TW201001555A - Laser anneal method and laser anneal device - Google Patents

Laser anneal method and laser anneal device Download PDF

Info

Publication number
TW201001555A
TW201001555A TW97122492A TW97122492A TW201001555A TW 201001555 A TW201001555 A TW 201001555A TW 97122492 A TW97122492 A TW 97122492A TW 97122492 A TW97122492 A TW 97122492A TW 201001555 A TW201001555 A TW 201001555A
Authority
TW
Taiwan
Prior art keywords
short
laser
axis direction
axis
semiconductor film
Prior art date
Application number
TW97122492A
Other languages
Chinese (zh)
Other versions
TWI370492B (en
Inventor
Norihito Kawaguchi
Ryusuke Kawakami
Kenichiro Nishida
Miyuki Masaki
Masaru Morita
Atsushi Yoshinouchi
Original Assignee
Ihi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ihi Corp filed Critical Ihi Corp
Priority to TW97122492A priority Critical patent/TW201001555A/en
Publication of TW201001555A publication Critical patent/TW201001555A/en
Application granted granted Critical
Publication of TWI370492B publication Critical patent/TWI370492B/zh

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

This invention provides a laser anneal method and a laser anneal device capable of easily correcting the focus position of a rectangular beam along a short axis direction according to the position change of the laser irradiation part of a semiconductor film during the laser anneal using a solid laser. According to the present invention, laser light (1) is condensed to a rectangular beam along a short axis direction upon a surface of semiconductor film (3) using condenser lens for short axis (29) for condensing a irradiation light to the short axis direction and projection lens (30) for projecting an emitting light from condenser lens for short axis (29) to the surface of semiconductor film (3), and the position change of semiconductor film (3) along a vertical direction within the laser irradiation part of semiconductor film (3) is detected, and condenser lens for short axis (29) is moved along a light axis direction according to the detected value.

Description

201001555 六、發明說明: 【發明所屬之技術領域】 本發明係有關-種將整形成矩形狀光束的脈波雷射光 照射至半導體膜以重組半導體膜之雷射退火方法及雷射退 火裝置。 【先前技術】 雷射退火係將雷射光束照射至形成在由低熔點玻璃 (般為…、驗玻璃)所構成的基板上之非晶矽膜(以下稱為 a Si膜)’使非晶矽膜熔融、固化、再結晶,藉此形成多 晶石夕膜之處理(例如參照下述專利文獻υ。由於經結晶化 的矽膜比a-Si膜具有優越的電性特性,因此應用於用以驅 動行動電話和數位相機等要求高細緻顯示的液晶顯示器之 電晶體。 在雷射退火中,使用光學系統將從雷射光源所射出的 脈波雷射光剖面加工成細長的矩形狀光束,並在光束短軸 方向使該矩形狀光束相對性地掃描基板上的半導體膜(例 如a-Si膜),藉此進行雷射退火。一般而言,藉由移動基 板來進行矩形狀光束的掃描。此外,此掃描係以局部地重 複雷射照射區域之方式來實施。 在下述的專利文獻2與3中,係揭示使用有激生分子 雷射(excimer laser)作為雷射光源之雷射退火裝置(以下 稱為激生分子雷射退火裝置)的光學系統的整體圖。此光學 系統係由下列構件所構成:柱面透鏡陣列,係將矩形狀光 束在長軸方向與短軸方向分別分割成複數條;以及聚光透 320318 4 201001555 鏡’係使柱面透鏡陣列所分割的光束重疊。此外,短轴方 向係將光束的能量分布料均勻化後,再#由投影透鏡予 以縮小投影。 上述的激生分子雷射退火裝置中的光束形狀,長軸為 365min、短軸為〇4mm左右。在激生分子雷射的情形中,由 於雷射的光束品質不佳’因此短軸寬度大,結果導致焦點 深度深。因此,幾乎不會有因基板搬運裝置的機械性誤差 與基板表面的加工誤差所產生的雷射被照射面的位置變動 而影響退火性能。在此,上述的位置變動係指相對於半導 體膜之垂直方向的位置變動。 另一方面’激生分子雷射退火在退火特性上係有相對 於雷射照射能量,載子移動率的變化大之問題。作為解決 此問題之手段,將藉由Nd : YAG雷射的第二諧波所獲得的 脈波綠光雷射光(Pulse Green Laser)作為光源之雷射退火 裝置(以下稱為固體綠光雷射退火裝置)係受到嘱目(參照 例如下述專利文獻4與5)。當使用該脈波綠光雷射時,相 對於一疋的照射能量’與激生分子雷射相比能獲得較廣的 製程裕度。 然而,相對於已實用化的激生分子雷射的輸出(最大 1J/脈波),由於固體綠光雷射的.輸出明顯較低(未滿〇. u /脈波)’因此需將短軸方向的光束尺寸收縮至l〇〇//m以 下。結果,短軸方向的焦點深度變淺,故變成不能忽視因 半導體臈的位置變動而影響退火性能之狀況。 在下述專利文獻4至6中’係揭示有應用於開孔等雷 320318 5 201001555 射加工用的自動對焦機構。該自動對焦機構係監視加工面 的變動,並使將雷射光聚光於加工面之對物透鏡朝光軸方 向移動,藉此將聚光點恆常地保持一定於加工面。 專利文獻1 :日本專利第3204307號公報 專利文獻2 :日本特開2000-338447號公報 專利文獻3:日本專利第3191702號公報 專利文獻4:日本特開平11-58053號公報 專利文獻5 :日本特開平11-23952號公報 專利文獻6:日本專利第2835924號公報 非專利文獻 1 : K. Nishidaet. Al.,“Performance of Polycrystallization with High Power Solid Green Laser" AM-FPD 2006 非專利文獻2 :岡本達樹及其他,「低溫多晶矽用綠光 雷射退火光學系統的開發」,RTM-05-28 在上述非專利文獻2中,係揭示固體綠光雷射退火裝 置的光學系統的整體圖。此光學系統係針對長軸方向以長 方形的石英玻璃所構成的波導路(waveguide)將雷射光分 割成複數條’針對短軸方向係藉由擴展透鏡(expander lens)作成08〇的平行光,並以屬於對物透鏡之聚光透鏡 將此平行光聚光至玻璃基板上。 在非專利文獻2所揭示的固體綠光雷射退火裝置中, 當加工面相對於面朝垂直方向變動時,由於基板會從短軸 方向的焦點位置偏移,因此入射至加工面的破膜的雷射光 的能量密度會變動。在非專利文獻2的光學系統的情形 6 320318 201001555 中,如上述專利文獻4至6的自動對焦機構般’將屬於對 物透鏡之聚光透鏡的位置予以補正,藉此能避免上迷能量 密度的變動。 然而,使用於開孔等之雷射加工裝置之聚光透鏡幸交 小,相對於此,使用於雷射退火裝置之對物透鏡(聚光透鏡 或投影透鏡)的大小一般較大’且具有例如短軸方向為 10Omm以上X長軸方向為150匪左右的尺寸。因此,用以保 持這些透鏡群的固持具亦較大’且重量非常重。因此,復 難以數微米的精度即時地使雷射退火裝置的對物透鏡在光 軸方向移動並振動。此外’雖亦可考慮使基板側相對於面 朝垂直方向移動並振動,但由於雷射退火用的基板尺寸〜 般較大(例如為700mmx900mm以上),故難以高精度地使用 以保持基板的工作台振動。而在長轴方向方面,與短車由方 向相比,由於焦點深度非常大,因此幾乎不會有焦點位置 的變動而產生影響。 【發明内容】 本發明乃有鑑於上述問題而研創者.,其目的係提供〜 種在使用有固體雷射的雷射退火中,能根據半導體膜的雷 射照射部分的位置變動輕易地補正矩形狀光束的短軸方向 的焦點位置之雷射退火方法及雷射退火裝置。 為了解決上述課題,本發明的雷射退火方法及雷射退 火裝置係採用以下的手段。 (1)亦即,本發明的雷射退火方法係一種將從固體雷射光源 經過脈波振盪的雷射光予以整形,並在半導體膜的表面聚 320318 7 201001555 光成矩形狀的光束,在短軸方向使矩形狀光束相對性地掃 描前述半導體膜,藉由雷射照射來重組前述半導體膜之方 法,此方法的特徵為,使用用以將入射光朝短軸方向聚光 之短軸用聚光透鏡、以及用以將來自該短軸用聚光透鏡的 射出光投影至前述半導體膜的表面之投影透鏡,在前述半 導體膜的表面,將前述雷射光朝矩形狀光束的短軸方向聚 光’檢測前述半導體膜的雷射照射部分中該半導體膜的垂 直方向的位置變動,並根據此檢測值使前述短轴用聚光透 鏡朝光軸方向移動。 當使短轴用聚光透鏡朝光軸方向移動時,一次成像面 的位置亦會對應短轴用聚光透鏡的移動量而在光軸方向移 動。此外,投影透鏡所產生的投影點(焦點位置)係對應一 次成像面的位置移動量而移動。 因此,檢測半導體膜的雷射照射部分中的半導體膜的 垂直方向的位置變動,並根據此檢測值使短軸用聚光透鏡 朝光軸方向移動,藉此,即使因為基板運送裝置的機械性 誤差等而產生半導體膜的位置變動,亦能使矩形狀光束的 短軸方向的焦點位置重疊於半導體膜的表面。 此外,在進行焦點位置的補正時移動的短轴用聚光透 鏡係配置成比投影透鏡還接近光轴方向的上游側,且尺寸 小而輕,如同後述,與半導體膜的微米級(micron order) 位置變動量對應之短軸用聚光透鏡的位置補正量亦會變成 微米級。因此,由於只要以微米級的精度來補正小而輕的 短軸用聚光透鏡的位置即可,因此能容易地進行焦點位置 8 320318 201001555 的補正。 (2) 在上述的雷射退火方法中,在前述短軸用聚光透鏡的光 軸方向上游側的位置,將用以在前述矩形狀光束的短軸方 向將入射光分割成複數條入射光之複數個短軸用柱面透鏡 陣列隔以間隔地配置在光軸方向,並根據前述位置變動的 檢測值來調整前述複數個短軸用柱面透鏡陣列的間隔。 用以決定已通過短軸用聚光透鏡的雷射光的一次成像 面影像的大小之要素,包含有配置在短軸用聚光透鏡的上 游側之複數個短軸用柱面透鏡陣列的合成焦點距離。用以 決定複數個短軸用柱面透鏡陣列的合成焦點距離之要素, 包含有各透鏡陣列的光軸方向的間隔。因此,改變複數個 短軸用柱面透鏡陣列的間隔,藉此能調整已通過短軸用聚 光透鏡的雷射光的一次成像面影像的大小,結果能調整短 軸方向的焦點位置中的光束尺寸。因此,即使半導體膜的· 位置變動,藉由調整短軸方向的焦點位置中的光束尺寸, 在短軸方向亦能將相同尺寸的光束照射至半導體膜的表 面。 (3) 本發明的雷射退火裝置係具備有:固體雷射光源,係將 雷射光予以脈波振盪;光束整形光學系統,係將來自該固 體雷射光源的雷射光予以整形,並在半導體膜的表面聚光 成矩形狀光束;以及掃描手段,係在短軸方向使前述矩形 狀光束相對性地掃描前述半導體膜;並且,藉由雷射照射 來重組前述半導體膜的性質;其中,前述光束整形光學系 統係具有長轴方向均質器(homogeni zer)與短軸方向均質 9 320318 201001555 器,分別作用於矩形狀光束的長軸方向與短轴方向,而將 入射的雷射光聚光至前述半導體膜的表面;前述短軸方向 均質器係由用以將入射光朝短軸方向聚光之短軸用聚光透 鏡、以及用以將來自該短軸用聚光透鏡的射出光投影至前 述半導體膜的表面之投影透鏡所構成,並具備有用以檢測 前述半導體膜的雷射照射部分中的該半導體膜的垂直方向 的位置變動之位置變動檢測器、以及用以使前述短軸用聚 光透鏡朝光軸方向移動之透鏡移動機構。 (4) 在上述雷射退火裝置中,前述短軸用均質器係在前述短 軸用聚光透鏡的光軸方向上游側的位置具有複數個短軸用 柱面透鏡陣列,用以將入射光在前述矩形狀光束的短軸方 向分割成複數條入射光,且前述複數個短軸用柱面透鏡陣 列係隔以間隔配置於光軸方向,前述雷射退火裝置復具備 有間隔調整機構,用以調整前述複數個短軸用柱面透鏡陣 列的間隔。 依據上述構成的本發明的雷射退火裝置,能實施上述 雷射退火方法。因此,依據本發明的雷射退火裝置,能容 易地進行短軸方向的焦點位置的補正。此外,即使半導體 膜的位置產生變動,亦能藉由調整短轴方向的焦點位置中 的光束尺寸,而在短軸方向使相同尺寸的光束照射至半導 體膜的表面。 (5) 在上述雷射退火裝置中,復具備有移動機構控制部,係 根據來自前述位置變動檢測器的檢測值來控制前述透鏡移 動機構。 10 320318 201001555 由於具備有這種移動機構控制部,因此能藉由回授控 制來控制透鏡移動機構的驅動,而以自動控制之方式實現 短軸方向的焦點位置的補正。 (6) 在上述雷射退火裝置中,復具備有調整機構控制部,係 根據來自前述位置變動檢測器的檢測值來控制前述間隔調 整機構。 由於具備有這種調整機構控制部,因此能藉由回授控 制來控制間隔調整機構的驅動,而以自動控制之方式實現 短轴方向的焦點位置中影像大小的調整。 (7) 在上述雷射退火裝置中,前述固體雷射光源的光束品質 的M2值為2 0以上。 當光束品質過佳時,容易產生干涉條紋。使用光束品 質的M2值為20以上的雷射,藉此能降低干涉條紋。 (8) 在上述雷射退火裝置中,前述光束整形光學系統係具有 干涉降低光學系統,用以降低前述雷射光的干涉作用。 由於能藉由此種干涉降低光學系統來降低矩形狀光束 的干涉作用,因此能降低光束照射面中的干涉條紋。 (9) 在上述雷射退火裝置中,從前述固體雷射光源所射出的 雷射光係具有高斯(Gaussian)形狀的能量分布。 (10) 在上述雷射退火裝置中,前述矩形狀光束係在短軸方 向具有高斯形狀的能量分布。 (11) 在上述雷射退火裝置中,前述位置變動檢測器係非接 觸式變位感測器。 藉由使用這種非接觸式變位感測器,能即時地高精度 11 320318 201001555 檢測半導體膜的位置變動。作為這種非接觸式變位感測 器,以雷射式變位感測器或渦電流式變位感測器等為宜。 (12) 在上述雷射退火裝置中,係具備有複數個前述固體雷 射光源,且具備有用以將來自前述複數個固體雷射光源的 雷射光予以時間性及/或空間性合成的手段。 如此,當以時間性(將脈波週期彼此錯開)來合成複數 條雷射光時,能將合成雷射光的脈波頻率作成數倍,當以 空間性(使脈波週期一致)來合成複數條雷射光時,能將合 成雷射光的能量密度作成數倍。因此,能提升光束的掃描 速度,結果能提升退火處理速度。此外,當合成三條以上 的雷射光束時,亦可組合時性間合成與空間性合成。 (13) 在上述雷射退火裝置中,復具備有用以將形成有前述 半導體膜的基板收容於内部且將基板的收容空間形成真空 或惰性氣體環境之腔體(chamber),或者僅對前述半導體膜 上的雷射照射部份及其周圍限定的範圍供給惰性氣體之惰 性氣體供給手段。 在雷射退火中,當將雷射光照射至基板上的半導體膜 時,若雷射照射部分接觸到大氣時,會產生在基板表面形 成凹凸、在基板表面形成氧化膜、或者在結晶化製程中所 製作的結晶粒會變小等問題。 由於本發明的雷射退火裝置具有上述構成的腔體或惰 性氣體供給手段,故能阻止雷射照射部分接觸大氣。因此, 能避免上述各種問題。 (14) 在上述雷射退火裝置中,具備有用以載置形成有前述 12 320318 201001555 半導體膜的基板之基板工作台,該基板工作台係被加熱至 不超過基板熔點的溫度。 將基板工作台加熱至不超過基板熔點的溫度,藉此能 不使基板溶融且穩定地進行雷射退火。例如,當基板為無 鹼玻璃時,由於無鹼玻璃的熔點約為600°C,因此基板工 作台被加熱至不超過600°C的溫度。 依據上述本發明,在使用固定雷射的雷射退火中,根 據半導體膜的雷射照射部分的位置變動,可獲得能容易地 補正矩形狀光束的短軸方向的焦點位置之效果。 【實施方式】 以下參照圖式詳細說明本發明的較佳實施形態。在各 圖中,共通的部分係附上相同的符號,並省略重複的說明。 〔第一實施形態〕 第1A圖與第1B圖係顯示本發明第一實施形態的雷射 退火裝置10的概略構成。在第1A圖中,與紙面平行且與 光軸垂直的方向為矩形狀光束的長軸方向。在第1B圖中, 與紙面平行且與光軸垂直的方向為矩形狀光束的短軸方 向。 在第1A圖中,以想像線(虛線)表示僅作用於短軸方向 的光學系統。在第1B圖中,以想像線顯示僅作用於長軸方 向的光學系統。 雷射退火裝置10係具備有:固體雷射光源12,係將 雷射光1予以脈波振盪;光束整形光學系統13,係將來自 固體雷射光源12的雷射光1予以整形,並在半導體膜3表 13 320318 201001555 面聚光成矩形狀光束;以及掃描手段,係在短軸方向使矩 形狀光束相對性地掃描半導體膜3 ;並且,藉由雷射B罕射 來重組半導體膜3。 在本實施形態中’基板2為玻璃基板(例如無驗破 璃),並藉由電漿 CVD(Chemical Vapor Deposition ;化學 氣相沉積)法或濺鍍法等成膜法,於上述玻璃基板上成臈例 如20〇nm的Si〇2膜,並在Si〇2膜上成膜例如5〇nm的a_Si 膜以作為半導體膜3。基板2係藉由基板工作台5保持, 並運送至矩形狀光束的短軸方向。藉由基板工作台5的移 動’.能在短軸方向使矩形狀光束相對性地掃描基板2上的 二Sl膜。亦即,在本實施形態中,基板工作台5係構成雷 射掃描手段4。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser annealing method and a laser annealing apparatus for irradiating pulsed laser light which forms a rectangular beam onto a semiconductor film to recombine a semiconductor film. [Prior Art] Laser annealing irradiates a laser beam to an amorphous germanium film (hereinafter referred to as a Si film) formed on a substrate composed of a low-melting glass (for example, glass) to make amorphous The ruthenium film is melted, solidified, and recrystallized, thereby forming a treatment for the polycrystalline stone film (for example, refer to the following patent document υ. Since the crystallized ruthenium film has superior electrical properties than the a-Si film, it is applied to A crystal for driving a liquid crystal display that requires high-definition display, such as a mobile phone and a digital camera. In laser annealing, an optical system is used to process a pulsed laser beam beam emitted from a laser source into an elongated rectangular beam. And the rectangular beam is relatively scanned in the short-axis direction of the beam to scan a semiconductor film (for example, an a-Si film) on the substrate, thereby performing laser annealing. Generally, the rectangular beam is scanned by moving the substrate. Further, this scanning is carried out in such a manner that the laser irradiation region is partially repeated. In Patent Documents 2 and 3 below, it is revealed that an excimer laser is used as a laser light source. An overall view of the optical system of a laser annealing device (hereinafter referred to as an excited molecular laser annealing device). The optical system is composed of the following components: a cylindrical lens array that has a rectangular beam in the long axis direction and is short. The axial direction is divided into a plurality of strips respectively; and the condensing light 320318 4 201001555 Mirror ' is to overlap the beams split by the cylindrical lens array. In addition, the short-axis direction is to equalize the energy distribution of the beam, and then the projection lens The projection of the beam in the above-described radical laser annealing apparatus has a long axis of 365 min and a short axis of 〇4 mm. In the case of an excited molecular laser, the quality of the laser beam is poor. The short axis width is large, and as a result, the depth of focus is deep. Therefore, there is almost no influence on the annealing performance due to the positional variation of the laser irradiation surface due to the mechanical error of the substrate transfer device and the machining error of the substrate surface. The above-mentioned positional variation refers to a positional variation with respect to the vertical direction of the semiconductor film. On the other hand, the "excitation molecular laser annealing has a phase in the annealing property. For the laser irradiation energy, the change of the carrier mobility is large. As a means to solve this problem, the pulse green laser light obtained by the second harmonic of the Nd:YAG laser is used (Pulse Green Laser). A laser annealing device (hereinafter referred to as a solid green laser annealing device) is attracting attention (see, for example, Patent Documents 4 and 5 below). When the pulsed green laser is used, irradiation with respect to a single beam is used. Energy's can achieve a wider process margin than a laser with a radical. However, compared to the output of a commercially available excited molecular laser (maximum 1J/pulse), due to solid green lasers. The output is significantly lower (not full 〇.u / pulse wave)' Therefore, it is necessary to shrink the beam size in the short-axis direction to less than l〇〇//m. As a result, the depth of focus in the short-axis direction becomes shallow, so it cannot be ignored. The position of the semiconductor germanium changes to affect the annealing performance. In the following Patent Documents 4 to 6, there is disclosed an autofocus mechanism for use in the processing of a laser beam such as a hole 320318 5 201001555. The autofocus mechanism monitors the fluctuation of the machined surface and moves the objective lens that condenses the laser light on the machined surface toward the optical axis, thereby constantly maintaining the condensed spot at a fixed surface. Patent Document 1: Japanese Patent No. 3204307 Patent Document 2: JP-A-2000-338447 Patent Document 3: Japanese Patent No. 3191702 Patent Document 4: Japanese Laid-Open Patent Publication No. Hei 11-58053 Japanese Patent Publication No. 2835924 Non-Patent Document 1: K. Nishidaet. Al., "Performance of Polycrystallization with High Power Solid Green Laser" AM-FPD 2006 Non-Patent Document 2: Okamoto Tree Further, "Development of a green laser annealing annealing optical system for low temperature polycrystalline silicon", RTM-05-28 In the above Non-Patent Document 2, an overall view of an optical system of a solid green laser annealing apparatus is disclosed. This optical system divides the laser light into a plurality of beams for a waveguide formed by a rectangular quartz glass in the long-axis direction, and creates a parallel light of 08 针对 by an expander lens for the short-axis direction, and The parallel light is condensed onto the glass substrate by a collecting lens belonging to the objective lens. In the solid green laser annealing apparatus disclosed in Non-Patent Document 2, when the machined surface is changed in the vertical direction with respect to the surface, since the substrate is displaced from the focus position in the short-axis direction, the film is incident on the processed surface. The energy density of laser light varies. In the case of the optical system of Non-Patent Document 2, in the case of the autofocus mechanism of the above-mentioned Patent Documents 4 to 6, the position of the condensing lens belonging to the objective lens is corrected, whereby the energy density can be avoided. Change. However, the concentrating lens used in the laser processing apparatus such as the opening is small, and the size of the objective lens (concentrating lens or projection lens) used in the laser annealing apparatus is generally large and has For example, the short axis direction is 10Omm or more and the X long axis direction is about 150匪. Therefore, the holder for holding these lens groups is also large and heavy. Therefore, it is difficult to make the objective lens of the laser annealing apparatus move and vibrate in the optical axis direction with the accuracy of several micrometers. In addition, it is also conceivable to move the substrate side in the vertical direction with respect to the surface and to vibrate. However, since the substrate for laser annealing is generally large (for example, 700 mm x 900 mm or more), it is difficult to use it with high precision to maintain the work of the substrate. The table vibrates. On the other hand, in the long-axis direction, since the depth of focus is very large compared with the direction of the short-wheel, there is almost no influence of the change in the focus position. SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object thereof is to provide a laser which can easily correct a rectangular shape according to a positional change of a laser irradiation portion of a semiconductor film in a laser annealing using a solid laser. A laser annealing method and a laser annealing device for a focal position of a short-axis direction of a beam. In order to solve the above problems, the laser annealing method and the laser annealing device of the present invention employ the following means. (1) That is, the laser annealing method of the present invention is to shape a laser beam that is oscillated from a solid laser light source through a pulse wave, and to form a rectangular beam on the surface of the semiconductor film, 320318 7 201001555, in a short A method of recombining the semiconductor film by laser irradiation in a direction in which a rectangular beam is relatively scanned in the axial direction, and the method is characterized in that a short axis for collecting incident light toward a short axis is used. a light lens and a projection lens for projecting the light emitted from the short-axis condensing lens onto the surface of the semiconductor film, and concentrating the laser light toward the short-axis direction of the rectangular beam on the surface of the semiconductor film 'Detecting a positional change in the vertical direction of the semiconductor film in the laser-irradiated portion of the semiconductor film, and moving the short-axis collecting lens toward the optical axis direction based on the detected value. When the short-axis concentrating lens is moved in the optical axis direction, the position of the primary imaging surface is also moved in the optical axis direction in accordance with the amount of movement of the short-axis condensing lens. Further, the projection point (focus position) generated by the projection lens moves in accordance with the amount of positional movement of the primary imaging surface. Therefore, the positional variation of the semiconductor film in the laser irradiation portion of the semiconductor film in the vertical direction is detected, and the short-axis concentrating lens is moved in the optical axis direction based on the detected value, whereby the mechanical property of the substrate transfer device is achieved. The positional fluctuation of the semiconductor film is caused by an error or the like, and the focal position of the rectangular beam in the short-axis direction can be superposed on the surface of the semiconductor film. Further, the short-axis condensing lens system that moves when the focus position is corrected is disposed closer to the upstream side in the optical axis direction than the projection lens, and is small in size and light, as will be described later, and the micron order of the semiconductor film (micron order) The position correction amount of the short-axis condenser lens corresponding to the amount of position change also becomes micrometer. Therefore, since the position of the small and light short-axis condenser lens can be corrected with an accuracy of micrometer order, the correction of the focus position 8 320318 201001555 can be easily performed. (2) In the above-described laser annealing method, the incident light is split into a plurality of incident lights in the short-axis direction of the rectangular light beam at a position on the upstream side in the optical axis direction of the short-axis condensing lens. The plurality of short-axis cylindrical lens arrays are arranged at intervals in the optical axis direction, and the interval between the plurality of short-axis cylindrical lens arrays is adjusted based on the detected value of the positional variation. The element for determining the size of the primary imaging surface image of the laser beam that has passed through the short-axis condensing lens includes a composite focus of a plurality of short-axis cylindrical lens arrays disposed on the upstream side of the short-axis condensing lens. distance. The element for determining the combined focal length of the plurality of short-axis cylindrical lens arrays includes the interval of the optical axis directions of the respective lens arrays. Therefore, the interval between the plurality of short-axis cylindrical lens arrays is changed, whereby the size of the primary imaging surface image of the laser light that has passed through the short-axis condenser lens can be adjusted, and as a result, the light beam in the focal position in the short-axis direction can be adjusted. size. Therefore, even if the position of the semiconductor film fluctuates, the beam of the same size can be irradiated onto the surface of the semiconductor film in the short-axis direction by adjusting the beam size in the focal position in the short-axis direction. (3) The laser annealing apparatus of the present invention is provided with a solid laser light source for pulse wave oscillation of a laser beam, and a beam shaping optical system for shaping laser light from the solid laser light source and for semiconductor a surface of the film is condensed into a rectangular beam; and scanning means is for sequentially scanning the rectangular film in a short-axis direction; and the property of the semiconductor film is recombined by laser irradiation; The beam shaping optical system has a long axis homing device and a short axis direction homogenizing 9 320318 201001555, respectively acting on the long axis direction and the short axis direction of the rectangular beam, and concentrating the incident laser light to the foregoing a surface of the semiconductor film; the short-axis direction homogenizer is a short-axis condenser lens for collecting incident light in a short-axis direction, and projection light for emitting the light from the short-axis condenser lens to the foregoing a projection lens on a surface of the semiconductor film and having a vertical direction for detecting the semiconductor film in the laser irradiation portion of the semiconductor film The positional variation of a position change detector, and a lens moving mechanism for moving the minor axis for causing the polymerization of the optical axis direction toward the optical lens. (4) In the above-described laser annealing apparatus, the short-axis homogenizer has a plurality of short-axis cylindrical lens arrays at positions upstream of the optical axis direction of the short-axis condensing lens for incident light. a plurality of incident lights are divided in a short-axis direction of the rectangular beam, and the plurality of short-axis cylindrical lens arrays are arranged at intervals in an optical axis direction, and the laser annealing device is provided with an interval adjusting mechanism. To adjust the interval of the plurality of short-axis cylindrical lens arrays. According to the laser annealing apparatus of the present invention having the above configuration, the above-described laser annealing method can be carried out. Therefore, according to the laser annealing apparatus of the present invention, the correction of the focus position in the short-axis direction can be easily performed. Further, even if the position of the semiconductor film fluctuates, the beam of the same size can be irradiated onto the surface of the semiconductor film in the short-axis direction by adjusting the beam size in the focal position in the short-axis direction. (5) The above-described laser annealing apparatus includes a moving mechanism control unit that controls the lens moving mechanism based on a detected value from the positional change detector. 10 320318 201001555 Since the moving mechanism control unit is provided, the driving of the lens moving mechanism can be controlled by the feedback control, and the correction of the focus position in the short-axis direction can be realized by automatic control. (6) In the above-described laser annealing apparatus, an adjustment mechanism control unit is provided, and the interval adjustment mechanism is controlled based on a detection value from the positional change detector. Since the adjustment mechanism control unit is provided, the drive of the interval adjustment mechanism can be controlled by the feedback control, and the image size adjustment in the focus position in the short-axis direction can be realized by automatic control. (7) In the above laser annealing apparatus, the M2 value of the beam quality of the solid-state laser light source is 20 or more. When the beam quality is too good, interference fringes are likely to occur. A laser having a beam quality of M2 of 20 or more is used, whereby interference fringes can be reduced. (8) In the above laser annealing apparatus, the beam shaping optical system has an interference reducing optical system for reducing interference of the aforementioned laser light. Since the optical system can be reduced by such interference to reduce the interference of the rectangular beam, the interference fringes in the beam irradiation surface can be reduced. (9) In the above laser annealing apparatus, the laser light emitted from the solid laser light source has a Gaussian shape energy distribution. (10) In the above laser annealing apparatus, the rectangular beam has an energy distribution having a Gaussian shape in the short-axis direction. (11) In the above laser annealing apparatus, the positional change detector is a non-contact displacement sensor. By using such a non-contact displacement sensor, the positional variation of the semiconductor film can be detected with high precision 11 320318 201001555. As such a non-contact displacement sensor, a laser displacement sensor or an eddy current displacement sensor or the like is preferably used. (12) The above-described laser annealing apparatus includes a plurality of solid laser light sources and means for synthesizing temporally and/or spatially synthetic laser light from the plurality of solid laser light sources. In this way, when a plurality of types of laser light are synthesized in a temporal manner (the pulse wave periods are shifted from each other), the pulse wave frequency of the synthesized laser light can be multiplied by a plurality of times, and the plurality of lines can be synthesized by spatiality (the pulse wave period is uniform). In the case of laser light, the energy density of the synthetic laser light can be made several times. Therefore, the scanning speed of the beam can be increased, and as a result, the annealing process speed can be improved. In addition, when three or more laser beams are synthesized, it is also possible to combine temporal synthesis and spatial synthesis. (13) The laser annealing apparatus further includes a chamber for accommodating the substrate on which the semiconductor film is formed, and forming a space for accommodating the substrate into a vacuum or an inert gas atmosphere, or only for the semiconductor An inert gas supply means for supplying an inert gas to a portion of the laser irradiated portion on the film and a periphery thereof. In the laser annealing, when the laser light is irradiated onto the semiconductor film on the substrate, if the laser irradiation portion is in contact with the atmosphere, irregularities are formed on the surface of the substrate, an oxide film is formed on the surface of the substrate, or in the crystallization process. The produced crystal grains become smaller and the like. Since the laser annealing apparatus of the present invention has the above-described cavity or inert gas supply means, it is possible to prevent the laser irradiation portion from coming into contact with the atmosphere. Therefore, the above various problems can be avoided. (14) The above-described laser annealing apparatus includes a substrate stage on which a substrate on which the semiconductor film of 12 320318 201001555 is formed is placed, and the substrate stage is heated to a temperature not exceeding the melting point of the substrate. The substrate stage is heated to a temperature not exceeding the melting point of the substrate, whereby laser annealing can be stably performed without melting the substrate. For example, when the substrate is alkali-free glass, since the melting point of the alkali-free glass is about 600 ° C, the substrate stage is heated to a temperature not exceeding 600 °C. According to the above aspect of the invention, in the laser annealing using the fixed laser, the effect of easily correcting the focus position of the rectangular beam in the short-axis direction can be obtained in accordance with the positional variation of the laser-irradiated portion of the semiconductor film. [Embodiment] Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same portions are denoted by the same reference numerals, and the repeated description is omitted. [First Embodiment] Fig. 1A and Fig. 1B show a schematic configuration of a laser annealing apparatus 10 according to a first embodiment of the present invention. In Fig. 1A, the direction parallel to the plane of the paper and perpendicular to the optical axis is the long-axis direction of the rectangular beam. In Fig. 1B, the direction parallel to the plane of the paper and perpendicular to the optical axis is the short-axis direction of the rectangular beam. In Fig. 1A, an optical system acting only on the short-axis direction is indicated by an imaginary line (dashed line). In Fig. 1B, an optical system that acts only on the long axis direction is displayed as an imaginary line. The laser annealing apparatus 10 includes a solid-state laser light source 12 that oscillates the laser light 1 and a beam shaping optical system 13 that shapes the laser light 1 from the solid-state laser light source 12 and is patterned on the semiconductor film. 3 Table 13 320318 201001555 The surface is condensed into a rectangular beam; and the scanning means is such that the rectangular beam is relatively scanned in the short axis direction of the semiconductor film 3; and the semiconductor film 3 is recombined by laser B. In the present embodiment, the substrate 2 is a glass substrate (for example, no glass), and is formed on the glass substrate by a plasma CVD (Chemical Vapor Deposition) method or a sputtering method. For example, a 20 Å nm Si〇2 film is formed, and a 5 Å nm a-Si film is formed on the Si 〇 2 film as the semiconductor film 3. The substrate 2 is held by the substrate stage 5 and transported to the short-axis direction of the rectangular beam. The two-S1 film on the substrate 2 can be relatively scanned by the rectangular beam in the short-axis direction by the movement of the substrate stage 5. That is, in the present embodiment, the substrate stage 5 constitutes the laser scanning means 4.

声土板工作台5係藉由未圖示的加熱手段加熱至預定溫 二此時,係加熱至不超過基板2的熔點之溫度。如此, ^板2不會熔融,且能穩定地進行雷射退火。例如,當基 二2為無鹼玻璃時,由於無鹼玻璃的熔點約6〇(rc,因此 土板工作台被加熱至不超過60(TC的溫度。 口祖每射光源12係例如以汰肚至伙匕的脈波頻 體t田射光1 °该雷射光1具有高斯形狀的能量分布。固 請光源12的_雖未㈣限定,但較佳為使用Μ:The soundboard table 5 is heated to a predetermined temperature by a heating means (not shown), and is heated to a temperature not exceeding the melting point of the substrate 2. Thus, the plate 2 does not melt, and laser annealing can be performed stably. For example, when the base 2 is an alkali-free glass, since the melting point of the alkali-free glass is about 6 〇 (rc, the soil plate table is heated to not more than 60 (the temperature of the TC. The pulse wave frequency of the belly to the group is 1 °. The laser light 1 has a Gaussian shape energy distribution. Although the light source 12 is not limited to (4), it is preferably used:

Yb. 2、Nd : YLF雷射、Μ : 雷射、Nd :玻璃雷射、 AG雷射、Yb : YLF雷射、几:γν〇4雷射、仉:玻璃雷 地種雷射。這独體雷射的可紐高,能高效率 只見%'&的雷射能量之_。此外’由於秒膜在33〇nm 320318 14 201001555 至800nm的可視光區域中的吸收係數高,因此固體雷射光 源12較佳為射出上述的YAG雷射、YLF雷射、YV〇4雷射、 玻璃雷射的第二或第三諧波的雷射光1者。 當光束品質過佳時,容易產生干涉條紋。因此,固體 雷射光源12的光束品質較佳為M2值為20以上。使用這種 品質的雷射,能降低干涉條紋。 從這種固體雷射光源12所射出的雷射光1會入射至光 束整形光學系統13。 光束整形光學系統13係具備有:光束擴展器(beam expander) 14,係將來自固體雷射光源12的雷射光1朝長 轴方向與短軸方向擴展;長軸方向均質器19,係作用於矩 形狀光束的長轴方向,將入射的雷射光1聚光至半導體膜 3的表面;以及短軸方向均質器25,係作用於矩形狀光束 的短軸方向,將入射的雷射光1聚光至半導體膜3的表面。 構成例所示的光束擴展器14係由凸球面透鏡15、作 用於短轴方向之短轴用柱面透鏡16、以及作用於長轴方向 之長軸用柱面透鏡17所構成。在此構成的光束擴展器14 中,能分別設定長轴方向與短轴方向的放大率。此外,光 束擴展器14亦可為其他的構成,例如亦可組合凹球面透鏡 與凸球面透鏡者。 如第1A圖所示,長軸方向均質器19係由用以在長軸 方向將入射的雷射光1分割成複數條雷射光之複數個長轴 用柱面透鏡陣列20a、20b、以及用以在長軸方向使已在長 軸方向分割成複數條的雷射光1在半導體膜3的表面重疊 15 320318 201001555 之長轴用聚光透鏡22所棬士、 —士… 丄 霉成。在本貫施形悲中,兩個長軸 方向柱面透鏡陣列2〇a、2Gb係隔以間隔配置於光轴方向。 在上述構成的長輪方向均質器19中,藉由光束擴展器 14所放大的田射光1係藉由長軸用柱面透鏡陣列服、2〇b 而在長軸方向被分割成複數條雷射光。通過長軸用柱面透 鏡陣列·、而被分割的雷射幻係藉由長轴用聚光透 鏡22在基板2上的半導體膜3表面在長軸方向成像成細長 的矩形狀光束。於長車由用甲本、悉於9 , 用來先透鏡22與基板2之間的光路 徑配置有反射鏡2 3 ’將來白基缸田取,*欣n。 灯水自長軸用聚光透鏡22的出射光 朝基板2的方向反射。 照射至基板2的矩形狀光束的長輛方向的長度係能作 成例如數10咖。藉由該長軸方向均質器19所整形的矩形 狀光束’其長軸方向的能量分布係被均勻化,而從高斯形 狀變形為平頂(flat top)形狀。 短轴方向均質器25係具有:短軸用聚光透鏡29,係 £ 將入射的雷射光1聚光至短軸方向;以及投影透鏡30,係 將來自短軸用聚光透鏡29的出射光投影至半導體膜3的表 面。在本實施形態中,短轴方向均質器25係在短軸用聚光 透鏡29的光轴方向上游側的位置復具有用以在短轴方向 將入射光分割成複數條入射光之短軸用柱面透鏡陣列 26a、26b,兩個短軸用柱面透鏡陣列26a、26b係隔以間隔 配置於光軸方向。 在這種構成的短軸方向均質器25中,藉由光束擴展器 14所放大的雷射光1係藉由短轴用柱面透鏡陣列26a、26b 16 320318 201001555 在短軸方向被分割成複數條雷射光。通過短軸用柱面、 陣列26a、26b而被分割的雷射光1係藉由短軸用聚光透鏡 29在紐軸方向聚光,且在一次成像面s成 、兄 λ ή 又攸投影透 兄 射’且藉由投影透鏡3 0將一次成像面$的影像 紐轴方向縮小投影至基板2上的半導體膜3的表面。並且在 來自短軸用聚光透鏡29的雷射光丨會藉由反 , 基板2的方向反射。而朝 、照射至基板2的矩形狀光束的短軸方向的長度 成例如數lG/zm。藉由該短轴方向均質器25所整來作 狀變向的能量分布係被均勾化,而從高斯形 檢剛^ a圖所示’雷射退火裝置1〇復具傷有位置變動 ° d1、透鏡移動機構32、以及控制裝置34。 在半^變動檢測器31係檢測半導體膜3的雷射照射部分 膜3的垂直方向的位置變動。因此,蕤 變動檢测错由該位置 與基拓矣 能檢測出因為基板運送裝置的機械性誤差 動:表面的加卫誤差所導致的半導體膜3表面的位置變 當位Ϊί變動檢測器31的數量可為一個,也可為複數個。 的雷射^檢湘31的數量為—個時,能針對半導體膜3 測位置:射部分中矩形狀光束的長轴方向的中央位置來檢 位置變笑動,並將此檢測值作為代表性的位置變動量。當 的雷撿測器31的數量為複數個時,能針對半導體膜3 ’、、、射邛为中矩形狀光束的長軸方向的複數點來檢測 320318 17 201001555 位置變動,並將這些的平均值作為位置變動量。 位置變動檢測器31較佳為非接觸式變位感測器。藉由 使用這種非接觸式變位感測器,能即時地以高精度檢測半 導體膜3的位置變動。作為此種非接觸式變位感測器的一 例,在本實施形態中雖顯示雷射式變位感測器,但亦可為 渦電流式變位感測器或超音波式變位感測器等其他變位感 測器。 透鏡移動機構32係具有使短軸用聚光透鏡29朝光轴 方向移動之功能。控制裝置34係具有移動機構控制部35, 根據來自位置變動檢測器31的檢測值來控制透鏡移動機 構32。 當短軸用聚光透鏡29朝光轴方向移動時,對應該短轴 用聚光透鏡29的移動量,一次成像面S的位置亦會朝光軸 方向移動。此外,投影透鏡30所產生的投影點(焦點位置) 係對應一次成像面S的位置移動量而移動。 因此,藉由位置變動檢測器31來檢測半導體膜3的雷 射照射部分中半導體膜3的垂直方向的位置變動,移動機 構控制部35會根據此檢測值使短軸用聚光透鏡29朝光轴 方向移動,藉此,即使因為基板運送裝置的機械性誤差等 而產生半導體膜3的位置變動,亦能使矩形狀光束的短轴 方向的焦點位置對合至半導體膜3的表面。如此,藉由回 授控制來控制透鏡移動機構32的驅動,藉此能以自動控制 之方式實現短軸方向的焦點位置的補正。 第2A圖與第2B圖係顯示雷射照射部分(加工面)的變 18 320318 201001555 動量與短軸用聚光透鏡29的移動量之關係。第2A圖係短 轴用聚光透鏡29與投影透鏡30的焦點距離分別為650_ 與300麵時的情形。第2B圖係短軸用聚光透鏡29與投影 透鏡30的焦點距離分別為750麵與300麵時的情形。 在第2A圖的情形中,當雷射照射部分變動±0. 5mm時, 會使短軸用聚光透鏡29移動±30mm,藉此能使矩形狀光束 的短軸方向的焦點位置對合至半導體膜3的表面。 在第2B圖的情形中,當雷射照射部分變動±0. 5mm時, 會使短軸用聚光透鏡29移動±40min,藉此能使矩形狀光束 的短軸方向的焦點位置對合至半導體膜3的表面。 如此,與半導體膜3的微米級的位置變動量對應之短 軸用聚光透鏡29的位置補正量會成為微米級。 在焦點位置的補正時移動的短軸用聚光透鏡29係配 置在比投影透鏡3 0還接近光軸方向的上游侧,且尺寸小而 幸呈0 因此,依據本實施形態,由於只要以微米級的精度來 補正尺寸小而輕的短轴用聚光透鏡29的位置即可,因此能 容易地進行焦點位置的補正。 〔第二實施形態〕 第3A圖與第3B圖係顯示本發明第二實施形態的雷射 退火裝置10的概略構成。 本實施形態的雷射退火裝置10係具備有用以調整複 數個短軸用柱面透鏡陣列26a、26b的間隔之間隔調整機構 37。在本實施形態中,使光軸方向上游側的短軸用柱面透 19 320318 201001555 鏡陣列26a朝光軸方向移動,藉此調整兩個短軸用柱面透 鏡陣列26a、26b的間隔。亦可使光軸方向下游侧的短軸用 柱面透鏡陣列26b或兩個短轴用柱面透鏡陣列26a、26b兩 者皆朝光軸方向移動來調整兩者的間隔。控制裝置34具有 調整機構控制部36,係根據來自位置變動檢測器31的檢 測值來控制間隔調整機構37。其他部分係與第一實施形態 相同。 第4A圖與第4B圖係顯示將複數個柱面透鏡陣列的間 隔作成固定時之雷射照射部分(加工面)的變動量與雷射照 射部分中影像大小的變動率之關係。第4A圖係短軸用聚光 透鏡29與投影透鏡30的焦點距離分別為650腿與300mm 時的情形。第4B圖係短軸用聚光透鏡29與投影透鏡30的 焦點距離分別為750mm與300醒時的情形。 第4A圖與第4B圖中,當雷射照射部分變動±0. 5mm時, 影像大小的變動率皆為1. 5%以下。 用以決定已通過短軸用聚光透鏡29的雷射光1的一次 成像面的影像大小D之要素,係包含配置在短軸用聚光透 鏡29的上游侧的複數個短軸用柱面透鏡陣列26a、26b的 合成焦點距離F〇。具體而言,一次成像面的影像大小D係 以下述(1)式所示。其中,w為用以構成短軸用柱面透鏡陣 列26a、26b之各柱面透鏡陣列短軸方向的寬度,h為短軸 用聚光透鏡29的焦點距離。 D = wx ( fi/f〇) ... (1) 用以決定複數個短軸用柱面透鏡陣列26a、26b的合成 20 320318 201001555 ,焦點距離fQ之要素,係包含各透鏡陣列的 d。具體而言’合成焦點距離Μ以下述⑵式二 f〇為各短轴用柱面透鏡陣列 ” ί〇=㈣”/⑵。,—d) ..·⑵’,,、點距離。 因此,藉由改變複數個短 敕p捅禍鉬畆田枣止头 丑季由用往面透鏡的間隔,能調 的雷射光1的1成像面的影 广、、,·口果,而能調整短輪方向的焦點仇置中的光束尺 垂直方向的位置器31來檢測相對於半導體膜3的 來控制間隔調整機構3=整機構㈣部36會根據此檢測值 26a、26b朝光轴方向^控制部’使短轴用柱面透鏡陣列 並調整短軸方向的^以調整各柱面透鏡陣列的間隔, 導體膜3上的雷射照位置中的元束尺寸,藉此,即使半 方向將相同 尺寸的、邵分的位置產生變動,亦能在短軸 回授控制來控制間隔T射至半導體膜3 °如此,能藉由 方式實現短轴方向^楚機構37的鶴’而以自動控制之 〔第三實施形態〕焦點位置中的影像大小的調整。 第5A圖與第邱 一 退火裝置10的概略协係顯不本發明第三實施形態的雷射 瑪成。 在本實施形態中, 柱面透鏡陣列26a、&未5又置有第一實施形態中的短軸用 因此,在本實施b。其他部分係與第一實施形態相同。 、也%態中,短軸方向的能量分布雖維持 320318 21 201001555 在高斯形狀,但與第一實施形態相同,根據來自位置變動 檢測器31的檢測值使短軸用聚光透鏡2 9朝光軸方向移 動,藉此使矩形狀光束的短軸方向的焦點位置對合至半導 體膜3的表面。 〔其他實施形態一〕 在上述各實施形態中,光束整形光學系統較佳為具有 用以降低雷射光的干涉作用之干涉降低光學系統。第6A圖 與第6B圖係顯示這種干涉降低光學系統的構成例。此干涉 降低光學系統係由用以降低第6A圖的雷射光的長軸方向 的干涉作用之長軸用干涉降低光學系統18、以及用以降低 第6B圖的短轴方向的干涉作用之短軸用干涉降低光學系 統24所構成。 如第6A圖所示,長軸用干涉降低光學系統18係配置 於長軸用柱面透鏡陣列20a v 20b的光軸方向上游侧。長軸 用干涉降低光學系統18係由複數個透明玻璃板18a所構 成。各透明玻璃板的寬度係與用以構成長軸用柱面透鏡陣 列20a、20b之各柱面透鏡的寬度相同,且各透明玻璃板 18a係以達至比雷射光1的同調(coherent)長度還長的預 定長度之方式,於長軸方向配置有不同光軸方向長度的透 明玻璃板。由於已通過各透明玻璃板18a的雷射光1的光 路徑會藉由該長軸方向干涉降低光學系統18而變長達至 玻璃的長度,因此各個雷射光1會產生比同調長度還長距 離的光路徑差,而不會有同調性的影響,且不會彼此干涉。 如第6B圖所示,短轴用干涉降低光學系統24係配置 22 320318 201001555 ‘独軸用才主面透鏡陣列26a、26b的光軸方向上游側,且由 複數個透明麵板24a所構成。各透明玻璃板24a的寬度 係,用以構成短轴用柱面透鏡陣列26a、26b之各柱面透ς 的見度相同,且各透明玻璃板24a係以達至比雷射光^的 同調長度還長的預定長度之方式,於短軸方向配置有不同 光軸方向長度的透明玻璃板。由於已通過各透明玻璃板24a 、^、-光1的光路徑會藉由該短轴方向干涉降低光學系统 24而變長達至坡璃的長度,因此各個雷射光1會產生比同Yb. 2, Nd: YLF laser, Μ: laser, Nd: glass laser, AG laser, Yb: YLF laser, several: γν〇4 laser, 仉: glass mine ground laser. This one-shot laser can be high-efficiency, seeing the laser energy of %'&. In addition, since the absorption coefficient of the second film in the visible light region of 33 〇 nm 320318 14 201001555 to 800 nm is high, the solid laser light source 12 preferably emits the above YAG laser, YLF laser, YV 〇 4 laser, The laser light of the second or third harmonic of the glass laser is one. When the beam quality is too good, interference fringes are likely to occur. Therefore, the beam quality of the solid laser light source 12 is preferably such that the M2 value is 20 or more. Using this quality laser can reduce interference fringes. The laser light 1 emitted from such a solid laser light source 12 is incident on the beam shaping optical system 13. The beam shaping optical system 13 includes a beam expander 14 that expands the laser light 1 from the solid laser light source 12 in the long axis direction and the short axis direction, and the long axis direction homogenizer 19 acts on the beam expander 14 The long-axis direction of the rectangular beam converges the incident laser light 1 to the surface of the semiconductor film 3; and the short-axis direction homogenizer 25 acts on the short-axis direction of the rectangular beam to condense the incident laser light 1 To the surface of the semiconductor film 3. The beam expander 14 shown in the configuration example is composed of a convex spherical lens 15, a short-axis cylindrical lens 16 for the short-axis direction, and a long-axis cylindrical lens 17 for the long-axis direction. In the beam expander 14 configured as described above, the magnifications in the long axis direction and the short axis direction can be set separately. Further, the beam expander 14 may have other configurations, and for example, a concave spherical lens and a convex spherical lens may be combined. As shown in FIG. 1A, the long-axis direction homogenizer 19 is a plurality of long-axis cylindrical lens arrays 20a, 20b for dividing the incident laser light 1 into a plurality of laser beams in the long-axis direction, and In the long-axis direction, the laser light 1 which has been divided into a plurality of strips in the long-axis direction is superposed on the surface of the semiconductor film 3 by the condenser lens 22 of the long-axis condensing lens 22 of the long-axis lens. In the present embodiment, the two long-axis cylindrical lens arrays 2a, 2Gb are arranged at intervals in the optical axis direction. In the long wheel direction homogenizer 19 configured as described above, the field light 1 amplified by the beam expander 14 is divided into a plurality of rays in the long axis direction by the cylindrical lens array for the long axis and 2〇b. Shoot light. The laser phantom which is divided by the cylindrical lens array for the long axis is formed into an elongated rectangular beam in the long axis direction by the long-axis condensing lens 22 on the surface of the semiconductor film 3 on the substrate 2. In the long-car, the armor is used, and the light path between the first lens 22 and the substrate 2 is arranged with a mirror 2 3 ', and the white base cylinder is taken in the future. The lamp water is reflected from the long-axis condenser lens 22 toward the substrate 2. The length in the long direction of the rectangular light beam irradiated to the substrate 2 can be, for example, 10 yen. The energy distribution in the long-axis direction of the rectangular beam shaped by the long-axis direction homogenizer 19 is uniformized, and is deformed from a Gaussian shape to a flat top shape. The short-axis direction homogenizer 25 has a short-axis condenser lens 29 for condensing incident laser light 1 to the short-axis direction, and a projection lens 30 for emitting light from the short-axis condenser lens 29. Projected onto the surface of the semiconductor film 3. In the present embodiment, the short-axis direction homogenizer 25 has a short axis for dividing the incident light into a plurality of incident lights in the short-axis direction at a position on the upstream side in the optical axis direction of the short-axis condenser lens 29. In the cylindrical lens arrays 26a and 26b, the two short-axis cylindrical lens arrays 26a and 26b are arranged at intervals in the optical axis direction. In the short-axis direction homogenizer 25 of such a configuration, the laser light 1 amplified by the beam expander 14 is divided into a plurality of strips in the short-axis direction by the short-axis cylindrical lens arrays 26a, 26b, 16 320318, 201001555. laser. The laser light 1 divided by the short-axis cylinder surface and the arrays 26a and 26b is condensed in the direction of the new axis by the short-axis condensing lens 29, and is formed on the primary imaging surface s, and the λ ή 攸The image of the image of the primary imaging surface $ is reduced and projected onto the surface of the semiconductor film 3 on the substrate 2 by the projection lens 30. Further, the laser beam from the short-axis condenser lens 29 is reflected by the reverse direction of the substrate 2. The length of the rectangular beam irradiated to the substrate 2 in the short-axis direction is, for example, several lG/zm. The energy distribution system in which the short-axis direction homogenizer 25 is completely deformed is uniformly branched, and the laser annealing device 1 has a positional change from the Gaussian shape inspection. D1, a lens moving mechanism 32, and a control device 34. The half-jump detector 31 detects a positional change in the vertical direction of the laser-irradiated portion film 3 of the semiconductor film 3. Therefore, the 蕤 change detection error can be detected by the position and the base 矣 because of the mechanical error of the substrate transport device: the position of the surface of the semiconductor film 3 caused by the surface erroneous error is changed to the position of the detector 31 The number can be one or multiple. When the number of lasers 31 is one, the position of the semiconductor film 3 can be measured: the position of the long-axis direction of the rectangular beam in the shot portion is detected, and the detected value is representative. The amount of position change. When the number of the lightning detectors 31 is plural, the positional variation of the 320318 17 201001555 can be detected for the plurality of points in the long-axis direction of the semiconductor film 3 ', and the medium-rear beam, and the average of these The value is used as the amount of position change. The position change detector 31 is preferably a non-contact displacement sensor. By using such a non-contact displacement sensor, the positional variation of the semiconductor film 3 can be detected with high precision in real time. As an example of such a non-contact displacement sensor, in the present embodiment, a laser displacement sensor is used, but an eddy current displacement sensor or ultrasonic displacement sensing may be used. Other displacement sensors such as the device. The lens shifting mechanism 32 has a function of moving the short-axis condenser lens 29 in the optical axis direction. The control device 34 has a moving mechanism control unit 35 that controls the lens moving mechanism 32 based on the detected value from the positional change detector 31. When the short-axis condensing lens 29 is moved in the optical axis direction, the position of the primary imaging surface S is also moved in the optical axis direction in accordance with the amount of movement of the short-axis condensing lens 29. Further, the projection point (focus position) generated by the projection lens 30 is moved in accordance with the amount of positional movement of the imaging surface S once. Therefore, the positional fluctuation detector 31 detects the positional variation of the semiconductor film 3 in the vertical direction in the laser irradiation portion of the semiconductor film 3, and the movement mechanism control unit 35 causes the short-axis condenser lens 29 to face the light based on the detected value. By moving in the axial direction, even if the positional variation of the semiconductor film 3 occurs due to a mechanical error of the substrate transfer device or the like, the focal position of the rectangular beam in the short-axis direction can be aligned with the surface of the semiconductor film 3. Thus, the driving of the lens moving mechanism 32 is controlled by the feedback control, whereby the correction of the focus position in the short-axis direction can be realized by automatic control. Fig. 2A and Fig. 2B show the change of the laser irradiation portion (machined surface) 18 320318 201001555 The relationship between the momentum and the amount of movement of the short-axis condenser lens 29. Fig. 2A shows a case where the focal lengths of the short-axis condenser lens 29 and the projection lens 30 are 650_ and 300, respectively. Fig. 2B shows a case where the focal lengths of the short-axis condenser lens 29 and the projection lens 30 are 750 faces and 300 faces, respectively. In the case of FIG. 2A, when the laser irradiation portion is changed by ±0.5 mm, the short-axis is moved by the collecting lens 29 by ±30 mm, whereby the focal position of the rectangular beam in the short-axis direction can be aligned to The surface of the semiconductor film 3. In the case of FIG. 2B, when the laser irradiation portion is changed by ±0.5 mm, the short-axis is moved by the condensing lens 29 for ±40 min, whereby the focal position of the rectangular beam in the short-axis direction can be aligned to The surface of the semiconductor film 3. As described above, the positional correction amount of the short-axis condenser lens 29 corresponding to the amount of change in the micron-order position of the semiconductor film 3 is on the order of micrometers. The short-axis slidable at the focus position is arranged on the upstream side of the projection lens 30 in the optical axis direction by the condensing lens 29, and the size is small and is fortunately 0. Therefore, according to the present embodiment, The accuracy of the stage is sufficient to correct the position of the short-axis condensing lens 29 having a small size, and therefore the focus position can be easily corrected. [Second Embodiment] Figs. 3A and 3B are views showing a schematic configuration of a laser annealing apparatus 10 according to a second embodiment of the present invention. The laser annealing apparatus 10 of the present embodiment includes an interval adjusting mechanism 37 for adjusting the interval between the plurality of short-axis cylindrical lens arrays 26a and 26b. In the present embodiment, the short axis on the upstream side in the optical axis direction is moved in the optical axis direction by the cylindrical surface array 26a, thereby adjusting the interval between the two short-axis cylindrical lens arrays 26a and 26b. Alternatively, the short-axis cylindrical lens array 26b on the downstream side in the optical axis direction or the two short-axis cylindrical lens arrays 26a and 26b may be moved in the optical axis direction to adjust the interval therebetween. The control device 34 has an adjustment mechanism control unit 36 that controls the interval adjustment mechanism 37 based on the detection value from the position fluctuation detector 31. The other parts are the same as in the first embodiment. Figs. 4A and 4B show the relationship between the amount of fluctuation of the laser irradiation portion (machined surface) when the interval between the plurality of cylindrical lens arrays is fixed and the variation rate of the image size in the laser irradiation portion. Fig. 4A shows a case where the focal lengths of the short-axis condenser lens 29 and the projection lens 30 are 650 legs and 300 mm, respectively. Fig. 4B shows a case where the focal lengths of the short-axis condenser lens 29 and the projection lens 30 are 750 mm and 300, respectively. 5%以下。 In the 4A and 4B, when the laser irradiation is changed by ±0.5 mm, the image size change rate is 1.5% or less. An element for determining the image size D of the primary imaging surface of the laser beam 1 that has passed through the short-axis condenser lens 29 includes a plurality of cylindrical lenses for the short axis disposed on the upstream side of the short-axis condenser lens 29. The combined focus distance F〇 of the arrays 26a, 26b. Specifically, the image size D of the primary imaging surface is expressed by the following formula (1). Here, w is the width in the short-axis direction of each of the cylindrical lens arrays constituting the short-axis cylindrical lens arrays 26a and 26b, and h is the focal length of the short-axis condenser lens 29. D = wx ( fi / f 〇 ) (1) The combination of the cylindrical lens arrays 26a, 26b for determining a plurality of short axes 20 320318 201001555 , the element of the focal length fQ is d of each lens array. Specifically, the 'combined focal length Μ is the following two equations (2): f〇 is the cylindrical lens array for each short axis ” 〇 ( (4)”/(2). , —d) ..·(2)’,,, point distance. Therefore, by changing the number of short 敕p捅 畆 畆 畆 枣 枣 枣 枣 枣 枣 由 由 由 由 由 由 由 由 由 由 由 由 由 由 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷Adjusting the positioner 31 in the vertical direction of the beam path in the focus direction in the short wheel direction to detect the interval adjustment mechanism 3 with respect to the semiconductor film 3 = the whole mechanism (four) portion 36 is directed toward the optical axis according to the detected values 26a, 26b ^Control unit' adjusts the short-axis direction with the cylindrical lens array of the short-axis to adjust the interval between the cylindrical lens arrays and the size of the beam in the laser irradiation position on the conductor film 3, thereby even the half direction The position of the same size and the sub-score can be changed, and the short-axis feedback control can be used to control the interval T to the semiconductor film 3°. Thus, the short-axis direction of the mechanism 37 can be realized automatically. Control [Third Embodiment] Adjustment of the image size in the focus position. The fifth embodiment of Fig. 5 and the first annealing apparatus 10 show a laser of the third embodiment of the present invention. In the present embodiment, the cylindrical lens arrays 26a and & 5 are not provided with the short axis in the first embodiment. Therefore, in the present embodiment b. The other parts are the same as in the first embodiment. In the % state, the energy distribution in the short-axis direction is maintained at 320318 21 201001555 in the Gaussian shape, but in the same manner as in the first embodiment, the short-axis concentrating lens 29 is directed toward the light based on the detected value from the positional change detector 31. The axial direction is moved, whereby the focal position of the rectangular beam in the short-axis direction is aligned to the surface of the semiconductor film 3. [Other embodiment 1] In each of the above embodiments, the beam shaping optical system preferably has an interference reducing optical system for reducing the interference of the laser light. Fig. 6A and Fig. 6B show an example of the configuration of such an interference reducing optical system. The interference reducing optical system is a short axis interference reducing optical system 18 for reducing the interference effect of the long-axis direction of the laser light of FIG. 6A, and a short axis for reducing the interference effect of the short-axis direction of FIG. 6B. The interference reduction optical system 24 is constructed. As shown in Fig. 6A, the long-axis interference reducing optical system 18 is disposed on the upstream side in the optical axis direction of the long-axis cylindrical lens array 20a v 20b. The long axis interference reducing optical system 18 is composed of a plurality of transparent glass plates 18a. The width of each transparent glass plate is the same as the width of each cylindrical lens used to form the long-axis cylindrical lens arrays 20a, 20b, and each transparent glass plate 18a is aligned to a coherent length of the laser light 1. A transparent glass plate having different lengths in the optical axis direction is disposed in the long axis direction in a manner of a predetermined length. Since the light path of the laser light 1 that has passed through each of the transparent glass plates 18a is lengthened to the length of the glass by the long-axis direction interference reducing optical system 18, each of the laser light 1 generates a longer distance than the coherent length. Light paths are poor, and there is no coherence effect and they do not interfere with each other. As shown in Fig. 6B, the short-axis interference reduction optical system 24 is arranged. 22 320318 201001555 ‘The left-axis primary lens arrays 26a and 26b are arranged on the upstream side in the optical axis direction, and are composed of a plurality of transparent panels 24a. The width of each transparent glass plate 24a is the same as that of the cylindrical surfaces of the cylindrical lens arrays 26a and 26b for short axes, and the transparent glass plates 24a are aligned to the same length as the laser light. A transparent glass plate having different lengths in the optical axis direction is disposed in the short-axis direction in a manner of a predetermined length. Since the light path that has passed through each of the transparent glass plates 24a, ^, and -1 is lengthened by the short-axis direction interference reducing optical system 24, the length of the glass is increased, so that each laser light 1 is produced.

調長度還長距離的光路徑差,而不會有同調性的影塑 不會彼此干涉。 ” B 此外’干涉降低光學系統係可由具有用以將通過的光 線轉換成隨機偏光之功能的偏光消除元件所構成者,亦可 採用其他習知的構成。例如,亦可採用日本專利特開2〇〇2_ 321081號公報所記載的構成或者日本專利特開2004一. 341299號公報的第4圖所記載的構成。 〔其他實施形態二〕 在上述各實施形態中,較佳為具備有複數個上述固體 雷射光源12,且復具備有用以將來自複數個固體雷射光源 12的雷射光予以時間性及/或空間性合成的手段。這種合 成手段例如能藉由反射鏡與偏光分光鏡(p〇lariZing beam splitter)的組合來構成。 如此,當以時間性(將脈波週期彼此錯開)之方式來合 成複數條雷射光時,能將合成雷射光的脈波頻率作成數 倍’當以空間性(使脈波週期一致)之方式來合成複數條雷 320318 23 201001555 射光時,能將合成雷射光的能量密度作成數倍。因此,能 提升光束的掃描速度,結果能提升退火處理速度。此外, 當合成三條以上的雷射光時,亦可組合時間性合成與空間 性合成。 〔其他實施形態三〕 在上述各實施形態中,較佳為復具有惰性氣體供給手 段,係僅對用以將形成有半導體膜的基板收容於内部且將 基板的收容空間作成真空環境或惰性氣體環境之腔體、或 者基板的雷射照射部份及其周圍限定的範圍供給惰性氣 體。第7A圖與第7B圖係顯示上述腔體與惰性氣體供給手 段的構成例。 第7A圖所示的腔體40係構成為於内部具有用以保持 基板2之基板工作台5,且能將内部作成真空環境或惰性 氣體環境。爲了使整形成矩形狀光束的雷射光1在短軸方 向進行掃描,基板工作台5係構成為可朝短軸方向移動。 雷射光1係通過設置在腔體40的穿透窗41而照射至基板 2。 第7B圖所示的惰性氣體供給手段43係具備有:平行 相對體46,該平行相對體46係具有與基板2平行地接近 相對向之底面44,且於此底面44與基板2之間形成惰性 氣體47的流通路徑,並具有使雷射光1穿透的穿透窗45 ; 以及氣體喷射手段48,係從雷射光1的照射部分在光束短 軸方向隔著預定間隔的位置,將在光束長軸方向已將流量 均勻化的惰性氣體47朝基板2的表面喷射。 24 320318 201001555 在雷射退火中,當將雷射光1照射至基板2上的半導 體膜時,若雷射照射部分接觸到大氣時,會產生在基板表 面形成凹凸、在基板表面形成氧化膜、或者在結晶化製程 中所製作的結晶粒會變小等問題。 藉由具有上述構成的腔體40或惰性氣體供給手段 43,能阻止雷射照射部分接觸大氣,因此能避免上述各種 問題〗此外,惰性氣體供給手段43並未限定於第7B圖所 示的構成,在具有僅對基板2的雷射照射部分及其周圍的 限定範圍供給惰性氣體的功能之範圍内,亦可為其他的構 成。例如亦可為曰本專利第3502981號公報的第2圖或第 4圖所示的構成。 以上雖已說明本發明的實施形態,但上述所揭示本發 明的實施形態僅為例示,本發明的範圍並未限定於這些發 明的實施形態。本發明的範圍係如申請專利範圍的記載所 示,且亦包含與申請專利範圍的記載均等的意思以及在範 圍内的所有變更。 【圖式簡單說明】 第1A圖係本發明第一實施形態的雷射退火裝置的光 束長轴方向的概略構成圖。 第1B圖係第1A圖的光束短軸方向的概略構成圖。 第2 A圖係顯示雷射照射部分(加工面)的變動量與短 轴用聚光透鏡的移動量之關係圖。 第2B圖係短轴用聚光透鏡的焦點距離不同時之與第 2A圖相同的關係圖。 25 320318 201001555 '第3A圖係本發明第二實施形態的雷射退火裝置的光 束長軸方向的概略構成圖。 第3B圖係第3A圖的光束短軸方向的概略構成圖。 第4A圖係顯示雷射照射部分(加工面)的變動量與雷 射照射部分中影像大小的變動率之關係圖。 第4B圖係短軸用聚光透鏡的焦點距離不同時之與第 4A圖相同的關係圖。 第5A圖係本發明第三實施形態的雷射退火裝置的光 束長軸方向的概略構成圖。 第5B圖係第5A圖的光束短軸方向的概略構成圖。 第6A圖係顯示本發明其他實施形態的雷射退火裝置 的長軸用干涉降低光學系統的構成圖。 第6B圖係顯示本發明其他實施形態的雷射退火裝置 的短軸用干涉降低光學系統的構成圖。 第7A圖係顯示本發明其他實施形態的雷射退火裝置 的腔體的構成圖。 ^ 第7B圖係顯示本發明其他實施形態的雷射退火裝置 的惰性氣體供給手段的構成圖。 【主要元件符號說明】 1 雷射光 2 基板 3 半導體膜 4 雷射掃描手段 5 基板工作台 10 雷射退火裝置 12 固體雷射光源 13 光束整形光學系統 14 光束擴展器 15 凸球面透鏡 26 320318 201001555 16 短轴用柱面透鏡 17 長軸用柱面透鏡 18 長轴用干涉降低光學系統 18a、 24a透明玻璃板 19 長軸方向均質器 20a、 20b長軸用柱面透鏡陣列 22 長軸用聚光透鏡 23 反射鏡 24 短軸用干涉降低光學系統 25 短軸方向均質器 26a、 26b短軸用柱面透鏡陣列 29 短軸用聚光透鏡 30 投影透鏡 31 位置變動檢測器 32 透鏡移動機構 34 控制裝置 35 移動機構控制部 36 調整機構控制部 37 間隔調整機構 40 腔體 43 惰性氣體供給手段 44 底面 45 穿透窗 46 平行相對體 47 惰性氣體 48 氣體喷射手段 S 一次成像面 27 320318The length of the light path is also long and the distance is not long, and there is no homomorphic shadowing. Further, the 'interference reducing optical system may be constituted by a polarizing eliminating element having a function of converting the passing light into a random polarizing light, and other conventional configurations may be employed. For example, Japanese Patent Laid-Open No. 2 may be adopted. The configuration described in Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. 2004-341299. [Other Embodiment 2] In each of the above embodiments, it is preferable to have a plurality of The solid-state laser source 12 is further provided with means for temporally and/or spatially synthesizing the laser light from the plurality of solid-state laser sources 12. This synthesis means can be performed, for example, by a mirror and a polarizing beam splitter. a combination of (p〇lariZing beam splitter). Thus, when a plurality of laser beams are synthesized in a temporal manner (the pulse wave periods are shifted from each other), the pulse wave frequency of the synthesized laser light can be made several times. Synthesize a plurality of thunders by means of spatiality (consisting the pulse period) 320318 23 201001555 When the light is emitted, the energy density of the synthetic laser light can be multiplied several times. Therefore, the scanning speed of the light beam can be increased, and as a result, the annealing processing speed can be increased. Further, when three or more types of laser light are synthesized, temporal synthesis and spatial synthesis can be combined. [Other embodiment 3] In each of the above embodiments Preferably, the inert gas supply means is a laser irradiation unit for accommodating the substrate on which the semiconductor film is formed, and the space for accommodating the substrate is a vacuum or an inert gas atmosphere, or a laser irradiation portion of the substrate. The inert gas is supplied to the portion defined by the portion and the periphery thereof. Fig. 7A and Fig. 7B are diagrams showing the configuration of the cavity and the inert gas supply means. The cavity 40 shown in Fig. 7A is configured to be held inside. The substrate stage 5 of the substrate 2 can be made into a vacuum environment or an inert gas atmosphere. In order to scan the laser beam 1 forming a rectangular beam in the short axis direction, the substrate stage 5 is configured to be short-axis direction The laser light 1 is irradiated to the substrate 2 through a penetration window 41 provided in the cavity 40. The inert gas supply means 43 shown in Fig. 7B is attached. There is provided a parallel opposing body 46 having a flow path which is adjacent to the bottom surface 44 in parallel with the substrate 2, and an inert gas 47 is formed between the bottom surface 44 and the substrate 2, and has a laser beam. a penetrating penetration window 45; and a gas injection means 48 for inerting the flow rate from the irradiation portion of the laser beam 1 at a predetermined interval in the short-axis direction of the beam to uniformize the flow rate in the longitudinal direction of the beam Spraying toward the surface of the substrate 2. 24 320318 201001555 In the laser annealing, when the laser light 1 is irradiated onto the semiconductor film on the substrate 2, if the laser irradiation portion is in contact with the atmosphere, irregularities are formed on the surface of the substrate. An oxide film is formed on the surface of the substrate, or crystal grains produced in the crystallization process become small. By the cavity 40 having the above-described configuration or the inert gas supply means 43, the laser irradiation portion can be prevented from coming into contact with the atmosphere, so that the above various problems can be avoided. Further, the inert gas supply means 43 is not limited to the configuration shown in Fig. 7B. Further, it may have another configuration in a range of a function of supplying an inert gas only to a limited range of the laser irradiation portion of the substrate 2 and its surroundings. For example, it may be a configuration shown in Fig. 2 or Fig. 4 of the Japanese Patent No. 3502981. The embodiments of the present invention have been described above, but the embodiments of the present invention described above are merely illustrative, and the scope of the present invention is not limited to the embodiments of the invention. The scope of the present invention is defined by the scope of the claims, and the meaning of the claims and the scope of the claims. [Brief Description of the Drawings] Fig. 1A is a schematic configuration diagram of the longitudinal direction of the beam of the laser annealing apparatus according to the first embodiment of the present invention. Fig. 1B is a schematic configuration diagram of the short-axis direction of the light beam of Fig. 1A. Fig. 2A is a graph showing the relationship between the amount of fluctuation of the laser irradiation portion (machined surface) and the amount of movement of the short-axis condenser lens. Fig. 2B is a view similar to Fig. 2A when the focal lengths of the short-axis condenser lenses are different. 25 320318 201001555 '3A is a schematic configuration diagram of the longitudinal direction of the beam of the laser annealing apparatus according to the second embodiment of the present invention. Fig. 3B is a schematic configuration diagram of the short-axis direction of the light beam of Fig. 3A. Fig. 4A is a graph showing the relationship between the amount of change in the laser irradiation portion (machined surface) and the variation rate of the image size in the laser irradiation portion. Fig. 4B is a view similar to Fig. 4A when the focal lengths of the short-axis condensing lenses are different. Fig. 5A is a schematic configuration diagram of the longitudinal direction of the beam of the laser annealing apparatus according to the third embodiment of the present invention. Fig. 5B is a schematic configuration diagram of the short-axis direction of the light beam of Fig. 5A. Fig. 6A is a view showing the configuration of an interference reducing optical system for a long axis of a laser annealing apparatus according to another embodiment of the present invention. Fig. 6B is a view showing the configuration of the short-axis interference reducing optical system of the laser annealing apparatus according to another embodiment of the present invention. Fig. 7A is a view showing the configuration of a cavity of a laser annealing apparatus according to another embodiment of the present invention. Fig. 7B is a view showing the configuration of an inert gas supply means of the laser annealing apparatus according to another embodiment of the present invention. [Main component symbol description] 1 Laser light 2 Substrate 3 Semiconductor film 4 Laser scanning means 5 Substrate table 10 Laser annealing device 12 Solid laser light source 13 Beam shaping optical system 14 Beam expander 15 Convex spherical lens 26 320318 201001555 16 Cylindrical lens for short axis 17 Cylindrical lens for long axis 18 Interference reducing optical system for long axis 18a, 24a Transparent glass plate 19 Long-axis direction homogenizer 20a, 20b Long-axis cylindrical lens array 22 Long-axis condenser lens 23 Mirror 24 Short-axis interference reduction optical system 25 Short-axis direction homogenizer 26a, 26b Short-axis cylindrical lens array 29 Short-axis condensing lens 30 Projection lens 31 Position change detector 32 Lens shift mechanism 34 Control device 35 Movement mechanism control unit 36 adjustment mechanism control unit 37 interval adjustment mechanism 40 cavity 43 inert gas supply means 44 bottom surface 45 penetration window 46 parallel relative body 47 inert gas 48 gas injection means S primary imaging surface 27 320318

Claims (1)

201001555 七、申請專利範圍: 1. 一種雷射退火方法,係將從固體雷射光源經過脈波振盪 的雷射光予以整形,並在半導體膜的表面聚光成矩形狀 光束,在短軸方向使矩形狀光束相對性地掃描前述半導 體膜,藉由雷射照射來重組前述半導體膜之方法,此方 法的特徵為’ 使用用以將入射光朝短轴方向聚光之短軸用聚光 透鏡、以及用以將來自該短軸用聚光透鏡的射出光投影 至前述半導體膜的表面之投影透鏡,在前述半導體膜的 表面,將前述雷射光朝矩形狀光束的短軸方向聚光, 檢測前述半導體膜的雷射照射部分中該半導體膜 的垂直方向的位置變動,並根據此檢測值使前述短軸用 聚光透鏡朝光轴方向移動。 2. 如申請專利範圍第1項之雷射退火方法,其中,在前述 短轴用聚光透鏡的光軸方向上游側的位置,將用以在前 述矩形狀光束的短軸方向將入射光分割成複數條入射 光之複數個短軸用柱面透鏡陣列隔以間隔地配置在光 軸方向,並根據前述位置變動的檢測值來調整前述複數 個短軸用柱面透鏡陣列的間隔。 3. —種雷射退火裝置,係具備有: 固體雷射光源,係將雷射光予以脈波振盪; 光束整形光學系統,係將來自該固體雷射光源的雷 射光予以整形,並在半導體膜的表面聚光成矩形狀光 束;以及 28 320318 201001555 掃描手段,係在短軸方向使前述矩形狀光束相對性 地掃描前述半導體膜·, 並且,藉由雷射照射來重組前述半導體膜; 其中,前述光束整形光學系統係具有長軸方向均質 器與短轴方向均質器,分別作用於矩形狀光束的長軸方 向與短軸方向,而將入射的雷射光聚光至前述半導體膜 的表面; 前述短軸方向均質器係由用以將入射光朝短軸方 向聚光之短軸用聚光透鏡、以及用以將來自該短軸用聚 光透鏡的出射光投影至前述半導體膜的表面之投影透 鏡所構成, 並具備有用以檢測前述半導體膜的雷射照射部分 中該半導體膜的垂直方向的位置變動之位置變動檢測 器、以及用以使前述短軸用聚光透鏡朝光軸方向移動之 透鏡移動機構。 4. 如申請專利範圍第3項之雷射退火裝置,其中, 前述短軸用均質器係在前述短轴用聚光透鏡的光 轴方向上游側的位置具有複數個短轴用柱面透鏡陣 列,用以將入射光在前述矩形狀光束的短軸方向分割成 複數條入射光,且前述複數個短軸用柱面透鏡陣列係隔 以間隔配置於光轴方向; 復具備有間隔調整機構,用以調整前述複數個短軸 用柱面透鏡陣列的間隔。 5. 如申請專利範圍第3項之雷射退火裝置,其中,復具備 29 320318 201001555 == 軸,係根據來自前述位置變動檢測器的 杈測值來控制前述透鏡移動機構。 6.如申請專利範圍第4項或第5項之雷射退火襄置,其 中’復具備有調整機構控制部,係根據來自前述位置變 動檢測器的檢測值來控制前述間隔調整機構。 7·=請專利範圍第3項之雷射退火裝置,其中,前述固 體每射光源的光束品質的M2值為2〇以上。 8·如申請專利範圍第3項之雷射退火裝置,其中,前述光 束整形光學线係具有干涉降低光學系統,用以降低前 述雷射光的干涉作用。 9.如申請專利範圍帛3項之雷射退火褒置,其中,從前述 固體雷射光源所射出的雷射光係具有高斯形狀的能量 〇·如申請專利範圍第3項之雷射退火農置,其中,前述矩 形狀光束係在短軸方向具有高卿狀的能量分布。 11. 如_請專利範圍第3項之雷射退火裝置,其中,前述位 置變動檢測器係非接觸式變位感測器。 12. t申請專利範圍第3項之雷射退火裝置,其中,具備有 複數個剛述in體雷射光源,且具備有用以將來自前述複 數個固體雷射光源的雷射光予以時間性及/或空間性 合成的手段。 13·如申請專利範圍第3項之雷射退火裝置,其中,復具備 有用以將形成有前述半導體膜的基板收容於内部且將 基板的收容空間形成真空或惰性氣體環境之腔體,或者 320318 30 201001555 僅對前述半導體膜上的雷射照射部份及其周圍限定的 範圍供給惰性氣體之惰性氣體供給手段。 14.如申請專利範圍第3項之雷射退火裝置,其中,具備有 用以載置形成有前述半導體膜的基板之基板工作台,該 基板工作台係被加熱至不超過基板熔點的溫度。 31 320318201001555 VII. Patent application scope: 1. A laser annealing method, which is to shape a laser beam that is oscillated by a solid laser light source and condense into a rectangular beam on the surface of the semiconductor film, so as to make it in the short axis direction. a method in which a rectangular beam of light relatively scans the semiconductor film and recombines the semiconductor film by laser irradiation, and the method is characterized by using a collecting lens for short axis for collecting incident light toward a short axis direction, And a projection lens for projecting the light emitted from the short-axis condenser lens onto the surface of the semiconductor film, and collecting the laser light toward the short-axis direction of the rectangular beam on the surface of the semiconductor film, and detecting the The position of the semiconductor film in the vertical direction in the laser irradiation portion of the semiconductor film fluctuates, and the short-axis collecting lens is moved in the optical axis direction based on the detected value. 2. The laser annealing method according to the first aspect of the invention, wherein the position of the upstream side of the optical axis direction of the short-axis condensing lens is used to divide the incident light in the short-axis direction of the rectangular beam The plurality of short-axis incident optical beams are arranged in the optical axis direction at intervals with the cylindrical lens array, and the interval between the plurality of short-axis cylindrical lens arrays is adjusted based on the detected value of the positional variation. 3. A laser annealing device comprising: a solid laser light source for pulse wave oscillation of a laser beam; a beam shaping optical system for shaping laser light from the solid laser light source and for a semiconductor film The surface is condensed into a rectangular beam; and 28 320318 201001555 is a scanning means for relatively scanning the aforementioned semiconductor film in a short-axis direction, and recombining the semiconductor film by laser irradiation; The beam shaping optical system has a long-axis direction homogenizer and a short-axis direction homogenizer, respectively acting on the long-axis direction and the short-axis direction of the rectangular beam, and concentrating the incident laser light to the surface of the semiconductor film; The short-axis direction homogenizer is a short-axis concentrating lens for collecting incident light toward the short-axis direction, and a projection for projecting the outgoing light from the short-axis condensing lens onto the surface of the semiconductor film. a lens configured to detect a positional change of a vertical direction of the semiconductor film in a laser irradiation portion of the semiconductor film The position detector changes, and the short axis of the condenser lens in the optical axis direction of lens movement mechanism for causing the movement. 4. The laser annealing apparatus according to claim 3, wherein the short-axis homogenizer has a plurality of short-axis cylindrical lens arrays at a position upstream of an optical axis direction of the short-axis condensing lens. The incident light is divided into a plurality of incident lights in a short-axis direction of the rectangular beam, and the plurality of short-axis cylindrical lens arrays are arranged at intervals in an optical axis direction; and an interval adjusting mechanism is provided. The interval for adjusting the plurality of short-axis cylindrical lens arrays. 5. The laser annealing apparatus according to claim 3, wherein the lens is configured to control the lens moving mechanism based on the measured value from the positional change detector. 29 320318 201001555 == Axis. 6. The laser annealing apparatus of claim 4 or 5, wherein the adjustment mechanism control unit is provided to control the interval adjustment mechanism based on a detection value from the position change detector. The laser annealing apparatus of the third aspect of the invention, wherein the solid-state light source has a M2 value of 2 〇 or more. 8. The laser annealing apparatus of claim 3, wherein the beam shaping optical line has an interference reducing optical system for reducing interference of the aforementioned laser light. 9. The laser annealing apparatus according to claim 3, wherein the laser light emitted from the solid laser light source has a Gaussian shape energy 〇, as in the laser annealing field of claim 3 The rectangular light beam has a high-clear energy distribution in the short-axis direction. 11. The laser annealing apparatus of claim 3, wherein the position change detector is a non-contact displacement sensor. 12. The laser annealing apparatus of claim 3, wherein the plurality of in-body laser light sources are provided, and the laser light from the plurality of solid laser light sources is used to temporally and/or Or a means of spatial synthesis. 13. The laser annealing apparatus according to claim 3, further comprising a cavity for accommodating the substrate on which the semiconductor film is formed and forming a space in which the substrate is accommodated in a vacuum or an inert gas atmosphere, or 320318 30 201001555 An inert gas supply means for supplying an inert gas only to the laser irradiation portion on the semiconductor film and the range defined around the semiconductor film. The laser annealing apparatus according to claim 3, further comprising: a substrate stage on which the substrate on which the semiconductor film is formed is placed, wherein the substrate stage is heated to a temperature not exceeding a melting point of the substrate. 31 320318
TW97122492A 2008-06-17 2008-06-17 Laser anneal method and laser anneal device TW201001555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97122492A TW201001555A (en) 2008-06-17 2008-06-17 Laser anneal method and laser anneal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97122492A TW201001555A (en) 2008-06-17 2008-06-17 Laser anneal method and laser anneal device

Publications (2)

Publication Number Publication Date
TW201001555A true TW201001555A (en) 2010-01-01
TWI370492B TWI370492B (en) 2012-08-11

Family

ID=44824905

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97122492A TW201001555A (en) 2008-06-17 2008-06-17 Laser anneal method and laser anneal device

Country Status (1)

Country Link
TW (1) TW201001555A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI507263B (en) * 2012-11-13 2015-11-11 Ap Systems Inc Light penetration apparatus and annealing apparatus having the same
TWI582464B (en) * 2015-09-22 2017-05-11 馗鼎奈米科技股份有限公司 Mechanism for uniformly distributing light
TWI584904B (en) * 2014-01-29 2017-06-01 Laser annealing equipment
TWI723199B (en) * 2016-07-26 2021-04-01 日商日本製鋼所股份有限公司 Laser processing device, method for manufacturing semiconductor device, and method for crystallization of amorphous silicon

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI507263B (en) * 2012-11-13 2015-11-11 Ap Systems Inc Light penetration apparatus and annealing apparatus having the same
TWI584904B (en) * 2014-01-29 2017-06-01 Laser annealing equipment
TWI582464B (en) * 2015-09-22 2017-05-11 馗鼎奈米科技股份有限公司 Mechanism for uniformly distributing light
TWI723199B (en) * 2016-07-26 2021-04-01 日商日本製鋼所股份有限公司 Laser processing device, method for manufacturing semiconductor device, and method for crystallization of amorphous silicon

Also Published As

Publication number Publication date
TWI370492B (en) 2012-08-11

Similar Documents

Publication Publication Date Title
KR101161630B1 (en) Laser annealing method and laser annealing apparatus
US8106341B2 (en) Laser annealing apparatus and method
JP5963219B2 (en) Optical design for generating lines using microlens arrays
KR101167324B1 (en) Laser thin film poly-silicon annealing optical system
US8265109B2 (en) Systems and methods for implementing an interaction between a laser shaped as line beam and a film deposited on a substrate
JP5231234B2 (en) System for generating laser light shaped as a line beam
JP5670647B2 (en) Processing object cutting method
US7991037B2 (en) Multi-beam laser apparatus
KR20060126665A (en) Laser thin film poly-silicon annealing system
US20060001878A1 (en) Systems and methods for implementing an interaction between a laser shaped as a line beam and a film deposited on a substrate
TW201214566A (en) Laser beam positioning system
CN104752267B (en) A kind of laser anneal device and method
JP6680494B2 (en) Laser processing method and laser processing apparatus
JP7034621B2 (en) Laser processing equipment
JP2006074041A (en) Equipment and method for homogenizing laser radiation, and laser system using such equipment and method
TW201352074A (en) EUV excitation light source with a laser beam source and a beam guide device for manipulating the laser beam
JP2016052672A (en) Laser processor
JP5120685B2 (en) Laser annealing method and laser annealing apparatus
TW201001555A (en) Laser anneal method and laser anneal device
JP5613211B2 (en) System and method for realizing interaction between a laser shaped as a line beam and a film deposited on a substrate
JP2007214388A (en) Crystallizing device and positioning stage
JP7397317B2 (en) Aberration control method for laser processing equipment
US20230236431A1 (en) Device for generating a laser line on a work plane
KR102459817B1 (en) Laser crystalling apparatus
US20080105825A1 (en) Laser scanning apparatus and method using diffractive optical elements