JP2012197681A - エンジン装置の排気ガス再循環システム - Google Patents

エンジン装置の排気ガス再循環システム Download PDF

Info

Publication number
JP2012197681A
JP2012197681A JP2011060804A JP2011060804A JP2012197681A JP 2012197681 A JP2012197681 A JP 2012197681A JP 2011060804 A JP2011060804 A JP 2011060804A JP 2011060804 A JP2011060804 A JP 2011060804A JP 2012197681 A JP2012197681 A JP 2012197681A
Authority
JP
Japan
Prior art keywords
exhaust
differential pressure
engine
flow rate
egr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011060804A
Other languages
English (en)
Inventor
Tomohiro Fukuda
智宏 福田
Atsushi Ueda
淳史 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2011060804A priority Critical patent/JP2012197681A/ja
Publication of JP2012197681A publication Critical patent/JP2012197681A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Abstract

【課題】エンジン装置の排気ガス再循環システムにおいて、エンジンの吸排気圧の影響を受けずに、最適なEGRガス量を確保する。
【解決手段】排気ガス再循環システムでは、回転速度検出手段及び負荷検出手段の検出結果との関係を基に算出された排気側での基準EGRガス流量Qseより、EGR弁前後の基準差圧ΔPoを用いて、吸気側での基準EGRガス流量Qsiを圧力換算で求める。次いで、直近の複数回分の実測差圧ΔPの単純移動平均値を用いて、再度圧力換算により排気側での目標EGRガス流量Qgを求め、次いで、排気側での目標EGRガス流量Qgと単純移動平均値の実測差圧ΔPと目標開度マップM4とに基づいて、差圧補正された目標EGR弁開度Laを求めEGR弁を目標EGR弁開度Laに応じて作動させる。
【選択図】図8

Description

本願発明は、例えば建設機械、農作業機及びエンジン発電機といった作業機に搭載されるエンジン装置において、排気マニホールドから排出される排気ガスの一部をEGRガスとして吸気マニホールドに還流させるための排気ガス再循環システムに関するものである。
従来から、ディーゼルエンジン(以下、単にエンジンという)等の排気ガス対策として、排気ガスの一部を吸気側に還流させるEGR装置を設けることによって、燃焼温度を低く抑えて排気ガス中のNOx(窒素酸化物)量を低減させるという技術が知られている。この種のEGR装置の一例が特許文献1及び2に開示されている。前記従来のEGR装置では、エンジンの排気マニホールドから分岐した還流管路が吸気マニホールドに接続されている。排気ガスの一部(EGRガス)を還流管路経由で吸気マニホールドに供給することによって、EGRガスと吸気側からの新気とが混合され、該混合ガスがエンジンの各気筒内(吸気行程の気筒内)に導入される。
また、還流管路にはEGR率調節用のEGR弁が設けられている。この場合、エンジン回転速度やエンジン負荷等のエンジン駆動状態に応じてEGR弁の開度を調節することによって、最適なEGR率となるようにEGRガス量が調節される。その結果、エンジンの燃焼状態を良好に保ちながらNOx量が低減される。ここで、EGR率とは、EGRガス量と新気量との和でEGRガス量を割った値(=EGRガス量/(EGRガス量+新気量))のことをいう。
特開昭57−148048号公報 特開平8−261072号公報
ところで、EGRガス量は、EGR弁の開度に影響を受けるだけでなく、エンジンの吸排気圧にも大きく影響されることはよく知られている。しかし、前記従来の構成は、エンジン回転速度やエンジン負荷といったエンジン駆動状態をパラメータとして、EGR弁の開閉制御を実行するものであり、影響の大きいエンジンの吸排気圧がパラメータに入っていないため、吸気圧や排気圧が高い状態では、過剰な量のEGRガスが各気筒内に送り込まれて新気不足に陥り、エンジンの燃焼状態が悪化して黒煙(スモーク)の発生を招来するという問題があった。
特に、作業機に搭載したエンジンに過給機を備えている場合は、例えばエンジンの過渡状態において、過給機の応答が遅れたり、過給機の存在自体が吸排気系の絞りとして作用したりすることによって、EGRガス量が過剰になることがある。そうすると、過給機の存在自体が黒煙(スモーク)の発生を招来するという問題があった。
また昨今は、エンジンに関する高次の排ガス規制が適用されるのに伴い、エンジンが搭載される作業機に、排気ガス中の大気汚染物質を浄化処理する排気ガス浄化装置としてディーゼルパティキュレートフィルタ(以下、DPFという)を備えることが要望されつつある。DPFは排気ガス中の粒子状物質(以下、PMという)等を捕集するものであるから、DPF内にPMが堆積すれば、DPF内の流通抵抗が増大してエンジンの排気圧が上昇することになる。つまり、DPF内でのPMの堆積も、過給機の存在と同様に、黒煙の発生をもたらすのであった。
そこで、本願発明は、このような現状を検討して改善を施したエンジン装置の排気ガス再循環システムを提供することを技術的課題とするものである。
請求項1の発明に係る排気ガス再循環システムは、エンジンと、前記エンジンにおける排気系からの排気ガスの一部をEGRガスとして吸気系に還流させるEGR装置と、前記吸気系の吸気圧と前記排気系の排気圧との差圧を検出する差圧検出手段と、エンジン回転速度を検出する回転速度検出手段と、エンジン負荷を検出する負荷検出手段とを備えているエンジン装置において、前記回転速度検出手段及び前記負荷検出手段の検出結果との関係を基に、排気側での目標EGRガス流量を求め、前記排気側での目標EGRガス流量と前記差圧検出手段の検出結果との関係から、差圧補正された目標EGR弁開度を求め、前記EGR装置を構成するEGR弁を前記目標EGR弁開度に応じて作動させるにあたり、前記回転速度検出手段及び前記負荷検出手段の検出結果の関係から、排気側での基準EGRガス流量を求めた上で、前記EGR弁前後の基準差圧と前記差圧検出手段の検出結果とを用いて、前記排気側での基準EGRガス流量を前記排気側での目標EGRガス流量に圧力換算するというものである。
請求項2の発明は、請求項1に記載したエンジン装置の排気ガス再循環システムにおいて、前記EGR弁前後の基準差圧を設定した基準差圧マップと、基準EGR弁開度を設定した基準開度マップと、前記排気側での基準EGRガス流量を設定した基準流量マップと、前記目標EGR弁開度を設定した目標開度マップとを有しており、前記回転速度検出手段及び前記負荷検出手段の検出結果から、前記基準差圧マップと前記基準開度マップとを参照して、前記基準差圧と前記基準EGR弁開度とを各々算出し、前記基準差圧及び前記基準EGR弁開度から、前記基準流量マップを参照して前記排気側での基準EGRガス流量を算出し、前記EGR弁前後の基準差圧に基づき、前記排気側での基準EGRガス流量を吸気側での基準EGRガス量に圧力換算し、前記差圧検出手段の検出結果に基づき、前記吸気側での基準EGRガス流量を排気側での目標EGRガス流量に圧力換算し、前記排気側での目標EGRガス流量及び前記差圧検出手段の検出結果から、前記目標開度マップを参照して前記目標EGR弁開度を算出するというものである。
請求項3の発明は、請求項1又は2に記載したエンジン装置の排気ガス再循環システムにおいて、前記差圧検出手段は、前記吸気系では吸気マニホールドの吸気圧を検出し、前記排気系では排気マニホールドの排気圧を検出するように構成されているというものである。
請求項1の発明によると、エンジンと、前記エンジンにおける排気系からの排気ガスの一部をEGRガスとして吸気系に還流させるEGR装置と、前記吸気系の吸気圧と前記排気系の排気圧との差圧を検出する差圧検出手段と、エンジン回転速度を検出する回転速度検出手段と、エンジン負荷を検出する負荷検出手段とを備えているエンジン装置において、前記回転速度検出手段及び前記負荷検出手段の検出結果との関係を基に、排気側での目標EGRガス流量を求め、前記排気側での目標EGRガス流量と前記差圧検出手段の検出結果との関係から、差圧補正された目標EGR弁開度を求め、前記EGR装置を構成するEGR弁を前記目標EGR弁開度に応じて作動させるから、前記EGR弁の開閉制御において、前記排気系と前記吸気系との間の差圧をパラメータに含めることによって、前記EGR弁の開度(前記目標EGR弁開度)をいわばフィードフォワード的に補正できる。
このため、例えば過給機や排気ガス浄化装置を備える前記エンジンにおいて、過給機の存在自体に起因して前記エンジンの排気圧が上昇したり、前記排気ガス浄化装置内にPMが堆積して前記エンジンの排気圧が上昇したりした場合であっても、最適なEGRガス量を確保できる。また、例えばエアクリーナが汚損して前記エンジンの吸気圧が上昇した場合でも同様に、最適なEGRガス量を確保できる。すなわち、前記エンジンの吸排気圧の変動に起因して、EGRガス量が変動するのを大幅に抑制できる。従って、黒煙(スモーク)の発生を抑制して、排気エミッションの低減に寄与できるという効果を奏する。
その上、前記回転速度検出手段及び前記負荷検出手段の検出結果の関係から、排気側での基準EGRガス流量を求めた上で、前記EGR弁前後の基準差圧と前記差圧検出手段の検出結果とを用いて、前記排気側での基準EGRガス流量を前記排気側での目標EGRガス流量に圧力換算するから、前記エンジンの吸排気圧の変動によるEGRガス量の変動を、極めて高精度に制御できる。従って、前記EGR弁の開閉制御の精度が高まるという効果を奏する。
請求項2の発明によると、前記EGR弁前後の基準差圧に基づき、前記排気側での基準EGRガス流量を吸気側での基準EGRガス量に圧力換算し、前記差圧検出手段の検出結果に基づき、前記吸気側での基準EGRガス流量を排気側での目標EGRガス流量に圧力換算するため、状態方程式に沿った簡単な演算を実行するだけで、前記エンジンの吸排気圧の変動によるEGRガス量の変動を高精度に制御でき、簡単な制御で効果的に、前記EGR弁の開閉制御精度の向上を図れるという効果を奏する。また、前記基準差圧マップ及び前記基準開度マップは、前記エンジン単独での試験結果から得られるし、前記基準流量マップ及び前記目標開度マップは、前記吸排気系と前記EGR装置とがあれば、前記エンジン自体を使わずとも特性計測が可能である。従って、手間のかかるソフトウェア設計(マップ設計)等の負担を軽減でき、コスト面でのメリットもある。
請求項3の発明によると、請求項1又は2に記載したエンジン装置の排気ガス再循環システムにおいて、前記差圧検出手段は、前記吸気系では吸気マニホールドの吸気圧を検出し、前記排気系では排気マニホールドの排気圧を検出するように構成されているから、前記EGR弁の近傍で前記EGR弁前後の圧力を計測するのに比べて、計測誤差を少なくできる。従って、前記EGR弁の開閉制御の精度向上に寄与するという効果を奏する。
エンジンの燃料系統説明図である。 エンジン及び排気ガス浄化装置の関係を示す機能ブロック図である。 燃料の噴射タイミングを説明する図である。 基準差圧マップの説明図である。 基準開度マップの説明図である。 基準流量マップの説明図である。 目標開度マップの説明図である。 EGR弁開閉制御の流れを示すフローチャートである。
以下に、本願発明を具体化した実施形態を図面に基づいて説明する。
(1).エンジン及びその周辺の構造
まず、図1及び図2を参照しながら、エンジン70及びその周辺の構造を説明する。図2に示すように、エンジン70は4気筒型のディーゼルエンジンであり、上面にシリンダヘッド72が締結されたシリンダブロック75を備えている。シリンダヘッド72の一側面には吸気マニホールド73が接続されており、他側面には排気マニホールド71が接続されている。シリンダブロック75の側面のうち吸気マニホールド73の下方には、エンジン70の各気筒に燃料を供給するコモンレール装置117が設けられている。吸気マニホールド73には、内部の吸気圧を検出する吸気圧センサ85が装着され、排気マニホールド71には、内部の排気圧を検出する排気圧センサ86が装着されている。吸気圧センサ85と排気圧センサ86とが差圧検出手段84を構成している。
図1に示すように、エンジン70における4気筒分の各インジェクタ115に、コモンレール装置117及び燃料供給ポンプ116を介して、燃料タンク118が接続される。各インジェクタ115は電磁開閉制御型の燃料噴射バルブ119を備えている。コモンレール装置117は円筒状のコモンレール120を備えている。燃料供給ポンプ116の吸入側には、燃料フィルタ121及び低圧管122を介して燃料タンク118が接続されている。燃料タンク118内の燃料が燃料フィルタ121及び低圧管122を介して燃料供給ポンプ116に吸い込まれる。実施形態の燃料供給ポンプ116は吸気マニホールド73の近傍に配置されている。一方、燃料供給ポンプ116の吐出側には、高圧管123を介してコモンレール120が接続されている。コモンレール120には、4本の燃料噴射管126を介して、4気筒分のインジェクタ115が接続されている。
上記の構成において、燃料タンク118の燃料は燃料供給ポンプ116によってコモンレール120に圧送され、高圧の燃料がコモンレール120に蓄えられる。各燃料噴射バルブ119がそれぞれ開閉制御されることによって、コモンレール120内の高圧の燃料が各インジェクタ115からエンジン70の各気筒に噴射される。すなわち、各燃料噴射バルブ119を電子制御することによって、各インジェクタ115から供給される燃料の噴射圧力、噴射時期、噴射期間(噴射量)が高精度にコントロールされる。従って、エンジン70からの窒素酸化物(NOx)を低減できると共に、エンジン70の騒音振動を低減できる。
図3に示すように、コモンレール装置117は、上死点(TDC)を挟む付近でメイン噴射Aを実行するように構成されている。また、コモンレール装置117は、メイン噴射A以外に、上死点より約60°以前のクランク角度θ1の時期に、NOx及び騒音の低減を目的として少量のパイロット噴射Bを実行したり、上死点直前のクランク角度θ2の時期に、騒音低減を目的としてプレ噴射Cを実行したり、上死点後のクランク角度θ3及びθ4の時期に、粒子状物質(以下、PMという)の低減や排気ガスの浄化促進を目的としてアフタ噴射D及びポスト噴射Eを実行したりするように構成されている。
パイロット噴射Bは、メイン噴射Aに対して大きく進角した時期に噴射することによって、燃料と空気との混合を促進させるものである。プレ噴射Cは、メイン噴射Aに先立って噴射することによって、メイン噴射Aでの着火時期の遅れを短縮するものである。アフタ噴射Dは、メイン噴射Aに対して近接した時期に噴射することによって、拡散燃焼を活性化させPMを再燃焼させる(PMを低減する)ものである。ポスト噴射Eは、メイン噴射Aに対して大きく遅角した時期に噴射することによって、実際の燃焼過程に寄与せずに未燃焼の燃料として後述するDPF50に供給するものである。DPF50に供給された未燃焼の燃料は後述するディーゼル酸化触媒53上で反応し、その反応熱によってDPF50内の排気ガス温度が上昇することになる。図3におけるグラフの山の高低は、大まかに言って各噴射段階A〜Eでの燃料噴射量の差異を表現している。
なお、図2に示すように、燃料タンク118には、燃料戻り管129を介して燃料供給ポンプ116が接続されている。円筒状のコモンレール120の長手方向の端部に、コモンレール120内の燃料の圧力を制限する戻り管コネクタ130を介して、コモンレール戻り管131が接続されている。すなわち、燃料供給ポンプ116の余剰燃料とコモンレール120の余剰燃料とが、燃料戻り管129及びコモンレール戻り管131を介して燃料タンク118に回収されることになる。
排気マニホールド71の排気下流側に接続された排気管77には、後述するターボ過給機100のタービンケース101と、排気ガス浄化装置の一例であるディーゼルパティキュレートフィルタ50(以下、DPFという)とが接続される。エンジン70の各気筒から排気マニホールド71に排出された排気ガスは、排気管77、ターボ過給機100及びDPF50を経由して、浄化処理をされてから外部に放出される。
図1に示すように、ターボ過給機100は、排気系と吸気系との間(実施形態では排気管77と吸気管76との間)に配置されていて、タービンホイール(図示省略)を内蔵したタービンケース101と、ブロアホイール(図示省略)を内蔵したコンプレッサケース102とを備えている。タービンケース101の排気ガス取入れ側に排気管77が接続され、タービンケース101の排気ガス排出側には、排気ガス排出管103を介してDPF50が接続される。エンジン70の各気筒から排気マニホールド71に排出された排気ガスは、ターボ過給機100のタービンケース101を経由してDPF50に送られる。
一方、コンプレッサケース102の給気取入れ側には、給気管104を介してエアクリーナ(図示省略)が接続される。コンプレッサケース102の給気排出側には、吸気管76を介して吸気マニホールド73が接続される。すなわち、エアクリーナによって除塵された外気は、コンプレッサケース102から、吸気管76及び吸気マニホールド73を介してエンジン70の各気筒に供給される。
図1に示すように、DPF50は、排気ガス中の粒子状物質(以下、PMという)等を捕集するためのものである。実施形態のDPF50は、耐熱金属材料製のケーシング51内にある略筒型のフィルタケース52に、例えば白金等のディーゼル酸化触媒53とスートフィルタ54とを直列に並べて収容したものである。フィルタケース52の排気上流側にディーゼル酸化触媒53が配置され、排気下流側にスートフィルタ54が配置される。スートフィルタ54は、排気ガスをろ過可能な多孔質隔壁にて区画された多数のセルを有するハニカム構造に構成されている。
ケーシング51の一側部には、排気管77のうち排気絞り装置82の排気下流側に連通する排気導入口55が設けられている。前記ケーシング51の一側部と、フィルタケース52の一側部は第1側壁板56及び第2側壁板57にて塞がれている。ケーシング51の他側部は第1蓋板59及び第2蓋板60にて塞がれている。両蓋板59,60の間は、フィルタケース52内に複数の連通管62を介して連通する排気音減衰室63に構成されている。また、第2蓋板60を略筒型の排気出口管61が貫通している。排気出口管61の外周面には、排気音減衰室63に向けて開口する複数の連通穴58が形成されている。排気出口管61及び排気音減衰室63等によって消音器64を構成している。
ケーシング51の一側部に形成された排気導入口55には排気ガス導入管65が挿入されている。排気ガス導入管65の先端は、ケーシング51を横断して排気導入口55と反対側の側面に突出している。排気ガス導入管65の外周面には、フィルタケース52に向けて開口する複数の連通穴66が形成されている。排気ガス導入管65のうち排気導入口55と反対側の側面に突出する部分は、これに着脱可能に螺着された蓋体67にて塞がれている。
DPF50には、検出手段の一例として、スートフィルタ54の詰まり状態を検出するDPF差圧センサ68が設けられている。DPF差圧センサ68は、DPF50内におけるスートフィルタ54の上流側と下流側との各排気圧の圧力差(入口側と出口側との排気ガス差圧)を検出するものである。この場合、排気ガス導入管65の蓋体67に、DPF差圧センサ68を構成する上流側排気圧センサ68aが装着され、スートフィルタ54と排気音減衰室63との間に、下流側排気圧センサ68bが装着されている。
なお、DPF50の上下流間の圧力差と、スートフィルタ54(DPF50)内のPM堆積量との間に特定の関連性があるから、DPF差圧センサ68にて検出される圧力差に基づき、DPF50内のPM堆積量が演算にて求められる。そして、PM堆積量の演算結果に基づき、コモンレール120を作動制御することにより、スートフィルタ54(DPF50)の再生制御が実行される。
上記の構成において、エンジン70からの排気ガスは、排気導入口55を介して排気ガス導入管65に入って、排気ガス導入管65に形成された各連通穴66からフィルタケース52内に噴出し、ディーゼル酸化触媒53からスートフィルタ54の順に通過して浄化処理される。排気ガス中のPMは、スートフィルタ54(各セル間の多孔質隔壁)に捕集される。ディーゼル酸化触媒53及びスートフィルタ54を通過した排気ガスは、消音器64を介して排気出口管61から機外に放出される。
排気ガスがディーゼル酸化触媒53及びスートフィルタ54を通過するに際して、排気ガス温度が再生可能温度(例えば約250〜300℃)を超えていれば、ディーゼル酸化触媒53の作用によって、排気ガス中のNO(一酸化窒素)が不安定なNO(二酸化窒素)に酸化される。そして、NOがNOに戻る際に放出するO(酸素)にて、スートフィルタ54に堆積したPMを酸化除去することにより、スートフィルタ54のPM捕集能力が回復する。すなわち、スートフィルタ54(DPF50)が再生するのである。
図1に示すように、排気系と吸気系との間(実施形態では排気マニホールド71と吸気マニホールド73との間)は、エンジン70の排気ガスの一部(EGRガス)を吸気マニホールド73に還流させるEGR装置90(排気ガス再循環装置)を介して接続されている。EGR装置90は、排気マニホールド71と吸気管76との間をつなぐ還流管路としての再循環排気ガス管91と、還流するEGRガスを冷却するEGRクーラ92と、再循環排気ガス管91を開閉してEGRガス量を調節するEGR弁93とを備えている。EGRクーラ92及びEGR弁93は、再循環排気ガス管91の中途部に設けられている。
上記の構成において、エアクリーナから吸気絞り装置81を介して吸気マニホールド73側に新気(外部空気)を供給する一方、排気マニホールド71から再循環排気ガス管91を介してEGRガスを吸気マニホールド73側に供給する。従って、エアクリーナからの新気と排気マニホールド71からのEGRガスとは、混合されて吸気マニホールド73に供給される。すなわち、エンジン70から排気マニホールド71に排出された排気ガスの一部が、吸気マニホールド73からエンジン70に還流されることによって、高負荷運転時の最高燃焼温度が低下し、エンジン70からのNOx(窒素酸化物)の排出量が低減されることになる。
(2).エンジンの制御関連の構成
次に、図2等を参照しながら、エンジン70の制御関連の構成を説明する。図2に示す如く、エンジン70における各気筒の燃料噴射バルブ119を作動させるECU11を備えている。ECU11は、各種演算処理や制御を実行するCPU31の他、各種データを予め固定的に記憶させたROM32、制御プログラムや各種データを書換可能に記憶するEEPROM33、制御プログラムや各種データを一時的に記憶するRAM34、時間計測用のタイマ35、及び入出力インターフェイス等を有しており、エンジン70又はその近傍に配置される。
ECU11の入力側には、少なくともコモンレール120内の燃料圧力を検出するレール圧センサ12、燃料ポンプ116を回転又は停止させる電磁クラッチ13、エンジン70の回転速度(クランク軸74のカムシャフト位置)を検出する回転速度検出手段としてのエンジン速度センサ14、インジェクタ115の燃料噴射回数(1行程の燃料噴射期間中の回数)を検出及び設定する噴射設定器15、アクセル操作具(図示省略)の操作位置を検出する負荷検出手段としてのスロットル位置センサ16、吸気系の吸気温度を検出する吸気温度センサ17、排気系の排気ガス温度を検出する排気温度センサ18、エンジン70の冷却水温度を検出する冷却水温度センサ19、コモンレール120内の燃料温度を検出する燃料温度センサ20、差圧検出手段84としての吸気圧センサ85及び排気圧センサ86、並びに、DPF差圧センサ68(上流側排気圧センサ68a及び下流側排気圧センサ68b)等が接続されている。
ECU11の出力側には、エンジン4気筒分の各燃料噴射バルブ119の電磁ソレノイドがそれぞれ接続されている。すなわち、コモンレール120に蓄えた高圧燃料が燃料噴射圧力、噴射時期及び噴射期間等を制御しながら、1行程中に複数回に分けて燃料噴射バルブ119から噴射されることによって、窒素酸化物(NOx)の発生を抑えると共に、すすや二酸化炭素等の発生も低減した完全燃焼を実行し、燃費を向上させるように構成されている。また、ECU11の出力側には、再循環排気ガス管91を開閉してEGRガス量を調節するEGR弁93、ECU11の故障を警告報知するECU故障ランプ22、及び、DPF50内における排気ガス温度の異常高温を報知する排気温度警告ランプ23等が接続されている。
ECU11は、エンジン速度センサ14にて検出される回転速度とスロットル位置センサ16にて検出されるスロットル位置とからエンジン70の出力トルクを求め、出力トルクと出力特性とを用いて目標燃料噴射量を演算し、当該演算結果に基づきコモンレール装置117が作動する燃料噴射制御を実行するように構成されている。なお、コモンレール装置117の燃料噴射量は、各燃料噴射バルブ119の開弁期間を調節して、各インジェクタ115の噴射期間を変更することによって調節される。また、エンジン70の出力トルク(負荷)は、コモンレール装置117の燃料噴射量を基準に求めてもよい。例えばレール圧センサ12及びエンジン速度センサ14の検出値から出力トルク(負荷)を算出してもよいし、各インジェクタ115の噴射期間から燃料噴射量を求めて、出力トルク(負荷)を推定してもよい。
ECU11のEEPROM33には、EGR弁93前後の基準差圧ΔPoを算出するための基準差圧マップM1と、基準EGR弁開度Lsを算出するための基準開度マップM2と、排気側での基準EGRガス流量Qgを算出するための基準流量マップM3と、差圧補正された目標EGR弁開度Laを算出するための目標開度マップM4とが予め記憶されている(図4〜図7参照)。
図4に示す基準差圧マップM1は、スロットル位置センサ16の検出値であるエンジン負荷LFと、エンジン速度センサ14の検出値であるエンジン回転速度Neとに応じた基準差圧ΔPoを規定するものである。実施形態では、エンジン負荷LFが0〜100%の範囲(例えば20%刻み)、エンジン回転速度Neが0〜3000rpmの範囲(例えば200rpm刻み)の場合において、基準差圧ΔPo(例えば0〜45kPaの範囲)が規定されている。
図5に示す基準開度マップM2は、エンジン負荷LFとエンジン回転速度Neとに応じた基準EGR弁開度Lsを規定するものである。実施形態では、エンジン負荷LFが0〜100%の範囲(例えば20%刻み)、エンジン回転速度Neが0〜3000rpmの範囲(例えば200rpm刻み)の場合において、基準EGR弁開度Ls(0〜100%の範囲)が規定されている。
図6に示す基準流量マップM3は、基準差圧マップM1を参照して得られる基準差圧ΔPoと、基準開度マップM2を参照して得られる基準EGR弁開度Lsとに応じた排気側での基準EGRガス流量Qseを規定するものである。また、図7に示す目標開度マップM4は、排気側での基準EGRガス流量Qseから圧力換算して得られる排気側での目標EGRガス流量Qgと、吸気圧センサ85及び排気圧センサ86の検出値から求まる実測差圧ΔPとに応じた目標EGR弁開度Laを規定するものである。
これら各マップM1〜M4は実験等にて求められる。例えば基準差圧マップM1及び基準開度マップM2は、エンジン70の試験結果から得られる。基準流量マップM3及び目標開度マップM4は単体計測で得られる。すなわち、吸排気マニホールド73,71とEGR装置90とがあれば、エンジン70自体を使わなくても、基準流量マップM3及び目標開度マップM4の計測は可能である。
(3).EGR弁の開閉制御の態様
次に、図8のフローチャートを参照しながら、ECU11によるEGR弁93の開閉制御の一例について説明する。実施形態のECU11は、エンジン回転速度Ne及びエンジン負荷LFだけでなく、エンジン70の吸排気の差圧ΔPもパラメータに用いて、EGR弁93の開閉制御を実行するように構成されている。図8のフローチャートにて示すアルゴリズムはEEPROM33に記憶されている。該アルゴリズムをRAM34に呼び出してからCPU31にて処理することによって、EGR弁93の開閉制御が実行される。
EGR弁93の開閉制御では、まず始めに、エンジン速度センサ14にて検出されたエンジン回転速度Ne、スロットル位置センサ16にて検出されたエンジン負荷LF、吸気圧センサ85の検出値Pri、及び、排気圧センサ86の検出値Preを所定タイミングにて(適宜時間毎に)読み込み(S01)、エンジン回転速度Neとエンジン負荷LFとから、基準差圧マップM1を参照してEGR弁93前後の基準差圧ΔPoを算出する(S02)。また同様に、前述の実測値Ne,LFから、基準開度マップM2を参照して基準EGR弁開度Lsを算出する(S03)。
次いで、先のステップで得られた基準差圧ΔPo及び基準EGR弁開度Lsから、基準流量マップM3を参照して、排気側での基準EGRガス流量Qseを算出した後(S04)、基準差圧ΔPoから分かる基準吸気圧Psi及び基準排気圧Pseを用いて、排気側での基準EGRガス流量Qseを吸気側での基準EGRガス流量Qsiに圧力換算する(S05)。これは、Pse×Qse=Psi×Qsi=Const.の状態方程式から求められる。
次いで、適宜時間毎に検出(サンプリング)した吸気圧センサ85及び排気圧センサ86の検出値を用いて、直近の複数回分の実測差圧ΔP、実測吸気圧Pri及び実測排気圧Preの単純移動平均を算出する(S06)。以下のステップにおいて説明する実測差圧ΔP、実測吸気圧Pri及び実測排気圧Preは、単純移動平均の値である。このようにして、エンジン70の駆動状態が過渡的であっても適正な目標EGR弁開度Laの算出が可能になっている。次いで、実測吸気圧Pri及び実測排気圧Preを用いて、吸気側での基準EGRガス流量Qsiを排気側での目標EGRガス流量Qgに圧力換算する(S07)。これは、Pri×Qg=Pri×Qsi=Const.の状態方程式から求められることになる。
次いで、ステップS07で求めた排気側での目標EGR弁流量Qgと、単純移動平均の値である実測差圧ΔPと、目標開度マップM4とに基づいて、差圧補正された目標EGR弁開度Laを算出し(S08)、該目標EGR弁開度Laの値に応じて、EGR弁93を開閉作動させるのである(S09)。
以上の説明から分かるように、EGR弁93の開閉制御において、排気マニホールド71と吸気マニホールド73との間の実測差圧ΔPをパラメータに含めることによって、EGR弁93の開度(目標EGR弁開度La)をいわばフィードフォワード的に補正できるから、例えばターボ過給機100やDPF50を備えるエンジン70において、ターボ過給機100の存在自体に起因してエンジン70の排気圧が上昇したり、DPF50内にPMが堆積してエンジン70の排気圧が上昇したりした場合であっても、エンジン70の吸気圧の変動を抑制して、最適なEGRガス量を確保できる。また、例えばエアクリーナが汚損してエンジン70の吸気圧が上昇した場合でも同様に、最適なEGRガス量を確保できる。すなわち、エンジン70の吸排気圧の変動に起因して、EGRガス量が変動するのを大幅に抑制できる。従って、黒煙(スモーク)の発生を抑制して、排気エミッションの低減に寄与できるという効果を奏する。
特に実施形態では、EGR弁93前後の基準差圧ΔPoから分かる基準吸排気圧Psi,Pseと、吸排気圧センサ85,86の検出結果である実測吸排気圧Pri,Preとを用いて、排気側での基準EGRガス流量Qseを排気側での目標EGRガス流量Qgに圧力換算するから、エンジン70の吸排気圧の変動によるEGRガス量の変動を、極めて高精度に制御でき、EGR弁93の開閉制御の精度が高まるという効果を奏する。その上、かかる圧力換算は状態方程式に沿った簡単な演算を実行するだけでよく、エンジン70の吸排気圧の変動によるEGRガス量の変動を高精度に制御できることになる。従って、簡単な制御で効果的に、EGR弁93の開閉制御精度の向上を図れるという効果を奏する。
更に、基準差圧マップM1及び基準開度マップM2は、エンジン70単独での試験結果から得られるし、基準流量マップM3及び目標開度マップM4は、吸排気系73,71とEGR装置90とがあれば、エンジン70自体を使わずとも特性計測が可能である。従って、手間のかかるソフトウェア設計(マップ設計)等の負担を軽減でき、コスト面でのメリットがある。その上、差圧検出手段84は、吸気マニホールド73の吸気圧を検出する吸気圧センサ85と、排気マニホールド71の排気圧を検出する排気圧センサ86とで構成されているから、EGR弁93の近傍で実測差圧ΔP、実測吸気圧Pri及び実測排気圧Preを計測するのに比べて計測誤差を少なくできる。従って、EGR弁93の開閉制御の精度向上に寄与するという効果を奏する。
(4).その他
本願発明は、前述の実施形態に限らず、様々な態様に具体化できる。各部の構成は図示の実施形態に限定されるものではなく、本願発明の趣旨を逸脱しない範囲で種々変更が可能である。
11 ECU
50 DPF
70 エンジン
71 排気マニホールド
73 吸気マニホールド
76 吸気管
77 排気管
84 差圧検出手段
85 吸気圧センサ
86 排気圧センサ
90 EGR装置
93 EGR弁
100 ターボ過給機

Claims (3)

  1. エンジンと、前記エンジンにおける排気系からの排気ガスの一部をEGRガスとして吸気系に還流させるEGR装置と、前記吸気系の吸気圧と前記排気系の排気圧との差圧を検出する差圧検出手段と、エンジン回転速度を検出する回転速度検出手段と、エンジン負荷を検出する負荷検出手段とを備えているエンジン装置において、
    前記回転速度検出手段及び前記負荷検出手段の検出結果との関係を基に、排気側での目標EGRガス流量を求め、前記排気側での目標EGRガス流量と前記差圧検出手段の検出結果との関係から、差圧補正された目標EGR弁開度を求め、前記EGR装置を構成するEGR弁を前記目標EGR弁開度に応じて作動させるにあたり、
    前記回転速度検出手段及び前記負荷検出手段の検出結果の関係から、排気側での基準EGRガス流量を求めた上で、前記EGR弁前後の基準差圧と前記差圧検出手段の検出結果とを用いて、前記排気側での基準EGRガス流量を前記排気側での目標EGRガス流量に圧力換算する、
    エンジン装置の排気ガス再循環システム。
  2. 前記EGR弁前後の基準差圧を設定した基準差圧マップと、基準EGR弁開度を設定した基準開度マップと、前記排気側での基準EGRガス流量を設定した基準流量マップと、前記目標EGR弁開度を設定した目標開度マップとを有しており、
    前記回転速度検出手段及び前記負荷検出手段の検出結果から、前記基準差圧マップと前記基準開度マップとを参照して、前記基準差圧と前記基準EGR弁開度とを各々算出し、
    前記基準差圧及び前記基準EGR弁開度から、前記基準流量マップを参照して前記排気側での基準EGRガス流量を算出し、
    前記EGR弁前後の基準差圧に基づき、前記排気側での基準EGRガス流量を吸気側での基準EGRガス量に圧力換算し、前記差圧検出手段の検出結果に基づき、前記吸気側での基準EGRガス流量を排気側での目標EGRガス流量に圧力換算し、
    前記排気側での目標EGRガス流量及び前記差圧検出手段の検出結果から、前記目標開度マップを参照して前記目標EGR弁開度を算出する、
    請求項1に記載したエンジン装置の排気ガス再循環システム。
  3. 前記差圧検出手段は、前記吸気系では吸気マニホールドの吸気圧を検出し、前記排気系では排気マニホールドの排気圧を検出するように構成されている、
    請求項1又は2に記載したエンジン装置の排気ガス再循環システム。
JP2011060804A 2011-03-18 2011-03-18 エンジン装置の排気ガス再循環システム Pending JP2012197681A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011060804A JP2012197681A (ja) 2011-03-18 2011-03-18 エンジン装置の排気ガス再循環システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011060804A JP2012197681A (ja) 2011-03-18 2011-03-18 エンジン装置の排気ガス再循環システム

Publications (1)

Publication Number Publication Date
JP2012197681A true JP2012197681A (ja) 2012-10-18

Family

ID=47180163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011060804A Pending JP2012197681A (ja) 2011-03-18 2011-03-18 エンジン装置の排気ガス再循環システム

Country Status (1)

Country Link
JP (1) JP2012197681A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150233326A1 (en) * 2012-07-18 2015-08-20 Nissan Motor Co., Ltd. Internal combustion engine
JP2017020362A (ja) * 2015-07-07 2017-01-26 トヨタ自動車株式会社 内燃機関の制御装置
CN107131062A (zh) * 2016-02-26 2017-09-05 罗伯特·博世有限公司 用于运行带有废气再循环部的内燃机的方法和装置
KR20180053104A (ko) * 2016-11-11 2018-05-21 현대자동차주식회사 엔진 시스템 제어 방법 및 장치
JP2019120204A (ja) * 2018-01-09 2019-07-22 株式会社Subaru エンジン制御装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62298654A (ja) * 1986-06-17 1987-12-25 Toyota Motor Corp 内燃機関の排気還流制御装置
JPH04252849A (ja) * 1991-01-29 1992-09-08 Nippon Soken Inc 内燃機関のegr弁制御装置
JPH11182356A (ja) * 1997-12-15 1999-07-06 Nissan Motor Co Ltd 内燃機関のegr制御装置
JP2000356158A (ja) * 1999-06-15 2000-12-26 Nissan Motor Co Ltd エンジンの制御装置
JP2005233000A (ja) * 2004-02-17 2005-09-02 Nissan Motor Co Ltd 内燃機関の排気還流装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62298654A (ja) * 1986-06-17 1987-12-25 Toyota Motor Corp 内燃機関の排気還流制御装置
JPH04252849A (ja) * 1991-01-29 1992-09-08 Nippon Soken Inc 内燃機関のegr弁制御装置
JPH11182356A (ja) * 1997-12-15 1999-07-06 Nissan Motor Co Ltd 内燃機関のegr制御装置
JP2000356158A (ja) * 1999-06-15 2000-12-26 Nissan Motor Co Ltd エンジンの制御装置
JP2005233000A (ja) * 2004-02-17 2005-09-02 Nissan Motor Co Ltd 内燃機関の排気還流装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150233326A1 (en) * 2012-07-18 2015-08-20 Nissan Motor Co., Ltd. Internal combustion engine
US9759165B2 (en) * 2012-07-18 2017-09-12 Nissan Motor Co., Ltd. Internal combustion engine
JP2017020362A (ja) * 2015-07-07 2017-01-26 トヨタ自動車株式会社 内燃機関の制御装置
CN107131062A (zh) * 2016-02-26 2017-09-05 罗伯特·博世有限公司 用于运行带有废气再循环部的内燃机的方法和装置
CN107131062B (zh) * 2016-02-26 2022-04-01 罗伯特·博世有限公司 用于运行带有废气再循环部的内燃机的方法和装置
KR20180053104A (ko) * 2016-11-11 2018-05-21 현대자동차주식회사 엔진 시스템 제어 방법 및 장치
KR101956030B1 (ko) 2016-11-11 2019-03-08 현대자동차 주식회사 엔진 시스템 제어 방법 및 장치
US10408137B2 (en) 2016-11-11 2019-09-10 Hyundai Motor Company Method and apparatus for controlling engine system
JP2019120204A (ja) * 2018-01-09 2019-07-22 株式会社Subaru エンジン制御装置

Similar Documents

Publication Publication Date Title
JP4961336B2 (ja) エンジンの排気浄化装置
JP5632223B2 (ja) エンジン装置の排気ガス再循環システム
JP5751784B2 (ja) 排気ガス浄化システム
EP3090155B1 (en) Exhaust gas control device for internal combustion engine mounted on vehicle
EP2940280B1 (en) Fuel-cetane-number estimation method and apparatus
JP4371045B2 (ja) 内燃機関の排気浄化装置
EP1722088B1 (en) Exhaust gas treatment system for internal combustion engine
WO2013073409A1 (ja) 内燃機関の排気浄化システム
JP2012197681A (ja) エンジン装置の排気ガス再循環システム
JP2009281144A (ja) 過給機付き内燃機関の制御装置
JP2010096050A (ja) 過給システムの異常検出装置
EP2143919B1 (en) Particulate filter regeneration system
JP2013144938A (ja) 内燃機関の排気浄化装置
JP5787083B2 (ja) 内燃機関の排気浄化装置
EP2527628B1 (en) Control device of an internal combustion engine
JP2006316743A (ja) 内燃機関の排気処理装置
WO2014125870A1 (ja) エンジンの排気浄化装置
JP2010090875A (ja) 内燃機関の排気浄化装置
EP3055524B1 (en) Exhaust gas control apparatus for an internal combustion engine and corresponding control method
JP2014005741A (ja) 内燃機関の排気浄化装置
AU2014333505A1 (en) Exhaust gas control apparatus for an internal combustion engine and corresponding control method
JP2020133401A (ja) 内燃機関の排気浄化装置
JP5815296B2 (ja) 内燃機関の排気浄化装置
JP2006105057A (ja) ディーゼルエンジンの排気浄化装置
JP6426064B2 (ja) エンジン

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160309