WO2014010684A1 - 熱線遮蔽分散体の製造方法および熱線遮蔽分散体並びに熱線遮蔽体 - Google Patents

熱線遮蔽分散体の製造方法および熱線遮蔽分散体並びに熱線遮蔽体 Download PDF

Info

Publication number
WO2014010684A1
WO2014010684A1 PCT/JP2013/069011 JP2013069011W WO2014010684A1 WO 2014010684 A1 WO2014010684 A1 WO 2014010684A1 JP 2013069011 W JP2013069011 W JP 2013069011W WO 2014010684 A1 WO2014010684 A1 WO 2014010684A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion
resin
heat ray
fine particles
ray shielding
Prior art date
Application number
PCT/JP2013/069011
Other languages
English (en)
French (fr)
Inventor
矢吹 佳世
東福 淳司
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to CN201380036712.2A priority Critical patent/CN104603225B/zh
Priority to EP13816048.6A priority patent/EP2873709B1/en
Priority to KR1020157001791A priority patent/KR101795191B1/ko
Priority to US14/414,365 priority patent/US10450471B2/en
Priority to JP2014524874A priority patent/JP6041161B2/ja
Publication of WO2014010684A1 publication Critical patent/WO2014010684A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/32Radiation-absorbing paints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D169/00Coating compositions based on polycarbonates; Coating compositions based on derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/004Reflecting paints; Signal paints

Definitions

  • the present invention relates to a heat ray shielding dispersion, a heat ray shield, and a method for producing the same using a near infrared shielding material that transmits light in the visible light region and absorbs light in the near infrared region.
  • Sun rays are roughly divided into three types: near infrared light (heat rays), visible light, and ultraviolet light.
  • the heat ray is a wavelength region that is perceived by the human body as heat energy, and causes a rise in indoor temperature in summer.
  • the ultraviolet region adversely affects the human body such as sunburn and skin cancer.
  • near-infrared rays As heat rays and to impart heat retention and heat insulation performance, it has been required to impart near-infrared absorbing ability to transparent substrates such as glass, polycarbonate resin, and acrylic resin.
  • Patent Document 1 on a transparent glass substrate, at least one selected from the group consisting of IIIa group, IVa group, Vb group, VIb group and VIIb group of the periodic table as the first layer from the substrate side.
  • a composite tungsten oxide film containing metal ions is provided, a transparent dielectric film is provided as a second layer on the first layer, and a group IIIa of the periodic table is provided as a third layer on the second transparent dielectric film,
  • a composite tungsten oxide film containing at least one metal ion selected from the group consisting of IVa group, Vb group, VIb group and VIIb group is provided, and the refractive index of the transparent dielectric film constituting the second layer Is made lower than the refractive index of the composite tungsten oxide film of the first layer and the third layer, and a heat ray-shielding glass that can be suitably used for a portion requiring high visible light transmittance and good heat ray shielding performance is proposed. ing.
  • Patent Document 2 a first dielectric film is provided as a first layer from the substrate side on a transparent glass substrate in the same manner as Patent Document 1, and the second layer is oxidized on the first layer.
  • a heat ray-shielding glass in which a tungsten film is provided and the second-layer dielectric film is provided as a third layer on the second layer.
  • Patent Document 3 a composite tungsten oxide film containing the same metal element is provided as a first layer from the substrate side on the transparent substrate by the same method as Patent Document 1, and the first layer is formed on the first layer.
  • Heat ray blocking glass having a transparent dielectric film as two layers has been proposed.
  • Patent Document 4 tungsten trioxide (WO 3 ), molybdenum trioxide (MoO 3 ), niobium pentoxide (Nb 2 O 5 ), and tantalum pentoxide containing additive elements such as hydrogen, lithium, sodium, and potassium.
  • a metal oxide film selected from one or more of (Ta 2 O 5 ), vanadium pentoxide (V 2 O 5 ) and vanadium dioxide (VO 2 ) is coated on a glass sheet by CVD or spraying and 250
  • a solar control glass sheet having solar light shielding properties formed by thermal decomposition at about ° C. has been proposed.
  • Patent Document 5 a tungsten oxide obtained by hydrolyzing tungstic acid is used, and an organic polymer having a specific structure called polyvinylpyrrolidone is added to the tungsten oxide, so that when sunlight is irradiated, Is absorbed by the tungsten oxide to generate excited electrons and holes, and the appearance of pentavalent tungsten is remarkably increased by a small amount of ultraviolet light, and the coloring reaction is accelerated.
  • the property that the pentavalent tungsten is oxidized to hexavalent very quickly by blocking the light and the decoloring reaction becomes fast, and the coloring and decoloring reaction to sunlight is fast.
  • a sunlight-modulable light-insulating material that has an absorption peak at 1250 nm and can block near-infrared rays of sunlight.
  • tungsten trichloride or its solvent is obtained by dissolving tungsten hexachloride in alcohol and evaporating the solvent as it is, or evaporating the solvent after heating to reflux and then heating at 100 ° C. to 500 ° C.
  • a powder composed of a hydrate or a mixture of both can be obtained, an electrochromic device can be obtained using the tungsten oxide fine particles, and when a proton is introduced into the film, a multilayer stack is formed. It has been proposed that optical characteristics can be changed.
  • Patent Document 7 a meta-type ammonium tungstate and various water-soluble metal salts are used as raw materials, and heated to about 300 to 700 ° C., the inert gas (addition amount; about MxWO3 (M; metal element such as alkali group Ia group, IIa group, rare earth, 0 ⁇ x ⁇ 1) by supplying hydrogen gas to which 50 vol% or more or water vapor (added amount; about 15 vol% or less) is added
  • MxWO3 M
  • water vapor added amount; about 15 vol% or less
  • Patent Document 8 discloses a near-infrared shielding material fine particle dispersion in which near-infrared shielding material fine particles composed of tungsten oxide fine particles and / or composite tungsten oxide fine particles are dispersed in a medium such as resin or glass.
  • a near-infrared shielding body produced from a dispersion, a method for producing the above-mentioned near-infrared shielding material fine particles, and near-infrared shielding material fine particles have been proposed.
  • the near-infrared shielding bodies (heat ray shielding glass) described in Patent Documents 1 to 3 are mainly sputtering, vapor deposition, ion plating, and chemical vapor deposition (CVD). Since it is manufactured by a method using a dry method such as a vacuum film formation method, there is a problem that a large manufacturing apparatus is required and the manufacturing cost is increased. In addition, since the near-infrared shielding base material is exposed to high-temperature plasma or needs to be heated after film formation because it is manufactured by the vacuum film forming method, a film or the like is used instead of glass. In the case of using the above resin as a base material, it was necessary to separately examine the film forming conditions on equipment.
  • the near-infrared shielding body (solar control glass sheet) described in Patent Document 4 forms a metal oxide film as a raw material on glass by a CVD method or a combination of a spray method and a thermal decomposition method. Since the precursor raw material is expensive and decomposes at high temperature, it is necessary to separately examine the film forming conditions when using a resin such as a film instead of a glass sheet as a base material. .
  • the sunlight-modulable light insulating material described in Patent Document 5 and the electrochromic element described in Patent Document 6 are materials that change their color tone by ultraviolet rays or a potential difference, and thus have a complicated film structure. There is a problem that it is difficult to apply to application fields where change is not desired.
  • Patent Document 7 describes a method for preparing tungsten bronze, there is no description of the particle diameter and optical characteristics of the obtained powder. This is because, in Patent Document 7, tungsten bronze is considered to be an electrolysis device, a fuel cell electrode material, and an organic synthesis catalyst material, and the above-described near-infrared shield is not used.
  • Patent Document 8 proposes tungsten oxide fine particles and / or composite tungsten oxide fine particles used for the production of a near-infrared shield, and these oxide fine particles have excellent visible light transmittance and good near infrared rays. Has a shielding effect. For this reason, it attracts attention as a near-infrared shield that is suitably used in the fields of various buildings and vehicle window materials. However, the heat and heat resistance of these composite tungsten oxide particles may not be sufficiently satisfied, and there is still room for improvement.
  • the present invention has been made paying attention to such problems, and the problem is that a heat ray shielding dispersion and a heat ray shield in which fine particles of heat ray shielding material having excellent moisture and heat resistance are dispersed in a medium. And providing a manufacturing method thereof.
  • the first invention of the present invention is One or more types represented by the general formula M Y WO Z (0.001 ⁇ Y ⁇ 1.0, 2.2 ⁇ Z ⁇ 3.0), and the M element is selected from Cs, Rb, K, and Tl And a composite tungsten oxide fine particle dispersion liquid in which composite tungsten oxide fine particles having a hexagonal crystal structure are dispersed in a dispersion medium, and the dispersion particle diameter of the composite tungsten oxide fine particles is adjusted to 1 nm to 800 nm.
  • the zinc hydroxide fine particle dispersion is added to and mixed with the composite tungsten oxide fine particle dispersion, and the zinc hydroxide fine particles are 0.1 parts by weight or more and 100 parts by weight with respect to 100 parts by weight of the composite tungsten oxide fine particles.
  • the second invention is Removing the dispersion medium from the first mixed dispersion to produce a dispersion powder; Mixing and dispersing the dispersed powder in a predetermined medium to produce a second mixed dispersion; And a step of producing a heat ray shielding dispersion by molding and solidifying the second mixed dispersion.
  • the third invention is One or more types represented by the general formula M Y WO Z (0.001 ⁇ Y ⁇ 1.0, 2.2 ⁇ Z ⁇ 3.0), and the M element is selected from Cs, Rb, K, and Tl
  • the composite tungsten oxide fine particles having a hexagonal crystal structure and zinc hydroxide are used in an amount of 0.1 parts by weight or more with respect to 100 parts by weight of the composite tungsten oxide fine particles.
  • the fourth invention is: Removing the dispersion medium from the first mixed dispersion to produce a dispersion powder; Mixing and dispersing the dispersed powder in a predetermined medium to produce a second mixed dispersion; And a step of producing a heat ray shielding dispersion by molding and solidifying the second mixed dispersion.
  • the method for producing a heat ray shielding dispersion according to the third aspect of the invention is: One or more types represented by the general formula M Y WO Z (0.001 ⁇ Y ⁇ 1.0, 2.2 ⁇ Z ⁇ 3.0), and the M element is selected from Cs, Rb, K, and Tl And composite tungsten oxide fine particles having a hexagonal crystal structure are dispersed in a dispersion medium, and the dispersed particle diameter of the composite tungsten oxide fine particles is adjusted to 1 nm or more and 800 nm or less.
  • a step of producing a dispersion Removing the dispersion medium from the first composite tungsten oxide fine particle dispersion to produce a composite tungsten oxide fine particle dispersion; Mixing and dispersing the composite tungsten oxide fine particle dispersed powder in a predetermined medium to produce a second composite tungsten oxide fine particle dispersion; Dispersing zinc hydroxide in a dispersion medium, producing a first zinc hydroxide fine particle dispersion in which the dispersed particle diameter of the zinc hydroxide is adjusted to 1 nm or more and 800 nm or less, removing the dispersion medium from the dispersion, Producing a zinc hydroxide fine particle dispersed powder; Removing the dispersion medium from the first zinc hydroxide fine particle dispersion to produce a zinc hydroxide fine particle dispersion; Mixing and dispersing the zinc hydroxide fine particle dispersion in a predetermined medium to produce a second zinc hydroxide fine particle dispersion; A step of mixing the second composite tungsten oxide
  • the sixth invention is: A heat ray shielding dispersion produced by the method for producing a heat ray shielding dispersion according to any one of the first to fifth inventions.
  • the seventh invention The heat ray shielding dispersion according to the sixth aspect, wherein the medium is resin or glass.
  • the eighth invention The medium is polyethylene resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinyl alcohol resin, polystyrene resin, polypropylene resin, ethylene vinyl acetate copolymer, polyester resin, polyethylene terephthalate resin, fluorine resin, polycarbonate resin, acrylic resin, It is one or more types selected from polyvinyl butyral resin, It is a heat ray shielding dispersion as described in 6th invention characterized by the above-mentioned.
  • the ninth invention The heat ray shielding dispersion according to any one of the sixth to eighth inventions is provided on one side or both sides of a predetermined base material.
  • the tenth invention is The heat ray shielding dispersion according to the ninth aspect, wherein the heat ray shielding dispersion is formed in a plate shape, a film shape, or a thin film shape.
  • the eleventh invention is The heat ray shielding body according to the ninth or tenth invention, wherein the base material is resin or glass.
  • the twelfth invention is The base material is polyethylene resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinyl alcohol resin, polystyrene resin, polypropylene resin, ethylene vinyl acetate copolymer, polyester resin, polyethylene terephthalate resin, fluorine resin, polycarbonate resin, acrylic resin.
  • the heat ray shield according to any one of the ninth to eleventh inventions wherein the heat ray shield is one or more of polyvinyl butyral resins.
  • the thirteenth invention is When the visible light transmittance is 70% or more and the solar transmittance is 40% or less, the change in the visible light transmittance after the wet heat resistance evaluation is 2% or less, the change in the solar transmittance is 4% or less, and the haze value
  • the heat ray shielding body according to any one of the ninth to twelfth inventions characterized in that the change of is not more than 0.5%.
  • the fourteenth invention is And a step of coating the first mixed dispersion according to the first or third invention on a predetermined substrate.
  • the fifteenth invention And a step of providing a molded solid product of the second mixed dispersion according to the second or fourth invention on a predetermined base material.
  • the sixteenth invention is Providing a molded solidified product, which is a mixture of the second composite tungsten oxide fine particle dispersion described in the fifth invention and the second zinc hydroxide fine particle dispersion, on a predetermined substrate.
  • the manufacturing method of the heat ray shielding body characterized by these.
  • the seventeenth invention The method of manufacturing a heat ray shield according to any one of the fourteenth to sixteenth inventions, wherein the base material is resin or glass.
  • the eighteenth invention The base material is polyethylene resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinyl alcohol resin, polystyrene resin, polypropylene resin, ethylene vinyl acetate copolymer, polyester resin, polyethylene terephthalate resin, fluorine resin, polycarbonate resin, acrylic resin.
  • the heat ray shielding dispersion and heat ray shielding body according to the present invention are superior in heat and moisture resistance compared to the heat ray shielding dispersion and heat ray shielding body according to the prior art, and even after being exposed to high temperature and high humidity.
  • the transparency was high and the decrease in the near infrared absorption function was suppressed.
  • the present invention is a heat ray shielding dispersion that is excellent in moisture and heat resistance and has high transparency even after being exposed to high temperature and high humidity, and the deterioration of the near infrared absorption function is suppressed, and the heat ray shielding dispersion.
  • the heat and moisture resistance means that the heat ray shielding dispersion or the heat ray shielding material is exposed to a high temperature and high humidity condition of, for example, 85 ° C. and 90% RH, and the visible light transmittance is reduced as compared with before the exposure. It means that deterioration such as increase in solar transmittance and increase in haze value is suppressed. That is, it means that the heat ray shielding dispersion or heat ray shield has durability against high temperature and high humidity conditions.
  • Composite tungsten oxide fine particles In general, it is known that a material containing free electrons exhibits a reflection / absorption response to electromagnetic waves in the vicinity of a solar ray region having a wavelength of 200 nm to 2600 nm by plasma vibration. When the powder of such a substance is a fine particle smaller than the wavelength of light, geometric scattering in the visible light region (wavelength 380 nm to 780 nm) is reduced, and transparency in the visible light region is obtained.
  • WO 3 is less absorption reflection characteristics in the near infrared region, is not effective as a near-infrared-absorbing material.
  • tungsten trioxide having oxygen vacancies or so-called tungsten bronze obtained by adding a positive element such as Na to tungsten trioxide is a conductive material and a material having free electrons. Furthermore, the analysis of single crystals of these materials suggests the response of free electrons to light in the infrared region.
  • the present inventors have found that the composition range of tungsten and oxygen is particularly effective as a near-infrared absorbing material when the composition range is in a specific range.
  • the fine particles having a near-infrared absorption function applied to the present invention are represented by the general formula M Y WO Z (0.001 ⁇ Y ⁇ 1.0, 2.2 ⁇ Z ⁇ 3.0), and are hexagonal crystals. It is a composite tungsten oxide fine particle having a crystal structure.
  • the composite tungsten oxide fine particles function effectively as a heat ray absorbing component when applied to a heat ray shielding dispersion or a heat ray shielding body.
  • the composite tungsten oxide fine particles represented by the general formula M Y WO Z (0.001 ⁇ Y ⁇ 1.0, 2.2 ⁇ Z ⁇ 3.0) and having a hexagonal crystal structure for example, M
  • M examples thereof include composite tungsten oxide fine particles in which the element contains one or more of Cs, Rb, K, and Tl.
  • the amount of additive element M added is preferably 0.1 or more and 0.5 or less, and more preferably around 0.33. This is because the value theoretically calculated from the hexagonal crystal structure is 0.33, and preferable optical characteristics can be obtained with the addition amount before and after this.
  • Typical examples include Cs 0.33 WO 3 , Rb 0.33 WO 3 , K 0.33 WO 3 , Tl 0.33 WO 3, etc., and useful heat rays as long as Y and Z fall within the above-mentioned ranges. Absorption characteristics can be obtained.
  • the near-infrared absorbing material containing the composite tungsten oxide fine particles according to the present invention absorbs a large amount of light in the near-infrared region, particularly in the vicinity of a wavelength of 900-2200 nm. Many.
  • the dispersed particle diameter of the composite tungsten oxide fine particles is larger than 800 nm, the visible light is shielded. Therefore, it is difficult to efficiently shield near infrared rays while maintaining the transparency in the visible light region.
  • the dispersed particle diameter is preferably 200 nm or less, and preferably 100 nm or less. This is because when the dispersed particle size of the fine particles is large, light in the visible light region of 400 to 780 nm is scattered by geometrical scattering or diffraction scattering to become a frosted glass, and clear transparency is impossible.
  • the dispersed particle diameter is 200 nm or less, the above-mentioned scattering is reduced and a Mie scattering or Rayleigh scattering region is obtained.
  • the dispersed particle diameter decreases to the Rayleigh scattering region, the scattered light decreases in inverse proportion to the sixth power of the dispersed particle diameter, so that the scattering is reduced and the transparency is improved as the dispersed particle diameter decreases.
  • the thickness is 100 nm or less, the scattered light is preferably very small. From the viewpoint of avoiding light scattering, it is preferable that the dispersed particle size is small. If the dispersed particle size is 1 nm or more, industrial production is easy.
  • the composite tungsten oxide fine particles have a very high heat ray absorption capacity per unit weight, which is about 4 to 10 times less than ITO (indium tin oxide) or ATO (antimony tin oxide). To demonstrate its effect.
  • Zinc hydroxide applied to the present invention is added for the purpose of improving the heat-and-heat resistance of the heat-ray shielding dispersion and the heat-ray shielding body and suppressing changes in optical properties when used for a long period of time.
  • Zinc hydroxide may be produced by a known method, but commercially available products can also be used. And what is necessary is just to have a purity of 95% or more.
  • the dispersed particle diameter of the zinc hydroxide fine particles is larger than 800 nm as in the case of the composite tungsten oxide fine particles described above, visible light is shielded, so that the transparency in the visible light region is maintained. It is difficult to shield near infrared rays efficiently.
  • the dispersed particle diameter is preferably 200 nm or less, and preferably 100 nm or less.
  • the scattered light is preferably very small. From the viewpoint of avoiding light scattering, it is preferable that the dispersed particle size is small. If the dispersed particle size is 1 nm or more, industrial production is easy.
  • the mixing ratio of the composite tungsten oxide fine particles and the zinc hydroxide fine particles is preferably in the range of 0.1 to 100 parts by weight of the zinc hydroxide fine particles with respect to 100 parts by weight of the composite tungsten oxide fine particles. More preferred is a range of from 50 parts by weight to 50 parts by weight. If the addition amount of the zinc hydroxide fine particles is in the above range, the composite tungsten oxide fine particles have the effect of improving the heat and moisture resistance, and the mechanical properties and optical properties of the produced heat ray shielding dispersion and heat ray shielding member are improved. This is because the characteristics are not adversely affected.
  • a method for mixing the composite tungsten oxide fine particles and the zinc hydroxide fine particles will be specifically described below with reference to examples ⁇ 1> to ⁇ 4>.
  • ⁇ 1> A method of mixing and stirring a composite tungsten oxide fine particle dispersion and a zinc hydroxide fine particle dispersion, which have been adjusted in advance to a predetermined dispersed particle size using a medium stirring mill or the like.
  • ⁇ 2> A method in which composite tungsten oxide fine particles and zinc hydroxide fine particles are mixed and then loaded into a medium stirring mill or the like together with an appropriate dispersion medium, and both the fine particles are mixed and stirred and the dispersed particle size is adjusted simultaneously. .
  • ⁇ 3> A method of dispersing composite tungsten oxide fine particles and zinc hydroxide fine particles in a predetermined medium.
  • ⁇ 4> Producing a master batch in which composite tungsten oxide fine particles and zinc hydroxide fine particles are dispersed in a high concentration in a raw material resin in advance, and mixing the master batch with an appropriate resin to obtain a predetermined concentration. Method to use after adjusting the dilution.
  • the dispersion medium of the composite tungsten oxide fine particles and the zinc hydroxide fine particles according to the methods ⁇ 1> and ⁇ 2> described above is not particularly limited, and when a heat ray shielding dispersion or a heat ray shield described later is manufactured. It is possible to select according to the resin to be blended.
  • dispersion medium examples include water, ethanol, propanol, butanol, isopropyl alcohol, isobutyl alcohol, diacetone alcohol, and other alcohols, methyl ether, ethyl ether, propyl ether, and other ethers, esters, acetone, methyl ethyl ketone, Various organic solvents such as ketones such as diethyl ketone, cyclohexanone, and methyl isobutyl ketone can be used. Moreover, you may adjust pH by adding an acid and an alkali as needed. Furthermore, in order to further improve the dispersion stability of the fine particles, various surfactants, coupling agents and the like can be added.
  • the method of mixing the composite tungsten oxide fine particles and the zinc hydroxide fine particles according to the above methods ⁇ 3> and ⁇ 4> will be described later by mixing the composite tungsten oxide fine particles, the zinc hydroxide fine particles and an appropriate resin.
  • the heat ray shielding dispersion and the heat ray shielding body are directly manufactured.
  • the single fine particle or mixture of composite tungsten oxide fine particles and zinc hydroxide fine particles is dispersed inside the medium, the single fine particles or mixture is permeated from the surface of the medium. Just do it.
  • each individual fine particle or mixture of the composite tungsten oxide fine particles and zinc hydroxide fine particles is directly added to a molten thermoplastic resin heated to a melting temperature or higher and uniformly melt mixed.
  • a method for dispersing both the fine particles in the resin is not particularly limited, and for example, ultrasonic dispersion, a medium stirring mill, a ball mill, a sand mill, or the like can be used.
  • the fine particles by the collision of the fine particles simultaneously with the dispersion of the fine particles in the dispersion medium also proceed, and the particles can be further finely dispersed (that is, pulverized / dispersed). Distributed).
  • the method for producing a masterbatch according to the above method ⁇ 4> is not particularly limited.
  • a dispersion of composite tungsten oxide fine particles, a dispersion of zinc hydroxide fine particles, and a thermoplastic resin powder By uniformly melting and mixing the pellets and other additives as necessary while removing the dispersion medium, the mixture can be prepared as a mixture in which fine particles are uniformly dispersed in the thermoplastic resin.
  • the composite tungsten oxide fine particles and / or zinc hydroxide fine particles are dispersed at a high concentration in the resin by melting and kneading the above additives with a pent type uniaxial or biaxial extruder and processing into pellets. Then, you may perform the manufacturing method of the masterbatch which concerns on the method of ⁇ 4>.
  • (B) A dispersion of composite tungsten oxide fine particles produced by the method of “(3) Mixing of composite tungsten oxide fine particles and zinc hydroxide fine particles, ⁇ 1> ⁇ 2>” and zinc hydroxide fine particles described above. Using a method of removing the dispersion medium with the dispersion by a known method, and uniformly melting and mixing the obtained fine particles, the granules or pellets of the thermoplastic resin, and if necessary, other additives Molded and solidified to produce a heat ray shielding dispersion in which fine particles are uniformly dispersed in a thermoplastic resin to obtain a heat ray shielding dispersion.
  • the composite tungsten oxide fine particles and the zinc hydroxide fine particles produced by the method of “(3) Mixing of composite tungsten oxide fine particles and zinc hydroxide fine particles, ⁇ 3> ⁇ 4>” described above are uniform.
  • a heat ray shielding dispersion which is a dispersed thermoplastic resin, is formed into a plate shape, a film shape, or a thin film shape by a predetermined method to obtain a heat ray shielding dispersion.
  • the liquid is coated on a substrate to obtain a heat ray shielding dispersion.
  • This method can be applied to a material having a low heat-resistant temperature such as a resin, and is inexpensive because it does not require a large-scale apparatus during production.
  • a resin is applied to a dispersion of composite tungsten oxide fine particles and zinc hydroxide fine particles produced by the method of “(3) Mixing of composite tungsten oxide fine particles and zinc hydroxide fine particles, ⁇ 1> ⁇ 2>”.
  • a dispersion containing composite tungsten oxide fine particles and zinc hydroxide fine particles can be formed by coating the substrate surface, evaporating the dispersion medium, and curing the resin by a predetermined method.
  • the composite tungsten oxide fine particles and the zinc hydroxide fine particles produced by the method of “(3) Mixing of composite tungsten oxide fine particles and zinc hydroxide fine particles, ⁇ 3> ⁇ 4>” directly into the resin.
  • a coating method, a screen printing method, a blade coating method, or the like can be used.
  • a layer containing composite tungsten oxide fine particles formed by these coating methods is produced by a dry method such as sputtering, vapor deposition, ion plating, and chemical vapor deposition (CVD), or by a spray method.
  • CVD chemical vapor deposition
  • the composite tungsten oxide fine particles are conductive materials, and therefore, when the fine particles are connected to form a continuous film, they absorb and reflect radio waves from a mobile phone or the like. And may interfere.
  • the composite tungsten oxide fine particles are dispersed using, for example, a bead mill and dispersed in the matrix as fine particles, each particle is dispersed in an isolated state, so that radio wave transmission is exhibited. And can be versatile.
  • Examples of the medium used in the above (A) to (D) and the appropriate base material described above include a film, a resin, glass, and the like. However, when using these materials as a base material, it is calculated
  • a resin generally, a colorless and transparent resin having transparency and low scattering is suitable, and a resin suitable for the application may be selected.
  • polyethylene resin polyvinyl chloride resin, polyvinylidene chloride resin, polyvinyl alcohol resin, polystyrene resin, polypropylene resin, ethylene vinyl acetate copolymer, polyester resin, polyethylene terephthalate (PET) resin, fluorine resin, polycarbonate resin , Acrylic resin, polyvinyl butyral resin, etc., among which polyethylene terephthalate resin is preferred.
  • PET polyethylene terephthalate
  • fluorine resin polycarbonate resin
  • Acrylic resin polyvinyl butyral resin, etc., among which polyethylene terephthalate resin is preferred.
  • the surface thereof may be subjected to surface treatment for the purpose of improving the binding property with the resin binder
  • typical treatment methods include corona surface treatment and plasma treatment.
  • Discharge treatment such as sputtering treatment, flame treatment, metal sodium treatment, primer layer coating treatment and the like.
  • a previously colored medium or base material, or a shaped medium or base material can be used.
  • An adhesive layer and a release film layer may be laminated on the adhesive surface in order to affix a dispersion having a shape such as a resin or a film to a substrate such as glass.
  • a film that is easily softened by heat, such as a dryer, may be used so that it can be easily attached to a curved surface like a back window of an automobile.
  • an ultraviolet shielding agent is added to the adhesive, it is possible to prevent ultraviolet degradation of the film or resin.
  • the ultraviolet absorber include benzophenone ultraviolet absorbers, benzotriazole ultraviolet absorbers, CeO 2 , TiO 2 , and ZnO.
  • Examples of the resin binder used for the medium and the substrate used in the above (A) to (D) include ultraviolet curable resin, thermosetting resin, electron beam curable resin, room temperature curable resin, and thermoplastic resin depending on the purpose. Can be selected. Specifically, thermoplastic resins such as acrylic resins, thermosetting resins such as epoxy resins, and the like can be used.
  • an inorganic binder can also be used for the medium and the base material used in the above (A) to (D).
  • the kind of the inorganic binder is not particularly limited. Examples of the inorganic binder include metal alkoxides of silicon, zirconium, titanium, or aluminum, partial hydrolysis-condensation polymerization products thereof, or organosilazanes.
  • the substrate heating temperature after application of the dispersion is set to 100 ° C. or higher and lower than 200 ° C.
  • the heating temperature is preferably 100 ° C. or higher. More preferably, it is 150 ° C. or higher.
  • the heating temperature is preferably less than 200 ° C.
  • the film obtained on the transparent substrate has a film structure in which only the composite tungsten oxide fine particles and zinc hydroxide fine particles are deposited. And this film
  • membrane shows the heat ray shielding effect even if it is as it is.
  • a coating film containing an inorganic binder such as a metal alkoxide of silicon, zirconium, titanium, or aluminum or a partial hydrolysis-condensation polymer thereof, or a resin binder may be applied onto the film to form a multilayer film.
  • the coating liquid component is formed to fill the gap where the first layer of tungsten oxide particles are deposited, so that the haze of the film is reduced and the visible light transmittance is improved.
  • the binding property of the fine particles to the base material is improved.
  • FIG. 1 is a schematic cross-sectional view of the heat ray shielding dispersion and heat ray shielding body of the present embodiment.
  • indicates composite tungsten oxide fine particles
  • indicates zinc hydroxide fine particles
  • a plain portion indicates a medium
  • a hatched portion indicates a substrate.
  • the form of the heat ray shielding dispersion is such that both composite tungsten oxide fine particles and zinc hydroxide fine particles are dispersed and contained in the medium. Such an example is shown in FIG.
  • a medium having mechanical strength it is of course possible to use a heat ray shield without using a substrate.
  • a dispersion containing both composite tungsten oxide fine particles and zinc hydroxide fine particles is provided on one or both sides of an appropriate base material to be described later, for example, as a solidified product. Such an example is shown in FIG.
  • the composite tungsten oxide fine particles and the zinc hydroxide fine particles by containing the composite tungsten oxide fine particles and the zinc hydroxide fine particles, it is possible to maintain absorption of near infrared rays from sunlight and to manufacture by a simple method. It has become possible to provide a heat ray shielding dispersion and a heat ray shielding body that have good heat and moisture resistance and are low in cost.
  • the heat ray shielding dispersion and heat ray shield of the present invention are used for indoor display such as automotive glass, side glass and rear glass, railcar door glass and window glass, indoor door glass, window glass and indoor door glass in buildings, etc. It can be used for various applications such as a showcase and a show window.
  • the visible light transmittance and the solar transmittance were measured by the transmittance of light having a wavelength of 200 to 2500 nm using a spectrophotometer manufactured by Hitachi, Ltd. and calculated according to JIS R 3106.
  • the solar radiation transmittance is an index indicating the heat ray shielding performance of the heat ray shielding dispersion and the heat ray shielding member.
  • the haze value of the film was measured based on JIS K 7105 using HM-150 manufactured by Murakami Color Research Laboratory.
  • the dispersed particle size of the fine particles was measured using a Nikkiso Microtrac particle size distribution meter.
  • Evaluation of the heat and heat resistance of the change in optical properties of the heat ray shield is performed by exposing the test sample (heat ray shield) to a constant temperature and humidity chamber set at 85 ° C. and 90% RH for 7 days, before and after the accelerated heat and heat resistance test.
  • the measurement was performed by measuring changes in visible light transmittance, solar transmittance, and haze value.
  • Example 1 20 parts by weight of Cs 0.33 WO 3 fine particles, 70 parts by weight of 4-methyl-2-pentanone as a dispersion medium, and 10 parts by weight of a dispersing agent for fine particle dispersion were mixed, and dispersion treatment was performed with a medium agitating mill. A dispersion of Cs 0.33 WO 3 fine particles was prepared (liquid A). Similarly, 20 parts by weight of zinc hydroxide fine particles, 70 parts by weight of 4-methyl-2-pentanone as a dispersion medium, and 10 parts by weight of a dispersing agent for fine particle dispersion are mixed and subjected to dispersion treatment with a medium stirring mill to obtain an average dispersed particle size.
  • An 80 nm zinc hydroxide fine particle dispersion was prepared (liquid B). And the liquids A and B, after the zinc hydroxide particles with respect to Cs 0.33 WO 3 fine particles 100 parts by weight were mixed to obtain 10 parts by weight, the inorganic binder of the mixture of (100% solids) The mixture was diluted with 4-methyl-2-pentanone and mixed well so that the ratio was 30% to obtain a coating solution.
  • This coating solution was applied and formed into a film on a base material (inorganic glass) using a bar coater. This film was dried at 180 ° C. for 30 minutes, and the dispersion medium was evaporated to be cured, whereby a heat ray shield according to Example 1 was manufactured.
  • Table 1 shows optical characteristics of the manufactured heat ray shield.
  • the manufactured heat ray shield was used as a test sample, exposed to an environment of 85 ° C. and 90% RH for 7 days, and the visible light transmittance, solar transmittance, and haze value after the accelerated heat and heat resistance test were measured. And the change of the visible light transmittance
  • Example 2 20 parts by weight of Rb 0.33 WO 3 fine particles, 70 parts by weight of 4-methyl-2-pentanone as a dispersion medium, and 10 parts by weight of a fine particle dispersing agent are mixed, and subjected to dispersion treatment with a medium stirring mill.
  • a dispersion of Rb 0.33 WO 3 fine particles was prepared (C solution).
  • the C solution and the B solution prepared in Example 1, Rb 0.33 WO 3 after zinc hydroxide particles with respect to particle 100 parts by weight were mixed to obtain 10 parts by weight, the inorganic binder of the mixed solution (
  • the coating solution was diluted with 4-methyl-2-pentanone and mixed well so that the ratio of the solid content was 100%.
  • This coating solution was applied and formed into a film on a base material (inorganic glass) using a bar coater. This film was dried at 180 ° C. for 30 minutes, and the dispersion medium was evaporated and cured to produce a heat ray shield according to Example 2.
  • Table 1 shows optical characteristics of the manufactured heat ray shield. The manufactured heat ray shield was used as a test sample, exposed to an environment of 85 ° C. and 90% RH for 7 days, and the visible light transmittance, solar transmittance, and haze value after the accelerated heat and heat resistance test were measured. Table 1 shows the results before and after the accelerated heat and heat resistance test.
  • Example 3 20 parts by weight of K 0.33 WO 3 fine particles, 70 parts by weight of 4-methyl-2-pentanone as a dispersion medium, and 10 parts by weight of a fine particle dispersing agent are mixed and subjected to dispersion treatment with a medium stirring mill, and an average dispersed particle diameter of 80 nm.
  • a dispersion of K 0.33 WO 3 fine particles was prepared (Liquid D).
  • the D solution and B solution prepared in Example 1 K 0.33 WO 3 after the zinc particles hydroxide were mixed to obtain 10 parts by weight with respect to particle 100 parts by weight, the inorganic binder of the mixed solution ( The coating solution was diluted with 4-methyl-2-pentanone and mixed well so that the ratio of the solid content was 100%.
  • This coating solution was applied and formed into a film on a base material (inorganic glass) using a bar coater. This film was dried at 180 ° C. for 30 minutes, and the dispersion medium was evaporated and cured to produce a heat ray shield according to Example 3.
  • Table 1 shows optical characteristics of the manufactured heat ray shield. The manufactured heat ray shield was used as a test sample, exposed to an environment of 85 ° C. and 90% RH for 7 days, and the visible light transmittance, solar transmittance, and haze value after the accelerated heat and heat resistance test were measured. Table 1 shows the results before and after the accelerated heat and heat resistance test.
  • Example 4 20 parts by weight of Tl 0.33 WO 3 fine particles, 70 parts by weight of 4-methyl-2-pentanone as a dispersion medium, and 10 parts by weight of a dispersing agent for fine particle dispersion were mixed, and dispersion treatment was performed using a medium stirring mill.
  • a dispersion of Tl 0.33 WO 3 fine particles was prepared (E liquid).
  • the E solution and the B solution prepared in Example 1, Tl 0.33 WO 3 after zinc hydroxide particles with respect to particle 100 parts by weight were mixed to obtain 10 parts by weight, the inorganic binder of the mixed solution (
  • the coating solution was diluted with 4-methyl-2-pentanone and mixed well so that the ratio of the solid content was 100%.
  • This coating solution was applied and formed into a film on a base material (inorganic glass) using a bar coater. This film was dried at 180 ° C. for 30 minutes, and the dispersion medium was evaporated and cured to produce a heat ray shield according to Example 4.
  • Table 1 shows optical characteristics of the manufactured heat ray shield. The manufactured heat ray shield was used as a test sample, exposed to an environment of 85 ° C. and 90% RH for 7 days, and the visible light transmittance, solar transmittance, and haze value after the accelerated heat and heat resistance test were measured. Table 1 shows the results before and after the accelerated heat and heat resistance test.
  • Example 5 20 parts by weight of Cs 0.33 WO 3 fine particles, 2 parts by weight of zinc hydroxide fine particles, 68 parts by weight of 4-methyl-2-pentanone as a dispersion medium, and 10 parts by weight of a dispersing agent for fine particle dispersion are mixed, and dispersion treatment is performed with a medium stirring mill. Then, a mixed dispersion of Cs 0.33 WO 3 / zinc hydroxide fine particles having an average dispersed particle diameter of 80 nm was prepared (F solution). This solution F was diluted with 4-methyl-2-pentanone and mixed well so that the ratio of the inorganic binder (solid content 100%) in the solution F was 30% to obtain a coating solution.
  • This coating solution was applied and formed into a film on a base material (inorganic glass) using a bar coater. This film was dried at 180 ° C. for 30 minutes, and the dispersion medium was evaporated and cured to obtain a heat ray shield according to Example 5.
  • Table 1 shows optical characteristics of the manufactured heat ray shield. The manufactured heat ray shield was used as a test sample, exposed to an environment of 85 ° C. and 90% RH for 7 days, and the visible light transmittance, solar transmittance, and haze value after the accelerated heat and heat resistance test were measured. Table 1 shows the results before and after the accelerated heat and heat resistance test.
  • Example 6 In the same manner as in Example 1, except that the liquid A and the liquid B prepared in Example 1 were mixed so that the amount of zinc hydroxide fine particles was 0.1 parts by weight with respect to 100 parts by weight of Cs 0.33 WO 3 fine particles.
  • a heat ray shield according to Example 6 was manufactured. Table 1 shows optical characteristics of the manufactured heat ray shield. The manufactured heat ray shield was used as a test sample, exposed to an environment of 85 ° C. and 90% RH for 7 days, and the visible light transmittance, solar transmittance, and haze value after the accelerated heat and heat resistance test were measured. Table 1 shows the results before and after the accelerated heat and heat resistance test.
  • Example A was prepared in the same manner as Example 1 except that the liquid A and the liquid B produced in Example 1 were mixed so as to be 1 part by weight of zinc hydroxide fine particles with respect to 100 parts by weight of Cs 0.33 WO 3 fine particles.
  • a heat ray shield according to No. 7 was produced. Table 1 shows optical characteristics of the manufactured heat ray shield. The manufactured heat ray shield was used as a test sample, exposed to an environment of 85 ° C. and 90% RH for 7 days, and the visible light transmittance, solar transmittance, and haze value after the accelerated heat and heat resistance test were measured. Table 1 shows the results before and after the accelerated heat and heat resistance test.
  • Example A was prepared in the same manner as in Example 1 except that the liquid A and the liquid B produced in Example 1 were mixed such that 50 parts by weight of zinc hydroxide fine particles were mixed with 100 parts by weight of Cs 0.33 WO 3 fine particles.
  • a heat ray shield according to No. 8 was obtained. Table 1 shows optical characteristics of the manufactured heat ray shield. The manufactured heat ray shield was used as a test sample, exposed to an environment of 85 ° C. and 90% RH for 7 days, and the visible light transmittance, solar transmittance, and haze value after the accelerated heat and heat resistance test were measured. Table 1 shows the results before and after the accelerated heat and heat resistance test.
  • Example 9 was prepared in the same manner as in Example 1 except that the liquid A and the liquid B produced in Example 1 were mixed so that 100 parts by weight of the zinc hydroxide fine particles were mixed with 100 parts by weight of the Cs 0.33 WO 3 fine particles.
  • the heat ray shielding body which concerns on was obtained.
  • Table 1 shows optical characteristics of the manufactured heat ray shield.
  • the manufactured heat ray shield was used as a test sample, exposed to an environment of 85 ° C. and 90% RH for 7 days, and the visible light transmittance, solar transmittance, and haze value after the accelerated heat and heat resistance test were measured. Table 1 shows the results before and after the accelerated heat and heat resistance test.
  • Example 10 4-methyl-2-pentanone was removed from the liquid A produced in Example 1 using a spray dryer to produce Cs 0.33 WO 3 fine particle dispersed powder (A powder). Similarly, 4-methyl-2-pentanone was removed from the liquid B produced in Example 1 using a spray dryer to produce a zinc hydroxide fine particle dispersed powder (B powder).
  • the produced (A powder) is added to the polycarbonate resin, mixed uniformly with a blender, melt-kneaded with a twin screw extruder, the extruded strand is cut into pellets, and a master containing Cs 0.33 WO 3 fine particles A batch was produced.
  • each manufactured (B powder) is added to a polycarbonate resin, mixed uniformly with a blender, melt-kneaded with a twin screw extruder, the extruded strand is cut into pellets, and zinc hydroxide fine particles are obtained.
  • a masterbatch containing was produced. The same method is used for the master batch containing the Cs 0.33 WO 3 fine particles and the master batch containing the zinc hydroxide fine particles so that the zinc hydroxide fine particles are 10 parts by weight with respect to 100 parts by weight of the Cs 0.33 WO 3 fine particles. It was mixed with a masterbatch to which inorganic fine particles prepared in the above were not added.
  • This mixed master batch was extruded to form a 2 mm thick plate, and a heat ray shield according to Example 10 was manufactured.
  • Table 1 shows optical characteristics of the manufactured heat ray shield.
  • the manufactured heat ray shield was used as a test sample, exposed to an environment of 85 ° C. and 90% RH for 7 days, and the visible light transmittance, solar transmittance, and haze value after the accelerated heat and heat resistance test were measured.
  • Table 1 shows the results before and after the accelerated heat and heat resistance test.
  • Example 11 The liquid F produced in Example 5 was diluted with 4-methyl-2-pentanone and mixed well so that the proportion of the inorganic binder (solid content 100%) in the liquid F was 30% to produce a dispersion. .
  • this dispersion as a coating solution, coating was performed on a substrate (inorganic glass) using a bar coater. This film was dried at 180 ° C. for 30 minutes, and the dispersion medium was evaporated to be cured. Thereafter, this coating solution is applied to the other surface of the substrate in the same manner, formed into a film, and cured, so that the zinc hydroxide fine particles become 10 parts by weight with respect to 100 parts by weight of the Cs 0.33 WO 3 fine particles.
  • Table 1 shows optical characteristics of the manufactured heat ray shield.
  • the manufactured heat ray shield was used as a test sample, exposed to an environment of 85 ° C. and 90% RH for 7 days, and the visible light transmittance, solar transmittance, and haze value after the accelerated heat and heat resistance test were measured.
  • Table 1 shows the results before and after the accelerated heat and heat resistance test.
  • This film was dried at 180 ° C. for 30 minutes, and the dispersion medium was evaporated and cured to produce a heat ray shield according to Comparative Example 1.
  • Table 1 shows optical characteristics of the manufactured heat ray shield.
  • the manufactured heat ray shield was used as a test sample, exposed to an environment of 85 ° C. and 90% RH for 7 days, and the visible light transmittance, solar transmittance, and haze value after the accelerated heat and heat resistance test were measured.
  • Table 1 shows the results before and after the accelerated heat and heat resistance test.
  • Example 2 The liquid A and the liquid B produced in Example 1 were mixed in the same manner as in Example 1 except that zinc hydroxide fine particles were 0.01 parts by weight with respect to 100 parts by weight of Cs 0.33 WO 3 fine particles. And the heat ray shielding body which concerns on the comparative example 2 was manufactured. Table 1 shows optical characteristics of the manufactured heat ray shield. The manufactured heat ray shield was used as a test sample, exposed to an environment of 85 ° C. and 90% RH for 7 days, and the visible light transmittance, solar transmittance, and haze value after the accelerated heat and heat resistance test were measured. Table 1 shows the results before and after the accelerated heat and heat resistance test.
  • Example 3 Comparison was made in the same manner as in Example 1 except that the liquid A and liquid B produced in Example 1 were mixed so that the amount of zinc hydroxide fine particles was 200 parts by weight with respect to 100 parts by weight of Cs 0.33 WO 3 fine particles.
  • a heat ray shield according to Example 3 was produced. Table 1 shows optical characteristics of the manufactured heat ray shield. However, since the amount of zinc hydroxide fine particles added is too large, the heat ray shield has insufficient adhesion between the substrate (inorganic glass) and the heat ray shielding film, and the substrate and the heat ray shielding film are easily peeled off. The problem that ends. Therefore, the heat and humidity resistance test was not performed.
  • Example 4 The liquid A produced in Example 1 was diluted with 4-methyl-2-pentanone and mixed well so that the proportion of the inorganic binder (solid content 100%) in the liquid A was 30%. Manufactured. Similarly, the B liquid produced in Example 1 was diluted with 4-methyl-2-pentanone and mixed well so that the proportion of the zinc hydroxide fine particles in the B liquid was 30% to produce a B dispersion. did. Using this A dispersion as a coating solution, coating was performed on a substrate (inorganic glass) using a bar coater. This film was dried at 180 ° C. for 30 minutes, and the dispersion medium was evaporated to be cured.
  • the B dispersion liquid is further applied onto the cured A dispersion liquid film as a coating liquid, applied so as to form 10 parts by weight of zinc hydroxide fine particles with respect to 100 parts by weight of Cs 0.33 WO 3 fine particles, and then cured.
  • a heat ray shield according to Comparative Example 4 was obtained.
  • Table 1 shows optical characteristics of the manufactured heat ray shield.
  • the manufactured heat ray shield was used as a test sample, exposed to an environment of 85 ° C. and 90% RH for 7 days, and the visible light transmittance, solar transmittance, and haze value after the accelerated heat and heat resistance test were measured.
  • Table 1 shows the results before and after the accelerated heat and heat resistance test.
  • Example 5 Example 1 except that the solution A prepared in Example 1 and zinc 2-ethylhexanoate were mixed so that the amount of zinc 2-ethylhexanoate was 10 parts by weight with respect to 100 parts by weight of Cs 0.33 WO 3 fine particles.
  • a heat ray shielding body according to Comparative Example 5 was manufactured. Table 1 shows optical characteristics of the manufactured heat ray shield. The manufactured heat ray shield was used as a test sample, exposed to an environment of 85 ° C. and 90% RH for 7 days, and the visible light transmittance, solar transmittance, and haze value after the accelerated heat and heat resistance test were measured. Table 1 shows the results before and after the accelerated heat and heat resistance test.
  • Comparative Examples 1 and 2 since the zinc hydroxide fine particles were not added or the addition amount was too small, the change in visible light transmittance was large in the moist heat resistance test.
  • Comparative Example 3 since the amount of the zinc hydroxide fine particles added was too large, the adhesion with the base material (inorganic glass), which is an important physical property as a heat ray shield, was impaired.
  • Comparative Example 4 since the Cs 0.33 WO 3 fine particles and the zinc hydroxide fine particles were not contained in the same layer, the wet heat resistance of the Cs 0.33 WO 3 fine particles was not improved at all.
  • Comparative Example 5 since zinc 2-ethylhexanoate was used instead of zinc hydroxide fine particles, the change in haze value was large in the moist heat resistance test.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Surface Treatment Of Glass (AREA)
  • Paints Or Removers (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Optical Filters (AREA)

Abstract

 優れた耐湿熱性を有する熱線遮蔽材料微粒子が媒体中に分散してなる熱線遮蔽分散体、熱線遮蔽体、および、それらの製造方法を提供する。一般式MYWOZで示され、且つ、六方晶の結晶構造を持つ複合タングステン酸化物微粒子と、水酸化亜鉛微粒子とを混合分散させ、当該分散物を成形固化して熱線遮蔽分散体、熱線遮蔽分散体を製造する。

Description

熱線遮蔽分散体の製造方法および熱線遮蔽分散体並びに熱線遮蔽体
 本発明は、可視光領域の光は透過し、近赤外線領域に吸収を持つ近赤外線遮蔽材料を用いた熱線遮蔽分散体、熱線遮蔽体、および、それらの製造方法に関する。
 太陽光線は、近赤外光(熱線)、可視光、紫外光の3つに大きく分けられる。熱線は熱エネルギーとして人体に感じる波長領域であり、夏季の室内の温度上昇の原因となる。また、紫外線領域は日焼けや皮膚ガン等人体へ悪影響を及ぼすことが指摘されている。
 近年、熱線としての近赤外線を遮蔽し、保温及び断熱の性能を付与するために、ガラス、ポリカーボネート樹脂、アクリル樹脂等の透明基材に近赤外線吸収能を付与することが求められている。
 例えば、特許文献1では、透明なガラス基板上に、基板側より第1層として周期律表のIIIa族、IVa族、Vb族、VIb族およびVIIb族から成る群から選ばれた少なくとも1種の金属イオンを含有する複合酸化タングステン膜を設け、上記第1層上に第2層として透明誘電体膜を設け、第2層の透明誘電体膜上に第3層として周期律表のIIIa族、IVa族、Vb族、VIb族およびVIIb族から成る群から選ばれた少なくとも1種の金属イオンを含有する複合酸化タングステン膜を設け、かつ、上記第2層を構成する透明誘電体膜の屈折率を第1層および第3層の複合酸化タングステン膜の屈折率よりも低くすることにより、高い可視光透過率および良好な熱線遮蔽性能が要求される部位に好適に使用できる熱線遮断ガラスが提案されている。
 また、特許文献2では、特許文献1と同様の方法で、透明なガラス基板上に、基板側より第1層として第1の誘電体膜を設け、この第1層上に第2層として酸化タングステン膜を設け、この第2層上に第3層として上記第2層の誘電体膜を設けた熱線遮断ガラスが提案されている。
 また、特許文献3では、特許文献1と同様な方法で、透明な基板上に、基板側より第1層として同様の金属元素を含有する複合酸化タングステン膜を設け、この第1層上に第2層として透明誘電体膜を設けた熱線遮断ガラスが提案されている。
 更に、特許文献4では、水素、リチウム、ナトリウム、カリウム等の添加元素を含有する三酸化タングステン(WO3)、三酸化モリブデン(MoO3)、五酸化ニオブ(Nb25)、五酸化タンタル(Ta25)、五酸化バナジウム(V25)および二酸化バナジウム(VO2)の1種以上から選択された金属酸化物膜を、CVD法あるいはスプレー法でガラスシートに被覆しかつ250℃程度で熱分解して形成された太陽光遮蔽特性を有する太陽光制御ガラスシートが提案されている。
 特許文献5では、タングステン酸を加水分解して得られたタングステン酸化物を用い、このタングステン酸化物にポリビニルピロリドンという特定の構造の有機ポリマーを添加することにより、太陽光が照射されると光線中の紫外線が上記タングステン酸化物に吸収されて励起電子とホールとが発生し、少量の紫外線量により5価タングステンの出現量が著しく増加して着色反応が速くなり、これに伴って着色濃度が高くなると共に、光を遮断することによって5価タングステンが極めて速やかに6価に酸化されて消色反応が速くなる特性を用い、太陽光に対する着色および消色反応が速く、着色時に近赤外域の波長1250nmに吸収ピークが現れ、太陽光の近赤外線を遮断することができる太陽光可変調光断熱材料が提案されている。
 また、特許文献6では、六塩化タングステンをアルコールに溶解し、そのまま溶媒を蒸発させるか、または加熱還流した後に溶媒を蒸発させ、その後100℃~500℃で加熱することにより、三酸化タングステン若しくはその水和物または両者の混合物から成る粉末が得られること、このタングステン酸化物微粒子を用いてエレクトロクロミック素子が得られること、多層の積層体を構成し膜中にプロトンを導入したときに当該膜の光学特性を変化させること、が出来ること等が提案されている。
 また、特許文献7では、メタ型タングステン酸アンモニウムと水溶性の各種金属塩を原料とし、約300~700℃に加熱しながらその混合水溶液の乾固物に対し、不活性ガス(添加量;約50vol%以上)または水蒸気(添加量;約15vol%以下)が添加された水素ガスを供給することにより、MxWO3(M;アルカリ Ia族、IIa族、希土類等の金属元素、0<x<1)で表記される種々のタングステンブロンズを調製する方法が提案されている。
 更に、特許文献8には、タングステン酸化物微粒子または/および複合タングステン酸化物微粒子から成る近赤外線遮蔽材料微粒子を、樹脂、ガラス等の媒体中に分散させて成る近赤外線遮蔽材料微粒子分散体、この分散体から製造される近赤外線遮蔽体、上記近赤外線遮蔽材料微粒子の製造方法、および、近赤外線遮蔽材料微粒子が提案されている。
特開平8-59300号公報 特開平8-12378号公報 特開平8-283044号公報 特開2000-119045号公報 特開平9-127559号公報 特開2003-121884号公報 特開平8-73223号公報 特許第4096205号公報
 ところが本発明者らの検討によると、特許文献1~3に記載の近赤外線遮蔽体(熱線遮断ガラス)は、主にスパッタリング法、蒸着法、イオンプレーティング法および化学気相法(CVD法)等の真空成膜方式による乾式法を用いた方法で製造されるため、大型の製造装置を必要とし、製造コストが高くなるという問題がある。また、上記真空成膜方法で製造されることから、近赤外線遮蔽体の基材が高温のプラズマに曝されたり、成膜後に加熱を必要としたりすることになるため、ガラスに替えてフィルム等の樹脂を基材とする場合には、別途、設備上、成膜条件の検討を行う必要があった。
 また、特許文献4に記載の近赤外線遮蔽体(太陽光制御被覆ガラスシート)は、原料である金属酸化物をCVD法またはスプレー法と熱分解法との併用によりガラス上に被膜形成するが、前駆体となる原料が高価であること、高温で分解すること等から、ガラスシートに代えてフィルム等の樹脂を基材とする場合には、別途、成膜条件の検討を行う必要があった。
 また、特許文献5に記載の太陽光可変調光断熱材料や、特許文献6に記載のエレクトロクロミック素子は、紫外線や電位差によりその色調を変化させる材料であるため膜の構造が複雑であり、色調変化が望まれない用途分野には適用が困難という問題があった。
 更に、特許文献7にはタングステンブロンズの調製方法が記載されているが、得られた粉体の粒子直径や光学特性の記載は皆無である。これは、特許文献7において、タングステンブロンズの用途としては電解装置や燃料電池の電極材料および有機合成の触媒材料が考えられており、上述した近赤外線遮蔽体を用途としていないためと考えられる。
 他方、特許文献8においては、近赤外線遮蔽体の製造に用いられるタングステン酸化物微粒子または/および複合タングステン酸化物微粒子が提案され、これ等酸化物微粒子は優れた可視光透過性と良好な近赤外線遮蔽効果を有している。このため、各種建築物や車両の窓材等の分野において好適に利用される近赤外線遮蔽体として注目されている。
 しかし、これ等複合タングステン酸化物微粒子の耐湿熱性については十分満足できない場合があり、未だ改善の余地が残されていた。
 本発明はこのような問題点に着目してなされたもので、その課題とするところは、優れた耐湿熱性を有する熱線遮蔽材料微粒子が媒体中に分散してなる熱線遮蔽分散体、熱線遮蔽体、および、それらの製造方法を提供することにある。
 上記目的を達成するために、本発明者らが研究を行なった結果、近赤外線吸収材料である複合タングステン酸化物微粒子へ水酸化亜鉛微粒子を混合することで、可視光領域に透過率の極大を持つとともに近赤外領域に強い吸収を持ち、優れた耐湿熱性を有する近赤外線吸収材料の製造が可能となるとの知見を得た。本発明は、当該技術的知見に基づき完成されたものである。
 すなわち、本発明の第1の発明は、
 一般式MYWOZ(0.001≦Y≦1.0、2.2≦Z≦3.0)で示され、M元素がCs、Rb、K、Tlのうちから選択される1種類以上であり、且つ、六方晶の結晶構造を持つ複合タングステン酸化物微粒子を分散媒に分散し、当該複合タングステン酸化物微粒子の分散粒子径を1nm以上800nm以下に調整した複合タングステン酸化物微粒子分散液を製造する工程と、
 水酸化亜鉛を分散媒に分散し、当該水酸化亜鉛の分散粒子径を1nm以上800nm以下に調整して水酸化亜鉛微粒子分散液を製造する工程と、
 前記複合タングステン酸化物微粒子分散液へ、前記水酸化亜鉛微粒子分散液を添加混合し、前記複合タングステン酸化物微粒子100重量部に対して、前記水酸化亜鉛微粒子が、0.1重量部以上、100重量部以下含有される第1の混合分散液を製造する工程と、
 前記第1の混合分散液を成形固化して熱線遮蔽分散体を製造する工程とを、有することを特徴とする熱線遮蔽分散体の製造方法である。
 第2の発明は、
 前記第1の混合分散液から分散媒を除去して、分散粉を製造する工程と、
 前記分散粉を所定の媒体中に混合分散し、第2の混合分散物を製造する工程と、
 前記第2の混合分散物を成形固化して熱線遮蔽分散体を製造する工程と、を有することを特徴とする第1の発明に記載の熱線遮蔽分散体の製造方法である。
 第3の発明は、
 一般式MYWOZ(0.001≦Y≦1.0、2.2≦Z≦3.0)で示され、M元素がCs、Rb、K、Tlのうちから選択される1種類以上であり、且つ、六方晶の結晶構造を持つ複合タングステン酸化物微粒子と、水酸化亜鉛とを、前記複合タングステン酸化物微粒子100重量部に対して、前記水酸化亜鉛が0.1重量部以上、100重量部以下含有されるように分散媒に分散し、前記複合タングステン酸化物微粒子と前記水酸化亜鉛との分散粒子径を1nm以上800nm以下に調整して第1の混合分散液を製造する工程と、
 前記第1の混合分散液を成形固化して熱線遮蔽分散体を製造する工程とを、有することを特徴とする熱線遮蔽分散体の製造方法である。
 第4の発明は、
 前記第1の混合分散液から分散媒を除去して分散粉を製造する工程と、
 前記分散粉を所定の媒体中に混合分散し、第2の混合分散物を製造する工程と、
 前記第2の混合分散物を成形固化して熱線遮蔽分散体を製造する工程と、を有することを特徴とする第3の発明に記載の熱線遮蔽分散体の製造方法である。
 第5の発明は、
 一般式MYWOZ(0.001≦Y≦1.0、2.2≦Z≦3.0)で示され、M元素がCs、Rb、K、Tlのうちから選択される1種類以上であり、且つ、六方晶の結晶構造を持つ複合タングステン酸化物微粒子を分散媒に分散し、当該複合タングステン酸化物微粒子の分散粒子径を1nm以上800nm以下に調整した第1の複合タングステン酸化物微粒子分散液を製造する工程と、
 前記第1の複合タングステン酸化物微粒子分散液から分散媒を除去して、複合タングステン酸化物微粒子分散粉を製造する工程と、
 前記複合タングステン酸化物微粒子分散粉を所定の媒体中に混合分散し、第2の複合タングステン酸化物微粒子分散物を製造する工程と、
 水酸化亜鉛を分散媒に分散し、当該水酸化亜鉛の分散粒子径を1nm以上800nm以下に調整した第1の水酸化亜鉛微粒子分散液を製造し、当該分散液から分散媒を除去して、水酸化亜鉛微粒子分散粉を製造する工程と、
 前記第1の水酸化亜鉛微粒子分散液から分散媒を除去して、水酸化亜鉛微粒子分散粉を製造する工程と、
 前記水酸化亜鉛微粒子分散粉を所定の媒体中に混合分散し、第2の水酸化亜鉛微粒子分散物を製造する工程と、
 前記第2の複合タングステン酸化物微粒子分散物と、前記第2の水酸化亜鉛微粒子分散物とを混合し、成形固化して熱線遮蔽分散体を製造する工程と、を有することを特徴とする熱線遮蔽分散体の製造方法である。
 第6の発明は、
 第1から第5の発明のいずれかに記載の熱線遮蔽分散体の製造方法により製造されたことを特徴とする熱線遮蔽分散体である。
 第7の発明は、
 前記媒体が、樹脂またはガラスであることを特徴とする第6の発明に記載の熱線遮蔽分散体である。
 第8の発明は、
 前記媒体が、ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリビニルアルコール樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、エチレン酢酸ビニル共重合体、ポリエステル樹脂、ポリエチレンテレフタレート樹脂、ふっ素樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリビニルブチラール樹脂から選択される1種類以上であることを特徴とする第6の発明に記載の熱線遮蔽分散体である。
 第9の発明は、
 第6から第8の発明のいずれか記載の熱線遮蔽分散体が、所定の基材の片面または両面に設けられていることを特徴とする熱線遮蔽体である。
 第10の発明は、
 前記熱線遮蔽分散体が、板状またはフィルム状または薄膜状に形成されていることを特徴とする第9の発明に記載の熱線遮蔽体である。
 第11の発明は、
 前記基材が、樹脂またはガラスであることを特徴とする第9または第10の発明に記載の熱線遮蔽体である。
 第12の発明は、
 前記基材が、ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリビニルアルコール樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、エチレン酢酸ビニル共重合体、ポリエステル樹脂、ポリエチレンテレフタレート樹脂、ふっ素樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリビニルブチラール樹脂のうちの1種類以上であることを特徴とする第9から第11の発明のいずれかに記載の熱線遮蔽体である。
 第13の発明は、
 可視光透過率が70%以上でありかつ日射透過率が40%以下であるとき、耐湿熱性評価後の可視光透過率の変化が2%以下、日射透過率の変化が4%以下、ヘイズ値の変化が0.5%以下であることを特徴とする第9から第12の発明のいずれかに記載の熱線遮蔽体である。
 第14の発明は、
 第1または第3の発明に記載の第1の混合分散液を所定の基材上にコーティングする工程、を有することを特徴とする熱線遮蔽体の製造方法である。
 第15の発明は、
 第2または第4の発明に記載の第2の混合分散物の成形固化物を所定の基材上に設ける工程、を有することを特徴とする熱線遮蔽体の製造方法である。
 第16の発明は、
 第5の発明に記載の第2の複合タングステン酸化物微粒子分散物と、第2の水酸化亜鉛微粒子分散物との混合物である成形固化物を、所定の基材上に設ける工程、を有することを特徴とする熱線遮蔽体の製造方法である。
 第17の発明は、
 前記基材が、樹脂またはガラスであることを特徴とする第14から第16のいずれかの発明に記載の熱線遮蔽体の製造方法である。
 第18の発明は、
 前記基材が、ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリビニルアルコール樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、エチレン酢酸ビニル共重合体、ポリエステル樹脂、ポリエチレンテレフタレート樹脂、ふっ素樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリビニルブチラール樹脂のうちの1種類以上であることを特徴とする第14から第17のいずれかの発明に記載の熱線遮蔽体の製造方法である。
 本発明に係る熱線遮蔽分散体および熱線遮蔽体は、従来の技術に係る熱線遮蔽分散体および熱線遮蔽体に比べて耐湿熱性に優れており、高温高湿化に暴露された後であっても、透明性が高く、近赤外線吸収機能の低下が抑制されていた。
本発明に係る熱線遮蔽分散体、熱線遮蔽体の模式的な断面図である。
発明の実施するための形態
 本発明は、耐湿熱性に優れており、高温高湿下に暴露された後であっても、透明性が高く、近赤外線吸収機能の低下が抑制された熱線遮蔽分散体、当該熱線遮蔽分散体を所定の基材の片面または両面に設けた熱線遮蔽体、および、当該熱線遮蔽分散体、熱線遮蔽体の製造方法である。
 本発明において耐湿熱性とは、熱線遮蔽分散体または熱線遮蔽体を、例えば85℃、90%RHという高温高湿条件に暴露後において、暴露前と比較して、可視光透過率が低下する、日射透過率が上昇する、ヘイズ値が上昇するといった劣化が抑制されていることを言う。つまり、当該熱線遮蔽分散体または熱線遮蔽体が、高温高湿条件に対して耐久性を有することを言う。
 以下、本発明について、(1)複合タングステン酸化物微粒子、(2)水酸化亜鉛、(3)複合タングステン酸化物微粒子と水酸化亜鉛微粒子との混合、(4)熱線遮蔽分散体とその形成、(5)熱線遮蔽分散体および熱線遮蔽体の形態、(6)まとめ、の順で詳細に説明する。
(1)複合タングステン酸化物微粒子
 一般に、自由電子を含む材料は、プラズマ振動によって波長200nmから2600nmの太陽光線の領域周辺にある電磁波に反射吸収応答を示すことが知られている。このような物質の粉末を光の波長より小さい微粒子とすると、可視光領域(波長380nmから780nm)の幾何学散乱が低減されて可視光領域の透明性が得られる。
 一般に、WO3中には有効な自由電子が存在しないため、WO3は近赤外線領域の吸収反射特性が少なく、近赤外線吸収材料としては有効ではない。一方、酸素欠損を持つ3酸化タングステンや、3酸化タングステンにNa等の陽性元素を添加したいわゆるタングステンブロンズは、導電性材料であり、自由電子を持つ材料である。さらに、これら材料の単結晶等を分析した結果からも、赤外線領域の光に対する自由電子の応答が示唆されている。
 本発明者等は、当該タングステンと酸素との組成範囲が特定範囲にあるとき、近赤外線吸収材料として特に有効なものとなることを見出した。
 本発明に適用される近赤外線吸収機能を有する微粒子は、一般式MYWOZ(0.001≦Y≦1.0、2.2≦Z≦3.0)で示され、且つ六方晶の結晶構造を持つ複合タングステン酸化物微粒子である。当該複合タングステン酸化物微粒子は、熱線遮蔽分散体や熱線遮蔽体に適用された場合、熱線吸収成分として有効に機能する。
 当該一般式MYWOZ(0.001≦Y≦1.0、2.2≦Z≦3.0)で示され、且つ六方晶の結晶構造を持つ複合タングステン酸化物微粒子としては、例えばM元素が、Cs、Rb、K、Tlのうちの1種類以上を含むような複合タングステン酸化物微粒子が挙げられる。添加元素Mの添加量は、0.1以上0.5以下が好ましく、更に好ましくは0.33付近が好ましい。これは六方晶の結晶構造から理論的に算出される値が0.33であり、この前後の添加量で好ましい光学特性が得られるからである。典型的な例としてはCs0.33WO3、Rb0.33WO3、K0.33WO3、Tl0.33WO3などを挙げることができるが、Y,Zが上述の範囲に収まるものであれば、有用な熱線吸収特性を得ることができる。
 更に、熱線遮蔽分散体や熱線遮蔽体の意匠性を考慮すると、透明性を保持したまま近赤外線の効率良い遮蔽を行なうことが必要となる。一方、本発明に係る複合タングステン酸化物微粒子を含有する近赤外線吸収材料は近赤外線領域、特に波長900-2200nm付近の光を大きく吸収するため、その透過色調は青色系から緑色系となる物が多い。
 また、当該複合タングステン酸化物微粒子の分散粒子径が800nmよりも大きい場合、可視光を遮蔽してしまうため、可視光領域の透明性を保持したまま効率良く近赤外線を遮蔽することは難しい。特に可視光領域の透明性を重視する場合には、分散粒子径は200nm以下がよく、好ましくは100nm以下がよい。微粒子の分散粒子径が大きいと、幾何学散乱もしくは回折散乱によって400~780nmの可視光領域の光を散乱して曇りガラスのようになり、鮮明な透明性が不可能だからである。分散粒子径が200nm以下になると、上述の散乱が低減してミー散乱もしくはレイリー散乱領域になる。特に、レイリー散乱領域まで分散粒子径が減少すると、散乱光は分散粒子径の6乗に反比例して低減するため、分散粒子径の減少に伴い散乱が低減し透明性が向上する。更に100nm以下になると散乱光は非常に少なくなり好ましい。光の散乱を回避する観点からは、分散粒子径が小さい方が好ましく、分散粒子径が1nm以上であれば工業的な製造は容易である。
 また、複合タングステン酸化物微粒子の単位重量あたりの熱線吸収能力は非常に高く、ITO(インジウム錫酸化物)やATO(アンチモン錫酸化物)と比較して、4~10分の1程度の使用量でその効果を発揮する。
(2)水酸化亜鉛
 本発明に適用される水酸化亜鉛は、熱線遮蔽分散体および熱線遮蔽体の耐湿熱性を向上させ、長期間使用された際の光学特性の変化を抑制する目的で添加するものである。
 水酸化亜鉛は公知の方法で製造しても良いが、市販のものも使用可能である。そして、純度が95%以上あれば良い。
 また、当該水酸化亜鉛微粒子の分散粒子径も、上述した複合タングステン酸化物微粒子の場合と同様に800nmよりも大きい場合、可視光を遮蔽してしまうため、可視光領域の透明性を保持したまま効率良く近赤外線を遮蔽することは難しい。特に可視光領域の透明性を重視する場合には、分散粒子径は200nm以下がよく、好ましくは100nm以下がよい。分散粒子径が100nm以下になると散乱光は非常に少なくなり好ましい。光の散乱を回避する観点からは、分散粒子径が小さい方が好ましく、分散粒子径が1nm以上であれば工業的な製造は容易である。
(3)複合タングステン酸化物微粒子と水酸化亜鉛微粒子との混合
 複合タングステン酸化物微粒子と水酸化亜鉛微粒子とを混合することで、当該本発明に係る熱線遮蔽分散体および熱線遮蔽体の光学的特性、色調を保持したまま、耐湿熱性を向上させる効果が得られる。
 一方、複合タングステン酸化物微粒子と水酸化亜鉛微粒子とを別々の分散体とし、これら別々の分散体を、別層として接合した場合は耐湿熱性の向上が見られない。
 複合タングステン酸化物微粒子と水酸化亜鉛微粒子との混合比率は、複合タングステン酸化物微粒子100重量部に対し、水酸化亜鉛微粒子0.1重量部~100重量部の範囲であることが好ましく、1重量部~50重量部の範囲であることがより好ましい。水酸化亜鉛微粒子の添加量が上述の範囲にあれば、複合タングステン酸化物微粒子の耐湿熱性向上の効果があり、且つ、製造される熱線遮蔽分散体や熱線遮蔽体における、機械的特性や光学的特性に悪影響を及ぼすことがないからである。
 複合タングステン酸化物微粒子と水酸化亜鉛微粒子との混合方法について、以下〈1〉~〈4〉の例を参照しながら具体的に説明する。
 〈1〉媒体撹拌ミル等を用いて予め所定の分散粒子径に調整された複合タングステン酸化物微粒子分散液と水酸化亜鉛微粒子分散液とを、混合撹拌する方法。
 〈2〉複合タングステン酸化物微粒子と水酸化亜鉛微粒子とを混合した後、適宜な分散媒と伴に媒体撹拌ミル等に装填し、両微粒子の混合撹拌と分散粒子径の調整とを同時に行なう方法。
 〈3〉複合タングステン酸化物微粒子と水酸化亜鉛微粒子とを所定の媒体内に分散させる方法。
 〈4〉複合タングステン酸化物微粒子と水酸化亜鉛微粒子とを、予め原料樹脂中に高濃度に分散したマスターバッチを製造し、当該マスターバッチと適宜な樹脂とを混合することで、所定の濃度に希釈調整して用いる方法。
 上述の〈1〉〈2〉の方法に係る複合タングステン酸化物微粒子や水酸化亜鉛微粒子の分散媒は、特に限定されるものではなく、後述する熱線遮蔽分散体や熱線遮蔽体を製造する際に配合する樹脂に合わせて選択することが可能である。当該分散媒としては、例えば、水やエタノール、プロパノール、ブタノール、イソプロピルアルコール、イソブチルアルコール、ジアセトンアルコールなどのアルコール類、メチルエーテル、エチルエーテル、プロピルエーテルなどのエーテル類、エステル類、アセトン、メチルエチルケトン、ジエチルケトン、シクロヘキサノン、メチルイソブチルケトンなどのケトン類といった各種の有機溶媒が使用可能である。また、必要に応じて、酸やアルカリを添加してpHを調整してもよい。更に、微粒子の分散安定性を一層向上させるために、各種の界面活性剤、カップリング剤などを添加することも可能である。
 上述の〈3〉〈4〉の方法に係る複合タングステン酸化物微粒子と水酸化亜鉛微粒子との混合方法は、複合タングステン酸化物微粒子と水酸化亜鉛微粒子と適宜な樹脂とを混合して、後述する熱線遮蔽分散体および熱線遮蔽体を直接製造するものである。
 上述の〈3〉の方法において、複合タングステン酸化物微粒子と水酸化亜鉛微粒子との、各々の単独微粒子または混合物を媒体の内部に分散させる場合には、当該単独微粒子または混合物を媒体表面から浸透させればよい。
 または、当該複合タングステン酸化物微粒子と水酸化亜鉛微粒子との、各々の単独微粒子または混合物を、溶融温度以上に加熱して溶融させた熱可塑性樹脂へ直接添加し、均一に溶融混合する方法を用いることもできる。当該両微粒子を樹脂に分散させる方法は、特に限定されないが、例えば、超音波分散、媒体攪拌ミル、ボールミル、サンドミルなどを使用することができる。これらの器材を用いた分散処理によって、当該両微粒子の分散媒中への分散と同時に微粒子同士の衝突等による微粒子化も進行し、粒子をより微粒子化して分散させることができる(すなわち、粉砕・分散処理される)。
 上述の〈4〉の方法に係るマスターバッチの製造方法は、特に限定されないが、例えば、複合タングステン酸化物微粒子の分散液と、水酸化亜鉛微粒子の分散液と、熱可塑性樹脂の粉粒体またはペレットと、必要に応じて他の添加剤とを、分散媒を除去しながら均一に溶融混合することで、熱可塑性樹脂に微粒子が均一に分散した混合物として調整することができる。
 その際の混合には、リボブレンダー、タンブラー、ナウターミキサー、ヘンシェルミキサー、スーパーミキサー、プラネタリーミキサーなどの混合機、あるいは、バンバリーミキサー、ニーダー、ロール、ニーダールーダー、一軸押出機、二軸押出機などの混練機を使用することができる。
 また、例えば、〈3〉の方法により得られた複合タングステン酸化物微粒子と水酸化亜鉛微粒子との、各々の単独微粒子または混合物と、熱可塑性樹脂の粉粒体またはペレットと、必要に応じて他の添加剤とを、ペント式一軸もしくは二軸の押出機で溶融混練し、ペレット状に加工することによって、樹脂中に複合タングステン酸化物微粒子および/または水酸化亜鉛微粒子を高濃度に分散させることで、〈4〉の方法に係るマスターバッチの製造方法を行なってもよい。
(4)熱線遮蔽分散体の形成方法
 上述の「(3)複合タングステン酸化物微粒子と水酸化亜鉛微粒子との混合」で製造された熱線遮蔽分散体の成形方法について、以下(A)~(D)の例を参照しながら説明する。
 (A)上述の「(3)複合タングステン酸化物微粒子と水酸化亜鉛微粒子との混合、〈1〉〈2〉」の方法により製造された複合タングステン酸化物微粒子と水酸化亜鉛微粒子との分散液から分散媒を公知の方法で除去し、得られた当該両微粒子の混合物と熱可塑性樹脂の粉粒体またはペレット、および必要に応じて他の添加剤を均一に溶融混合する方法を用いて成形固化し、熱可塑性樹脂に微粒子を均一に分散させた熱線遮蔽分散物を製造し、熱線遮蔽分散体とする。
 (B)上述の「(3)複合タングステン酸化物微粒子と水酸化亜鉛微粒子との混合、〈1〉〈2〉」の方法により製造された複合タングステン酸化物微粒子の分散液と水酸化亜鉛微粒子の分散液との分散媒を公知の方法で除去し、得られた当該両微粒子と熱可塑性樹脂の粉粒体またはペレット、および必要に応じて他の添加剤を均一に溶融混合する方法を用いて成形固化し、熱可塑性樹脂に微粒子を均一に分散させた熱線遮蔽分散物を製造し、熱線遮蔽分散体とする。
 (C)上述の「(3)複合タングステン酸化物微粒子と水酸化亜鉛微粒子との混合、〈3〉〈4〉」の方法により製造された複合タングステン酸化物微粒子と水酸化亜鉛微粒子とが均一に分散した熱可塑性樹脂である熱線遮蔽分散物を、所定の方法で板状、フィルム状、薄膜状に成形し熱線遮蔽分散体とする。
 (D)上述の「(3)複合タングステン酸化物微粒子と水酸化亜鉛微粒子との混合、〈1〉~〈4〉」の方法により製造された複合タングステン酸化物微粒子と水酸化亜鉛微粒子との分散液を基材上にコーティングし熱線遮蔽分散体とする。
 この方法は、樹脂等の耐熱温度の低い材料への応用が可能であり、且つ、製造の際に、大型の装置を必要とせず安価である。
 例えば、「(3)複合タングステン酸化物微粒子と水酸化亜鉛微粒子との混合、〈1〉〈2〉」の方法により製造された複合タングステン酸化物微粒子と水酸化亜鉛微粒子との分散液へ、樹脂バインダーを添加した後、基材表面にコーティングし、分散媒を蒸発させ、所定の方法で樹脂を硬化させることにより、複合タングステン酸化物微粒子と水酸化亜鉛微粒子を含む分散体を形成することができる。
 また、例えば、「(3)複合タングステン酸化物微粒子と水酸化亜鉛微粒子との混合、〈3〉〈4〉」の方法により製造された複合タングステン酸化物微粒子と水酸化亜鉛微粒子が樹脂中に直接分散したものを、基材表面にコーティングする方法もある。この場合は、分散媒を蒸発させる必要がないため、環境的にも工業的にも好ましい。
 後述する適宜な基材表面へのコーティング方法としては、均一にコートできれば特に制限はなく、例えば、バーコート法、グラビヤコート法、スプレーコート法、ディップコート法、フローコート法、スピンコート法、ロールコート法、スクリーン印刷法、ブレードコート法などを用いることができる。これらのコーティング方法により形成した複合タングステン酸化物微粒子を含有する層は、スパッタリング法、蒸着法、イオンプレーティング法および化学気相法(CVD法)などの乾式法や、スプレー法で製造した場合に比べて、光の干渉効果を用いなくても、特に近赤外線領域の光を効率よく吸収し、同時に可視光領域の光を透過させることができる。
 ここで(A)~(D)において、複合タングステン酸化物微粒子は導電性材料であるため、当該微粒子が連接して連続的な膜となっている場合には、携帯電話等の電波を吸収反射して妨害する恐れがある。しかし、複合タングステン酸化物微粒子を、例えばビーズミルを用いて分散することで、微粒子としてマトリックス中に分散した場合には、粒子一つ一つが孤立した状態で分散しているため、電波透過性を発揮することができ、汎用性を有している。
 上述した(A)~(D)に用いる媒体、および、上述した適宜な基材としては、例えば、フィルム、樹脂もしくはガラス等が挙げられる。但し、これらの材料を基材として用いる場合は、それぞれの使用状況に応じた機械的強度を有することが求められる。
 樹脂であれば、一般的に、透過性があり散乱の少ない、無色透明の樹脂が適しており、用途に適した樹脂を選択すればよい。具体的には、ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリビニルアルコール樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、エチレン酢酸ビニル共重合体、ポリエステル樹脂、ポリエチレンテレフタレート(PET)樹脂、ふっ素樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリビニルブチラール樹脂などが挙げられるが、中でもポリエチレンテレフタレート樹脂が好適である。
 また、これら樹脂もしくはフィルムを用いる場合、その表面は、樹脂バインダーとの結着性向上を目的とした表面処理が施されていてもよく、その代表的な処理方法は、コロナ表面処理、プラズマ処理、スパッタリング処理等の放電処理、火炎処理、金属ナトリウム処理、プライマー層コート処理等が挙げられる。
 樹脂もしくはフィルムの意匠性を重視する場合には、あらかじめ着色された媒体や基材、または、型どりされた媒体や基材を使用することもできる。また、塗布液中に着色顔料や染料を添加してもよい。
 樹脂、または、フィルム等の形状の分散体をガラス等の基材に貼り付けるため、接着面に接着層と離型フィルム層とを積層してもよい。自動車のバックウィンドウのように曲面に貼り付け易いように、ドライヤーなどの熱で簡単に軟化するフィルムを使用してもよい。
 接着剤中に紫外線遮蔽剤を添加すれば、フィルムや樹脂の紫外線劣化を防止できる。紫外線吸収剤には、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤や、CeO2、TiO2、ZnO等が挙げられる。
 上述した(A)~(D)に用いる、媒体や基材に用いる樹脂バインダーとしては、例えば、紫外線硬化樹脂、熱硬化樹脂、電子線硬化樹脂、常温硬化樹脂、熱可塑性樹脂などを目的に応じて選択することができる。具体的には、アクリル樹脂などの熱可塑性樹脂、エポキシ樹脂などの熱硬化性樹脂などが利用できる。
 また、上述した(A)~(D)に用いる媒体や基材には、無機バインダーを用いることも出来る。
 当該無機バインダーの種類は特に限定されるものではない。例えば、当該無機バインダーとして、珪素、ジルコニウム、チタン、または、アルミニウムの金属アルコキシドやこれらの部分加水分解縮重合物またはオルガノシラザンが挙げられる。
 また、コーティング液中に無機バインダーとして、珪素、ジルコニウム、チタン、もしくはアルミニウムの金属アルコキシド及びその加水分解重合物を含む場合、分散液の塗布後の基材加熱温度を100℃以上200℃未満とすることで、塗膜中に含まれるアルコキシドまたはその加水分解重合物の重合反応を殆ど完結させることができる。重合反応を殆ど完結させることで、水や有機溶媒が膜中に残留して加熱後の膜の可視光透過率の低減の原因となることを回避できることから、前記加熱温度は100℃以上が好ましく、さらに好ましくは150℃以上である。また、200℃以上にすると、複合タングステン酸化物微粒子の酸化が進んでしまい、熱線遮蔽能を損失する原因となることから、前記加熱温度は200℃未満が好ましい。
 また、コーティング液が樹脂バインダーまたは無機バインダーを含まない場合、透明基材上に得られる膜は、前記複合タングステン酸化物微粒子と水酸化亜鉛微粒子とのみが堆積した膜構造になる。そして、この膜はこのままでも熱線遮蔽効果を示す。しかし、この膜上へ、さらに珪素、ジルコニウム、チタン、またはアルミニウムの金属アルコキシドやこれらの部分加水分解縮重合物などの無機バインダー、または樹脂バインダーを含む塗布液を塗布して多層膜とするとよい。当該構成を採ることにより、前記塗布液成分が第1層のタングステン酸化物の微粒子の堆積した間隙を埋めて成膜されるため、膜のヘイズが低減して可視光透過率が向上し、また微粒子の基材への結着性が向上する。
(5)熱線遮蔽分散体および熱線遮蔽体の形態
 次に、本発明に係る熱線遮蔽分散体および熱線遮蔽体の好ましい形態について図面を参照しながら説明する。
 図1は、本実施形態の熱線遮蔽分散体、熱線遮蔽体の模式的な断面図である。なお、図1において、○は複合タングステン酸化物微粒子を示し、●は水酸化亜鉛微粒子を示し、無地の部分は媒体を示し、斜線の部分は基材を示す。
 熱線遮蔽分散体の形態は、複合タングステン酸化物微粒子と水酸化亜鉛微粒子とが、共に媒体内に分散して含有されているものである。当該形態例を図1(A)に示す。なお、当該形態において、媒体に機械的強度のあるものを用い、基材を用いることなく熱線遮蔽体として使用することも勿論可能である。
 熱線遮蔽体の形態は、複合タングステン酸化物微粒子と水酸化亜鉛微粒子とを共に含有する分散体を、後述する適宜な基材の片面あるいは両面に、例えば成形固化物として設けるものである。当該形態例を図1(B)に示す。
(6)まとめ
 このように本発明によれば、複合タングステン酸化物微粒子と水酸化亜鉛微粒子とを含有することで、太陽光からの近赤外線の吸収を保持し、簡便な方法で製造できるうえ、耐湿熱性が良く、低コストである熱線遮蔽分散体および熱線遮蔽体を提供することを可能とした。本発明の熱線遮蔽分散体および熱線遮蔽体は、自動車のはめ込みガラス、サイドガラスおよびリヤガラス、鉄道車両の扉ガラスや窓ガラスおよび室内ドアガラス、ビル等の建物における窓ガラスおよび室内ドアガラス等、室内展示用ショーケースおよびショーウィンドー等、種々の用途に使用することができる。
 以下、本発明を、実施例を用いてより詳細に説明する。ただし、本発明は下記実施例に限定されるものではない。
 本実施例において、可視光透過率、日射透過率は、日立製作所製の分光光度計を用いて波長200~2500nmの光の透過率により測定し、JIS R 3106に従って算出した。なお、当該日射透過率は、熱線遮蔽分散体および熱線遮蔽体の熱線遮蔽性能を示す指標である。
 膜のヘイズ値は、村上色彩技術研究所製のHM-150を用いて、JIS K 7105に基づいた測定を行なった。
 微粒子の分散粒子径は、日機装製のマイクロトラック粒度分布計を用いて測定を行った。
 熱線遮蔽体における光学特性変化の耐湿熱性の評価は、試験サンプル(熱線遮蔽体)を85℃、90%RH環境に設定した恒温恒湿槽に7日間暴露し、当該耐湿熱性の加速試験前後における可視光透過率、日射透過率、ヘイズ値の変化を測定することにより行なった。
(実施例1)
 Cs0.33WO3微粒子20重量部、分散媒として4-メチル-2-ペンタノン70重量部、微粒子分散用分散剤10重量部を混合し、媒体攪拌ミルで分散処理を行ない、平均分散粒子径80nmのCs0.33WO3微粒子の分散液を製造した(A液)。
 同様に、水酸化亜鉛微粒子20重量部、分散媒として4-メチル-2-ペンタノン70重量部、微粒子分散用分散剤10重量部を混合し、媒体攪拌ミルで分散処理を行ない、平均分散粒子径80nmの水酸化亜鉛微粒子分散液を製造した(B液)。
 このA液とB液とを、Cs0.33WO3微粒子100重量部に対して水酸化亜鉛微粒子が10重量部となるように混合した後、当該混合液中の無機バインダー(固形分100%)の割合が30%となるように、4-メチル-2-ペンタノンで希釈して十分混合し、塗布液とした。
 この塗布液を、バーコーターを用いて基材(無機ガラス)上に塗布、成膜した。この膜を180℃で30分間乾燥し、分散媒を蒸発させて硬化させ、実施例1に係る熱線遮蔽体を製造した。製造された熱線遮蔽体の光学特性を表1に示す。
 製造された熱線遮蔽体を試験サンプルとし、85℃、90%RH環境下に7日間暴露し、耐湿熱性の加速試験後の可視光透過率、日射透過率、ヘイズ値を測定した。そして、当該耐湿熱性の加速試験前後における可視光透過率、日射透過率、ヘイズ値の変化を算出した。この結果を表1に示す。
(実施例2)
 Rb0.33WO3微粒子20重量部、分散媒として4-メチル-2-ペンタノン70重量部、微粒子分散用分散剤10重量部を混合し、媒体攪拌ミルで分散処理を行ない、平均分散粒子径80nmのRb0.33WO3微粒子の分散液を製造した(C液)。
 このC液と実施例1で製造したB液とを、Rb0.33WO3微粒子100重量部に対して水酸化亜鉛微粒子が10重量部となるように混合した後、当該混合液中の無機バインダー(固形分100%)の割合が30%となるように、4-メチル-2-ペンタノンで希釈して十分混合し塗布液とした。
 この塗布液を、バーコーターを用いて基材(無機ガラス)上に塗布、成膜した。この膜を180℃で30分間乾燥し、分散媒を蒸発させて硬化させ、実施例2に係る熱線遮蔽体を製造した。製造された熱線遮蔽体の光学特性を表1に示す。
 製造された熱線遮蔽体を試験サンプルとし、85℃、90%RH環境下に7日間暴露し、耐湿熱性の加速試験後の可視光透過率、日射透過率、ヘイズ値を測定した。耐湿熱性の加速試験前後のこの結果を表1に示す。
(実施例3)
 K0.33WO3微粒子を20重量部、分散媒として4-メチル-2-ペンタノン70重量部、微粒子分散用分散剤10重量部を混合し、媒体攪拌ミルで分散処理を行ない、平均分散粒子径80nmのK0.33WO3微粒子の分散液を製造した(D液)。
 このD液と実施例1で製造したB液とを、K0.33WO3微粒子100重量部に対して水酸化亜鉛微粒子が10重量部となるように混合した後、当該混合液中の無機バインダー(固形分100%)の割合が30%となるように、4-メチル-2-ペンタノンで希釈して十分混合し塗布液とした。
 この塗布液を、バーコーターを用いて基材(無機ガラス)上に塗布、成膜した。この膜を180℃で30分間乾燥し、分散媒を蒸発させて硬化させ、実施例3に係る熱線遮蔽体を製造した。製造された熱線遮蔽体の光学特性を表1に示す。
 製造された熱線遮蔽体を試験サンプルとし、85℃、90%RH環境下に7日間暴露し、耐湿熱性の加速試験後の可視光透過率、日射透過率、ヘイズ値を測定した。耐湿熱性の加速試験前後のこの結果を表1に示す。
(実施例4)
 Tl0.33WO3微粒子20重量部、分散媒として4-メチル-2-ペンタノン70重量部、微粒子分散用分散剤10重量部を混合し、媒体攪拌ミルで分散処理を行ない、平均分散粒子径80nmのTl0.33WO3微粒子の分散液を製造した(E液)。
 このE液と実施例1で製造したB液とを、Tl0.33WO3微粒子100重量部に対して水酸化亜鉛微粒子が10重量部となるように混合した後、当該混合液中の無機バインダー(固形分100%)の割合が30%となるように、4-メチル-2-ペンタノンで希釈して十分混合し塗布液とした。
 この塗布液を、バーコーターを用いて基材(無機ガラス)上に塗布、成膜した。この膜を180℃で30分間乾燥し分散媒を蒸発させて硬化させ、実施例4に係る熱線遮蔽体を製造した。製造された熱線遮蔽体の光学特性を表1に示す。
 製造された熱線遮蔽体を試験サンプルとし、85℃、90%RH環境下に7日間暴露し、耐湿熱性の加速試験後の可視光透過率、日射透過率、ヘイズ値を測定した。耐湿熱性の加速試験前後のこの結果を表1に示す。
(実施例5)
 Cs0.33WO3微粒子20重量部、水酸化亜鉛微粒子2重量部、分散媒として4-メチル-2-ペンタノン68重量部、微粒子分散用分散剤10重量部を混合し、媒体攪拌ミルで分散処理を行ない、平均分散粒子径80nmのCs0.33WO3/水酸化亜鉛微粒子の混合分散液を製造した(F液)。
 このF液を、F液中の無機バインダー(固形分100%)の割合が30%となるように、4-メチル-2-ペンタノンで希釈して十分混合し塗布液とした。
 この塗布液を、バーコーターを用いて基材(無機ガラス)上に塗布、成膜した。この膜を180℃で30分乾燥し分散媒を蒸発させて硬化させ、実施例5に係る熱線遮蔽体を得た。製造された熱線遮蔽体の光学特性を表1に示す。
 製造された熱線遮蔽体を試験サンプルとし、85℃、90%RH環境下に7日間暴露し、耐湿熱性の加速試験後の可視光透過率、日射透過率、ヘイズ値を測定した。耐湿熱性の加速試験前後のこの結果を表1に示す。
(実施例6)
 実施例1で製造したA液とB液とを、Cs0.33WO3微粒子100重量部に対して水酸化亜鉛微粒子0.1重量部となるように混合した以外は実施例1と同様にして、実施例6に係る熱線遮蔽体を製造した。製造された熱線遮蔽体の光学特性を表1に示す。
 製造された熱線遮蔽体を試験サンプルとし、85℃、90%RH環境下に7日間暴露し、耐湿熱性の加速試験後の可視光透過率、日射透過率、ヘイズ値を測定した。耐湿熱性の加速試験前後のこの結果を表1に示す。
(実施例7)
 実施例1で製造したA液とB液とを、Cs0.33WO3微粒子100重量部に対して水酸化亜鉛微粒子1重量部となるように混合した以外は実施例1と同様にして、実施例7に係る熱線遮蔽体を製造した。製造された熱線遮蔽体の光学特性を表1に示す。
 製造された熱線遮蔽体を試験サンプルとし、85℃、90%RH環境下に7日間暴露し、耐湿熱性の加速試験後の可視光透過率、日射透過率、ヘイズ値を測定した。耐湿熱性の加速試験前後のこの結果を表1に示す。
(実施例8)
 実施例1で製造したA液とB液とをCs0.33WO3微粒子100重量部に対して水酸化亜鉛微粒子が50重量部となるように混合した以外は実施例1と同様にして、実施例8に係る熱線遮蔽体を得た。製造された熱線遮蔽体の光学特性を表1に示す。
 製造された熱線遮蔽体を試験サンプルとし、85℃、90%RH環境下に7日間暴露し、耐湿熱性の加速試験後の可視光透過率、日射透過率、ヘイズ値を測定した。耐湿熱性の加速試験前後のこの結果を表1に示す。
(実施例9)
 実施例1で製造したA液とB液をCs0.33WO3微粒子100重量部に対して水酸化亜鉛微粒子が100重量部となるように混合した以外は実施例1と同様にして、実施例9に係る熱線遮蔽体を得た。製造された熱線遮蔽体の光学特性を表1に示す。
 製造された熱線遮蔽体を試験サンプルとし、85℃、90%RH環境下に7日間暴露し、耐湿熱性の加速試験後の可視光透過率、日射透過率、ヘイズ値を測定した。耐湿熱性の加速試験前後のこの結果を表1に示す。
(実施例10)
 実施例1で製造したA液からスプレードライヤーを用いて、4-メチル-2-ペンタノンを除去しCs0.33WO3微粒子分散粉である(A粉)を製造した。
 同様に、実施例1で製造したB液からスプレードライヤーを用いて、4-メチル-2-ペンタノンを除去し、水酸化亜鉛微粒子分散粉である(B粉)を製造した。
 製造した(A粉)をポリカーボネート樹脂に添加し、ブレンダーで均一に混合した後、二軸押出機で溶融混練し、押出されたストランドをペレット状にカットしてCs0.33WO3微粒子を含有するマスターバッチを製造した。
 同様に、製造した(B粉)を各々ポリカーボネート樹脂に添加し、ブレンダーで均一に混合した後、二軸押出機で溶融混練し、押出されたストランドをペレット状にカットして水酸化亜鉛微粒子を含有するマスターバッチを製造した。
 当該Cs0.33WO3微粒子を含有するマスターバッチと水酸化亜鉛微粒子を含有するマスターバッチとを、Cs0.33WO3微粒子100重量部に対して水酸化亜鉛微粒子が10重量部となるように、同じ方法で調製した無機微粒子を添加していないマスターバッチと混合した。
 この混合マスターバッチを押出し成形して、厚さ2mmのプレートを形成し、実施例10に係る熱線遮蔽体を製造した。製造された熱線遮蔽体の光学特性を表1に示す。
 製造された熱線遮蔽体を試験サンプルとし、85℃、90%RH環境下に7日間暴露し、耐湿熱性の加速試験後の可視光透過率、日射透過率、ヘイズ値を測定した。耐湿熱性の加速試験前後のこの結果を表1に示す。
(実施例11)
 実施例5で製造したF液を4-メチル-2-ペンタノンで希釈して、F液中の無機バインダー(固形分100%)の割合が30%となるように十分混合し分散液を製造した。この分散液を塗布液として、バーコーターを用いて基材(無機ガラス)上に塗布、成膜した。この膜を180℃で30分乾燥し分散媒を蒸発させて硬化させた。その後、当該基材のもう片面に、同様の方法でこの塗布液を塗布、成膜し、硬化させ、Cs0.33WO3微粒子100重量部に対して水酸化亜鉛微粒子が10重量部となるような、実施例11に係る熱線遮蔽体を得た。製造された熱線遮蔽体の光学特性を表1に示す。
 製造された熱線遮蔽体を試験サンプルとし、85℃、90%RH環境下に7日間暴露し、耐湿熱性の加速試験後の可視光透過率、日射透過率、ヘイズ値を測定した。耐湿熱性の加速試験前後のこの結果を表1に示す。
(比較例1)
 Cs0.33WO3微粒子を20重量部、分散媒として4-メチル-2-ペンタノン70重量部、微粒子分散用分散剤10重量部を混合し、媒体攪拌ミルで分散処理を行ない、平均分散粒子径80nmのCs0.33WO3微粒子の分散液を製造した(A液)。
 このA液を4-メチル-2-ペンタノンで希釈して、A液中の無機バインダー(固形分100%)の割合が30%となるように十分混合し分散液を製造した。この分散液を塗布液として、バーコーターを用いて基材(無機ガラス)上に塗布、成膜した。この膜を180℃で30分乾燥し分散媒を蒸発させて硬化させ、比較例1に係る熱線遮蔽体を製造した。製造された熱線遮蔽体の光学特性を表1に示す。
 製造された熱線遮蔽体を試験サンプルとし、85℃、90%RH環境下に7日間暴露し、耐湿熱性の加速試験後の可視光透過率、日射透過率、ヘイズ値を測定した。耐湿熱性の加速試験前後のこの結果を表1に示す。
(比較例2)
 実施例1で製造したA液とB液とを、Cs0.33WO3微粒子100重量部に対して水酸化亜鉛微粒子が0.01重量部となるように混合した以外は実施例1と同様にして、比較例2に係る熱線遮蔽体を製造した。製造された熱線遮蔽体の光学特性を表1に示す。
 製造された熱線遮蔽体を試験サンプルとし、85℃、90%RH環境下に7日間暴露し、耐湿熱性の加速試験後の可視光透過率、日射透過率、ヘイズ値を測定した。耐湿熱性の加速試験前後のこの結果を表1に示す。
(比較例3)
 実施例1で製造したA液とB液とを、Cs0.33WO3微粒子100重量部に対して水酸化亜鉛微粒子が200重量部となるように混合した以外は実施例1と同様にして、比較例3に係る熱線遮蔽体を製造した。製造された熱線遮蔽体の光学特性を表1に示す。
 しかし、水酸化亜鉛微粒子の添加量が多すぎたため、熱線遮蔽体は、基材(無機ガラス)と熱線遮蔽膜との密着性が不十分であり、基材と熱線遮蔽膜が簡単に剥がれてしまう問題が生じた。
 よって、耐湿熱性試験は実施しなかった。
(比較例4)
 実施例1で製造したA液を4-メチル-2-ペンタノンで希釈して、A液中の無機バインダー(固形分100%)の割合が30%となるように十分混合し、A分散液を製造した。
 同様に、実施例1で製造したB液を4-メチル-2-ペンタノンで希釈して、B液中の水酸化亜鉛微粒子の割合が30%となるように十分混合し、B分散液を製造した。
 このA分散液を塗布液として、バーコーターを用いて基材(無機ガラス)上に塗布、成膜した。この膜を180℃で30分乾燥し分散媒を蒸発させて硬化させた。その後、硬化したA分散液膜上へ、さらにB分散液を塗布液として、Cs0.33WO3微粒子100重量部に対して水酸化亜鉛微粒子が10重量部となるように塗布、成膜し、硬化させて比較例4に係る熱線遮蔽体を得た。製造された熱線遮蔽体の光学特性を表1に示す。
 製造された熱線遮蔽体を試験サンプルとし、85℃、90%RH環境下に7日間暴露し、耐湿熱性の加速試験後の可視光透過率、日射透過率、ヘイズ値を測定した。耐湿熱性の加速試験前後のこの結果を表1に示す。
(比較例5)
 実施例1で製造したA液と2-エチルヘキサン酸亜鉛とを、Cs0.33WO3微粒子100重量部に対して2-エチルヘキサン酸亜鉛が10重量部となるように混合した以外は実施例1と同様にして、比較例5に係る熱線遮蔽体を製造した。製造された熱線遮蔽体の光学特性を表1に示す。
 製造された熱線遮蔽体を試験サンプルとし、85℃、90%RH環境下に7日間暴露し、耐湿熱性の加速試験後の可視光透過率、日射透過率、ヘイズ値を測定した。耐湿熱性の加速試験前後のこの結果を表1に示す。
[評価]
 実施例1~11においては、高い可視光透過性と、優れた熱線遮蔽特性とを有し、ヘイズ値が低く透明性に優れた熱線遮蔽体が得られた。また、水酸化亜鉛微粒子が添加されたことで、高温高湿条件下に曝された複合タングステン酸化物微粒子の経時劣化が抑制され、光学特性変化が少ないという高い耐湿熱性を発揮した。この結果、例えば屋外のような過酷な使用条件においても熱線遮蔽特性の変化の少ない熱線遮蔽体が得られた。
 一方、比較例1~2は、水酸化亜鉛微粒子を添加しなかった、または、添加量が少なすぎたため、耐湿熱性試験において可視光透過率の変化が大であった。
 また、比較例3は、水酸化亜鉛微粒子の添加量が多すぎたため、熱線遮蔽体として重要な物性である基材(無機ガラス)との密着性が損なわれてしまった。
 また、比較例4は、Cs0.33WO3微粒子と水酸化亜鉛微粒子とが同一の層に含有されていないため、Cs0.33WO3微粒子の耐湿熱性は全く向上しなかった。
 また、比較例5は、水酸化亜鉛微粒子ではなく2-エチルヘキサン酸亜鉛を使用したため、耐湿熱性試験においてヘイズ値の変化が大であった。
Figure JPOXMLDOC01-appb-T000001

Claims (18)

  1.  一般式MYWOZ(0.001≦Y≦1.0、2.2≦Z≦3.0)で示され、M元素がCs、Rb、K、Tlのうちから選択される1種類以上であり、且つ、六方晶の結晶構造を持つ複合タングステン酸化物微粒子を分散媒に分散し、当該複合タングステン酸化物微粒子の分散粒子径を1nm以上800nm以下に調整した複合タングステン酸化物微粒子分散液を製造する工程と、
     水酸化亜鉛を分散媒に分散し、当該水酸化亜鉛の分散粒子径を1nm以上800nm以下に調整して水酸化亜鉛微粒子分散液を製造する工程と、
     前記複合タングステン酸化物微粒子分散液へ、前記水酸化亜鉛微粒子分散液を添加混合し、前記複合タングステン酸化物微粒子100重量部に対して、前記水酸化亜鉛微粒子が、0.1重量部以上、100重量部以下含有される第1の混合分散液を製造する工程と、
     前記第1の混合分散液を成形固化して熱線遮蔽分散体を製造する工程とを、有することを特徴とする熱線遮蔽分散体の製造方法。
  2.  前記第1の混合分散液から分散媒を除去して、分散粉を製造する工程と、
     前記分散粉を所定の媒体中に混合分散し、第2の混合分散物を製造する工程と、
     前記第2の混合分散物を成形固化して熱線遮蔽分散体を製造する工程と、を有することを特徴とする請求項1に記載の熱線遮蔽分散体の製造方法。
  3.  一般式MYWOZ(0.001≦Y≦1.0、2.2≦Z≦3.0)で示され、M元素がCs、Rb、K、Tlのうちから選択される1種類以上であり、且つ、六方晶の結晶構造を持つ複合タングステン酸化物微粒子と、水酸化亜鉛とを、前記複合タングステン酸化物微粒子100重量部に対して、前記水酸化亜鉛が0.1重量部以上、100重量部以下含有されるように分散媒に分散し、前記複合タングステン酸化物微粒子と前記水酸化亜鉛との分散粒子径を1nm以上800nm以下に調整して第1の混合分散液を製造する工程と、
     前記第1の混合分散液を成形固化して熱線遮蔽分散体を製造する工程とを、有することを特徴とする熱線遮蔽分散体の製造方法。
  4.  前記第1の混合分散液から分散媒を除去して分散粉を製造する工程と、
     前記分散粉を所定の媒体中に混合分散し、第2の混合分散物を製造する工程と、
     前記第2の混合分散物を成形固化して熱線遮蔽分散体を製造する工程と、を有することを特徴とする請求項3に記載の熱線遮蔽分散体の製造方法。
  5.  一般式MYWOZ(0.001≦Y≦1.0、2.2≦Z≦3.0)で示され、M元素がCs、Rb、K、Tlのうちから選択される1種類以上であり、且つ、六方晶の結晶構造を持つ複合タングステン酸化物微粒子を分散媒に分散し、当該複合タングステン酸化物微粒子の分散粒子径を1nm以上800nm以下に調整した第1の複合タングステン酸化物微粒子分散液を製造する工程と、
     前記第1の複合タングステン酸化物微粒子分散液から分散媒を除去して、複合タングステン酸化物微粒子分散粉を製造する工程と、
     前記複合タングステン酸化物微粒子分散粉を所定の媒体中に混合分散し、第2の複合タングステン酸化物微粒子分散物を製造する工程と、
     水酸化亜鉛を分散媒に分散し、当該水酸化亜鉛の分散粒子径を1nm以上800nm以下に調整した第1の水酸化亜鉛微粒子分散液を製造し、当該分散液から分散媒を除去して、水酸化亜鉛微粒子分散粉を製造する工程と、
     前記第1の水酸化亜鉛微粒子分散液から分散媒を除去して、水酸化亜鉛微粒子分散粉を製造する工程と、
     前記水酸化亜鉛微粒子分散粉を所定の媒体中に混合分散し、第2の水酸化亜鉛微粒子分散物を製造する工程と、
     前記第2の複合タングステン酸化物微粒子分散物と、前記第2の水酸化亜鉛微粒子分散物とを混合し、成形固化して熱線遮蔽分散体を製造する工程と、を有することを特徴とする熱線遮蔽分散体の製造方法。
  6.  請求項1から5のいずれかに記載の熱線遮蔽分散体の製造方法により製造されたことを特徴とする熱線遮蔽分散体。
  7.  前記媒体が、樹脂またはガラスであることを特徴とする請求項6記載の熱線遮蔽分散体。
  8.  前記媒体が、ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリビニルアルコール樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、エチレン酢酸ビニル共重合体、ポリエステル樹脂、ポリエチレンテレフタレート樹脂、ふっ素樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリビニルブチラール樹脂から選択される1種類以上であることを特徴とする請求項6に記載の熱線遮蔽分散体。
  9.  請求項6から8のいずれか記載の熱線遮蔽分散体が、所定の基材の片面または両面に設けられていることを特徴とする熱線遮蔽体。
  10.  前記熱線遮蔽分散体が、板状またはフィルム状または薄膜状に形成されていることを特徴とする請求項9に記載の熱線遮蔽体。
  11.  前記基材が、樹脂またはガラスであることを特徴とする請求項9または10に記載の熱線遮蔽体。
  12.  前記基材が、ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリビニルアルコール樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、エチレン酢酸ビニル共重合体、ポリエステル樹脂、ポリエチレンテレフタレート樹脂、ふっ素樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリビニルブチラール樹脂のうちの1種類以上であることを特徴とする請求項9から11のいずれかに記載の熱線遮蔽体。
  13.  可視光透過率が70%以上でありかつ日射透過率が40%以下であるとき、耐湿熱性評価後における熱線遮蔽分散体の可視光透過率の変化が2%以下、日射透過率の変化が4%以下、ヘイズ値の変化が0.5%以下であることを特徴とする請求項9から12のいずれかに記載の熱線遮蔽体。
  14.  請求項1または3に記載の第1の混合分散液を所定の基材上にコーティングする工程、を有することを特徴とする熱線遮蔽体の製造方法。
  15.  請求項2または4に記載の第2の混合分散物の成形固化物を所定の基材上に設ける工程、を有することを特徴とする熱線遮蔽体の製造方法。
  16.  請求項5に記載の第2の複合タングステン酸化物微粒子分散物と、第2の水酸化亜鉛微粒子分散物との混合物である成形固化物を、所定の基材上に設ける工程、を有することを特徴とする熱線遮蔽体の製造方法。
  17.  前記基材が、樹脂またはガラスであることを特徴とする請求項14から16のいずれかに記載の熱線遮蔽体の製造方法。
  18.  前記基材が、ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリビニルアルコール樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、エチレン酢酸ビニル共重合体、ポリエステル樹脂、ポリエチレンテレフタレート樹脂、ふっ素樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリビニルブチラール樹脂のうちの1種類以上であることを特徴とする請求項14から17のいずれかに記載の熱線遮蔽体の製造方法。
PCT/JP2013/069011 2012-07-11 2013-07-11 熱線遮蔽分散体の製造方法および熱線遮蔽分散体並びに熱線遮蔽体 WO2014010684A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380036712.2A CN104603225B (zh) 2012-07-11 2013-07-11 热线屏蔽分散体的制造方法及热线屏蔽分散体以及热线屏蔽体
EP13816048.6A EP2873709B1 (en) 2012-07-11 2013-07-11 Heat-ray-shielding body
KR1020157001791A KR101795191B1 (ko) 2012-07-11 2013-07-11 열선 차폐 분산체의 제조방법, 열선 차폐 분산체, 및 열선 차폐체
US14/414,365 US10450471B2 (en) 2012-07-11 2013-07-11 Method for producing heat-ray shielding dispersion body, heat-ray shielding dispersion body, and heat-ray shielding body
JP2014524874A JP6041161B2 (ja) 2012-07-11 2013-07-11 熱線遮蔽分散体の製造方法および熱線遮蔽体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-155150 2012-07-11
JP2012155150 2012-07-11

Publications (1)

Publication Number Publication Date
WO2014010684A1 true WO2014010684A1 (ja) 2014-01-16

Family

ID=49916125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069011 WO2014010684A1 (ja) 2012-07-11 2013-07-11 熱線遮蔽分散体の製造方法および熱線遮蔽分散体並びに熱線遮蔽体

Country Status (6)

Country Link
US (1) US10450471B2 (ja)
EP (1) EP2873709B1 (ja)
JP (3) JP6041161B2 (ja)
KR (1) KR101795191B1 (ja)
CN (1) CN104603225B (ja)
WO (1) WO2014010684A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107406684B (zh) * 2015-05-15 2020-03-13 住友大阪水泥株式会社 透明树脂组合物及热射线屏蔽薄膜
KR102463851B1 (ko) * 2015-06-02 2022-11-04 스미토모 긴조쿠 고잔 가부시키가이샤 금속 미립자의 집합체, 금속 미립자 분산액, 열선 차폐 필름, 열선 차폐 유리, 열선 차폐 미립자 분산체 및 열선 차폐 적층 투명기재
WO2017008821A1 (en) * 2015-07-15 2017-01-19 Coelux S.R.L. Chromatic reflective unit
WO2017008822A1 (en) 2015-07-15 2017-01-19 Coelux S.R.L. Reflective illumination systems for optically widened perception
CN109312207B (zh) * 2016-03-16 2022-08-02 住友金属矿山株式会社 近红外线屏蔽材料微粒及其制造方法、与近红外线屏蔽材料微粒分散液
BR112018068657A2 (pt) * 2016-03-16 2019-02-05 Sumitomo Metal Mining Co corpo de dispersão de partícula fina de material de proteção próxima do infravermelho, corpo de proteção próxima do infravermelho, estrutura laminada de proteção próxima do infravermelho, e, métodos para produzir um corpo de dispersão de partícula fina de material de proteção próxima do infravermelho e uma estrutura laminada de proteção próxima do infravermelho.
AU2018289676B2 (en) * 2017-06-19 2024-05-30 Sumitomo Metal Mining Co., Ltd. Agricultural and horticultural soil-covering film, and method for manufacturing same
EP3673017B1 (en) * 2017-07-04 2024-01-24 Saint-Gobain Glass France A frosted glass article
US11208563B2 (en) * 2017-11-13 2021-12-28 Sumitomo Metal Mining Co., Ltd. Surface-treated infrared absorbing fine particles, surface-treated infrared absorbing fine powder, infrared absorbing fine particle dispersion liquid using the surface-treated infrared absorbing fine particles, infrared absorbing fine particle dispersion body and method for producing them
KR20230000021A (ko) * 2021-06-23 2023-01-02 (주)이녹스첨단소재 디스플레이용 접착 필름

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812378A (ja) 1994-06-30 1996-01-16 Nissan Motor Co Ltd 熱線遮断ガラス及びその製造方法
JPH0859300A (ja) 1994-08-25 1996-03-05 Nissan Motor Co Ltd 熱線遮断ガラス
JPH0873223A (ja) 1994-09-08 1996-03-19 Agency Of Ind Science & Technol タングステンブロンズおよびその被覆複合体の製造方法
JPH08283044A (ja) 1995-04-11 1996-10-29 Asahi Glass Co Ltd 熱線遮断ガラス
JPH09127559A (ja) 1995-10-27 1997-05-16 Teiji Haniyu 太陽光可変調光断熱材料
JP2000119045A (ja) 1998-10-13 2000-04-25 Glaverbel Sa 太陽光制御被覆ガラス
JP2003121884A (ja) 2001-10-17 2003-04-23 Sumitomo Metal Mining Co Ltd エレクトロクロミック特性を示す酸化タングステン微粒子の製造方法、その微粒子を含む塗布液及びエレクトロクロミック素子
JP4096205B2 (ja) 2003-10-20 2008-06-04 住友金属鉱山株式会社 赤外線遮蔽材料微粒子分散体、赤外線遮蔽体、及び赤外線遮蔽材料微粒子の製造方法、並びに赤外線遮蔽材料微粒子
JP2010163574A (ja) * 2009-01-19 2010-07-29 Sumitomo Metal Mining Co Ltd 赤外線遮蔽膜形成用分散液と赤外線遮蔽膜形成用塗布液、赤外線遮蔽膜と赤外線遮蔽光学部材、および、プラズマディスプレイパネル用多層フィルターとプラズマディスプレイパネル
JP2011063739A (ja) * 2009-09-18 2011-03-31 Sumitomo Metal Mining Co Ltd 近赤外線遮蔽材料微粒子とその製造方法および近赤外線遮蔽材料微粒子分散体と近赤外線遮蔽体
JP2011133586A (ja) * 2009-12-24 2011-07-07 Hiraoka & Co Ltd 近赤外線遮蔽性高透光シート及びそれを用いた近赤外線ノイズ遮蔽材
JP2011157504A (ja) * 2010-02-02 2011-08-18 Sumitomo Metal Mining Co Ltd 近赤外線遮蔽材料微粒子分散体、近赤外線遮蔽体、および近赤外線遮蔽材料微粒子の製造方法、並びに近赤外線遮蔽材料微粒子
JP2012229388A (ja) * 2011-04-14 2012-11-22 Sumitomo Metal Mining Co Ltd 熱線遮蔽微粒子含有組成物の製造方法および熱線遮蔽微粒子含有組成物、当該熱線遮蔽微粒子含有組成物を用いた熱線遮蔽膜および当該熱線遮蔽膜を用いた熱線遮蔽合わせ透明基材

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6939623B2 (en) * 2000-12-19 2005-09-06 Posco High strength steel plate having superior electromagnetic shielding and hot-dip galvanizing properties
EP2163921A4 (en) * 2007-06-08 2012-08-29 Bridgestone Corp PROTECTIVE NON-INFRARED PROTECTIVE MATERIAL, LAMINATE COMPRISING THE SAME, AND OPTICAL FILTER FOR DISPLAY
JP2009258581A (ja) * 2008-03-21 2009-11-05 Sumitomo Metal Mining Co Ltd プラズマディスプレイパネル用近赤外線吸収フィルターとその製造方法およびプラズマディスプレイパネル
US20110091708A1 (en) * 2008-04-30 2011-04-21 Asahi Kasei E-Materials Corporation Resin composition and sheet using the same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812378A (ja) 1994-06-30 1996-01-16 Nissan Motor Co Ltd 熱線遮断ガラス及びその製造方法
JPH0859300A (ja) 1994-08-25 1996-03-05 Nissan Motor Co Ltd 熱線遮断ガラス
JPH0873223A (ja) 1994-09-08 1996-03-19 Agency Of Ind Science & Technol タングステンブロンズおよびその被覆複合体の製造方法
JPH08283044A (ja) 1995-04-11 1996-10-29 Asahi Glass Co Ltd 熱線遮断ガラス
JPH09127559A (ja) 1995-10-27 1997-05-16 Teiji Haniyu 太陽光可変調光断熱材料
JP2000119045A (ja) 1998-10-13 2000-04-25 Glaverbel Sa 太陽光制御被覆ガラス
JP2003121884A (ja) 2001-10-17 2003-04-23 Sumitomo Metal Mining Co Ltd エレクトロクロミック特性を示す酸化タングステン微粒子の製造方法、その微粒子を含む塗布液及びエレクトロクロミック素子
JP4096205B2 (ja) 2003-10-20 2008-06-04 住友金属鉱山株式会社 赤外線遮蔽材料微粒子分散体、赤外線遮蔽体、及び赤外線遮蔽材料微粒子の製造方法、並びに赤外線遮蔽材料微粒子
JP2010163574A (ja) * 2009-01-19 2010-07-29 Sumitomo Metal Mining Co Ltd 赤外線遮蔽膜形成用分散液と赤外線遮蔽膜形成用塗布液、赤外線遮蔽膜と赤外線遮蔽光学部材、および、プラズマディスプレイパネル用多層フィルターとプラズマディスプレイパネル
JP2011063739A (ja) * 2009-09-18 2011-03-31 Sumitomo Metal Mining Co Ltd 近赤外線遮蔽材料微粒子とその製造方法および近赤外線遮蔽材料微粒子分散体と近赤外線遮蔽体
JP2011133586A (ja) * 2009-12-24 2011-07-07 Hiraoka & Co Ltd 近赤外線遮蔽性高透光シート及びそれを用いた近赤外線ノイズ遮蔽材
JP2011157504A (ja) * 2010-02-02 2011-08-18 Sumitomo Metal Mining Co Ltd 近赤外線遮蔽材料微粒子分散体、近赤外線遮蔽体、および近赤外線遮蔽材料微粒子の製造方法、並びに近赤外線遮蔽材料微粒子
JP2012229388A (ja) * 2011-04-14 2012-11-22 Sumitomo Metal Mining Co Ltd 熱線遮蔽微粒子含有組成物の製造方法および熱線遮蔽微粒子含有組成物、当該熱線遮蔽微粒子含有組成物を用いた熱線遮蔽膜および当該熱線遮蔽膜を用いた熱線遮蔽合わせ透明基材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2873709A4

Also Published As

Publication number Publication date
EP2873709B1 (en) 2024-09-25
CN104603225B (zh) 2017-06-09
CN104603225A (zh) 2015-05-06
JP2017082221A (ja) 2017-05-18
EP2873709A4 (en) 2016-01-27
US10450471B2 (en) 2019-10-22
KR20150036168A (ko) 2015-04-07
EP2873709A1 (en) 2015-05-20
JP6274283B2 (ja) 2018-02-07
JP6269780B2 (ja) 2018-01-31
JP6041161B2 (ja) 2016-12-07
JP2017057394A (ja) 2017-03-23
JPWO2014010684A1 (ja) 2016-06-23
KR101795191B1 (ko) 2017-11-07
US20150197646A1 (en) 2015-07-16

Similar Documents

Publication Publication Date Title
JP6269780B2 (ja) 混合分散液
AU2017232748B2 (en) Near-infrared shielding material fine particle dispersion body, near-infrared shielding body and near-infrared shielding laminated structure, and method for producing the same
JP4632094B2 (ja) 高耐熱性マスターバッチの製造方法、熱線遮蔽透明樹脂成形体、並びに熱線遮蔽透明積層体
AU2007360455B2 (en) Masterbatch with high heat resistance, heat-ray-shielding transparent molded resin, and heat-ray-shielding transparent layered product
TWI402218B (zh) 透明隔熱材料、其製造方法以及透明隔熱結構
JP5050470B2 (ja) 日射遮蔽分散体、日射遮蔽体、および、それらの製造方法
JP5257626B2 (ja) 高耐熱性マスターバッチ、熱線遮蔽透明樹脂成形体、並びに熱線遮蔽透明積層体
JP4998781B2 (ja) 窓用紫外・近赤外光遮蔽分散体および窓用紫外・近赤外光遮蔽体
US20060009559A1 (en) Master batch containing heat radiation shielding component, and heat radiation shielding transparent laminate for which the master batch has been used
JP2008274047A (ja) 熱線遮蔽塩化ビニルフィルム製造用組成物およびその製造方法、並びに、熱線遮蔽塩化ビニルフィルム
JP6201152B2 (ja) 熱線遮蔽膜、熱線遮蔽透明基材、自動車および建造物
JP2012082326A (ja) 高耐熱性熱線遮蔽成分含有マスターバッチおよびその製造方法、高耐熱性熱線遮蔽透明樹脂成形体、並びに高耐熱性熱線遮蔽透明積層体
WO2016010156A1 (ja) 熱線遮蔽微粒子、熱線遮蔽微粒子分散液、熱線遮蔽フィルム、熱線遮蔽ガラス、熱線遮蔽分散体および熱線遮蔽合わせ透明基材
JP6171733B2 (ja) 熱線遮蔽分散体形成用塗布液および熱線遮蔽体
JP5898397B2 (ja) 近赤外線遮蔽ポリエステル樹脂組成物、近赤外線遮蔽ポリエステル樹脂積層体、および、成形体とその製造方法
JP5387925B2 (ja) 赤外線遮蔽材料微粒子分散体、赤外線遮蔽体、及び赤外線遮蔽材料微粒子の製造方法、並びに赤外線遮蔽材料微粒子
JP5257381B2 (ja) 近赤外線遮蔽ポリエステル樹脂組成物およびその成形体、並びに、その積層体
JP2015044922A (ja) 熱線遮蔽分散体、熱線遮蔽分散体形成用塗布液および熱線遮蔽体
JP5614586B2 (ja) 熱線遮蔽ポリカーボネートシート、熱線遮蔽ポリカーボネートシート積層体および熱線遮蔽ポリカーボネートシートの製造方法
JP2012082109A (ja) 高耐熱性熱線遮蔽体形成用タングステン酸化物微粒子の製造方法、高耐熱性熱線遮蔽体形成用タングステン酸化物微粒子および高耐熱性熱線遮蔽体形成用分散液、並びに高耐熱性熱線遮蔽体
JP2009144037A (ja) 樹脂添加用タングステン酸化物微粒子分散体、タングステン酸化物微粒子分散塩化ビニル樹脂成形体およびタングステン酸化物微粒子分散塩化ビニル樹脂成形体の製造方法
JP2015160390A (ja) 熱線遮蔽積層体および熱線遮蔽構造体
JP2016164276A (ja) 熱線遮蔽膜、熱線遮蔽シートまたはフィルム、熱線遮蔽微粒子分散液、および熱線遮蔽微粒子分散粉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13816048

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014524874

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14414365

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013816048

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157001791

Country of ref document: KR

Kind code of ref document: A