WO2014013803A1 - 内燃機関 - Google Patents

内燃機関 Download PDF

Info

Publication number
WO2014013803A1
WO2014013803A1 PCT/JP2013/065233 JP2013065233W WO2014013803A1 WO 2014013803 A1 WO2014013803 A1 WO 2014013803A1 JP 2013065233 W JP2013065233 W JP 2013065233W WO 2014013803 A1 WO2014013803 A1 WO 2014013803A1
Authority
WO
WIPO (PCT)
Prior art keywords
egr
differential pressure
control valve
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2013/065233
Other languages
English (en)
French (fr)
Inventor
大介 高木
土田 博文
露木 毅
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN201380037749.7A priority Critical patent/CN104487690B/zh
Priority to US14/414,201 priority patent/US9759165B2/en
Priority to EP13820626.3A priority patent/EP2876291B1/en
Priority to JP2014525751A priority patent/JP5843014B2/ja
Publication of WO2014013803A1 publication Critical patent/WO2014013803A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/16Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system with EGR valves located at or near the connection to the exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/227Limping Home, i.e. taking specific engine control measures at abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an internal combustion engine that recirculates a part of exhaust gas upstream of a supercharger.
  • EGR having an EGR passage connected to the exhaust passage and the intake passage, and an EGR control valve interposed in the EGR passage, and introducing a part of the exhaust gas into the intake system according to the operating state is performed.
  • the amount of EGR introduced into the intake passage has a constant differential pressure (pressure difference) between the intake pressure in the intake passage where the EGR passage is connected and the exhaust pressure in the exhaust passage where the EGR passage is connected. If so, it is determined by the opening of the EGR control valve interposed in the EGR passage. In an internal combustion engine that implements such EGR, when used over a long period of time, the EGR rate determined by the opening of the EGR control valve changes from the expected value due to a change in pressure loss of the intake and exhaust systems. However, the amount of EGR that actually recirculates may deviate from the target value.
  • Patent Document 1 discloses a change in pressure loss of the intake and exhaust systems of the internal combustion engine from a temperature change amount of the intake air temperature before and after the EGR amount introduced into the intake passage is changed in a predetermined transient state. A technique for diagnosing the presence or absence of this is disclosed.
  • the present invention relates to an estimated pressure difference before and after an EGR control valve estimated from an intake air amount and an actually measured EGR control valve in an internal combustion engine that recirculates a part of exhaust gas from the upstream side of the supercharger as EGR.
  • a change in pressure loss of the intake / exhaust system is detected by comparing the differential pressure before and after the actual pressure.
  • the EGR control valve regardless of the temperature of the EGR gas introduced into the intake passage, even if the EGR control valve is at a constant opening, the change in the pressure loss of the intake and exhaust systems in which the EGR amount changes from the intended value. It becomes possible to detect.
  • 1 is a system diagram showing the overall configuration of an internal combustion engine according to the present invention.
  • FIG. 1 is a system diagram showing an overall configuration of an internal combustion engine 1 to which the present invention is applied.
  • the internal combustion engine 1 is mounted on a vehicle such as an automobile as a drive source, and an intake passage 2 and an exhaust passage 3 are connected to each other.
  • a throttle valve 5 is provided in the intake passage 2 connected to the internal combustion engine 1 via the intake manifold 4, and an air flow meter 6 and an air cleaner 7 for detecting the intake air amount are provided upstream thereof. Yes.
  • An exhaust catalyst 9 such as a three-way catalyst is provided for exhaust purification in the exhaust passage 3 connected to the internal combustion engine 1 via the exhaust manifold 8.
  • the internal combustion engine 1 has a turbocharger 10 that is coaxially provided with a compressor 11 disposed in the intake passage 2 and a turbine 12 disposed in the exhaust passage 3.
  • the compressor 11 is located upstream of the throttle valve 5 and is located downstream of the air flow meter 6.
  • the turbine 12 is located on the upstream side of the exhaust catalyst 9.
  • 13 in FIG. 1 is an intercooler provided on the downstream side of the throttle valve 5.
  • a recirculation passage 14 that bypasses the compressor 11 and connects the upstream side and the downstream side of the compressor is connected to the intake passage 2.
  • a recirculation valve 15 that controls the intake flow rate in the recirculation passage 14 is interposed in the recirculation passage 14.
  • the exhaust passage 3 is connected to an exhaust bypass passage 16 that bypasses the turbine 12 and connects the upstream side and the downstream side of the turbine 12.
  • a waste gate valve 17 that controls the exhaust flow rate in the exhaust bypass passage 16 is interposed.
  • the internal combustion engine 1 can perform exhaust gas recirculation (EGR), and an EGR passage 20 is provided between the exhaust passage 3 and the intake passage 2.
  • EGR exhaust gas recirculation
  • One end of the EGR passage 20 is connected to the exhaust passage 3 at a position downstream of the exhaust catalyst 9, and the other end is connected to the intake passage 2 at a position downstream of the air cleaner 7 and upstream of the compressor 11.
  • an electrically controlled EGR control valve 21 and an EGR cooler 22 are interposed in the EGR passage 20.
  • the opening degree of the EGR control valve 21 is controlled by the control unit 25 so that a predetermined EGR rate corresponding to the operating condition is obtained.
  • the control unit 25 includes a crank angle sensor 26 that detects a crank angle of a crankshaft (not shown), and an accelerator opening that detects a depression amount of an accelerator pedal (not shown).
  • Detection signals of sensors such as a downstream pressure sensor 30 that detects the pressure P2 in the downstream EGR passage 20 and a knock sensor 31 that detects knocking are input.
  • the control unit 25 controls the ignition timing and air-fuel ratio of the internal combustion engine 1 and controls the opening degree of the EGR control valve 21 to control the opening of the intake passage 2 from the exhaust passage 3.
  • Exhaust gas recirculation control EGR control
  • the opening degree of the throttle valve 5, the recirculation valve 15, and the waste gate valve 17 is also controlled by the control unit 25.
  • the recirculation valve 15 is not controlled to be opened and closed by the control unit 25, and a so-called check valve that opens only when the pressure on the downstream side of the compressor 11 exceeds a predetermined pressure can be used. is there.
  • a proportional relationship is established between the intake air amount and the square root of the pressure difference between the exhaust pressure Pe and the intake pressure Pi.
  • a proportional relationship is also established between the square root of the pressure difference between the exhaust pressure Pe and the intake pressure Pi and the EGR amount (exhaust gas recirculation amount). Accordingly, a proportional relationship (constant EGR rate) is also established between the intake air amount and the EGR amount.
  • the pressure loss of the intake / exhaust system of the internal combustion engine 1 changes due to, for example, a hole in an exhaust system muffler (not shown) due to corrosion or the clogging of the air cleaner 7, and the intake pressure changes.
  • the pressure difference between Pi and the exhaust pressure Pe changes, the EGR rate corresponding to the opening degree (opening area) of the EGR control valve 12 changes, and the EGR amount that actually recirculates to the intake passage 2 becomes smaller than the target EGR amount. There will be a gap.
  • the present embodiment it was measured from the estimated pressure difference that is an index of the pressure difference before and after the EGR control valve 21 estimated from the intake air amount and the detected values of the upstream pressure sensor 29 and the downstream pressure sensor 30.
  • the actual differential pressure before and after the EGR control valve 21 it is determined whether or not a change has occurred in the pressure loss of the intake and exhaust systems of the internal combustion engine 1.
  • the target EGR amount is actually increased. Since the actual EGR amount introduced into the intake passage 2 increases (because the actual EGR rate increases with respect to the target EGR rate), the EGR is prohibited to avoid misfire.
  • the pressure loss of the intake / exhaust system decreases and the actual front-rear differential pressure is lower than the lower limit side threshold value determined according to the intake air amount at that time, the intake passage 2 actually corresponds to the target EGR amount. Since the actual EGR amount to be introduced in (1) becomes smaller (because the actual EGR rate becomes smaller than the target EGR rate), EGR is prohibited in order to avoid knocking.
  • the EGR control valve 21 has a constant opening regardless of the temperature of the EGR gas introduced into the intake passage 2. Even if it exists, it becomes possible to detect the change of the pressure loss of the intake / exhaust system in which the EGR amount changes from the intended value.
  • FIG. 2 is a block diagram showing the control contents of the internal combustion engine 1 in the first embodiment described above.
  • an upper limit side threshold value and a lower limit side threshold value of the differential pressure across the EGR control valve 21 are calculated based on the intake air intake amount detected by the air flow meter 6.
  • the actual differential pressure across the EGR control valve 21 is calculated from the detection values of the upstream pressure sensor 29 and the downstream pressure sensor 30.
  • the change in the pressure loss of the intake / exhaust system is detected by comparing the upper and lower thresholds calculated in S1 with the actual differential pressure calculated in S2. That is, when the actual front-rear differential pressure exceeds the upper limit side threshold and when the actual front-rear differential pressure falls below the lower limit side threshold, it is determined that the pressure loss of the intake / exhaust system has changed.
  • EGR control is performed with reference to the determination result in S3. That is, if it is determined in S3 that the pressure loss of the intake / exhaust system has changed, EGR is prohibited, and if not, EGR can be performed.
  • the upper limit side threshold and the lower limit side threshold are calculated from the intake air amount as the estimated pressure difference.
  • the estimated pressure difference is the pressure difference itself before and after the EGR control valve 21 from the intake air amount. It is also possible to calculate the estimated front-rear differential pressure and determine that the pressure loss of the intake / exhaust system has changed when the actual front-rear differential pressure deviates from the estimated front-rear differential pressure by a predetermined ratio or more.
  • the intake pressure Pi in the intake passage 2 at the position where the EGR passage 20 is connected and the exhaust passage 3 in the position where the EGR passage 20 is connected are closed.
  • EGR gas is introduced into the intake passage 2 due to the pressure difference with the exhaust pressure Pe, the differential pressure across the EGR control valve 21 becomes small, making it difficult to distinguish it from changes in pressure loss in the intake and exhaust systems. That is, as the opening degree of the EGR control valve 21 is increased, the differential pressure across the EGR control valve 21 is relatively decreased, and thus it is difficult to distinguish the pressure loss change of the intake / exhaust system.
  • the actual opening of the EGR control valve 21 detected by the EGR control valve opening sensor 28 is used to reduce the pressure loss of the intake and exhaust systems.
  • Factor for lowering the differential pressure before and after determining whether the differential pressure across the EGR control valve 21 has become smaller due to a change, or whether the differential pressure across the EGR control valve 21 has become smaller due to an abnormal opening due to a failure of the EGR control valve 21 Diagnosis may be performed together.
  • the EGR control valve 21 determines that the actual front-rear differential pressure has become smaller than the lower threshold due to the pressure loss of the intake and exhaust systems. To do. If the actual opening of the EGR control valve 21 deviates from the target opening by a predetermined ratio or more, and the opening is greatly opened to the open side with respect to the target opening, the EGR control valve 21 is broken. Thus, it is determined that the actual front-rear differential pressure has become smaller than the lower threshold.
  • the determination result at this time is stored in the control unit 25, for example, and can be confirmed using an electronic system diagnostic tester, a so-called consult, at the time of maintenance and inspection at a maintenance factory or the like.
  • knocking may occur during the execution of the front-rear differential pressure decrease factor diagnosis, so it is determined that the front-rear differential pressure is smaller than the lower limit side threshold value. At this point, it is desirable to retard the ignition timing by a predetermined amount in order to avoid knocking. Then, EGR may be stopped when the front-rear differential pressure reduction factor diagnosis is completed.
  • knocking avoidance control when knocking avoidance control is performed to suppress the occurrence of knocking by retarding the ignition timing when knocking is detected, when performing knocking avoidance control, a predetermined amount or more with respect to the set value (target ignition timing) An upper limit (retard angle limit) of the retard amount that does not retard is set.
  • the retard limit of the ignition timing is determined for each operating point of the internal combustion engine 1. That is, the retard limit of the ignition timing is determined by the engine speed and the engine load.
  • Characteristic lines L1 to L4 shown in FIG. 3 are characteristic lines according to the EGR rate.
  • L1 is an EGR rate of 10%
  • L2 is an EGR rate of 7%
  • L3 is an EGR rate of 5%
  • L4 is an EGR rate of 3%. Show.
  • the retard limit (maximum retard amount) of the ignition timing in the operating state (operating point) at this time is the deviation of the EGR rate. If it is 5% in terms of, the differential pressure before and after the point A ′ in FIG. Further, for example, when the front-rear differential pressure and the intake air amount are at point B in FIG. 3, the retard limit (maximum retard amount) of the ignition timing in the operating state (operating point) at this time is the deviation of the EGR rate. If converted to 3%, the differential pressure before and after the point B ′ in FIG.
  • the retard limit of the ignition timing for each operating point is converted into an allowable EGR rate deviation amount that is a deviation amount of the EGR rate, and the lower threshold is set according to the allowable EGR rate deviation amount converted for each operating point. It may be changed.
  • the allowable EGR rate deviation amount is a deviation width of the EGR rate at which knocking can be avoided by knocking avoidance control even if the EGR rate is deviated.
  • the upper limit side threshold value according to the opening degree of the EGR control valve 21.
  • the lower threshold value may be changed.
  • FIG. 4 shows that the upper limit threshold value and the lower limit threshold value when the opening degree of the EGR control valve 21 is small, and the opening degree of the EGR control valve 21 is large, assuming that the retard limit of the ignition timing is constant regardless of the operating state. It is explanatory drawing shown in comparison with the upper limit side threshold value and the lower limit side threshold value.
  • a characteristic line M1 indicated by a solid line in FIG. 4 is an upper limit side threshold when the opening degree of the EGR control valve 21 is a predetermined small opening degree, and a characteristic line M2 indicated by a solid line in FIG. It is a lower limit side threshold value when the degree is a predetermined small opening.
  • a characteristic line N1 indicated by a broken line in FIG. 4 is an upper limit side threshold when the opening degree of the EGR control valve 21 is a predetermined large opening, and a characteristic line N2 indicated by a broken line in FIG. It is a lower limit side threshold value when the opening degree is a predetermined large opening degree.
  • the upper limit side threshold value and the lower limit side threshold value may be set so as to become relatively smaller as the opening degree of the EGR control valve 21 becomes larger.
  • the retard limit of the ignition timing for each operating point is an allowable amount that is a deviation amount of the EGR rate. You may make it change into EGR rate deviation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Analytical Chemistry (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

エアフローメータ(6)で検出された吸入吸気量に基づいて、EGR制御弁(21)の前後差圧の上限側閾値と下限側閾値を算出するともに、上流側圧力センサ(29)及び下流側圧力センサ(30)の検出値からEGR制御弁(21)の実前後差圧を算出する。そして、上限側閾値及び下限側閾値と、実前後差圧とを比較して、実前後差圧が上限側閾値を上回る場合、及び実前後差圧が下限側閾値を下回る場合、吸排気系の圧力損失が変化したと判定する。そして、吸排気系の圧力損失が変化したと判定された場合にはEGRを禁止し、そうでなければEGRを実施可能とする。

Description

内燃機関
 本発明は、過給機の上流側に排気の一部を還流する内燃機関に関する。
 排気通路と吸気通路とに接続されたEGR通路と、EGR通路に介装されたEGR制御弁と、を有し、運転状態に応じて排気ガスの一部を吸気系に導入するEGRを実施することで、内燃機関の排気性能向上や燃費改善を図る技術が従来から知られている。
 吸気通路に導入されるEGR量は、EGR通路が接続された位置の吸気通路内の吸気圧力と、EGR通路が接続された位置の排気通路内の排気圧力との差圧(圧力差)が一定であれば、EGR通路に介装されたEGR制御弁の開度によって決定される。このようなEGRを実施する内燃機関においては、長期に亙って使用していると、吸排気系の圧力損失の変化により、EGR制御弁の開度で決まるEGR率が所期の値から変化し、実際に還流するEGR量が、目標値に対してずれてしまう可能性がある。
 そこで、例えば、特許文献1には、所定の過渡状態において、吸気通路に導入されるEGR量が変更される前後での吸気温度の温度変化量から、内燃機関の吸排気系の圧力損失の変化の有無を診断する技術が開示されている。
 しかしながら、吸気温度の温度変化量から吸排気系の圧力損失の変化の有無を診断する場合、吸気通路に導入されるEGRガスの温度が低いと、EGRガスの導入による吸気の温度変化量は小さくなる。そのため、EGR通路にEGRクーラが設けられ、吸気通路に導入されるEGRガスが冷却されていると、吸気温度の温度変化量から内燃機関の吸排気系の圧力損失の変化の有無を診断できなくなる虞がある。
特開2008-223554号公報
 本発明は、過給機よりも上流側から排気の一部をEGRとして還流する内燃機関において、吸入空気量から推定されるEGR制御弁の前後の推定圧力差と、実測された上記EGR制御弁の前後の実前後差圧と、を比較することで、吸排気系の圧力損失の変化を検出することを特徴としている。
 本発明によれば、吸気通路に導入されるEGRガスの温度にかかわらず、EGR制御弁が一定開度であってもEGR量が所期の値から変化する吸排気系の圧力損失の変化を検出することが可能となる。
本発明に係る内燃機関の全体構成を示すシステム図。 第1実施例における制御内容を示したブロック図。 他の実施例を模式的に示した説明図。 他の実施例を模式的に示した説明図。
 以下、本発明の一実施例を図面に基づいて詳細に説明する。図1は、本発明が適用される内燃機関1の全体構成を示すシステム図である。
 内燃機関1は、駆動源として自動車等の車両に搭載されるものであって、吸気通路2と排気通路3とが接続されている。吸気マニホールド4を介して内燃機関1に接続された吸気通路2には、スロットル弁5が設けられていると共に、その上流側には吸入空気量を検出するエアフローメータ6、エアクリーナ7が設けられている。排気マニホールド8を介して内燃機関1に接続された排気通路3には、排気浄化用として、三元触媒等の排気触媒9が設けられている。
 また、この内燃機関1は、吸気通路2に配置されたコンプレッサ11と排気通路3に配置されたタービン12とを同軸上に備えたターボ過給機10を有している。コンプレッサ11は、スロットル弁5よりも上流側に位置していると共に、エアフローメータ6よりも下流側に位置している。タービン12は、排気触媒9よりも上流側に位置している。なお、図1中の13は、スロットル弁5の下流側に設けられたインタークーラである。
 吸気通路2には、コンプレッサ11を迂回してコンプレッサの上流側と下流側とを接続するリサーキュレーション通路14が接続されている。リサーキュレーション通路14には、リサーキュレーション通路14内の吸気流量を制御するリサーキュレーション弁15が介装されている。
 排気通路3には、タービン12を迂回してタービン12の上流側と下流側とを接続する排気バイパス通路16が接続されている。排気バイパス通路16には、排気バイパス通路16内の排気流量を制御するウエストゲート弁17が介装されている。
 また、内燃機関1は、排気還流(EGR)が実施可能なものであって、排気通路3と吸気通路2との間には、EGR通路20が設けられている。EGR通路20は、その一端が排気触媒9の下流側の位置で排気通路3に接続され、その他端がエアクリーナ7の下流側となりコンプレッサ11の上流側となる位置で吸気通路2に接続されている。このEGR通路20には、電制のEGR制御弁21とEGRクーラ22が介装されている。EGR制御弁21の開度は、運転条件に応じた所定のEGR率が得られるように、コントロールユニット25によって制御される。
 コントロールユニット25は、上述したエアフローメータ6の検出信号のほか、クランクシャフト(図示せず)のクランク角を検出するクランク角センサ26、アクセルペダル(図示せず)の踏込量を検出するアクセル開度センサ27、EGR制御弁21の開度を検出するEGR制御弁開度センサ28、EGR制御弁21の上流側のEGR通路20内の圧力P1を検出する上流側圧力センサ29、EGR制御弁21の下流側のEGR通路20内の圧力P2を検出する下流側圧力センサ30、ノッキングを検出するノックセンサ31等のセンサ類の検出信号が入力されている。
 そして、コントロールユニット25は、これらの検出信号に基づいて、内燃機関1の点火時期や空燃比等の制御を実施すると共に、EGR制御弁21の開度を制御して排気通路3から吸気通路2に排気の一部を還流する排気還流制御(EGR制御)を実施している。なお、スロットル弁5、リサーキュレーション弁15、ウエストゲート弁17の開度もコントロールユニット25により制御されている。リサーキュレーション弁15としては、コントロールユニット25により開閉制御されるものではなく、コンプレッサ11下流側の圧力が所定圧力以上となったときのみ開弁するようないわゆる逆止弁を用いることも可能である。
 吸気通路2に設けられたターボ過給機10のコンプレッサ11の上流側からEGRが導入される構成では、EGR通路20が接続された位置の排気通路3内の排気圧力Peと、EGR通路20が接続された位置の吸気通路2内の吸気圧力Piとの圧力差でEGRが導入される。
 ここで、ベルヌーイの定理に基づく関係から、吸入空気量と、排気圧力Peと吸気圧力Piとの圧力差の平方根との間には、比例関係が成立する。また排気圧力Peと吸気圧力Piの圧力差の平方根と、EGR量(排気還流量)との間にも比例関係が成立する。従って、吸入空気量とEGR量の間にも比例関係(EGR率一定)が成立することになる。つまり、吸気圧力Piと排気圧力Peの圧力差を利用して排気の一部を吸気通路2に還流させる構成では、EGR制御弁21の開度(開口面積)が一定であれば、吸入空気量が変化しても、吸入空気量とEGR量の比率は一定となるので、EGR率は一定となる。
 しかしながら、例えば、腐食等により排気系のマフラー(図示せず)に穴があいたり、エアクリーナ7に目詰まりが生じたりする等して内燃機関1の吸排気系の圧力損失が変化し、吸気圧力Piと排気圧力Peの圧力差が変化すると、EGR制御弁12の開度(開口面積)に対応したEGR率が変化することになり、実際に吸気通路2に還流するEGR量が目標EGR量から乖離することになる。
 そこで、本実施例では、吸入空気量から推定されるEGR制御弁21の前後の圧力差の指標となる推定圧力差と、上流側圧力センサ29及び下流側圧力センサ30の検出値より実測されたEGR制御弁21の実前後差圧と、を比較することで、内燃機関1の吸排気系の圧力損失に変化が生じたか否かを判定する。
 そして、内燃機関1の吸排気系の圧力損失の変化が大きくなり、失火あるいはノッキングを引き起こす可能性がある場合には、EGRを禁止する。
 具体的には、吸排気系の圧力損失が増大し、実前後差圧が、そのときの吸入空気量に応じて決定される上限側閾値を上回る場合には、目標EGR量に対して実際に吸気通路2に導入される実EGR量が多くなるため(目標EGR率に対して実際のEGR率が大きくなるため)、失火を回避するためにEGRを禁止する。そして、吸排気系の圧力損失が減少し、実前後差圧が、そのときの吸入空気量に応じて決定される下限側閾値を下回る場合には、目標EGR量に対して実際に吸気通路2に導入される実EGR量が少なくなるため(目標EGR率に対して実際のEGR率が小さくなるため)、ノッキングを回避するためにEGRを禁止する。
 このように、推定された上下限側閾値と実測された実前後差圧とを比較することで、吸気通路2に導入されるEGRガスの温度にかかわらず、EGR制御弁21が一定開度であってもEGR量が所期の値から変化する吸排気系の圧力損失の変化を検出することが可能となる。
 図2は、上述した第1実施例における内燃機関1の制御内容を示すブロック図である。
 S1では、エアフローメータ6で検出された吸入吸気量に基づいて、EGR制御弁21の前後差圧の上限側閾値と下限側閾値を算出する。S2では、上流側圧力センサ29及び下流側圧力センサ30の検出値から、EGR制御弁21の実前後差圧を算出する。
 S3では、S1で算出された上限側閾値及び下限側閾値と、S2で算出された実前後差圧とを比較して、吸排気系の圧力損失の変化を検出する。すなわち、実前後差圧が上限側閾値を上回る場合、及び実前後差圧が下限側閾値を下回る場合、吸排気系の圧力損失が変化したと判定する。
 S4では、S3での判定結果を参照してEGR制御を実施する。すなわち、S3にて、吸排気系の圧力損失が変化したと判定されていればEGRを禁止し、そうでなければEGRを実施可能とする。
 なお、上述した実施例では、推定圧力差として吸入空気量から上限側閾値及び下限側閾値を算出しているが、推定圧力差として吸入空気量からEGR制御弁21の前後の圧力差そのものである推定前後差圧を算出し、実前後差圧がこの推定前後差圧に対して所定割合以上乖離している場合に吸排気系の圧力損失が変化したと判定することも可能である。
 そして、例えば、EGR制御弁21の開度が全開になると、EGR通路20が接続された位置での吸気通路2内の吸気圧力PiとEGR通路20が接続された位置での排気通路3内の排気圧力Peとの圧力差からEGRガスは吸気通路2に導入されるものの、EGR制御弁21の前後差圧は小さくなり、吸排気系の圧力損失変化との区別が難しくなる。つまり、EGR制御弁21の開度が大きくなるほど、EGR制御弁21の前後差圧は相対的に小さくなるため、吸排気系の圧力損失変化との区別が難しくなる。
 そこで、実前後差圧が下限側閾値よりも小さい場合には、EGR制御弁開度センサ28で検出されるそのときのEGR制御弁21の実開度を用いて、吸排気系の圧力損失の変化によりEGR制御弁21の前後差圧が小さくなったのか、あるいはEGR制御弁21の故障による開度異常でEGR制御弁21の前後差圧が小さくなったのか、を判定する前後差圧低下要因診断を合わせて実施するようにしてもよい。
 具体的には、EGR制御弁21の実開度が目標開度に対して所定割合以上乖離していなければ、吸排気系の圧力損失により実前後差圧が下限側閾値よりも小さくなったと判定する。そして、EGR制御弁21の実開度が、目標開度に対して所定割合以上乖離し、目標開度に対して開側に大きく開いた開度になっていれば、EGR制御弁21の故障により実前後差圧が下限側閾値よりも小さくなったと判定する。このときの判定結果は、例えばコントロールユニット25内に記憶しておくことで、整備工場等で整備点検する際に、電子システム診断テスタいわゆるコンサルトを用いて確認することが可能である。
 なお、前後差圧低下要因診断を実施する場合には、前後差圧低下要因診断の実施中にノッキングが発生してしまう可能性があるので、前後差圧が下限側閾値よりも小さいと判定された時点で、ノッキング回避のために点火時期の所定量リタードすることが望ましい。そして、前後差圧低下要因診断が終了した時点でEGRを停止すればよい。
 また、ノッキングを検出すると点火時期を遅角してノッキングの発生を抑制するノッキング回避制御が実施される場合、ノッキング回避制御の実施にあたっては、設定値(目標点火時期)に対して所定量以上は遅角しないといった遅角量の上限(遅角限界)が設定されることになる。点火時期の遅角限界は内燃機関1の各運転点毎に決まる。つまり、点火時期の遅角限界は、機関回転速度や機関負荷によって決定される。
 そして、EGR制御弁21の前後差圧と吸入空気量からEGR率は推定できるため、図3に示すように、縦軸をEGR制御弁21の前後差圧、横軸を吸入空気量とすると、EGR率に応じた特性線が描くことができる。図3に示す特性線L1~L4はEGR率に応じた特性線であり、L1はEGR率10%、L2はEGR率7%、L3はEGR率5%、L4はEGR率3%の場合を示している。
 そこで、例えば、前後差圧と吸入空気量が図3中のA点のときに、このときの運転状態(運転点)における点火時期の遅角限界(最大遅角量)が、EGR率のずれに換算して5%であるなら、図3中のA’点における前後差圧を下限側閾値とする。また、例えば、前後差圧と吸入空気量が図3中のB点のときに、このときの運転状態(運転点)における点火時期の遅角限界(最大遅角量)が、EGR率のずれに換算して3%であるなら、図3中のB’点における前後差圧を下限側閾値とする。
 すなわち、各運転点毎の点火時期の遅角限界をEGR率のずれ量である許容EGR率ずれ量に換算し、各運転点毎に換算された許容EGR率ずれ量に応じて下限側閾値を変更するようにしてもよい。ここで許容EGR率ずれ量は、EGR率がずれていたとしてもノッキング回避制御によりノッキングが回避可能なEGR率のずれ幅である。
 また、上述したようにEGR制御弁21の開度に応じてEGR制御弁21の前後差圧が影響を受けるので、図4に示すように、EGR制御弁21の開度に応じて上限側閾値及び下限側閾値を変化させるようにしてもよい。
 図4は、点火時期の遅角限界を運転状態によらず一定として、EGR制御弁21の開度が小さい場合の上限側閾値及び下限側閾値と、EGR制御弁21の開度が大きい場合の上限側閾値及び下限側閾値と、比較して示した説明図である。
 図4中に実線で示す特性線M1はEGR制御弁21の開度が所定の小開度のときの上限側閾値であり、図4中に実線で示す特性線M2はEGR制御弁21の開度が所定の小開度のときの下限側閾値である。また、図4中に破線で示す特性線N1はEGR制御弁21の開度が所定の大開度のときの上限側閾値であり、図4中に破線で示す特性線N2はEGR制御弁21の開度が所定の大開度のときの下限側閾値である。このように、上限側閾値及び下限側閾値は、EGR制御弁21の開度が大きくなるほど相対的に小さくなるよう設定するようにしてもよい。
 そして、EGR制御弁21の開度に応じて上限側閾値及び下限側閾値を変化させるともに、下限側閾値については、各運転点毎の点火時期の遅角限界をEGR率のずれ量である許容EGR率ずれ量に換算し、各運転点毎に換算された許容EGR率ずれ量に応じてさらに変更するようにしてもよい。

Claims (8)

  1.  スロットル弁の上流側に位置する過給機と、該過給機よりも上流側から排気の一部を吸気通路に導入するEGR通路と、上記EGR通路の途中に配置されたEGR制御弁と、を有する内燃機関において、
     吸入空気量から推定される上記EGR制御弁の前後の推定圧力差と、実測された上記EGR制御弁前後の実前後差圧と、を比較することで、吸排気系の圧力損失の変化を検出する内燃機関。
  2.  上記推定圧力差は、吸入空気量から推定される上記EGR制御弁の推定前後差圧に対する上限側閾値及び下限側閾値であり、
     上記実前後差圧が上記上限側閾値を上回る場合、もしくは上記実前後差圧が上記下限側閾値を下回る場合に、吸排気系の圧力損失に変化があったと判定する請求項1に記載の内燃機関。
  3.  上記実前後差圧が上記上限側閾値よりも大きい場合、または上記実前後差圧が上記下限側閾値よりも小さい場合には、EGRを禁止する請求項2に記載の内燃機関。
  4.  上記EGR制御弁の実開度を検出する手段を有し、
     上記実前後差圧が上記下限側閾値よりも小さい場合、上記EGR制御弁の実開度が目標開度に対して所定割合以上乖離していない開度であれば、吸排気系の圧力損失により上記推定前後差圧と上記実前後差圧との間に変化が生じたと判定し、上記EGR制御弁の実開度が目標開度に対して上記所定割合以上乖離した開度であれば、上記EGR制御弁の故障により上記推定前後差圧と上記実前後差圧との間に変化が生じたと判定する請求項2または3に記載の内燃機関。
  5.  上記実前後差圧が上記下限側閾値よりも小さい場合には、内燃機関の点火時期を遅角化した上で、上記EGR制御弁の実開度を用いた判定を実施する請求項4に記載の内燃機関。
  6.  内燃機関のノッキングを検出するノック検出手段と、
     ノッキングを検出するとノッキングが検出されないように内燃機関の点火時期を遅角するリタード制御手段と、を有し
     上記下限側閾値は、上記リタード制御手段における点火時期の遅角限界に応じて変化する請求項2~5のいずれかに記載の内燃機関。
  7.  目標EGR率に応じて、上記上限側閾値及び上記下限側閾値を変化させる請求項2~6のいずれかに記載の内燃機関。
  8.  上記推定圧力差は、吸入空気量から推定される上記EGR制御弁の推定前後差圧であり、
     上記実前後差圧が上記推定前後差圧に対して所定割合以上乖離している場合に、吸排気系の圧力損失に変化があったと判定する請求項1に記載の内燃機関。
PCT/JP2013/065233 2012-07-18 2013-05-31 内燃機関 WO2014013803A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380037749.7A CN104487690B (zh) 2012-07-18 2013-05-31 内燃机
US14/414,201 US9759165B2 (en) 2012-07-18 2013-05-31 Internal combustion engine
EP13820626.3A EP2876291B1 (en) 2012-07-18 2013-05-31 Internal combustion engine
JP2014525751A JP5843014B2 (ja) 2012-07-18 2013-05-31 内燃機関

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-159209 2012-07-18
JP2012159209 2012-07-18

Publications (1)

Publication Number Publication Date
WO2014013803A1 true WO2014013803A1 (ja) 2014-01-23

Family

ID=49948639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065233 WO2014013803A1 (ja) 2012-07-18 2013-05-31 内燃機関

Country Status (5)

Country Link
US (1) US9759165B2 (ja)
EP (1) EP2876291B1 (ja)
JP (1) JP5843014B2 (ja)
CN (1) CN104487690B (ja)
WO (1) WO2014013803A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015209765A (ja) * 2014-04-23 2015-11-24 日産自動車株式会社 エンジン制御装置
JP2017180438A (ja) * 2016-03-31 2017-10-05 マツダ株式会社 エンジンの制御装置
JP2018071489A (ja) * 2016-11-02 2018-05-10 日立オートモティブシステムズ株式会社 内燃機関制御装置および方法
JP2018123694A (ja) * 2017-01-30 2018-08-09 日立オートモティブシステムズ株式会社 低圧egrシステムの故障診断装置
JP2019120204A (ja) * 2018-01-09 2019-07-22 株式会社Subaru エンジン制御装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9797343B2 (en) * 2013-11-08 2017-10-24 Ford Global Technologies, Llc Determining exhaust gas recirculation cooler fouling using DPOV sensor
KR101886095B1 (ko) * 2016-08-04 2018-08-07 현대자동차 주식회사 Egr 장치가 구비된 엔진 시스템
KR101896317B1 (ko) * 2016-08-24 2018-09-07 현대자동차 주식회사 Egr 장치가 구비된 엔진 시스템
CN106762241A (zh) * 2017-01-09 2017-05-31 浙江吉利控股集团有限公司 一种发动机废气再循环系统
US10883429B2 (en) * 2017-02-01 2021-01-05 Nissan Motor Co., Ltd. Intake control method and intake control device for internal combustion engine
US10914251B2 (en) * 2017-12-22 2021-02-09 Ford Global Technologies, Llc Systems and methods for EGR valve diagnostics
CN110566381B (zh) * 2018-11-30 2021-07-20 长城汽车股份有限公司 发动机egr系统和发动机egr系统的诊断策略
GB2583337A (en) * 2019-04-23 2020-10-28 Delphi Automotive Systems Lux Method of determining a fault in an engine with EGR
CN111120156B (zh) * 2019-12-31 2021-02-23 潍柴动力股份有限公司 一种发动机egr率偏差故障监测方法及装置
CN113217234B (zh) * 2021-04-22 2022-08-12 联合汽车电子有限公司 Egr系统的低流量故障诊断方法、系统及可读存储介质
CN116181509B (zh) * 2023-03-03 2024-07-19 潍柴动力股份有限公司 Egr阀上游压力传感器故障诊断方法及车辆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174048A (ja) * 1993-12-20 1995-07-11 Mitsubishi Electric Corp 排気ガス還流制御装置
JPH09287510A (ja) * 1996-04-25 1997-11-04 Unisia Jecs Corp 内燃機関の空燃比制御装置
JP2000356162A (ja) * 1999-06-15 2000-12-26 Nissan Motor Co Ltd 排気圧検出装置およびエンジンの制御装置
JP2007292028A (ja) * 2006-04-27 2007-11-08 Toyota Motor Corp 内燃機関の排気還流装置
JP2008223554A (ja) 2007-03-09 2008-09-25 Toyota Motor Corp 内燃機関の排気再循環装置
JP2010151111A (ja) * 2008-12-26 2010-07-08 Toyota Motor Corp 内燃機関のegrシステム
JP2011163241A (ja) * 2010-02-11 2011-08-25 Denso Corp 内燃機関の制御装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5190017A (en) * 1992-05-28 1993-03-02 Ford Motor Company Exhaust gas recirculation system fault detector
JPH0828364A (ja) * 1994-07-20 1996-01-30 Mitsubishi Electric Corp 排気ガス還流制御装置の故障検出装置
JPH10141150A (ja) * 1996-11-13 1998-05-26 Nissan Motor Co Ltd エンジンの排気還流制御装置の故障診断装置
US6763708B2 (en) * 2001-07-31 2004-07-20 General Motors Corporation Passive model-based EGR diagnostic
JP3995239B2 (ja) * 2002-10-30 2007-10-24 株式会社小松製作所 エンジンのegrシステムの制御方法
JP3751930B2 (ja) * 2002-11-01 2006-03-08 トヨタ自動車株式会社 内燃機関のegrガス温度推定装置
US6850833B1 (en) * 2003-11-03 2005-02-01 Cummins, Inc. System for diagnosing delta pressure sensor operation
JP4606939B2 (ja) 2005-05-18 2011-01-05 本田技研工業株式会社 内燃機関の排気浄化装置
JP4218702B2 (ja) * 2006-06-22 2009-02-04 トヨタ自動車株式会社 内燃機関の排気還流装置
CN101490399B (zh) * 2006-07-14 2012-02-29 丰田自动车株式会社 内燃机的排气再循环系统
US20080078176A1 (en) * 2006-10-02 2008-04-03 International Engine Intellectual Property Company Strategy for control of recirculated exhaust gas to null turbocharger boost error
DE102006054043A1 (de) * 2006-11-16 2008-05-21 Volkswagen Ag Brennkraftmaschine mit Abgasrückführung
US7946117B2 (en) * 2006-12-15 2011-05-24 Caterpillar Inc. Onboard method of determining EGR flow rate
US20080163855A1 (en) * 2006-12-22 2008-07-10 Jeff Matthews Methods systems and apparatuses of EGR control
JP2008240576A (ja) * 2007-03-26 2008-10-09 Toyota Motor Corp 過給システムの故障診断装置
US7516009B1 (en) * 2007-09-19 2009-04-07 Detroit Diesel Corporation Intake charge deficit method for engine real-time diagnostics application
US7822531B2 (en) * 2008-04-28 2010-10-26 Southwest Research Institute Stratified charge gasoline direct injection systems using exhaust gas recirculation
JP2011099417A (ja) * 2009-11-09 2011-05-19 Toyota Motor Corp 内燃機関の点火制御システム
JP2012197681A (ja) * 2011-03-18 2012-10-18 Yanmar Co Ltd エンジン装置の排気ガス再循環システム
JP5929015B2 (ja) * 2011-06-06 2016-06-01 日産自動車株式会社 内燃機関の排気還流装置
US9062635B2 (en) * 2011-09-25 2015-06-23 Cummins Inc. System and method for estimating engine exhaust manifold operating parameters
US9261052B2 (en) * 2011-12-01 2016-02-16 Toyota Jidosha Kabushiki Kaisha Failure diagnosis apparatus of EGR system
JP2013181425A (ja) * 2012-02-29 2013-09-12 Keihin Corp 排気ガス再循環装置の制御システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174048A (ja) * 1993-12-20 1995-07-11 Mitsubishi Electric Corp 排気ガス還流制御装置
JPH09287510A (ja) * 1996-04-25 1997-11-04 Unisia Jecs Corp 内燃機関の空燃比制御装置
JP2000356162A (ja) * 1999-06-15 2000-12-26 Nissan Motor Co Ltd 排気圧検出装置およびエンジンの制御装置
JP2007292028A (ja) * 2006-04-27 2007-11-08 Toyota Motor Corp 内燃機関の排気還流装置
JP2008223554A (ja) 2007-03-09 2008-09-25 Toyota Motor Corp 内燃機関の排気再循環装置
JP2010151111A (ja) * 2008-12-26 2010-07-08 Toyota Motor Corp 内燃機関のegrシステム
JP2011163241A (ja) * 2010-02-11 2011-08-25 Denso Corp 内燃機関の制御装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015209765A (ja) * 2014-04-23 2015-11-24 日産自動車株式会社 エンジン制御装置
JP2017180438A (ja) * 2016-03-31 2017-10-05 マツダ株式会社 エンジンの制御装置
JP2018071489A (ja) * 2016-11-02 2018-05-10 日立オートモティブシステムズ株式会社 内燃機関制御装置および方法
WO2018084039A1 (ja) * 2016-11-02 2018-05-11 日立オートモティブシステムズ株式会社 内燃機関制御装置および方法
JP2018123694A (ja) * 2017-01-30 2018-08-09 日立オートモティブシステムズ株式会社 低圧egrシステムの故障診断装置
JP2019120204A (ja) * 2018-01-09 2019-07-22 株式会社Subaru エンジン制御装置

Also Published As

Publication number Publication date
JP5843014B2 (ja) 2016-01-13
JPWO2014013803A1 (ja) 2016-06-30
EP2876291B1 (en) 2018-08-22
EP2876291A1 (en) 2015-05-27
CN104487690B (zh) 2017-09-29
EP2876291A4 (en) 2016-04-06
CN104487690A (zh) 2015-04-01
US20150233326A1 (en) 2015-08-20
US9759165B2 (en) 2017-09-12

Similar Documents

Publication Publication Date Title
JP5843014B2 (ja) 内燃機関
JP5929015B2 (ja) 内燃機関の排気還流装置
US9115672B2 (en) Control apparatus for internal combustion engine
EP2530262B1 (en) CONTROLLER OF INTERNAL COMBUSTION ENGINE, AND DEVICE FOR MEASURING MASS FLOW OF NOx REFLUXED BACK TO INTAKE PASSAGE ALONG WITH BLOW-BY GAS
US8346462B2 (en) Malfunction detection apparatus and malfunction detection method for an EGR system
US8631691B2 (en) Abnormality detection device for EGR device
JP2007332793A (ja) 過給器を備えるエンジン
US9670860B2 (en) Abnormality diagnosing apparatus of intake air temperature sensor, and abnormality diagnosing method
US9010113B2 (en) Control apparatus of an internal combustion engine
JP4775097B2 (ja) 遠心式圧縮機を備える内燃機関の制御装置
WO2012111145A1 (ja) 内燃機関の制御装置
EP2551508B1 (en) Method for determination of egr ratio in internal combustion engine, and device for control of internal combustion engine
JP2008240576A (ja) 過給システムの故障診断装置
JP5246298B2 (ja) 内燃機関の吸気漏洩診断装置
JP5120333B2 (ja) エアフロメータの故障診断装置
JP5376051B2 (ja) Egrシステムの異常検出装置及び異常検出方法
WO2014024609A1 (ja) 内燃機関の制御装置及び制御方法
JP2008274836A (ja) 吸気流量センサの故障診断装置
JP2010242617A (ja) 内燃機関の異常検出システム
US11492951B2 (en) EGR effective flow diagnosis method
WO2013190933A1 (ja) 内燃機関の排気還流装置及び排気還流装置のegr算出方法
JP4827758B2 (ja) 可変バルブタイミング制御装置の故障診断装置
CN115199427B (zh) 诊断方法、控制装置、机动车
WO2014080455A1 (ja) ディーゼルエンジンの制御装置
JP2017002821A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13820626

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014525751

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14414201

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013820626

Country of ref document: EP