JP2004158569A - 照射装置及び照射方法、並びにアニール装置及びアニール方法 - Google Patents
照射装置及び照射方法、並びにアニール装置及びアニール方法 Download PDFInfo
- Publication number
- JP2004158569A JP2004158569A JP2002321706A JP2002321706A JP2004158569A JP 2004158569 A JP2004158569 A JP 2004158569A JP 2002321706 A JP2002321706 A JP 2002321706A JP 2002321706 A JP2002321706 A JP 2002321706A JP 2004158569 A JP2004158569 A JP 2004158569A
- Authority
- JP
- Japan
- Prior art keywords
- light
- light sources
- secondary light
- incident
- light source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Laser Beam Processing (AREA)
Abstract
【課題】複数の2次光源から出射される複数の光ビームによる均一強度でのビーム照射をリアルタイムで管理する。
【解決手段】2次光源生成部4,5によって生成される複数の2次光源から出射される光ビームを所定の光路に導光し、所定の照射領域に照射する照射部6,7,8と、所定の光路に介挿され、複数の2次光源から出射される光ビームを分離し導光する分離部材11を有し、分離され導光された複数の2次光源から出射される光ビームを集光することにより2次光源の像を結像する結像部12と、結像された複数の2次光源の像を撮像する撮像部13と、撮像された複数の2次光源の像の位置に基づいて、2次光源生成部4,5に入射する複数の光ビームの入射方向の光軸に対するずれ量と、入射位置の光軸に対するずれ量とを演算する演算部16とを備えることで実現する。
【選択図】 図1
【解決手段】2次光源生成部4,5によって生成される複数の2次光源から出射される光ビームを所定の光路に導光し、所定の照射領域に照射する照射部6,7,8と、所定の光路に介挿され、複数の2次光源から出射される光ビームを分離し導光する分離部材11を有し、分離され導光された複数の2次光源から出射される光ビームを集光することにより2次光源の像を結像する結像部12と、結像された複数の2次光源の像を撮像する撮像部13と、撮像された複数の2次光源の像の位置に基づいて、2次光源生成部4,5に入射する複数の光ビームの入射方向の光軸に対するずれ量と、入射位置の光軸に対するずれ量とを演算する演算部16とを備えることで実現する。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、被照射物に対して、光ビームを照射する照射装置に関し、詳しくは、上記被照射物に照射する光ビームを均一な強度で照射するよう管理及び制御する機能を備えた照射装置及び照射方法、並びに、アニール装置及びアニール方法に関する。
【0002】
【従来の技術】
低温で大面積に形成可能である多結晶シリコン薄膜は、移動度の高さや、良好な光吸収特性によって、薄膜トランジスタ(TFT:Thin Film Transistor)や、薄膜太陽電池などへの応用が考案されている。
【0003】
多結晶シリコン薄膜は、基板上に形成した非晶質シリコン薄膜を、紫外線波長域のパルスレーザを照射するレーザアニール処理し、局所的、且つ、瞬間的な昇温によって、上記非晶質シリコン薄膜を溶融・再結晶化させることで形成することができる。
【0004】
ところで、非晶質シリコン薄膜をアニール処理することで形成される多結晶シリコン薄膜の結晶粒径は、薄膜全体に亘って一様な粒径であることが要求される。結晶粒径にばらつきがあると、薄膜全体の特性、例えば、移動度などが局所的に高くなったり、低くなったりすることで信頼性のない部材となってしまうことになる。
【0005】
結晶粒径にばらつきのない多結晶シリコン薄膜を作製するには、アニール処理において、エネルギーが均一なレーザビームを非晶質シリコン薄膜に照射する必要がある。
【0006】
一般に、レーザ発振器から出力されるレーザビームは、中央の光強度が一番強く、半径方向にゆるやかに強度が小さくなるようなガウシアン分布に従った強度分布となっているため、被照射物に対して不均一に照射されてしまう。
【0007】
したがって、レーザアニール装置では、均一な照射強度の光ビームを被照射物、例えば、非晶質シリコン薄膜に照射するために、図8に示すような構成となっている。
【0008】
図8に示すレーザアニール装置200は、レーザビームを出射するレーザ光源201と、レーザ光源201から出射されたレーザビームを所定の径の平行光束とするテレスコープ202と、テレスコープ202を通過した光ビームを複数に分割した後にそれぞれ集光して点光源群とするフライアイレンズ203と、フライアイレンズ204と、フライアイレンズ204を通過した各光ビームを基板205上の同一の照射領域に合成して照射するコンデンサレンズ206とを備える。
【0009】
このようなレーザアニール装置200は、レーザ光源201から出射されるレーザビームをフライアイレンズ203で一度分割し、コンデンサレンズ206で再合成することで照射強度の不均一性をキャンセルしている。
【0010】
フライレンズ203の焦点に形成される点光源群は、2次光源であり、複数の2次光源から出射された光ビームがコンデンサレンズ206で合成されて基板205に照射されている。
【0011】
【発明が解決しようとする課題】
レーザアニール装置200は、上述したような構成とすることで、均一な照射強度を得ることができるが、突発的なトラブルや、経時変化などにより当該レーザアニール装置200の光学系のアライメントがずれてしまった場合、照射強度の均一性が崩れてしまう可能性がある。
【0012】
しかも、このようなレーザアニール装置200による照射プロセスにおいて、均一な強度で照射が行われているかどうかといったことが管理されていなかったため、最悪の場合、不均一な強度でアニール処理されていることを検知できず、大量に不良部材が作製されてしまうといった問題がある。
【0013】
さらに、このように複数の2次光源を備えるレーザアニール装置の管理機構は、光ビームの光源が複数存在することから、個々の光源について必要となるため、
単一ビームを照射する照射装置の照射強度管理機構を流用することができず、非常に煩雑な装置構成となってしまうといった問題がある。
【0014】
また、上記照射強度を管理するために必要となる照射強度の測定系などをアニール装置の適切な箇所に設置しないと、測定のたびにアニール処理の中断が要求され、製造プロセスに支障をきたす装置構成となってしまうといった問題もある。
【0015】
そこで、本発明は、上述したような問題を解決するために案出されたものであり、製造プロセスを阻害することなく、被照射物に対して光ビームが均一な強度で照射されるための管理機構を備えた照射装置及び照射方法、並びにレーザアニール装置及びレーザアニール方法を提供することを目的とする。
【0016】
【課題を解決するための手段】
上述の目的を達成するために、本発明に係る照射装置は、複数の光源から出射される複数の光ビームを入射して複数の2次光源を生成する2次光源生成手段と、上記2次光源生成手段によって生成される上記複数の2次光源からそれぞれ出射される光ビームを所定の光路に導光し、所定の照射領域に照射する照射手段と、上記所定の光路に介挿され、上記複数の2次光源からそれぞれ出射される光ビームを分離し導光する分離部材を有し、上記分離部材によって分離され導光された上記複数の2次光源からそれぞれ出射される光ビームを、それぞれ集光することにより2次光源の像を結像する結像手段と、上記結像手段によって結像された上記複数の2次光源の像をそれぞれ撮像する撮像手段と、上記撮像手段によって撮像された上記複数の2次光源の像の位置に基づいて、上記2次光源生成手段に入射する上記複数の光ビームの入射方向の光軸に対するずれ量と、入射位置の光軸に対するずれ量とを演算する演算手段とを備えることを特徴とする。
【0017】
上述の目的を達成するために、本発明に係る照射方法は、複数の光源から出射される複数の光ビームを2次光源生成手段に入射して複数の2次光源を生成し、上記2次光源生成手段によって生成される上記複数の2次光源からそれぞれ出射される光ビームを所定の光路に導光し、所定の照射領域に照射し、上記所定の光路に介挿される分離部材によって、上記複数の2次光源からそれぞれ出射される光ビームを分離して導光し、上記分離部材によって、分離され導光された上記複数の2次光源からそれぞれ出射される光ビームを、それぞれ集光することにより2次光源の像を結像し、結像された上記複数の2次光源の像をそれぞれ撮像し、撮像された上記複数の2次光源の像の位置に基づいて、上記2次光源生成手段に入射する上記複数の光ビームの入射方向の光軸に対するずれ量と、入射位置の光軸に対するずれ量とを演算することを特徴とする。
【0018】
上述の目的を達成するために、本発明に係るアニール装置は、複数の光源から出射される複数の光ビームを入射して複数の2次光源を生成する2次光源生成手段と、上記2次光源生成手段によって生成される上記複数の2次光源からそれぞれ出射される光ビームを所定の光路に導光し、ステージに載置された被照射物上の所定の照射領域に照射する照射手段と、上記所定の光路に介挿され、上記複数の2次光源からそれぞれ出射される光ビームを分離し導光する分離部材を有し、上記分離部材によって分離され導光された上記複数の2次光源からそれぞれ出射される光ビームを、それぞれ集光することにより2次光源の像を結像する結像手段と、上記結像手段によって結像された上記複数の2次光源の像をそれぞれ撮像する撮像手段と、上記撮像手段によって撮像された上記複数の2次光源の像の位置に基づいて、上記2次光源生成手段に入射する上記複数の光ビームの入射方向の光軸に対するずれ量と、入射位置の光軸に対するずれ量とを演算する演算手段とを備えることを特徴とする。
【0019】
上述の目的を達成するために、本発明に係るアニール方法は、複数の光源から出射される複数の光ビームを2次光源生成手段に入射して複数の2次光源を生成し、上記2次光源生成手段によって生成される上記複数の2次光源からそれぞれ出射される光ビームを所定の光路に導光し、ステージに載置された被照射物上の所定の照射領域に照射し、上記所定の光路に介挿される分離部材によって、上記複数の2次光源からそれぞれ出射される光ビームを分離して導光し、上記分離部材によって、分離され導光された上記複数の2次光源からそれぞれ出射される光ビームを、それぞれ集光することにより2次光源の像を結像し、結像された上記複数の2次光源の像をそれぞれ撮像し、撮像された上記複数の2次光源の像の位置に基づいて、上記2次光源生成手段に入射する上記複数の光ビームの入射方向の光軸に対するずれ量と、入射位置の光軸に対するずれ量とを演算することを特徴とする。
【0020】
【発明の実施の形態】
以下、本発明に係る照射装置及び照射方法、並びにアニール装置及びアニール方法の実施の形態を図面を参照にして詳細に説明する。
【0021】
図1を用いて、本発明の第1の実施の形態として示すレーザアニール装置20について説明をする。
【0022】
レーザアニール装置20は、1つのレーザ光源から、複数の光学部品を用いて2次光源を生成し、生成された2次光源から出射される複数の光ビームを合成して2軸ステージ9上に設置された被照射物10を照射する光ビーム照射系と、当該レーザアニール装置20で生成される上記2次光源の像を撮像し、撮像された像に基づいて、当該レーザアニール装置20の上記光学部品のアライメントのずれをシフト量、チルト量として演算する撮像演算管理系と、撮像演算管理系によって演算されたシフト量、チルト量に基づいて、上記光ビーム照射系が備える光学部品のアライメントを自動的に調節するサーボ制御系とからなる。
【0023】
まず、レーザアニール装置20の光ビーム照射系について説明をする。レーザアニール装置20の光ビーム照射系は、レーザ光源1と、コリメータ2と、光分割部3と、凸レンズ4a,4b,4c,4dを備えるレンズアレイ4と、凸レンズ5a,5b,5c,5dを備えるレンズアレイ5と、コンデンサレンズ6と、リレーレンズ7,8とを備えている。
【0024】
なお、コンデンサレンズ6と、リレーレンズ7との間には、コンデンサレンズ6から出射された光ビームを透過及び反射して、2つの光ビームに分離するビームスプリッタ11が備えられており、光ビーム照射系では、ビームスプリッタ11で透過された光ビームを使用する。
【0025】
レーザ光源1は、レーザビームをパルス発振し、後段のコリメータ2に出射する。
【0026】
本実施の形態ではレーザ光源1として固体レーザを採用している。固体レーザは、半導体を除く結晶や、ガラスなどの透明物質を母体材料とし、上記母体材料中に希土類イオンや、遷移金属イオンなどをドープした固体レーザ材料を、光励起によってレーザ発振し、レーザビームを出射する。
【0027】
固体レーザは、例えば、母体材料にガラスを用いてNd3+をドープしたガラスレーザ、母体材料にルビーを用いてCr3+をドープしたルビーレーザ、母体材料にイットリウム・アルミニウム・ガーネット(YAG)を用いてNd3+をドープしたYAGレーザ、上記ガラスレーザ、ルビーレーザ、又は、YAGレーザから出射されるレーザ光の波長を非線形光学結晶を用いて波長変換したレーザなどがある。
【0028】
コリメータ2は、レーザ光源1の後段に配置され、レーザ光源1から出射されたレーザビームを所定のビーム径の平行光束(以下、光ビームL0とも呼ぶ)にして光分割部3に出射する。
【0029】
光分割部3は、コリメータ2の後段に配置され、コリメータ2から出射された光ビームL0を、等しい強度の4本の平行光束に分割して出射する。コリメータ2から出射された光ビームL0は、光分割部3によって、互いに等間隔で平行、且つ、一列に並ぶように分割される。
【0030】
光分割部3は、分離面に入射される光ビームを透過及び反射して、等しい強度の2つの光ビームに分離するビームスプリッタ31,32と、反射面に入射した光ビームを反射する反射鏡33と備えている。
【0031】
ビームスプリッタ31,32、反射鏡33は、コリメータ2側からレンズアレイ4の方向へ、反射鏡33、ビームスプリッタ31、ビームスプリッタ32の順で、反射鏡33の光反射面と、ビームスプリッタ31の光分離面と、ビームスプリッタ32の光分離面とが互いに平行、且つ、コリメータ2から出射される光ビームL0の光路に対して、90−θ(0<θ<90)度の角度をなして配置される。ここで、θは、コリメータ2から出射され、ビームスプリッタ31に入射する光ビームL0の入射角である。
【0032】
ビームスプリッタ31は、コリメータ2から出射される光ビームL0の光路上に、上記光ビームL0のみが入射される位置に配置されている。ビームスプリッタ31は、コリメータ2から出射された光ビームL0を透過及び反射して等しい強度の2つの光ビームに分離し、それぞれ、ビームスプリッタ32及び反射鏡33に出射する。
【0033】
ビームスプリッタ32は、ビームスプリッタ31で透過された光ビームを透過及び反射して、等しい強度の2つの光ビームに分離し、それぞれレンズアレイ4の凸レンズ4a及び反射鏡33に出射する。なお、以下の説明において、レンズアレイ4の凸レンズ4aに出射される上記光ビームを光ビームL1と呼ぶ。
【0034】
さらに、ビームスプリッタ32は、コリメータ2から出射され、ビームスプリッタ31で反射され、さらに反射鏡33で反射された光ビームを透過及び反射して、等しい強度の2つのレーザビームに分離し、それぞれ、レンズアレイ4の凸レンズ4b及び反射鏡33に出射する。なお、以下の説明において、レンズアレイ4の凸レンズ4bに出射される上記光ビームを光ビームL2と呼ぶ。
【0035】
このように、ビームスプリッタ32は、ビームスプリッタ31で透過された光ビームの光路上、及び、ビームスプリッタ31で反射され、さらに、反射鏡33で反射された光ビームの光路上に配置される。
【0036】
反射鏡33は、ビームスプリッタ31で透過され、ビームスプリッタ32で反射された光ビームを反射してレンズアレイ4の凸レンズ4cに出射する。なお、以下の説明において、レンズアレイ4の凸レンズ4cに出射される上記光ビームを光ビームL3と呼ぶ。
【0037】
また、反射鏡33は、ビームスプリッタ31で反射された光ビームを、反射してビームスプリッタ32に出射する。さらに、反射鏡33は、ビームスプリッタ32に出射して反射された光ビームを反射してレンズアレイ4の凸レンズ4dに出射する。なお、以下の説明において、レンズアレイ4の凸レンズ4dに出射される上記光ビームを光ビームL4と呼ぶ。
【0038】
このように、反射鏡33は、コリメータ2から出射される光ビームL0の光路外、且つ、ビームスプリッタ31で反射された光ビームを反射してビームスプリッタ32に出射する位置に配置される。
【0039】
また、ビームスプリッタ31と、反射鏡33、及びビームスプリッタ31と、ビームスプリッタ32は、光分割部3から出射される光ビームL1〜L4が各々レーザ光源1から出射されるレーザビームの可干渉距離以上の光路長差が設けられるような距離を保って配置される。
【0040】
これにより、4本の光ビームを合成した際、合成によって生ずる干渉の影響を均一照射に影響がないレベルに抑えることができる。
【0041】
なお、光分割部3の具体例として、当該光分割部3で分割して出射させる平行光束の数nをn=4とした場合の構成例を示したが、ビームスプリッタの数を増加させることにより、n=4以外も同様の構成で実現できる。すなわち、ビームスプリッタの数をj個(jは自然数)とした場合、n=2j本のレーザ光を出射することができる。
【0042】
光分割部3によって分割されるレーザビームの数をnとし、i番目に配置されるビームスプリッタをBSiとし、iの最大値、すなわち、光分割部に備えられるBSの数をkとすると、nとkとの関係は、以下の(1)式に示す通りとなる。
【0043】
n=2k・・・(1)
また、第i番目のBSiにおいてレーザビームが透過及び反射する回数mとiとの関係は、以下の(2)式に示す通りとなる。
【0044】
m=2(i−1)・・・(2)
また、BSiでの透過率Tは、以下の(3)式に示す通りとなる。
【0045】
T=0.5i・・・(3)
さらにまた、BSiでの反射率Rは、以下の(4)式に示す通りとなる。
【0046】
R=0.5i・・・(4)
また、出力されるn本レーザビームを互いに干渉をしないインコヒーレントな光とするためには、各ビームスプリッタ及び反射鏡を次のように配置をする必要がある。
【0047】
ここで、各ビームスプリッタへのレーザビームの入射角をθとし、レーザビームの可干渉距離をLとする。
【0048】
1番目のビームスプリッタと、反射鏡との距離t0は、次の(5)式に示すと通りに設定をする。
【0049】
t0≧L/(2cosθ) ・・・(5)
また、第1番目に配置されるビームスプリッタBS1と、第j番目に配置されるビームスプリッタBS(j)との間の距離t(j−1)を、次の(6)式に示す通りに設定をする。なお、jは、2からkまでの整数である。
【0050】
tj≧((2(j −1 )−1)L/(2cosθ) ・・・(6)
レンズアレイ4,5は、光分割部3で分割された4本の光ビーム、光ビームL1,L2,L3,L4をそれぞれ集光して4つの2次光源101a,101b,101c,101dを生成する。2次光源101a,101b,101c,101dから出射される光ビームは、コンデンサレンズ6に入射される。
【0051】
レンズアレイ4は、凸レンズ4a、凸レンズ4b、凸レンズ4c、凸レンズ4dが、一列に並んで構成されており、レンズアレイ5も同様に、凸レンズ5a、凸レンズ5b、凸レンズ5c、凸レンズ5dが、一列に並んで構成されている。
【0052】
レンズアレイ4は、凸レンズ4aが、コリメータ2を通過する光ビームL1の光軸上となるように光分割部3の後段に配置される。レンズアレイ5は、凸レンズ5aが、レンズアレイ4の凸レンズ4aを通過する光ビームL1の光軸上となるようにレンズアレイ4の後段に配置される。レンズアレイ5は、レンズアレイ4への入射光束である、光ビームL1,L2,L3,L4に対する傾きの影響を極力小さくするために配置されている。
【0053】
また、ここでは簡単なために、レンズアレイ4が備える各凸レンズの焦点距離(以下、レンズアレイ4の焦点距離とも呼ぶ)と、レンズアレイ5が備える各凸レンズの焦点距離(以下、レンズアレイ5の焦点距離とも呼ぶ)は、同一距離であり、さらに、レンズアレイ4と、レンズアレイ5とは、互いの焦点位置に配置されている。
【0054】
そのため、レンズアレイ4が備える凸レンズの光軸に対して所定の角度で入射された光ビームは、レンズアレイ5が備える凸レンズの光軸と平行となって、レンズアレイ5から出射される。つまり、光ビームが、所定の角度でレンズアレイ4が備える凸レンズに入射されたとしても、レンズアレイ5が備える凸レンズの焦点であるレンズアレイ4が備える凸レンズの中心を通っているため、光ビームはレンズアレイ5の凸レンズから光軸に平行となって出射される。
【0055】
なお、レンズアレイ4の焦点距離をf4、レンズアレイ5の焦点距離をf5とするが、以下の説明においては、レンズアレイ4と、レンズアレイ5との配置間隔にはf4を用いる。
【0056】
実際には、レンズアレイ5の耐久性に伴い、レンズアレイ5上から2次光源を外すために、レンズアレイ4と、レンズアレイ5の焦点距離や、間隔を調節する。
【0057】
コンデンサレンズ6は、2次光源101a,101b,101c,101dから出射された4本の光ビームを4つの平行光束とし、コンデンサレンズ6の焦点位置に配置されたビームスプリッタ11に出射する。ビームスプリッタ11を透過した光ビームは、リレーレンズ7に出射される。なお、ビームスプリッタ11で反射された光ビームは、後述する撮像演算管理系の結像レンズ12に出射される。
【0058】
リレーレンズ7,8は、ビームスプリッタ11を透過して入射された光ビームをリレーして、2軸ステージ9に載せられた被照射物10に対し、図1中に示したx軸方向のみを照射する。また、リレーレンズ7,8は、4つのガウシアン分布を有する平行光束を所定の間隔だけずらして重ね合わさることで被照射物10を均一照射する。
【0059】
2軸ステージ9は、被照射物10を載せる載物台であり、図1に示したx軸方向、y軸方向に所定の量だけ自由に移動させることができる。2軸ステージ9を、所望の量だけx軸方向、y軸方向に移動させることで、当該2軸ステージ9に載せた被照射物10に対する時間的照射領域を拡大することができる。
【0060】
2軸ステージ9上に載せられる被照射物10は、例えば、非晶質シリコン薄膜などであり、非晶質シリコン薄膜をリレーレンズ7,8を介して光ビームを照射してアニールすることで多結晶シリコン薄膜が得られる。
【0061】
続いて、レーザアニール装置20の撮像演算管理系について説明をする。レーザアニール装置20の撮像演算管理系は、結像レンズ12と、CCD(Charge−Coupled Device)撮像素子14を有するCCDカメラ13と、CCDカメラ搭載ステージ15と、演算機16とを備えている。
【0062】
撮像演算管理系では、レンズアレイ4,5によって生成された2次光源101a,101b,101c,101dから出射される光ビームを受光することで、2次光源101a,101b,101c,101dの像を撮像し、撮像された像と、光ビーム照射系の光学部品が理想的にアライメントされた場合に得られる2次光源の像とを比較して、2次光源像のずれ量を演算する。例えば、各2次光源から出射される光ビームの像にずれが生じていると、被照射物10に対して均一な強度で光ビームが照射されていないことになり、被照射物10が非晶質シリコン薄膜であった場合、特性の悪い多結晶シリコン薄膜が生成されることになってしまう。
【0063】
さらに、撮像演算管理系では、演算された2次光源像のずれ量から上記ずれ量を生じさせる要因である、上記2次光源を生成するレンズアレイ4,5に入射する光ビームL1,L2,L3,L4のシフト量、チルト量を演算する。
【0064】
結像レンズ12は、2次光源101a,101b,101c,101dから出射された光ビームをCCDカメラ13が備えるCCD撮像素子14に受光させ、2次光源101a,101b,101c,101dの像を結像するレンズである。
【0065】
結像レンズ12は、コンデンサレンズ6と、両側テレセントリック光学系を形成している。
【0066】
これにより、コンデンサレンズ6に入射される光ビームのうち、コンデンサレンズ6の焦点、又は、結像レンズ12の焦点を通過する光ビーム、つまり、コンデンサレンズ6に当該コンデンサレンズ6の光軸と平行に入射された光ビームは、結像レンズ12の光軸に平行な光ビームとして結像レンズ12から出射することになる。
【0067】
したがって、2次光源101a,101b,101c,101dから出射される光ビームの主光線がコンデンサレンズ6の光軸に平行な場合、CCD撮像素子14上に結像される像の位置は、例えば、CCD撮像素子14がコンデンサレンズ6の光軸に沿って移動したとしても変化することがない。つまり、2次光源から出射する光ビームによってCCD撮像素子14に結像される像から、2次光源が形成される位置、つまり、2次光源によって光ビームが出射される出射位置も特定されることになる。
【0068】
また、CCD撮像素子14を、結像レンズ12の光軸に沿って移動させた場合に、当該CCD撮像素子14上に結像された像の位置が変化したならば、2次光源101a,101b,101c,101dから出射された光ビームの主光線は、コンデンサレンズ6の焦点(結像レンズ12の焦点)を通過しない両側テレセントリック光学系に従わない光ビームである。つまり、2次光源から出射される光ビームは、コンデンサレンズ6の光軸に平行に出射されずに、所定の角度を有して出射されていることになる。
【0069】
CCDカメラ13は、2次元状に配置されたフォトダイオードからなる画素配列と、画素で光発生した信号電荷を読み出すCCDレジスタからなるCCD撮像素子14を備えたカメラである。
【0070】
CCDカメラ13は、CCD撮像素子14上に結像レンズ12によって結像された2次光源101a,101b,101c,101dの像を、CCD撮像素子14によって2次元画像の信号電荷として読み出すことで撮像する。信号電荷は、CCDカメラ13から、演算器16に伝送される。
【0071】
CCDカメラ搭載ステージ15は、CCDカメラ13が搭載されており、図1中に示すΔZ方向に、上記CCDカメラ13を移動させることができる。これは、上述したように、2次光源101a,101b,101c、101dから出射される光ビームが、コンデンサレンズ6の光軸に対して所定の角度で出射されたかどうかを検出するための機構である。
【0072】
例えば、CCD撮像素子14の位置を結像レンズ12の光軸にそって変化させ、結像された像の位置にずれが生じた場合、位置ずれを生じた光ビームを出射した2次光源は、コンデンサレンズ6の光軸に対して所定の角度で光ビームを出射したことになる。
【0073】
演算機16は、画像信号を出力表示するモニタ16aを備えており、CDカメラ13から伝送される信号電荷に基づいて、CCD撮像素子14に結像された2次光源から出射された光ビームの位置を演算し、上記モニタ16aから画像信号として出力表示する。
【0074】
演算機16は、まず、CCDカメラ13から伝送された信号電荷を光量に換算して光量分布を求める。求めた光量分布から、2次光源101a,101b,101c,101dで出射された光ビームの重心位置を演算し、演算した重心位置を上記光ビームの位置としてモニタ16aに出力表示する。
【0075】
また、演算機16は、当該レーザアニール装置20の光分割部3が理想的にアライメントされている場合に、CCD撮像素子14に結像レンズ12によって結像されるであろう2次光源の像の位置を示すデータを図示しないメモリに保持しており、実際にCCDカメラ13で撮像された2次光源による像の位置データとを比較することで、2次光源像の位置ずれ量を演算する。
【0076】
さらに、演算機16は、上記像の位置ずれ量から、レンズアレイ4に入射する光ビームL1,L2,L3,L4のシフト量及びチルト量を近軸計算により近似して、それぞれ演算する。
【0077】
光ビームL1,L2,L3,L4のシフト量及びチルト量は、上述した2次光源の出射位置、2次光源の光ビームの出射方向をそれぞれ決定するパラメータである。
【0078】
チルト量は、凸レンズ4a,4b,4c,4dの光軸に対して、光ビームL1,L2,L3,L4がそれぞれx軸方向、y軸方向にどれだけの角度だけ傾いて入射されているかを示す量である。
【0079】
また、シフト量は、凸レンズ4a,4b,4c,4dの光軸に対して、光ビームL1,L2,L3,L4がそれぞれx軸方向、y軸方向にどれだけの距離だけ離れて入射されているかを示す量である。
【0080】
例えば、所定のシフト量及びチルト量を有する光ビームL1が凸レンズ4aに入射されたとすると、レンズアレイ5の凸レンズ5aに形成される2次光源は、レンズアレイ5の中心以外を出射位置とし、コンデンサレンズ6の光軸に対して所定の角度を有する光ビームを出射することになる。このような、2次光源が1つでも生成されると、被照射物10に対して均一な強度で光ビームを照射することを妨げることになる。
【0081】
なお、シフト量、チルト量の具体的な演算については後で詳細に説明をする。
【0082】
演算機16で、演算されたシフト量、チルト量は、レーザアニール装置20のサーボ制御系に供給される。
【0083】
レーザアニール装置20のサーボ制御系は、サーボ制御部17と、自動チルト及びシフトステージ18とを備えており、撮像演算管理系によって演算されたシフト量、チルト量に基づいて、光学系のアライメントをサーボ制御して自動調節する。
【0084】
サーボ制御部17は、演算機16で演算されたシフト量、チルト量によってフィードバックをかけ、自動チルト及びシフトステージ18が備える各種モータを駆動させる制御信号を生成し、自動チルト及びシフトステージ18に搭載されている光分割部3全体のx軸方向、y軸方向の位置、及び/又は、光分割部3を構成するビームスプリッタ31,32、反射鏡33の光軸に対する角度を調節する。
【0085】
自動チルト及びシフトステージ18は、光分割部3を搭載しており、サーボ制御部17で生成された制御信号に基づいて、図1に示すx軸方向、y軸方向に沿って光分割部3全体のレーザアニール装置20内での位置を図示しないモータによって移動させる。
【0086】
この自動チルト及びシフトステージ18のx軸方向、y軸方向への移動は、上述したシフト量に対応した動作である。
【0087】
また、自動チルト及びシフトステージ18は、光分割部3を構成するビームスプリッタ31,32、反射鏡33をそれぞれ独立に調節するための図示しないモータを備えており、サーボ制御部17で生成された制御信号に基づいて、アライメントを調節する。
【0088】
例えば、図2に示すビームスプリッタ31の斜視図を用いて説明すると、ビームスプリッタ31は、サーボ制御部17で生成された制御信号に基づいて、P軸、Q軸を中心に回転することで光軸に対する反射面(透過面)を任意の方向に調節可能となっている。ビームスプリッタ32の反射面(透過面)、反射鏡33の反射面も、サーボ制御部17で生成された制御信号に基づいて、それぞれ同様に調節することが可能である。
【0089】
この、光分割部3を構成するビームスプリッタ31,32、反射鏡33の個別の調節は、上述したチルト量に対応した動作である。
【0090】
続いて、図3を用いて、2次光源101a,101b,101c,101dから出射される光ビームによってCCD撮像素子14上に結像される像の位置から、レンズアレイ4を構成する凸レンズ4a,4b,4d,4cに入射される光ビームL1,L2,L3,L4のシフト量、チルト量を演算する演算方法について説明をする。
【0091】
なお、説明のため、図3においては、ビームスプリッタ11の記載を省略し、光分割部3から出射されレンズアレイ4に入射される光ビームL1,L2,L3,L4も主光線のみを示す。また、シフト量、チルト量の演算方法は、x軸方向、y軸方向ともに同一であるため、代表してx軸方向のシフト量、チルト量の演算方法について説明をする。
【0092】
また、図3において、レーザアニール装置20が理想的にアライメントされている場合、2次光源101a,101b,101c,101dから出射される光ビームによって位置AでのCCD撮像素子14上に形成される像の位置を、”○”で示した結像位置14A1,14A2,14A3,14A4とする。
【0093】
また、CCD撮像素子14を位置AからΔZだけ後方に移動させた位置Bとした場合に、当該CCD撮像素子14上に結像される像の位置を、同じく”○”で示した14B1,14B2,14B3,14B4とする。
【0094】
実際は、2次光源から出射された光ビームの結像位置は、演算機16によって演算されることでモニタ16aに出力表示され、ユーザはモニタ16aを参照することで結像位置のずれを把握し、光学系アライメントの異常を知ることができるようになっているが、ここでは、y軸方向におけるチルト量、シフト量による影響を排除するために、図3に示すCCD撮像素子14上において結像位置の説明を行う。
【0095】
まず、レンズアレイ4の凸レンズ4a,4b,4c,4dに入射する光ビームL1,L2,L3,L4について説明をする。
【0096】
光ビームL1は、x軸方向、y軸方向に完全にアライメントされた光ビームである。光ビームL2は、凸レンズ4bの光軸に対してx軸方向にΔSxの距離だけ離れた位置から上記光軸に対して平行に入射される光ビームである。光ビームL3は、x軸方向にのみだけ完全にアライメントされた光ビームである。光ビームL4は、凸レンズ4dの光軸に対してx軸方向にΔθxの角度で入射される光ビームである。
【0097】
なお、説明のため、ここでは、光ビームL1,L2,L3,L4が個別に異なるチルト量、シフト量で入射しているとしているが、実際は、光ビームL1,L2,L3,L4は、互いにほぼ共通する量のシフト量、チルト量でレンズアレイ4の各凸レンズに入射していることが多い。
【0098】
凸レンズ4aに入射した光ビームL1は、シフト量、チルト量がともに0であるため、凸レンズ4aの光軸にそって入射し、凸レンズ5aの中心に2次光源101aを生成する。
【0099】
上述したように、レンズアレイ4は、レンズアレイ5の焦点位置に配置されているので、光ビームL1は、凸レンズ5aの焦点を通過している。したがって、2次光源101aは、コンデンサレンズ6の光軸と平行な光ビームをコンデンサレンズ6に出射する。
【0100】
2次光源101aから出射され、コンデンサレンズ6に入射された光ビームは、コンデンサレンズ6の焦点を通過し、コンデンサレンズ6の焦点と結像レンズ12の焦点とが同一であることから結像レンズ12より当該結像レンズ12の光軸に平行に出射され、CCD撮像素子14上に結像される。
【0101】
光ビームL1は、シフト量、チルト量ともに0の光ビームであるため、CCD撮像素子14に結像される像は、理想的にアライメントされた際の結像位置14A1に一致することになる。また、CCDカメラ搭載ステージ15をΔZだけ後方に変位させて、CCDカメラ13のCCD撮像素子14の位置を位置Aから位置Bとした場合でも、CCD撮像素子14上に結像される像の位置は、理想的な結像位置である結像位置14B1に一致している。
【0102】
凸レンズ4cに入射した光ビームL3も、凸レンズ4aに入射した光ビームL1と同様にx軸方向において、シフト量、チルト量が、ともに0であるため、凸レンズ5cに生成される2次光源101cから出射される光ビームは、理想的な結像位置である結像位置14A3、14B3に一致する。
【0103】
凸レンズ4bに入射した光ビームL2は、チルト量0であるが、シフト量がΔSxであるため、凸レンズ4bの光軸に平行で距離ΔSxだけ離れた光路で入射し、凸レンズ4bの光軸に対してαの角度で凸レンズ4bの焦点に出射される。
【0104】
上述したように、レンズアレイ5は、レンズアレイ4の焦点位置に配置されているので、光ビームL2は、凸レンズ4bの焦点である凸レンズ5bの中心を通過することになる。したがって、2次光源101bは、凸レンズ5bの中心に生成される。
【0105】
また、光ビームL2は、凸レンズ5bの焦点は通過していないが、凸レンズ5bの中心に入射されるので、2次光源101bから、光ビームが上記αの角度でコンデンサレンズ6に出射される。
【0106】
2次光源101bから出射され、コンデンサレンズ6にαの角度で入射された光ビームは、コンデンサレンズ6の焦点を通過せず結像レンズ12より所定の角度をもって出射され、CCD撮像素子14上に結像される。
【0107】
CCD撮像素子14上に結像される像は、例えば、位置Aにおいて、理想的な結像位置である14A2に結像されたとしても、CCD撮像素子14の位置をAから位置Bにした場合には、位置Bにおける理想的な結像位置14B2に結像しない像である。
【0108】
これは、2次光源101bから出射された光ビームがコンデンサレンズ6に所定の角度αで入射されたため、コンデンサレンズ6、結像レンズ12によって形成されている両側テレセントリック光学系にあてはまらないことによるものである。
【0109】
ここで、例えば、2次光源101bから出射された光ビームが、上述したように位置Aにおいて、理想的な結像位置14A2と一致し、位置Bにおいて理想的な結像位置14B2と一致しなかったとする。さらに、位置Bにおいて実際に結像した位置と、理想的な結像位置14B2とのずれをΔSx’とし、CCD撮像素子14の位置A及び位置Bの変位量をΔZとし、結像レンズ12の焦点距離をf12、レンズアレイ4,5の配置距離をf4とすると、光ビームL2のシフト量ΔSxは、近軸計算として近似して、(7)式から求めることができる。
【0110】
【数1】
【0111】
続いて、凸レンズ4dに入射した光ビームL4は、シフト量0であるが、チルト量がΔθxであるため、凸レンズ4dの光軸とΔθxの角度を有し、凸レンズ5dの焦点でもある凸レンズ4dの中心を通過する光路で入射する。
【0112】
凸レンズ4dの中心を通過した光ビームL4は、凸レンズ5dに対してもΔθxの角度で入射するため、2次光源101dは、Δθxと、レンズアレイ4と、レンズアレイ5とが配置されている間隔であるf4とで決まる位置に形成される。例えば、凸レンズ5dの中心位置から、2次光源101dが形成される位置との距離をdxとするとdx=f4・tan(Δθx)と示すことができる。
【0113】
2次光源101dから出射される光ビームは、凸レンズ5dの焦点を通過しているので凸レンズ5dの光軸に対して平行な光ビームとしてコンデンサレンズ6に出射される。
【0114】
コンデンサレンズ6から出射された光ビームは、コンデンサレンズ6の光軸に対して平行に入射されていることからコンデンサレンズ6の焦点を通過して、コンデンサレンズ6と両側テレセントリック光学系を形成している結像レンズ12に出射され、CCD撮像素子14上に結像される。
【0115】
CCD撮像素子14に結像される像は、CCD撮像素子14が位置Aから位置Bに変位しても、コンデンサレンズ6と、結像レンズ12とが形成する両側テレセントリック光学系にしたがい結像位置が同一な像となるが、位置Aにおいても、位置Bにおいても、それぞれの理想的な結像位置である14A4,14B4に結像しない。
【0116】
ここで、例えば、2次光源101dから出射されCCD撮像素子14上に結像された光ビームが、上述したように位置Aにおいても、位置Bにおいても理想的な結像位置14A4、14B4からΔθx’だけの距離の位置に結像されたとし、結像レンズ12の焦点距離をf12、レンズアレイ4,5の配置距離をf4とすると、光ビームL4のシフト量Δθxは、近軸計算として近似して、(8)式から求めることができる。
【0117】
【数2】
【0118】
このようにして、2次光源が結像レンズ12によってCCD撮像素子14上に結像される像を演算することによって、2次光源を生成するレンズアレイ4,5のレンズアレイ4に入射される光ビームL1,L2,L3,L4のシフト量、チルト量をそれぞれ独立に演算することができる。
【0119】
上記レンズアレイ4に入射される光ビームは、例えば、ΔSxだけシフト量を有する光ビームL2や、Δθxだけチルト量を有する光ビームL4のようにそれぞれ個別にシフト量や、チルト量を有するだけではなく、1つの光ビーム中にシフト量と、チルト量とを有している場合もあるが、上述した演算をそれぞれ独立に実行することでシフト量、チルト量を求めることができる。
【0120】
上述の説明では、x軸方向のみについて説明をしたが、y軸方向についても全く同様に考えることができる。例えば、図4に示すCCD撮像素子14が位置Aにある場合のモニタ16aの画像と、図5に示すCCD撮像素子14が位置Bにある場合のモニタ16aの画像とを用いて説明をする。
【0121】
図4、図5に示すモニタ16aに表示される像を形成する光ビームは、図3においてレンズアレイ4に入射された光ビームL1,L2,L3,L4と同一のもとする。したがって、光ビームL3がy軸方向にアライメントされていない光ビームであるので、光ビームL3によって形成される2次光源101cの像について説明をする。
【0122】
図4において、2次光源101cから出射され、位置AにあるCCD撮像素子14上に結像された光ビームL3の位置を示す結像位置14A3’は、理想的な結像位置である14A3から、モニタ16aの画面上のy軸方向にΔθy’だけずれている。
【0123】
したがって、x軸方向の場合と同様に考えてCCD撮像素子14が位置Aにある場合のずれは、レンズアレイ4に入射する光ビームL3がy軸方向にチルト量を有していることを示している。
【0124】
また、演算機16は、y軸方向のチルト量Δθyを、x軸方向でのチルト量と同様に、近軸計算として近似して、(9)に示す式から求めることができる。
【0125】
【数3】
【0126】
図5において、2次光源101cから出射され、位置BにあるCCD撮像素子14上に結像された光ビームL3の位置を示す結像位置14B3’は、理想的な結像位置である14B3から、モニタ16a画面上のy軸方向にΔSy’ずれている。
【0127】
したがって、x軸方向の場合と同様に考えて、CCD撮像素子14が位置Bにある場合のずれは、レンズアレイ4に入射する光ビームL3がy軸方向にシフト量を有していることを示している。
【0128】
また、演算機16は、y軸方向のシフト量ΔSyを、x軸方向のシフト量と同様に、近軸計算として近似して、(10)に示す式から求めることができる。
【0129】
【数4】
【0130】
このように、レンズアレイ4の凸レンズ4cに入射された光ビームL3は、y軸方向にチルト量と、シフト量との両方を有する光ビームであることが分かる。
【0131】
以上のように、2次光源からコンデンサレンズ6を介して出射される光ビームを、コンデンサレンズ6と、結像レンズ12とが両側テレセントリック光学系を形成するように、ビームスプリッタ11で分離させて撮像演算管理系の結像レンズ12に入射させ、さらに、CCD撮像素子14上に結像される像の位置を演算することで、レーザアニール装置20が被照射物10に対して均一強度で光ビームを照射しているかどうかをリアルタイムで管理することができる。
【0132】
さらに、演算機16によって、(7)式でx軸方向のシフト量、(8)式で演x軸方向のチルト量、(9)式でy軸方向のシフト量、(10)式でy軸方向のチルト量を演算してサーボ制御部17に出力し、演算されるチルト量、シフト量に基づいたサーボ制御部17による制御によって自動チルト及びシフトステージ18に装着された光分割部3の光学アライメントを自動的に調節することで、レーザアニール装置20の均一強度での光ビームの照射を統括的に管理及び制御することが可能となる。
【0133】
続いて、図6を用いて、本発明の第2の実施の形態として示すレーザアニール装置60について説明をする。
【0134】
レーザアニール装置60は、図1に示したレーザアニール装置20では1つだったレーザ光源1に換えて、複数のレーザ光源40,44,48,52を備えた構成である。レーザアニール装置60が備える上記レーザ光源40,44,48,52は、例えば、同一波長を発振する固体レーザである。
【0135】
レーザ光源40,44,48,52の後段のそれぞれには、レーザビームを所定のビーム径の平行光束にして出射するコリメータ41,45,49,53が備えられている。
【0136】
コリメータ41,45,49,53から出射した光ビームは、それぞれ反射鏡42,43、反射鏡46,47、反射鏡50,51、反射鏡54,55を介してレンズアレイ4に導かれる。なお、反射鏡42,43,46,47,50,51,54,55は、サーボ制御系による制御によって、光軸に対するx軸、y軸方向の角度、及び、x軸、y軸方向の位置を調節可能な図示しない自動チルト2軸ホルダに搭載されている。
【0137】
レーザ光源40から出射されたレーザビームは、コリメータ41を介して平行光束となり、反射鏡42,43で反射されて光ビームL11となり、レンズアレイ4の凸レンズ4aに入射する。
【0138】
レーザ光源44から出射されたレーザビームは、コリメータ45を介して平行光束となり、反射鏡46,47で反射されて光ビームL12となり、レンズアレイ4の凸レンズ4bに入射する。
【0139】
レーザ光源48から出射されたレーザビームは、コリメータ49を介して平行光束となり、反射鏡50,51で反射されて光ビームL13となり、レンズアレイ4の凸レンズ4cに入射する。
【0140】
レーザ光源52から出射されたレーザビームは、コリメータ53を介して平行光束となり、反射鏡54,55で反射されて光ビームL14となり、レンズアレイ4の凸レンズ4dに入射する。
【0141】
光ビームL11,L12,L13,L14は、図1,図2を用いて説明したレーザアニール装置20における光ビームL1,L2,L3,L4に対応しており、レンズアレイ4,5によって、それぞれの光ビームから2次光源を生成する。
【0142】
なお、レンズアレイ4より後段のレーザアニール装置60の光ビーム照射系は、レーザアニール装置20の光ビーム照射系と全く同様の構成であるため、それぞれの部材には同一符号を付し説明を省略する。
【0143】
また、レーザアニール装置60の撮像演算管理系も、レーザアニール装置20が備える撮像演算管理系と全く同様であるため、光ビーム照射系とともに同一符号を付して説明を省略する。
【0144】
さらにまた、レーザアニール装置60の演算機16においても、CCD撮像素子14上に結像された像と、理想的に結像された場合の像とのずれから、レンズアレイ4に入射される光ビームL11,L12,L13,L14のチルト量、シフト量を上述した式(7),(8),(9),(10)を用いて演算することができる。
【0145】
このように、複数のレーザ光源40,44,48,52を備える構成のレーザアニール装置60でも、レーザアニール装置20と同様に、レンズアレイ4,5によって2次光源を生成し、生成した2次光源からコンデンサレンズ6を介して出射される光ビームを、コンデンサレンズ6と、結像レンズ12とが両側テレセントリック光学系を形成するように、ビームスプリッタ11で分離させて撮像演算管理系の結像レンズ12に入射させ、さらに、CCD撮像素子14上に集光させて2次光源の像の位置を演算することで、レーザアニール装置60が被照射物10に対して均一強度で光ビームを照射しているかどうかをリアルタイムで管理することができる。
【0146】
また、レーザアニール装置60のサーボ制御系は、レーザアニール装置20のサーボ制御部17に換えて、上記反射鏡42,43,46,47,50,51,54,55をそれぞれ搭載する図示しない自動チルト2軸ホルダを制御するサーボ制御部17’を備えている。
【0147】
サーボ制御部17’は、演算機16によって演算されたチルト量、シフト量に基づいて、フィードバックをかけ、反射鏡42,43,反射鏡46,47、反射鏡50,51、反射鏡54,55の光軸に対するx軸、y軸方向の角度、x軸、y軸方向の位置を図示しない自動チルト2軸ホルダを介して制御する。
【0148】
これにより、レーザアニール装置60は、レーザアニール装置20と同様に、演算機16によって、(7)式でx軸方向のシフト量、(8)式で演x軸方向のチルト量、(9)式でy軸方向のシフト量、(10)式でy軸方向のチルト量を演算してサーボ制御部17’に出力し、生成されるチルト量、シフト量に基づいたサーボ制御部17’による制御によって図示しない自動チルト2軸ホルダに装着された反射鏡42,43,反射鏡46,47、反射鏡50,51、反射鏡54,55の光学アライメントを自動的に調節することで、均一強度での光ビームの照射を統括的に管理及び制御することが可能となる。
【0149】
続いて、図7を用いて、本発明の第3の実施の形態として示すレーザアニール装置20’について説明をする。レーザアニール装置20’は、図1を用いて説明した本発明の第1の実施の形態として示すレーザアニール装置20の撮像演算管理系の位置を変更させた構成である。
【0150】
レーザアニール装置20’は、レーザアニール装置20の光ビーム照射系のうち、コンデンサレンズ6をコンデンサレンズ71に換え、リレーレンズ7,8を取り外し、2次光源101a〜101dから出射される光ビームを透過成分と反射成分に分離するビームスプリッタ75をレンズアレイ5と、コンデンサレンズ71の間の光路に配置する。2次光源の像をCCD撮像素子14に結像させるために、ビームスプリッタ75とCCD撮像素子14の間の光路に光学系73と74で形成された投影レンズ72を配置する構成となっている。
【0151】
レーザアニール装置20’の上記以外の構成については、図1を用いて説明をしたレーザアニール装置20と全く同様であるため、図7中で同符号を付し説明を省略する。
【0152】
レーザアニール装置20’では、レーザ光源1から出射されたレーザビームが、コリメータ2を介して平行な光ビームL0となり、光分割部3で光ビームL1〜L4に分割される。光分割部3で分割された光ビームL1〜L4は、それぞれレンズアレイ4a〜4及びレンズアレイ5a〜5dを介して、2次光源101a〜101dを生成する。2次光源101a〜101dから出射された光ビームは、ビームスプリッタ75によって透過成分と、反射成分とに分離される。
【0153】
2次光源101a〜101dから出射され、ビームスプリッタ75を透過した光ビームは、コンデンサレンズ71によって2軸ステージ9に搭載された被照射物10を均一に照射する。
【0154】
一方、2次光源101a〜101dから出射され、ビームスプリッタ75を反射した光ビームは、投影レンズ72よってCCD撮像素子14に集光される。CCD撮像素子14上では、2次光源101a〜101dと共役な像が形成される。投影レンズ72を形成する光学系73及び74は、投影レンズ72が両側テレセントリック光学系となるように設計されている。
【0155】
したがって、レーザアニール装置20’の撮像演算管理系による光ビーム照射系が備える光学部品のアライメントのずれであるシフト量、チルト量の演算、サーボ制御系による上記シフト量、チルト量に基づいた上記光学部品のアライメント自動調整制御動作についてもレーザアニール装置20と全く同じ手法が適用できる。
【0156】
このように、第3の実施の形態として図7に示すレーザアニール装置20’は、第1の実施の形態として図1に示すレーザアニール装置20からリレーレンズ7,8を取り除いた構成となり、光ビーム照射系の部品点数を削減しながら、レーザアニール装置20と全く同様の効果を得ることができる。
【0157】
なお、本発明の第1、第2及び第3の実施の形態として示したレーザアニール装置20,60,20’では、レンズアレイ4,5の凸レンズが列状の1次元となっているため、生成される2次光源も1次元となっていたが、レンズアレイ4,5を凸レンズが2次元配列されたものに換えることで、2次光源を2次元分布とするようにしてもよい。このように、2次光源を2次元分布とする場合も、同様の手法でチルト量、シフト量を演算することで、レーザアニール装置20,60,20’の均一強度での光ビームの照射を管理及び制御することができる。
【0158】
さらに、また、本発明の第1の実施の形態として示したレーザアニール装置20及び第3の実施の形態として示したレーザアニール装置20’のレーザ光源1、第2の実施の形態として示したレーザアニール装置60のレーザ光源40,44,48,52は、それぞれ固体レーザとしているが、固体レーザに換えて半導体レーザを使用するようにしてもよい。
【0159】
【発明の効果】
以上の説明からも明らかなように、本発明の照射装置及び照射方法は、生成された複数の2次光源から、それぞれ出射される光ビームを分離し、分離した一方の複数の2次光源から出射される光ビームを用いて所定の照射領域を照射する照射系と、分離した他方の複数の2次光源から出射される光ビームを集光させることにより2次光源の像を撮像し、撮像した2次光源の像の位置から2次光源生成手段に入射する光ビームの入射方向、入射位置の光軸に対するずれ量を演算することによって、均一強度での照射の管理を行う管理系とを獲得することができる。したがって、上記所定の照射領域が均一な強度で照射されているかどうかをリアルタイムで管理することが可能となる。
【0160】
また、本発明の照射装置及び照射方法では、複数の2次光源の像を両側テレセントリック光学系を介して結像し、結像された像の位置から、複数の光源から2次光源生成手段に入射される複数の光ビームのチルト量と、シフト量とをそれぞれ独立に演算することができる。したがって、チルト量と、シフト量とに基づいて、2次光源生成手段に入射する複数の光ビームの光学系をサーボ制御してアライメントすることで、均一な強度の光ビームの照射を安定して提供することができる。
【0161】
以上の説明からも明らかなように、本発明のアニール装置及びアニール方法は、生成された複数の2次光源から、それぞれ出射される光ビームを分離し、分離した一方の複数の2次光源から出射される光ビームを用いて所定の照射領域を照射する照射系と、分離した他方の複数の2次光源から出射される光ビームを集光させることにより2次光源の像を撮像し、撮像した2次光源の像の位置から2次光源生成手段に入射する光ビームの入射方向、入射位置の光軸に対するずれ量を演算することによって、均一強度での照射の管理を行う管理系とを獲得することができる。したがって、上記所定の照射領域が均一な強度で照射されているかどうかをリアルタイムで管理することが可能となる。
【0162】
また、本発明のアニール装置及びアニール方法では、複数の2次光源の像を両側テレセントリック光学系を介して結像し、結像された像の位置から、複数の光源から2次光源生成手段に入射される複数の光ビームのチルト量と、シフト量とをそれぞれ独立に演算することができる。したがって、チルト量と、シフト量とに基づいて、2次光源生成手段に入射する複数の光ビームの光学系をサーボ制御してアライメントすることで、均一な強度の光ビームの照射を安定して提供することができるため、被照射物のプロセス不良を回避することが可能となる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態として示すレーザアニール装置の構成を説明するための図である。
【図2】同レーザアニール装置の光分割部が備えるビームスプリッタの動作について説明するための斜視図である。
【図3】同レーザアニール装置におけるシフト量、チルト量の演算方法について説明するための図である。
【図4】同レーザアニール装置において、y軸方向のシフト量、チルト量について説明するための第1図である。
【図5】同レーザアニール装置において、y軸方向のシフト量、チルト量について説明するための第2図である。
【図6】本発明の第2の実施の形態として示すレーザアニール装置の構成を説明するための図である。
【図7】本発明の第3の実施の形態として示すレーザアニール装置の構成を説明するための図である。
【図8】従来技術として示すレーザアニール装置の構成を説明するための図である。
【符号の説明】
1 レーザ光源、2 コリメータ、3 光分割部、4,5 レンズアレイ、6コンデンサレンズ、7,8 リレーレンズ、9 2軸ステージ、10 被照射物、11 ビームスプリッタ、12 結像レンズ、13 CCD(Charge−Coupled Device)カメラ、14 CCD撮像素子、15 CCDカメラ搭載ステージ、16 演算機、16a モニタ、17 サーボ制御部、18 自動チルト及びシフトステージ、20,60,20’ レーザアニール装置
【発明の属する技術分野】
本発明は、被照射物に対して、光ビームを照射する照射装置に関し、詳しくは、上記被照射物に照射する光ビームを均一な強度で照射するよう管理及び制御する機能を備えた照射装置及び照射方法、並びに、アニール装置及びアニール方法に関する。
【0002】
【従来の技術】
低温で大面積に形成可能である多結晶シリコン薄膜は、移動度の高さや、良好な光吸収特性によって、薄膜トランジスタ(TFT:Thin Film Transistor)や、薄膜太陽電池などへの応用が考案されている。
【0003】
多結晶シリコン薄膜は、基板上に形成した非晶質シリコン薄膜を、紫外線波長域のパルスレーザを照射するレーザアニール処理し、局所的、且つ、瞬間的な昇温によって、上記非晶質シリコン薄膜を溶融・再結晶化させることで形成することができる。
【0004】
ところで、非晶質シリコン薄膜をアニール処理することで形成される多結晶シリコン薄膜の結晶粒径は、薄膜全体に亘って一様な粒径であることが要求される。結晶粒径にばらつきがあると、薄膜全体の特性、例えば、移動度などが局所的に高くなったり、低くなったりすることで信頼性のない部材となってしまうことになる。
【0005】
結晶粒径にばらつきのない多結晶シリコン薄膜を作製するには、アニール処理において、エネルギーが均一なレーザビームを非晶質シリコン薄膜に照射する必要がある。
【0006】
一般に、レーザ発振器から出力されるレーザビームは、中央の光強度が一番強く、半径方向にゆるやかに強度が小さくなるようなガウシアン分布に従った強度分布となっているため、被照射物に対して不均一に照射されてしまう。
【0007】
したがって、レーザアニール装置では、均一な照射強度の光ビームを被照射物、例えば、非晶質シリコン薄膜に照射するために、図8に示すような構成となっている。
【0008】
図8に示すレーザアニール装置200は、レーザビームを出射するレーザ光源201と、レーザ光源201から出射されたレーザビームを所定の径の平行光束とするテレスコープ202と、テレスコープ202を通過した光ビームを複数に分割した後にそれぞれ集光して点光源群とするフライアイレンズ203と、フライアイレンズ204と、フライアイレンズ204を通過した各光ビームを基板205上の同一の照射領域に合成して照射するコンデンサレンズ206とを備える。
【0009】
このようなレーザアニール装置200は、レーザ光源201から出射されるレーザビームをフライアイレンズ203で一度分割し、コンデンサレンズ206で再合成することで照射強度の不均一性をキャンセルしている。
【0010】
フライレンズ203の焦点に形成される点光源群は、2次光源であり、複数の2次光源から出射された光ビームがコンデンサレンズ206で合成されて基板205に照射されている。
【0011】
【発明が解決しようとする課題】
レーザアニール装置200は、上述したような構成とすることで、均一な照射強度を得ることができるが、突発的なトラブルや、経時変化などにより当該レーザアニール装置200の光学系のアライメントがずれてしまった場合、照射強度の均一性が崩れてしまう可能性がある。
【0012】
しかも、このようなレーザアニール装置200による照射プロセスにおいて、均一な強度で照射が行われているかどうかといったことが管理されていなかったため、最悪の場合、不均一な強度でアニール処理されていることを検知できず、大量に不良部材が作製されてしまうといった問題がある。
【0013】
さらに、このように複数の2次光源を備えるレーザアニール装置の管理機構は、光ビームの光源が複数存在することから、個々の光源について必要となるため、
単一ビームを照射する照射装置の照射強度管理機構を流用することができず、非常に煩雑な装置構成となってしまうといった問題がある。
【0014】
また、上記照射強度を管理するために必要となる照射強度の測定系などをアニール装置の適切な箇所に設置しないと、測定のたびにアニール処理の中断が要求され、製造プロセスに支障をきたす装置構成となってしまうといった問題もある。
【0015】
そこで、本発明は、上述したような問題を解決するために案出されたものであり、製造プロセスを阻害することなく、被照射物に対して光ビームが均一な強度で照射されるための管理機構を備えた照射装置及び照射方法、並びにレーザアニール装置及びレーザアニール方法を提供することを目的とする。
【0016】
【課題を解決するための手段】
上述の目的を達成するために、本発明に係る照射装置は、複数の光源から出射される複数の光ビームを入射して複数の2次光源を生成する2次光源生成手段と、上記2次光源生成手段によって生成される上記複数の2次光源からそれぞれ出射される光ビームを所定の光路に導光し、所定の照射領域に照射する照射手段と、上記所定の光路に介挿され、上記複数の2次光源からそれぞれ出射される光ビームを分離し導光する分離部材を有し、上記分離部材によって分離され導光された上記複数の2次光源からそれぞれ出射される光ビームを、それぞれ集光することにより2次光源の像を結像する結像手段と、上記結像手段によって結像された上記複数の2次光源の像をそれぞれ撮像する撮像手段と、上記撮像手段によって撮像された上記複数の2次光源の像の位置に基づいて、上記2次光源生成手段に入射する上記複数の光ビームの入射方向の光軸に対するずれ量と、入射位置の光軸に対するずれ量とを演算する演算手段とを備えることを特徴とする。
【0017】
上述の目的を達成するために、本発明に係る照射方法は、複数の光源から出射される複数の光ビームを2次光源生成手段に入射して複数の2次光源を生成し、上記2次光源生成手段によって生成される上記複数の2次光源からそれぞれ出射される光ビームを所定の光路に導光し、所定の照射領域に照射し、上記所定の光路に介挿される分離部材によって、上記複数の2次光源からそれぞれ出射される光ビームを分離して導光し、上記分離部材によって、分離され導光された上記複数の2次光源からそれぞれ出射される光ビームを、それぞれ集光することにより2次光源の像を結像し、結像された上記複数の2次光源の像をそれぞれ撮像し、撮像された上記複数の2次光源の像の位置に基づいて、上記2次光源生成手段に入射する上記複数の光ビームの入射方向の光軸に対するずれ量と、入射位置の光軸に対するずれ量とを演算することを特徴とする。
【0018】
上述の目的を達成するために、本発明に係るアニール装置は、複数の光源から出射される複数の光ビームを入射して複数の2次光源を生成する2次光源生成手段と、上記2次光源生成手段によって生成される上記複数の2次光源からそれぞれ出射される光ビームを所定の光路に導光し、ステージに載置された被照射物上の所定の照射領域に照射する照射手段と、上記所定の光路に介挿され、上記複数の2次光源からそれぞれ出射される光ビームを分離し導光する分離部材を有し、上記分離部材によって分離され導光された上記複数の2次光源からそれぞれ出射される光ビームを、それぞれ集光することにより2次光源の像を結像する結像手段と、上記結像手段によって結像された上記複数の2次光源の像をそれぞれ撮像する撮像手段と、上記撮像手段によって撮像された上記複数の2次光源の像の位置に基づいて、上記2次光源生成手段に入射する上記複数の光ビームの入射方向の光軸に対するずれ量と、入射位置の光軸に対するずれ量とを演算する演算手段とを備えることを特徴とする。
【0019】
上述の目的を達成するために、本発明に係るアニール方法は、複数の光源から出射される複数の光ビームを2次光源生成手段に入射して複数の2次光源を生成し、上記2次光源生成手段によって生成される上記複数の2次光源からそれぞれ出射される光ビームを所定の光路に導光し、ステージに載置された被照射物上の所定の照射領域に照射し、上記所定の光路に介挿される分離部材によって、上記複数の2次光源からそれぞれ出射される光ビームを分離して導光し、上記分離部材によって、分離され導光された上記複数の2次光源からそれぞれ出射される光ビームを、それぞれ集光することにより2次光源の像を結像し、結像された上記複数の2次光源の像をそれぞれ撮像し、撮像された上記複数の2次光源の像の位置に基づいて、上記2次光源生成手段に入射する上記複数の光ビームの入射方向の光軸に対するずれ量と、入射位置の光軸に対するずれ量とを演算することを特徴とする。
【0020】
【発明の実施の形態】
以下、本発明に係る照射装置及び照射方法、並びにアニール装置及びアニール方法の実施の形態を図面を参照にして詳細に説明する。
【0021】
図1を用いて、本発明の第1の実施の形態として示すレーザアニール装置20について説明をする。
【0022】
レーザアニール装置20は、1つのレーザ光源から、複数の光学部品を用いて2次光源を生成し、生成された2次光源から出射される複数の光ビームを合成して2軸ステージ9上に設置された被照射物10を照射する光ビーム照射系と、当該レーザアニール装置20で生成される上記2次光源の像を撮像し、撮像された像に基づいて、当該レーザアニール装置20の上記光学部品のアライメントのずれをシフト量、チルト量として演算する撮像演算管理系と、撮像演算管理系によって演算されたシフト量、チルト量に基づいて、上記光ビーム照射系が備える光学部品のアライメントを自動的に調節するサーボ制御系とからなる。
【0023】
まず、レーザアニール装置20の光ビーム照射系について説明をする。レーザアニール装置20の光ビーム照射系は、レーザ光源1と、コリメータ2と、光分割部3と、凸レンズ4a,4b,4c,4dを備えるレンズアレイ4と、凸レンズ5a,5b,5c,5dを備えるレンズアレイ5と、コンデンサレンズ6と、リレーレンズ7,8とを備えている。
【0024】
なお、コンデンサレンズ6と、リレーレンズ7との間には、コンデンサレンズ6から出射された光ビームを透過及び反射して、2つの光ビームに分離するビームスプリッタ11が備えられており、光ビーム照射系では、ビームスプリッタ11で透過された光ビームを使用する。
【0025】
レーザ光源1は、レーザビームをパルス発振し、後段のコリメータ2に出射する。
【0026】
本実施の形態ではレーザ光源1として固体レーザを採用している。固体レーザは、半導体を除く結晶や、ガラスなどの透明物質を母体材料とし、上記母体材料中に希土類イオンや、遷移金属イオンなどをドープした固体レーザ材料を、光励起によってレーザ発振し、レーザビームを出射する。
【0027】
固体レーザは、例えば、母体材料にガラスを用いてNd3+をドープしたガラスレーザ、母体材料にルビーを用いてCr3+をドープしたルビーレーザ、母体材料にイットリウム・アルミニウム・ガーネット(YAG)を用いてNd3+をドープしたYAGレーザ、上記ガラスレーザ、ルビーレーザ、又は、YAGレーザから出射されるレーザ光の波長を非線形光学結晶を用いて波長変換したレーザなどがある。
【0028】
コリメータ2は、レーザ光源1の後段に配置され、レーザ光源1から出射されたレーザビームを所定のビーム径の平行光束(以下、光ビームL0とも呼ぶ)にして光分割部3に出射する。
【0029】
光分割部3は、コリメータ2の後段に配置され、コリメータ2から出射された光ビームL0を、等しい強度の4本の平行光束に分割して出射する。コリメータ2から出射された光ビームL0は、光分割部3によって、互いに等間隔で平行、且つ、一列に並ぶように分割される。
【0030】
光分割部3は、分離面に入射される光ビームを透過及び反射して、等しい強度の2つの光ビームに分離するビームスプリッタ31,32と、反射面に入射した光ビームを反射する反射鏡33と備えている。
【0031】
ビームスプリッタ31,32、反射鏡33は、コリメータ2側からレンズアレイ4の方向へ、反射鏡33、ビームスプリッタ31、ビームスプリッタ32の順で、反射鏡33の光反射面と、ビームスプリッタ31の光分離面と、ビームスプリッタ32の光分離面とが互いに平行、且つ、コリメータ2から出射される光ビームL0の光路に対して、90−θ(0<θ<90)度の角度をなして配置される。ここで、θは、コリメータ2から出射され、ビームスプリッタ31に入射する光ビームL0の入射角である。
【0032】
ビームスプリッタ31は、コリメータ2から出射される光ビームL0の光路上に、上記光ビームL0のみが入射される位置に配置されている。ビームスプリッタ31は、コリメータ2から出射された光ビームL0を透過及び反射して等しい強度の2つの光ビームに分離し、それぞれ、ビームスプリッタ32及び反射鏡33に出射する。
【0033】
ビームスプリッタ32は、ビームスプリッタ31で透過された光ビームを透過及び反射して、等しい強度の2つの光ビームに分離し、それぞれレンズアレイ4の凸レンズ4a及び反射鏡33に出射する。なお、以下の説明において、レンズアレイ4の凸レンズ4aに出射される上記光ビームを光ビームL1と呼ぶ。
【0034】
さらに、ビームスプリッタ32は、コリメータ2から出射され、ビームスプリッタ31で反射され、さらに反射鏡33で反射された光ビームを透過及び反射して、等しい強度の2つのレーザビームに分離し、それぞれ、レンズアレイ4の凸レンズ4b及び反射鏡33に出射する。なお、以下の説明において、レンズアレイ4の凸レンズ4bに出射される上記光ビームを光ビームL2と呼ぶ。
【0035】
このように、ビームスプリッタ32は、ビームスプリッタ31で透過された光ビームの光路上、及び、ビームスプリッタ31で反射され、さらに、反射鏡33で反射された光ビームの光路上に配置される。
【0036】
反射鏡33は、ビームスプリッタ31で透過され、ビームスプリッタ32で反射された光ビームを反射してレンズアレイ4の凸レンズ4cに出射する。なお、以下の説明において、レンズアレイ4の凸レンズ4cに出射される上記光ビームを光ビームL3と呼ぶ。
【0037】
また、反射鏡33は、ビームスプリッタ31で反射された光ビームを、反射してビームスプリッタ32に出射する。さらに、反射鏡33は、ビームスプリッタ32に出射して反射された光ビームを反射してレンズアレイ4の凸レンズ4dに出射する。なお、以下の説明において、レンズアレイ4の凸レンズ4dに出射される上記光ビームを光ビームL4と呼ぶ。
【0038】
このように、反射鏡33は、コリメータ2から出射される光ビームL0の光路外、且つ、ビームスプリッタ31で反射された光ビームを反射してビームスプリッタ32に出射する位置に配置される。
【0039】
また、ビームスプリッタ31と、反射鏡33、及びビームスプリッタ31と、ビームスプリッタ32は、光分割部3から出射される光ビームL1〜L4が各々レーザ光源1から出射されるレーザビームの可干渉距離以上の光路長差が設けられるような距離を保って配置される。
【0040】
これにより、4本の光ビームを合成した際、合成によって生ずる干渉の影響を均一照射に影響がないレベルに抑えることができる。
【0041】
なお、光分割部3の具体例として、当該光分割部3で分割して出射させる平行光束の数nをn=4とした場合の構成例を示したが、ビームスプリッタの数を増加させることにより、n=4以外も同様の構成で実現できる。すなわち、ビームスプリッタの数をj個(jは自然数)とした場合、n=2j本のレーザ光を出射することができる。
【0042】
光分割部3によって分割されるレーザビームの数をnとし、i番目に配置されるビームスプリッタをBSiとし、iの最大値、すなわち、光分割部に備えられるBSの数をkとすると、nとkとの関係は、以下の(1)式に示す通りとなる。
【0043】
n=2k・・・(1)
また、第i番目のBSiにおいてレーザビームが透過及び反射する回数mとiとの関係は、以下の(2)式に示す通りとなる。
【0044】
m=2(i−1)・・・(2)
また、BSiでの透過率Tは、以下の(3)式に示す通りとなる。
【0045】
T=0.5i・・・(3)
さらにまた、BSiでの反射率Rは、以下の(4)式に示す通りとなる。
【0046】
R=0.5i・・・(4)
また、出力されるn本レーザビームを互いに干渉をしないインコヒーレントな光とするためには、各ビームスプリッタ及び反射鏡を次のように配置をする必要がある。
【0047】
ここで、各ビームスプリッタへのレーザビームの入射角をθとし、レーザビームの可干渉距離をLとする。
【0048】
1番目のビームスプリッタと、反射鏡との距離t0は、次の(5)式に示すと通りに設定をする。
【0049】
t0≧L/(2cosθ) ・・・(5)
また、第1番目に配置されるビームスプリッタBS1と、第j番目に配置されるビームスプリッタBS(j)との間の距離t(j−1)を、次の(6)式に示す通りに設定をする。なお、jは、2からkまでの整数である。
【0050】
tj≧((2(j −1 )−1)L/(2cosθ) ・・・(6)
レンズアレイ4,5は、光分割部3で分割された4本の光ビーム、光ビームL1,L2,L3,L4をそれぞれ集光して4つの2次光源101a,101b,101c,101dを生成する。2次光源101a,101b,101c,101dから出射される光ビームは、コンデンサレンズ6に入射される。
【0051】
レンズアレイ4は、凸レンズ4a、凸レンズ4b、凸レンズ4c、凸レンズ4dが、一列に並んで構成されており、レンズアレイ5も同様に、凸レンズ5a、凸レンズ5b、凸レンズ5c、凸レンズ5dが、一列に並んで構成されている。
【0052】
レンズアレイ4は、凸レンズ4aが、コリメータ2を通過する光ビームL1の光軸上となるように光分割部3の後段に配置される。レンズアレイ5は、凸レンズ5aが、レンズアレイ4の凸レンズ4aを通過する光ビームL1の光軸上となるようにレンズアレイ4の後段に配置される。レンズアレイ5は、レンズアレイ4への入射光束である、光ビームL1,L2,L3,L4に対する傾きの影響を極力小さくするために配置されている。
【0053】
また、ここでは簡単なために、レンズアレイ4が備える各凸レンズの焦点距離(以下、レンズアレイ4の焦点距離とも呼ぶ)と、レンズアレイ5が備える各凸レンズの焦点距離(以下、レンズアレイ5の焦点距離とも呼ぶ)は、同一距離であり、さらに、レンズアレイ4と、レンズアレイ5とは、互いの焦点位置に配置されている。
【0054】
そのため、レンズアレイ4が備える凸レンズの光軸に対して所定の角度で入射された光ビームは、レンズアレイ5が備える凸レンズの光軸と平行となって、レンズアレイ5から出射される。つまり、光ビームが、所定の角度でレンズアレイ4が備える凸レンズに入射されたとしても、レンズアレイ5が備える凸レンズの焦点であるレンズアレイ4が備える凸レンズの中心を通っているため、光ビームはレンズアレイ5の凸レンズから光軸に平行となって出射される。
【0055】
なお、レンズアレイ4の焦点距離をf4、レンズアレイ5の焦点距離をf5とするが、以下の説明においては、レンズアレイ4と、レンズアレイ5との配置間隔にはf4を用いる。
【0056】
実際には、レンズアレイ5の耐久性に伴い、レンズアレイ5上から2次光源を外すために、レンズアレイ4と、レンズアレイ5の焦点距離や、間隔を調節する。
【0057】
コンデンサレンズ6は、2次光源101a,101b,101c,101dから出射された4本の光ビームを4つの平行光束とし、コンデンサレンズ6の焦点位置に配置されたビームスプリッタ11に出射する。ビームスプリッタ11を透過した光ビームは、リレーレンズ7に出射される。なお、ビームスプリッタ11で反射された光ビームは、後述する撮像演算管理系の結像レンズ12に出射される。
【0058】
リレーレンズ7,8は、ビームスプリッタ11を透過して入射された光ビームをリレーして、2軸ステージ9に載せられた被照射物10に対し、図1中に示したx軸方向のみを照射する。また、リレーレンズ7,8は、4つのガウシアン分布を有する平行光束を所定の間隔だけずらして重ね合わさることで被照射物10を均一照射する。
【0059】
2軸ステージ9は、被照射物10を載せる載物台であり、図1に示したx軸方向、y軸方向に所定の量だけ自由に移動させることができる。2軸ステージ9を、所望の量だけx軸方向、y軸方向に移動させることで、当該2軸ステージ9に載せた被照射物10に対する時間的照射領域を拡大することができる。
【0060】
2軸ステージ9上に載せられる被照射物10は、例えば、非晶質シリコン薄膜などであり、非晶質シリコン薄膜をリレーレンズ7,8を介して光ビームを照射してアニールすることで多結晶シリコン薄膜が得られる。
【0061】
続いて、レーザアニール装置20の撮像演算管理系について説明をする。レーザアニール装置20の撮像演算管理系は、結像レンズ12と、CCD(Charge−Coupled Device)撮像素子14を有するCCDカメラ13と、CCDカメラ搭載ステージ15と、演算機16とを備えている。
【0062】
撮像演算管理系では、レンズアレイ4,5によって生成された2次光源101a,101b,101c,101dから出射される光ビームを受光することで、2次光源101a,101b,101c,101dの像を撮像し、撮像された像と、光ビーム照射系の光学部品が理想的にアライメントされた場合に得られる2次光源の像とを比較して、2次光源像のずれ量を演算する。例えば、各2次光源から出射される光ビームの像にずれが生じていると、被照射物10に対して均一な強度で光ビームが照射されていないことになり、被照射物10が非晶質シリコン薄膜であった場合、特性の悪い多結晶シリコン薄膜が生成されることになってしまう。
【0063】
さらに、撮像演算管理系では、演算された2次光源像のずれ量から上記ずれ量を生じさせる要因である、上記2次光源を生成するレンズアレイ4,5に入射する光ビームL1,L2,L3,L4のシフト量、チルト量を演算する。
【0064】
結像レンズ12は、2次光源101a,101b,101c,101dから出射された光ビームをCCDカメラ13が備えるCCD撮像素子14に受光させ、2次光源101a,101b,101c,101dの像を結像するレンズである。
【0065】
結像レンズ12は、コンデンサレンズ6と、両側テレセントリック光学系を形成している。
【0066】
これにより、コンデンサレンズ6に入射される光ビームのうち、コンデンサレンズ6の焦点、又は、結像レンズ12の焦点を通過する光ビーム、つまり、コンデンサレンズ6に当該コンデンサレンズ6の光軸と平行に入射された光ビームは、結像レンズ12の光軸に平行な光ビームとして結像レンズ12から出射することになる。
【0067】
したがって、2次光源101a,101b,101c,101dから出射される光ビームの主光線がコンデンサレンズ6の光軸に平行な場合、CCD撮像素子14上に結像される像の位置は、例えば、CCD撮像素子14がコンデンサレンズ6の光軸に沿って移動したとしても変化することがない。つまり、2次光源から出射する光ビームによってCCD撮像素子14に結像される像から、2次光源が形成される位置、つまり、2次光源によって光ビームが出射される出射位置も特定されることになる。
【0068】
また、CCD撮像素子14を、結像レンズ12の光軸に沿って移動させた場合に、当該CCD撮像素子14上に結像された像の位置が変化したならば、2次光源101a,101b,101c,101dから出射された光ビームの主光線は、コンデンサレンズ6の焦点(結像レンズ12の焦点)を通過しない両側テレセントリック光学系に従わない光ビームである。つまり、2次光源から出射される光ビームは、コンデンサレンズ6の光軸に平行に出射されずに、所定の角度を有して出射されていることになる。
【0069】
CCDカメラ13は、2次元状に配置されたフォトダイオードからなる画素配列と、画素で光発生した信号電荷を読み出すCCDレジスタからなるCCD撮像素子14を備えたカメラである。
【0070】
CCDカメラ13は、CCD撮像素子14上に結像レンズ12によって結像された2次光源101a,101b,101c,101dの像を、CCD撮像素子14によって2次元画像の信号電荷として読み出すことで撮像する。信号電荷は、CCDカメラ13から、演算器16に伝送される。
【0071】
CCDカメラ搭載ステージ15は、CCDカメラ13が搭載されており、図1中に示すΔZ方向に、上記CCDカメラ13を移動させることができる。これは、上述したように、2次光源101a,101b,101c、101dから出射される光ビームが、コンデンサレンズ6の光軸に対して所定の角度で出射されたかどうかを検出するための機構である。
【0072】
例えば、CCD撮像素子14の位置を結像レンズ12の光軸にそって変化させ、結像された像の位置にずれが生じた場合、位置ずれを生じた光ビームを出射した2次光源は、コンデンサレンズ6の光軸に対して所定の角度で光ビームを出射したことになる。
【0073】
演算機16は、画像信号を出力表示するモニタ16aを備えており、CDカメラ13から伝送される信号電荷に基づいて、CCD撮像素子14に結像された2次光源から出射された光ビームの位置を演算し、上記モニタ16aから画像信号として出力表示する。
【0074】
演算機16は、まず、CCDカメラ13から伝送された信号電荷を光量に換算して光量分布を求める。求めた光量分布から、2次光源101a,101b,101c,101dで出射された光ビームの重心位置を演算し、演算した重心位置を上記光ビームの位置としてモニタ16aに出力表示する。
【0075】
また、演算機16は、当該レーザアニール装置20の光分割部3が理想的にアライメントされている場合に、CCD撮像素子14に結像レンズ12によって結像されるであろう2次光源の像の位置を示すデータを図示しないメモリに保持しており、実際にCCDカメラ13で撮像された2次光源による像の位置データとを比較することで、2次光源像の位置ずれ量を演算する。
【0076】
さらに、演算機16は、上記像の位置ずれ量から、レンズアレイ4に入射する光ビームL1,L2,L3,L4のシフト量及びチルト量を近軸計算により近似して、それぞれ演算する。
【0077】
光ビームL1,L2,L3,L4のシフト量及びチルト量は、上述した2次光源の出射位置、2次光源の光ビームの出射方向をそれぞれ決定するパラメータである。
【0078】
チルト量は、凸レンズ4a,4b,4c,4dの光軸に対して、光ビームL1,L2,L3,L4がそれぞれx軸方向、y軸方向にどれだけの角度だけ傾いて入射されているかを示す量である。
【0079】
また、シフト量は、凸レンズ4a,4b,4c,4dの光軸に対して、光ビームL1,L2,L3,L4がそれぞれx軸方向、y軸方向にどれだけの距離だけ離れて入射されているかを示す量である。
【0080】
例えば、所定のシフト量及びチルト量を有する光ビームL1が凸レンズ4aに入射されたとすると、レンズアレイ5の凸レンズ5aに形成される2次光源は、レンズアレイ5の中心以外を出射位置とし、コンデンサレンズ6の光軸に対して所定の角度を有する光ビームを出射することになる。このような、2次光源が1つでも生成されると、被照射物10に対して均一な強度で光ビームを照射することを妨げることになる。
【0081】
なお、シフト量、チルト量の具体的な演算については後で詳細に説明をする。
【0082】
演算機16で、演算されたシフト量、チルト量は、レーザアニール装置20のサーボ制御系に供給される。
【0083】
レーザアニール装置20のサーボ制御系は、サーボ制御部17と、自動チルト及びシフトステージ18とを備えており、撮像演算管理系によって演算されたシフト量、チルト量に基づいて、光学系のアライメントをサーボ制御して自動調節する。
【0084】
サーボ制御部17は、演算機16で演算されたシフト量、チルト量によってフィードバックをかけ、自動チルト及びシフトステージ18が備える各種モータを駆動させる制御信号を生成し、自動チルト及びシフトステージ18に搭載されている光分割部3全体のx軸方向、y軸方向の位置、及び/又は、光分割部3を構成するビームスプリッタ31,32、反射鏡33の光軸に対する角度を調節する。
【0085】
自動チルト及びシフトステージ18は、光分割部3を搭載しており、サーボ制御部17で生成された制御信号に基づいて、図1に示すx軸方向、y軸方向に沿って光分割部3全体のレーザアニール装置20内での位置を図示しないモータによって移動させる。
【0086】
この自動チルト及びシフトステージ18のx軸方向、y軸方向への移動は、上述したシフト量に対応した動作である。
【0087】
また、自動チルト及びシフトステージ18は、光分割部3を構成するビームスプリッタ31,32、反射鏡33をそれぞれ独立に調節するための図示しないモータを備えており、サーボ制御部17で生成された制御信号に基づいて、アライメントを調節する。
【0088】
例えば、図2に示すビームスプリッタ31の斜視図を用いて説明すると、ビームスプリッタ31は、サーボ制御部17で生成された制御信号に基づいて、P軸、Q軸を中心に回転することで光軸に対する反射面(透過面)を任意の方向に調節可能となっている。ビームスプリッタ32の反射面(透過面)、反射鏡33の反射面も、サーボ制御部17で生成された制御信号に基づいて、それぞれ同様に調節することが可能である。
【0089】
この、光分割部3を構成するビームスプリッタ31,32、反射鏡33の個別の調節は、上述したチルト量に対応した動作である。
【0090】
続いて、図3を用いて、2次光源101a,101b,101c,101dから出射される光ビームによってCCD撮像素子14上に結像される像の位置から、レンズアレイ4を構成する凸レンズ4a,4b,4d,4cに入射される光ビームL1,L2,L3,L4のシフト量、チルト量を演算する演算方法について説明をする。
【0091】
なお、説明のため、図3においては、ビームスプリッタ11の記載を省略し、光分割部3から出射されレンズアレイ4に入射される光ビームL1,L2,L3,L4も主光線のみを示す。また、シフト量、チルト量の演算方法は、x軸方向、y軸方向ともに同一であるため、代表してx軸方向のシフト量、チルト量の演算方法について説明をする。
【0092】
また、図3において、レーザアニール装置20が理想的にアライメントされている場合、2次光源101a,101b,101c,101dから出射される光ビームによって位置AでのCCD撮像素子14上に形成される像の位置を、”○”で示した結像位置14A1,14A2,14A3,14A4とする。
【0093】
また、CCD撮像素子14を位置AからΔZだけ後方に移動させた位置Bとした場合に、当該CCD撮像素子14上に結像される像の位置を、同じく”○”で示した14B1,14B2,14B3,14B4とする。
【0094】
実際は、2次光源から出射された光ビームの結像位置は、演算機16によって演算されることでモニタ16aに出力表示され、ユーザはモニタ16aを参照することで結像位置のずれを把握し、光学系アライメントの異常を知ることができるようになっているが、ここでは、y軸方向におけるチルト量、シフト量による影響を排除するために、図3に示すCCD撮像素子14上において結像位置の説明を行う。
【0095】
まず、レンズアレイ4の凸レンズ4a,4b,4c,4dに入射する光ビームL1,L2,L3,L4について説明をする。
【0096】
光ビームL1は、x軸方向、y軸方向に完全にアライメントされた光ビームである。光ビームL2は、凸レンズ4bの光軸に対してx軸方向にΔSxの距離だけ離れた位置から上記光軸に対して平行に入射される光ビームである。光ビームL3は、x軸方向にのみだけ完全にアライメントされた光ビームである。光ビームL4は、凸レンズ4dの光軸に対してx軸方向にΔθxの角度で入射される光ビームである。
【0097】
なお、説明のため、ここでは、光ビームL1,L2,L3,L4が個別に異なるチルト量、シフト量で入射しているとしているが、実際は、光ビームL1,L2,L3,L4は、互いにほぼ共通する量のシフト量、チルト量でレンズアレイ4の各凸レンズに入射していることが多い。
【0098】
凸レンズ4aに入射した光ビームL1は、シフト量、チルト量がともに0であるため、凸レンズ4aの光軸にそって入射し、凸レンズ5aの中心に2次光源101aを生成する。
【0099】
上述したように、レンズアレイ4は、レンズアレイ5の焦点位置に配置されているので、光ビームL1は、凸レンズ5aの焦点を通過している。したがって、2次光源101aは、コンデンサレンズ6の光軸と平行な光ビームをコンデンサレンズ6に出射する。
【0100】
2次光源101aから出射され、コンデンサレンズ6に入射された光ビームは、コンデンサレンズ6の焦点を通過し、コンデンサレンズ6の焦点と結像レンズ12の焦点とが同一であることから結像レンズ12より当該結像レンズ12の光軸に平行に出射され、CCD撮像素子14上に結像される。
【0101】
光ビームL1は、シフト量、チルト量ともに0の光ビームであるため、CCD撮像素子14に結像される像は、理想的にアライメントされた際の結像位置14A1に一致することになる。また、CCDカメラ搭載ステージ15をΔZだけ後方に変位させて、CCDカメラ13のCCD撮像素子14の位置を位置Aから位置Bとした場合でも、CCD撮像素子14上に結像される像の位置は、理想的な結像位置である結像位置14B1に一致している。
【0102】
凸レンズ4cに入射した光ビームL3も、凸レンズ4aに入射した光ビームL1と同様にx軸方向において、シフト量、チルト量が、ともに0であるため、凸レンズ5cに生成される2次光源101cから出射される光ビームは、理想的な結像位置である結像位置14A3、14B3に一致する。
【0103】
凸レンズ4bに入射した光ビームL2は、チルト量0であるが、シフト量がΔSxであるため、凸レンズ4bの光軸に平行で距離ΔSxだけ離れた光路で入射し、凸レンズ4bの光軸に対してαの角度で凸レンズ4bの焦点に出射される。
【0104】
上述したように、レンズアレイ5は、レンズアレイ4の焦点位置に配置されているので、光ビームL2は、凸レンズ4bの焦点である凸レンズ5bの中心を通過することになる。したがって、2次光源101bは、凸レンズ5bの中心に生成される。
【0105】
また、光ビームL2は、凸レンズ5bの焦点は通過していないが、凸レンズ5bの中心に入射されるので、2次光源101bから、光ビームが上記αの角度でコンデンサレンズ6に出射される。
【0106】
2次光源101bから出射され、コンデンサレンズ6にαの角度で入射された光ビームは、コンデンサレンズ6の焦点を通過せず結像レンズ12より所定の角度をもって出射され、CCD撮像素子14上に結像される。
【0107】
CCD撮像素子14上に結像される像は、例えば、位置Aにおいて、理想的な結像位置である14A2に結像されたとしても、CCD撮像素子14の位置をAから位置Bにした場合には、位置Bにおける理想的な結像位置14B2に結像しない像である。
【0108】
これは、2次光源101bから出射された光ビームがコンデンサレンズ6に所定の角度αで入射されたため、コンデンサレンズ6、結像レンズ12によって形成されている両側テレセントリック光学系にあてはまらないことによるものである。
【0109】
ここで、例えば、2次光源101bから出射された光ビームが、上述したように位置Aにおいて、理想的な結像位置14A2と一致し、位置Bにおいて理想的な結像位置14B2と一致しなかったとする。さらに、位置Bにおいて実際に結像した位置と、理想的な結像位置14B2とのずれをΔSx’とし、CCD撮像素子14の位置A及び位置Bの変位量をΔZとし、結像レンズ12の焦点距離をf12、レンズアレイ4,5の配置距離をf4とすると、光ビームL2のシフト量ΔSxは、近軸計算として近似して、(7)式から求めることができる。
【0110】
【数1】
【0111】
続いて、凸レンズ4dに入射した光ビームL4は、シフト量0であるが、チルト量がΔθxであるため、凸レンズ4dの光軸とΔθxの角度を有し、凸レンズ5dの焦点でもある凸レンズ4dの中心を通過する光路で入射する。
【0112】
凸レンズ4dの中心を通過した光ビームL4は、凸レンズ5dに対してもΔθxの角度で入射するため、2次光源101dは、Δθxと、レンズアレイ4と、レンズアレイ5とが配置されている間隔であるf4とで決まる位置に形成される。例えば、凸レンズ5dの中心位置から、2次光源101dが形成される位置との距離をdxとするとdx=f4・tan(Δθx)と示すことができる。
【0113】
2次光源101dから出射される光ビームは、凸レンズ5dの焦点を通過しているので凸レンズ5dの光軸に対して平行な光ビームとしてコンデンサレンズ6に出射される。
【0114】
コンデンサレンズ6から出射された光ビームは、コンデンサレンズ6の光軸に対して平行に入射されていることからコンデンサレンズ6の焦点を通過して、コンデンサレンズ6と両側テレセントリック光学系を形成している結像レンズ12に出射され、CCD撮像素子14上に結像される。
【0115】
CCD撮像素子14に結像される像は、CCD撮像素子14が位置Aから位置Bに変位しても、コンデンサレンズ6と、結像レンズ12とが形成する両側テレセントリック光学系にしたがい結像位置が同一な像となるが、位置Aにおいても、位置Bにおいても、それぞれの理想的な結像位置である14A4,14B4に結像しない。
【0116】
ここで、例えば、2次光源101dから出射されCCD撮像素子14上に結像された光ビームが、上述したように位置Aにおいても、位置Bにおいても理想的な結像位置14A4、14B4からΔθx’だけの距離の位置に結像されたとし、結像レンズ12の焦点距離をf12、レンズアレイ4,5の配置距離をf4とすると、光ビームL4のシフト量Δθxは、近軸計算として近似して、(8)式から求めることができる。
【0117】
【数2】
【0118】
このようにして、2次光源が結像レンズ12によってCCD撮像素子14上に結像される像を演算することによって、2次光源を生成するレンズアレイ4,5のレンズアレイ4に入射される光ビームL1,L2,L3,L4のシフト量、チルト量をそれぞれ独立に演算することができる。
【0119】
上記レンズアレイ4に入射される光ビームは、例えば、ΔSxだけシフト量を有する光ビームL2や、Δθxだけチルト量を有する光ビームL4のようにそれぞれ個別にシフト量や、チルト量を有するだけではなく、1つの光ビーム中にシフト量と、チルト量とを有している場合もあるが、上述した演算をそれぞれ独立に実行することでシフト量、チルト量を求めることができる。
【0120】
上述の説明では、x軸方向のみについて説明をしたが、y軸方向についても全く同様に考えることができる。例えば、図4に示すCCD撮像素子14が位置Aにある場合のモニタ16aの画像と、図5に示すCCD撮像素子14が位置Bにある場合のモニタ16aの画像とを用いて説明をする。
【0121】
図4、図5に示すモニタ16aに表示される像を形成する光ビームは、図3においてレンズアレイ4に入射された光ビームL1,L2,L3,L4と同一のもとする。したがって、光ビームL3がy軸方向にアライメントされていない光ビームであるので、光ビームL3によって形成される2次光源101cの像について説明をする。
【0122】
図4において、2次光源101cから出射され、位置AにあるCCD撮像素子14上に結像された光ビームL3の位置を示す結像位置14A3’は、理想的な結像位置である14A3から、モニタ16aの画面上のy軸方向にΔθy’だけずれている。
【0123】
したがって、x軸方向の場合と同様に考えてCCD撮像素子14が位置Aにある場合のずれは、レンズアレイ4に入射する光ビームL3がy軸方向にチルト量を有していることを示している。
【0124】
また、演算機16は、y軸方向のチルト量Δθyを、x軸方向でのチルト量と同様に、近軸計算として近似して、(9)に示す式から求めることができる。
【0125】
【数3】
【0126】
図5において、2次光源101cから出射され、位置BにあるCCD撮像素子14上に結像された光ビームL3の位置を示す結像位置14B3’は、理想的な結像位置である14B3から、モニタ16a画面上のy軸方向にΔSy’ずれている。
【0127】
したがって、x軸方向の場合と同様に考えて、CCD撮像素子14が位置Bにある場合のずれは、レンズアレイ4に入射する光ビームL3がy軸方向にシフト量を有していることを示している。
【0128】
また、演算機16は、y軸方向のシフト量ΔSyを、x軸方向のシフト量と同様に、近軸計算として近似して、(10)に示す式から求めることができる。
【0129】
【数4】
【0130】
このように、レンズアレイ4の凸レンズ4cに入射された光ビームL3は、y軸方向にチルト量と、シフト量との両方を有する光ビームであることが分かる。
【0131】
以上のように、2次光源からコンデンサレンズ6を介して出射される光ビームを、コンデンサレンズ6と、結像レンズ12とが両側テレセントリック光学系を形成するように、ビームスプリッタ11で分離させて撮像演算管理系の結像レンズ12に入射させ、さらに、CCD撮像素子14上に結像される像の位置を演算することで、レーザアニール装置20が被照射物10に対して均一強度で光ビームを照射しているかどうかをリアルタイムで管理することができる。
【0132】
さらに、演算機16によって、(7)式でx軸方向のシフト量、(8)式で演x軸方向のチルト量、(9)式でy軸方向のシフト量、(10)式でy軸方向のチルト量を演算してサーボ制御部17に出力し、演算されるチルト量、シフト量に基づいたサーボ制御部17による制御によって自動チルト及びシフトステージ18に装着された光分割部3の光学アライメントを自動的に調節することで、レーザアニール装置20の均一強度での光ビームの照射を統括的に管理及び制御することが可能となる。
【0133】
続いて、図6を用いて、本発明の第2の実施の形態として示すレーザアニール装置60について説明をする。
【0134】
レーザアニール装置60は、図1に示したレーザアニール装置20では1つだったレーザ光源1に換えて、複数のレーザ光源40,44,48,52を備えた構成である。レーザアニール装置60が備える上記レーザ光源40,44,48,52は、例えば、同一波長を発振する固体レーザである。
【0135】
レーザ光源40,44,48,52の後段のそれぞれには、レーザビームを所定のビーム径の平行光束にして出射するコリメータ41,45,49,53が備えられている。
【0136】
コリメータ41,45,49,53から出射した光ビームは、それぞれ反射鏡42,43、反射鏡46,47、反射鏡50,51、反射鏡54,55を介してレンズアレイ4に導かれる。なお、反射鏡42,43,46,47,50,51,54,55は、サーボ制御系による制御によって、光軸に対するx軸、y軸方向の角度、及び、x軸、y軸方向の位置を調節可能な図示しない自動チルト2軸ホルダに搭載されている。
【0137】
レーザ光源40から出射されたレーザビームは、コリメータ41を介して平行光束となり、反射鏡42,43で反射されて光ビームL11となり、レンズアレイ4の凸レンズ4aに入射する。
【0138】
レーザ光源44から出射されたレーザビームは、コリメータ45を介して平行光束となり、反射鏡46,47で反射されて光ビームL12となり、レンズアレイ4の凸レンズ4bに入射する。
【0139】
レーザ光源48から出射されたレーザビームは、コリメータ49を介して平行光束となり、反射鏡50,51で反射されて光ビームL13となり、レンズアレイ4の凸レンズ4cに入射する。
【0140】
レーザ光源52から出射されたレーザビームは、コリメータ53を介して平行光束となり、反射鏡54,55で反射されて光ビームL14となり、レンズアレイ4の凸レンズ4dに入射する。
【0141】
光ビームL11,L12,L13,L14は、図1,図2を用いて説明したレーザアニール装置20における光ビームL1,L2,L3,L4に対応しており、レンズアレイ4,5によって、それぞれの光ビームから2次光源を生成する。
【0142】
なお、レンズアレイ4より後段のレーザアニール装置60の光ビーム照射系は、レーザアニール装置20の光ビーム照射系と全く同様の構成であるため、それぞれの部材には同一符号を付し説明を省略する。
【0143】
また、レーザアニール装置60の撮像演算管理系も、レーザアニール装置20が備える撮像演算管理系と全く同様であるため、光ビーム照射系とともに同一符号を付して説明を省略する。
【0144】
さらにまた、レーザアニール装置60の演算機16においても、CCD撮像素子14上に結像された像と、理想的に結像された場合の像とのずれから、レンズアレイ4に入射される光ビームL11,L12,L13,L14のチルト量、シフト量を上述した式(7),(8),(9),(10)を用いて演算することができる。
【0145】
このように、複数のレーザ光源40,44,48,52を備える構成のレーザアニール装置60でも、レーザアニール装置20と同様に、レンズアレイ4,5によって2次光源を生成し、生成した2次光源からコンデンサレンズ6を介して出射される光ビームを、コンデンサレンズ6と、結像レンズ12とが両側テレセントリック光学系を形成するように、ビームスプリッタ11で分離させて撮像演算管理系の結像レンズ12に入射させ、さらに、CCD撮像素子14上に集光させて2次光源の像の位置を演算することで、レーザアニール装置60が被照射物10に対して均一強度で光ビームを照射しているかどうかをリアルタイムで管理することができる。
【0146】
また、レーザアニール装置60のサーボ制御系は、レーザアニール装置20のサーボ制御部17に換えて、上記反射鏡42,43,46,47,50,51,54,55をそれぞれ搭載する図示しない自動チルト2軸ホルダを制御するサーボ制御部17’を備えている。
【0147】
サーボ制御部17’は、演算機16によって演算されたチルト量、シフト量に基づいて、フィードバックをかけ、反射鏡42,43,反射鏡46,47、反射鏡50,51、反射鏡54,55の光軸に対するx軸、y軸方向の角度、x軸、y軸方向の位置を図示しない自動チルト2軸ホルダを介して制御する。
【0148】
これにより、レーザアニール装置60は、レーザアニール装置20と同様に、演算機16によって、(7)式でx軸方向のシフト量、(8)式で演x軸方向のチルト量、(9)式でy軸方向のシフト量、(10)式でy軸方向のチルト量を演算してサーボ制御部17’に出力し、生成されるチルト量、シフト量に基づいたサーボ制御部17’による制御によって図示しない自動チルト2軸ホルダに装着された反射鏡42,43,反射鏡46,47、反射鏡50,51、反射鏡54,55の光学アライメントを自動的に調節することで、均一強度での光ビームの照射を統括的に管理及び制御することが可能となる。
【0149】
続いて、図7を用いて、本発明の第3の実施の形態として示すレーザアニール装置20’について説明をする。レーザアニール装置20’は、図1を用いて説明した本発明の第1の実施の形態として示すレーザアニール装置20の撮像演算管理系の位置を変更させた構成である。
【0150】
レーザアニール装置20’は、レーザアニール装置20の光ビーム照射系のうち、コンデンサレンズ6をコンデンサレンズ71に換え、リレーレンズ7,8を取り外し、2次光源101a〜101dから出射される光ビームを透過成分と反射成分に分離するビームスプリッタ75をレンズアレイ5と、コンデンサレンズ71の間の光路に配置する。2次光源の像をCCD撮像素子14に結像させるために、ビームスプリッタ75とCCD撮像素子14の間の光路に光学系73と74で形成された投影レンズ72を配置する構成となっている。
【0151】
レーザアニール装置20’の上記以外の構成については、図1を用いて説明をしたレーザアニール装置20と全く同様であるため、図7中で同符号を付し説明を省略する。
【0152】
レーザアニール装置20’では、レーザ光源1から出射されたレーザビームが、コリメータ2を介して平行な光ビームL0となり、光分割部3で光ビームL1〜L4に分割される。光分割部3で分割された光ビームL1〜L4は、それぞれレンズアレイ4a〜4及びレンズアレイ5a〜5dを介して、2次光源101a〜101dを生成する。2次光源101a〜101dから出射された光ビームは、ビームスプリッタ75によって透過成分と、反射成分とに分離される。
【0153】
2次光源101a〜101dから出射され、ビームスプリッタ75を透過した光ビームは、コンデンサレンズ71によって2軸ステージ9に搭載された被照射物10を均一に照射する。
【0154】
一方、2次光源101a〜101dから出射され、ビームスプリッタ75を反射した光ビームは、投影レンズ72よってCCD撮像素子14に集光される。CCD撮像素子14上では、2次光源101a〜101dと共役な像が形成される。投影レンズ72を形成する光学系73及び74は、投影レンズ72が両側テレセントリック光学系となるように設計されている。
【0155】
したがって、レーザアニール装置20’の撮像演算管理系による光ビーム照射系が備える光学部品のアライメントのずれであるシフト量、チルト量の演算、サーボ制御系による上記シフト量、チルト量に基づいた上記光学部品のアライメント自動調整制御動作についてもレーザアニール装置20と全く同じ手法が適用できる。
【0156】
このように、第3の実施の形態として図7に示すレーザアニール装置20’は、第1の実施の形態として図1に示すレーザアニール装置20からリレーレンズ7,8を取り除いた構成となり、光ビーム照射系の部品点数を削減しながら、レーザアニール装置20と全く同様の効果を得ることができる。
【0157】
なお、本発明の第1、第2及び第3の実施の形態として示したレーザアニール装置20,60,20’では、レンズアレイ4,5の凸レンズが列状の1次元となっているため、生成される2次光源も1次元となっていたが、レンズアレイ4,5を凸レンズが2次元配列されたものに換えることで、2次光源を2次元分布とするようにしてもよい。このように、2次光源を2次元分布とする場合も、同様の手法でチルト量、シフト量を演算することで、レーザアニール装置20,60,20’の均一強度での光ビームの照射を管理及び制御することができる。
【0158】
さらに、また、本発明の第1の実施の形態として示したレーザアニール装置20及び第3の実施の形態として示したレーザアニール装置20’のレーザ光源1、第2の実施の形態として示したレーザアニール装置60のレーザ光源40,44,48,52は、それぞれ固体レーザとしているが、固体レーザに換えて半導体レーザを使用するようにしてもよい。
【0159】
【発明の効果】
以上の説明からも明らかなように、本発明の照射装置及び照射方法は、生成された複数の2次光源から、それぞれ出射される光ビームを分離し、分離した一方の複数の2次光源から出射される光ビームを用いて所定の照射領域を照射する照射系と、分離した他方の複数の2次光源から出射される光ビームを集光させることにより2次光源の像を撮像し、撮像した2次光源の像の位置から2次光源生成手段に入射する光ビームの入射方向、入射位置の光軸に対するずれ量を演算することによって、均一強度での照射の管理を行う管理系とを獲得することができる。したがって、上記所定の照射領域が均一な強度で照射されているかどうかをリアルタイムで管理することが可能となる。
【0160】
また、本発明の照射装置及び照射方法では、複数の2次光源の像を両側テレセントリック光学系を介して結像し、結像された像の位置から、複数の光源から2次光源生成手段に入射される複数の光ビームのチルト量と、シフト量とをそれぞれ独立に演算することができる。したがって、チルト量と、シフト量とに基づいて、2次光源生成手段に入射する複数の光ビームの光学系をサーボ制御してアライメントすることで、均一な強度の光ビームの照射を安定して提供することができる。
【0161】
以上の説明からも明らかなように、本発明のアニール装置及びアニール方法は、生成された複数の2次光源から、それぞれ出射される光ビームを分離し、分離した一方の複数の2次光源から出射される光ビームを用いて所定の照射領域を照射する照射系と、分離した他方の複数の2次光源から出射される光ビームを集光させることにより2次光源の像を撮像し、撮像した2次光源の像の位置から2次光源生成手段に入射する光ビームの入射方向、入射位置の光軸に対するずれ量を演算することによって、均一強度での照射の管理を行う管理系とを獲得することができる。したがって、上記所定の照射領域が均一な強度で照射されているかどうかをリアルタイムで管理することが可能となる。
【0162】
また、本発明のアニール装置及びアニール方法では、複数の2次光源の像を両側テレセントリック光学系を介して結像し、結像された像の位置から、複数の光源から2次光源生成手段に入射される複数の光ビームのチルト量と、シフト量とをそれぞれ独立に演算することができる。したがって、チルト量と、シフト量とに基づいて、2次光源生成手段に入射する複数の光ビームの光学系をサーボ制御してアライメントすることで、均一な強度の光ビームの照射を安定して提供することができるため、被照射物のプロセス不良を回避することが可能となる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態として示すレーザアニール装置の構成を説明するための図である。
【図2】同レーザアニール装置の光分割部が備えるビームスプリッタの動作について説明するための斜視図である。
【図3】同レーザアニール装置におけるシフト量、チルト量の演算方法について説明するための図である。
【図4】同レーザアニール装置において、y軸方向のシフト量、チルト量について説明するための第1図である。
【図5】同レーザアニール装置において、y軸方向のシフト量、チルト量について説明するための第2図である。
【図6】本発明の第2の実施の形態として示すレーザアニール装置の構成を説明するための図である。
【図7】本発明の第3の実施の形態として示すレーザアニール装置の構成を説明するための図である。
【図8】従来技術として示すレーザアニール装置の構成を説明するための図である。
【符号の説明】
1 レーザ光源、2 コリメータ、3 光分割部、4,5 レンズアレイ、6コンデンサレンズ、7,8 リレーレンズ、9 2軸ステージ、10 被照射物、11 ビームスプリッタ、12 結像レンズ、13 CCD(Charge−Coupled Device)カメラ、14 CCD撮像素子、15 CCDカメラ搭載ステージ、16 演算機、16a モニタ、17 サーボ制御部、18 自動チルト及びシフトステージ、20,60,20’ レーザアニール装置
Claims (44)
- 複数の光源から出射される複数の光ビームを入射して複数の2次光源を生成する2次光源生成手段と、
上記2次光源生成手段によって生成される上記複数の2次光源からそれぞれ出射される光ビームを所定の光路に導光し、所定の照射領域に照射する照射手段と、
上記所定の光路に介挿され、上記複数の2次光源からそれぞれ出射される光ビームを分離し導光する分離部材を有し、上記分離部材によって分離され導光された上記複数の2次光源からそれぞれ出射される光ビームを、それぞれ集光することにより2次光源の像を結像する結像手段と、
上記結像手段によって結像された上記複数の2次光源の像をそれぞれ撮像する撮像手段と、
上記撮像手段によって撮像された上記複数の2次光源の像の位置に基づいて、上記2次光源生成手段に入射する上記複数の光ビームの入射方向の光軸に対するずれ量と、入射位置の光軸に対するずれ量とを演算する演算手段とを備えること
を特徴とする照射装置。 - 上記照射手段は、上記複数の2次光源からそれぞれ出射された光ビームを上記所定の光路に導光し、所定の間隔だけずらして上記所定の照射領域に重ね合わせて照射すること
を特徴とする請求項1記載の照射装置。 - 上記演算手段は、上記撮像手段によって上記複数の2次光源の像を撮像することで得られる光量分布に基づいて、上記複数の2次光源の像の位置をそれぞれ演算すること
を特徴とする請求項1記載の照射装置。 - 上記結像手段は、両側テレセントリック光学系を形成し、
上記演算手段は、上記複数の光源から上記2次光源生成手段に入射する上記複数の光ビームの入射方向の光軸に対するずれ量であるチルト量と、
上記複数の光源から上記2次光源生成手段に入射する上記複数の光ビームの入射位置の光軸に対するずれ量であるシフト量とを、
当該演算手段で演算した上記複数の2次光源の像の位置に基づいて、それぞれ独立に演算すること
を特徴とする請求項3記載の照射装置。 - 上記撮像手段を、上記結像手段の光軸方向に所定の量だけ移動させる移動手段を備え、
上記撮像手段は、上記移動手段によって所定の量だけ移動させられる前後における上記複数の2次光源の像を撮像し、
上記演算手段は、上記撮像手段によって撮像された、上記複数の2次光源の像から、上記移動手段による移動の前後における上記複数の2次光源の像の位置を演算し、
さらに、上記移動手段よる移動の前後における上記複数の2次光源の像の位置に基づいて、上記チルト量及び/又はシフト量を演算すること
を特徴とする請求項4記載の照射装置。 - 上記複数の光源から出射され上記2次光源生成手段に入射する上記複数の光ビームの光路を調節する光路調節手段を備え、
上記演算手段によって演算された上記シフト量及び/又は上記チルト量に基づいて、上記光路調節手段をサーボ制御するサーボ制御手段を備えること
を特徴とする請求項4記載の照射装置。 - 上記複数の光源はレーザ光源であること
を特徴とする請求項1記載の照射装置。 - 上記レーザ光源は、固体レーザであること
を特徴とする請求項7記載の照射装置。 - 上記レーザ光源は、半導体レーザであること
を特徴とする請求項7記載の照射装置 - 上記レーザ光源は、パルス発振すること
を特徴とする請求項7記載の照射装置。 - レーザビームを出射するレーザ光源と、
上記レーザ光源から出射されたレーザビームをn(nは2以上の自然数)本の光ビームに分割するとともに、上記各光ビームにそれぞれ可干渉距離以上の光路長差をつける光分割手段とを備え、
上記2次光源生成手段は、上記光分割手段によって分割されたn本の光ビームを入射して上記複数の2次光源を生成すること
を特徴とする請求項1記載の照射装置。 - 上記光分割手段は、
入射された光ビームを透過及び反射して透過光及び反射光の2つの光ビームに分離する光分離面を有し、当該光分離面が平行に並べられた1番目からj(但し、n=2jであり、jは1以上の自然数)番目までのj個のビームスプリッタと、
入射された光ビームを反射する光反射面を有し、当該光反射面が各ビームスプリッタの光分離面と平行とされ、全てのビームスプリッタからの反射光が当該光反射面に入射される位置に配置された反射鏡とを備え、
1番目のビームスプリッタは、1本の光ビームが入射され、1本の透過光及び1本の反射光を出射し、
k+1(但し、kは、1以上(j−1)以下の整数)番目のビームスプリッタは、k番目のビームスプリッタの2(k−1)本の透過光が入射されるとともにk番目のビームスプリッタの2(k−1)本の反射光が上記反射鏡によって反射された後に入射され、2k本の透過光及び2k本の反射光を出射し、
j番目のビームスプリッタは、2(j − 1)本の透過光を外部に出射し、2(j − 1)本の反射光を上記反射鏡に出射し、
上記反射鏡は、j番目のビームスプリッタの2(j−1)本の反射光を反射して外部に出射し、
上記k番目のビームスプリッタの光分離面と(k+1)番目のビームスプリッタの光分離面の間の距離、並びに、各ビームスプリッタの光分離面と反射鏡の光反射面との間の距離は、光源から出射される光ビームのそれぞれの光路の光路長の差が可干渉距離より大きくなるように調整されていること
を特徴とする請求項11記載の照射装置。 - 1個目のビームスプリッタの光分離面と、(k+1)個目のビームスプリッタの光分離面との間の距離tkは、各ビームスプリッタに入射されるレーザビームの入射角をθ、上記レーザ光源から出射されるレーザビームの可干渉距離をLとしたとき、(2(j −1 )−1)×L/(2cosθ)以上とされ、
1個目のビームスプリッタの光分離面と上記反射鏡の光反射面の間の距離は、各ビームスプリッタに入射されるレーザビームの入射角をθ、上記レーザ光源から出射されるレーザビームの可干渉距離をLとしたとき、L/(2cosθ)以上とされていること
を特徴とする請求項12記載の照射装置。 - 上記レーザ光源は、固体レーザであること
を特徴とする請求項12記載の照射装置。 - 上記レーザ光源は、半導体レーザであること
を特徴とする請求項12記載の照射装置 - 上記レーザ光源は、パルス発振すること
を特徴とする請求項12記載の照射装置。 - 複数の光源から出射される複数の光ビームを2次光源生成手段に入射して複数の2次光源を生成し、
上記2次光源生成手段によって生成される上記複数の2次光源からそれぞれ出射される光ビームを所定の光路に導光し、所定の照射領域に照射し、
上記所定の光路に介挿される分離部材によって、上記複数の2次光源からそれぞれ出射される光ビームを分離して導光し、
上記分離部材によって、分離され導光された上記複数の2次光源からそれぞれ出射される光ビームを、それぞれ集光することにより2次光源の像を結像し、
結像された上記複数の2次光源の像をそれぞれ撮像し、
撮像された上記複数の2次光源の像の位置に基づいて、上記2次光源生成手段に入射する上記複数の光ビームの入射方向の光軸に対するずれ量と、入射位置の光軸に対するずれ量とを演算すること
を特徴とする照射方法。 - 上記複数の2次光源からそれぞれ出射された光ビームを上記所定の光路に導光し、
所定の間隔だけずらして上記所定の照射領域に重ね合わせて照射すること
を特徴とする請求項17記載の照射方法。 - 上記複数の2次光源の像を撮像することで得られる光量分布に基づいて、上記複数の2次光源の像の位置をそれぞれ演算すること
を特徴とする請求項17記載の照射方法。 - 第1の位置で結像される上記複数の2次光源の像を撮像し、
上記第1の位置で撮像された上記複数の2次光源の像の位置を演算し、
上記第1の位置とは異なる第2の位置で結像される上記複数の2次光源の像を撮像し、
上記第2の位置で撮像された上記複数の2次光源の像の位置を演算し、
上記第1の位置での上記複数の2次光源の像の位置と、上記第2の位置での上記複数の2次光源の像の位置とに基づいて、
上記複数の光源から上記2次光源生成手段に入射する上記複数の光ビームの入射方向の光軸に対するずれ量であるチルト量と、
上記複数の光源から上記2次光源生成手段に入射する上記複数の光ビームの入射位置の光軸に対するずれ量であるシフト量とを、
それぞれ独立に演算すること
を特徴とする請求項19記載の照射方法。 - 演算された上記シフト量及び/又は上記チルト量に基づいて、上記複数の光源から出射され、上記2次光源生成手段に入射する上記複数の光ビームの光路を調節する光路調節手段をサーボ制御すること
を特徴とする請求項20記載の照射方法。 - レーザ光源から出射されたレーザビームを、それぞれ可干渉距離以上の光路長差をつけて複数の光ビームに分割し、
上記分割された複数の光ビームから上記複数の2次光源を生成すること
を特徴とする請求項17記載の照射方法。 - 複数の光源から出射される複数の光ビームを入射して複数の2次光源を生成する2次光源生成手段と、
上記2次光源生成手段によって生成される上記複数の2次光源からそれぞれ出射される光ビームを所定の光路に導光し、ステージに載置された被照射物上の所定の照射領域に照射する照射手段と、
上記所定の光路に介挿され、上記複数の2次光源からそれぞれ出射される光ビームを分離し導光する分離部材を有し、上記分離部材によって分離され導光された上記複数の2次光源からそれぞれ出射される光ビームを、それぞれ集光することにより2次光源の像を結像する結像手段と、
上記結像手段によって結像された上記複数の2次光源の像をそれぞれ撮像する撮像手段と、
上記撮像手段によって撮像された上記複数の2次光源の像の位置に基づいて、上記2次光源生成手段に入射する上記複数の光ビームの入射方向の光軸に対するずれ量と、入射位置の光軸に対するずれ量とを演算する演算手段とを備えること
を特徴とするアニール装置。 - 上記照射手段は、上記複数の2次光源からそれぞれ出射された光ビームを上記所定の光路に導光し、所定の間隔だけずらして上記ステージに載置された上記被照射物上の上記所定の照射領域に重ね合わせて照射すること
を特徴とする請求項23記載のアニール装置。 - 上記演算手段は、上記撮像手段によって上記複数の2次光源の像を撮像することで得られる光量分布に基づいて、上記複数の2次光源の像の位置をそれぞれ演算すること
を特徴とする請求項23記載のアニール装置。 - 上記結像手段は、両側テレセントリック光学系を形成し、
上記演算手段は、上記複数の光源から上記2次光源生成手段に入射する上記複数の光ビームの入射方向の光軸に対するずれ量であるチルト量と、
上記複数の光源から上記2次光源生成手段に入射する上記複数の光ビームの入射位置の光軸に対するずれ量であるシフト量とを、
当該演算手段で演算した上記複数の2次光源の像の位置に基づいて、それぞれ独立に演算すること
を特徴とする請求項25記載のアニール装置。 - 上記撮像手段を、上記結像手段の光軸方向に所定の量だけ移動させる移動手段を備え、
上記撮像手段は、上記移動手段によって所定の量だけ移動させられる前後における上記複数の2次光源の像を撮像し、
上記演算手段は、上記撮像手段によって撮像された、上記複数の2次光源の像から、上記移動手段による移動の前後における上記複数の2次光源の像の位置を演算し、
さらに、上記移動手段よる移動の前後における上記複数の2次光源の像の位置に基づいて、上記チルト量及び/又はシフト量を演算すること
を特徴とする請求項26記載のアニール装置。 - 上記複数の光源から出射され、上記2次光源生成手段に入射する上記複数の光ビームの光路を調節する光路調節手段を備え、
上記演算手段によって演算された上記シフト量及び/又は上記チルト量に基づいて、上記光路調節手段を自動的に制御する制御手段を備えること
を特徴とする請求項26記載のアニール装置。 - 上記複数の光源はレーザ光源であること
を特徴とする請求項23記載のアニール装置。 - 上記レーザ光源は、固体レーザであること
を特徴とする請求項29記載のアニール装置。 - 上記レーザ光源は、半導体レーザであること
を特徴とする請求項29記載のアニール装置 - 上記レーザ光源は、パルス発振すること
を特徴とする請求項29記載のアニール装置。 - レーザビームを出射するレーザ光源と、
上記レーザ光源から出射されたレーザビームをn(nは2以上の自然数)本の光ビームに分割するとともに、上記各光ビームにそれぞれ可干渉距離以上の光路長差をつける光分割手段と備え、
上記2次光源生成手段は、上記光分割手段によって分割されたn本の光ビームを入射して上記複数の2次光源を生成すること
を特徴とする請求項23記載のアニール装置。 - 上記光分割手段は、
入射された光ビームを透過及び反射して透過光及び反射光の2つの光ビームに分離する光分離面を有し、当該光分離面が平行に並べられた1番目からj(但し、n=2jであり、jは1以上の自然数)番目までのj個のビームスプリッタと、
入射された光ビームを反射する光反射面を有し、当該光反射面が各ビームスプリッタの光分離面と平行とされ、全てのビームスプリッタからの反射光が当該光反射面に入射される位置に配置された反射鏡とを備え、
1番目のビームスプリッタは、1本の光ビームが入射され、1本の透過光及び1本の反射光を出射し、
k+1(但し、kは、1以上(j−1)以下の整数)番目のビームスプリッタは、k番目のビームスプリッタの2(k−1)本の透過光が入射されるとともにk番目のビームスプリッタの2(k−1)本の反射光が上記反射鏡によって反射された後に入射され、2k本の透過光及び2k本の反射光を出射し、
j番目のビームスプリッタは、2(j − 1)本の透過光を外部に出射し、2(j − 1)本の反射光を上記反射鏡に出射し、
上記反射鏡は、j番目のビームスプリッタの2(j−1)本の反射光を反射して外部に出射し、
上記k番目のビームスプリッタの光分離面と(k+1)番目のビームスプリッタの光分離面の間の距離、並びに、各ビームスプリッタの光分離面と反射鏡の光反射面との間の距離は、光源から出射される光ビームのそれぞれの光路の光路長の差が可干渉距離より大きくなるように調整されていること
を特徴とする請求項33記載のアニール装置。 - 1個目のビームスプリッタの光分離面と(k+1)個目のビームスプリッタの光分離面との間の距離tkは、各ビームスプリッタに入射されるレーザビームの入射角をθ、上記レーザ光源から出射されるレーザビームの可干渉距離をとしたとき、(2(j −1 )−1)×L/(2cosθ)以上とされ、
1個目のビームスプリッタの光分離面と上記反射鏡の光反射面の間の距離は、各ビームスプリッタに入射されるレーザビームの入射角をθ、上記レーザ光源から出射されるレーザビームの可干渉距離をLとしたとき、L/(2cosθ)以上とされていること
を特徴とする請求項34記載のアニール装置。 - 上記レーザ光源は、固体レーザであること
を特徴とする請求項34記載のアニール装置。 - 上記レーザ光源は、半導体レーザであること
を特徴とする請求項34記載のアニール装置 - 上記レーザ光源は、パルス発振すること
を特徴とする請求項34記載のアニール装置。 - 複数の光源から出射される複数の光ビームを2次光源生成手段に入射して複数の2次光源を生成し、
上記2次光源生成手段によって生成される上記複数の2次光源からそれぞれ出射される光ビームを所定の光路に導光し、ステージに載置された被照射物上の所定の照射領域に照射し、
上記所定の光路に介挿される分離部材によって、上記複数の2次光源からそれぞれ出射される光ビームを分離して導光し、
上記分離部材によって、分離され導光された上記複数の2次光源からそれぞれ出射される光ビームを、それぞれ集光することにより2次光源の像を結像し、
結像された上記複数の2次光源の像をそれぞれ撮像し、
撮像された上記複数の2次光源の像の位置に基づいて、上記2次光源生成手段に入射する上記複数の光ビームの入射方向の光軸に対するずれ量と、入射位置の光軸に対するずれ量とを演算すること
を特徴とするアニール方法。 - 上記複数の2次光源からそれぞれ出射された光ビームを上記所定の光路に導光し、
所定の間隔だけずらして上記ステージに載置された上記被照射物上の上記所定の照射領域に重ね合わせて照射すること
を特徴とする請求項39記載のアニール方法。 - 上記複数の2次光源の像を撮像することで得られる光量分布に基づいて、上記複数の2次光源の像の位置をそれぞれ演算すること
を特徴とする請求項39記載のアニール方法。 - 第1の位置で結像される上記複数の2次光源の像を撮像し、
上記第1の位置で撮像された上記複数の2次光源の像の位置を演算し、
上記第1の位置とは異なる第2の位置で結像される上記複数の2次光源の像を撮像し、
上記第2の位置で撮像された上記複数の2次光源の像の位置を演算し、
上記第1の位置での上記複数の2次光源の像の位置と、上記第2の位置での上記複数の2次光源の像の位置とに基づいて、
上記複数の光源から上記2次光源生成手段に入射する上記複数の光ビームの入射方向の光軸に対するずれ量であるチルト量と、
上記複数の光源から上記2次光源生成手段に入射する上記複数の光ビームの入射位置の光軸に対するずれ量であるシフト量とを、
それぞれ独立に演算すること
を特徴とする請求項41記載のアニール方法。 - 演算された上記シフト量及び/又は上記チルト量に基づいて、上記複数の光源から出射し、上記2次光源生成手段に入射する上記複数の光ビームの光路を調節する光路調節手段をサーボ制御すること
を特徴とする請求項42記載のアニール方法。 - レーザ光源から出射されたレーザビームを、それぞれ可干渉距離以上の光路長差をつけて複数の光ビームに分割し、
上記分割された複数の光ビームから上記複数の2次光源を生成すること
を特徴とする請求項39記載のアニール方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002321706A JP2004158569A (ja) | 2002-11-05 | 2002-11-05 | 照射装置及び照射方法、並びにアニール装置及びアニール方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002321706A JP2004158569A (ja) | 2002-11-05 | 2002-11-05 | 照射装置及び照射方法、並びにアニール装置及びアニール方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004158569A true JP2004158569A (ja) | 2004-06-03 |
Family
ID=32802156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002321706A Withdrawn JP2004158569A (ja) | 2002-11-05 | 2002-11-05 | 照射装置及び照射方法、並びにアニール装置及びアニール方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004158569A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006218482A (ja) * | 2005-02-08 | 2006-08-24 | Laser Solutions Co Ltd | レーザ加工装置におけるレーザ光の調整方法、レーザ加工装置、およびレーザ光調整プログラム |
TWI557779B (zh) * | 2011-03-11 | 2016-11-11 | V科技股份有限公司 | 雷射退火裝置及方法 |
-
2002
- 2002-11-05 JP JP2002321706A patent/JP2004158569A/ja not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006218482A (ja) * | 2005-02-08 | 2006-08-24 | Laser Solutions Co Ltd | レーザ加工装置におけるレーザ光の調整方法、レーザ加工装置、およびレーザ光調整プログラム |
JP4583955B2 (ja) * | 2005-02-08 | 2010-11-17 | 三星ダイヤモンド工業株式会社 | レーザ加工装置 |
TWI557779B (zh) * | 2011-03-11 | 2016-11-11 | V科技股份有限公司 | 雷射退火裝置及方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4956987B2 (ja) | レーザー結晶化装置及び結晶化方法 | |
JP4322359B2 (ja) | レーザ加工装置 | |
KR101574501B1 (ko) | 레이저 빔 위치결정 시스템 | |
KR101161630B1 (ko) | 레이저 어닐링 방법 및 레이저 어닐링 장치 | |
US7910499B2 (en) | Autofocus for high power laser diode based annealing system | |
US20090004763A1 (en) | Laser crystallization method and crystallization apparatus | |
EP1952105B1 (en) | Systems and methods to shape laser light as a homogeneous line beam for interaction with a film deposited on a substrate | |
JP2006278491A (ja) | 照射装置 | |
JPWO2003049175A1 (ja) | 光照射装置及びレーザアニール装置 | |
JP2009021597A (ja) | 多重ビームレーザー装置 | |
KR101659391B1 (ko) | 노광 헤드 및 노광 장치 | |
JP2006040949A (ja) | レーザー結晶化装置及びレーザー結晶化方法 | |
JP2007214388A (ja) | 結晶化装置、および位置決めステージ | |
KR102589766B1 (ko) | 레이저 장치 | |
JP3416579B2 (ja) | ダブルビーム用精密可変型矩形ビーム光学系 | |
JP7397317B2 (ja) | レーザ加工装置の収差制御方法 | |
JP2008159836A (ja) | レーザアニール方法及びレーザアニール装置 | |
KR20180037590A (ko) | 보조 노광 장치 및 노광량 분포 취득 방법 | |
JP5465120B2 (ja) | 光軸調整方法及びレーザ加工装置 | |
JP2003347236A (ja) | レーザ照射装置 | |
JP2004158569A (ja) | 照射装置及び照射方法、並びにアニール装置及びアニール方法 | |
TW201001555A (en) | Laser anneal method and laser anneal device | |
US20230136440A1 (en) | Exposure Device | |
JP2016206636A (ja) | パターン描画装置およびパターン描画方法 | |
TW202009081A (zh) | 鐳射加工裝置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20060110 |