a cyclic delay device for decomposing the single-pulse laser into a plurality of sub-pulsed lasers; an optical module for concentrating the sub-pulsed lasers onto a substrate;
  • a motion stage for providing at least one degree of freedom of displacement to the substrate.
  • the cyclic delay device includes at least a delay device, a beam splitter group and an internal control module, wherein the internal control module is configured to control a delay of the delay device and a splitting of the beam splitter group proportion.
  • the cyclic delay device further includes a plurality of optical fibers for transmitting laser light between the beam splitter group and the delay device.
  • the delayer comprises a mirror-parallel two-sided mirror, and an angle or position adjustable exit end and a receiving end.
  • the exit end and the receiving end are respectively an output head and a receiving head, or an exit mirror and a receiving mirror.
  • the internal control module is configured to adjust an angle or a position of the output end and the receiving end to control a delay of the delay device.
  • the beam splitter group includes a plurality of first beam splitters having different transmittances and a rotating shaft, and the internal control module drives the rotating shaft to change the selected first beam splitter to control the splitting of the beam splitter group. proportion.
  • the distances of the plurality of first beamsplitters to the rotating shaft are equal.
  • the laser annealing device further includes a main controller, and the main controller is connected to the internal control module, and is configured to send a delay instruction and a split ratio command to the internal control module.
  • the laser beam generating module comprises a laser, a light intensity adjuster, a second beam splitter, an energy detector, a laser controller and an environment control unit, wherein the emitted laser light of the laser is adjusted by the light intensity adjuster And then splitting by the second beam splitter, wherein a majority of the laser enters the loop a ring delay device, the remainder entering the energy detector, the energy detector detecting laser energy and transmitting the detection result to the laser controller, the environmental control unit detecting the working environment information of the laser and detecting The result is transmitted to the laser controller, the laser controller controlling the laser operation according to a detection result of both an environmental control unit and an energy detector, the laser controller and the environmental control unit via the main controller control.
  • the optical module includes a beam expander, a homogenizer, a first focusing lens group, a third beam splitter, a second focusing lens group, and a focal plane detector, and the sub-pulsed laser light emitted from the cyclic delay device is sequentially After being processed by the beam expander and the light hooker, the third beam splitter splits, wherein a part of the sub-pulse laser passes through the first focusing mirror and is incident on the surface of the substrate, and another partial pulse
  • the laser beam is emitted to the focal plane detector via the second focusing mirror group, and the focal plane detector outputs the detected focal plane information to the main controller, and the main controller controls according to the focal plane information
  • the motion table motion causes the substrate to reach the optimal focal plane position.
  • a second aspect of the invention provides a laser annealing method, comprising:
  • the single-pulse laser is decomposed into a plurality of sub-laser pulses according to a delay requirement and an energy ratio; and the sub-laser pulse is used to continuously irradiate the substrate to stabilize the surface temperature of the substrate within a predetermined range.
  • the decomposing the single-pulse laser into a plurality of laser pulses according to a delay requirement and an energy ratio comprises:
  • the single-pulse laser is divided into two beams after the first beam splitter, one beam is directly used to irradiate the substrate, and the other beam enters a delay device and is emitted after a delay;
  • step C) the outgoing beam of the delayer is again divided into two beams after passing through the first beam splitter, one beam is used to irradiate the substrate, and the other beam is again entered into the delay device and then exits ; d) Repeat step C), or select a first split according to a set split ratio and repeat step c).
  • the delayer comprises a mirror-parallel two-sided mirror, and an angled or positionally adjustable exit end and a receiving end.
  • adjusting the angle or position of the exit end and the receiving end adjusts the delay time of the delay.
  • the exit end and the receiving end are respectively an output head and a receiving head, or an exit mirror and a receiving mirror.
  • the laser annealing device and the laser annealing method provided by the invention can decompose the single pulse laser into a plurality of laser pulses according to the delay requirement and the energy ratio, and under the continuous irradiation of the laser pulses, the surface temperature of the silicon wafer during annealing can be made It stays near the melting point or near the desired annealing temperature for a longer period of time, thereby improving the laser energy utilization rate and thereby improving the annealing effect.
  • FIG. 1 is a schematic view showing the overall structure of a laser annealing apparatus according to the present invention
  • FIG. 2 is a schematic view showing the configuration of a first embodiment of a circulation delay device of a laser annealing apparatus according to the present invention
  • Figure 3 is a schematic view showing the structure of a second embodiment of the cycle delay device of the laser annealing apparatus according to the present invention.
  • 4a is a schematic structural view of a beam splitter group of the cyclic delay device according to the present invention.
  • Figure 4b is a side view of Figure 4a
  • FIG. 5 is a schematic diagram of pulsed light intensity in a cyclic delay device according to the present invention.
  • FIG. 6 is a schematic diagram showing the energy distribution of the pulsed light intensity in the cyclic delay device according to the present invention
  • FIG. 7 is a schematic diagram showing the relative light intensity of the annealing laser pulse received by the substrate surface according to the present invention
  • Fig. 8 is a schematic view showing the surface temperature of the substrate according to the present invention.
  • the existing double pulse replaces the single pulse laser, and the energy is discretized, and the annealing effect is better.
  • the invention provides the laser annealing device and the laser annealing method provided by the invention, which can decompose the single pulse laser into a plurality of laser pulses according to the delay requirement and the energy ratio without increasing the laser, and the obtained annealing effect is better than the double pulse effect.
  • the surface temperature of the silicon wafer can be maintained near the melting point or near the annealing temperature for a longer period of time, thereby improving the utilization of the laser energy and improving the annealing. effect.
  • the core idea of the invention is to decompose a single pulse laser into a plurality of sub-pulsed lasers by using a cyclic delay device, and converge the sub-pulsed lasers onto a substrate by an optical module, and the substrate is continuous of the laser pulses.
  • the surface temperature of the substrate can be maintained near the melting point or near the annealing temperature for a longer period of time during annealing, thereby preventing the laser from being largely reflected by the reflectance of the melted substrate surface after the substrate reaches the melting point. Therefore, the laser energy utilization rate can be improved, thereby improving the annealing effect.
  • FIG. 1 is a schematic diagram of an overall structure of a laser annealing apparatus according to the present invention.
  • the laser annealing apparatus includes:
  • a laser beam generating module for providing a stable single pulse laser
  • a cyclic delay device 300 for decomposing the single-pulse laser into a plurality of sub-pulsed lasers; an optical module for concentrating the sub-pulsed lasers to a substrate 204, the substrate 204 being a semiconductor to be annealed Or other materials, in this embodiment, the substrate is a silicon wafer;
  • the laser annealing device further includes a main controller 600, and the main controller 600 is connected to the internal control module 307, and configured to send a delay command and a split ratio command to the cyclic delay device 300.
  • the main controller 600 controls the delay between the plurality of sub-pulses issued by the cyclic delay device 300 and the split ratio (i.e., the energy ratio) of the cyclic delay device 300 in accordance with an instruction from the main controller 600.
  • the main controller 600 can also directly control the delay between several sub-pulses sent by the cyclic delay device 300 and the split ratio (i.e., energy ratio) of the cyclic delay device 300.
  • FIG. 2 is a schematic structural diagram of a first embodiment of a cyclic delay device of a laser annealing apparatus according to the present invention.
  • the cyclic delay device 300 includes at least a delay device 301 , a beam splitter group 302 , and An internal control module 307, wherein the delay 301 can adjust the delay time of the pulse as needed, and the beam splitter group 302 is used to adjust the splitting ratio.
  • the internal control module 307 is connected to the delayer 301 and the beam splitter group 302, respectively, and the internal control module 307 is configured to control the delay of the delayer 301 and the splitting of the beam splitter group 302. proportion.
  • the cyclic delay device 300 further includes a plurality of optical fibers 310 for transmitting laser light between the beam splitter group 302 and the delay device 301.
  • the delay 301 includes mirror-parallel two-sided mirrors 304, 305, and angled or positionally adjustable exit and receive ends.
  • the internal control module 307 can control the delay of the delay 301 by adjusting the angle or position of the exit and receive ends.
  • the exit end and the receiving end may be an output head 303 and a receiving head 306.
  • the mirror 304 and the mirror 305 are mirror-parallel.
  • the angle of the exit head 303 is adjustable, the position of the receiving head 306 is adjustable, and the angle of adjustment is controlled by the internal control module 307.
  • the distance between the two-sided mirrors 304 and 305 is L
  • the height is H
  • the length of the optical fiber 310 in the cyclic delay device 300 is L0
  • the optical fiber 310 is exported to the exiting head 306.
  • the optical path of the light path is L1
  • the optical path of the light beam for each cycle in the cyclic delay device 300 is approximately
  • the exit angle ⁇ can be calculated by Equation 1 and Equation 2, in the internal control module.
  • the angle of the exiting head 303 is adjusted to emit light, and the receiving head 306 is adjusted to a position where the laser light is easily received.
  • FIG. 4a and FIG. 4b wherein FIG. 4a is a schematic structural view of a beam splitting mirror of the cyclic delay device according to the present invention, and FIG. 4b is a side view of FIG. 4a, the beam splitter group 302 includes a plurality of first beam splitters having different transmittances and a rotating shaft 3025.
  • the beam splitter group 302 has four first beam splitters 3021, 3022, 3023, and 3024, and the internal control module 307 drives the The rotating shaft 3025 changes the selected first beam splitter to control the splitting ratio of the beam splitter group 302.
  • the transmittances of the four first beam splitters 3021, 3022, 3023, and 3024 are sequentially a1, a2, a3, and a4.
  • the internal control module 307 controls the rotation of the rotating shaft 3025 of the beam splitter group 302 to change the selected first beam splitter, and sets the transmittance of the selected first beam splitter to a. . Different transmittances can be obtained by selecting different first beamsplitters.
  • the distances of the plurality of first beam splitters 3021, 3022, 3023 and 3024 to the rotating shaft 3025 are equal, so that the first beam splitter of the desired transmittance can be conveniently selected.
  • the laser beam generating module comprises: a laser 100, a light intensity adjuster 101, a second beam splitter 102, an energy detector 105, a laser controller 104, and an environment control unit 103, and the issued singlet of the laser 100
  • the pulsed laser is first adjusted by the intensity adjuster 101, and then split by the second beam splitter 102, wherein a majority of the laser enters the cyclic delay device 300, and the rest enters the energy detector 105.
  • the energy detector 105 detects laser energy and transmits the detection result to the laser controller 104; the environment control unit 103 detects working environment information (such as temperature information) of the laser 100 and transmits the detection result to the
  • the laser controller 104 controls the laser 100 to operate according to the detection results of both the environmental control unit 103 and the energy detector 105, and the laser controller 104 and the main controller 600 are connected and received by the laser controller 104.
  • the main controller 600 controls.
  • the optical module includes a beam expander 206, a light hook 203, a first focusing mirror group 202, a third beam splitter 207, a second focusing mirror group 209, and a focal plane detector 201, from the cyclic delay device 300.
  • the emitted sub-pulse laser is processed through the beam expander 206 and the hook 203 in sequence, and then
  • the third beam splitter 307 splits light, wherein a portion of the sub-pulsed laser light passes through the first focusing mirror group 202 and is incident on the surface of the substrate 204, and another portion of the sub-pulsed laser light passes through the second focusing mirror group 209 and is then incident on the substrate.
  • the focal plane detector 201 outputs the detected focal plane information to the main controller 600, and the main controller 600 controls the motion of the motion table 500 according to the focal plane information to make the base
  • FIG. 5 is a schematic diagram of pulsed light intensity in the cyclic delay device according to the present invention.
  • the beam splitter group 302 emits a laser beam according to a set splitting ratio a (ie, the selected first beam splitter has the splitting ratio a).
  • Beam 0 is divided into two beams, one of which (beam 1 is Beam 1 ) leads directly to the outside of the cyclic delay device 300 , such as beam expander 206 leading to the homogenizer 203 and the other beam (beam 2 is Beam) 2)
  • beam 1 is Beam 1
  • beam 2 is Beam 2
  • T setting
  • the beam 2 is split into two beams by the selected first beam splitter at a set splitting ratio a, one of which (beam 3, Beam 3) leads directly to the outside of the cyclic delay device 300, and the other beam (beam 4) Beam
  • the beam 4 After being introduced into the delayer 301 by a given setting (T) delay, the beam 4 is again redirected through the fiber 310 to the selected first beam splitter.
  • the beam 4 is split into two beams by the selected first beam splitter, one of which (beam 5, Beam 5) leads directly to the outside of the cyclic delay device 300, and the other beam (beam 6 is Beam 6) is introduced into the delay. After a delay of a given setting (T) in the 301, the beam 6 is redirected through the fiber 310 to the selected first beam splitter.
  • the relative energy values of the beams 0, 1 , 2, 3, 4, 5, 6 , ..., 2 ⁇ - 1, 2 ⁇ are: l, a, 1-a, a(la), (la) A 2, a(la) A 2, (la) A 3,..., a(la) A (nl), (la) A n.
  • the actual light reaching the homogenizer 302 is an odd-numbered laser such as 1,3,5, ..., 2n-l, and the relative energy values are as follows:
  • the homogenizer 302 sequentially dims the n laser pulses of the odd numbered times, such as 1, 3, 5, ..., 2n-1, in the non-scanning direction, and sequentially irradiates them on the substrate 204 of the motion table 500.
  • the energy of the n beam of light reaching the homogenizer 302 is sequentially:
  • the resulting pulse energy is schematically shown in Table 1 and Figure 6.
  • 1 is a schematic diagram of the relative light intensity of the light beam in the cyclic delay device 300
  • FIG. 6 is a schematic diagram showing the energy distribution of the pulse light intensity in the cyclic delay device 300 according to the present invention.
  • the laser pulse emitted by the laser 100 passes through the cyclic delay device 300 and is decomposed into a plurality of energy-exponentially reduced pulses.
  • FIG. 7 is a comparison of the annealing laser pulses received on the surface of the substrate 204 according to the present invention. Light intensity diagram.
  • the cyclic delay device 300 of the embodiment has two main mirror heights lm and a distance lm, and the adjustment angle (ie, the light exit angle of the output head 303 is ⁇ ) is 0.95 degrees, and the optical path is adjusted to 60 m.
  • the pulse delay that is decomposed is 200 ns.
  • f 1 kHz
  • the time interval at which the laser exits the pulse is lms.
  • the beam is internally coded relative to the light intensity (p.
  • the number of the outgoing light (first beam splitter)
  • the double pulse laser replaces the single pulse laser, and the energy is discretized, the annealing effect is better, and the present invention can Discretizing a single pulse into multiple pulses without increasing the laser results in an better annealing effect than a double pulse and at a lower cost.
  • this method is also different from the method of adjusting the pulse time width. Because of the method of adjusting the pulse time width, after a certain time, after the substrate temperature exceeds the melting point, the laser energy is strongly reflected, and the heat radiation and the substrate ions are volatilized due to the continuous heating.
  • FIG. 3 is a schematic structural diagram of a second embodiment of a cyclic delay device of a laser annealing apparatus according to the present invention.
  • the delayer 301 includes two-sided main reflection.
  • the position of the exit mirror 308 and the receiving mirror 309 can be adjusted.
  • the embodiment also realizes that the optical path is adjustable, so that the delay time can be adjusted.
  • the exit end and the receiving end are respectively an exit mirror 309 and a receiving mirror 308. Therefore, instead of providing the optical fiber 310, an optical element having a reflective function can be used to transmit the laser light.
  • this embodiment adjusts the splitting ratio a And the delay time T can make the surface temperature of the substrate reach a relatively long time near the melting point, as shown in Fig. 8, thereby improving the energy utilization rate and effectively improving the annealing effect.
  • Embodiment 3 According to another aspect of the present invention, a laser annealing method is further provided.
  • the annealing device used in the laser annealing method is not limited to the structures of Embodiment 1 and Embodiment 2.
  • Laser annealing methods include:
  • the single-pulse laser is decomposed into a plurality of sub-laser pulses according to a delay requirement and an energy ratio; and the sub-laser pulse is used to continuously irradiate the substrate 204 to stabilize the surface temperature of the substrate 204 within a predetermined range.
  • the decomposing the single-pulse laser into a plurality of laser pulses according to a delay requirement and an energy ratio comprises:
  • the single-pulse laser is divided into two beams after the first beam splitter, one beam is directly used to irradiate the substrate 204, and the other beam enters a delay device 301 to delay and exit;
  • the outgoing beam of the delayer 301 is again divided into two beams after passing through the first beam splitter, one beam is used to irradiate the substrate 204, and the other beam is again entered into the delay device 301 after delay.
  • step c) Repeat step c), or select a first split according to a set split ratio and repeat step c).
  • the delay 301 includes mirror-parallel two-sided mirrors 304, 305, and an angled or positionally adjustable exit and receive end.
  • the delay time of the delay can be adjusted by adjusting the angle or position of the exit end and the receiving end.
  • the output end and the receiving end are respectively an output head 303 and a receiving head 306, as shown in FIG. 2; or the outgoing end and the receiving end It is an exit mirror 309 and a receiving mirror 308, as shown in FIG.
  • the laser annealing device and the laser annealing method provided by the present invention can decompose a single pulse laser into a plurality of laser pulses according to a delay requirement and an energy ratio, and during the continuous irradiation of the laser pulses, the annealing period can be made.
  • the surface temperature of the silicon wafer can be maintained near the melting point or near the desired annealing temperature for a longer period of time, thereby improving the utilization of the laser energy and improving the annealing effect.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Recrystallisation Techniques (AREA)
  • Lasers (AREA)

Abstract

一种激光退火装置,包括:一激光光束发生模块,用于提供一稳定的单脉冲激光;一循环延时装置(300),用于将单脉冲激光分解为若干子脉冲激光;一光学模块,用于将子脉冲激光汇聚至一基底(204)上;一运动台(500),用于为基底(204)提供至少一个自由度的位移。一种激光退火方法,包括:提供一稳定的单脉冲激光;使单脉冲激光按延时需要和能量比例分解为若干份子脉冲激光;利用子脉冲激光脉冲连续辐照基底(204),使基底(204)的表面温度稳定于一预订范围内。其能将单脉冲激光按延时需要和能量比例分解为若干份激光脉冲,在这些激光脉冲的连续辐照下,能使得退火期间硅片表面温度能更长时间保持在熔点附近或所需的退火温度附近,从而提高激光能量利用率,进而改善退火效果。

Description

一种激光退火装置及激光退火方法 技术领域
本发明涉及一种应用于半导体材料加工技术领域, 尤其涉及一种激光退火 装置及激光退火方法。 背景技术
退火处理, 主要是指将材料曝露于高温很长一段时间后, 然后再慢慢冷却 的热处理制程。 传统的炉子加热退火, 即使在高达 1100度下退火, 仍不能彻底 消除结晶缺陷。 而半导体激光退火则能比较彻底地消除结晶缺陷。 半导体激光 退火使用的光语波长范围很宽, 从 UV (紫外)到 IR (红夕卜)波段的激光器都有。 工 作方式也多种多样, 如美国专利 US6336308 ( 2002-01-08公开)和 US7365285 ( 2008-04-29公开)中所公开的单脉冲激光退火, 高频率 Q开关脉冲激光退火, 连接波激光扫描退火, 同波长双激光扫描退火, 不同波长双激光扫描退火等。
如文献 Silicon laser annealing by a two-pulse laser system with variable pulse offsets, V.Gonfa,etc, Laser Annealing of double implanted layers for igbt power devices, Clement Sabatier,etc 以及文献 UL Dual beam laser spike annealing technology )都有提到双激光退火的激活效果比单激光退火好。 双激光退火有两 种, 一种是同一波长的两个脉冲不同时间辐射到硅平面 (如文献 Silicon laser annealing by a two-pulse laser system with variable pulse offsets, V.Gonfa,etc以及文 献 Laser Annealing of double implanted layers for igbt power devices, Clement Sabatier,etc中公开的内容所示); 另外一种是采用长波的连续激光或脉冲激光进 行预热, 然后再用短波进一步退火 ( 口文献 UL Dual beam laser spike annealing technology 所示)。 目前双激光方式的激光退火装置已经在行业中开始应用于 IGBT, TFT等领域。 现有技术中 Liquid Phase Reflectivtity under Conditions of Laser Induced Silicon Melting中所介绍: 激光退火过程中, 当硅表面融熔后, 表面液态硅的反 射率是原来固态硅的反射率的 2倍, 此时激光脉冲的激光能量将被大量反射出 去, 而不被硅所吸收, 降低了激光能量利用率, 影响了退火效果。
该影响对单激光退火或双激光退火都存在。 如果拉长双脉冲激光的延时, 则有的时间范围内温度过低,达不到退火要求(比如高于 1300度的时间大于 50ns 的退火要求)。在很多应用中, 不一定需要达到熔点 1414度附近即可达到退火效 果 (如现有技术中的文献 Sub-Melt Laser Annealing Followed by Low- Temperature RTP for Minimized Diffusion, S. B. Felch, D. E Downey, and E. A. Arevalo Varian Semiconductor Equipment Associates, Inc. 81 1 Hansen Way, Palo Alto, CA 94303-0750 USA 所示的退火; 又如现有技术中的文献 PULSED LASER ANNEALING AND RAPID THERMAL ANNEALING OF COPPER-INDIUM-GALLIUM-DISELENIDE-BASED THIN-FILM SOLAR CELLS所示的太阳能退火)。
无论是单脉冲激光还是双脉冲激光, 当温度超过熔点, 吸收率减半, 降低 了能量利用率。此外,以上两种方案都有可能引起温度超过激活退火所需温度 (比 如 1100度, 激活效率 90%以上)的时间较短 (比如小于 100ns), 从而影响了退火 效果。 如何提高能量利用率, 并改善退火效果, 成为激光退火中需要改进的重 要问题。 发明内容
本发明的目的是提供一种能将单脉冲激光按延时需要和能量比例分解为若 干份激光脉冲并用于退火的激光退火装置及激光退火方法。
为达到上述目的, 本发明的第一方面提供一种激光退火装置, 包括: 一激光光束发生模块, 用于提供一稳定的单脉冲激光;
一循环延时装置, 用于将所述单脉冲激光分解为若干子脉冲激光; 一光学模块, 用于将所述子脉冲激光汇聚至一基底上;
一运动台, 用于为所述基底提供至少一个自由度的位移。
优选的, 所述循环延时装置至少包括一延时器、 一分光镜组以及一内部控 制模块, 所述内部控制模块用于控制所述延时器的延时以及所述分光镜组的分 光比例。
优选的, 所述循环延时装置还包括若干光纤, 用于在所述分光镜组与所述 延时器之间传递激光。
优选的, 所述延时器包括镜面平行的两面反射镜、 以及角度或位置可调节 的出射端和接收端。
优选的, 所述出射端和接收端分别为一出射头和一接收头, 或者一出射反 射镜和一接收反射镜。
优选的, 所述内部控制模块用于调节所述出射端和接收端的角度或位置, 以控制所述延时器的延时。
优选的, 所述分光镜组包括若干个透射率不同的第一分光镜以及一转轴, 所述内部控制模块驱动所述转轴改变所选用的第一分光镜, 以控制所述分光镜 组的分光比例。
优选的, 所述若干第一分光镜到所述转轴的距离相等。
优选的, 所述的激光退火装置还包括一主控制器, 所述主控制器与所述内 部控制模块连接, 用于发送延时指令及分光比例指令给所述内部控制模块。
优选的, 所述激光光束发生模块包括激光器、 光强调节器、 第二分光镜、 能量探测器、 激光控制器以及环境控制单元, 所述激光器的发出的激光经所述 光强调节器调节后再经所述第二分光镜分光, 其中, 激光的大部分进入所述循 环延时装置, 其余部分进入所述能量探测器, 所述能量探测器探测激光能量并 将探测结果传输至所述激光控制器, 所述环境控制单元探测所述激光器的工作 环境信息并将探测结果传输至所述激光控制器, 所述激光控制器根据环境控制 单元和能量探测器两者的探测结果的控制所述激光器工作, 所述激光控制器和 所环境控制单元经由所述主控制器控制。
优选的, 所述光学模块包括扩束器、 匀光器、 第一聚焦镜组、 第三分光镜、 第二聚焦镜组以及焦面探测器, 从循环延时装置射出的子脉冲激光, 依次经过 所述扩束器和勾光器处理后, 再经所述第三分光镜分光, 其中, 一部分子脉冲 激光经所述第一聚焦镜组后射至所述基底的表面, 另一部分子脉冲激光经所述 第二聚焦镜组射至所述焦面探测器, 所述焦面探测器将探测到的焦面信息输出 至所述主控制器, 所述主控制器根据该焦面信息控制所述运动台运动使得基底 达到最佳焦面位置。
本发明的第二方面提供一种激光退火方法, 包括:
提供一稳定的单脉冲激光;
使所述单脉冲激光按延时需要和能量比例分解为若干份子激光脉冲; 利用所述子激光脉冲连续辐照基底, 使所述基底的表面温度稳定于一预定 范围内。
优选的, 所述使所述单脉冲激光按延时需要和能量比例分解为若干份子激 光脉冲具体包括:
a ) 根据一设定的分光比例选择一第一分光镜;
b ) 所述单脉冲激光经所述第一分光镜后被分为两束, 其中一束直接用于 辐照所述基底, 另一束进入一延时器延时后出射;
c ) 所述延时器的出射光束再次经过所述第一分光镜后被分为两束, 其中 一束用于辐照所述基底, 另一束再次进入所述延时器延时后出射; d ) 重复步骤 C) , 或根据一设定的分光比例选择一第一分光后再重复步骤 c)。
优选的, 所述延时器包括镜面平行的两面反射镜, 以及角度或位置可调节 的出射端和接收端。
优选的, 调节所述出射端及接收端的角度或位置可调节所述延时器的延时 时间。
优选的, 所述出射端和接收端分别为一出射头和一接收头, 或者一出射反 射镜和一接收反射镜。
本发明提供的激光退火装置及激光退火方法, 能将单脉冲激光按延时需要 和能量比例分解为若干份激光脉冲, 在这些激光脉冲的连续辐照下, 能使得退 火期间硅片表面温度能更长时间保持在熔点附近或所需退火温度附近, 从而提 高了激光能量利用率, 进而改善退火效果。 附图说明
图 1是本发明所涉及的激光退火装置的整体结构示意图;
图 2是本发明所涉及的激光退火装置的循环延时装置的第一实施方式的结构 示意图;
图 3是本发明所涉及的激光退火装置的循环延时装置的第二实施方式的结构 示意图;
图 4a是本发明所涉及的循环延时装置的分光镜组结构示意图;
图 4b是图 4a的侧视图;
图 5是本发明所涉及的循环延时装置内脉冲光强示意图;
图 6是本发明所涉及的循环延时装置内脉冲光强的能量分布示意图; 图 7是本发明所涉及的基底表面接收的退火激光脉冲相对光强示意图; 图 8是本发明所涉及的基底表面温度示意图。 具体实施方式 在背景技术中已经提及, 现有的调整脉冲时间宽度的方法, 在一定的时间 后, 基底温度超过熔点, 激光能量被强烈大量反射, 并且伴有因不断升温引发 的热辐射使得基底离子挥发等问题。 现有的双脉冲取代单脉冲激光, 能量被离 散化后, 退火效果更好。 而本发明提供本发明提供的激光退火装置及激光退火 方法, 能将单脉冲激光按延时需要和能量比例分解为若干份激光脉冲而不增加 激光器, 得到的退火效果比双脉冲的效果更佳, 而成本较低, 在这些激光脉冲 的连续辐照下, 能使得退火期间硅片表面温度能更长时间保持在熔点附近或所 需退火温度附近, 从而提高了激光能量利用率, 进而改善退火效果。
下面将结合附图对本发明进行更详细的描述, 其中表示了本发明的优选实 施例, 应所述理解本领域技术人员可以修改在此描述的本发明, 而仍然实现本 发明的有利效果。 因此, 下列描述应当被理解为对于本领域技术人员的广泛知 道, 而并不作为对本发明的限制。
为了清楚, 不描述实际实施例的全部特征。 在下列描述中, 不详细描述公 知的功能和结构, 因为它们会使本发明由于不必要的细节而混乱。 应当认为在 任何实际实施例的开发中, 必须做出大量实施细节以实现开发者的特定目标, 例如按照有关系统或有关商业的限制, 由一个实施例改变为另一个实施例。 另 外, 应当认为这种开发工作可能是复杂和耗费时间的, 但是对于本领域技术人 员来说仅仅是常规工作。
在下列段落中参照附图以举例方式更具体地描述本发明。 根据下面说明和 权利要求书, 本发明的优点和特征将更清楚。 需说明的是, 附图均采用非常简 化的形式且均使用非精准的比例, 仅用以方便、 明晰地辅助说明本发明实施例 的目的。
该发明的核心思想在于, 利用一循环延时装置将一单脉冲激光分解为若干 子脉冲激光, 并利用一光学模块将所述子脉冲激光汇聚至一基底上, 基底在这 些激光脉冲的连续辐照下, 能使得退火期间基底表面温度能更长时间保持在熔 点附近或所需退火温度附近, 从而可以防止基底达到熔点后因融溶后的基底表 面的反射率提高而使得激光被大量反射出去, 故而可以提高激光能量利用率, 进而改善退火效果。
请参考图 1 , 其为本发明所涉及的激光退火装置的整体结构示意图, 所述激 光退火装置, 包括:
一激光光束发生模块, 用于提供一稳定的单脉冲激光;
一循环延时装置 300, 用于将所述单脉冲激光分解为若干子脉冲激光; 一光学模块, 用于将所述子脉冲激光汇聚至一基底 204, 所述基底 204即 为待退火的半导体或其他材料, 本实施例中, 所述基底是硅片;
一运动台 500, 用于为所述基底 204提供至少一个自由度的位移, 所述基 底 204被放置于所述运动台 500上, 该运动台 500可以沿若干个自由度运动。
优选的, 所述的激光退火装置还包括一主控制器 600, 所述主控制器 600与 所述内部控制模块 307连接, 用于发送延时指令及分光比例指令给所述循环延 时装置 300 内部的内部控制模块 307。 循环延时装置 300 内部的内部控制模块
307根据主控制器 600发出的指令来控制循环延时装置 300发出的若干子脉冲之 间的延时以及循环延时装置 300的分光比例 (即能量比例)。 当然, 所述主控制 器 600也可以直接控制循环延时装置 300发出的若干子脉冲之间的延时以及循 环延时装置 300的分光比例 (即能量比例)。
对于复杂设备, 计算机 400和主控制器 600是分离的。 计算机 400发出指 令后, 主控制器 600转化为可执行的信号通过总线下发给分控制器再进行执行。 请参考图 2,其为本发明所涉及的激光退火装置的循环延时装置的第一实施 方式的结构示意图, 所述循环延时装置 300至少包括一延时器 301、 一分光镜组 302以及一内部控制模块 307, 其中, 所述延时器 301可根据需要调整脉冲的延 时时间, 所述分光镜组 302用于调整分光比例。 所述内部控制模块 307分别和 所述延时器 301和所述分光镜组 302连接, 所述内部控制模块 307用于控制所 述延时器 301的延时以及所述分光镜组 302的分光比例。
优选的, 所述循环延时装置 300还包括若干光纤 310, 用于在所述分光镜组 302与所述延时器 301之间传递激光。
请继续参考图 2, 所述延时器 301 包括镜面平行的两面反射镜 304、 305、 以及角度或位置可调节的出射端和接收端。 所述内部控制模块 307 能够通过调 节所述出射端和接收端的角度或位置, 来控制所述延时器 301的延时。 优选的, 所述出射端和接收端可以为一出射头 303和一接收头 306。所述反射镜 304和反 射镜 305镜面平行放置。 出射头 303的角度可调整, 接收头 306的位置可调整, 且调整的角度由内部控制模块 307所控制。 若出射头 303的光出射角度为 Θ, 两 面反射镜 304、 305之间的距离为 L, 高度为 H,循环延时装置 300中的光纤 310 的长度为 L0, 而光纤 310出口到出射头 306的光程为 L1 , 则光束每在循环延时 装置 300中循环一周的光程约为
X=Ll+n*L0+mod(H/(L*tg(9))) *L*sec(9) 公式一 其中 mod函数在此表示取整函数, 若为偶数则再加 1 , n表示光纤 301介质 的折射率, 那么光束每在循环延时装置 300中循环一周的延时为:
T=X/c 公式二 通过这样的关系,当内部控制模块 307接到主控制器 600发出的需要延时 T 的指令时候, 可通过公式一与公式二计算出出射角度 Θ, 在内部控制模块 307的 控制下调整出射头 303的角度出射光线, 并调整接收头 306到容易接收激光的 位置。 请参考图 4a和图 4b, 其中, 图 4a所示为本发明所涉及的循环延时装置的分 光镜组结构示意图, 图 4b所示为是图 4a的侧视图, 所述分光镜组 302包括若 干个透射率不同的第一分光镜以及一转轴 3025 ,本实施例中,所述分光镜组 302 有四个第一分光镜 3021、 3022、 3023、 3024, 所述内部控制模块 307驱动所述 转轴 3025改变所选用的第一分光镜, 以控制所述分光镜组 302的分光比例。 四 个第一分光镜 3021、 3022、 3023、 3024的透过率依次为 al,a2,a3,a4。 内部控制 模块 307接收到控制器 600发出的分光比例指令后, 控制该分光镜组 302的转 轴 3025转动来改变所选用的第一分光镜,设所选用的第一分光镜的透光率为 a。 选择不同的第一分光镜可以获得不同的透光率。
优选的,所述若干第一分光镜 3021、 3022、 3023以及 3024到所述转轴 3025 的距离相等, 如此可以方便选用所需透射率的第一分光镜。
优选的, 所述激光光束发生模块, 包括: 激光器 100、 光强调节器 101、 第 二分光镜 102、 能量探测器 105、 激光控制器 104以及环境控制单元 103 , 所述 激光器 100的发出的单脉冲激光先经所述光强调节器 101调节后, 再经所述第 二分光镜 102分光, 其中, 激光的大部分进入所述循环延时装置 300, 其余部分 进入所述能量探测器 105 ,所述能量探测器 105探测激光能量并将探测结果传输 至所述激光控制器 104;所述环境控制单元 103探测所述激光器 100的工作环境 信息(例如温度信息)并将探测结果传输至所述激光控制器 104, 所述激光控制 器 104根据环境控制单元 103和能量探测器 105两者的探测结果控制所述激光 器 100工作, 所述激光控制器 104和所述主控制器 600连接并受所述主控制器 600控制。
优选的, 所述光学模块包括扩束器 206、 勾光器 203、 第一聚焦镜组 202、 第三分光镜 207、 第二聚焦镜组 209以及焦面探测器 201 , 从循环延时装置 300 射出的子脉冲激光, 依次经过所述扩束器 206和勾光器 203处理后, 再经所述 第三分光镜 307分光, 其中, 一部分子脉冲激光经所述第一聚焦镜组 202后射 至所述基底 204的表面, 另一部分子脉冲激光经所述第二聚焦镜组 209后射至 所述焦面探测器 201 ,所述焦面探测器 201将探测到的焦面信息输出至所述主控 制器 600,所述主控制器 600根据该焦面信息控制所述运动台 500运动使得基底
204达到最佳焦面位置。
请参考图 5 , 其是本发明所涉及的循环延时装置内脉冲光强示意图。 如图 5 中所示,并请结合图 1和图 2, 分光镜组 302按设定的分光比例 a (即所选的第一 分光镜具有该分光比例 a )将激光出射光束(光束 0即 Beam 0 )分为两束, 其 中一束(光束 1即 Beam 1 )直接通往循环延时装置 300外部, 如经扩束其 206 通往匀光器 203 , 而另外一束(光束 2即 Beam 2 )导入到延时器 301中按给定 设置 (T)延时后, 通过光纤 310重新将光束 2导到所选的第一分光镜上。
光束 2被所选的第一分光镜按设定的分光比例 a分为两束, 其中一束(光 束 3即 Beam 3 )直接通往循环延时装置 300外部, 而另外一束(光束 4即 Beam
4 )导入到延时器 301中按给定设置 (T)延时后, 通过光纤 310重新将光束 4导到 所选的第一分光镜上。
光束 4被所选的第一分光镜分为两束, 其中一束(光束 5即 Beam 5 ) 直接 通往循环延时装置 300外部, 而另外一束(光束 6即 Beam 6 )导入到延时器 301 中按给定设置 (T)延时后,通过光纤 310重新将光束 6导到所选的第一分光镜上。
如此反复, 光束 0, 1 , 2,3,4,5,6 , ... , 2η- 1,2η的能量相对值依次为: l,a, 1-a, a(l-a),(l-a)A2, a(l-a)A2, (l-a)A3,...,a(l-a)A(n-l), (l-a)An。
实际达到匀光器 302的光束为 1,3,5 , ... , 2n-l等奇数次编号的激光,其能量 相对值依次为:
a, a(l-a), a(l-a)A2, a(l-a)A(n-l) ,
1,3,5 , ... , 2η-1等奇数次编号脉冲的各自延时为 Τ,本实施例中 T=200ns。 而, 激光退火设备中常用激光器出射脉冲的频率 f为 0.1-lOkHz范围, 则 l/f»T, 本 实施例中 f=lkHz。
匀光器 302依次将这 1,3,5 , ... , 2n-l等奇数次编号的 n个激光脉冲沿着非 扫描方向匀光后依次辐照在运动台 500的基底 204上。
在本实施例中设定的分光比例 a=30%, 则到达匀光器 302的 n束光的能量依 次为:
0.3,0.21,0.147,0.1029,0.07203,0.050421,...,0.3*0.7Λ(2*η-1),…。
所得的脉冲能量示意如表 1和图 6中所示。 其中表 1是循环延时装置 300 中光束相对光强示意图, 图 6是本发明所涉及的循环延时装置 300内脉冲光强 的能量分布示意图。 激光器 100所发出的激光脉冲经过了循环延时装置 300, 被 分解为若干能量指数型降低的脉冲, 如图 7中所示, 图 7是本发明所涉及的基 底 204表面接收的退火激光脉冲相对光强示意图。 本实施例中, 本实施例循环 延时装置 300, 其中两个主反射镜高度 lm,距离 lm, 调整角度(即出射头 303的 光出射角度为 Θ )为 0.95度,光程则调整为 60m, 则被分解的脉冲延时为 200ns。 本实施例中 f=lkHz,则激光器出射脉冲的时间间隔为 lms。 相对光强 光束内部
从循环延时装 光束内部编 相对光强 (第
(第一分 编号(第一
置中出射光的 号(第一分光 一分光镜反射
光镜透射 分光镜反
编号 η 镜透射光) 光)
光) 射光)
1 1 0.3 2 0.7
2 3 0.21 4 0.49
3 5 0.147 6 0.343
4 7 0.1029 8 0.2401
5 9 0.07203 10 0.16807
6 11 0.050421 12 0.117649
7 13 0.0352947 14 0.082354 8 15 0.0247063 16 0.057648
9 17 0.0172944 18 0.040354
10 19 0.0121061 20 0.028248
11 21 0.0084743 22 0.019773
12 23 0.005932 24 0.013841
13 25 0.0041524 26 0.009689
14 27 0.0029067 28 0.006782
15 29 0.0020347 30 0.004748
Figure imgf000014_0001
如现有技术中的 Laser Annealing of double implanted layers for igbt power devices, Clement Sabatier,etc.所公开内容可知, 双脉冲激光取代单脉冲激光, 能 量被离散化后, 退火效果更好, 而本发明能够将单脉冲离散化为多个脉冲而不 增加激光器, 得到的退火效果比双脉冲的效果更佳, 且成本较低。 此外本方法 也和调整脉冲时间宽度的方法不一样。 因为调整脉冲时间宽度的方法, 在一定 的时间后, 基底温度超过熔点后, 激光能量被强烈即大量反射, 并且会由于不 断升温引发热辐射和基底离子挥发等问题。 而采用本发明通过调整分光比例 a 和延时时间 T, 可以使得基底表面温度在熔点附近达到比较久的时间, 如图 8 所示, 从而提高能量利用率, 并有效改善了退火效果。 实施例二
请参阅图 3 ,图 3是本发明所涉及的激光退火装置的循环延时装置的第二实 施方式的结构示意图, 本实施例与实施例一的区别在于: 该延时器 301 包括两 面主反射镜 304与 305、 出射反射镜 309、 接收反射镜 308。 出射反射镜 308、 接收反射镜 309的位置可调整, 和图 2所示的例子类似, 本实施例同样实现光 程可调, 从而可以调整延时时间。 本实施例中, 由于所述出射端和接收端分别 为一出射反射镜 309和一接收反射镜 308。 因此, 可以不设置光纤 310, 而是采 用具有反射功能的光学元件来传递激光。 同样, 本实施例通过调整分光比例 a 和延时时间 T, 可以使得基底表面温度在熔点附近达到比较久的时间, 如图 8 所示, 从而提高能量利用率, 并有效改善了退火效果。
实施例三 根据本发明的另一面, 还提供一种激光退火方法, 可以参考图 1至图 8, 但 该激光退火方法采用的退火装置不限于是实施例一和实施例二的结构, 所述激 光退火方法包括:
提供一稳定的单脉冲激光;
使所述单脉冲激光按延时需要和能量比例分解为若干份子激光脉冲; 利用所述子激光脉冲连续辐照基, 204,使所述基底 204的表面温度稳定于一 预定范围内。
优选的, 所述使所述单脉冲激光按延时需要和能量比例分解为若干份子激 光脉冲具体包括:
a) 根据一设定的分光比例选择一第一分光镜;
b) 所述单脉冲激光经所述第一分光镜后被分为两束, 其中一束直接用于 辐照所述基底 204, 另一束进入一延时器 301延时后出射; c) 所述延时器 301的出射光束再次经过所述第一分光镜后被分为两束, 其中一束用于辐照所述基底 204, 另一束再次进入所述延时器 301延 时后出射;
d) 重复步骤 c), 或根据一设定的分光比例选择一第一分光后再重复步骤 c)。
优选的, 所述延时器 301 包括镜面平行的两面反射镜 304、 305 , 以及角 度或位置可调节的出射端和接收端。通过调节所述出射端及接收端的角度 或位置可调节所述延时器的延时时间。优选的, 所述出射端和接收端分别 为一出射头 303和一接收头 306, 如图 2所示; 或者所述出射端和接收端 为一出射反射镜 309和一接收反射镜 308 , 如图 3所示。
综上所述, 本发明提供的激光退火装置及激光退火方法, 能将单脉冲激光 按延时需要和能量比例分解为若干份激光脉冲, 在这些激光脉冲的连续辐照下, 能使得退火期间硅片表面温度能更长时间保持在熔点附近或所需退火温度附 近, 从而提高了激光能量利用率, 进而改善退火效果。 明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要求及 其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权利要求
1、 一种激光退火装置, 其特征在于, 包括:
一激光光束发生模块, 用于提供一稳定的单脉冲激光;
一循环延时装置, 用于将所述单脉冲激光分解为若干子脉冲激光; 一光学模块, 用于将所述子脉冲激光汇聚至一基底上;
一运动台, 用于为所述基底提供至少一个自由度的位移。
2、 如权利要求 1所述的激光退火装置, 其特征在于, 所述循环延时装置至 少包括一延时器、 一分光镜组以及一内部控制模块, 所述内部控制模块用于控 制所述延时器的延时以及所述分光镜组的分光比例。
3、 如权利要求 2所述的激光退火装置, 其特征在于, 所述循环延时装置还 包括若干光纤, 用于在所述分光镜组与所述延时器之间传递激光。
4、 如权利要求 2所述的激光退火装置, 其特征在于, 所述延时器包括镜面 平行的两面反射镜、 以及角度或位置可调节的出射端和接收端。
5、 如权利要求 4所述的激光退火装置, 其特征在于, 所述出射端和接收端 分别为一出射头和一接收头, 或者一出射反射镜和一接收反射镜。
6、 如权利要求 4所述的激光退火装置, 其特征在于, 所述内部控制模块通 过调节所述出射端和接收端的角度或位置, 以控制所述延时器的延时。
7、 如权利要求 2所述的激光退火装置, 其特征在于, 所述分光镜组包括若 干个透射率不同的第一分光镜以及一转轴, 所述内部控制模块通过驱动所述转 轴改变所选用的第一分光镜, 以控制所述分光镜组的分光比例。
8、 如权利要求 7所述的激光退火装置, 其特征在于, 所述若干第一分光镜 到所述转轴的距离相等。
9、 如权利要求 2所述的激光退火装置, 其特征在于, 还包括一主控制器, 所述主控制器与所述内部控制模块连接, 所述主控制器能够发送延时指令及分 光比例指令给所述内部控制模块。
10、 如权利要求 9所述的激光退火装置, 其特征在于, 所述激光光束发生 模块包括激光器、 光强调节器、 第二分光镜、 能量探测器、 激光控制器以及环 境控制单元, 所述激光器的发出的激光经所述光强调节器调节后再经所述第二 分光镜分光, 其中, 激光的大部分进入所述循环延时装置, 其余部分进入所述 能量探测器, 所述能量探测器探测激光能量并将探测结果传输至所述激光控制 器, 所述环境控制单元探测所述激光器的工作环境信息并将探测结果传输至所 述激光控制器, 所述激光控制器根据环境控制单元和能量探测器两者的探测结 果的控制所述激光器工作, 所述激光控制器和所环境控制单元经由所述主控制 器控制。
11、 如权利要求 9所述的激光退火装置, 其特征在于, 所述光学模块包括 扩束器、 勾光器、 第一聚焦镜组、 第三分光镜、 第二聚焦镜组以及焦面探测器, 从循环延时装置射出的子脉冲激光, 依次经过所述扩束器和勾光器处理后, 再 经所述第三分光镜分光, 其中, 一部分子脉冲激光经所述第一聚焦镜组后射至 所述基底的表面, 另一部分子脉冲激光经所述第二聚焦镜组射至所述焦面探测 器, 所述焦面探测器将探测到的焦面信息输出至所述主控制器, 所述主控制器 根据该焦面信息控制所述运动台运动使得基底达到最佳焦面位置。
12、 一种激光退火方法, 其特征在于, 包括:
提供一稳定的单脉冲激光;
使所述单脉冲激光按延时需要和能量比例分解为若干份子激光脉冲; 利用所述子激光脉冲连续辐照基底, 使所述基底的表面温度稳定于一预定 范围内。
13、 如权利要求 12所述的激光退火方法, 其特征在于, 所述使所述单脉冲 激光按延时需要和能量比例分解为若干份子激光脉冲具体包括: a ) 根据一设定的分光比例选择一第一分光镜;
b ) 所述单脉冲激光经所述第一分光镜后被分为两束, 其中一束直接用于辐 照所述基底, 另一束进入一延时器延时后出射;
c ) 所述延时器的出射光束再次经过所述第一分光镜后被分为两束, 其中一 束用于辐照所述基底, 另一束再次进入所述延时器延时后出射;
d ) 重复步骤 C), 或根据一设定的分光比例选择一第一分光后再重复步骤 c)。
14、 如权利要求 13所述的激光退火方法, 其特征在于, 所述延时器包括镜 面平行的两面反射镜, 以及角度或位置可调节的出射端和接收端。
15、 如权利要求 14所述的激光退火方法, 其特征在于, 调节所述出射端及 接收端的角度或位置可调节所述延时器的延时时间。
16、 如权利要求 14所述的激光退火方法, 其特征在于, 所述出射端和接收 端分别为一出射头和一接收头, 或者一出射反射镜和一接收反射镜。
PCT/CN2013/079697 2012-07-25 2013-07-19 一种激光退火装置及激光退火方法 WO2014015765A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015507369A JP6006864B2 (ja) 2012-07-25 2013-07-19 レーザアニーリング装置及びレーザアニーリング方法
SG11201405564XA SG11201405564XA (en) 2012-07-25 2013-07-19 Laser annealing apparatus and laser annealing method
KR1020147036149A KR101660440B1 (ko) 2012-07-25 2013-07-19 레이저 어닐링 장치 및 레이저 어닐링 방법
US14/385,464 US9455164B2 (en) 2012-07-25 2013-07-19 Laser annealing apparatus and laser annealing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210258008.9 2012-07-25
CN201210258008.9A CN103578943B (zh) 2012-07-25 2012-07-25 一种激光退火装置及激光退火方法

Publications (1)

Publication Number Publication Date
WO2014015765A1 true WO2014015765A1 (zh) 2014-01-30

Family

ID=49996582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/079697 WO2014015765A1 (zh) 2012-07-25 2013-07-19 一种激光退火装置及激光退火方法

Country Status (7)

Country Link
US (1) US9455164B2 (zh)
JP (1) JP6006864B2 (zh)
KR (1) KR101660440B1 (zh)
CN (1) CN103578943B (zh)
SG (1) SG11201405564XA (zh)
TW (1) TWI600085B (zh)
WO (1) WO2014015765A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115246036A (zh) * 2022-08-11 2022-10-28 沈阳航远航空技术有限公司 一种脆性或高强度材料双束激光辅助冲压方法及装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9498845B2 (en) * 2007-11-08 2016-11-22 Applied Materials, Inc. Pulse train annealing method and apparatus
JP6270820B2 (ja) * 2013-03-27 2018-01-31 国立大学法人九州大学 レーザアニール装置
JP6320799B2 (ja) * 2014-03-07 2018-05-09 住友重機械工業株式会社 半導体装置の製造方法
CN105448681B (zh) * 2014-07-04 2018-11-09 上海微电子装备(集团)股份有限公司 激光退火装置
CN106663629B (zh) * 2014-07-21 2020-01-10 应用材料公司 扫描脉冲退火装置及方法
CN106935491B (zh) * 2015-12-30 2021-10-12 上海微电子装备(集团)股份有限公司 一种激光退火装置及其退火方法
EP3428958A4 (en) * 2016-03-09 2019-03-20 Mitsubishi Electric Corporation THERMAL PROCESSING DEVICE, HEAT TREATMENT METHOD, LASER RECOVERY DEVICE, AND LASER RECOVERY METHOD
JP6484272B2 (ja) * 2017-03-17 2019-03-13 株式会社フジクラ レーザ加工装置およびレーザ加工方法
CN107275185A (zh) * 2017-04-24 2017-10-20 昆山国显光电有限公司 激光退火装置及其退火工艺
JP6957099B2 (ja) * 2017-09-05 2021-11-02 住友重機械工業株式会社 レーザアニール装置及びシート抵抗算出装置
US11929334B2 (en) * 2020-03-17 2024-03-12 STATS ChipPAC Pte. Ltd. Die-beam alignment for laser-assisted bonding
US11909091B2 (en) 2020-05-19 2024-02-20 Kymeta Corporation Expansion compensation structure for an antenna
CN111952158B (zh) * 2020-08-17 2022-08-30 北京中科镭特电子有限公司 一种激光退火装置及退火方法
CN111952160B (zh) * 2020-08-17 2024-06-11 北京中科镭特电子有限公司 一种激光退火装置
US11766874B2 (en) * 2021-11-19 2023-09-26 Xerox Corporation Matrix addressable, line laser, marking system using laser additives
JP2023128986A (ja) * 2022-03-04 2023-09-14 株式会社ディスコ レーザリフロー方法
CN115890021B (zh) * 2023-01-05 2023-05-16 成都功成半导体有限公司 一种晶圆激光切割方法及晶圆
CN118073183B (zh) * 2024-04-25 2024-06-18 苏州中瑞宏芯半导体有限公司 一种碳化硅片高温栅氧退火工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000244036A (ja) * 1999-02-17 2000-09-08 Toyota Central Res & Dev Lab Inc レーザパルス発生装置
CN1900723A (zh) * 2006-07-04 2007-01-24 中国工程物理研究院流体物理研究所 光学延时标准具及测试光路
CN101350494A (zh) * 2008-09-10 2009-01-21 哈尔滨工业大学 基于光功率精确分离的纵向塞曼激光器稳频方法与装置
JP2012015463A (ja) * 2010-07-05 2012-01-19 V Technology Co Ltd Yagレーザアニーリング装置及びyagレーザ光によるアニーリング方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW207588B (zh) * 1990-09-19 1993-06-11 Hitachi Seisakusyo Kk
JPH0529693A (ja) * 1990-09-19 1993-02-05 Hitachi Ltd マルチパルスレーザ発生装置、及びその方法、並びにそのマルチパルスレーザを用いた加工方法
JPH07159706A (ja) * 1993-12-08 1995-06-23 Hitachi Cable Ltd 可変光分岐器
US6955956B2 (en) * 2000-12-26 2005-10-18 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
TWI239936B (en) * 2004-02-27 2005-09-21 Au Optronics Corp Laser annealing apparatus and laser annealing method
JP2005294801A (ja) * 2004-03-11 2005-10-20 Advanced Lcd Technologies Development Center Co Ltd レーザー結晶化装置及びレーザー結晶化方法
US8383982B2 (en) * 2004-06-18 2013-02-26 Electro Scientific Industries, Inc. Methods and systems for semiconductor structure processing using multiple laser beam spots
JP2006134986A (ja) * 2004-11-04 2006-05-25 Sony Corp レーザ処理装置
JP2006135251A (ja) * 2004-11-09 2006-05-25 Hitachi Ltd レーザ結晶化装置
JP5060733B2 (ja) * 2005-03-28 2012-10-31 オリンパス株式会社 光パルス多重化ユニット、それを用いた光パルス発生器、及び光パルス多重化方法
JP4863407B2 (ja) * 2009-02-02 2012-01-25 株式会社日本製鋼所 半導体膜のレーザアニール方法
JP2011171551A (ja) * 2010-02-19 2011-09-01 Toyota Motor Corp 半導体装置の製造方法
US8538218B2 (en) * 2010-03-10 2013-09-17 Corning Incorporated Unrepeatered long haul optical fiber transmission systems
JP5590925B2 (ja) * 2010-03-10 2014-09-17 住友重機械工業株式会社 半導体装置の製造方法及びレーザアニール装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000244036A (ja) * 1999-02-17 2000-09-08 Toyota Central Res & Dev Lab Inc レーザパルス発生装置
CN1900723A (zh) * 2006-07-04 2007-01-24 中国工程物理研究院流体物理研究所 光学延时标准具及测试光路
CN101350494A (zh) * 2008-09-10 2009-01-21 哈尔滨工业大学 基于光功率精确分离的纵向塞曼激光器稳频方法与装置
JP2012015463A (ja) * 2010-07-05 2012-01-19 V Technology Co Ltd Yagレーザアニーリング装置及びyagレーザ光によるアニーリング方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115246036A (zh) * 2022-08-11 2022-10-28 沈阳航远航空技术有限公司 一种脆性或高强度材料双束激光辅助冲压方法及装置

Also Published As

Publication number Publication date
JP2015520507A (ja) 2015-07-16
CN103578943B (zh) 2017-05-31
CN103578943A (zh) 2014-02-12
KR101660440B1 (ko) 2016-09-27
SG11201405564XA (en) 2014-10-30
TWI600085B (zh) 2017-09-21
JP6006864B2 (ja) 2016-10-12
TW201413823A (zh) 2014-04-01
US20150037984A1 (en) 2015-02-05
US9455164B2 (en) 2016-09-27
KR20150014515A (ko) 2015-02-06

Similar Documents

Publication Publication Date Title
WO2014015765A1 (zh) 一种激光退火装置及激光退火方法
US10083843B2 (en) Laser annealing systems and methods with ultra-short dwell times
KR101226634B1 (ko) 레이저 기반 어닐링 시스템에서의 고온계에 대한 다수의 대역 통과 필터링
US7005601B2 (en) Thermal flux processing by scanning
KR101150001B1 (ko) 고출력 레이저 다이오드 기반 어닐링 시스템용 자동초점
TWI448025B (zh) 多重脈衝雷射處理系統及方法
KR20170118659A (ko) 라인 빔들을 이용한 향상된 열처리 방법
US10376991B2 (en) Pulse width controller
US20120205347A1 (en) Scanned laser light source
JP5431313B2 (ja) アモルファス炭素光吸収層に適合したレーザアニールシステムのための高温計
JP2004512669A (ja) 基板を露光するための放射エネルギーの線光源を有する装置
JP2008537334A (ja) 2波長熱流束レーザアニール
JP2019507493A5 (zh)
JP2012503311A (ja) 基板のアニールにおける熱量の管理
JPH10256178A (ja) レーザ熱処理方法及びその装置
JPH07335586A (ja) レーザ熱処理方法およびその装置
KR20220107094A (ko) 이중 파장 어닐링 방법 및 장치
JP2001351876A (ja) レーザ加工装置及び方法
TW201123269A (en) Systems and methods for non-periodic pulse sequential lateral solidification
JP2004158569A (ja) 照射装置及び照射方法、並びにアニール装置及びアニール方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13822779

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14385464

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015507369

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147036149

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13822779

Country of ref document: EP

Kind code of ref document: A1