WO2013190933A1 - 内燃機関の排気還流装置及び排気還流装置のegr算出方法 - Google Patents

内燃機関の排気還流装置及び排気還流装置のegr算出方法 Download PDF

Info

Publication number
WO2013190933A1
WO2013190933A1 PCT/JP2013/063661 JP2013063661W WO2013190933A1 WO 2013190933 A1 WO2013190933 A1 WO 2013190933A1 JP 2013063661 W JP2013063661 W JP 2013063661W WO 2013190933 A1 WO2013190933 A1 WO 2013190933A1
Authority
WO
WIPO (PCT)
Prior art keywords
egr
amount
intake
exhaust gas
calculated
Prior art date
Application number
PCT/JP2013/063661
Other languages
English (en)
French (fr)
Inventor
富永 健介
露木 毅
小原 徹也
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2013190933A1 publication Critical patent/WO2013190933A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an exhaust gas recirculation device for an internal combustion engine that recirculates part of exhaust gas upstream of a supercharger, and an EGR calculation method for the exhaust gas recirculation device.
  • the total intake gas amount of the internal combustion engine is calculated using the rotational speed N of the internal combustion engine, the intake pressure PB on the downstream side of the throttle valve, and the intake air temperature TB.
  • Patent Document 1 it is not assumed that a supercharger is provided in the intake passage, and depending on the position of the supercharger, there is a possibility that the EGR amount returning to the intake passage cannot be estimated.
  • An exhaust gas recirculation apparatus for an internal combustion engine according to the present invention is calculated based on an intake pressure downstream of a throttle valve in an internal combustion engine that introduces a part of exhaust gas into the intake passage from the upstream side of the supercharger as EGR.
  • EGR exhaust gas recirculation apparatus
  • the EGR amount is directly calculated by using the first intake air amount and the second intake air amount.
  • the EGR amount can be calculated without using a sensor to detect.
  • FIG. 1 is a system diagram showing the overall configuration of an internal combustion engine to which the present invention is applied.
  • Explanatory drawing which shows an EGR control valve opening calculation table.
  • the flowchart which shows the flow of control regarding the valve opening correction
  • FIG. 1 is a system diagram showing an overall configuration of an internal combustion engine 1 to which the present invention is applied.
  • the internal combustion engine 1 is mounted on a vehicle such as an automobile as a drive source, and an intake passage 2 and an exhaust passage 3 are connected to each other.
  • a throttle valve 5 is provided in the intake passage 2 connected to the internal combustion engine 1 via the intake manifold 4, and an air flow meter 6 and an air cleaner 7 for detecting the intake air amount are provided upstream thereof. Yes.
  • An exhaust catalyst 9 such as a three-way catalyst is provided for exhaust purification in the exhaust passage 3 connected to the internal combustion engine 1 via the exhaust manifold 8.
  • the internal combustion engine 1 has a turbocharger 10 that is coaxially provided with a compressor 11 disposed in the intake passage 2 and a turbine 12 disposed in the exhaust passage 3.
  • the compressor 11 is located upstream of the throttle valve 5 and is located downstream of the air flow meter 6.
  • the turbine 12 is located on the upstream side of the exhaust catalyst 9.
  • 13 in FIG. 1 is an intercooler provided on the downstream side of the throttle valve 5.
  • a recirculation passage 14 that bypasses the compressor 11 and connects the upstream side and the downstream side of the compressor is connected to the intake passage 2.
  • a recirculation valve 15 that controls the intake flow rate in the recirculation passage 14 is interposed in the recirculation passage 14.
  • the exhaust passage 3 is connected to an exhaust bypass passage 16 that bypasses the turbine 12 and connects the upstream side and the downstream side of the turbine 12.
  • a waste gate valve 17 that controls the exhaust gas flow rate in the exhaust bypass passage 16 is interposed in the exhaust bypass passage 16.
  • the internal combustion engine 1 can perform exhaust gas recirculation (EGR), and an EGR passage 20 is provided between the exhaust passage 3 and the intake passage 2.
  • EGR exhaust gas recirculation
  • One end of the EGR passage 20 is connected to the exhaust passage 3 at a position downstream of the exhaust catalyst 9, and the other end is connected to the intake passage 2 at a position downstream of the air cleaner 7 and upstream of the compressor 11.
  • An EGR control valve 21 and an EGR cooler 22 are interposed in the EGR passage 20.
  • the valve opening degree of the EGR control valve 21 is controlled by the control unit 25 so that a predetermined EGR rate corresponding to the operating condition is obtained.
  • control unit 25 includes a crank angle sensor 26 that detects the crank angle of a crankshaft (not shown), an intake pressure sensor 27 that detects the intake pressure in the intake manifold 4, and an accelerator. Detection signals of sensors such as an accelerator opening sensor 28 for detecting the depression amount of a pedal (not shown) are input.
  • the control unit 25 controls the ignition timing and the air-fuel ratio of the internal combustion engine 1 and controls the valve opening of the EGR control valve 21 to control the intake passage from the exhaust passage 3. 2 performs exhaust gas recirculation control (EGR control) for recirculating part of the exhaust gas.
  • EGR control exhaust gas recirculation control
  • the valve openings of the throttle valve 5, the recirculation valve 15, and the waste gate valve 17 are also controlled by the control unit 25.
  • the recirculation valve 15 is not controlled to be opened and closed by the control unit 25, and a so-called check valve that opens only when the pressure on the downstream side of the compressor 11 exceeds a predetermined pressure can be used. is there.
  • the first intake air amount calculated based on the detection value of the intake pressure sensor 27 and the second intake air amount calculated based on the detection value of the air flow meter 7 are used.
  • the amount of EGR that recirculates from the exhaust passage 3 to the intake passage 2 can be calculated.
  • the first intake air amount is a flow rate of intake air including EGR, and is calculated based on, for example, the intake pressure and intake air temperature in the intake manifold 4 and the valve opening of the throttle valve 5.
  • the second intake air amount is a flow rate of only the air passing through the air flow meter 7 and is an intake air amount directly measured by the air flow meter 7. Therefore, by subtracting the second intake amount from the first intake amount, the EGR amount can be calculated without providing a sensor or the like that directly detects the EGR amount in the EGR passage 20.
  • the detection value of the air flow meter 7 is affected by the partial pressure of water vapor (humidity) in the intake air, the estimation accuracy of the EGR amount can be improved if the measurement error factor of the air flow meter 7 is taken into consideration. It is.
  • the EGR control valve 21 when the EGR control valve 21 is closed and the EGR is stopped, when the engine rotation speed and the target torque are in a steady operation state where the engine rotation speed and the target torque are constant, the first intake air amount and the second intake air amount are calculated.
  • An EGR correction amount is calculated from the difference between the two. Since the first intake air amount and the second intake air amount should be the same value when the EGR is stopped, the EGR amount returning to the intake passage 2 can be accurately calculated by using the EGR correction amount.
  • the valve opening of the EGR control valve 21 is constant, the intake air amount and the EGR amount are in a proportional relationship, and the EGR rate is Since it is kept constant, the EGR rate is controlled by the valve opening degree of the EGR control valve 21.
  • the actual EGR rate is calculated using the EGR amount (actual EGR amount) calculated in consideration of the measurement error factor of the air flow meter 7, and the EGR control valve 21 with respect to the target EGR rate is calculated using the actual EGR rate. Correct the valve opening.
  • FIG. 2 is an EGR control valve opening calculation table in which the EGR rate and the valve opening of the EGR control valve 21 are uniquely associated.
  • the currently set valve opening / EGR rate characteristic line A is corrected so that the inclination becomes small, and for example, the valve opening / EGR indicated by the broken line B in FIG. EGR rate characteristic line.
  • the currently set valve opening / EGR rate characteristic line A is corrected so as to increase the slope thereof.
  • the valve opening / EGR indicated by the broken line C in FIG. the deviation of the actual EGR rate from the target EGR rate is corrected by correcting the currently set valve opening / EGR rate characteristic line A according to the error rate. It can be suppressed with high accuracy.
  • the calculation of the EGR correction amount and the correction of the opening table of the EGR control valve using the EGR correction amount are as follows: What is necessary is just to carry out with the frequency of the grade performed at the time of cold start of the internal combustion engine 1.
  • FIG. 3 is a flowchart showing a flow of control for correcting the opening degree of the EGR control valve 21 in the embodiment described above.
  • S2 it is determined whether or not the operating condition is the EGR execution condition, and if it is the EGR execution condition, the process proceeds to S3.
  • S3 a steady operation determination is performed to determine whether or not the engine rotation speed and the target torque are a steady operation in which the engine speed is constant.
  • S4 the current operating condition is stored as operating condition 1, and the process proceeds to S5.
  • EGR amount is calculated by subtracting the second intake amount from the first intake amount.
  • the first intake air amount and the second intake air amount used in S5 are calculated when EGR is being performed under the operating condition 1.
  • EGR is stopped (EGR cut), and the process proceeds to S7.
  • the EGR correction amount is calculated by subtracting the second intake amount from the first intake amount.
  • the first intake air amount and the second intake air amount used in S8 are calculated when the EGR is stopped under the operating condition 1.
  • the actual EGR amount is calculated by subtracting the EGR correction amount calculated in S8 from the EGR amount calculated in S5.
  • the EGR amount calculated in S5 is corrected using the EGR correction amount calculated in S8.
  • the EGR correction amount calculated in S8 is considered to vary depending on the operating conditions, but since the operating conditions in S8 and the operating conditions when the EGR amount is calculated in S5 are the same, the actual EGR amount is accurately calculated in S9. Can be calculated.
  • the EGR stop is canceled (EGR cut recovery), and the process proceeds to S11.
  • the actual EGR rate is calculated using the actual EGR amount, and the process proceeds to S12.
  • the actual EGR rate is calculated by dividing the actual EGR amount by the sum of the second intake air amount and the actual EGR amount.
  • the error rate is calculated by dividing the actual EGR rate by the target EGR rate, and the EGR control valve opening calculation table is corrected according to this error rate, as shown in FIG. That is, the currently set inclination of the valve opening / EGR rate characteristic line A is corrected according to the error rate.
  • the target EGR control valve opening corresponding to the target EGR rate is calculated using the EGR control valve opening calculation table.
  • the process proceeds to S14, the current operation condition is stored as the operation condition 2, and the process proceeds to S15.
  • the EGR correction amount is calculated by subtracting the second intake amount from the first intake amount.
  • the first intake air amount and the second intake air amount used in S15 are calculated when the EGR is stopped under the operating condition 2.
  • the EGR stop is canceled (EGR cut recovery), and the process proceeds to S17.
  • the EGR amount is calculated by subtracting the second intake amount from the first intake amount.
  • the first intake air amount and the second intake air amount used in S18 are calculated when EGR is being performed under the operating condition 2.
  • the actual EGR amount is calculated by subtracting the EGR correction amount calculated in S15 from the EGR amount calculated in S18.
  • the EGR amount calculated in S18 is corrected using the EGR correction amount calculated in S15.
  • the EGR stop By subtracting the EGR correction amount calculated before canceling the EGR stop from the EGR amount calculated after canceling the EGR, the EGR amount after canceling the EGR stop can be accurately calculated, and the actual EGR rate can be accurately calculated after canceling the EGR stop. Can be calculated.
  • the operating condition for calculating the EGR correction amount is the same as the operating condition for calculating the EGR amount corrected by the EGR correction amount.
  • the EGR amount can be corrected more accurately when the operating condition for calculating the EGR correction amount is the same as the operating condition for calculating the EGR amount corrected by the EGR correction amount.

Abstract

冷気始動時、EGR制御弁(21)を開弁状態としたEGR実施時に、内燃機関(1)が定常運転状態になると、吸気圧センサ(27)の検出値に基づいて算出される第1吸気量と、エアフローメータ(6)の検出値に基づいて算出される第2吸気量と算出し、EGR量を算出する。そして、EGR制御弁(21)を閉弁状態としてEGRを停止する。このEGR停止前後で、内燃機関(1)の運転条件に変化が無ければ、EGR停止時に算出した第1吸気量と第2吸気量との差分からEGR補正量を算出する。そして、EGR量からEGR補正量を減じることで実EGR量を算出する。

Description

内燃機関の排気還流装置及び排気還流装置のEGR算出方法
 本発明は、過給機の上流側に排気の一部を還流する内燃機関の排気還流装置及び排気還流装置のEGR算出方法に関する。
 運転状態に応じた量の排気ガスを吸気系に導入するいわゆるEGRを行うことで、内燃機関の排気性能向上や燃費改善を図る技術が従来から知られている。
 例えば、特許文献1においては、内燃機関の回転速度N、スロットル弁下流側の吸気圧力PB及び吸気温度TBを用いて内燃機関の総吸入ガス量を算出し、この総吸入ガス量と、エアフローメータで測定した吸入空気量Gaを用いて算出した実際のEGR率が、目標EGR率と一致するように、吸気通路に還流させるEGR量を制御するEGR制御弁の弁開度をフィードバック制御する技術が開示されている。
 しかしながら、この特許文献1においては、吸気通路に過給機が設けられることを想定しておらず、過給機の位置よっては吸気通路に還流するEGR量を推定できなくなる可能性がある。
 また、この特許文献1においては、エアフローメータの計測誤差を考慮していないため、吸気通路に還流するEGR量の推定精度が低くなる虞がある。
特公昭59-2792号公報
 本発明に係る内燃機関の排気還流装置は、排気の一部をEGRとして過給機よりも上流側から吸気通路に導入する内燃機関において、スロットル弁よりも下流側の吸気圧力に基づいて算出される第1吸気量から上記過給機の上流側に位置するエアフローメータで検知される第2吸気量を減じることで、上記吸気通路に還流したEGR量を算出することを特徴としている。
 第1吸気量はEGRを含む吸気の吸気量であり第2吸気量はEGRを含まない吸気の吸気量であるので、第1吸気量と第2吸気量とを用いることで、EGR量を直接検出するセンサを用いることなく、EGR量を算出することができる。
本発明が適用される内燃機関の全体構成を示すシステム図。 EGR制御弁開度算出テーブルを示す説明図。 EGR制御弁の弁開度補正に関する制御の流れを示すフローチャート。
 以下、本発明の一実施例を図面に基づいて詳細に説明する。図1は、本発明が適用される内燃機関1の全体構成を示すシステム図である。
 内燃機関1は、駆動源として自動車等の車両に搭載されるものであって、吸気通路2と排気通路3とが接続されている。吸気マニホールド4を介して内燃機関1に接続された吸気通路2には、スロットル弁5が設けられていると共に、その上流側には吸入空気量を検出するエアフローメータ6、エアクリーナ7が設けられている。排気マニホールド8を介して内燃機関1に接続された排気通路3には、排気浄化用として、三元触媒等の排気触媒9が設けられている。
 また、この内燃機関1は、吸気通路2に配置されたコンプレッサ11と排気通路3に配置されたタービン12とを同軸上に備えたターボ過給機10を有している。コンプレッサ11は、スロットル弁5よりも上流側に位置していると共に、エアフローメータ6よりも下流側に位置している。タービン12は、排気触媒9よりも上流側に位置している。なお、図1中の13は、スロットル弁5の下流側に設けられたインタークーラである。
 吸気通路2には、コンプレッサ11を迂回してコンプレッサの上流側と下流側とを接続するリサーキュレーション通路14が接続されている。リサーキュレーション通路14には、リサーキュレーション通路14内の吸気流量を制御するリサーキュレーション弁15が介装されている。
 排気通路3には、タービン12を迂回してタービン12の上流側と下流側とを接続する排気バイパス通路16が接続されている。排気バイパス通路16には、排気バイパス通路16内の排気流量を制御するウエストゲート弁17が介装されている。
 また、内燃機関1は、排気還流(EGR)が実施可能なものであって、排気通路3と吸気通路2との間には、EGR通路20が設けられている。EGR通路20は、その一端が排気触媒9の下流側の位置で排気通路3に接続され、その他端がエアクリーナ7の下流側となりコンプレッサ11の上流側となる位置で吸気通路2に接続されている。このEGR通路20には、EGR制御弁21とEGRクーラ22が介装されている。EGR制御弁21の弁開度は、運転条件に応じた所定のEGR率が得られるように、コントロールユニット25によって制御される。
 コントロールユニット25は、上述したエアフローメータ6の検出信号のほか、クランクシャフト(図示せず)のクランク角を検出するクランク角センサ26、吸気マニホールド4内の吸気圧を検出する吸気圧センサ27、アクセルペダル(図示せず)の踏込量を検出するアクセル開度センサ28等のセンサ類の検出信号が入力されている。
 そして、コントロールユニット25は、これらの検出信号に基づいて、内燃機関1の点火時期や空燃比等の制御を実施すると共に、EGR制御弁21の弁開度を制御して排気通路3から吸気通路2に排気の一部を還流する排気還流制御(EGR制御)を実施している。なお、スロットル弁5、リサーキュレーション弁15、ウエストゲート弁17の弁開度もコントロールユニット25により制御されている。リサーキュレーション弁15としては、コントロールユニット25により開閉制御されるものではなく、コンプレッサ11下流側の圧力が所定圧力以上となったときのみ開弁するようないわゆる逆止弁を用いることも可能である。
 このような内燃機関1おいては、吸気圧センサ27の検出値に基づいて算出される第1吸気量と、エアフローメータ7の検出値に基づいて算出される第2吸気量と、を用いて、排気通路3から吸気通路2に還流するEGR量を算出することができる。
 第1吸気量は、EGRを含む吸気の流量であり、例えば、吸気マニホールド4内の吸気圧力及び吸気温度と、スロットル弁5の弁開度とに基づいて算出される。第2吸気量は、エアフローメータ7を通過する空気のみの流量であり、エアフローメータ7で直接計測される吸気量である。従って、第1吸気量から第2吸気量を減ずることで、EGR量を直接検出するセンサ等をEGR通路20に設けることなく、EGR量を算出することができる。
 ここで、エアフローメータ7の検出値は、吸気中の水蒸気分圧(湿度)等の影響を受けるため、このようなエアフローメータ7の計測誤差要因を考慮すれば、EGR量の推定精度向上が可能である。
 そこで、本実施例では、EGR制御弁21を閉弁状態としたEGR停止時に、機関回転速度及び目標トルクが一定となる定常運転状態になると、第1吸気量と第2吸気量を算出し、両者の差分からEGR補正量を算出する。EGR停止時には、第1吸気量と第2吸気量とは同じ値となるはずなので、上記EGR補正量を用いることで、吸気通路2に還流するEGR量を精度よく算出することが可能となる。すなわち、EGR制御弁21を開弁状態としたEGR実施時に、機関回転速度及び目標トルクが一定となる定常運転状態になると、このときの第1吸気量からこのときの第2吸気量を減じ、さらに上記EGR補正量を減じることで、エアフローメータ7の計測誤差要因が考慮された精度の高いEGR量(実EGR量)を算出することができる。
 また、過給機10のコンプレッサ11上流側に排気の一部を還流する構成では、EGR制御弁21の弁開度が一定であれば、吸入空気量とEGR量とが比例関係となりEGR率が一定に保たれるため、EGR制御弁21の弁開度によりEGR率が制御される。
 ここで、システムの圧力損失や、EGR制御弁の開口面積が経時変化すると、目標EGR率に対して、実EGR率が乖離することになる。そこで、エアフローメータ7の計測誤差要因を考慮して算出されたEGR量(実EGR量)を用いて実EGR率を算出し、この実EGR率を用いて、目標EGR率に対するEGR制御弁21の弁開度を補正する。
 実EGR率を目標EGR率で除したものをエラー率とすれば、エラー率が1よりも大きい場合(エラー率>1)には、現在のEGR制御弁21の弁開度では、目標値よりも多いEGRが還流していることになる。また、エラー率が1よりも小さい場合(エラー率<1)には、現在のEGR制御弁21の弁開度では、目標値よりも少ないEGRしか還流していることになる。エラー率が1の場合(エラー率=1)には、現在のEGR制御弁21の弁開度で目標値のEGRが還流されていることになるので、補正の必要はないことになる。
 そこで、図2に示すように、算出されたエラー率に応じて、現在設定されている弁開度/EGR率特性線Aの傾きを補正する。
 図2は、EGR率とEGR制御弁21の弁開度が一義的に関連づけられたEGR制御弁開度算出テーブルである。
 エラー率が1よりも大きい場合には、現在設定されている弁開度/EGR率特性線Aを、その傾きが小さくなるように補正し、例えば図2中の破線Bで示す弁開度/EGR率特性線のようにする。エラー率が1よりも小さい場合には、現在設定されている弁開度/EGR率特性線Aを、その傾きが大きくなるように補正し、例えば図2中の破線Cで示す弁開度/EGR率特性線のようにする
 このように、エラー率に応じて、現在設定されている弁開度/EGR率特性線Aの傾きを補正することで、目標EGR率に対する実EGR率の乖離を精度良く抑制することができる。
 なお、吸気中の水蒸気分圧(湿度)は、短時間で大きく変化するものではないので、上記EGR補正量の算出や、上記EGR補正量を利用したEGR制御弁の開度テーブルの補正は、内燃機関1の冷機始動時に実施する程度の頻度で実施すればよい。
 図3は、上述した実施例におけるEGR制御弁21の弁開度補正の制御の流れを示すフローチャートである。
 S1では、冷機始動時であるか否かを判定し、冷機始動時であればS2へ進み、冷機始動時でなければS13へ進む。
 S2では、運転条件がEGR実施条件であるか否かを判定し、EGR実施条件であればS3へ進む。S3では、機関回転速度及び目標トルクが一定となる定常運転であるか否かを判定する定常運転判定を実施し、定常運転と判定されるとS4進む。
 S4では、現在の運転条件を運転条件1としてストアし、S5へ進む。S5では、第1吸気量から第2吸気量を減じることでEGR量を算出する。S5で用いる第1吸気量及び第2吸気量は、運転条件1でEGR実施中のときに算出されたものである。S6では、EGRを停止(EGRカット)して、S7へ進む。
 S7では、EGRの停止前後で運転条件に変化がないかを判定する。EGRの停止前後で運転条件に変化がない場合にはS8へ進み、そうでない場合にはS14へ進む。
 S8では、第1吸気量から第2吸気量を減じることでEGR補正量を算出する。S8で用いる第1吸気量及び第2吸気量は、運転条件1でEGR停止中のときに算出されたものである。
 S9では、S5で算出したEGR量からS8で算出したEGR補正量を減じることで実EGR量を算出する。換言すると、S9では、S5で算出したEGR量をS8で算出したEGR補正量を用いて補正している。
 S8で算出されるEGR補正量は、運転条件により異なると考えられるが、S8の運転条件とS5でEGR量を算出した時の運転条件とは同じなので、S9にては精度良く実EGR量を算出することができる。
 S10では、EGRの停止を解除(EGRカットリカバー)し、S11へ進む。S11では、実EGR量を用いて、実EGR率を算出しS12へ進む。実EGR率は、実EGR量を、第2吸気量と実EGR量との和で除すことで算出される。
 S12では、実EGR率を目標EGR率で除してエラー率を算出し、このエラー率に応じて、図2示すように、EGR制御弁開度算出テーブルを補正する。すなわち、現在設定されている弁開度/EGR率特性線Aの傾きを、エラー率に応じて補正する。
 そして、S13では、EGR制御弁開度算出テーブルを用いて目標EGR率に応じた目標EGR制御弁開度を算出する。
 一方、S7にてEGRの停止前後で運転条件が変化したと判定された場合には、S14へ進み、現在の運転条件を運転条件2としてストアし、S15へ進む。S15では、第1吸気量から第2吸気量を減じることでEGR補正量を算出する。S15で用いる第1吸気量及び第2吸気量は、運転条件2でEGR停止中のときに算出されたものである。S16では、EGRの停止を解除(EGRカットリカバー)して、S17へ進む。
 S17では、EGRの停止解除前後で運転条件に変化がないかを判定する。EGRの停止解除前後で運転条件に変化がない場合にはS18へ進み、そうでない場合にはS2へ進む。
 S18では、第1吸気量から第2吸気量を減じることでEGR量を算出する。S18で用いる第1吸気量及び第2吸気量は、運転条件2でEGR実施中のときに算出されたものである。
 S19では、S18で算出したEGR量からS15で算出したEGR補正量を減じることで実EGR量を算出する。換言すると、S19では、S18で算出したEGR量をS15で算出したEGR補正量を用いて補正している。
 このように、仮にEGRの停止前後で運転条件が変化したとしても、変化後の運転条件とEGR補正量を算出しておき、EGRの停止解除前後で運転条件が変化しなければ、EGRの停止解除後に算出されたEGR量からEGRの停止解除前に算出されたEGR補正量を減ずることで、EGRの停止解除後のEGR量を精度良く算出でき、EGRの停止解除後に精度良く実EGR率を算出することができる。
 なお、上述した実施例では、EGR補正量を算出するときの運転条件と、上記EGR補正量により補正されるEGR量を算出するときの運転条件とが同じになっているが、これらの運転条件は必ずしも同じでなくてもよい。但し、EGR補正量を算出するときの運転条件と、EGR補正量により補正されるEGR量を算出するときの運転条件とが同じ場合の方が、EGR量をより精度良く補正できる。

Claims (5)

  1.  スロットル弁の上流側に位置する過給機と、上記スロットル弁よりも下流側の吸気圧力を検知する吸気圧センサと、上記過給機の上流側に位置するエアフローメータと、上記過給機と上記エアフローメータとの間に排気の一部をEGRとして還流するEGR通路と、上記EGR通路の途中に配置されたEGR制御弁と、を有する内燃機関の排気還流装置において、
     上記吸気圧センサの検出値に基づいて算出される第1吸気量から上記エアフローメータで検知される第2吸気量を減じることで、上記吸気通路に還流したEGR量を算出する内燃機関の排気還流装置。
  2.  排気還流を停止した定常状態における上記第1吸気量と上記第2吸気量との差分からEGR補正量を算出し、
     上記EGR補正量を用いて、排気還流を実施した定常状態での上記第1吸気量及び上記第2吸気量から算出されたEGR量を補正する請求項1に記載の内燃機関の排気還流装置。
  3.  上記EGR補正量が算出される運転条件と、上記EGR補正量により補正される上記EGR量が算出される運転条件とが同一運転条件である請求項2に記載の内燃機関の排気還流装置。
  4.  EGR量に基づいて、実EGR率を算出し、目標EGR率に対する実EGR率の比率に応じて、上記EGR制御弁の弁開度を補正する請求項1~3のいずれかに記載の内燃機関の排気還流装置。
  5.  スロットル弁よりも下流側の吸気圧力を検知する吸気圧センサの検出値に基づいて算出される第1吸気量から、スロットル弁の上流側に位置する過給機よりもさらに上流側に位置するエアフローメータで検知される第2吸気量を減じることで、上記過給機と上記エアフローメータとの間から吸気通路に還流したEGR量を算出する排気還流装置のEGR算出方法。
PCT/JP2013/063661 2012-06-22 2013-05-16 内燃機関の排気還流装置及び排気還流装置のegr算出方法 WO2013190933A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012140290 2012-06-22
JP2012-140290 2012-06-22

Publications (1)

Publication Number Publication Date
WO2013190933A1 true WO2013190933A1 (ja) 2013-12-27

Family

ID=49768539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063661 WO2013190933A1 (ja) 2012-06-22 2013-05-16 内燃機関の排気還流装置及び排気還流装置のegr算出方法

Country Status (1)

Country Link
WO (1) WO2013190933A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015190411A (ja) * 2014-03-28 2015-11-02 マツダ株式会社 ターボ過給機付エンジンの制御装置
JP2016000982A (ja) * 2014-06-12 2016-01-07 日野自動車株式会社 Egrガス流量の推定装置及び推定方法
JP2016056734A (ja) * 2014-09-10 2016-04-21 三菱電機株式会社 内燃機関のegr流量推定装置、及び内燃機関の制御装置
FR3038004A1 (fr) * 2015-06-25 2016-12-30 Valeo Systemes De Controle Moteur Procede de determination de la valeur corrigee de la section efficace d'un circuit de recirculation de gaz d'echappement d'un moteur a combustion

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS592792B2 (ja) * 1976-07-12 1984-01-20 トヨタ自動車株式会社 内燃機関の排気ガス再循環量制御方法
JP2008008181A (ja) * 2006-06-28 2008-01-17 Mazda Motor Corp ディーゼルエンジン
JP2008038648A (ja) * 2006-08-02 2008-02-21 Toyota Motor Corp 内燃機関の排気還流装置
WO2011027439A1 (ja) * 2009-09-02 2011-03-10 トヨタ自動車株式会社 内燃機関のegr制御システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS592792B2 (ja) * 1976-07-12 1984-01-20 トヨタ自動車株式会社 内燃機関の排気ガス再循環量制御方法
JP2008008181A (ja) * 2006-06-28 2008-01-17 Mazda Motor Corp ディーゼルエンジン
JP2008038648A (ja) * 2006-08-02 2008-02-21 Toyota Motor Corp 内燃機関の排気還流装置
WO2011027439A1 (ja) * 2009-09-02 2011-03-10 トヨタ自動車株式会社 内燃機関のegr制御システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015190411A (ja) * 2014-03-28 2015-11-02 マツダ株式会社 ターボ過給機付エンジンの制御装置
JP2016000982A (ja) * 2014-06-12 2016-01-07 日野自動車株式会社 Egrガス流量の推定装置及び推定方法
JP2016056734A (ja) * 2014-09-10 2016-04-21 三菱電機株式会社 内燃機関のegr流量推定装置、及び内燃機関の制御装置
FR3038004A1 (fr) * 2015-06-25 2016-12-30 Valeo Systemes De Controle Moteur Procede de determination de la valeur corrigee de la section efficace d'un circuit de recirculation de gaz d'echappement d'un moteur a combustion

Similar Documents

Publication Publication Date Title
JP5929015B2 (ja) 内燃機関の排気還流装置
US9759165B2 (en) Internal combustion engine
JP5673896B2 (ja) 内燃機関の制御装置
JP5773094B2 (ja) 内燃機関の排気還流制御装置及び排気還流制御方法
US20120303346A1 (en) Apparatus for estimating exhaust gas recirculation quantity
US9200582B2 (en) Fault diagnosis apparatus for airflow meter
JP5360307B2 (ja) 内燃機関の制御装置
WO2012077214A1 (ja) Egr装置の異常検出装置
JP5246298B2 (ja) 内燃機関の吸気漏洩診断装置
WO2013190933A1 (ja) 内燃機関の排気還流装置及び排気還流装置のegr算出方法
WO2014024609A1 (ja) 内燃機関の制御装置及び制御方法
JP2008274836A (ja) 吸気流量センサの故障診断装置
JP2014101813A (ja) 過給機付き内燃機関の制御装置
KR102006582B1 (ko) 내연 기관의 제어 장치 및 내연 기관의 제어 방법
JP2010242617A (ja) 内燃機関の異常検出システム
JP2008075599A (ja) 内燃機関の故障診断装置
US9163572B2 (en) Method for determining a pressure at the output of an exhaust gas system
JP2019100215A (ja) ウェイストゲートバルブの制御装置
JP5516349B2 (ja) 内燃機関の制御装置
EP2390490B1 (en) Control device for internal combustion engine
JP2011157942A (ja) 内燃機関のegr制御装置
JP4827758B2 (ja) 可変バルブタイミング制御装置の故障診断装置
JP2014034948A (ja) 内燃機関のegr率推定装置およびegr率推定方法
JP6222175B2 (ja) 内燃機関の制御装置
JP2012021500A (ja) 内燃機関の吸気制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13807556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13807556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP